CMSC 442/653 Fall 2007

Instructor: Dr. Lomonaco

Homework 7

- Optional listening assignment: Listen to Mozart's Eine Kleine Nachtmusik
- Optional Reading assignment: Peterson \& Weldon, "Error-Correcting Codes," MIT Press, (Second Edition), Chapters 7 and 8
- Optional Reading assignment: MacWilliams \& Sloane, "The Theory of Error-Correcting Codes," North-Holland (2 ${ }^{\text {nd }}$ edition), (1983), Chapter 7.

1U) Let ξ be a primitive element of $\boldsymbol{G F}\left(\mathbf{2}^{6}\right)$. Compute the order of ξ^{j} for $j=0,1,2,3, \ldots, 62$.

2U) Let α be the primitive element of $\boldsymbol{G F}\left(\mathbf{2}^{6}\right)$ which is the zero of the primitive polynomial:

$$
1: x+x^{6}
$$

Let $g(x)$ be the polynomial of smallest degree having the following zeros:

$$
\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}, \alpha^{7}, \alpha^{8}, \alpha^{9}, \alpha^{10}
$$

Let $V=(g(x))$ be the corresponding cyclic code of smallest length.
a) Write $g(x)$ as a product of minimal polynomials $m_{i}(x)$, where $m_{i}(x)$ is the minimal polynomial of α^{i}. (Do not explicitly compute the $m_{i}(x)$'s.)
b) What is the degree of $g(x)$?
c) What is the length n of V ?
d) What is the dimension of V ?
$\mathbf{3 U})$ Let ξ be a primitive element of $\boldsymbol{G F}\left(\mathbf{2}^{4}\right)$ defined by $\xi=\boldsymbol{x} \bmod p(x)$ for the primitive polynomial

$$
p(x)=1+x+x^{4}
$$

Let $g(x)$ be the binary polynomial of smallest degree having

$$
\xi \text { and } \xi^{5}
$$

as roots. Let $V=(g(x))$ be the cyclic code of smallest length having $g(x)$ as a generator polynomial.
a) What is the length n of V ?
b) What is the dimension of V^{\perp} ?
c) Use ξ and ξ^{5} to construct a parity check matrix H of V. (Do not explicitly compute $g(x)$. Be sure that the rows of your parity check matrix are linearly independent. Use the enclosed table for $\boldsymbol{G F}\left(\mathbf{2}^{4}\right)$ to answer this part of the question.)

$$
G F\left(2^{4}\right)=G F(2)[x] /\left(x^{4}+x+1\right)
$$

Antilog	Log
$a_{0} a_{1} a_{2} a_{3}$	
0000	$-\infty$
1000	0
0100	1
0010	2
0001	3
1100	4
0110	5
0011	6
1101	7
1010	8
0101	9
1110	10
0111	11
1111	12
1011	13
1001	14

