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Abstract We focus primarily on the use of additive and matrix multiplicative data pertur-
bation techniques in privacy preserving data mining (PPDM). We survey a re-
cent body of research aimed at better understanding the vulnerabilities of these
techniques. These researchers assumed the role of an attacker and developed
methods for estimating the original data from the perturbed data and any avail-
able prior knowledge. Finally, we briefly discuss research aimed at attacking
k-anonymization, another data perturbation technique in PPDM.
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15.1 Introduction

Data perturbation represents one common approach in privacy preserving
data mining (PPDM). It builds on a longer history in the areas of statisti-
cal disclosure control and statistical databases [1] where the original (private)
dataset is perturbed and the result is released for data analysis. Typically, a
“privacy/accuracy” trade-off is faced. On the one hand, perturbation must not
allow the original data records to be adequately recovered. On the other, it must
allow “patterns” in the original data to be mined. Data perturbation includes a
wide variety of techniques including (but not limited to): additive, multiplica-
tive [24], matrix multiplicative, k-anonymization [38, 41], micro-aggregation
[3, 26], categorical data perturbation [10, 45], data swapping [11], resampling
[27], data shuffling [34] (see [1, 28] for a more complete survey).

In this chapter we mostly focus on two types of data perturbation that apply
to continuous data: additive and matrix multiplicative. Additive data perturba-
tion was originally introduced in statistical disclosure control more that twenty
years ago and was further studied in the PPDM community in the last eight
years. Matrix multiplicative data perturbation were introduced only five years
ago in the PPDM community and is in its early stages of study. In order to better
understand the privacy offered by these techniques, some PPDM researchers
have assumed the role of an attacker and developed techniques for breaching
privacy by estimating the original data from the perturbed data and any avail-
able additional prior knowledge. Their work offers insight into vulnerabilities
of this type of data perturbation. We provide a detailed survey of their work in
an effort to allow the reader to observe common themes and future directions.
Moreover, due to its rapidly growing study, we also provide a brief overview
of attacks on k-anonymization.

This chapter is organized as follows. Section 15.2 describes definitions and
notation used throughout. Section 15.3 discusses additive data perturbation,
its uses and several attack techniques in detail. Section 15.4 describes matrix
multiplicative data perturbation, its uses and several attack techniques in de-
tail. Section 15.5 discusses k-anonymization and recent literature addressing
vulnerabilities of this data perturbation model. Finally, Section 15.6 concludes
the paper with a summary.

15.2 Definitions and Notation

Throughout this chapter, the original dataset is represented as an n×m, real-
valued matrix X, with each column a data record. The data owner perturbs X
to produce an n′ × m data matrix Y , which is then released to the public or
another party for analysis. The attacker uses Y and any other available infor-
mation to produce an estimation of X, denoted by X̂ . Unless otherwise stated,
we will assume that each record of the original dataset arose as an independent
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sample from an n-dimensional random vector X with unknown probability
density function (p.d.f.) (and this assumption is public knowledge). Let ΣX
denote the covariance matrix of X . We will also assume that ΣX has all dis-
tinct and non-zero eigenvalues (more details later) since, as argued in [20, pg.
27], this assumption holds in most practical situations.

Unless otherwise stated, all vectors are column-vectors. Given a matrix A,
AT denotes its transpose and A−1 denotes its inverse (provided one exists). I
denotes the identity matrix with dimensions specified by context. Given vector
x, ||x|| denotes the Euclidean distance of x to the origin i.e. the Euclidean
norm.

15.3 Attacking Additive Data Perturbation

The data owner replaces the original dataset X with

Y = X +R, (15.1)

where R is a noise matrix with each column generated independently from a
n-dimensional random vectorR with mean vector zero. As is commonly done,
we assume throughout that ΣR equals σ2I , i.e., the entries ofRwere generated
independently from some distribution with mean zero and variance σ2 (typical
choices for this distribution include Gaussian and uniform). In this case, R is
sometimes referred to as additive white noise.

While having a long history in the statistical disclosure control and statistical
database fields (see [6] for a comprehensive survey), additive data perturbation
was first revisited to address PPDM problems by Agrawal and Srikant [5]. They
assumed the p.d.f. of R is public. They developed a technique for estimating
the p.d.f. of X from Y and show how a decision tree classifier can then be
constructed. Their distribution recovery technique is further developed in [4,
9].

We describe five different attack techniques against additive perturbation.
The first three attacks filter off the random noise by analyzing the eigenstates
of the data: spectral filtering [22], singular value decomposition (SVD) filter-
ing [17], and principal component analysis (PCA) filtering [18]. They all use
eigen-analysis for filtering out the protected data. The fourth attack is a Bayes
approach based on maximum a posteriori probability (MAP) estimation [18].
The fifth attack shows that if the p.d.f. of X is reconstructed, in some cases,
it can lead to disclosure. We refer to this attack as distribution analysis. Note
that in all five we assume that the attacker knows the p.d.f. of R, and attacker
implicitly knows that the perturbed data records arose as independent samples
from random vector Y = X + R. Next, we describe each of these attacks in
detail.
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15.3.1 Eigen-Analysis and PCA Preliminaries

Before describing eigen-analysis based attacks, we first provide a brief back-
ground of eigen-analysis and PCA. Let X be an n-dimensional random vector.
Generally speaking the eigenvalues of covariance ΣX are the n roots (possible
including repeats) of the degree n polynomial |ΣX − Iλ| where |.| denotes the
matrix determinant. Since ΣX is positive semi-definite, all its eigenvalues are
non-negative and real [13, pg. 295]. If we assume that they are also all distinct
and non-zero, they can be denoted as λ1

X > . . . > λnX > 0. Associated with λjX
is its normalized eigenspace, V

j
X = {v ∈ R

n : ΣX v = vλjX and ||v|| = 1}.
These normalized eigenspaces are pair-wise orthogonal and have dimension
one [13, pg. 295]. Hence each can be written as {vjX ,−v

j
X }where vjX is lexico-

graphically larger than −vjX . Let VX denote the normalized eigenvector matrix
[v1

X · · · vnX ] (which is orthogonal).
As is standard practice in PCA, we assume that X has mean vector zero (if

not, it is replaced by X − E[X ]). The jth principal component (PC) of X is

vjX
TX (or −vjX

TX ). It can be shown that the PCs are pair-wise uncorrelated
and capture the maximum possible variance in the following sense. For each
1 ≤ j ≤ n, there does not exist v ∈ R

n orthogonal to v� for all 1 ≤ � < j such

that V ar(vTX ) > V ar(vjX
TX ). It can further be shown that V ar(vjX

TX ) =
λjX . Therefore, the dimensionality ofX can be reduced by choosing 1 ≤ k ≤ n
and transforming X to X̃ = Ṽ T

X X where ṼX denotes the leftmost k columns
of VX . The amount of “information” preserved is typically quantified by

100
∑k

�=1 λ
�
X∑n

�=1 λ
�
X
.

This is commonly referred to as the percentage of variance captured by X̃ .
If this percentage is large, most of the information is preserved in the sense
that ṼX X̃ is a good approximation to X . Indeed, if the percentage is 100, i.e.,
k = n, then ṼX X̃ = ṼX Ṽ T

X X = X . The properties of left multiplication to
X by ṼX Ṽ T

X have special significance in the eigen-analysis based attacks. We
call this transformation, a projection through the first k PCs.

In practice, one has a collection of data tuples on which dimensionality re-
duction via PCA is desired. If the tuples can all be regarded as independent
samples from X , PCA can be fruitfully carried out on their standard sample
covariance matrix (after subtracting from each the row-mean vector of the
dataset). The eigen-analysis based attacks will make critical use of the pro-
jection of the dataset through its first k PCs.
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Figure 15.1. Wigner’s semi-circle law: a histogram of the eigenvalues of A+A′
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15.3.2 Spectral Filtering

This technique, developed by Kargupta et al. [22], utilizes the fact that the
eigenvalues of a random matrix are distributed in a fairly predictable man-
ner. For example, Wigner’s semi-circle law [47] says that if A is a p × p ma-
trix whose entries were generated independently from a distribution with zero
mean and unit variance, then, for large p, the distribution of the eigenvalues
of A+A′

2
√

2p
has p.d.f. depicted in Figure 15.1; it takes the shape of a semi-circle.

As another example, consider n ×m matrix R whose entries were generated
independently from a distribution with mean zero and variance σ2. For large
m and n, the distribution of the eigenvalues of the sample covariance matrix of
R is similar to the semi-circle law. And, key to the spectral filtering technique,
this result allows bounds on these eigenvalues to be computed.

Kargupta et al. observe that if the jth eigenvalue arising from Y is “large”,
it is a good approximation to the jth eigenvalue arising from X. Therefore, the
projection of Y through its PCs corresponding to these large eigenvalues (say
the first k) is a good approximation to the projection of X through its first k
PCs. As such X̂ is set to the projection of Y through its first k PCs. Results
from matrix perturbation theory and spectral analysis of large random matrices
provide the basis for this observation.
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Lemma 15.1 [40, Corollary 4.9] For any n-dimensional random vectors X
and R (R has mean vector zero) and Y = X + R, it is the case that: for
1 ≤ j ≤ n, λjY ∈ [λjX + λnR, λ

j
X + λ1

R].

Therefore, if λjY ∈ [λnR, λ
1
R], then this eigenvalue is largely affected by

noise (R). Hence, it is not regarded by Kargupta et al. as large and, therefore,
not regarded as a good approximation of λjX . On the other hand, λjY > λ1

R is

regarded as large and, therefore, is regarded as a good approximation of λjX .
So how can the attacker use this threshold criterion given only Y ?

Let Σ̂Y and Σ̂R be the standard sample covariance matrices computed from
Y and R; let λ̂1

Y ≥ . . . ≥ λ̂nY and λ̂1
R ≥ . . . ≥ λ̂nR be the associated eigenval-

ues, respectively. The above criterion can be modified to consider λ̂jY > λ̂1
R

as large. But how should the attacker estimate an upper-bound on λ̂1
R? This

question is answered using a result from large random matrix theory alluded to
in the opening paragraph of this subsection. Intuitively, as R grows large, the
eigenvalues computed from R can be bounded by the attacker. And when m
is large relative to n, these bounds are quite good. Formally stated [21, 39], as
m,n→∞ and m

n → Q ≥ 1,

λ̂maxR = σ2(1 + 1/
√
Q)2 ≥ λ̂1

R ≥ λ̂nR ≥ λ̂minR = σ2(1− 1/
√
Q)2.

As such, λ̂maxR serves as the estimate of an upper-bound on λ̂1
R. Moreover,

for Q large relative to σ2, this bound will be quite good as all eigenvalues of
Σ̂R will be concentrated in a small band. Since the attacker is assumed to know
σ2, then she can compute λ̂maxR and will deem any λ̂jY > λ̂maxR as large.

The spectral filtering algorithm is given in Algorithm 3. The empirical re-
sults show that when the variance of the noise is low and the original data does
not contain many inherent random components, the recovered data can be rea-
sonably close to the original data. However, two important questions remain to
be answered. 1) What are the theoretical bounds on the estimation accuracy? 2)
What are the fundamental factors that determine the quality of the data estima-
tion? The first is touched on in Section 15.3.3 and the second in Section 15.3.4.

15.3.3 SVD Filtering

Guo et al. [17] revisited spectral filtering to address the issue of an optimal
choice of k and to develop bounds on the estimation accuracy. They showed
that when k = min{1 ≤ j ≤ n|λ̂jY < 2σ2} − 1, the estimated data is approx-
imately optimal, i.e., the benefits due to the inclusion of the kth eigenvector
is greater than the information loss due to the noise projected along the kth

eigenvector. They further proposed a singular value decomposition-based data
reconstruction approach, and proved the equivalence of this approach to spec-
tral filtering. A lower bound and upper bound of the estimation error in terms
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Protocol 3 Spectral Filtering

Require: Y , the perturbed data matrix and σ2, the variance of the random
noise.

Ensure: X̂ , an estimate of the original data matrix X.
1: Compute the sample mean of Y and subtract it from every column of Y .
2: Compute the standard sample covariance Σ̂Y of Y , its eigenvalues λ̂1

Y ≥
. . . ≥ λ̂nY , and their associated normalized eigenvectors v̂1

Y , . . . , v̂
n
Y .

3: Compute k = max{1 ≤ j ≤ n|λ̂jY > λ̂maxR }. Let ˜̂
VY denote the matrix

[v̂1
Y · · · v̂kY ].

4: Set X̂ to ˜̂
VY

˜̂
V T
Y Y.

of Frobenius matrix norm were also derived. We refer readers to [14, 17] for
more details.

15.3.4 PCA Filtering

Huang et al. [18] observe that a key factor in determining the accuracy of
spectral filtering is the degree of correlation that exists among the attributes of
X relative to σ2. The higher the degree, the greater the accuracy in estimating
the original data. Indeed, for small k, the higher the degree of correlation, the
more variance will be captured by the first k PCs. The addition of R does not
change this property. The attributes ofR are uncorrelated and thus, the amount
of variance captured by any direction is the same. Therefore, removing the last
n − k PCs of X does not cause much variance loss but will cause 100n−kn
percent of the variance in R to be lost.

Based on this observation, Huang et al. [18] proposed a filtering technique
based on PCA. A major difference with spectral filtering, is that PCA filtering
does not use matrix perturbation theory and spectral analysis to estimate the
dominant PCs of X. Instead PCA filtering takes a more direct approach based
on the fact that

ΣY = ΣX + ΣR = ΣX + σ2I. (15.2)

The first equality is due to the independence of X and R and the second by
assumption. Therefore, the attacker can directly estimate ΣX as Σ̂Y − σ2I ,
then compute the top k PCs of this. The PCA filtering procedure is given in
Algorithm 4.

The original dataset estimate can be written as the sum of two parts: X̂ =
˜̂
VX

˜̂
V T
X Y = ˜̂

VX
˜̂
V T
XX + ˜̂

VX
˜̂
V T
XR. Therefore, the recovery error 1 is determined

1assuming the estimated sample covariance Σ̂X is very close to ΣX
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Protocol 4 PCA Filtering

Require: Y , the perturbed data matrix; σ2, the variance of the random noise;
and 1 ≤ k ≤ n, the number of PCs to keep.

Ensure: X̂ , an estimate of the original data matrix X.
1: Compute the sample mean of Y and subtract it from every column of Y .
2: Compute the standard sample covariance Σ̂Y of Y , and produce Σ̂X =

Σ̂Y − σ2I an estimate of ΣX .
3: Compute the eigenvalues of Σ̂X , λ̂1

X ≥ . . . ≥ λ̂nX . Compute their their

associated normalized eigenvectors, v̂1
X , . . . , v̂

n
X . Let ˜̂

VX denote the matrix
[v̂1
X · · · v̂kX ].

4: Set X̂ to ˜̂
VX

˜̂
V T
X Y.

by the the percentage of variance captured by the first k PCs ofX and the noise.
It can be shown that the mean squared recovery error caused by the noise part
is σ2 k

n . These results echo the empirical results observed in spectral filtering
and suggests an approach for choosing k.

15.3.5 MAP Estimation Attack

Different from eigen-analysis, MAP estimation considers both prior and
posterior knowledge via Bayes’ theorem to estimate original dataset. For each
1 ≤ i ≤ m, the attacker will produce x̂i an estimate of xi using2 yi. Let fX
and fR denote the p.d.f of X and R, respectively. Given x ∈ R

n and y ∈ R
n′

,
let fX|Y=y and fY|X=x denote the p.d.f of X conditioned on Y = y and the
p.d.f of Y conditioned on X = x, respectively. The MAP estimate of xi is3

x̂i = argsup{fX|Y=yi
(x) : x ∈ R

n}
= argsup{fY|X=x(yi)fX (x) : x ∈ R

n}
= argsup{fR(yi − x)fX (x) : x ∈ R

n}. (15.3)

The second equality is due to Bayes’ theorem and the third due to the fact that
Y = X +R and R is independent of X .

Huang et al. [18] considered the case where both fX and fR are multi-
variate normal (and the attacker knows this). The following closed form
expression can then be derived with µX denoting the mean vector of X .

x̂i = (Σ−1
X + (1/σ2)I)−1(Σ−1

X µX + yi/σ
2).

2Due to independence, the attacker will gain nothing more if using all of Y .
3Here argsup{} is based on supAwhich denotes the smallest upper bound on a set A (if A is upper-

bounded, supA always exists.
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The assumption that fX is multi-variate normal and known to the attacker is
quite strong. Other cases are worth comment (in each, fR is multi-variate nor-
mal and known to the attacker). When fX is known but not multivariate normal,
it may be difficult to derive a closed-form expression for x̂i. In this case, the at-
tacker can use numerical methods such as Newton’s gradient descent methods.
When fX is not known, the MAP estimate reduces to the maximum likelihood
estimate (MLE) by assuming fX is uniform over some interval. Therefore, fX
can be dropped from (15.3) and x̂i = yi. However, this estimate may suffer
from accuracy problems due to dropping fX .

It is worth noting that the MAP approach has been widely studied in statis-
tical disclosure control. For example, Trottini et al. [44] used this approach to
study the linkage privacy breaches in the scenario where microdata is masked
by both additive and multiplicative noise. In their settings, the attacker tries to
identify the identity (of a person) linked to a specific record, which is different
from the primary focus of this chapter - data record recovery.

15.3.6 Distribution Analysis Attack

Recall that techniques exist for estimating fX from Y . This is quite useful
as fX represents a useful data mining pattern. However, in some cases, this
reconstructed distribution can be used by the attacker to gain extra knowledge
about the private data. For example, assume the each entry of R is uniformly
distributed over [−1, 1] and the observed perturbed data Y = 1. If there is
no additional information, the attacker can determine X ∈ [0, 2]. However, if a
large amount of data is available, the reconstructed distribution will have a high
degree of accuracy. Assume the attacker can perfectly recover fX which is:

fX (x) =

⎧⎨
⎩

0.5, 0 ≤ x ≤ 1;
0.5, 5 ≤ x ≤ 6;
0, otherwise.

Then, the estimate of X given Y = 1 is localized to a smaller interval [0, 1]
instead of [0, 2]. When data has a multi-variate distribution, the attacker can de-
termine intervals I1, I2, . . . , In, which are narrow in one or more dimensions,
and for which the number of data records that fall in the interval is very small.
Such intervals make outliers/minorities more identifiable than they would seem
when merely looking at the perturbed data set. This kind of disclosure leads to
a bigger open problem - when do data mining results cause privacy breach?
Further discussions can be found in [4, 9, 31, 16, 12].

15.3.7 Summary

This section surveyed recent research that investigated the vulnerability
additive data perturbation. The research showed, in many cases, the private
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information can be reasonably well derived from the perturbed data. The pri-
mary attack techniques presented are summarized in Table 15.1.

Table 15.1. Summarization of Attacks on Additive Perturbation

Categories Related Work General Assumptions

Eigen-Analysis [14, 17, 18, 22] the degree of correlation between the original
data attributes is high relative to σ2

MAP Estimation [18] data and noise arose from a
multi-variate normal distribution

Distribution Analysis [4, 9, 16] reconstructed distribution describes
the original data with sufficient accuracy

One possible improvement on additive perturbation is to use colored noise
with similar correlation structure to the original data [23, 43], i.e., R ∼
(0,ΣR), where ΣR = βΣX for β > 0. With this method, the covariance
of the perturbed data is

ΣY = ΣX + βΣX = (1 + β)ΣX .

The correlation coefficients of the perturbed attributes are the same as that of
the original attributes:

ρYi,Yj =
1 + β

1 + β

Cov(Xi,Xj)√
V ar(Xi)V ar(Xj)

= ρXi,Xj .

This kind of perturbation puts noise on the principal components of the original
data, therefore, separating noise from the data using eigen analysis becomes
difficult. However, this approach is not free from problem either. Domingo-
Ferrer et al. [9] pointed out that the reconstructed distribution (using their p-
dimensional reconstruction algorithm, a multivariate generalization of the ap-
proach describe in [5] for the univariate case) may still lead to disclosure in
some cases. The higher the dimensionality, the more likely is the disclosure.

In summary, additive perturbation has its roots in statistical disclosure con-
trol. It offers a simply way to mask private data while allowing aggregate sta-
tistics to be queried; and making more sophisticated privacy preserving data
mining possible. However, recent work from PPDM community has shown this
technique vulnerable to attack in many cases (e.g., high correlations between
many attributes). Therefore, careful attention must be paid when applying this
technique in practice.

Before closing this section, we note that several researchers have proposed
privacy metrics e.g., interval-based [5], entropy-based [4], mixture models
[49]. However, the relationship between these and the recovery accuracy of
the attack techniques is not clear.
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15.4 Attacking Matrix Multiplicative Data Perturbation

The data owner replaces the original data X with

Y = MX, (15.4)

where M is an n′ × n matrix chosen to have certain useful properties. If M is
orthogonal (n′ = n and MTM = I) [7, 36, 37], then the perturbation exactly
preserves Euclidean distances, i.e., for any columns x1, x2 in X, their corre-
sponding columns y1, y2 in Y satisfy ||x1−x2||= ||y1−y2||.4 If each entry of
M is generated independently from the same distribution with mean zero and
variance σ2 (n′ not necessarily equal to n) [28, 30], then the perturbation ap-
proximately preserves Euclidean distances on expectation up to constant factor
σ2n′. If M is the product of a discrete cosine transformation matrix and a trun-
cated perturbation matrix [33], then the perturbation approximately preserves
Euclidean distances.

Because matrix multiplicative perturbation preserves Euclidean distance
with either small or no error, it allows many important data mining algorithms
to be applied to the perturbed data and produce results very similar to, or ex-
actly the same as those produced by the original algorithm applied to the orig-
inal data, e.g., hierarchical clustering, k-means clustering. However, the issue
of how well X is hidden is not clear and deserves careful study. Without any
prior knowledge, an attacker can do very little (if anything) to accurately re-
cover X. However, no prior knowledge seems an unreasonable assumption in
many situations. Motivated by this line of reasoning, several researchers have
investigated the vulnerabilities of matrix multiplicative perturbation using var-
ious forms of prior knowledge [8, 15, 28–30]. In the bulk of this section (15.4.1
and 15.4.2), we discuss attack techniques based on two types of prior knowl-
edge.

1 Known input-output (I/O): The attacker knows some small collection
of original data records and the attacker knows the mapping between
these known original data records and their perturbed counterparts in Y .
In other words, the attacker has a set of input-output pairs.

2 Known sample: The attacker has a collection of independent samples
(columns of S) from X (S may or may not overlap with X).

The first two attacks are based on the known I/O prior knowledge assump-
tion. The first one [29] assumes an orthogonal perturbation matrix while the

4Conversely, any function T : R
n → R

n which preserves Euclidean distance (for all x, y ∈ R
n,

||x−y||= ||T (x)−T (y)||) and fixes the origin is equivalent to left-multiplication by an n×n orthogonal
matrix.
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second [28] assumes a randomly generated perturbation matrix. The third at-
tack is based on the known sample prior knowledge assumption and assumes
an orthogonal perturbation matrix. It works by examining certain features of
the original and perturbed data distributions (i.e., the p.d.f. ofX and Y), namely
the eigenvectors of ΣX and ΣY . These features have two important properties:
(i) they are related to each other in a natural way allowing M to be estimated,
and (ii) they can be accurately extracted from S and Y .

Before moving on, we emphasize the fact that the perturbation technique
considered here, matrix multiplicative, is completely different than multiplica-
tive data perturbation mentioned in the introduction. There each element of X
is separately multiplied by a randomly generated number.

15.4.1 Known I/O Attacks

Without loss of generality, the attacker is assumed to knowXp (1 ≤ p < m),
the first p columns of X (of course, the attacker also knows Yp, the first p
columns of Y ). In other words, the attacker knows a set of input/output pairs
(x1, y1), . . ., (xp, yp) where yj = Mxj .

Orthogonal Perturbation Matrix. Liu et al. [29] assumed M is orthogo-
nal. Unlike all other attacks in this chapter, they do not assume that the original
data records arose as independent samples from X . Their attacker uses Yp and
Xp to produce, M̂ , an estimation of M . Then, for any p ≤ i ≤ m, the attacker
will produce x̂i, an estimation of xi as

x̂i = M̂T yi. (15.5)

The rationale for (15.5) is: if M̂ ≈ M , then x̂i ≈ MT yi = MT (Mxi) = xi.
In choosing M̂ , the attacker knows that M must be in M(Xp, Yp), the set of
all n× n, orthogonal matrices, O, such that OXp = Yp. However, with no ad-
ditional information for further narrowing down this space of the possibilities,
the attacker will assume each is equally likely to be M . Therefore, she will
choose M̂ uniformly from M(Xp, Yp).

Given an error tolerance ε > 0, the attacker’s success probability, ρ(xi, ε),
is defined as the probability that the relative Euclidean distance between xi and
x̂i is no larger than ε, i.e., Pr(||x̂i−xi|| ≤ ||xi||ε). Liu et al. developed closed
form expression

ρ(xi, ε) =

{ (
1
π

)
2arcsin

(
||xi||ε

2d(xi,Xp)

)
if ||xi||ε < 2d(xi,Xp);

1 otherwise,
(15.6)

where d(xi,Xp) denotes the Euclidean distance of xi to the space of vectors
spanned by the columns of Xp, i.e., inf{||x − xi||:x is in the column space
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of Xp}. Equation (15.6) illustrates that the sensitivity of a tuple, xi, to breach
depends upon its length relative to its distance to the column space of Xp,

i.e., ||xi||
2d(xi,Xp) . Tuples whose relative length is large are particularly sensitive

to breach. In particular when xi is in the column space of Xp, the attacker’s
success probability equals one. Liu et al. also described how the attacker can
compute ||xi|| and d(xi,Xp) for any p ≤ i ≤ m, and therefore, determine
which tuple is most sensitive to breach.

Chen et al. [8] also discussed a known I/O attack technique. They however
consider a combination of matrix multiplicative and additive perturbation: Y =
MX + R. They considered the case when the number of linearly independent
data tuples (columns in Xp) is no smaller than the data dimensionality, n (rows
in Xp). They pointed out that M̂ , an estimate of M , can be produced using
linear regression, then xi estimated as M̂−1yi.

Random Perturbation Matrix. Liu [28] developed a MAP-based known
I/O attack which works under the assumption that M is an n′×nmatrix whose
entries were generated independently from a normal distribution with mean
zero and variance σ2 (n′ may be ≤ n or > n).5 The larger n′ is, the more
closely preserved are Euclidean distances between data tuples (up to constant
factor σ2n′), but, the better the known I/O attack will work at breaching pri-
vacy. Therefore, a trade-off must be balanced in setting n′.

For simplicity, we assume that the columns of Yp are linearly independent.6

For any p ≤ i ≤ m, the attacker will produce x̂i an estimate of xi. If xi is
linearly dependent on the columns of Xp, the attacker can discover this as yi
will be linearly dependent on the columns of Yp. In this case, the attacker will
set x̂i = Xp(Y T

p Yp)
−1Y T

p yi which equals xi (perfect recovery).7 Henceforth,
we assume xi is linearly independent of the columns of Xp. Therefore, the
attacker will only consider estimates, x̂ ∈ R

n, which are also linearly inde-
pendent of the columns of Xp (for brevity, we write “l.i. x̂” to mean that x̂ is
linearly independent of the columns of Xp). Finally, since the columns of Yp
are assumed to be linearly independent, then it follows that the columns of Xp

are too.
Let M be an n′ × n matrix of random variables each independently and

identically distributed as normal with mean zero and variance σ2. The columns
of Y arose as independent samples from random vector Y =MX . Using the

5They do assume that the original data records arose as independent samples from X .
6This assumption is not essential. It can be eliminated at the cost of a more complicated attack algo-

rithm. However, the fundamental idea remains the same.
7There exists zi ∈ R

p such that Xpzi = xi and Ypzi = yi. Since the columns of Yp

are assumed to be linearly independent, then by [13, pg. 96], the matrix (Y T
p Yp)−1Y T

p exists. Thus,
Xp(Y T

p Yp)−1Y T
p yi =Xp(Y T

p Yp)−1(Y T
p Yp)zi =Xpzi = xi.



372 Privacy-Preserving Data Mining: Models and Algorithms

MAP approach, the attacker will choose l.i. x̂ so as to maximize the likelihood
that X equals x̂ given that Y equals yi and MXp equals Yp. This analysis
is based on the following key observation (whose proof follows directly from
manipulating moment-generating functions). For any matrix B, let B denote
the column vector which results from stacking the columns of B.

Theorem 15.2 For any n× q matrix A with linearly independent columns,
MA is distributed as an (qn′)-variate Gaussian with mean vector zero and
covariance matrix

ΣMA = σ2

⎡
⎢⎢⎢⎢⎢⎣

ATA 0 0 · · · 0
0 ATA 0 · · · 0
0 0 ATA · · · 0
...

...
...

. . .
...

0 0 0 · · · ATA

⎤
⎥⎥⎥⎥⎥⎦

Let [Xp, x̂] and [Yp, yi] denote matrices which result from attaching x̂ and
yi as an additional right-most column onto Xp and Yp. Observe that [Xp, x̂]
has linearly independent columns. Let fX|Y=yi,MXp=Yp

denote the p.d.f. of

X conditioned on Y = yi and MXp = Yp; let fM[Xp,x̂]
denote the p.d.f. of

M[Xp, x̂]. Using the MAP approach, the attacker will choose

x̂i = argsup{fX|Y=yi,MXp=Yp
(x̂) : l.i. x̂ ∈ R

n}.

Using Bayes’ rule, it can be shown that

x̂i = argsup{fM[Xp,x̂]
([Yp, yi])fX (x̂) : l.i. x̂ ∈ R

n},

thus, Theorem 15.2 implies

x̂i = argsup{φ([Yp, yi])fX (x̂) : l.i. x̂ ∈ R
n}, (15.7)

where φ is the ((p+ 1)n′)-variate Gaussian distribution with mean vector zero
and covariance matrix ΣM[Xp,x̂]

. For simplicity we assume that the attacker
knows nothing about fX and, following a common practice, uses a uniform
distribution over some interval in place of fX in (15.7).8 Thus,

x̂i = argsup{φ([Yp, yi]) : l.i. x̂ ∈ R
n}. (15.8)

Producing a closed-form expression for x̂i in (15.8) is desirable, but quite
difficult. Instead, the attacker can turn to numerical approaches. Experiments

8A more complicated approach could have the attacker using the fact that the columns of Xp arose as
independent samples from X , and use Xp to inform a better substitution for fX in (15.7).
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were reported in [28] where the attacker used the Matlab implementation9 of
the Nelder-Mead simplex algorithm [35] to solve this optimization problem.
The results show that the accuracy of the attack technique increases with n′ or
the number of known input-output pairs.

15.4.2 Known Sample Attack

The attacker is assumed to know a collection of independent samples
(columns of S) from X (S may or may not overlap with X). Furthermore,
the attacker assumes M is orthogonal.

The approach is based on the observation that the eigenvectors of Y are
equal to those of X left-multiplied by M (up to a factor of ±1). Therefore
by estimating ΣY and ΣX and matching their eigenvectors, the attacker can
produce, M̂ , an estimation of M . Using this, data record xi (1 ≤ i ≤ m) is
estimated as x̂i = M̂T yi.

The following results (proved in [29]) establishes the key match between
the normalized eigenspaces.

Theorem 15.3 The eigenvalues of ΣX and ΣY are the same and for all
1 ≤ j ≤ n, MV

j
X = V

j
Y , where MV

j
X equals {Mv : v ∈ V

j
X }.

Corollary 15.4 Let In be the space of all n×n, matrices with each diago-
nal entry ±1 and each off-diagonal entry 0 (2n matrices in total). There exists
D0 ∈ In such that M = VYD0V

T
X .

First assume that the attacker knows the covariance matrices ΣX and ΣY
and, thus, computes VX and VY . By Corollary 15.4, the attacker can perfectly
recover M if she can choose the right D from In. To do so, the attacker utilizes
S and Y , in particular, the fact that these arose as independent samples from X
and Y = MX . For any D ∈ In, if D = D0, then VYDV T

X S and Y have both
arisen as independent samples from Y . The attacker will estimate M as M̂ =
VYDV T

X , where D was chosen from In so as to maximize the likelihood that
VYDV T

X S and Y arose from the same random vector. To make this choice, the
attacker can use a multi-variate two-sample hypothesis test for equal distribu-
tions [42]. The smaller the p-value, the more convincingly the null hypothesis
(that VYDV T

X S and Y have both arisen as independent samples from Y) can
be rejected. Therefore, D ∈ In is chosen to maximize the p-value.

Finally, the attacker can eliminate the assumption at the start of the previous
paragraph by replacing ΣX and ΣY with estimates computed from S and Y .
Using the standard sample covariance matrices, the pseudo-code for the attack
technique is shown in algorithm 5. A weakness lies in its computation cost,
O(2n(m+ p)2). For high-dimensional data, the technique is infeasible.

9http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fminsearch.html
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Protocol 5 Eigen-Analysis Attack
Require: Y , the perturbed data matrix and S, the sample data matrix.
Ensure: X̂ , an estimate of the original data matrix X.

1: Compute standard, sample covariance matrices of S and Y and V̂X and V̂Y
their normalized eigenvector matrices.

2: Choose D ∈ In so as to maximize the p-value of two-sample hypothesis
test for equal distributions on V̂YDV̂ T

X S and Y .
3: Set M̂ to V̂YDV̂ T

X and X̂ to M̂TY .

It should be noted the eigen-analysis attack does not work if each entry of
M were generated independently from some distribution with mean zero and
variance σ2. In that case, ΣY will equal γI for some constant γ > 0, thereby
killing any useful matching like that in Theorem 15.3.

15.4.3 Other Attacks Based on ICA

Before finishing the section, we briefly describe some attacks based on in-
dependent component analysis (ICA) [19].

ICA Overview. Given an n′-variate random vector V , one common ICA
model posits that this random vector was generated by a linear combination of
independent random variables, i.e., V =AS with S an n-variate random vector
with independent components. Typically, S is further assumed to satisfy the
following additional assumptions: (i) at most one component is distributed as
a Gaussian; (ii) n′ ≥ n; and (iii) A has rank n.

One common scenario in practice: there is a set of unobserved samples (the
columns of n × q matrix S) that arose from S which satisfies (i) - (iii) and
whose components are independent. But observed is n′ × q matrix V whose
columns arose as linear combination of the rows of S. The columns of V can
be thought of as samples that arose from a random vector V which satisfies the
above generative model. There are ICA algorithms whose goal is to recover
S and A up to a row permutation and constant multiple. This ambiguity is
inevitable due to the fact that for any diagonal matrix (with all non-zeros on
the diagonal) D, and permutation matrix P , if A,S is a solution, then so is
(ADP ), (P−1D−1S).

Other Attacks. Liu et al. [30] considered matrix multiplicative data pertur-
bation where M is an n′ × n matrix with each entry generated independently
from the some distribution with mean zero and variance σ2. They discussed
the application of the above ICA approach to estimate X directly from Y :
S = X , V = Y , S = X, V = Y , and A = M . They argued the approach to be
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problematic because the ICA generative model imposes assumptions not likely
to hold in many practical situations: the components of X are independent with
at most one such being Gaussian distributed. Moreover, they pointed out that
the row permutation and constant multiple ambiguity further hampers accurate
recovery of X. A similar observation is made later by Chen et al. [8].

Guo and Wu [15] considered matrix multiplicative perturbation assuming
only thatM is an n×nmatrix (orthogonal or otherwise). Further they assumed
a weaker variant of the known I/O holds: the attacker knows, X̃, a collection of
original data columns from X but does not know to which of the columns in Y
these correspond. They develop an ICA-based attack technique for estimating
the remaining columns in X. To avoid the ICA problems described in the pre-
vious paragraph, they instead applied ICA separately to X̃ and Y producing
representations (AX̃ , SX̃) and (AY , SY ). They argued that these representa-
tions are related in a natural way allowing X to be estimated. Their approach
is similar in spirit to the known sample attack described earlier which related
S and Y through representations derived through eigen-analysis.

15.4.4 Summary

This section discussed the vulnerabilities of matrix multiplicative data per-
turbation to certain attacks based on prior knowledge. The primary attack tech-
niques discussed are summarized in Table 15.2.10

Table 15.2. Summarization of Attacks on Matrix Multiplicative Perturbation

Categories Related Work General Assumptions

Linear algebra/measure theory [29] known I/O, M is orthogonal
MAP Estimation [28] known I/O, M is n′ × n

with entries generated
independently from N (0, σ2),

Eigen-Analysis [29] known sample, M is orthogonal,
ICA [8, 30] M has rank n, the data

attributes are largely independent and
at most one is Gaussian

ICA [15] M is n × n, weak known I/O

Chen et al. [8] discussed a modification of matrix multiplicative data per-
turbation to improve its resilience to attack. They examine the combination of
matrix multiplicative and additive data perturbation. They argue that this ap-
proach offers additional privacy protection, but the utility of the perturbed data

10All the attack techniques, except known I/O with orthogonal M , implicitly assume that the original
data records arose independently from X .
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is negatively affected since additive noise does not preserve Euclidean distance
well.

15.5 Attacking k-Anonymization

Before concluding this chapter, we briefly survey a very recent body of re-
search aimed at analyzing the vulnerabilities of the popular k-anonymity model
[38, 41]. Here, the private data X is perturbed such that each of the resulting
records is identical to at least k − 1 others with respect to a pre-defined set
of attributes called quasi-identifiers. All of the other attributes are called sensi-
tive attributes and these are not modified by the perturbation. This perturbation
can be carried out by judicious value generalization (e.g., zip 95120→ 951**)
or tuple suppression, and it is aimed at preventing linkage attacks through the
quasi-identifiers.

Recently, Machanavajjhala et al. [32] developed a background knowledge
attack on k-anonymity which we call a homogeneity attack. They showed how
a lack of diversity among the sensitive attribute values can be used to establish a
linkage between individuals and sensitive values. To remedy this problem, they
proposed a new privacy definition called l-diversity such that in each equiva-
lence class there are at least l “well-represented” sensitive values. Along the
same line, Wong et al. [48] proposed an (α, k)-anonymization model such that
the relative frequency of the sensitive value in every equivalence class is less
than or equal to α. Li et al. [25] later developed attacks on l-diversity (skew-
ness attack and similarity attack), and argued that l-diversity is neither neces-
sary nor sufficient to prevent attribute disclosure. To cope with these problems,
they proposed an improved framework called t-closeness, which requires the
distribution of a sensitive attribute in any equivalence class to be close to the
distribution of the attribute in the original data set.

Wang et al. [46] considered the privacy breach caused by the attacker’s data
mining capabilities. They presented an approach (that combines association
rule hiding and k-anonymity) to limit the confidence of inferring sensitive prop-
erties about the existing individuals.

Aggarwal [2] also argued the original k-anonymity model to be problematic.
He considered the case of high dimensional data and pointed out that the ex-
ponential number of quasi-identifier combinations can allow precise inference
attacks unless an unacceptably high amount of information loss is suffered.

15.6 Conclusion

This chapter provides a detailed survey of attack techniques on additive and
matrix multiplicative perturbation. It also presents a brief overview of attacks
on k-anonymization. These attacks offer insights into vulnerabilities data per-
turbation techniques under certain circumstances. In summary, the following
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information could lead to disclosure of private information from the perturbed
data.

1. Attribute Correlation: Many real world data has strong correlated at-
tributes, and this correlation can be used to filter off additive white noise. See,
e.g., [14, 17, 18, 22].

2. Known Sample: Sometimes, the attacker has certain background knowl-
edge about the data such as the p.d.f. or a collection of independent samples
which may or may not overlap with the original data. See, e.g., [28, 29, 18].

3. Known Inputs/Outputs: Sometimes, the attacker knows a small set of pri-
vate data and their perturbed counterparts. This correspondence can help the
attacker to estimate other private data. See, e.g., [28, 15, 29].

4. Data Mining Results: The underlying pattern discovered by data mining
also provides a certain level of knowledge which can be used to guess the
private data to a higher level of accuracy. See, e.g., [4, 9, 31, 16, 12, 46].

5. Sample Dependency: Most of the attacks (except the known I/O devel-
oped by [29]) discussed in this chapter assume the data as independent sam-
ples from some unknown distribution. This assumption may not hold true for
all real applications. For certain types of data, such as the time series data, there
exists auto correlation/dependency among the samples. How this dependency
can help the attacker to estimate the original data is still an open problem.

Notes

The contributions of C. Giannella and K. Liu were equal.
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