Appendix I

Let $r_{i, j}$ and $\epsilon_{i, j}$ be the i, j-th entry of matrix $R_{k \times m}$ and $R^{T} R$, respectively. Each $r_{i, j}$ is independent and identically chosen from $N\left(0, \sigma_{r}\right)$. Now let us prove $E\left[\epsilon_{i, i}\right]=k \sigma_{r}^{2}, \operatorname{Var}\left[\epsilon_{i, i}\right]=$ $2 k \sigma_{r}^{4}, \forall i$; and $E\left[\epsilon_{i, j}\right]=0, \operatorname{Var}\left[\epsilon_{i, j}\right]=k \sigma_{r}^{4}, \forall i, j, i \neq j$.

Proof: Note that $\epsilon_{i, i}=\sum_{t=1}^{k} r_{t, i}^{2}$ and $\epsilon_{i, j}=\sum_{t=1}^{k} r_{t, i} r_{t, j}, i \neq j$, we have $E\left[\epsilon_{i, i}\right]=$ $E\left[\sum_{t=1}^{k} r_{t, i}^{2}\right]=k E\left[r_{t, i}^{2}\right]=k \sigma_{r}^{2}$ and $E_{i \neq j}\left[\epsilon_{i, j}\right]=E\left[\sum_{t=1}^{k} r_{t, i} r_{t, j}\right]=\sum_{t=1}^{k} E\left[r_{t, i} r_{t, j}\right]=\sum_{t=1}^{k} E\left[r_{t, i}\right] E\left[r_{t, j}\right]=$ 0.

To obtain the variance of $\epsilon_{i, i}$, we first compute $E\left[\epsilon_{i, i}^{2}\right]=E\left[\sum_{t=1}^{k} r_{t, i}^{4}+\sum_{p \neq q, 1 \leq p, q \leq k} r_{p, i}^{2} r_{q, i}^{2}\right]=$ $k E\left[r_{t, i}^{4}\right]+k(k-1) E\left[r_{p, i}^{2}\right] E\left[r_{q, i}^{2}\right]=3 k \sigma_{r}^{4}+k(k-1) \sigma_{r}^{4}=\left(2 k+k^{2}\right) \sigma_{r}^{4}$. The second to the last equation in the above is based on the fact that $E\left[r_{t, j}^{4}\right]=3 \sigma_{r}^{4}$ for random variable $r_{t, j} \sim N\left(0, \sigma_{r}\right)^{5}$. Therefore, $\operatorname{Var}\left[\epsilon_{i, i}\right]=E\left[\epsilon_{i, i}^{2}\right]-\left(E\left[\epsilon_{i, i}\right]\right)^{2}=2 k \sigma_{r}^{4}$. Similarly, $E_{i \neq j}\left[\epsilon_{i, j}^{2}\right]=E_{i \neq j}\left[\sum_{t=1}^{k} r_{t, i}^{2} r_{t, j}^{2}+\right.$ $\left.\sum_{p \neq q, 1 \leq p, q \leq k} r_{p, i} r_{p, j} r_{q, i} r_{q, j}\right]=k E\left[\sum_{t=1}^{k} r_{t, i}^{2} r_{t, j}^{2}\right]+0=k \sigma_{r}^{4}$, hence, $\operatorname{Var}_{i \neq j}\left[\epsilon_{i, j}\right]=k \sigma_{r}^{4}$.

Appendix II

Lemma 5.5: Let x, y be two data vectors in \mathbb{R}^{m}. Let R be a $k \times m$ dimensional random matrix. Each entry of the random matrix is independent and identically chosen from Gaussian distribution with mean zero variance σ_{r}^{2}. Further let

$$
\begin{aligned}
u=\frac{1}{\sqrt{k} \sigma_{r}} R x, & \text { and } \quad v=\frac{1}{\sqrt{k} \sigma_{r}} R y, \text { then } \\
E\left[u^{T} v-x^{T} y\right] & =0 \\
\operatorname{Var}\left[u^{T} v-x^{T} y\right] & =\frac{1}{k}\left(\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}+\left(\sum_{i} x_{i} y_{i}\right)^{2}\right)
\end{aligned}
$$

In particular, if both x and y are normalized to unity, $\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}=1$ and $\left(\sum_{i} x_{i} y_{i}\right)^{2} \leq 1$. We have the upper bound of the variance as follows:

$$
\operatorname{Var}\left[u^{T} v-x^{T} y\right] \leq \frac{2}{k}
$$

${ }^{5}$ http://mathworld.wolfram.com/NormalDistribution.html

Proof: Using Lemma 5.2, the expectation of projection distortion is

$$
\begin{aligned}
E\left[u^{T} v-x^{T} y\right] & =E\left[\frac{1}{k \sigma_{r}^{2}} x^{T} R^{T} R y-x^{T} y\right] \\
& =\frac{1}{k \sigma_{r}^{2}} x^{T} E\left[R^{T} R\right] y-x^{T} y \\
& =\frac{1}{k \sigma_{r}^{2}} k \sigma_{r}^{2} x^{T} y-x^{T} y \\
& =0
\end{aligned}
$$

To compute the variance of the distortion, let us first express the inner product between the projected vectors as

$$
\begin{aligned}
u^{T} v & =\frac{1}{\sqrt{k} \sigma_{r}} x^{T} R^{T} \frac{1}{\sqrt{k} \sigma_{r}} R y \\
& =\frac{1}{k \sigma_{r}^{2}} x^{T} R^{T} R y \\
& =\frac{1}{k \sigma_{r}^{2}}\left(\sum_{i} x_{i} \epsilon_{i, i} y_{i}+\sum_{i \neq j} x_{i} \epsilon_{i, j} y_{j}\right) \\
& =\frac{1}{k \sigma_{r}^{2}} \sum_{i} x_{i} \epsilon_{i, i} y_{i}+\frac{1}{k \sigma_{r}^{2}} \sum_{i \neq j} x_{i} \epsilon_{i, j} y_{j}
\end{aligned}
$$

Denote $\frac{1}{k \sigma_{r}^{2}} \sum_{i} x_{i} \epsilon_{i, i} y_{i}$ as Φ and $\frac{1}{k \sigma_{r}^{2}} \sum_{i \neq j} x_{i} \epsilon_{i, j} y_{j}$ as Ψ. Then $\operatorname{Var}\left[u^{T} v\right]=\operatorname{Var}[\Phi]+\operatorname{Var}[\Psi]+$ $2 \operatorname{Cov}[\Phi, \Psi]$.

Now let us compute $\operatorname{Cov}[\Phi, \Psi]$.

$$
\operatorname{Cov}[\Phi, \Psi]=E[\Phi \Psi]-E[\Phi] E[\Psi]
$$

Since $E\left[\epsilon_{i, j}\right]=0 \forall i, j, i \neq j$, so $E[\Psi]=0$. Hence,

$$
\begin{aligned}
\operatorname{Cov}[\Phi, \Psi] & =E[\Phi \Psi]-0 \\
& =\frac{1}{k^{2} \sigma_{r}^{4}} E\left[\sum_{i} x_{i} \epsilon_{i, i} y_{i} \times \sum_{p \neq q} x_{p} \epsilon_{p, q} y_{q}\right]
\end{aligned}
$$

It is straightforward to verify that $E\left[\epsilon_{i, i} \epsilon_{p, q}\right]=0$ when $p \neq q$. So $\operatorname{Cov}[\Phi, \Psi]=0$.

The variance of Φ is

$$
\begin{aligned}
\operatorname{Var}[\Phi]= & \operatorname{Var}\left[\frac{1}{k \sigma_{r}^{2}} \sum_{i} x_{i} \epsilon_{i, i} y_{i}\right] \\
= & \frac{1}{k^{2} \sigma_{r}^{4}} \operatorname{Var}\left[\sum_{i} x_{i} \epsilon_{i, i} y_{i}\right] \\
= & \frac{1}{k^{2} \sigma_{r}^{4}}\left(E\left[\left(\sum_{i} x_{i} \epsilon_{i, i} y_{i}\right)^{2}\right]-\left(E\left[\sum_{i} x_{i} \epsilon_{i, i} y_{i}\right]\right)^{2}\right) \\
= & \frac{1}{k^{2} \sigma_{r}^{4}}\left(E\left[\sum_{i} x_{i}^{2} \epsilon_{i, i}^{2} y_{i}^{2}+\sum_{p \neq q} x_{p} y_{p} \epsilon_{p, p} x_{q} y_{q} \epsilon_{q, q}\right]\right. \\
& \left.-\left(E\left[\sum_{i} x_{i} \epsilon_{i, i} y_{i}\right]\right)^{2}\right)
\end{aligned}
$$

Since $E\left[\epsilon_{i, i}\right]=k \sigma_{r}^{2}, E\left[\epsilon_{i, i}^{2}\right]=\left(2 k+k^{2}\right) \sigma_{r}^{4}$ and $E\left[\epsilon_{p, p} \epsilon_{q, q}\right]=k^{2} \sigma_{r}^{4}$, we have

$$
\begin{aligned}
\operatorname{Var}[\Phi] & =\frac{1}{k^{2} \sigma_{r}^{4}}\left(2 k+k^{2}\right) \sigma_{r}^{4} \sum_{i} x_{i}^{2} y_{i}^{2}+\sum_{p \neq q} x_{p} y_{p} x_{q} y_{q}-\left(\sum_{i} x_{i} y_{i}\right)^{2} \\
& =\left(\frac{2}{k}+1\right) \sum_{i} x_{i}^{2} y_{i}^{2}+\sum_{p \neq q} x_{p} y_{p} x_{q} y_{q}-\left(\sum_{i} x_{i} y_{i}\right)^{2}
\end{aligned}
$$

The variance of Ψ is

$$
\begin{aligned}
\operatorname{Var}[\Psi] & =\frac{1}{k^{2} \sigma_{r}^{4}} \operatorname{Var}\left[\sum_{i \neq j} x_{i} \epsilon_{i, j} y_{j}\right] \\
& =\frac{1}{k^{2} \sigma_{r}^{4}}\left(E\left[\left(\sum_{i \neq j} x_{i} \epsilon_{i, j} y_{j}\right)^{2}\right]-\left(E\left[\sum_{i \neq j} x_{i} \epsilon_{i, j} y_{j}\right]\right)^{2}\right) \\
& =\frac{1}{k^{2} \sigma_{r}^{4}}\left(E\left[\left(\sum_{i \neq j} x_{i} \epsilon_{i, j} y_{j}\right)^{2}\right]-0\right. \\
& =\frac{1}{k^{2} \sigma_{r}^{4}} \sum_{i \neq j} \sum_{p \neq q} x_{i} y_{j} x_{p} y_{q} E\left[\epsilon_{i, j} \epsilon_{p, q}\right]
\end{aligned}
$$

Since $E\left[\epsilon_{i, j} \epsilon_{p, q}\right]=0$ unless $i=p$ and $j=q$, or $i=q$ and $j=p$. Therefore,

$$
\begin{aligned}
\operatorname{Var}[\Psi] & =\frac{1}{k^{2} \sigma_{r}^{4}}\left(\sum_{i \neq j} x_{i}^{2} y_{j}^{2}+\sum_{i \neq j} x_{i} y_{j} x_{j} y_{i}\right) E_{i \neq j}\left[\epsilon_{i, j}^{2}\right] \\
& =\frac{1}{k^{2} \sigma_{r}^{4}}\left(\sum_{i} x_{i}^{2} \sum_{j \neq i} y_{j}^{2}+\sum_{i} x_{i} y_{i} \sum_{j \neq i} x_{j} y_{j}\right) k \sigma_{r}^{4} \\
& =\frac{1}{k}\left(\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}-\sum_{i} x_{i}^{2} y_{i}^{2}+\left(\sum_{i} x_{i} y_{i}\right)^{2}-\sum_{i} x_{i}^{2} y_{i}^{2}\right) \\
& =\frac{1}{k}\left(\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}+\left(\sum_{i} x_{i} y_{i}\right)^{2}-2 \sum_{i} x_{i}^{2} y_{i}^{2}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{Var}\left[u^{T} v\right]= & \operatorname{Var}[\Phi]+\operatorname{Var}[\Psi]+0 \\
= & \left(\frac{2}{k}+1\right) \sum_{i} x_{i}^{2} y_{i}^{2}+\sum_{p \neq q} x_{p} y_{p} x_{q} y_{q}-\left(\sum_{i} x_{i} y_{i}\right)^{2} \\
& +\frac{1}{k}\left(\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}+\left(\sum_{i} x_{i} y_{i}\right)^{2}-2 \sum_{i} x_{i}^{2} y_{i}^{2}\right) \\
= & \frac{1}{k}\left(\sum_{i} x_{i}^{2} y_{i}^{2}+\left(\sum_{i} x_{i} y_{i}\right)^{2}\right)+\left(\sum_{i} x_{i}^{2} y_{i}^{2}\right. \\
& \left.+\sum_{p \neq q} x_{p} y_{p} x_{q} y_{q}-\left(\sum_{i} x_{i} y_{i}\right)^{2}\right) \\
= & \frac{1}{k}\left(\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}+\left(\sum_{i} x_{i} y_{i}\right)^{2}\right)
\end{aligned}
$$

This gives the final result $\operatorname{Var}\left[u^{T} v-x^{T} y\right]=\frac{1}{k}\left(\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}+\left(\sum_{i} x_{i} y_{i}\right)^{2}\right)$.

