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21.1 Introduction

The proliferation of social networks, online communities, peer-to-peer file sharing,
and telecommunication systems has created large, complex graphs. These graphs are
of significant interest to researchers in various application domains such as market-
ing, psychology, and epidemiology. Research in these areas has revealed interesting
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properties of the data and presented efficient ways of maintaining, mining, and query-
ing them. Distributed and ubiquitous computing over these networks, which are
essentially graph structures, is also an emerging topic with increasing interest in
the data mining community. However, with the exception of some recent work, the
privacy concerns associated with data-analysis over graphs and networks have been
largely ignored. In this chapter, we provide a detailed survey of the very recent work
on privacy-preserving data analysis over graphs and networks in an effort to allow
the reader to observe common themes and future directions.

In a network, nodes correspond to individuals or other social entities, and edges
correspond to relationships between them. The privacy breaches in a network can
be grouped to three categories: (1) identity disclosure: the identity of an individual
who is associated with a node is revealed; (2) link disclosure: the sensitive relation-
ships between two individuals are disclosed; and (3) content disclosure: the sensi-
tive data associated with each node is compromised, e.g., the e-mail message sent
and/or received by the individuals in an e-mail communication network. A privacy-
preservation system over graphs and networks should consider all of these issues.
However, compared with existing anonymization and perturbation techniques of
tabular data (see, e.g., the survey book [1]), working with graphs and networks is
much more challenging due to the following reasons:

• It is difficult to model the background knowledge and the capability of an
attacker. Any topological structures of the graph can be exploited by the
attacker to derive private information. Two nodes that are indistinguishable
with respect to some structural metrics does not guarantee they are on other
metrics. Hence, it is not clear what are the most appropriate privacy models for
graphs and networks, and how to measure the privacy breach in that setting.

• It is difficult to quantify the information loss. A graph can be worth a thousand
words. It contains rich information but there are no standard ways to quan-
tify the information loss incurred by the changes of its nodes and edges. How
important are those network measures (e.g., degree, clustering coefficient,
average path length, diameter, centrality, betweenness, etc.) to graph-mining
applications (e.g., clustering, community discovery, viral marketing, etc.)?
How well should we preserve those measures?

• It is even difficult to devise graph-modification algorithms that balance the
goals of preserving privacy with the utility of the data. Different from tabular
data where each tuple can be viewed as an independent sample from some
distribution, the nodes and edges in a graph are all correlated. Therefore, the
impact of a single change of an edge or a node can spread across the whole
network.

• It is difficult to model the behavior of the participants involved in a network-
based collaborative computing environment. Some participants may be quite
honest and follow the rules; some may decide to behave dishonestly and exploit
the system without contributing much; some may even intentionally try to col-
lude with other parties to expose the private data of a specific individual.
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To combat these challenges, several authors have recently developed different types
of privacy models, adversaries, and graph-modification algorithms. Unfortunately,
none of the work is likely to solve all the problems in one shot. Protecting against
each kind of privacy breaches may require different techniques or a combination of
them. In this chapter, we detail a number of recently developed techniques for each
type of the disclosure described above. We hope this survey can offer insight into the
challenges and therefore opportunities in this emerging area.

The remainder of this chapter is organized as follows. Section 21.2 describes
definitions and notation used throughout. Section 21.3 discusses identity disclo-
sure. Section 21.4 details link disclosure. Section 21.5 briefs content disclosure.
Section 21.6 discusses privacy issues that arise from multiparty distributed comput-
ing, which we believe can serve as a foundation for the research of content disclosure
over graphs and network with user interactions. Finally, Section 21.7 outlines future
directions and concludes the chapter.

21.2 Definitions and Notation

We model a social network as a graph G= (VG, EG), with verticesVG = {v1, . . . ,vn}
corresponding to individuals and edges EG = {(vi, v j)|vi, v j ∈VG, i �= j, 1≤ i, j≤ n}
the social relationships among them. We use dG to denote the degree sequence of G.
That is, dG is a vector of size n, with the ith element dG(i) being the degree of the
ith node of G. A graph isomorphism from G to H is a bijection: f : VG→VH such
that an edge (u, v) ∈ EG if and only if ( f (u), f (v)) ∈ EH . A graph automorphism
is a graph isomorphism with itself, i.e., a mapping from the vertices of the given
graph G back to vertices of G such that the resulting graph is isomorphic with G.
An automorphism f is nontrivial if it is not the identity function. Throughout this
chapter, we use the terms “network” and “graph” interchangeably.

21.3 Identity Disclosure

The identity disclosure problem often arises from the scenario where the data
owner wants to publish or share, with a third party, a network that permits useful
analysis without disclosing the actual identity of the individuals involved in the net-
work. Here each individual is represented by a node on the network. A common
practice, called naive anonymization, removes the personally identifying information
(PII) associated with each node or replaces it with a pseudorandom name. However,
as shown later in this section, this simple approach does not always guarantee pri-
vacy. Under certain conditions, the attackers can still reidentify the individuals by
combining external knowledge with the observed graph structure.
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21.3.1 Active Attacks and Passive Attacks

Backstrom et al. [2] considered two different types of attacks on a naively anony-
mized social network. The first is an active attack, where an attacker creates new user
accounts and edges in the original network and uses them to find targets and their
relations in the anonymized network. The second is a passive attack, where users of
the system find themselves in the anonymized network and discover identities and
edge relations of other connected users. These attacks are based on the uniqueness
of small random subgraphs embedded in an arbitrary network, using ideas related to
those found in arguments from Ramsey theory [3]. Interested readers may observe
that identity disclosure often leads to link disclosure. However, in this section we
focus on identity disclosure and discuss the latter in Section 21.4.

Next, we give the formal definition of the problem Backstrom et al. studied:

Problem 21.1
Given a social network G = (VG, EG) and an arbitrary set of targeted users U =

{u1, . . . , ub}, identify U in the naively anonymized copy of G and hence determine
whether edge-relation (ui, u j) exists.

The active attack proceeds as follows. Before the anonymized graph is produced
and published, the attacker registers k new user accounts {x1, . . . , xk} in the system,
and it connects them together to create a subgraph H. The attacker then creates links
between these new accounts to nodes in the target set {u1, . . . , ub}, and potentially
other nodes in G as well. These links are created depending on the specific application
scenario, e.g., by sending messages to the targeted users or adding targeted users to the
friends list or the address book of these new accounts. After the anonymized version
of G is released, the attacker solves a special instance of the subgraph isomorphism
problem to find H that is planted in G. Having identified H, the attacker can locate
targeted users {u1, . . . , ub}, thereby determining all the edge relations among them.

It should be noted that to make the above framework work, the subgraph H has to
satisfy the following properties: (1) it is uniquely identifiable in G with high proba-
bility, regardless of G’s structure and regardless of how it is attached to G; (2) it can
be efficiently found from G by the attacker; and (3) H has no nontrivial automor-
phisms. The proof of the correctness and efficiency of the attacks is rather compli-
cated, and we refer interested readers to Ref. [2] for a better treatment. It has been
shown that with ‖V‖ = n and k = Θ(log n) new accounts, a randomly generated
subgraph H will be unique with high probability. Moreover, if the maximum node
degree in H is Θ(log n), then H can be recovered efficiently, as well as the identities
of up to Θ(log2 n) targeted nodes to whom the attacker created links from H. In
practice, k can be set to values even smaller than the suggested bounds.

The experiments on a 4.4 million node and 77 million edge social network extra-
cted from LiveJournal.com show that, the creation of seven nodes by an attacker
can reveal an average of 70 targeted nodes, and hence compromise the privacy of
approximately 2400 edge relations among them. The authors further showed that, in
the worse case, at least Ω(

√
log n) nodes are needed in any active attack to begin

compromising the privacy of arbitrary targeted nodes.
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The passive attack is based on the observation that most nodes in a real social
network already belong to a small uniquely identifiable subgraph. Therefore, if a
user u is able to collude with a coalition of (k− 1) friends after the release of the
network, he or she will be able to identify and compromise the privacy of neighbors
connected to this coalition. We refer readers to Ref. [2] for more details.

21.3.2 k-Candidate Anonymity and Graph Randomization

Hay et al. [4] considered the problem of reidentifying a known individual in the
naively anonymized network. They observed that the structural similarity of the
nodes in the graph and the background knowledge an attacker obtains jointly deter-
mine the extent to which an individual can be distinguished. For example, if the
attacker knows that somebody has exactly five social contacts, then he can locate all
the nodes in the graph with degree five. If there are very limited nodes satisfying this
property, then the target might be uniquely identified.

Along this direction, the authors proposed a privacy model for social networks,
which is based on the notion of k-anonymity [5].

DEFINITION 21.1 k-Candidate Anonymity
A graph satisfies k-candidate anonymity with respect to a structural query if the

number of the matching candidate nodes is at least k.

Alternatively, an anonymized graph satisfies k-candidate anonymity if for a given
structural query, no individual can be identified with a probability higher than 1/k.

The query evaluates the existence of the neighbors of a node or the structure of
the subgraph in the vicinity of a node. It implicitly models the background knowl-
edge (or the power) of an attacker. In their work, Hey et al. [4] studied two types of
queries: (1) Vertex refinement query, which defines a class of queries of increasing
power to report the structural information about a node’s position in the network.
The weakest query H0(x) simply returns the identifier (or the pseudorandom name)
of node x; H1(x) returns the degree of x; H2(x) returns the degree of each neighbor
of x, and so on. (2) Subgraph knowledge query, which verifies the existence of a spe-
cific type of subgraph around the target node. The descriptive power of such a query
is measured by counting the number of edges (also known as edge facts) contained
in the subgraph.

To protect against these types of attacks, the authors studied a random-perturbation
technique that modifies the graph through a sequence of random edge-deletions fol-
lowed by edge-insertions. While this approach can potentially reduce the risk of
reidentification, it does not guarantee that the modified graph satisfies k-candidate
anonymity, neither does it guarantee that the utility of the original graph can be well
preserved. This technique is further studied by Ying and Wu [6] in the context of
sensitive link/relationship protection. They evaluated the impact of edge random-
ization on some spectrum properties of the graph, and developed a new strategy to
better preserve these properties without sacrificing much of the privacy. We detail
their technique in Section 21.4.3.
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21.3.3 k-Degree Anonymity and Minimal Edge Modifications

Liu and Terzi [7] studied a specific graph-anonymity model called k-degree anon-
ymity, which prevents the reidentification of individuals by adversaries with a priori
knowledge of the degrees of certain nodes. Note that this is related to the vertex
refinement query discussed in Section 21.3.2.

DEFINITION 21.2 k-Degree Anonymity
A graph G = (VG, EG) is k-degree anonymous if every node v ∈VG has the same

degree with at least (k−1) other nodes.

On the basis of this privacy model, the authors addressed the following problem:

Problem 21.2
Given a graph G = (VG, EG) and an integer k, modify G via a set of edge-addition

operations in order to construct a new graph G′ = (VG′ , EG′) such that (1) G′ is
k-degree anonymous; (2) VG′ = VG; and (3) EG′ ∩EG = EG.

It is easy to see that one could transform G to the complete graph, in which
all nodes share the same degree. Although such an anonymization would preserve
privacy, it would make the anonymized graph useless for any study. For that rea-
son, the authors imposed the additional requirement that the minimum number of
edge-additions are made. This constraint tries to capture the requirement of structural
similarity between the input and output graphs. Note that minimizing the number of
additional edges can be translated into minimizing the L1 distance of the degree
sequence of G and G′, since it holds that |EG′ | − |EG| = 1

2 L1(dG′ −dG). With this
observation, the authors proposed a two-step framework for the graph-anonymization
problem. The algorithms proceed as follows:

1. First, starting from the original degree sequence dG, construct a new degree
sequence d′ that is k-anonymous and the cost L1(d′ −dG) is minimized.

2. Given the new degree sequence d′, construct a graph G′(VG′ , EG′) such that
dG′ = d′, VG′ = VG, and EG′ ∩ EG = EG (or EG′ ∩ EG ≈ EG in the relaxed
version).

The first step is solved by a linear-time dynamic programming algorithm; the second
step is solved by a set of graph-construction algorithms which are related to the
realizability of degree sequences. The authors also extended their algorithms to allow
for edge deletions as well as simultaneous edge additions and deletions. Experiments
on a large spectrum of synthetic and real network data sets demonstrate that their
algorithms are efficient and can effectively preserve the graph utility while satisfying
k-degree anonymity.

21.3.4 k-Neighborhood Anonymity and Graph Isomorphism

Zhou and Pei [8] considered the subgraph constructed by the immediate neighbors
of a target node. The assumption is that the unique structure of the neighborhood
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subgraph can be used by the attacker to distinguish the target from other nodes.
This observation is closely related to the subgraph knowledge queries discussed in
Section 21.3.2. On the basis of this assumption, the authors defined a new notion of
the anonymity on graphs, which we call the k-neighborhood anonymity.

DEFINITION 21.3 k-Neighborhood Anonymity
A node is k-anonymous in a graph G if there are at least (k− 1) other nodes

v1, . . . ,vk−1 ∈VG such that the subgraphs constructed by the neighbors of each node
v1, . . . ,vk−1 are all isomorphic. A graph satisfies k-neighborhood anonymity if all the
nodes are k-anonymous as defined above.

Following this definition, the authors specifically considered the following problem:

Problem 21.3
Given a graph G = (VG, EG) and an integer k, construct a new graph G′ =

(VG′ , EG′) such that (1) G′ is k-neighborhood anonymous, (2) VG′ =VG, (3) EG′ ⊇EG,
and (4) the information loss incurred by anonymization is not too much.

The algorithm for solving the above problem consists of three steps. First, it marks
all the nodes as unanonymized and sorts them in descending order of their neigh-
borhood size. Here the “neighborhood size” is defined as the number of edges and
nodes of the subgraph constructed by the immediate neighbors of a node. Then, the
algorithm picks up the first unanonymized node u from the sorted list, finds the top
(k− 1) other nodes {v1, . . . ,vk−1} from the list whose neighborhood subgraphs are
most similar to that of u (we call it subgraph similarity computation). Next, the algo-
rithm iteratively considers every pair of nodes (u, vi), i = 1, . . . , k−1, and for each
pair (u, vi), the algorithm modifies the neighborhood subgraph of u and the neigh-
borhood subgraph of vi to make them isomorphic to each other. The modification
is performed by adding extra edges while keeping the nodes intact (we call it sub-
graph isomorphism modification). After all the neighborhood subgraphs of these k
nodes are pairwise isomorphic, the algorithm marks these k nodes as anonymized.
The process continues until all the nodes in the graph are anonymized.

The information loss is measured by three factors: (1) extra edges added to the
neighborhood, (2) nodes that were not in the neighborhood of the anonymized nodes
but are now in, and (3) information loss due to the value generalization of the node’s
label if there is any such operations. Since the subgraph similarity computation
and subgraph isomorphism modification are all based on greedy heuristics, there
is no guarantee that the information loss is minimal, therefore, the utility of the
anonymized graph can only be evaluated empirically.

21.3.5 Personally Identifying Information on Social Networking Sites

So far we have restricted our discussion to the problem of privacy-preserving
graph publishing and sharing, and have largely ignored the privacy risks associated
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with personal information (PI) sharing in the real social networks such as Facebook
and MySpace.

While specific goals and patterns vary significantly across these social networking
sites, the most common model is based on the presentation of the user’s profile and
the visualization of his connections to others. As the profile and connection often
reveal vast amounts of personal and sometimes sensitive information (e.g., photo,
birth date, phone number, current residence, dating preference, current relationship
status, political views, and various interests), it is highly likely that a user can be
uniquely identified even if he does not openly expose his identity.

In an effort to quantify the privacy risk associated with these networks, Acquisti
and Gross [9] combined online social network data and other publicly available data
sets in order to estimate whether it is possible to reidentify PII from simple PI.
This reidentification may happen, through photos, demographic data, category-based
representation of interests that indicate unique or rare overlaps of hobbies. Their
research supports the claim that large amounts of private information are available
publicly.

21.4 Link Disclosure

The link disclosure problem is centered around the protection of the connection
between vertices in a network. Two entities in a social network may have a myriad of
connections. Some that are safe for the public to know and others that should remain
private. Techniques to solve this problem, while still extracting analytic value from
the network, have just started to emerge in the literature. In this section, we describe
some recent work in this area.

21.4.1 Link Reidentification

Zheleva and Getoor [10] focused on the problem of link reidentification, which
they define as inferring sensitive relationships from anonymized graph data. Graph
nodes represent entities that are assumed to have multiple relationships, which are
modeled as edges, between them. Edges may be of different types and can be clas-
sified as either sensitive or observed. The core problem addressed was how to mini-
mize the probability of predicting sensitive edges based on the observed edges. The
goal is to attain privacy preservation of the edge information, while still producing
anonymized data that is useful. Utility is measured by the number of observational
edges removed. The higher the number of removed observations, the lower the over-
all utility.

This goal is achieved by employing one of the five anonymization approaches
outlined in this chapter. Their first algorithm, called intact edges, removes all sensi-
tive edges and leaves all the observational ones. The second algorithm, called partial
edge removal, deletes observational edges that may contribute to the inference of a
sensitive relationship. The criteria are left upto the reader to set. They demonstrate
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this algorithm using a random removal strategy. In the first two approaches, the
number of nodes in the graph was unchanged and the edges constructed as links
between their anonymized versions. In the Cluster-edge anonymization approach, all
the anonymized nodes are collapsed into a single node (per cluster) and a decision is
made on which edges to include in the collapsed graph. The cluster-edge anonymiza-
tion with constraints approach uses a more restrictive sanitization technique for the
observed edges, by creating edges between equivalence classes if and only if the
equivalence class nodes have the same constraints as any two nodes in the original
graph. The final approach, called removed edges, removes all relationships/edges
from the graph. They recognize that the effectiveness of the approaches depends on
the structural and statistical characteristics of the underlying graph. The experiments
were carried out on a variety of graphs with varying characteristics and confirmed
intuitive expectations, e.g., as the number of observational edges decreased, so did
the number of correctly identified sensitive relationships.

In short, Zheleva and Getoor [10] concentrated on an often unexamined aspect of
link disclosure—mitigating the risk of link reidentification.

21.4.2 Privacy-Preserving Link Analysis

Duan et al. [11] proposed an algorithm that enables link analysis in situations
where there is no stated link structure between the nodes. They constrained their dis-
cussion to the domain of expert identification and authoritative document discovery
and leverage the observation that a user’s level of expertise is reflected by the docu-
ment they access. Their Secure Online HITS algorithm is an extension of Kleinberg’s
HIT algorithm [12], where they replaced the 0–1 hyperlink property with a nonneg-
ative value, i.e., a weight, which models the user’s behavior.

Given users and their behaviors, whether through access logging systems or other
means, they construct a graph such that the users are vertices and log entries repre-
sent edges between the two users. Then an eigengap (difference between the largest
and the second largest eigenvalues) is computed using their online eigenvector cal-
culation method, which performs in environments where frequent updates are the
norm, by estimating the perturbation upper bound and delaying applying updates
when possible. Due to the fact that they were logging (possibly) sensitive informa-
tion from which they build the graph, they augmented their basic algorithm to address
the privacy concerns. This was done by leveraging public key encryption to ensure
that only aggregate or encrypted data was exposed.

To empirically test the algorithm, they ran it on the Enron email dataset [13]. They
used the message count between the sender and the recipient as the weight in order
to determine if the algorithm could identify the central figures in the social network.
The experiments demonstrated that their algorithm provided estimated rankings that
closely matched the actual ones.

In short, Duan et al. [11] furthered the state of the art by demonstrating how core
principles, like access pattern inference, can be used to construct graph structure,
when none appears to exist.
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21.4.3 Random Perturbation for Private Relationship Protection

Ying and Wu [6] studied two randomization techniques to protect private rela-
tionships. The first one, called Rand Add/Del, modifies the graph by a sequence of
random edge-additions followed by edge-deletions. The second, called Rand Switch,
randomly switches a pair of edges to produce a new edge set Ẽ ← E\{(t, w),
(u, v)} ∪ {(t, v), (w, u)} provided that (t, v) /∈ E and (w, u) /∈ E , and repeats this
process many times. The first randomization preserves the total number of edges in
the original graph, while the second one maintains the degree of each node.

The authors evaluated, both empirically and theoretically, the impact of random-
ization on the eigen-spectrum of the graph. In particular, they focused on two impor-
tant eigenvalues: (1) the largest eigenvalue of the adjacency matrix, which is closely
related to the maximum degree, chromatic number, clique number, and subgraph cen-
trality of a graph; and (2) the second smallest eigenvalue of the Laplacian matrix (also
known as algebraic connectivity [14]), which reflects how well connected the overall
graph is, and has implications for properties such as clustering and synchronizability.

Using some theoretical results from Cvetkovic et al. [15], the authors developed
the spectrum-preserving versions of Rand Add/Del and Rand Switch. The new algo-
rithms selectively choose the edges that should be added, removed, or switched in
order to control the changes of the eigenvalues. The privacy is evaluated by the prior
and posterior belief of the existence of an edge. The authors developed closed-form
expressions for evaluating Rand Add/Del and Rand Switch, and claimed that their
spectrum-preserving counterparts should not differ much in protecting the privacy.

21.4.4 Cryptographic Protocols for Private Relationships Protection

Carminati et al. [16] considered an access control model where only authorized
users who satisfy some access conditions are granted right to the resources owned
by another user in a social network. Here the resources can be personal profiles,
blogs, photos, etc.

The access conditions specify the type of the relationship between the requestor
and owner (e.g., colleagues, alumni), the depth of this relationship (e.g., length of the
friendship chain), and the trust level (e.g., fully trusted, semi-trusted). Since knowing
who is trusted by a user and to what extent disclose a lot about that user’s personal
interests, it is desirable to protect that information during the authentication process.

For this reason, the authors developed a symmetric-key protocol to enforce a selec-
tive dissemination of the relationship information during the authentication. This
problem is further studied by Domingo-Ferrer [17], who developed a public-key pro-
tocol that does the same job as Ref. [16], without requiring a trusted third party.

21.4.5 Deriving Link Structure of the Entire Network

Korolova et al. [18] considered the problem that an attacker wants to derive the link
structure of the entire network by collecting neighborhood information of some com-
promised users, who are either bribed or whose accounts are broken by the attacker.
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These users are chosen using different criteria, e.g., uniformly at random (Random),
in the descending order of their node degrees (Highest-degree), etc.

Analysis shows that the number of users needed to be compromised in order to
cover a constant fraction of the entire network drops exponentially with increase in
the lookahead parameter �. Here a network has a lookahead � if a registered user
can see all of the links and nodes incident to him within distance � from him. For
example, a social network has � = 0 if a user can only see who are his immediate
neighbors; has � = 1 if a user can see who are his immediate neighbors as well
as his neighbors’ immediate neighbors. A good example of a social network with
� = 1 is LinkedIn. Experiments on a 572,949-node friendship graph extracted from
LiveJournal.com show that (1) Highest-degree yields the best performance while
Random performs the worst; and (2) in order to obtain 80% coverage of the graph
using lookahead 2, Highest-degree needs to bribe 6308 users; to obtain the same
coverage using lookahead 3, Highest-degree only needs to bribe 36 users.

21.4.6 Synthetic Graph Generation

Instead of modifying the graph to have it satisfy some k-anonymity criteria,
Leskovec and Faloutsos [19] considered the problem of synthetic-graph generation.
That is, given a large graph G, compute the most likely parameters Θ that would gen-
erate a synthetic-graph G′ having the same properties as G. Hence, the data owner
can publish G′ without revealing the exact information about the original graph G.

The parameter Θ = [θi j] defined in Ref. [19] is a n1×n1 probability matrix, where
n1
 n and the element θi j ∈ [0, 1] indicates the probability that edge (i, j) is present.
Given the original graph G, Θ is calculated by maximum likelihood estimation: arg
maxΘ P(G|Θ). To evaluate this formula, the authors developed a linear-time algo-
rithm (a naive approach would take super-exponential time) by exploiting the struc-
ture of Kronecker product and by using a sampling technique.

Given the estimated parameter Θ, one can sample an initiator graph G1 with n1

nodes, and by recursion produce successively larger graphs G2, . . . ,Gk such that the
kth graph Gk is on nk = nk

1 nodes. To be more specific, let AG denote the adjacency
matrix of a graph G, we have AGk = Ak

G1
= AGk−1 ⊗AG1 , where ⊗ is the Kronecker

product and the graph corresponding to AGk is called Kronecker graph. Note that
this approach assumes that Kronecker graph, which is self-similar and based on a
recursive construction, is a good model for the real graph G. We refer interested
readers to Ref. [19] and the references wherein for more details.

21.5 Content Disclosure

Content disclosure is normally an issue when the private data associated with a
user on the network is disclosed to others. A very interesting example recently arose
from Facebook’s Beacon service, a social ads system where your own expressed
brand preferences and Internet browsing habits, and even your very identity are used
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to market goods and services to you and your friends. For example, adding the lat-
est season of LOST to your queue on Blockbuster.com might have Facebook place
an ad for Blockbuster straight on your friends’ news feeds. This helps Facebook
and its partners (Blockbuster in this example) make money because, as Facebook’s
CEO Mark Zuckerberg extols, “nothing influence a person more than a recommen-
dation from a trusted friend.” This may be fine in some situation, but there may be
some things that one is not prepared to share with the entire world. From the users
perspective, they want to ask how to avoid the disclosure of their personal private
information while still enjoying the benefit of social advertisement, e.g., promise of
free iTunes songs and movies. From the company’s perspective, they want to know
how to assure the users that their privacy is not compromised while doing social
advertisement. Privacy concerns regarding content disclosure exist in other applica-AQ1
tion scenarios such as social recommendation, etc.

Protecting against this kind of disclosure is an important research and engineering
problem. However, the work in the literature thus far does not take into account the
impact of graph structures as other two types of disclosures, but mostly focuses on (1)
simple opt-in and opt-out setting and (2) standard data perturbation and anonymiza-
tion for tabular data. The first approach allows the registered user to determineAQ2
whether he wants to disable the service, or allow it being used in limited application
scenarios. The second approach is more generic and it relies on traditional privacy-
preserving data masking techniques [1] to change the data that is to be shared.

21.6 Privacy in Multiparty Distributed Computing

Since users and companies on a social network usually share and exchange some
information, or jointly perform some task, we can see a connection between online
activities and multiparty distributed computing. Here the graph structure may not
play as an important role as in identity and link disclosure problems, but rather
the behavior of users on the network and the task they want to achieve determines
the extent to which the privacy is breached. Therefore, we believe that the privacy-
preservation research in distributed computing can form a foundation for research on
content disclosure for graphs and networks. Next, we introduce some work in that
area aimed at offering insights into the solutions to content disclosure for graphs and
networks.

21.6.1 Secure Multiparty Computation

Privacy-preservation objectives in distributed computing can often be framed as
instances of secure multiparty computation (SMC) [20,21], wherein multiple parties,
each having a private input, want to compute some function of these inputs without
revealing any information other than the function’s output. For example, the private
input could be each party’s income and the computation would return who is the rich-
est. This example is known as the millionaire’s problem and was first discussed by
Yao [20]. Usually, it is assumed that 1/3 or 1/2 of the parties may be “bad” (or called
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malicious), while everyone else is assumed to be good (or called semi-honest) and
they execute the computation protocol as instructed. Although general approaches
to SMC were proposed for a variety of settings in the 1980s, the computational and
communication complexities hindered the application of SMC to privacy-preserving
distributed data mining. In 2000, Lindell and Pinkas [22] designed a two-party SMC
version of the ID3 algorithm for constructing a classification tree. They showed that
a PPDM task does not have to be cast as a monolithic SMC problem that requires
an expensive general SMC solution. Instead, the task may be decomposed into small
modules, with each module being implemented with special-purpose efficient SMC
protocols. The key to such construction is that we are able to ensure secure chaining
of the small SMC components. We prevent information from leaking at the seams
between the components by having them produce not public intermediate outputs
but rather individual party shares of the outputs. These shares may be fed as inputs
to further SMC components. Since Lindell and Pinkas’ pioneering work, a variety of
SMC solutions for privacy-preserving distributed data mining have been proposed,
questioned, and refined. We refer interested readers to Refs. [1,23–25] for a thor-
ough treatment. However, it should be noted that, as of today, a majority of the
research in this area are still limited to two-party computation with the assumption of
semi-honest behavior. Therefore they may not scale well in an application scenario
with many malicious participants and large data sets.

A relatively new area of research is the application of game theory to analyze the
rational behavior of the participants. Here, we would like to consider what happens
if the participants are all trying to maximize their own benefits, rather than being
simply bad and good. In the next section we briefly mention some work in this area.

21.6.2 Game-Theoretic Framework for Privacy-Preserving
Computation

21.6.2.1 Preliminaries of Game Theory

Before describing the game-theoretic framework for privacy-preserving distributed
computing, we first provide a brief background of game theory.

A game is an interaction or a series of interactions between players, which assumes
that (1) the players pursue well-defined objectives (they are rational) and (2) they
take into account their knowledge or expectations of other players’ behavior (they
reason strategically). For simplicity, we start by considering the most basic game—
the strategic game.

DEFINITION 21.4 Strategic Game
The strategic game consists of

• A finite set P: the set of players

• For each player i∈ P a nonempty set Ai: the set of actions available to player i

• For each player i ∈ P a preference relation �i on A = x j∈PA j: the preference
relation of player i
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The preference relation�i of player i can be specified by a utility function ui : A→R

(also called a payoff function), in the sense that for any a ∈ A, b ∈ A, ui(a)≥ ui(b)
whenever a �i b. The values of such a function are often referred to as utilities (or
payoffs). Here a or b is called the action profile, which consists of a set of actions,
one for each player. Therefore, the utility (or payoff) of player i depends not only
on the action chosen by himself but also the actions chosen by all the other players.
Mathematically, for any action profile a ∈ A, let ai be the action chosen by player i
and a−i be the list of actions chosen by all the other players except i, the utility of
player i is ui(a) = ui({ai, a−i}).

One of the fundamental concepts in game theory is the Nash equilibrium.

DEFINITION 21.5 Nash Equilibrium
A Nash equilibrium of a strategic game is an action profile a∗ ∈ A such that for

every player i ∈ P we have

ui({a∗i ,a∗−i})≥ ui({ai,a
∗
−i}) f or all ai ∈ Ai.

Therefore, Nash equilibrium defines a set of actions (an action profile) that captures
a steady state of the game in which no player can do better by unilaterally changing
his or her action while all other players do not change their actions. A game can have
zero, one, or more than one Nash equilibriums.

Next, we introduce game-theoretic approaches in three different settings: secret
sharing, sovereign information sharing, and multiparty PPDM.

21.6.2.2 Rational Secret Sharing

Secret sharing is one of the main building blocks in modern cryptography.Shamir’s
secret sharing scheme [26] allows one to share a secret s (a natural number) among n
other parties, so that any m of them may reconstruct it. The idea is as follows: party
0, who wants to share the secret, chooses an (m−1) degree polynomial f such that
f (0) = s, and tells party i the value of f (i), i = 1, . . . ,n. Thus f (i) is party i’s share of
the secret. Any m of parties {1, . . . ,n} can jointly recover the secret by reconstruct-
ing the polynomial using Lagrange interpolation. However, any subset of parties with
size less than m do not have any idea what the secret is. The underlying assumption
of this protocol is that, at most n−m parties are bad and bad parties cannot prevent
the good parties from reconstructing the secret.

While in some situations, it makes sense to consider that some parties are good
and some are bad; for other applications, it may be more realistic to view parties as
rational individuals who are trying to maximize their benefits. The parties have cer-
tain preference over outcomes and can be expected to follow the protocol if and only
if doing so increases their expected benefits. In this spirit is the work of Halpern and
Teague [27], who considered the secret sharing problem where all parties are ratio-
nal: (1) they prefer to get the secret to not getting it; (2) they prefer that as few as
possible of the other parties get it. The authors showed that, under these assumptions,
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parties running Shamir’s protocol will not cooperate. Using game-theoretic terminol-
ogy, we say that for any party, not sending his share weakly dominates sending his
share. To cope with this situation, the authors developed a randomized secret-sharing
mechanism with constant expected running time, where the recommended strategy
is a Nash equilibrium that survives iterated deletion of weakly dominated strategies.
The results were extended to SMC with rational participants.

Abraham et al. [28] later introduced k-resilient Nash equilibrium, a joint strategy
where no member of a coalition of size up to k can do better even if the whole
coalition defects. The authors showed that such k-resilient Nash equilibrium exists
for Shamir’s secret sharing problem [26], which can be viewed as an extension of
Halpern and Teague’s work [27] since they did not consider collusion among the
parties.

21.6.2.3 On Honesty in Sovereign Information Sharing

Sovereign information sharing [29] allows autonomous entities to compute queries
across their databases in such a way that no extra information is revealed other than
the result of the computation. Agrawal and Terzi [30] took a game-theoretic approach
to address the following problem in a sovereign information-sharing setting: how to
ensure that all the rational participants behave honestly by providing truthful infor-
mation, even though they can benefit from cheating. They modeled the problem as
a strategic game and showed that if nobody is punished for cheating, honest behav-
ior cannot be an equilibrium of the game. They therefore added a central auditing
device that periodically checks whether any participant has cheated by altering his
input. Whenever the device finds out a cheating participant, it penalizes him. The
authors derived conditions under which a unique Nash equilibrium is achieved such
that every participant provides truthful information. The relationship between the
frequency of auditing and the amount of punishment in terms of benefits and losses
from cheating was also derived.

A related work is the one by Kleinberg et al. [31], who considered different
information-exchange scenarios and quantified the willingness of the participants to
share their private information using solution concepts from coalition games. Note
that Agrawal and Terzi are interested in quantifying when people are willing to pro-
vide truthful information in a game, while Kleinberg et al. are interested in quantify-
ing whether people are willing to participate in the game at all.

21.6.2.4 Game-Theoretic Framework for Secure-Sum Computation

In a multiparty PPDM environment, each participant has certain responsibilities in
terms of computation, communication, and privacy protection. However, depending
on the characteristics of these participants and their objectives, they can quit the
process prematurely, provide bogus inputs, and collude with others to derive private
information they should not know. Kargupta et al. [32] also took a game-theoretic
approach to analyze this phenomenon and presented Nash equilibrium analysis of a
well-known multiparty secure-sum computation [24,33]. The basic idea is again to
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model the strategies and utilities of the participants as a game and penalize malicious
behavior by increasing the cost of computation and communication. For example, if
a participant suspects a colluding group of size k′, then he may split the every number
used in a secure sum into αk′ pieces, α > 0, and demand αk′ rounds of secure-sum
computation one for each piece. This simple strategy increases the computation and
communication cost by αk′-fold, which may counteract the possible benefit that one
may receive by joining a team of colluders.

21.7 Conclusion and Future Work

This chapter provides a detailed survey of the very recent research on privacy-
preserving data analysis over graphs and networks. Due to space constraints, we
refer interested readers to Refs. [34–36] for other related work on this topic.

Before concluding this chapter, we present a set of recommendations for future
research in this emerging area.

• Develop identity anonymity models for graphs and networks. Much of the
existing research for identity disclosure is built upon the notion of k-anonymity.
The fundamental research question remains: “What is the ideal base model for
privacy-preserving analysis of graphs and networks?”

• Develop efficient and effective graph-modification algorithms for sensitive
link protection. A lot of the existing work leverages randomization techniques
that change the graph, which is rather heuristic and does not preserve the utility
of the graph very well.

• Understand the privacy constraints in the Web 2.0 environment. Develop
privacy-preserving techniques to enable core value-added Web 2.0 services,
such as social advertisement and recommendation.

• Develop workload-aware metrics that adequately quantify levels of informa-
tion loss of graph data.

• Create a benchmark graph data repository. This would let researchers com-
pare algorithms to more clearly understand the differences among various
approaches.

It is our belief that the future will see a growth in the demand of privacy-protection
techniques for not only social network but also other types of networks, such as
communication and peer-to-peer networks. As more researchers, engineers, and legal
experts delve into this area, standards and theory will begin to take shape. As these
are established, the next generation of privacy-preserving data analysis will be a
fertile ground for all concerned with the privacy implications in our society.
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