CMSC 442/653

Fall 2007
Instructor: Dr. Lomonaco

Homework 1

- Listening Assignment: Listen to Beethoven's 5-th symphony.
- Reading Assignment: http://www.cs.umbc.edu/~lomonaco/s06/652/slides/Equilateral-Triangle.pdf
- Optional Reading assignment: Peterson \& Weldon, "Error-Correcting Codes," MIT Press, (Second Edition), Chapter 2.

1) Construct the multiplication table of the group of symmetries of the equilateral triangle given by the presentation

$$
\left(\rho, \sigma: \rho^{3}=1, \sigma^{2}=1, \rho \sigma=\sigma \rho^{2}\right)
$$

Assume that the distinct group elements are:

$$
1, \rho, \rho^{2}, \sigma, \rho \sigma, \rho^{2} \sigma
$$

2) Construct the multiplication table of the group of symmetries of the square given by the presentation

$$
\left(\rho, \sigma: \rho^{4}=1, \sigma^{2}=1, \rho \sigma=\sigma \rho^{3}\right)
$$

Assume that the distinct group elements are:

$$
\left\{\rho^{m} \sigma^{n}: 0 \leq m<4,0 \leq n<2\right\}
$$

Additional problem for grad students in CMSC 653:

Grad3) Let S be a set with an associative binary operation $\bullet: S \times S \rightarrow S$. Let e_{L} be a left identity of S (i.e., $e_{L} \bullet s=s \forall s \in S$), and let e_{R} be a right identity of S (i.e., $s \bullet e_{R}=s \forall s \in S$).
a) Prove that $e_{L}=\boldsymbol{e}_{R}$.
b) Also prove that S can have at most one 2 -sided identity.

Grad4) Let S be a set with an associative binary operation $\bullet: S \times S \rightarrow S$ and a 2sided identity e, and let $s \in S$. Let $\widetilde{s_{L}}$ and $\widetilde{s_{R}}$ be elements of S such that

$$
\widetilde{s_{L}} \bullet s=e=s \bullet \widetilde{s_{R}}
$$

Prove that $\widetilde{s_{L}}=\widetilde{s_{R}}$.

