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Growing Privacy Concerns

“Detailed information on an individual’s credit, 
health, and financial status, on characteristic 
purchasing patterns, and on other personal 
preferences is routinely recorded and analyzed 
by a variety of governmental and commercial 
organizations.”

- M. J. Cronin, “e-Privacy?” Hoover Digest, 2000.
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Privacy-Preserving Data Mining
“the best (and perhaps only) way to overcome the 
‘limitations’ of data mining techniques is to do more 
research in data mining, including areas like data 
security and privacy-preserving data mining, which are 
actually active and growing research areas.”
- SIGKDD Executive Committee, “’Data Mining’ Is NOT Against Civil Liberties,” 2003.

Privacy-preserving data mining is “the study of how to 
produce valid mining models and patterns without 
disclosing private information.”
- F. Giannotti and F. Bonchi, “Privacy Preserving Data Mining,” KDUbiq Summer School, 2006.
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Privacy-Preserving Data Mining
Data Perturbation

Hiding private data while mining patterns 

Secure Multi-Party Computation
Building a model over multi-party distributed 
databases without knowing others’ inputs 

Knowledge Hiding
Hiding sensitive rules/patterns

Privacy-aware Knowledge Sharing
Do the data mining results themselves violate privacy?

[more]
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Data Perturbation

Private Database Perturbed Database

Data Miner

Census Model

Researcher
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Additive Data Perturbation

R. Agrawal and R. Srikant, “Privacy-preserving data mining,” ACM SIGMOD, 2000.
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Additive vs. Multiplicative Noise

Additive perturbation is not safe.
“in many cases, the original data can be accurately 

estimated from the perturbed data using a spectral filter that 
exploits some theoretical properties of random matrices”
- Kargupta et al., “On the Privacy Preserving Properties of Random Data Perturbation
Techniques,” ICDM, 2003. 

Related work: [Huang05], [Guo06], etc.

How about multiplicative noise?
Has not been carefully studied. 
Topic of this dissertation.
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Primary Contributions
We examined the effectiveness of exact Euclidean 
distance preserving data perturbation, and developed 
three attack techniques.

K. Liu, C. Giannella, and H. Kargupta, “An attacker's view of distance preserving maps for 
privacy preserving data mining,” 10th European Conference on Principles and Practice of 
Knowledge Discovery in Databases (PKDD'06), 2006.

We proposed a random projection-based approximate 
distance preserving perturbation as a possible remedy, 
and analyzed its privacy issues. 

K. Liu, H. Kargupta, and J. Ryan, “Random projection-based multiplicative perturbation 
for privacy preserving distributed data mining,” IEEE Transactions on Knowledge and 
Data Engineering (TKDE), 18(1), 2006.
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Traditional Multiplicative Noise

, where  is the private data, (1, ) [Kim03].ij ij ij ij ijy x r x r N σ= × ∼
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Private Database X Perturbed Database Y
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Traditional Multiplicative Noise
Mechanism

Each data element/cell is randomized independently by 
multiplying a random number.

Pros
Summary statistics (e.g., mean, variance) can be estimated 
from the perturbed data.
Effective if data disseminator only wants minor perturbation
Popular in the statistics community.

Cons
Equivalent to additive perturbation after a logarithmic 
operation. Vulnerable to attacks designed for additive noise.
Not preserving Euclidean distance; not suitable for many data 
mining tasks.
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Distance Preserving Perturbation

Dist. preserving perturbation

Dist. preserving perturbation is equivalent to 

Dist. preserving perturbation with origin fixed

:  if  , ,  || || || ( ) ( ) ||n n nT x y x y T x T y→ ∀ ∈ − = −

,  for  and ,
where  is the set of all  orthogonal matrices.

n n
n

n

x Mx v M v
n n

∈ → + ∈Ο ∈
Ο ×

,   where  Orthogonal Transformationn
nx Mx M∈ → ∈Ο ↔

Our FocusOur Focus
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Distance Preserving Perturbation

Perturbation Model
X: original private data with each column a record 
Y: perturbed data
M: orthogonal perturbation matrix

Perturbed data produces exactly the same data mining 
results

Clustering [Oliveira04], Classification [Chen05] 

Other related: [Mukherjee06], etc.

Y
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Distance Preserving Perturbation
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Is Dist. Preserving Perturbation Secure?

Known Input-Output Attack: attacker knows some 
collection of linearly independent private data records 
and their corresponding perturbed version. 

Known Sample Attack: attacker has a collection of 
independent data samples from the same distribution 
the original data was drawn.

Independent Signals Attack: all data attributes are non-
Gaussian and statistically independent 
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Privacy Breach

For any        , we say that an                          occurs if 

where   is the attacker’s estimate of   , the    data tuple in X.   

Probability of

the probability that an                        occurs.

ˆ|| ||   || ||i ix x x ε− ≤

0ε >

x̂

ˆ( , ) Prob{ || ||   || || }i i ix x x xρ ε ε= − ≤

ix  thi

ε-Privacy Breach

ε-Privacy Breach

ε-privacy breach

ε-privacy breach
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Known Input-Output Attack

Assumption (can be relaxed): rank(Xnxk)=k

If k=n:

Probability of privacy breach
The attacker has a perfect recovery of the private data.

If k<n, what is going to happen?

( ) ( )[ ] [ ]n k n m k n n n k n m kY Y M X X× × − × × × −=

KNOWN

1
( ) ( ),  T

n k n k n m k n m kM Y X X M Y−
× × × − × −= =

( , ) =1 for 0 and any . ix iρ ε ε =
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Known Input-Output Attack

If k<n, any matrix     in the set

can be the original perturbation matrix       , where is On 
is the set of all nxn orthogonal matrices. [more]

The attacker chooses one uniformly from     as an 
estimation of      , uses that to recover other private data, 
and computes the probability of privacy breach.          [more]

( ) ( )[ ] [ ]n k n m k n n n k n m kY Y M X X× × − × × × −=

KNOWN

ˆ ˆ{ : }n n k n kM MX Y× ×Ω = ∈Ο =
M̂

n nM ×

Ω
n nM ×
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Known Input-Output Attack
Probability of Privacy Breach

ˆ( , ) Prob{ || ||   || || }
ˆ             = Prob{ || ||   || || }

1 || ||2arcsin   if || || 2 ( , ) ;
             = 2 ( , )

1                otherwise.
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Known Input-Output Attack Example

The distance of X2 from the column space of X1 is 0, 
therefore 
The distance of X3 from the column space of X1 is 9.4868, 
therefore                                    

X3X2X1

105.000090.000075.0000
45.000030.000025.0000Private Data X:

Y3Y2Y1

91.387580.358266.9652
-68.5443-50.4237-42.0198

Perturbed Data Y:

X1->Y1 KNOWN

2( , ) 1 for any .xρ ε ε=

UNKNOWN

3
3 3

1 || ||( , ) 2arcsin ,  e.g. ( ,0.01) 3.84%.
2 9.4868

xx xερ ε ρ
π

⎛ ⎞= =⎜ ⎟×⎝ ⎠
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Known Sample Attack
Assumptions

Each data record arose as an independent sample 
from some unknown distribution
The attacker has a collection of samples 
independently chosen from the same distribution
The covariance of the distribution has all distinct 
eigenvalues (holds true in most practical situations 
[Jolliffe02]).

Attack Technique
Exploring the relationship between the principal 
eigenvectors of the original data and the principal 
eigenvectors of the perturbed data. 
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Known Sample Attack

Fig. Relationship between original and perturbed principal eigenvectors. [more]
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Known Sample Attack Experiments

Fig. Known sample attack for 3D Gaussian data with 10,000 private tuples. The 
attacker has 2% samples from the same distribution. The average relative error of 
the recovered data is 0.0265 (2.65%).                           [more]
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Known Sample Attack Experiments

Fig. Probability of privacy breach w.r.t. 
attacker’s sample size. The relative error 
bound ε is fixed to be 0.02. (3D 
Gaussian data with 10,000 private tuples.)

Fig. Probability of privacy breach w.r.t. the 
relative error bound ε. The sample ratio 
is fixed to be 2%. (3D Gaussian data with 
10,000 private tuples.)

[more]
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Independent Signals Attack

Basic Independent Component Analysis Model

Objective: recover the original signals X from only the 
observed mixtures Y.
Requirements

Source signals are statistically independent 
All signals must be non-Gaussian with exception of one
k ≥ n
Matrix M must be of full column rank                            [more]
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⎢ ⎥ ⎢ ⎥
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⎢ ⎥ ⎢ ⎥
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Independent Signals Attack Experiments 

original

perturbed

recovered
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Distance Preserving Perturbation Summary

Mechanism
Whole data set is perturbed by multiplying an orthogonal 
matrix.

Pros
Perturbed data preserves Euclidean distance. 
Many data mining algorithms can be applied to the perturbed 
data and produce exactly the same results as if applied to 
the original data.

Cons
Vulnerable to known input-output attack
Vulnerable to known sample attack
Vulnerable to independent signals attack



30

Roadmap
Traditional Multiplicative Noise
Distance Preserving Data Perturbation

Fundamental Properties
Known Input-Output Attack
Know Sample Attack
Independent Signal Attack

Random Projection-based Perturbation
Fundamental Properties
Bayes Privacy Model
Attacks Revisit

Conclusion and Future Work



31

Random Projection
Basic Model

1 1
1 1,  and , 

where  and  is i.i.d. (0, ).

k m m k m m
r r

ij r

u R x v R y
k k
k m r N
σ σ

σ

× × × ×= =

< ∼

Original Data Perturbed Data
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Random Projection
Preserving Inner Product

The distortion produced by random projection is zero on the average, 
and its variance is inversely proportional to k, dimension of new space.

[more]

Preserving Euclidean Distance

The probability that relative error is bounded with in (1±η) increases 
proportionally with k.                                          [more]

2 2 21[ ] 0  and [ ] ( ( ) ).T T T T
i i i i

i i i

E u v x y Var u v x y x y x y
k

− = − = +∑ ∑ ∑

(1 )2 2 2

(1 )
Pr{(1 ) || || || || (1 ) || || } ( ; ) , >0
where  ( ; ) is the p.d.f. of chi-square distribution with  degrees of freedom.

k

k
x y u v x y f t k dt

f t k k

η

η
η η η

+

−
− − ≤ − ≤ + − = ∫
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Bayes Privacy Model
Primitives

Let x be the private data and y the perturbed one.
Attacker’s Prior Belief: f(x) 
Attacker’s Additional Background Knowledge: θ
Attacker’s Posteriori Belief: f(x |y,θ)

Information Non-Disclosure Principle
The perturbed data should provide the attacker with little 
additional information beyond the attacker’s prior belief 
and other background knowledge.

Example
(ρ1, ρ2, )-privacy [Evfimevski03] happens when 
f(x)<ρ1 and f(x |y,θ)>ρ2  OR f(x)>1-ρ1 and f(x |y,θ)<1-ρ2
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Maximum a Posteriori Probability (MAP) 
Estimate

(ρ1, ρ2, )-privacy works only for discrete data. It 
assumes statistically independent inputs and outputs, 
and requires transition probability explicitly defined. Not 
appropriate for multiplicative perturbation.

We propose a maximum a posteriori probability (MAP)
estimate-based approach

1.

2.          is compared with xi to see whether any extra 
information is disclosed, e.g.,  

ˆ arg max ( | , )MAP x
x f x y θ=

ˆMAPx
ˆ|| ||   || || .MAP i ix x x ε− ≤
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Why Maximum a Posteriori Probability 
(MAP) Estimate

It is closely related to maximum a posteriori probability 
hypothesis testing.                                             [more]

It considers both prior and posterior belief. In the 
absence of a priori knowledge, MAP estimate becomes 
maximum likelihood estimate (MLE).

It often produces estimates with errors that are not 
much higher than the minimum mean square error.

It is relatively easy to derive the conditional p.d.f. in the 
multiplicative data perturbation scenario.
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Maximum a Posteriori Probability (MAP) 
Estimate

Assumption I: Attackers’ best knowledge of f(x) is it is 
uniformly distributed over an multi-dimensional interval. 
Assumption II: Attacker has no other background 
knowledge, i.e.,        .
MAP Estimate:

Solution: Any     in the interval that satisfies 
Conclusion: MAP does not offer attacker more info than 
what has been implied by properties of random 
projection itself.

θ = ∅

1 / 2

/ 2x

ˆ a rg m a x ( | , )

       =  a rg  m a x e x p ,
( 2 ) 2

w h e re   a n d  .

M A P x
T

T k T

n k

x f x y
k k y y
x x x x

x y

θ

π

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∈ ∈

x̂ ˆ ˆ .T Tx x y y=
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Privacy /Accuracy Control
Random Projection

Accuracy

Here f(t;k) is the p.d.f. of chi-square distribution with k degrees of freedom.

1 1
1 1,  and , 

where  and  is i.i.d. (0, ).

k m m k m m
r r

ij r

u R x v R y
k k
k m r N
σ σ

σ

× × × ×= =

< ∼

2

2

(1 )
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ˆPr{ || ||  > || || } ( ; ) ( ; ) .

k

MAP k
x x x f t k dt f t k dt

ε
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ε
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−∞ +
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(1 )2 2 2
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Pr{(1 ) || || || || (1 ) || || } ( ; ) , >0.
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Privacy/Accuracy Control
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Independent Signals Attack

When k<n, at most (k-1) source signals can be 
separated out [Cao96].

With probability one, linear ICA can’t separate out any of 
the original signals for any (k x n) (k≤n/2, n ≥ 2) 
random matrix with i.i.d. entries chosen from continuous 
distribution [Liu06a]. 

1
k m k n n m

r

Y R X
kσ× × ×=
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Independent Signals Attack Experiments

original

perturbed

recovered
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Known Sample Attack

Fig. Relationship between original and perturbed principal eigenvectors.
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Known Input-Output Attack

If p=n and rank(Xnxp) = p, R can be recovered, but still it is 
an under-determined system of linear equations.

MAP estimate shows that relative error decreases as known 
input-output pairs increases; relative error increases as k 
decreases.                                                      [more]

( ) ( )
1[ ] [ ]k p k m p k n n p n m p

r

Y Y R X X
kσ× × − × × × −=

KNOWN
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Random Projection-based Perturbation 
Summary

Mechanism
Data is projected to a lower dimensional random space. 

Pros
From the perspective of MAP estimate, random projection 
does not disclose more information than what have been 
implied by the distance preservation properties.  
It offers better privacy protection than orthogonal 
transformation-based distance preserving perturbation.

Cons
Perturbed data approximately preserves Euclidean distance, 
therefore little loss in accuracy.
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Conclusions
Traditional Multiplicative Data Perturbation

Distance Preserving Data Perturbation
Known Input-Output Attack (linear algebra, statistics)
Known Sample Attack (PCA)
Independent Signals Attack (ICA)

Random projection-based Data Perturbation
Accuracy Analysis
Bayes Privacy Model
Maximum a Posteriori Probability (MAP) Estimate
Privacy/Accuracy Control
Attack Analysis

Privacy Issues Are Intrinsically Complex
Need joined efforts from researchers, engineers, sociologists, legal 
experts, policy makers…
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Future Work
A game theoretic framework for large scale distributed privacy 
preserving data mining

Distributed and ubiquitous computing becomes popular
Some participants cooperative and honest, some malicious
Computation in such environment is more like a game 
Necessary to develop a game theoretic framework

Combination of cryptographic techniques and perturbation 
techniques

Cryptographic techniques offers strong privacy guarantee, but with 
high communication and computation cost
Perturbation provides statistically weaker privacy protection, but 
more efficient 
Would be ideal to combine them to achieve both efficiency and 
privacy
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I Have a Dream
“I have a dream that one day this nation will 
rise up and live out the true meaning of its 
creed: 'We hold these truths to be self-evident, 
that all men are created equal.’" 

- Martin Luther King, Jr., 1963. 

“I have a dream that one day I will get a Ph.D. 
degree.”

- Kun Liu, when he was a kid.
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Thank you and Questions
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Backup Slides
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Overview of PPDM backup

Data Hiding 

Rule Hiding

Value Distortion

Probability Distribution

Additive Perturbation
Multiplicative Perturbation
Data Microaggregation
Data Anonymization
Data Swapping
Other Techniques

Sampling Method
Analytical Method

Secure Multi-Party Computation
Distributed Data Mining

Association Rule Hiding

Classification Rule Hiding

Data Perturbation
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Traditional Multiplicative Noise backup

Properties:

Each data element randomized independently.
Original Mean and variance can be estimated from perturbed data.
Equivalent to additive perturbation after a logarithmic operation. 
Not preserve Euclidean distance.

, where  is the private data, (1, ) [Kim03].ij ij ij ij ijy x r x r N σ= × ∼

2,5782,899Tax

1,3241,889Rent

83,82198,563Wages

10021001ID

2,1352,964Tax

1,3811,878Rent

85,396116,166Wages

10021001ID

2,899 * 1.0224 = 2,964
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Knowledge Hiding backup

What is disclosed?
the data (modified somehow)

What is hidden?
some “sensitive” knowledge (i.e. secret rules/patterns)

How?
usually by means of data sanitization. The data which 
we are going to disclose is modified, in such a way 
that the sensitive knowledge can no longer be 
inferred, while the original database is modified as 
less as possible.
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Privacy-aware Knowledge Sharing backup

What is disclosed?
the intentional knowledge (i.e., rules , patterns, 
models) 

What is hidden?
the source data

The central question
Do the data mining results themselves violate privacy 



57

Privacy-aware Knowledge Sharing backup

Age = 27, Zip = 15254, Christian->American 
(sup_count = 758, confidence = 99.8%)

Age = 27, Zip = 15254->American
(sup_count = 1518, confidence = 99.9%)

sup_count (27, 15254, Christian) = 758/.998 = 759.5
sup_count(27, 15254, Christian, ┑American) = 759.5*0.002 = 1.519

sup_count(27, 15254) = 1518/0.999 = 1519.5
sup_count(27, 15254, ┑American) = 1519.5 * 0.001 = 1.5195

Age = 27, Postcode = 45254, ┑ American->Christian
(sup_count ≈ 1.5, confidence ≈ 100.0%)

This information refers to my France neighbor…. he is Christian!
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Known Input-Output Attack backup

Closed-form Expression of     

( ) ( )[ ] [ ]n k n m k n n n k n m kY Y M X X× × − × × × −=

KNOWN

Ω
ˆ ={ : }

    ={ ( ) :  },
where  is the orthonormal basis for the column space of ,

 is the orthonormal basis for the orthogonal complement 
of the column space 

n n k n k
T T

k k n k n k n k

k n k

n k

M MX Y

M U U U PU P
U X

U

× ×

− − −

×

−

Ω ∈Ο =

+ ∀ ∈Ο

of .n kX ×
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Known Input-Output Attack backup

Special case in 2D space: when k = 1 and n = 2. 

The attacker can’t distinguish rotation and reflection.
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Known Input-Output Attack backup

Properties of the Probability of Privacy Breach
Attacker can compute the probability of privacy 
breach for a given private record and a relative error 
bound     .
The larger the    , the higher the probability of 
privacy breach.
The closer the private record is to the column space 
of the known records, the higher the probability of 
privacy breach.
The distance               can be computed from the 
perturbed data.

ε

( , )i n kd x X ×

ε
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Known Sample Attack backup

The principal eigenvectors of the original data have 
experienced the same distance preserving perturbation 
as the data itself.

ZY can be computed from the perturbed data, ZX can be 
estimated from the sample data. (See dissertation for 
choice of D, details omitted. )
Attacker uses ZX, ZY and D to recover M, and therefore X.

Let ,  we have ,
where  is the eigenvector matrix of the covariance of Y;

 is the eigenvector matrix of the covariance of X;
and D is a diagonal matrix with each entry on the diagonal 1.

= =

±

Y X

Y

X

Y MX Z MZ D
Z

Z
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Known Sample Attack Experiments backup

Fig. Known sample attack for Adult data with 32,561 private tuples. The attacker 
has 2% samples from the same distribution. The average relative error of the 
recovered data is 0.1081 (10.81%).
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Known Sample Attack Experiments backup

Fig. Probability of privacy breach w.r.t. 
attacker’s sample size. The relative error 
bound ε changes from 0.10 to 0.20. 
(Adult data with 32,561 private tuples)

Fig. Probability of privacy breach w.r.t. the 
relative error bound ε. The sample ratio 
is fixed to be 2% and 10%. (Adult data 
with 32,561 private tuples.)
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Effectiveness of Known Sample Attack backup

Covariance Estimation Quality
Larger sample size gives attacker better recovery
Robust covariance estimator helps to downweight the 
influence of outliers

p.d.f. of the Data
The greater the difference between any pair of 
eigenvalues of the covariance, the higher the 
probability of privacy breach

More details can be found in the dissertation.
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Independent Component Analysis

Basic Model

ICA Estimation
To find a matrix W such that WY = WMX = X

Nongaussian is Independent
Central limit theory - sum of random variables has a distribution 
closer to Gaussian than any of the original random variables.
ICA looks for a W that maximizes the nongaussianity of WY. 

Measures of Nongaussianity
Kurtosis: 
Negentropy:
Mutual information:
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Random Projection backup

Relative Errors in Computing the Inner Product of Two Attributes

6.320.270.031.813000(30%)

7.000.010.042.692000(20%)

7.530.030.052.941000(10%)

18.410.120.255.84500(5%)

23.470.070.419.91100(1%)

Max(%)Min(%)Var(%)Mean(%)k

3.910.610.011.803000(30%)

6.900.310.032.592000(20%)

7.210.110.052.701000(10%)

18.320.230.294.97500(5%)

32.581.510.6710.44100(1%)

Max(%)Min(%)Var(%)Mean(%)k

Relative Errors in Computing the Euclidean Distance of the Two Attributes

Adult data  from UCI Repository. The first 10,000 elements of attributes fnlwgt and education-num.
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Random Projection backup
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The probability of the accuracy of random projection w.r.t. k and ε. Each 
entry of the random matrix is i.i.d., chosen from a Gaussian distribution with 
mean zero and constant variance. 

The probability that relative error is bounded with in (1±η) increases 
proportionally with k. 

(1 )2 2 2

(1 )
Pr{(1 ) || || || || (1 ) || || } ( ; ) , >0
where  ( ; ) is the p.d.f. of chi-square distribution with  degrees of freedom.
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Maximum a Posteriori (MAP) Test backup

Given a binary hypothesis testing experiment with 
outcome s, the following rule leads to the lowest possible 
value of PERROR:

Here

The test design divides S into two sets, A0 and A1=A0
c. If 

the outcome s is in A0, the conclusion is accept H0. 
Otherwise, the conclusion is accept H1.  

0 0 1 1if Prob{ | } Prob{ | };   otherwise.s A H s H s s A∈ ≥ ∈

1 0 0 0 1 1Prob{ | } Prob{H } Prob{A |H } Prob{H }.ERRORP A H= ＋
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MAP Known Input-Output Attack backup

Assumption I: Attackers’ best knowledge of f(X) is it is 
uniform. 
Assumption II: Attacker has no other background 
knowledge, i.e.,        .
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