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“"Detailed information on an individual’s credit,
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- M. J. Cronin, “e-Privacy?” Hoover Digest, 2000.
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Privacy-Preserving Data Mining

0 “the best (and perhaps only) way to overcome the
‘limitations’ of data mining techniques is to do more
research in data mining, including areas like data
security and privacy-preserving data mining, which are
actually active and growing research areas.”

- SIGKDD Executive Committee, “'Data Mining’ Is NOT Against Civil Liberties,” 2003.

[0 Privacy-preserving data mining is “the study of how to
produce valid mining models and patterns without
disclosing private information.”

- F. Giannotti and F. Bonchi, “Privacy Preserving Data Mining,” KDUbig Summer School, 2006.




Privacy-Preserving Data Mining

[0 Data Perturbation
B Hiding private data while mining patterns

[0 Secure Multi-Party Computation

B Building a model over multi-party distributed
databases without knowing others’ inputs

[0 Knowledge Hiding
B Hiding sensitive rules/patterns

[0 Privacy-aware Knowledge Sharing
B Do the data mining results themselves violate privacy?

[more]




Data Perturbation
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Additive Data Perturbation
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Additive vs. Multiplicative Noise

/I:IAdditive perturbation is not safe. \

0 “in many cases, the original data can be accurately
estimated from the perturbed data using a spectral filter that
exploits some theoretical properties of random matrices”

- Kargupta et al., “On the Privacy Preserving Properties of Random Data Perturbation
Techniques,” ICDM, 2003.

\ [0 Related work: [Huang05], [Guo06], etc. /

How about multiplicative noise?
Has not been carefully studied.
Topic of this dissertation.




Primary Contributions

[0 We examined the effectiveness of exact Euclidean
distance preserving data perturbation, and developed
three attack techniques.

[ | K. Liu, C. Giannella, and H. Kargupta, “An attacker's view of distance preserving maps for
privacy preserving data mining,” 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD'06), 2006.

[0 We proposed a random projection-based approximate
distance preserving perturbation as a possible remedy,
and analyzed its privacy issues.

[ | K. Liu, H. Kargupta, and J. Ryan, “Random projection-based multiplicative perturbation
for privacy preserving distributed data mining,” IEEE Transactions on Knowledge and

Data Engineering (TKDE), 18(1), 2006.
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Traditional Multiplicative Noise

Private Database X Perturbed Database Y
ID 1001 1002 ID 1001 1002
Wages 98,563 83,821 Wages 116,166 85,396
Rent 1,889 1,324 Rent 1,878 1,381
Tax 899 Dl 2,578 | Tax 2,135

2,899 * 1.0224 = 2,964

y; = X; X I; Where x; Is the private data, r; ~ N(1,0) [Kim03]
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Traditional Multiplicative Noise

[0 Mechanism

B Each data element/cell is randomized independently by
multiplying a random number.

[0 Pros

B Summary statistics (e.g., mean, variance) can be estimated
from the perturbed data.

B Effective if data disseminator only wants minor perturbation
B Popular in the statistics community.

0 Cons

m Equivalent to additive perturbation after a logarithmic
operation. Vulnerable to attacks designed for additive noise.

B Not preserving Euclidean distance; not suitable for many data
mining tasks.
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Distance Preserving Perturbation

[0 Dist. preserving perturbation
T:R">R"if Vx,yeR", || x=Vy|=|TX)=T(y)|

[1 Dist. preserving perturbation is equivalent to

xeR" > Mx+v, forM eO_  andveR",
where O, is the set of all n x n orthogonal matrices.

[0 Dist. preserving perturbation with origin fixed

3 ceR" > Mx, where M e On>—> Orthogonal Transformation

Qur Focus
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Distance Preserving Perturbation

ID 1001 1002 -0.2507 | 0.4556 | -0.8542

Wages |-26,326 | -22,613 0.9653 | -0.0514 | 0.2559

Rent -94,502 | -80,324 ' : '

= 10151 | 8430 0.0726 | 0.8887 | 0.4527
v M

0 Perturbation Model Y = MX
m X: original private data with each column a record
B Y: perturbed data
B M: orthogonal perturbation matrix

[0 Perturbed data produces exactly the same data mining
results
B Clustering [Oliveira04], Classification [Chen05]

B Other related: [Mukherjee06], etc.

ID 1001 1002

Wages | 98,563 | 83,821

Rent 1,889 1,324

Tax 2,899 [ 2578
X
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Is Dist. Preserving Perturbation Secure?

B

Known Input-Output Attack: attacker knows some
collection of linearly independent private data records
and their corresponding perturbed version.

Known Sample Attack: attacker has a collection of
independent data samples from the same distribution
the original data was drawn.

Independent Signals Attack: all data attributes are non-
Gaussian and statistically independent

16



Privacy Breach

€ -Privacy Breach

For any ¢ >0, we say that an €-privacy breach occurs if

”)A(_Xi | < ”Xi | &

where X is the attacker’s estimate of X, the " data tuple in X.

[0 Probability of €-Privacy Breach
p(x,€)=Prob{[|X-x || < IIx ]}

the probability that an e-privacy breach occurs.

17



Known Input-Output Attack

[Ynxk Ynx(m—k)j = |\/Inxn :ank an(m—k)]
\ /

KNOWN

O Assumption (can be relaxed): rank(X,, )=k

O If k=n:
E M :Ynxkx_lnxk’ X o(mat) = MTYnx(m—k)
B Probability of privacy breach p(X;,¢) =1 for e =0 and any I.
B The attacker has a perfect recovery of the private data.

O If k<n, what is going to happen?

18



Known Input-Output Attack

O

=

[Ynxk Ynx(m—k)j = |\/Inxn :ank an(m—k)]
\ /

KNOWN

If k<n, any matrix M in the set

Q:{M E()n : I\’/\lxnxk :Ynxk}
can be the original perturbation matrix M__, where is O,
is the set of all nxn orthogonal matrices. frmore]

The attacker chooses one uniformly from ) as an
estimation of M__, uses that to recover other private data,
and computes the probability of privacy breach. e

19



Known Input-Output Attack

[0 Probability of Privacy Breach

p(x, &) =Prob{|| X —x || < [x &}
= Prob{ || MMx, = x | < || xle}

L oarcsin| 15 0E 1 g x fe<2d(x.X )
=\ 7 20 (%;, X )
i 1 otherwise.

where d(x;, X, ) Is the distance of x. from the column space of X

nxk !

and M is uniformly chosen from Q={M €O, :MX_, =Y. .} ...

20



Known Input-Output Attack Example

X, BYES Xy =
Private Data X:  |},25.0000 | || 30.0000 45.0000 ——UNKNOWN
X;->Y; KNOWN .0000 .0000 105.0000
1 1 \
Y ™\ | Y Y
Perturbed Data Y: [P— 2 :
-42.0198 | [-50.4237 | -68.5443
9652 80.3582 91.3875

O The distance of X, from the column space of X, is O,
therefore p(x,,¢) =1forany .
O The distance of X5 from thf column space of X, is 9.4868,

therefore p(x. )= = 2arcsin %1€ e.d. p(X.,0.01) = 3.84%.
pel 3,5) = 5% 0.4868 |’ g. o( 31 ) 0

21



Known Sample Attack

1 Assumptions

B Each data record arose as an independent sample
from some unknown distribution

B The attacker has a collection of samples
independently chosen from the same distribution

B The covariance of the distribution has all distinct

eigenvalues (holds true in most practical situations
[Jolliffe02]).

[0 Attack Technique

B Exploring the relationship between the principal
eigenvectors of the original data and the principal
eigenvectors of the perturbed data.

22



Known Sample Attack

+ Original data

== Principal eigenvectors of original data

—|— Perturbed data

- Principal eigenvectors of perturbed data

Perturbed principal eigenvectors

10

4 G 8

-10 -8 -6 -4 -2 0
Fig. Relationship between original and perturbed principal eigenvectors.

[more]
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Known Sample Attack Experiments

40 40

+ original data ; + original datam .
perturbed data : n recovered data

30

30

Fig. Known sample attack for 3D Gaussian data with 10,000 private tuples. The
attacker has 2% samples from the same distribution. The average relative error of
the recovered data is 0.0265 (2.65%). [more]
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Known Sample Attack Experiments
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Fig. Probability of privacy breach w.r.t. the

relative error bound ¢ . The sample ratio

is fixed to be 2%. (3D Gaussian data with
10,000 private tuples.)

[more]
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Independent Signals Attack

[0 Basic Independent Component Analysis Model

My My e My PX(G) X)) o ()

m21 m22 e m2n X2 (tl) X2 (tZ) et X2 (tm)
kam = kanxnxm = X (t )
I I _mkl mk2 mkn R _Xn (tl) Xn (tz) Xn (tm)_

KNOWN UNKNOWN

[0 Objective: recover the original signals X from only the
observed mixtures Y.

[0 Requirements
B Source signals are statistically independent
m All signals must be non-Gaussian with exception of one
mk=n
B Matrix M must be of full column rank

[more]
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Independent Signals Attack Experiments
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Perturbed Data
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Distance Preserving Perturbation Summary

[0 Mechanism

B Whole data set is perturbed by multiplying an orthogonal
matrix.

[l Pros
B Perturbed data preserves Euclidean distance.

B Many data mining algorithms can be applied to the perturbed
data and produce exactly the same results as if applied to
the original data.

[0 Cons
B Vulnerable to known input-output attack
B Vulnerable to known sample attack
B Vulnerable to independent signals attack

29
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Random Projection

[0 Basic Model

U=LR

kxm“™mx1?
N

where k <m and r; Is L.i.d. ~ N(0O, o,).

A

O\

and v =

v

Original Data

1
Ko Ry Yot

Perturbed Data

31




Random Projection

[0 Preserving Inner Product
E[u'v—x"y]=0 and Var[u'v—x' y]:%(foz i+ %Y.

—>The distortion produced by random projection is zero on the average,
and its variance is inversely proportional to k, dimension of new space.

[more]

[0 Preserving Euclidean Distance
k(1+n)
P{-n) I x=y[Flu-v['< (+n) IIX—y||2}=f k)t 70

k(1-7)

where f (t;k) is the p.d.f. of chi-square distribution with k degrees of freedom.

—>The probability that relative error is bounded with in (14 n) increases
proportionally with k. [more]
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Bayes Privacy Model

[0 Primitives
B Let x be the private data and y the perturbed one.
B Attacker’s Prior Belief: f(x)
B Attacker’'s Additional Background Knowledge: ¢
B Attacker’s Posteriori Belief: f(x |y, 0)

0 Information Non-Disclosure Principle

B The perturbed data should provide the attacker with little
additional information beyond the attacker’s prior belief
and other background knowledge.

0 Example
B (p, o, )-privacy [EvfimevskiO3] happens when
f(x)<p,and f(x |y, 8)>p, ORf(X)>1-p,;and f(x |y, 0 )<1-p,

33



Maximum a Posteriori Probability (MAP)
Estimate

O (e, p,, )-privacy works only for discrete data. It
assumes statistically independent inputs and outputs,
and requires transition probability explicitly defined. Not
appropriate for multiplicative perturbation.

[0 We propose a maximum a posteriori probability (MAP)
estimate-based approach

B 1. Xy =argmax f(x|y,0)

N

m 2. Xuap is compared with x; to see whether any extra
information is disclosed, e.g., | Xy =X || < || X || &

34



Why Maximum a Posteriori Probability
(MAP) Estimate

L

B

It is closely related to maximum a posteriori probability
hypothesis testing. (more]

It considers both prior and posterior belief. In the
absence of a priori knowledge, MAP estimate becomes
maximum likelihood estimate (MLE).

It often produces estimates with errors that are not
much higher than the minimum mean square error.

It is relatively easy to derive the conditional p.d.f. in the
multiplicative data perturbation scenario.

35



Maximum a Posteriori Probability (MAP)
Estimate

B

=

Assumption I: Attackers’ best knowledge of f(x) is it is
uniformly distributed over an multi-dimensional interval.

Assumption II: Attacker has no other background
knowledge, i.e., =©.
MAP Estimate: )'(‘MAP =argmax f(x|y,8)
. k1/2 kyTy
- afd max (27 x" x)*'? exp(— ZXTXJ’
where xe R" andy e R*.

Solution: Any X in the interval that satisfies X'X=Vy'y.

Conclusion: MAP does not offer attacker more info than
what has been implied by properties of random
projection itself.
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Privacy /Accuracy Control

[0 Random Projection

U:LR X and v =

\/Ear kxm“*mx11 \/Ear kxm J mx1?

where k <m and r; isi.i.d. ~ N(0,0,).
[0 Accuracy

K(1+77)

P Ix-yFu-vP<@+nlx-yF}=] _ fEtKet, 7>0.
[0 — €-Privacy Breach
Pre || Rysp = X1 > X1l 63=|

—0

k(1-¢)?

—+00

f(t:k)dt + j f(t;k)dt.

k(1+¢)

Here f(t;k) is the p.d.f. of chi-square distribution with k degrees of freedom.
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Privacy/Accuracy Control
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Independent Signals Attack

X,

kxm kxn

0 When k<n, at most (k-1) source signals can be
separated out [Cao096].

0 With probability one, linear ICA can’t separate out any of
the original signals for any (k x n) (k=n/2, n = 2)
random matrix with i.i.d. entries chosen from continuous
distribution [LiuO6a].
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Independent Signals Attack Experiments
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Known Sample Attack

|- Perturbed data
- Principal eigenvectors of perturbed data

Perturbed principal eigenvectors

Fig. Relationship between original and perturbed principal eigenvectors.
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Known Input-Output Attack

1
Fkap ka(m—p)1 = % kan [anp an(m—p)]

\KNOWN/

O If p=n and rank(X,,,) = p, R can be recovered, but still it is
an under-determined system of linear equations.

[0 MAP estimate shows that relative error decreases as known
input-output pairs increases; relative error increases as k
decreases. o]
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Random Projection-based Perturbation
Summary

0 Mechanism
B Data is projected to a lower dimensional random space.

[0 Pros

B From the perspective of MAP estimate, random projection
does not disclose more information than what have been
implied by the distance preservation properties.

m It offers better privacy protection than orthogonal
transformation-based distance preserving perturbation.

0 Cons

B Perturbed data approximately preserves Euclidean distance,
therefore little loss in accuracy.

45



Conclusions

[0 Traditional Multiplicative Data Perturbation

[0 Distance Preserving Data Perturbation

Known Input-Output Attack (linear algebra, statistics)
Known Sample Attack (PCA)
Independent Signals Attack (ICA)

[0 Random projection-based Data Perturbation

Accuracy Analysis

Bayes Privacy Model

Maximum a Posteriori Probability (MAP) Estimate
Privacy/Accuracy Control

Attack Analysis

[0 Privacy Issues Are Intrinsically Complex
Need joined efforts from researchers, engineers, sociologists, legal

experts, policy makers...
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Future Work

[0 A game theoretic framework for large scale distributed privacy
preserving data mining

Distributed and ubiquitous computing becomes popular
Some participants cooperative and honest, some malicious
Computation in such environment is more like a game
Necessary to develop a game theoretic framework

O Combination of cryptographic techniques and perturbation

techniques

m Cryptographic techniques offers strong privacy guarantee, but with
high communication and computation cost

B Perturbation provides statistically weaker privacy protection, but
more efficient

®m Would be ideal to combine them to achieve both efficiency and

privacy
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I Have a Dream

"I have a dream that one day this nation will
rise up and live out the true meaning of its
o= creed: 'We hold these truths to be self-evident,
g that all men are created equal.”™

- Martin Luther King, Jr., 1963.

“I have a dream that one day I will get a Ph.D.
degree.”

- Kun Liu, when he was a kid.
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€O




Backup Slides




Overview of PPDM ...

( Additive Perturbation
Multiplicative Perturbation
Value Distortion< Data Microaggregation
~Data Perturbation Data Anonymization
< Data Swapping
~ Other Techniques

[ Data Hidin Probability Distributi Sampling Method
g~ - rODabIlly JHSTHDULION 1 A nalytical Method

(

Secure Multi-Party Computation
X \ Distributed Data Mining

Rule Hi ding Association Rule Hiding

\
Classification Rule Hiding

53



Traditional Multiplicative Noise ...

ID 1001 1002 ID 1001 1002
Wages | 98,563 | 83,821 Wages 116,166 | 85,396
Rent 1,889 1,324 Rent 1,878 1,381

s

40
30
20

10

2.5

[0 Properties:

m Y, =X; xF whereX; Isthe private data, r; ~ N(1, o) [KimO3].
Each data element randomized independently.
Original Mean and variance can be estimated from perturbed data.
Equivalent to additive perturbation after a logarithmic operation.
Not preserve Euclidean distance.
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Knowledge Hiding ...

[0 What is disclosed?
B the data (modified somehow)

[0 What is hidden?

B some “sensitive” knowledge (i.e. secret rules/patterns)
[0 How?

B usually by means of data sanitization. The data which
we are going to disclose is modified, in such a way
that the sensitive knowledge can no longer be
inferred, while the original database is modified as
less as possible.
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Privacy-aware Knowledge Sharing ...

[0 What is disclosed?

B the intentional knowledge (i.e., rules , patterns,
models)

0 What is hidden?
B the source data

[0 The central question
B Do the data mining results themselves violate privacy
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Privacy-aware Knowledge Sharing ...

Age = 27, Zip = 15254, Christian->American
(sup_count = 758, confidence = 99.8%)

Age = 27, Zip = 15254->American
(sup_count = 1518, confidence = 99.9%))

(sup_count (27, 15254, Christian) = 758/.998 = 759.5 )

ksup_count(27, 15254, Christian, 1 American) = 759.5*0.002 = 1'519)

(sup_count(27, 15254) = 1518/0.999 = 1519.5 )

ksup_count(27, 15254, 4 American) = 1519.5 * 0.001 = 1.5195

This information refers to my France neighbor.... he is Christian!
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Known Input-Output Attack ...

'\ /'

KNOWN

[Ynxk Ynx(m—k)j = |\/Inxn 8

X

nxk|

[0 Closed-form Expression of Q

Q :{M < On : |lenxk :Ynxk}

an(m—k) ]

{MUU,'+U_,PU_"): VPeO, .},

where U, is the orthonormal basis for the column space of X

nxk !

U _. Is the orthonormal basis for the orthogonal complement

of the column space of X, .
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Known Input-Output Attack ...

Reflection Rotation

Special case in 2D space: when k =1 and n = 2.

The attacker can’t distinguish rotation and reflection.
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Known Input-Output Attack ...

[0 Properties of the Probability of Privacy Breach

B Attacker can compute the probability of privacy
breach for a given private record and a relative error
bound ¢é .

B The larger the &, the higher the probability of
privacy breach.

B The closer the private record is to the column space
of the known records, the higher the probability of
privacy breach.

B The distance d(x,X,,) can be computed from the
perturbed data.
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Known Sample Attack ...

[0 The principal eigenvectors of the original data have
experienced the same distance preserving perturbation
as the data itself.

LetY = MX, we have Z, = MZ, D,

where Z, is the eigenvector matrix of the covariance of Y;

Z, 1s the eigenvector matrix of the covariance of X;

and D is a diagonal matrix with each entry on the diagonal *1.

OO0 Z, can be computed from the perturbed data, Z, can be
estimated from the sample data. (See dissertation for

choice of D, details omitted. )
0 Attacker uses Z,, Z, and D to recover M, and therefore X.
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Known Sample Attack Experiments ...

+ original data + original data
> perturbed data | < recovered data
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go| -
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Fig. Known sample attack for Adult data with 32,561 private tuples. The attacker
has 2% samples from the same distribution. The average relative error of the
recovered data is 0.1081 (10.81%).
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Known Sample Attack Experiments ..

probability of privacy breach
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Fig. Probability of privacy breach w.r.t.
attacker's sample size. The relative error

bound € changes from 0.10 to 0.20.
(Adult data with 32,561 private tuples)
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Fig. Probability of privacy breach w.r.t. the

relative error bound ¢ . The sample ratio
is fixed to be 2% and 10%. (Adult data
with 32,561 private tuples.)
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Effectiveness of Known Sample Attack ...

[0 Covariance Estimation Quality
B Llarger sample size gives attacker better recovery

B Robust covariance estimator helps to downweight the
influence of outliers

0 p.d.f. of the Data

B The greater the difference between any pair of
eigenvalues of the covariance, the higher the
probability of privacy breach

[0 More details can be found in the dissertation.
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Independent Component Analysis

m, m, .. mlIxt) xt) . x(t,)]
[0 Basic Model kam:kaanxm: My My o My, Xz(tl) Xz(tz) ngm;
D ICA EStImatlon _mkl mk2 mkn__Xn(tl) Xn(tz) Xn(tm)_

B To find a matrix W such that WY = WMX = X

O Nongaussian is Independent

m Central limit theory - sum of random variables has a distribution
closer to Gaussian than any of the original random variables.

B ICA looks for a W that maximizes the nongaussianity of WY.

[0 Measures of Nongaussianity
m Kurtosis: kurt(x) = E[x*] - 3E°[x°]
® Negentropy: J(X) = H(Xgayssian) - H(X)
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Random Projection ...

Relative Errors in Computing the Inner Product of Two Attributes

k Mean(%) Var(%) Min(%) Max (%)
100(1%) 9.91 0.41 0.07 23.47
500(5%) 5.84 0.25 0.12 18.41
1000(10%) 2.94 0.05 0.03 7.53
2000(20%) 2.69 0.04 0.01 7.00
3000(30%) 1.81 0.03 0.27 6.32

Relative Errors

in Computing the Euclidean Di

stance of the Two Attributes

k Mean(%) Var(%) Min(%) Max (%)
100(1%) 10.44 0.67 1.51 32.58
500(5%) 4.97 0.29 0.23 18.32
1000(10%) 2.70 0.05 0.11 7.21
2000(20%) 2.59 0.03 0.31 6.90
3000(30%) 1.80 0.01 0.61 3.91

Adult data from UCI Repository. The first 10,000 elements of attributes fnlwgt and education-num.
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Random Projection ...

k(1+7)

Pr{A=m) Ix=yFlu-vIE<@+m)lIx=y =] ~ f(t:k)dt 7>0

k(1-7)

where f (t;k) is the p.d.f. of chi-square distribution with k degrees of freedom.

1

|15
o ™

probability

sl
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o
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k

The probability of the accuracy of random projection w.r.t. k and ¢ . Each
entry of the random matrix is i.i.d., chosen from a Gaussian distribution with
mean zero and constant variance.

The probability that relative error is bounded with in (1£ n) increases
proportionally with k.
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Maximum a Posteriori (MAP) Test ..

[0 Given a binary hypothesis testing experiment with
outcome s, the following rule leads to the lowest possible
value of Pzror.

se A, iIf Prob{H, |s}> Prob{H ,|s}; s A otherwise.
[0 Here P.por = Prob{A |H,} Prob{H}+Prob{A,|H} Prob{H.}.

O The test design divides S into two sets, A, and A;=A,¢. If
the outcome s is in A, the conclusion is accept H,.
Otherwise, the conclusion is accept H,.
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MAP Known Input-Output Attack ..

1
Fkap ka(m—p)1 = @ kan [anp an(m—p)]
\ r

KNOW

0 Assumption I: Attackers’ best knowledge of f(X) is it is
uniform.

0 Assumption II: Attacker has no other background
knowledge, i.e., 6 =.

1

= 1
Xuap = arg max f(x= X|WRX: y,WRXp =Y,)
1

Tk
det %szz etr(_%v—(%xw)le,
where r, ~N(0,1), X =[x X_1,Y =[y Y], X has full column rank.

“Le(pe)
=argmax (2r) 2
X
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