CMSC 442/653 Fall 2007 Instructor: Dr. Lomonaco Homework 7

- **Optional listening assignment:** Listen to Mozart's *Eine Kleine Nachtmusik*
- **Optional Reading assignment:** Peterson & Weldon, "Error-Correcting Codes," MIT Press, (Second Edition), Chapters 7 and 8
- **Optional Reading assignment:** MacWilliams & Sloane, "The Theory of Error-Correcting Codes," North-Holland (2nd edition), (1983), Chapter 7.

1U) Let $\boldsymbol{\xi}$ be a primitive element of $GF(2^6)$. Compute the order of $\boldsymbol{\xi}^j$ for $j = 0, 1, 2, 3, \dots, 62$.

2U) Let α be the primitive element of $GF(2^6)$ which is the zero of the primitive polynomial:

```
1: x + x^6
```

Let g(x) be the polynomial of smallest degree having the following zeros:

```
\alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7, \alpha^8, \alpha^9, \alpha^{10}
```

Let V = (g(x)) be the corresponding cyclic code of smallest length.

a) Write g(x) as a product of minimal polynomials $m_i(x)$, where $m_i(x)$ is the minimal polynomial of α^i . (Do not explicitly compute the $m_i(x)$'s.)

- **b**) What is the degree of g(x) ?
- c) What is the length n of V?
- **d**) What is the dimension of V ?

3U) Let ξ be a primitive element of $GF(2^4)$ defined by $\xi = x \mod p(x)$ for the primitive polynomial

$$p(x) = 1 + x + x^4$$

Let g(x) be the binary polynomial of smallest degree having

$\boldsymbol{\xi}$ and $\boldsymbol{\xi}^{5}$

as roots. Let V = (g(x)) be the cyclic code of smallest length having g(x) as a generator polynomial.

a) What is the length n of V?

b) What is the dimension of V^{\perp} ?

c) Use ξ and ξ^5 to construct a parity check matrix H of V. (Do not explicitly compute g(x). Be sure that the rows of your parity check matrix are linearly independent. Use the enclosed table for $GF(2^4)$ to answer this part of the question.)

$GF(2^4)$	= GF(2)	$[x]/(x^4)$	+x+1
	Antilog	Log	
	$a_0 a_1 a_2 a_3$		
	0000		
	1000	0	
	0100	1	
	0010	2	
	0001	3	
	1100	4	
	0110	5	
	0011	6	
	1101	7	
	1010	8	
	0101	9	
	1110	10	
	0111	11	
	1111	12	
	1011	13	
	1001	14	