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ABSTRACT

Title of Dissertation: Multiplicative Data Perturbation for
Privacy Preserving Data Mining

Kun Liu, Doctor of Philosophy, 2007

Dissertation directed by: Dr. Hillol Kargupta
Associate Professor
Department of Computer Science and
Electrical Engineering

Recent interest in the collection and monitoring of data using data mining technology

for the purpose of security and business-related applications has raised serious concerns

about privacy issues. For example, mining health care data for the detection of disease

outbreaks may require analyzing clinical records and pharmacy transaction data of many

individuals over a certain area. However, releasing and gathering such diverse information

belonging to different parties may violate privacy laws andeventually be a threat to civil

liberties. Privacy preserving data mining strives to provide a solution to this dilemma. It

aims to allow useful data patterns to be discovered without compromising privacy.

In 2000, Agrawal and Srikant proposed the addition of i.i.d.white noise for privacy

protection. However, Karguptaet al. pointed out that additive noise can be easily filtered

off revealing a good approximation of the private data. Thismakes one wonder about

the possibility of using multiplicative noise. This dissertation systematically investigated

different multiplicative data perturbation techniques for privacy preserving data mining.

These types of perturbation distort the private data by multiplying some random noise and

only the perturbed version is released for data mining analysis. Extensive theoretical and

experimental results were provided to support the following primary contributions.



First, we examined the security issues of distance preserving data perturbation. This

technique is potentially very useful in that some importantdata mining algorithms can be

efficiently applied to the perturbed data and produce exactly the same results as if applied

to the original data. However, the issue of how well the original data is hidden had not

been carefully studied. We took a step in this direction by considering three types prior

knowledge an attacker may have and use to design attack techniques to recover the original

data. Our results offered insight into the vulnerabilitiesof distance preserving perturbation.

Second, we explored a random projection-based data perturbation that preserves the

inner products and Euclidean distances in the original datawith high probabilities. We

proposed a maximum a posteriori probability (MAP) estimate-based Bayes privacy model

to quantify the privacy. Guidelines were offered for the data owner to control the pri-

vacy/accuracy tradeoff when perturbing the data. Theoretical analysis showed that this

perturbation provides higher privacy protection than distance preserving perturbation, but

with little loss of accuracy.
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Chapter 1

INTRODUCTION

1.1 Background

M OST of our daily activities are now routinely recorded and analyzed by a variety

of governmental and commercial organizations for the purpose of security and

business related applications. From telephone calls to credit card purchases, from Inter-

net surfing to medical prescription refills, we generate datawith almost every action we

take. Collecting and analyzing such data are causing a majorconcern about our privacy. A

Forbes cover story in November 1999,I Know What You Did Last Night, highlights the way

that different slices of consumer data can now be pulled together to create a vivid picture

of any individual’s life [1]. Privacy has been gaining more attention since September 11.

To handle the terrorism, the government needed to examine, using data mining technology,

more information about individuals to detect unusual disease outbreaks, financial fraudu-

lent behaviors, network intrusions, etc. While all of theseapplications of data mining can

benefit our society, there is also a negative side to this technology because it could be a

threat to the individuals’ privacy. Recently, we have heardmuch about national security

vs. privacy in newspapers, magazines, research articles, and on television talk shows [2].

In 2003, concerns over the U.S. Total Information Awareness(also known as Terrorism

Information Awareness) project even led to the introduction of a bill in the U.S. Senate that

1
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would have banned any data mining programs in the U.S. Department of Defense. To elim-

inate the misguided impression, SIGKDD, an ACM’s special interest group on knowledge

discovery and data mining, even sent out a letter to claim“Data Mining” is NOT Against

Civil Liberties[3]. However, as the letter pointed out that:

the best (and perhaps only) way to overcome the ”limitations” of data mining

techniques is to do more research in data mining, including areas like data secu-

rity and privacy preserving data mining, which are actuallyactive and growing

research areas.

In 2000, Agrawal and Srikant [4] published their early work on privacy preserving data

mining. They proposed an additive data perturbation technique for decision tree construc-

tion in a client/server scenario. In their work, each clienthas a numerical private attribute

xi and the server wants to learn the distribution of these attributes to build a classification

model. The clients mask their attributesxi by adding random noiseri drawn independently

from a known distribution. The server collects the values ofxi + ri and reconstructsxi’s

distribution. However, Karguptaet al.[5] later questioned the use of random additive noise

and pointed out that additive noise can be easily filtered outin many cases. Their work was

further extended by Huanget al. [6], Guoet al. [7] and many else.

The drawback of additive noise makes one wonder about the possibility of using mul-

tiplicative noise for protecting the data privacy. In this type of perturbation, the private data

is distorted by multiplying some random noise and only the perturbed version is released

for data mining analysis. To our best knowledge, this technique has not been carefully

studied in the literature. This dissertation specifically investigates different multiplicative

data perturbations for PPDM. It presents extensive theoretical and experimental results on

the accuracy and privacy of each of the multiplicative data perturbation techniques. Thus,

valuable information is gained into effectiveness of multiplicative perturbations for PPDM.
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Private Database Perturbed Database

Data Miner
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FIG. 1.1. Census Model.

1.2 Problem Statement

The problem we are interested in can be stated as follows. An organization has a

private database and wishes to make it publicly available for data analysis while keeping

the original data records private. To achieve this goal, this organization transforms its

database into another form and only release that. A third party data miner or a researcher

can analyze and discover useful patterns of the original data from only the transformed

data. This is generally referred to as the census model, as illustrated by Figure 1.1.

1.3 Contributions of this Dissertation

This dissertation has systematically studied multiplicative data perturbation techniques

for privacy preserving data mining. It has made the following main contributions.

1. We examined the effectiveness of distance preserving perturbations in privacy pre-

serving data mining. These techniques are potentially veryuseful in that some im-

portant data mining algorithms can be efficiently applied tothe transformed data and



4

produce exactly the same results as if applied to the original data,e.g.,distance-based

clustering and k-nearest neighbor classification. However, the issue of how well the

original data is hidden has, to our knowledge, not been carefully studied. We took

a step in this direction by assuming the role of an attacker armed with three types

of prior information regarding the original data. We studied how well the attacker

can recover the original data from the transformed data and prior information. Three

different attack techniques were developed. The first one was based on linear algebra

and statistical theory, the second on principal component analysis (PCA), and the

third on independent component analysis (ICA). Our resultsoffered insight into the

advantages and vulnerabilities of distance preserving perturbations.

2. We further proposed a random projection-based data perturbation that preserves dis-

tance with high probabilities, and derived the analytic error bounds for the accuracy.

We proposed a maximum a posteriori probability (MAP) estimate-based Bayes pri-

vacy model to quantify the privacy offered by the perturbation technique. Our analy-

sis showed that, under mild assumptions, random projection-based data perturbation

did not offer the attacker more information about the private data than what had been

implied by the distance preserving property of random projection itself. In addition,

guidelines were offered for the data owner to control the privacy/accuracy tradeoff

when perturbing the data. Our theoretical analysis and experimental results provided

valuable information about the characteristics of this perturbation.

1.4 Dissertation Organization

This dissertation is organized as follows.

Chapter 1: This chapter presents the background of this research, the problem definition,

the contributions, and the organization of this dissertation.
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Chapter 2: This chapter offers an overview of various techniques and methodologies that

have been developed in the privacy preserving data mining area. It notes that the main con-

sideration in privacy preserving data mining is two fold: 1)data hiding: sensitive raw data

should be modified or trimmed out from the original database while the important underly-

ing patterns of the data should still be preserved, and 2)rule hiding: sensitive knowledge

which can be discovered from the data should be filtered out. The objective of privacy pre-

serving data mining is to allow meaningful patterns to be identified while keeping private

information private during and after the mining process.

Chapter 3: This chapter briefly reviews two multiplicative data perturbation techniques

that have been studied in the statistics community. These perturbations distort each data

element independently, and they are primarily used to mask the private data while allowing

summary statistics (e.g.,sum, mean, variance) of the original data to be estimated. This

chapter notes that these perturbation schemes are equivalent to the additive perturbation

after a logarithmic transformation, and therefore, they are vulnerable to many attacks de-

signed for additive perturbation. Moreover, the Euclideandistances among data records are

generally not preserved after perturbation.

Chapter 4: This chapter discusses a new multiplicative perturbation technique called dis-

tance preserving data perturbation. The perturbed data preserves inner products and Euclid-

ean distances. Many important data mining algorithms can beefficiently applied to the

perturbed data and produce exactly the same results as if applied to the original data. This

chapter first talks about the basic mathematical propertiesof this perturbation. Then, it

addresses the security issues of this technique by studyinghow well an attacker can re-

cover the original data from the perturbed data and other prior knowledge. Three attack

algorithms are designed. The first is based on basic properties of linear algebra, the second

on principal component analysis (PCA), and the third on independent component analysis

(ICA). As such, valuable information is gained into the effectiveness of distance preserving
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transformation for privacy preserving data mining.

Chapter 5: This chapter proposes a random projection-based multiplicative data perturba-

tion technique. This technique maps the data onto a lower dimensional space while main-

taining, with high probabilities, the pairwise Euclidean distances and the inner products of

the original data. This chapter first derives some analytic error bounds for the accuracy

of the distances preserved by random projection. Then, it offers a Bayes privacy model

to measure the privacy provided by the perturbation. To be more specific, it considers the

use of maximum a posteriori probability (MAP) estimate to recover the original data, and

to quantify the privacy. A closed-form expression about the(upper bound of the) privacy

breach is derived, which can be used together with the error bounds to guide the pertur-

bation in practice. Next, this chapter examines several privacy disclosure scenarios and

analyzes the efficacy of the corresponding attacks.

Chapter 6: This chapter concludes this dissertation and outlines the directions for future

research.



Chapter 2

BACKGROUND AND RELATED WORK

Recent interest in the collection and monitoring of data using data mining technology

for the purpose of security and business-related applications has raised serious concerns

about privacy issues. Sometimes, individual or organizational entities may not be willing

to divulge the sensitive raw data; sometimes, the knowledgeand/or patterns detected by a

data mining system may be used in a counter-productive manner that violates the privacy

policy. The main objective of privacy preserving data mining is to develop algorithms for

modifying the original data or modifying the computation protocols in some way, so that

during and after the mining process, the private data and private knowledge remain private

while other underlying data patterns or models can still be effectively identified.

There exists a growing body of literature on privacy preserving data mining. This

chapter presents a classification and an extended description of the various techniques and

methodologies that have been developed in this area (see Table 2.1 for a brief overview of

the categories).

2.1 Data Hiding

The main objective of data hiding is to transform the data or to design new compu-

tation protocols so that the private data remains private during and/or after data mining

7
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Data Hiding

Data Perturbation
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




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















Additive Perturbation
Multiplicative Perturbation
Data Microaggregation
Data Anonymization
Data Swapping
Other Randomization Techniques

Probability Distribution

{

Sampling Method
Analytical Method

Secure Multi-Party Computation (SMC) / Cryptographic Protocols
Distributed Data Mining (DDM)

Rule Hiding
Association Rule Hiding

{

Data Perturbation
Data Blocking

Classification Rule Hiding
{

Parsimonious Downgrading

Table 2.1. A brief overview of privacy preserving data mining techniques.

operations while the underlying data patterns or models canstill be discovered.

2.1.1 Data Perturbation

Data perturbation techniques can be grouped into two main categories, which we call

the value distortion technique and probability distribution technique. The value distortion

technique perturbs data elements or attributes directly byeither additive noise, multiplica-

tive noise or some other randomization procedures. On the other hand, the probability dis-

tribution technique considers the private database to be a sample from a given population

that has a given probability distribution. In this case, theperturbation replaces the original

database by another sample from the same (estimated) distribution or by the distribution

itself.

Note that there has been extensive research in the area of statistical databases (SDB)

on how to provide summary statistical information without disclosing individuals’ confi-

dential data (e.g.,[8–10]). The privacy issues arise when the summary statistics are derived

from data of very few individuals. A popular disclosure control method is data perturbation,
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which alters individual data in a way such that the summary statistics remain approximately

the same. However, problems in data mining become somewhat different from those in

SDBs. Data mining techniques, such as clustering, classification, prediction and associ-

ation rule mining, are essentially relying on more sophisticated relationships among data

records or data attributes, but not just simple summary statistics. This dissertation specif-

ically focuses on data perturbation for privacy preservingdata mining. In the following,

we will primarily discuss different perturbation techniques in the data mining area. Some

important perturbation approaches in SDBs are also coveredfor the sake of completeness.

Additive Perturbation The work in [4, 11] proposed an additive data perturbation tech-

nique for building decision tree classifiers. In this technique, each client has a numerical

attributexi and the server (or data miner) wants to learn the distribution of these attributes

to build a classification model. The clients randomize theirattributesxi by adding random

noiseri drawn independently from a known distribution such as a uniform distribution or

a Gaussian distribution. The server (or data miner) collects the values ofxi + ri and recon-

structsxi’s distribution using a version of the Expectation-Maximization (EM) algorithm.

This algorithm provably converges to the maximum likelihood estimate of the desired orig-

inal distribution [11].

Karguptaet al. [5] questioned the use of random additive noise and pointed out that

additive noise can be easily filtered out in many cases that will possibly compromise the

privacy. To be more specific, they proposed a random matrix-based Spectral Filtering (SF)

technique to recover the original data from the perturbed data. Their empirical results have

shown that the recovered data can be reasonably close to the original data. However, two

important questions remain to be answered: 1) What are the theoretical lower bound and

upper bound of the reconstruction error; and 2) What are the key factors that influence the

accuracy of the data reconstruction?

Guo and Wu [7] further investigated the Spectral Filtering technique and derived an
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upper bound for the Frobenius norm of the reconstruction error using matrix perturbation

theory. They also proposed a Singular Value Decomposition (SVD)-based reconstruction

method and derived a lower bound for the reconstruction error [12]. They then proved the

equivalence between the SF and SVD approach, and as a result,the lower bound of SVD

approach can also be considered as the lower bound of the SF approach.

Huanget al.[6] pointed out that the key factor that decides the accuracyof data recon-

struction is the correlation among the data attributes. Their results have shown that when

the correlations are high, the original data can be reconstructed more accurately, that is,

more private information can be disclosed. They further proposed two data reconstruction

methods based on data correlations: one used the Principal Component Analysis (PCA),

and the other used the Bayes Estimate (BE) technique, which in essence is a maximum a

posterior probability estimation. To improve privacy, they designed a modified additive per-

turbation scheme, in which they let the correlation of random noisesimilar to the original

data. This approach is similar with many data perturbation approaches used in the statistics

community (e.g.,[13, 14]). Their results have shown that the reconstructionaccuracy of

both PCA and BE techniques get worse as the similarity increases.

Given the large body of existing signal-processing literature on filtering random ad-

ditive noise, the utility of random additive noise for privacy preserving data mining is not

quite clear.

Multiplicative Perturbation Two basic forms of multiplicative noise have been studied in

the statistics community [15]. One multiplies each data element by a random number that

has a truncated Gaussian distribution with mean one and small variance. The other takes a

logarithmic transformation of the data first, adds multivariate Gaussian noise, then takes the

exponential functionexp(.)of the noise-added data. Neither of these perturbations preserve
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pairwise distance among data records.1

To facilitate large scale data mining applications, Liuet al.[16] proposed an approach

where the data is multiplied by a randomly generated matrix –in effect, the data is pro-

jected into a lower dimensional random space. This technique preserves distance on expec-

tation. Oliveira and Zaiane [17], Chen and Liu [18] discussed the use of random rotation

for privacy preserving clustering and classification. These authors observed that the dis-

tance preserving nature of random rotation enables a third party to produce exactly the

same data mining results on the perturbed data as if on the original data. However, they did

not analyze the privacy limitations of random rotation. Liuet al. [19] addressed the pri-

vacy issues of distance preserving perturbation (including rotation) by studying how well

an attacker can recover the original data from the transformed data and prior information.

They proposed two attack techniques: the first is based on basic properties of linear alge-

bra and the second on principal component analysis. Their analysis explicitly illuminated

scenarios where privacy can be breached. As such, valuable information was gained into

the effectiveness of distance preserving transformation for privacy preserving data mining.

Mukherjeeet al. [20] considered the use of discrete fourier transformation(DFT) and dis-

crete cosine transformation (DCT) to perturb the data. Onlythe high energy DFT/DCT co-

efficients were used, and the transformed data in the new domain approximately preserved

the Euclidean distance. The DFT/DCT coefficients were further permutated to enhance

the privacy protection level. However, the authors did not offer a rigorous analysis of the

privacy. Also note that if no coefficients were dropped, their technique would be fundamen-

tally the same as distance preserving transformation; therefore, the privacy issues could be

analyzed using the model proposed by Liuet al. [19].

Data Microaggregation Data microaggregation is a popular data perturbation approach

1In Chapter 3 we will discuss these perturbation schemes in details.
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in the area of secure statistical databases (SDBs). For a dataset with a single private at-

tribute, univariate microaggregation (e.g.,[21]) sorts data records by the private attribute,

groups adjacent records into groups of small sizes, and replaces the individual private val-

ues in each group with the group average. Multivariate microaggregation considers all the

attributes and groups data using a clustering technique (e.g.,[22, 23]). This approach pri-

marily considers the preservation of data covariance instead of the pairwise distance among

data records.

Recently, two multivariate microaggregation approaches have been proposed by re-

searchers in the data mining area. Aggarwal and Yu [24] presented a condensation approach

to privacy preserving data mining. This approach first partitions the original data into mul-

tiple groups of predefined size. For each group, a certain level of statistical information

(e.g., mean and covariance) about different data records is maintained. This statistical in-

formation is used to create anonymized data that has similarstatistical characteristics to

the original dataset, and only the anonymized data is released for data mining applica-

tions. This approach preserves data covariance instead of the pairwise distance among data

records. Liet al. [25] proposed a kd-tree based perturbation method, which recursively

partitions a dataset into smaller subset such that data records in each subset are more ho-

mogeneous after each partition. The private data in each subset are then perturbed using

the subset average. The relationships between attributes are expected to be preserved.

Data Anonymization Sweeney [26] developed thek-anonymityframework wherein the

original data is transformed so that the information for anyindividual cannot be distin-

guished from(k − 1) others. Generally speaking, anonymization is achieved by suppress-

ing (deleting) individual values from data records (e.g., , name and social security numbers

are removed), and/or replacing every occurrence of certainattribute values with a more

general value (e.g., the zip codes 21250-21259 might be replaced with 2125*). A variety of

refinements of this framework have been proposed since its initial appearance. Some of the
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work (e.g., [26,27]) start from the original dataset and systematically or greedily generalize

it into one that isk-anonymous. Some (e.g., [28]) start with a fully generalized dataset and

systematically specialize the dataset into one that is minimally k-anonymous.

The problem ofk-anonymization is not simply to find anyk-anonymization, but to,

instead, find one that is “good” or even “best” according to some quantifiable cost metric.

Each of the previous work provides its own unique cost metrics for modeling desirable

anonymization. Cost metrics typically tally the information loss resulting from the sup-

pression or generalizations applied. As an illustration, we will show two cost metrics here.

The first metric was proposed by Bayardo and Agrawal [28]. This metric attempts to

capture in a straightforward way the desire to maintain discernibility between data records

as much as is allowed by a presetting ofk. This discernibility metric assigns a penalty to

each data record based on how many records in the transformeddataset are indistinguish-

able from it. If an unsuppressed record falls into an inducedequivalence class of sizej, that

record is assigned a penalty ofj. If a record is suppressed, it is assigned a penalty of|D|,
the size of the original dataset. This penalty reflects the fact that a suppressed record cannot

be distinguished from any other record in the dataset. This metric can be mathematically

expressed as follows:

Cost(g, k, D) =
∑

∀E s.t |E|≥k

|E|2 +
∑

∀E s.t. |E|<k

|D||E|,

whereE is the equivalence classes of records inD induced by the anonymization func-

tion g. The first sum of the above expression computes penalties for each non-suppressed

record, the second for suppressed records.

The second cost metric was proposed by Iyengar [29]. This metric can be applied

when records are associated with categorical class labels.Thus, the anonymization can

produce equivalence classes consist of records that are uniform with respect to the class
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label. This classification metric assigns no penalty to an unsuppressed tuple if it belongs

to the majority class within its induced equivalence class.All other tuples are penalized a

value of 1. This metric can be mathematically stated as follows:

Cost(g, k, D) =
∑

∀E s.t. |E|≥k

(|minority(E)|) +
∑

∀E s.t. |E|<k

|E|,

where the minority function accepts a set of class labeled records and returns the sub-

set of records belonging to any minority class with respect to that set. The first sum of

the above expression penalizes non-suppressed records, the second penalizes suppressed

records. Iyengar has shown that this metric produces anonymized datasets that give better

classification models than do class oblivious metrics.

Recently, Machanavajjhalaet al.[30] pointed that simplek-anonymityis vulnerable to

strong attacks due to the lack of diversity in the sensitive attributes. They proposed a new

privacy definition calledl-diversity. The main idea behindl-diversity is the requirement that

the values of the sensitive attributes are well representedin each group. Other enhanced

k-anonymitymodels have been proposed elsewhere [31,32].

Data SwappingThis technique transforms the database by switching a subset of attributes

between selected pairs of records so that the individual record entries are unmatched, but

the statistics (e.g., marginal distributions of individual attributes) are maintained across

the individual fields. This technique was first proposed by Dalenius and Reiss [33]. A

variety of refinements and applications of data swapping have been addressed since its

initial appearance. We refer readers to [34] for a thorough treatment.

Other Randomization TechniquesThe work in [35, 36] considered categorical data per-

turbation in the context of association rule mining. This work was extended in [37] where a

rigorous framework for quantifying privacy breaches was introduced. This framework uses

a key concept ofγ-amplification and applies without any assumptions of the underlying
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distribution from which the original data is drawn. The workin [38] considered this frame-

work again and showed how to optimally set the perturbation parameters for reconstruction

while maintainingγ-amplification. Along a related line, Verykios [39] considered pertur-

bation techniques that allow the discovery of some association rules while hiding others

considered to be sensitive.

Sampling Method Liew et al. [40] proposed a probability distribution-based approach

for protecting a single confidential attribute in a private database. This approach consists

of three steps: 1) estimate the underlying probability density function of the attribute; 2)

generate a new sample set from the estimated density function; and 3) substitute the new

sample for the original attribute in the same rank order, that is, the smallest value of the new

sample should replace the smallest value in the original data, and so forth. This approach

is applicable to both numeric and categorical attributes. The noise introduced by this ap-

proach is larger when the private database is small; thus, better security is achieved, but

biased-query responses are provided with users. When the size of the database increases,

the bias becomes smaller, but less security of confidential attribute is achieved.

Analytical Method Lefonset al.[41] proposed an approach for protecting multi-numerical

sensitive attributes by replacing the original private database with its probability density.

The key contribution of their work lies in the approximationof the data distribution by

orthogonal polynomials. The coefficients used in the computation of the approximation

are called canonical coefficients. These coefficients are well suited for usage in an online

environment because they can be adopted easily in case of insertions and deletions of the

database records. However, if the estimated probability density function is a very precise

description of the original data, there is hardly any protection against partial disclosures.

On the other hand, if there is large deviation between the density function and the original

sensitive data, issues such as how to avoid bias and how to control the trade-off between

precision and security need to be carefully addressed.
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2.1.2 Secure Multi-party Computation (SMC)

Definition Secure Multi-party Computation (SMC) [42] considers the problem of evaluat-

ing a function of two or more parties’ secret inputs, such that no party learns anything but

the designated output of the function. Concretely, we assume we have inputsx1, . . . , xn,

where partyi ownsxi, and we want to compute functionf(x1, . . . , xn) = (y1, . . . , yn) such

that partyi getsyi and nothing more than that.

Example As an example, we may consider Yao’s millionaire’s problem:two millionaires

meet in the street and want to find out who is richer without having to reveal their actual

fortune to each other. The function computed in this case is asimple comparison between

two numbers. If the result is that the first millionaire is richer, then he knows that, but this

should be all the information he learns about the other guy.

Adversarial Behavior It is common to model cheating by considering adversarial parties

that attempt to obtain information about the private inputsof their peers. SMC typically

studies two types of adversaries: Asemi-honestadversary (also known aspassive, orhonest

but curiousadversary) is a party who follows the protocol properly, yetattempts to learn

additional information by analyzing all the intermediate results and the messages received

during the protocol execution. On the other hand, amaliciousadversary may arbitrarily

deviate from the protocol specification. A malicious adversary could refuse to participate

in the protocol when the protocol is first invoked, could substitute its input and enter the

protocol with an input other than the one provided with it, and could abort the protocol

prematurely. It is obviously easier to design a solution that is secure against semi-honest

adversaries than it is to design a solution for malicious adversaries. In practice, people

usually first design a secure protocol for the semi-honest scenario, and then transform it to

a protocol that is secure against malicious adversaries. This transformation can be done by

requiring each party to use zero-knowledge proofs to prove that each step that it is taking
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follows the protocol specification.

Privacy Generally speaking, an SMC protocolprivately computes a function if any in-

formation that a party can obtain can be essentially obtained by that party through its own

inputs and outputs. An alternative definition compares the results of the actual computation

to that of anideal computation. Here theideal computation assumes there exists atrusted

party who does not deviate from the protocol specification at all, and does not attempt to

cheat. All parties send their private inputs to thetrusted party, who computes the function

and sends the appropriate results back to all the parties. Wesay a protocol is secure or

private if anything that an adversary can learn in the actualworld can also be learned in the

ideal world, namely from its own inputs and from the outputs it receives from thetrusted

party. In essence, protocols satisfying this definition prevent an adversary from gaining

any extra advantage in the actual world over what it could have gained in an ideal world.

Building Blocks We describe here some representative building blocks of secure multi-

party computation.

• Oblivious Transfer In cryptography, an oblivious transfer protocol is a protocol by

which a sender sends some information to the receiver, but remains oblivious as to

what is sent. Oblivious transfer is one of the most importantprotocols for secure

computation. It has been shown by Kilian [43] that oblivioustransfer is sufficient for

secure computation in the sense that given an implementation of oblivious transfer

it is possible to securely evaluate any polynomial time computable function without

any additional primitive. A simply form of oblivious transfer called “1 out of 2

oblivious transfer,”, denoted byOT 2
1 , was developed later by Shimon Even, Oded

Goldreich, and Abraham Lempel [44]. This protocol involvestwo parties, thesender

and thereceiver. The sender’s input is a pair(x0, x1) and the receiver’s input is a

bit λ ∈ {0, 1}. At the end of the protocol the receiver learnsxλ and nothing else,

and the sender learns nothing. Oblivious transfer protocols can be designed based
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on virtually all known constructions of trapdoor functions, for example, public key

cryptosystems. In the case of semi-honest adversaries, there exist simple and efficient

protocols for oblivious transfer [44,45].

As an illustration of the application of oblivious transfer, let us consider the following

problem. Assume there are two parties. Party 1 holdsa1 ∈ {0, 1}, b1 ∈ {0, 1}, and

party 2 holdsa2 ∈ {0, 1}, b2 ∈ {0, 1}. We are interested in computing the function

f = (a1 + a2) · (b1 + b2) such that upon completion of the computation, Party

1 has a random numberc1 ∈ {0, 1}; Party 2 has a random numberc2 ∈ {0, 1}
such thatc1 + c2 = (a1 + a2) · (b1 + b2). In other words, if we use the notation

(input1, input2) 7→ (output1, output2) to define the result of a function, thenf is

the function((a1, b1), (a2, b2)) 7→ (c1, c2). Here· corresponds to a bitwise AND and

+ corresponds to a bitwise XOR. The basic procedure for privately computingf is

illustrated in Algorithm 2.1.2.1. Table 2.2 shows the values of both parties’ inputs

and outputs.

Algorithm 2.1.2.1 Privately Computingc1 + c2 = (a1 + a2) · (b1 + b2)

Inputs: Partyi holds(ai, bi) ∈ {0, 1} × {0, 1}, i = 1, 2.
Outputs Party 1 outputsc1, Party 2 outputsc2, andc1 + c2 = (a1 + a2) · (b1 + b2).

1: Party 1 randomly selectsc1 ∈ {0, 1}.
2: Party 1 and Party 2 engage in a 1-out-of-4 oblivious transfer, where Party 1 plays the

sender and Party 2 plays the receiver. The input to the senderis the 4-tuple{c1 + a1 ·
b1, c1 +a1 · (b1 +1), c1 +(a1 +1) · b1, c1 +(a1 +1) · (b1 +1)}. The input to the receiver
is 1 + 2a2 + b2 ∈ {1, 2, 3, 4}.

• Circuit Evaluation Yao [42] presented a constant-round protocol for privatelycom-

puting any probabilistic polynomial-time function. The protocol is based on express-

ing the function as a combinatorial circuit with gates defined over some fixed base
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Party 1: (a1, b1) (a1, b1) (a1, b1) (a1, b1) (a1, b1)
Party 2: (a2, b2) (0,0) (0,1) (1,0) (1,1)
OT 4

1 Input: 1 2 3 4
OT 4

1 Output: c1+ c1+ c1+ c1+
a1 · b1 a1 · (b1 + 1) (a1 + 1) · b1 (a1 + 1) · (b1 + 1)

Party 2’s Output (c2): c1+ c1+ c1+ c1+
a1 · b1 a1 · (b1 + 1) (a1 + 1) · b1 (a1 + 1) · (b1 + 1)

Party 1’s Output (c1): c1 c1 c1 c1

c1 + c2 a1b1 a1 · (b1 + 1) (a1 + 1) · b1 (a1 + 1) · (b1 + 1)
(a1 + a2) · (b1 + b2) a1b1 a1 · (b1 + 1) (a1 + 1) · b1 (a1 + 1) · (b1 + 1)

Table 2.2. Truth table for privately computingc1 + c2 = (a1 + a2) · (b1 + b2).

B. For example,B can include all the functionsf : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}
(two-party case as an example). The bits of the input are entered into input wires

and are propagated through the gates. Yao’s protocol works by having one of the

parties (Alice for example) first generates an “encrypted” or “garbled” circuit com-

putingf and send its representation to the other party (Bob for example). In order

for Bob to obtain the garbled values of the input wires, both Alice and Bob engage,

for each input wire, in a 1-out-of-2 oblivious transfer. As aresult of the oblivious

transfer, Bob learns the garbled value of his input bit and nothing about the garbled

value of the other bit, and Alice learns nothing. Now Bob has sufficient information

to compute the output of the circuit on his own. After computing f , he can send

this value to Alice if she requires it. Generally speaking, Yao’s protocol is inherently

inefficient because it uses a circuit representation of the function. The computational

complexity of the protocol is roughly linear in relation to the size of Bob’s input. To

be more specific, the oblivious transfer stage requires one exponentiation per bit of

Bob’s input. The communication complexity is linear in relation to the size of the

circuit. More accurately, a table of about 320-512 bits is generated and communi-

cated for every gate (assuming that all gates have two inputsand one output). For
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more detailed analysis about the complexity, please refer to Pinkas’s work [46].

• Homomorphic Encryption A public-key cryptosystemP(G, E, D) is a collection

of probabilistic polynomial time algorithms for key generation, encryption and de-

cryption. The key generation algorithmG produces a private keysk and public

key pk with specified key size. Anybody can encrypt a message with the public

key, but only the holder of a private key can actually decryptthe message and read

it. The encryption algorithmE takes as an input a plaintextm, a random valuer

and a public keypk and outputs the corresponding ciphertextEpk(m, r). The de-

cryption algorithmD takes as an input a ciphertextc and a private keysk (corre-

sponding to the public keypk) and outputs a plaintextDsk(c). It is required that

Dsk(Epk(m, r)) = m. The plaintext is usually assumed to be fromZµ, 2 whereµ is

the product of two large primes. A public-key cryptosystem is homomorphic when

∀m1, m2, r1, r2 ∈ Zµ,

Dsk(Epk(m1, r1)Esk(m2, r2) modµ2) = m1 + m2 modµ;

Dsk(Epk(m1, r1)
m2 modµ2) = m1m2 modµ;

Dsk(Epk(m2, r2)
m1 modµ2) = m1m2 modµ.

This feature allows a party to add or multiply plaintexts by doing simple computa-

tions with ciphertexts, without having the secret key. Several homomorphic cryp-

tosystems (e.g., [47, 48] ) in the literature are proved to be secure under reasonable

complexity assumptions.

A natural application of homomorphic encryption is privateinner product computa-

2The integers moduloµ, denotedZµ, is the set of (equivalence classes of) integers{0, 1, . . . , µ − 1}.
Addition, subtraction, and multiplication inZµ are performed moduloµ.
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tion. It considers the problem of computing the inner product of two vectors owned

by two different parties (Alice and Bob for example), respectively, so that neither

party should learn anything beyond what is implied by the party’s own vector and the

output of the computation. Here the output for a party is either the inner product or

nothing, depending on what the party is supposed to learn. The algorithm described

in 2.1.2.2 was proposed by Goethalset al. [49]. It is directly based on homomorphic

encryption and has been proved to be private in a strong sense. To be more specific,

no probabilistic polynomial time algorithm substituting one party can obtain a non-

negligible amount of information about the other party’s private input, except what

can be deduced from the input and output of this party.

Algorithm 2.1.2.2 Private Inner Product

Private Input of Alice: Vectorx = (x1, . . . , xd) ∈ Zd
µ

Private Input of Bob: Vectory = (y1, . . . , yd) ∈ Zd
µ

Output of Alice: x · y modµ
1: Alice generates a private and public key pair (sk, pk), and sends pk to Bob.
2: For eachi, i = 1, . . . d, Alice generates a random numberri ∈ Zµ, and sendsci =

Epk(xi, ri) to Bob.
3: Bob computesw =

∏d
i=1 cyi

i modµ2 and sendsw back to Alice.
4: Alice computesx · y modµ = Dsk(w).

For the sake of completeness, we note that many private innerproduct protocols have

been proposed in the literature. Generally speaking, theseprotocols can be classified

into two categories: 1) cryptosystem-based approaches, which offer strong privacy

protection, but incur high communication and computational cost (e.g., [50]) and

2) data perturbation-based approaches, which provide weaker privacy protection but

allow more efficient solutions for more complicated data mining tasks (e.g., [51]).

We refer interested readers to [49] for an overview on this topic.

• Commutative Encryption Simply speaking, a commutative encryption is a pair of
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encryption functionf andg such thatf(g(x)) = g(f(x)). To be more concrete, we

borrow the definition used in [52].

Definition 2.1.1 (Commutative Encryption) A commutative encryptionF is a com-

putable polynomial time functionf : Key F 7→ Dom F , defined on finite com-

putable domains, and satisfying all properties listed below. We denotefe(x) ≡
f(e, x), and use “∈r” to mean “is chosen uniformly at random from.”

1. Commutativity: For alle, e′ ∈ Key F , we havefe ◦ f ′
e = f ′

e ◦ fe.

2. Eachfe : Dom F 7→ Dom F is a bijection.

3. The inversef−1
e is also computable in polynomial time givene.

4. The distribution of< x, fe(x), y, fe(y) > is computationally indistinguishable

from the distribution< x, fe(x), y, z >, wherex, y, z ∈r Dom F and e ∈r

Key F .

Property 1 says that the composition of the encryption with two different keys is the

same irrespective of the order of encryption. Property 2 says that two different values

will never have the same encrypted value. Property 3 says that given an encrypted

valuefe(x) and the encryption keye, we can findx in polynomial time. Property 4

says that given a valuex and its encryptionfe(x) (but not the keye) and a new value

y, we cannot distinguish betweenfe(y) and a random valuez in polynomial time.

Thus we cannot encrypty or decryptfe(y) in polynomial time.

As an example, letDomF be all quadratic residues modulop, wherep is a safe prime

number,i.e., bothp andq = (p− 1)/2 are primes. LetKey F be{1, 2, . . . , q − 1}.

Then assuming the Decisional Diffie-Hellman hypothesis (DDH), the power function

fe(x) ≡ xe modp
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is a commutative encryption because

fe(fd(x)) = (xd modp)e modp = xde mopp = (xe modp)d modp = fd(fe(x)).

Based on commutative encryption, Agrawalet al. [52] developed several secure pro-

tocols for set intersection, equijoin, intersection size,and equijoin size. We refer

interested readers to their work for more details.

Related Work The work in [45] detailed a rigorous introduction to SMC and cryptographic

protocols. It has shown that any polynomial-time function can be expressed as a combi-

natorial circuit of polynomial size, and is therefore privately computable using a generic

circuit evaluation protocol. However, the communication and computational complexity

of doing so makes this general approach infeasible for largedatasets. As a result, many

new, more efficient SMC techniques are being developed by exploring a combination of

different approaches such as data perturbation, linear transformation, and cryptographic

primitives. The work in [46] offered a broad view of SMC framework and its applica-

tions to data mining. A collection of SMC tools useful for privacy preserving data mining

(e.g., secure sum, set union, inner product) were discussed in [53]. Several privacy pre-

serving data mining algorithms have been developed based onthese tools,e.g., association

rule mining from vertically partitioned data [54] and horizontally partitioned data [55],

clustering with distributed EM mixture modeling [56], and K-Means clustering over verti-

cally partitioned data [57]. A detailed overview of these techniques and applications can

be found in [58]. SMC and cryptographic protocols have also been applied for statistical

analysis [51], support vector machine [59], naive Bayes classification [60], privacy preserv-

ing OLAP [61], Bayesian network structure computation [50], information sharing across

private databases [52], privacy preserving distributed decision tree induction [62] and many

others.
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2.1.3 Distributed Data Mining (DDM)

Bluntly put, distributed data mining (DDM) is data mining where the data and com-

putation are spread over many independent sites. For some applications, the distributed

setting is more natural than the centralized one because thedata is inherently distributed.

The bulk of DDM methods in the literature operate over an abstract architecture where

each site has a private memory containing its own portion of the data. The sites can operate

independently and communicate by message-passing over an asynchronous network. Typ-

ically, communication is a bottleneck. Because communication is assumed to be carried

out exclusively by message-passing, a primary goal of many methods in the literature is to

minimize the number of messages sent. For more information about DDM, the reader is re-

ferred to two recent surveys [63,64]. These provide a broad overview of DDM, touching on

issues such as: clustering, classification, association rule mining, Bayesian network learn-

ing, basic statistics computation, and the historical roots of DDM. An online repository for

DDM related publications can be found at [65].

Since DDM produces a global data mining model by exchanging only a small amount

of information among the participating sites, it has been adopted for many distributed pri-

vacy preserving data mining scenarios. The work in [66] proposed a paradigm for clus-

tering distributed privacy sensitive data in an unsupervised or a semi-supervised scenario.

In this algorithm, each local data site builds a model and transmits only the parameters

of the model to the central site where a global clustering model is constructed. A dis-

tributed privacy preserving algorithm for Bayesian network parameter learning is reported

elsewhere [67].
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2.2 Rule Hidning

The main objective of rule hiding is to transform the database such that the sensitive

rules, for example, associate rules and classification rules, are masked, and all the other

underlying patterns can still be discovered.

2.2.1 Association Rule Hiding

Association rule hiding considers the problem of transforming the database so that

all the sensitive association rules are concealed and othernon-sensitive rules can still be

identified. The work in [68] gave a formal proof that finding anoptimal solution to hide

sensitive large item sets is an NP-hard problem. For this reason, many heuristic approaches

have been proposed to address the complexity issues. For example, the perturbation-based

association rule hiding techniques [39, 69] are implemented by changing a selected set of

1-values to 0-values (in a binary database) or vice versa so that the frequent item sets that

generate the sensitive rules are hidden or the support of sensitive rules is lowered to a user-

specified threshold. The blocking-based association rule hiding approach [70] replaces

certain attributes of the data with a question mark. The introduction of this new special

value in the dataset imposes some changes on the definition ofthe support and confidence

of an association rule. In this regard, the minimum support and minimum confidence will

be changed into a minimum support interval and a minimum confidence interval. As long

as the support and/or the confidence of a sensitive rule lies below the middle in these two

ranges, the confidentiality of data is expected to be protected.

2.2.2 Classification Rule Hiding

The work in [71] presented a framework that combines decision tree classification

and parsimonious downgrading. Here the term “parsimoniousdowngrading” refers to the



26

phenomenon of trimming out sensitive information from a dataset when it is transferred

from a secure environment (referred to as high) to a public domain (referred to as low).

The objective of this work is to guarantee that the receiver of the data will be unable to

build informative classification models for the data that isnot downgraded.

2.3 Summary

Data mining technologies have enabled commercial and governmental organizations

to extract useful knowledge from data for the purpose of business and security related

applications. While successful applications are encouraging, there are increasing concerns

about the invasions to the privacy of personal information.To address these concerns,

researchers in the data mining community have proposed various solutions. This chapter

presents an overview of them. It has noted that the main consideration in privacy preserving

data mining is two fold: 1)data hiding: sensitive raw data should be modified or trimmed

out from the original database while the important underlying patterns of the data should

still be preserved; and 2)rule hiding: sensitive knowledge which can be discovered from

the data should be filtered out. We refer interested readers to a recent book, a survey and

an online bibliography [58,72,73] for more information about this booming research area.



Chapter 3

TRADITIONAL MULTIPLICATIVE DATA

PERTURBATION

A statistical database (SDB) system is a database system that allows its users to re-

trieve aggregate statistics (e.g., sample mean and variance) for a subset of the entities rep-

resented in the database and prevents the collection of information on specific individuals.

In the statistics community, there has been extensive research on the problem of securing

SDBs against disclosure of confidential information. This is generally referred to asstatis-

tical disclosure control. Statistical disclosure control approaches suggested in the literature

are classified into four general groups: conceptual, query restriction, output perturbation

and data perturbation [8]. The conceptual approach provides a framework for better under-

standing and investigating the security problem of statistical database at the conceptual data

model level. It does not provide a specific implementation procedure. The query restriction

approach offers protection by either restricting the size of query set or controlling the over-

lap among successive queries, etc. The output perturbationapproach perturbs the answer

to user queries while leaving the data in the database unchanged. The data perturbation

approach introduces noise into the database and transformsit into another version. This

dissertation primarily focuses on the data perturbation approach, and we refer interested

readers to [8] for more details about other approaches.

27
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Adding random noise to the private database is one common data perturbation ap-

proach. In this case, a random noise term is generated from a prescribed distribution, and

the perturbed value takes the form:yij = xij + rij , wherexij is thei-th attribute of thej-th

private data record, andrij is the corresponding random noise. In the statistics community,

this approach was primarily used to provide summary statistical information (e.g., sum,

mean, variance, etc.) without disclosing individuals’ confidential data (e.g., [74]). In the

privacy preserving data mining area, this approach was considered in [4, 11] for building

decision tree classifiers from private data. Recently, manyresearchers have pointed out that

additive noise can be easily filtered out in many cases that may lead to compromising the

privacy [5–7]. Given the large body of existing signal-processing literature on filtering ran-

dom additive noise, the utility of random additive noise forprivacy-preserving data mining

is not quite clear.

The possible drawback of additive noise makes one wonder about the possibility of

using multiplicative noise (i.e., yij = xij ∗ rij) for protecting the privacy of the data. Two

basic forms of multiplicative noise have been well studied in the statistics community [15].

One multiplies each data element by a random number that has atruncated Gaussian distri-

bution with mean one and small variance. The other takes a logarithmic transformation of

the data first, adds multivariate Gaussian noise, then takesthe exponential functionexp(.)

of the noise-added data. As noted in [15], the former perturbation scheme was once used

by the Energy Information Administration in the U.S. Department of Energy to mask the

heating and cooling degree days, denoted byxij . A random noiserij is generated from a

Gaussian distribution with mean 1 and variance0.0225. The random noise is further trun-

cated such that the resulting numberrij satisfies0.01 ≤ |rij−1| ≤ 0.6. The perturbed data

xijrij were released. This approach was also discussed in [75].

This chapter gives a brief review of these two perturbation schemes.
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3.1 Perturbation Scheme I

3.1.1 Perturbation Scheme

Let xi be thei-th attribute of a private database. Letxij be the value for thei-th

attribute of thej-th record in the database,i = 1, . . . , n, j = 1, . . . , m. Let rij denote the

random noise corresponding toxij . The perturbed datayij is

yij = xijrij ,

whererij is independent and identically chosen from a Gaussian distribution with mean

µi (usuallyµi = 1) and varianceσ2
i . In other words, allrij ’s for a giveni follow the

same distribution. In practice, the probability density ofnoiser (ignoring the subscript) is

usually doubly truncated as follows:

f(r) =

1√
2πσ

exp(− 1
2σ2 (r − µ)2)

1√
2πσ

∫ B

A
exp(− 1

2σ2 (r − µ)2)dr
for A < r < B.

=

1√
2πσ

exp(− 1
2σ2 (r − µ)2)

Φ(B−µ
σ

)− Φ(A−µ
σ

)
,

whereA andB are the lower and upper truncation bounds andΦ(A) stands for the cumu-

lative probability up toA. The above equation can be further simplified as

KZ(
r − µ

σ
),

whereK = 1

Φ(B−µ
σ

)−Φ(A−µ
σ

)
, and Z(x) = 1√

2πσ
exp(−1

2
x2).
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3.1.2 Statistical Properties of the Perturbed Data

It has been proved in [15] that the mean and variance of the original data attributes

can be estimated from the mean and variance of the perturbed data.

Mean of xi:

E(xi) =
E(yi)

µi + K[Z(A−µi

σi
)− Z(B−µi

σi
)]

. (3.1)

Because the data owner will releaseµi, σi, A andB, the data receiver can compute the

expected value ofxi.

Variance of xi:

V ar(xi) = E(x2
i )− (E(xi))

2, (3.2)

whereE(xi) can be easily calculated following Eq. 3.1, and(E(xi))
2 can be computed

from the follow equations:

V ar[yi] = E(x2
i )E(r2

i )− (E(xi)E(ri))
2

= E(x2
i ){σ2

i + µ2
i + σ2

i K[
A− µi

σi

Z(
A− µi

σi

)− B − µi

σi

Z(
B − µi

σi

)]

+2σiµiK[Z(
A− µi

σi

)− Z(
B − µi

σi

)]}

−(E(xi))
2{µ2

i + σ2
i K

2[Z(
A− µi

σi

)− Z(
B − µi

σi

)]2

+2σiµiK[Z(
A− µi

σi

)− Z(
B − µi

σi

)]}.

Although the original attribute’s mean and variance can be estimated from the per-

turbed data, the inner product and Euclidean distance amongthe data records are not nec-

essarily preserved after perturbation. The following lemmas depict this situation.
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Lemma 3.1.1 Let yij = xijrij, where eachrij is independent and identically chosen from

a Gaussian distribution with mean 1 and varianceσ2. Then

E(

n
∑

i=1

yijyik −
n

∑

i=1

xijxik) = 0;

V ar(
n

∑

i=1

yijyik −
n

∑

i=1

xijxik) = σ2
n

∑

i=1

x2
ijx

2
ik.

Proof:

E(
n

∑

i=1

yijyik −
n

∑

i=1

xijxik) = E(
n

∑

i=1

xijrijxikrik)−
n

∑

i=1

xijxik

=

n
∑

i=1

E(xijrijxikrik)−
n

∑

i=1

xijxik

=
n

∑

i=1

xijE(rij)xikE(rik)−
n

∑

i=1

xijxik

= 0.

V ar(
n

∑

i=1

yijyik −
n

∑

i=1

xijxik) = V ar(
n

∑

i=1

xijrijxikrik)

=

n
∑

i=1

V ar(xijrijxikrik) +

2

n−1
∑

p=1

n
∑

q=p+1

Cov(xpjrpjxpkrpk, xqjrqjxqkrqk)

=

n
∑

i=1

V ar(xijrijxikrik)

=
n

∑

i=1

{E(x2
ijr

2
ijx

2
ikr

2
ik)− (E(xijrijxikrik))

2}

=

n
∑

i=1

{(1 + σ2)x2
ijx

2
ik − x2

ijx
2
ik}

= σ2
n

∑

i=1

x2
ijx

2
ik.
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�

The above lemma shows that although the inner product is preserved on expectation,

the variance of the error could be very large.

Lemma 3.1.2 Let yij = xijrij, where eachrij is independent and identically chosen from

a Gaussian distribution with mean 1 and varianceσ2. Then

E(
n

∑

i=1

(yij − yik)
2 −

n
∑

i=1

(xij − xik)
2) =

n
∑

i=1

σ2(x2
ij + x2

ik).

Proof: Let LHS denotes the left hand side of the above equation. We have

LHS = E(
n

∑

i=1

(xijrij − xikrik)
2)−

n
∑

i=1

(xij − xik)
2

= E(

n
∑

i=1

(x2
ijr

2
ij + x2

ikr
2
ik − 2xijrijxikrik))−

n
∑

i=1

(xij − xik)
2

=

n
∑

i=1

((1 + σ2)x2
ij + (1 + σ2)x2

ik − 2xijxik)−
n

∑

i=1

(xij − xik)
2

=
n

∑

i=1

((xij − xik)
2 + σ2(x2

ij + x2
ik))−

n
∑

i=1

(xij − xik)
2

=

n
∑

i=1

(xij − xik)
2 +

n
∑

i=1

σ2(x2
ij + x2

ik)−
n

∑

i=1

(xij − xik)
2

=
n

∑

i=1

σ2(x2
ij + x2

ik).

�

The above lemma shows that the Euclidean distance is not preserved after perturba-

tion.
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3.2 Perturbation Scheme II

3.2.1 Perturbation Scheme

Let xij be the value for thei-th attribute of thej-th record in the database as before.

i = 1, . . . , n, j = 1, . . . , m. Let

uij = lnxij .

We generate the random noise following the multivariate Gaussian distributionN(0, cΣU),

where0 < c < 1 andΣU is the covariance matrix of variablesu1, u2, . . . , un. We denote

the noise aseij . Let

zij = uij + eij ,

yij = exp(zij)

= exp(ln xij + eij)

= xij exp(eij)

= xijhij.

The perturbed datayij is released then. Note that this scheme assumes that allxij are

positive.

3.2.2 Statistical Properties of the Perturbed Data

It has been proved in [15] that the mean, variance and covariance of the original data

attributes can be estimated from the perturbed data.
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Mean of xi: Let σ2
i = cV ar(ln xi). We have

E(xi) =
E(yi)

exp(
σ2

i

2
)
. (3.3)

Variance of xi:

V ar(xi) = E(x2
i )− (E(xi))

2

=
V ar(ui)

exp(2σ2
i )
− E(xi)

2

exp(σ2
i )
− (E(xi))

2. (3.4)

Covariance ofxi and xj :

Cov(xi, xj) = {
∑m

k=1 yikyjk

exp[(σ2
i + 2ρσiσj + σ2

j )/2]
− m

Pm
k=1

yik

m

Pm
k=1

yjk

m

exp[σ2
i + σ2

j ]
}/(m− 1), (3.5)

whereρ is the correlation coefficient ofxi andxj , and it can be obtained from the perturbed

data. Because the noise was generated to maintain the same correlation structure, the corre-

lation between the perturbed data will be on average the sameas that between the original

data in log-scale.

Similar to perturbation scheme I, the inner product and Euclidean distance among

the data records are not preserved after perturbation. The following lemma depicts this

situation.

Lemma 3.2.1 Let yij = xijhij , wherexij andhij are defined as before. We have

E(

n
∑

i=1

yijyik −
n

∑

i=1

xijxik) =

n
∑

i=1

xijxike
σ2

i −
n

∑

i=1

xijxik;

E(
n

∑

i=1

(yij − yik)
2 −

n
∑

i=1

(xij − xik)
2) =

n
∑

i=1

(e2σ2

i (x2
ij + x2

ik)− 2xijxike
σ2

i )−
n

∑

i=1

(xij − xik)
2.

Proof: Becausehi = exp(ei) and ei follows a Gaussian distribution with mean 0 and
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varianceσ2
i (note thatσ2

i = cV ar(ln xi)), we can compute the mean and variance ofhi as

follows.

E(hi) =

∫ +∞

−∞
ex 1√

2πσi

e
−x2

2σ2
i dx

= e
σ2

i
2 ;

V ar(hi) =

∫ +∞

−∞
(ex − e

σ2
i
2 )2 1√

2πσi

e
−x2

2σ2
i dx

= eσ2

i (eσ2

i − 1);

E(h2
i ) = (E(hi))

2 + V ar(hi) = e2σ2

i .

Applying the above results to the proofs of Lemma 3.1.1 and Lemma 3.1.2, we get the

expected results. �

The above lemma shows that in scheme II, the perturbed data does not preserve either

inner product or Euclidean distance.

3.3 Privacy Issues

On the surface, multiplicative perturbation seems to change the data more than addi-

tive perturbation. For example, perturbing a salary of$100, 000 by adding$5000 (5% rela-

tive change) would be considered a compromise while at the same time perturbing a salary

of $10, 000 by $5000 (50% relative change) would preserve the privacy of the data. On

the other hand, perturbing$100, 000 and$10, 000 by multiplying by2 would be accepted

because both have100% relative change. However, by taking logarithms on the perturbed

data, the multiplicative perturbation turns into an additive perturbation. More specifically,

for perturbation scheme I, the logarithmic transformationof yij gives usln xij + ln rij,

where the noise termln rij is chosen independent and identically from some distribution.

For perturbation scheme II, after logarithmic transformation, we haveln xij +eij. The noise
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term is chosen fromN(0, cΣln X), whereΣln X is the covariance of the original data in log

scale. As noted in [5–7], the privacy of the former “additiveperturbation scheme” can be

easily breached in many cases. The latter “additive perturbation scheme” generates random

noise withsimilar covariance structure with the original data (in log scale),and therefore

offers better privacy protection. This kind of perturbation has also been extensively inves-

tigated in the literature (e.g., [6, 13, 14, 76]). In particular, the work in [6] shows that the

accuracy of attacker’s estimation of the original data getsworse as the similarity increases.

Before concluding this subsection, it should be noted that,traditionally, the privacy,

denoted byρ, provided by a perturbation technique for continuous data is measured as the

variance of difference between the original data and perturbed data [8], that is,V ar(X−Y ),

whereX represents the original data attribute andY the perturbed attribute. This measure

can be made scale invariant with respect to the variance ofX asρ = V ar(X−Y )/V ar(X).

This measure is suited to quantifying the privacy of a singleattribute. In practice, an

attacker may also attempt to use a linear combination of the perturbed attributes to estimate

confidential information of the linear combination of the original attributes. Measuring

the privacy offered for linear combinations is difficult because there are too many such

combinations. A canonical correlation-based metric is used in [13] that can measure the

maximum proportion of variance that an attacker can explainfor any linear combination

of the original attributes, using a linear combination of the perturbed and non-confidential

attributes. Letλ denotes the largest eigenvalue of the following matrixC−1
XXCXY C−1

Y Y CY X ,

whereCXX denotes the covariance ofX, CXY the covariance ofX andY . The value

of λ represents the maximum proportion of variability in any linear combination ofX

that can be explained by any linear combination ofY . The privacy is defined asρ =

1− λ. Thus, for any linear combination ofX, at least1− λ proportion of variability will

remain unexplained. These metrics do provide the data ownerwith meaningful information

regarding the effectiveness of the perturbation method in some way. However, they do not
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offer an insight on how the attackers could attack the perturbation if they had some prior

knowledge about the data. Trottiniet al. [77] tried to address this issue by developing

a Bayesian attacker model to assess the performance of the perturbation techniques on

continuous microdata. They specifically investigated the combination of both additive noise

and multiplicative noise and allowed the attacker to use external data to enhance the chances

of disclosing the identity of a target individual. Their simulation showed that the probability

of the identity disclosure is a function of many key parameters like the variability amongst

profiles in the original data, the amount of attacker’s priorinformation, the amount of noise

introduced in the data, etc.

3.4 Summary

This chapter briefly reviews two traditional multiplicative data perturbation techniques

that have been well studied in the statistics community. These perturbations are primarily

used to mask the private data while allowing summary statistics (e.g., sum, mean, variance,

covariance) of the original data to be estimated.

In summary, these multiplicative perturbations have the following advantages and dis-

advantages:

• The multiplicative perturbation is relative, that is, large values in the original data are

perturbed more than smaller values.

• In practice, the first perturbation scheme is good if the datadisseminator only wants

to make minor changes to the original data; the second schemeassures higher secu-

rity than the first one but maintains the data utility in the log-scale.

• These perturbation schemes are equivalent to additive perturbation after the loga-

rithmic transformation. Due to the large volume of researchin deriving private in-
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formation from the additive noise perturbed data, the security of these perturbation

schemes is questionable.

• The objective of these perturbation schemes is to mask the private data while allowing

summary statistics to be estimated. However, problems in data mining are somewhat

different. Data mining techniques, such as clustering, classification, prediction and

association rule mining, are essentially relying on more sophisticated relationships

among data records or data attributes, but not simple summary statistics. The tradi-

tional multiplicative perturbations distort each data element independently, therefore

the Euclidean distance and inner product among data recordsare usually not pre-

served, and the perturbed data cannot be used for many data mining applications.

In the next chapter, we will present a new multiplicative data perturbation technique

calleddistance preserving data perturbation. This technique preserves inner product and

Euclidean distance among data records. Therefore, many data mining algorithms can be

efficientlyapplied to the perturbed data and produceexactly the sameresults as if applied

to the original data (e.g., distance-based clustering, k-nearest neighbor classification). We

further address the privacy issues of this technique by considering three types of prior

knowledge an attacker may have and use to design attack techniques to recover the original

data. As such, valuable information is gained into the effectiveness of distance preserving

transformation for privacy preserving data mining.



Chapter 4

EUCLIDEAN DISTANCE PRESERVING DATA

PERTURBATION

Recently, distance preserving data perturbation [16–18] has gained attention because

it mitigates the privacy/accuracy trade-off by guaranteeing perfect accuracy. Many impor-

tant data mining algorithms can beefficientlyapplied to the transformed data and produce

exactly the sameresults as if applied to the original data.e.g., distance-based clustering and

k-nearest neighbor classification. However, the issue of how well the original data is hidden

has, to our knowledge, not been carefully studied. In this chapter, we address this issue by

studying how well an attacker can recover the original data from the transformed data and

prior information. We restrict our attention to the class ofdistance preserving transforma-

tions that fix the origin and consider recovery of the original data in the presence of three

different classes of prior information (described later).Our analysis explicitly illuminates

scenarios where privacy can be breached. As such, valuable information is gained into the

effectiveness of distance preserving transformation for privacy preserving data mining.

The remainder of this chapter is organized as follows. Section 4.1 discusses some ba-

sic mathematical properties of distance preserving transformations, the application of these

transformations to privacy preserving data mining, and thegeneration of orthogonal matri-

ces. Sections 4.2 and 4.3 defines the privacy breach metric and three classes of attacker’s

39



40

prior knowledge. Sections 4.4, 4.5 and 4.6 examine in detailhow knowledge in each of

these classes can be used to estimate the original data from the transformed data. Finally,

Section 4.7 concludes this chapter.

4.1 Distance Preserving Transformations

This section offers an overview of distance preserving transformation: its definition,

application scenarios, etc. Throughout this chapter (unless otherwise stated), all matrices

and vectors discussed are assumed to have real entries. All vectors are assumed to be

column vectors andM ′ denotes the transpose of any matrixM . An m×n matrixM is said

to be orthogonal ifM ′M = In, then × n identity matrix. IfM is square, it is orthogonal

if and only if M ′ = M−1 [78, pg. 17]. The determinant of any orthogonal matrix is either

+1 or−1. Let On denote the set of alln× n, orthogonal matrices.

4.1.1 Definition and Fundamental Properties

To define the distance preserving transformation, let us start with the definition of

metric space. In mathematics, a metric space is a setS with a global distance function

(the metricd) that, for every two pointsx, y in S, gives the distance between them as a

nonnegative real numberd(x, y). Usually, we denote a metric space by a 2-tuple(S, d). A

metric space must also satisfy

1. d(x, y) = 0 iff x = y (identity),

2. d(x, y) = d(y, x) (symmetry),

3. d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

A metric space(S1, d1) is isometric to a metric space(S2, d2) if there is a bijection

T : S1 → S2 that preserves distances. That is,d1(x, y) = d2(T (x), T (y)) for all x, y ∈ S1.
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The metric space which most closely corresponds to our intuitive understanding of

space is the Euclidean space, where the distanced between two points is the length of the

straight line connecting them. In this chapter, we specifically consider the Euclidean space

and defined(x, y) = ||x − y||, the l2-norm of vectorx − y. A function T : Rn → Rn

is distance preserving in the Euclidean space if for allx, y ∈ Rn, ||x − y|| = ||T (x) −

T (y)||. HereT is also called arigid motion. It has been shown that any distance preserving

transformation is equivalent to an orthogonal transformation followed by a translation [78,

pg. 128]. In other words, there existsMT ∈ On andvT ∈ Rn such thatT equalsx ∈ Rn

7→ MT x + vT . If T fixes the origin,T (0) = 0, thenvT = 0; hence,T is an orthogonal

transformation. Henceforth we assumeT is a distance preserving transformation which

fixes the origin – anorthogonal transformation. Such transformations preserve the length

(l2-norm) of vectors:||x|| = ||T (x)|| (i.e., given anyMT ∈ On, ||x|| = ||MTx||). Hence,

they movex along the surface of the hyper-sphere centered at the originwith radius||x||.

From a geometric perspective, an orthogonal transformation is either a rigid rotation

or a rotoinversion (a rotation followed by a reflection). This property was originally dis-

covered by Schoute in 1891 [79]. Coxeter [80] summarized Schoute’s work and proved

that every orthogonal transformation can be expressed as a product of commutative rota-

tions and reflections. To be more specific, letQ denote a rotation,R a reflection,2q the

number of conjugate imaginary eigenvalues of the orthogonal matrix M , andr the number

of (-1)’s in then − 2q real eigenvalues. The orthogonal transformation is expressible as

QqRr(2q + r ≤ n). Especially, in 2D space,det(M) = 1 corresponds to a rotation, while

det(M) = −1 represents a reflection.

4.1.2 Generation of Orthogonal Matrix

Many matrix decompositions involve orthogonal matrices, such as QR decomposition,

SVD, spectral decomposition and polar decomposition. To generate a uniformly distributed
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random orthogonal matrix, we usually fill a matrix with independent Gaussian random

entries, then use QR decomposition. Stewart [81] replaced this with a more efficient idea

that Diaconis and Shahshahani [82] later generalized as thesubgroup algorithm. We refer

the reader to these references for detailed treatment of this subject.

4.1.3 Data Perturbation Model

Orthogonal transformation-based data perturbation can beimplemented as follows.

Suppose the data owner has a private databaseXn×m, with each column ofX being a

record and each row an attribute. The data owner generates ann × n orthogonal matrix

MT , and computes

Yn×m = MTn×nXn×m. (4.1)

The perturbed dataYn×m is then released for future usage. As a taste of the many examples

and experiments to come later in this Chapter, Figure 4.1 provides an example of how the

data looks before and after perturbation.

Next we describe the privacy application scenarios where orthogonal transformation

can be used to hide the data while allowing important patterns to be discoveredwithout

error.

4.1.4 Privacy Application Scenarios

Many data perturbation approaches pay a price in terms of theaccuracy of the es-

timated patterns for achieving the desired level of privacyprotection. For example, an

additive perturbation-based approach adds noise to the data in order to make sure that the

data is sufficiently distorted so that the original data values cannot be identified accurately.

This also introduces noise in the patterns (e.g., a decision tree, association rules) that a
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FIG. 4.1. An example of distance preserving data perturbation (with origin fixed) in 2D
space.

data miner may be interested in computing. However, there are many application domains

(e.g., security, counter-terrorism) where losing accuracy for privacy may not be acceptable.

Detecting outlier activities from a large amount of data mayrequire highly precise data

analysis capabilities. After all, we do not want the perpetrators of criminal activities to

enjoy the privacy-shield offered to the law abiding individuals.

Orthogonal transformation has a nice property that it preserves vector inner product

and distance in Euclidean space. Therefore, any data miningalgorithms that rely on inner

product or Euclidean distance as a similarity criteria are invariant to orthogonal transfor-

mation. Put in other words, many data mining algorithms can be applied to the transformed

data and produce exactly the same results as if applied to theoriginal data,e.g., KNN clas-

sifier, perceptron learning, support vector machine, distance-based clustering and outlier

detection. We refer the reader to [18] for a simple proof of rotation-invariant classifiers.

In practice, orthogonal transformation-based data perturbation is particularly geared

towards the following privacy application scenarios:
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Census Scenario(see Figure 4.2(a)) An organization has a private datasetX (each col-

umn is a data record) and wishes to make it publicly availablefor data analysis while

keeping the original data records private. To accomplish this, Y = MT X is released

to the public. The distance preserving nature ofT allows a public entity to easily re-

covery many useful patterns fromY . For example, the cluster membership produced

by a Euclidean distance-based K-means clustering onY will be exactly the same as

that produced onX. This model is widely studied in the field of security controlfor

statistical databases. We refer the reader to [8] for an overview of this topic.

Storage Outsourcing Scenario(see Figure 4.2(b)) An organization continuously gener-

ates private data records, but does not wish to invest in the infrastructure (both per-

sonnel and hardware) needed to manage the storage. Outsourcing this job can be an

attractive alternative,i.e., the data records are handed over to an outside agency that

manages their storage. However, the original data records are sensitive and the or-

ganization would rather avoid releasing them in the plain tothe outsourcing agency.

To accomplish this, the owner appliesT to each data record and releases the results

to the outsourcing agency. Whenever the owner wishes to retrieve records from the

outsourced database, she or he transforms the query by the sameT and sends it to the

outsourcing agency who carries out similarity comparison on the data and, in turn,

sends the results back to the owner. This scenario is closelyrelated to work on secure

database outsourcing,e.g., [83].

4.2 Privacy Breach

Orthogonal transformation-based data perturbation has the nice property that many

data mining algorithms can be applied to the perturbed data and produce exactly the same

results as if applied to the original data. However, the issue of how well the original data is
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FIG. 4.2. Privacy application scenarios where orthogonal transformation can be used to
hide the data while allowing important patterns to be discovered without error.
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hidden has, to our knowledge, not been carefully studied. Wetake a step in this direction

by assuming the role of an attacker armed with three types of prior information regarding

the original data. We examine how well the attacker can recover the original data from the

perturbed data and prior information.

Before stepping into the details of the attack algorithms, we first give the definition of

privacy breach. We assume that an attacker will haveX andY and thatY was produced

from X by an orthogonal transformation. The attacker will also have prior knowledge as

described in Section 4.3. The attacker will producex̂ ∈ Rn and1 ≤ î ≤ m, wherex̂ is the

attacker’s estimate ofxî, the îth data tuple (column) inX.

Definition 4.2.1 (ǫ-Privacy Breach) For any ǫ > 0, we say that anǫ-privacy breach oc-

curs if ||x̂− xî|| ≤ ||xî||ǫ.

Informally stated, anǫ-privacy breach occurs if the attacker’s estimate is wrong with

relative error no more thanǫ. We further define the probability of privacy breach as follows:

Definition 4.2.2 (Probability of ǫ-Privacy Breach) We defineρ(xî, ǫ) as the probability

that anǫ-privacy breach occurs given that the attacker choseî, i.e.,ρ(xî, ǫ) = Prob{||x̂−

xî|| ≤ ||xî||ǫ}.

4.3 Prior Knowledge

Let then×m matrixX denote a private dataset, with each column ofX being a record

and each row an attribute. We assume that the attacker knows that transformation function

T is an orthogonal transformation and knows the perturbed data Y = MT X. In most

realistic scenarios, the attacker has some additionalprior knowledgewhich can potentially

be used effectively for breaching privacy. We consider three types of prior knowledge.
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Known input-output The attacker knows some collection of linearly independentprivate

data records. In other words, the attacker has a set of linearly independent input-

output pairs. In this scenario, we have developed an attack algorithm based on linear

algebra and statistics theory.

Known sample The attacker knows that the original dataset arose as independent samples

of somen-dimensional random vectorV with unknown p.d.f. Also the attacker has

another collection of independent samples fromV . For technical reasons, we make a

mild additional assumption: the covariance matrix ofV has distinct eigenvalues. In

this scenario, we have developed a principal component analysis (PCA)-based attack

algorithm.

Independent signalsEach data attribute can be thought of as a time-varying signal. All

the signals, at any given time, are statistically independent and all the signals are

non-Gaussian with the exception of one. In this scenario, wehave developed an

independent component analysis (ICA)-based attack algorithm.

Next, we describe and analyze attack techniques foreach type ofprior knowledge listed

above.

4.4 Known Input-Output Attack

Consider the perturbation model

Y = MT X ⇔
(

Yk Ym−k

)

= MT

(

Xk Xm−k

)

.

Let Xk denote the firstk columns ofX andXm−k the remainder (likewise forY ). We

assume that columns ofXk are all linearly independent andXk is known to the attacker (Y
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is, of course, also known). The attacker will producex̂ and1 ≤ î ≤ m− k such that̂x is a

good estimate ofxî, the îth column inXm−k (the(k + î)th column inX).

If k = n, then the attacker can recover any column inXm−k perfectly asXm−k =

(YkX
−1
k )′Ym−k. Thus, we assumek < n. Based on known information, the attacker can

narrow down the space of possibilities forMT to M(Xk, Yk) = {M ∈ On : MXk = Yk}.

Because the attacker has no additional information, any of these matrices is equally likely

to have beenMT . The attacker chooseŝM uniformly from M(Xk, Yk) and chooses index

1 ≤ î ≤ m− k based onρ(xî, ǫ) (the probability that anǫ-privacy breachoccurs given that

î was chosen), then producesx̂ = M̂ ′yî = M̂ ′MT xî. Later we will show how the attacker

can computeρ(xî, ǫ) for all 1 ≤ î ≤ m− k from ǫ andY (known information).

Note thatM(Xk, Yk), in most cases, is uncountable. As such, more precise defini-

tions are needed for “choosinĝM uniformly from M(Xk, Yk)” and “the probability that

||M̂ ′MT x− x|| ≤ ||x||ǫ”. To do so, we first develop two key technical results.

4.4.1 Key Technical Results

Let Col(Xk) denote the column space ofXk and Col⊥(Xk) denote its orthogonal

complement,i.e., {z ∈ Rn : z′w = 0, ∀w ∈ Col(Xk)}. Because the columns ofXk are

linearly independent, then the dimension ofCol(Xk) is k. The “Fundamental Theorem

of Linear Algebra” [84, pg. 95] implies that the dimension ofCol⊥(Xk) is n − k. Let Uk

(n×k) be the orthonormal basis forCol(Xk), andUn−k (n×(n−k)) the orthonormal basis

for Col⊥(Xk). Givenn× p andn× q matricesA andB, let [A|B] denote then× (p + q)

matrix whose firstp columns areA and lastq areB. Likewise, givenp × n andq × n

matricesA andB, let





A

B



 denote the(p + q) × n matrix whose firstp rows areA and

lastq areB. Let U denote[Uk|Un−k]. Clearly,U is orthogonal.

The next Theorem provides a very useful alternate characterization ofM(Xk, Yk). It
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FIG. 4.3. Reflection and rotation in 2D space. Solid markers denote the original data and
hollow markers denote the perturbed data.

is used critically throughout our analysis of theǫ-privacy breach probability.

Theorem 4.4.1 LetP denote{MT UkU
′
k+MT Un−kPU ′

n−k : ∀P ∈ On−k}, thenM(Xk, Yk)

= P.

Proof: Please see Appendix 4.8.1 for the proof. �

This theorem shows thatM(Xk, Yk) has a closed-form expression:

M(Xk, Yk) = {MT UkU
′
k + MT Un−kPU ′

n−k : ∀P ∈ On−k}.

For some special cases, for example, whenk = n, M(Xk, Yk) has only one element

MT ; which echoes the fact that whenk = n the attacker can uniquely identify the pertur-

bation matrix, and perfectly recover the private data. Whenk = n−1, M(Xk, Yk) has only

two elements{MT UkU
′
k ±MT Un−kUn−k}. As an illustration, let us consider the orthog-

onal transformation in 2D space (shown in Figure 4.3). If we only know one data pointx

(solid triangle) and its perturbed counterparty (hollow triangle) (in this casek = 1), we

are not able to determine whether it is a rotation of a reflection. 1 If it was a rotation, the

1In 2D space, an orthogonal transformation is either a rotation or a reflection, depending on whether the
determinant of the orthogonal matrix is(+1) or (−1).
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orthogonal perturbation matrix would be





cos θ − sin θ

sin θ cos θ



 ,

whereθ = arccos( <x,y>
||x||||y||). If it was a reflection, the orthogonal perturbation matrix would

be

1

u2
x + u2

y





u2
x − u2

y 2uxuy

2uxuy u2
y − u2

x



 ,

whereu = (x + y)/2, ux is the first dimension ofu, anduy is the second dimension ofu.

Therefore, only if the attacker gets another data point and its perturbed version, can s/he

determine the original perturbation matrix, and hence recover other private data.

Theorem 4.4.1 leads to the following corollary, which is going to be used to derive the

closed-form expression ofρ(x, ǫ).

Corollary 4.4.2 LetL be the linear mappingM ∈M(Xk, Yk) 7→ (MT Un−k)
′MUn−k.

1. L is one-to-one andL(M(Xk, Yk)) = On−k.

2. For anyx ∈ Rn and anyM ∈ M(Xk, Yk), ||M ′MT x − x|| = ||L(M)′U ′
n−kx −

U ′
n−kx||.

Proof: 1. Let M ∈M(Xk, Yk). By Theorem 4.4.1, there existsPM ∈ On−k such thatM =

MT UkU
′
k + MT Un−kPMU ′

n−k. We have,

L(M) = (MT Un−k)
′MT UkU

′
kUn−k + (MT Un−k)

′MT Un−kPMU ′
n−kUn−k

= 0 + PM .
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Thus,L(M(Xk, Yk)) ⊆ On−k. Let us now considerM1, M2 ∈M(Xk, Yk) such thatL(M1)

= L(M2). It follows thatPM1
= PM2

, so,M1 = M2. Therefore,L is one-to-one. Now

considerP ∈ On−k. By Theorem 4.4.1,(MT UkU
′
k + MT Un−kPU ′

n−k) ∈M(Xk, Yk), and,

by the above argument,L sends this element toP . ThusOn−k = L(M(Xk, Yk)).

2. BecauseU ′ ∈On and anyM ∈M(Xk, Yk) equalsMT UkU
′
k +MT Un−kL(M)U ′

n−k,

it follows that

||M ′MT x− x|| = ||U ′(M ′MT x− x)||

= ||U ′(MT UkU
′
k + MT Un−kL(M)U ′

n−k)
′MT x− U ′x||

= ||[Uk|Un−k]
′UkU

′
kx + [Uk|Un−k]

′Un−kL(M)′U ′
n−kx− [Uk|Un−k]

′x||

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





U ′
kx

0



 +





0

L(M)′U ′
n−kx



−





U ′
kx

U ′
n−kx





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ||L(M)′U ′
n−kx− U ′

n−kx||.

�

Now we can address the issue of making precise definitions for“choosingM̂ uni-

formly from M(Xk, Yk)” and “the probability that||M̂ ′MT x − x|| ≤ ||x||ǫ”. First we

define a “uniform” probability measure onM(Xk, Yk). Then we describe a procedure for

choosing a matrixM̂ “uniformly” from M(Xk, Yk).

BecauseOn−k is a locally compact topological group [78, pg. 293], it has aHaar

probability measure, denoted byµ, overB, the Borel algebra onOn−k [85, pg. 65]. This

is commonly regarded as the standard uniform probability measure overOn−k. Its key

property isleft-invariance: for all B ∈ B and allM ∈ On−k, µ(B) = µ(MB), i.e., shifting

B by a rigid motion does not change the probability assignment. Similarly, we need a

left-invariant probability measure on the Borel algebra over M(Xk, Yk). Such a measure
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can be regarded as the uniform probability measure onM(Xk, Yk). ConsiderL−1(B) =

{L−1(B) : B ∈ B}. From Corollary 4.4.2 part 1, it follows thatL−1(B) is the Borel algebra

overM(Xk, Yk). Moreover,µ ◦ L forms a left-invariant probability measure on the Borel

algebra overM(Xk, Yk). 2 Thus,µ ◦L can be regarded as the uniform probability measure

onM(Xk, Yk).

There are standard algorithms (e.g., [86]) for generating a matrix which can be thought

to have been chosen fromOn−k according toµ, i.e., uniformly. Thus, a matrixM̂ can be

chosen uniformly fromM(Xk, Yk) as follows: (i) generateP ∈ On−k according to [86]

and (ii) setM̂ to L−1(P ).

Now we give a precise definition ofρ(x, ǫ), the probability that||M̂ ′MT x−x|| ≤ ||x||ǫ

whereM̂ is chosen uniformly fromM(Xk, Yk). Let M(x, ǫ) denote{M ∈ M(Xk, Yk) :

||M ′MT x − x|| ≤ ||x||ǫ.} From Corollary 4.4.2 part 2, it follows thatL(M(x, ǫ)) =

{P ∈ On−k: ||P ′U ′
n−kx − U ′

n−kx|| ≤ ||x||ǫ}. Let O(x, Un−k, ǫ) denote this set. Because

O(x, Un−k, ǫ) is a closed subset ofOn−k, it is a Borel subset ofOn−k. Thus,M(x, ǫ) is

a Borel subset ofM(Xk, Yk) (so,µ ◦ L is defined onM(x, ǫ)). Formally then,ρ(x, ǫ) is

defined to beµ ◦ L(M(x, ǫ)) which equalsµ(O(x, Un−k, ǫ)).

4.4.2 A Closed-Form Expression for Privacy Breach

Let Sn−k(||U ′
n−kx||) denote the hyper-sphere inRn−k centered at the origin with ra-

dius ||U ′
n−kx||. For anyA ⊆ Sn−k(||U ′

n−kx||), let SA(A) denote the surface area ofA
(assuming it is defined).3 Let Sn−k(U

′
n−kx, ||x||ǫ) denote the portion ofSn−k(||U ′

n−kx||)

whose distance fromU ′
n−kx is no larger than||x||ǫ, i.e., Sn−k(U

′
n−kx, ||x||ǫ) = {z ∈

Sn−k(||U ′
n−kx||) : ||z − U ′

n−kx|| ≤ ||x||ǫ}.

2◦ denotes a function composition.
3In Appendix 4.8.2 we provide a definition of surface area on a hyper-sphere.
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It is shown in Appendix 4.8.2 that4

ρ(x, ǫ) =
SA(Sn−k(U

′
n−kx, ||x||ǫ))

SA(Sn−k(||U ′
n−kx||))

=







(

1
π

)

2arcsin
(

||x||ǫ
2||U ′

n−kx||

)

if ||x||ǫ < 2||U ′
n−kx||;

1 otherwise.

An alternate characterization of||U ′
n−kx|| yields a more intuitive form of the second

right-hand side. ConsiderUkU
′
kx, the orthogonal projection ofx into Col(Xk). This is the

closest point inCol(Xk) from x. So, the distance ofx from Col(Xk), denotedd(x, Xk), is

naturally defined as||x− UkU
′
kx||. Observe that,

d(x, Xk) = ||U ′(x− UkU
′
kx)||

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





U ′
kx

U ′
n−kx



−





U ′
kx

0





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ||U ′
n−kx||.

Thus,

ρ(x, ǫ) =







(

1
π

)

2arcsin
(

||x||ǫ
2d(x,Xk)

)

if ||x||ǫ < 2d(x, Xk);

1 otherwise.
(4.2)

Alternate characterizations ofd(x, Xk) and||x|| yield a right-hand side directly allow-

ing the adversary to computeρ(x, ǫ). BecauseMT is orthogonal,||x|| = ||MTx||. Because

Col(Xk) has dimensionk andMT is orthogonal, thenCol(MT Xk) = Col(Yk) has dimen-

sion k. So, there existsVk an n × k orthogonal matrix such thatCol(Vk) = Col(Yk).

4Note that the “otherwise” case includesx = 0 and||x||ǫ ≥ 2||U ′

n−kx||.
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BecauseVk is orthogonal, thenVkV
′
kMT x is the projection ofMT x into Col(Yk), thus,

d(MT x, Yk) is ||VkV
′
kMT x−MT x||. Next we show thatd(x, Xk) = d(MT x, Yk).

BecauseCol(Xk) = Col(Uk), thenCol(MT Xk) = Col(MT Uk), so,Col(Vk) = Col(Yk)

= Col(MT Xk) = Col(MT Uk). Thus, there existsk × k matrixP such thatVkP = MT Uk.

Observe that

P ′P = (VkP )′(VkP )

= (MT Uk)
′(MT Uk)

= Ik,

so,P is orthogonal. We have,

d(x, Xk) = ||UkU
′
kx− x||

= ||MT UkU
′
kM

′
T MT x−MT x||

= ||(VkP )(VkP )′MT x−MT x||

= ||VkV
′
kMT x−MT x||

= d(MT x, Yk).

The above results show that the attacker could compute the distanced(x, Xk) using the

perturbed data. Therefore, Equation 4.2 can be rewritten as

ρ(x, ǫ) =







(

1
π

)

2arcsin
(

||MT x||ǫ
2d(MT x,Yk)

)

if ||MT x||ǫ < 2d(MT x, Yk);

1 otherwise.
(4.3)
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4.4.3 Known Input-Output Attack Algorithm

As stated earlier, the adversary choosesM̂ uniformly from M(Xk, Yk) and1 ≤ î ≤
m − k to maximizeρ(xî, ǫ). The precise details of the attack technique can be seen in

Algorithm 4.4.3.1.

Algorithm 4.4.3.1 Known Input-Output Attack Technique

Inputs: Xk, an set of linearly independent columns fromX known to the attacker and
Y = MT X, known to the attacker, whereMT ∈ On is an unknown, andǫ ≥ 0, known
to the attacker.

Outputs 1 ≤ î ≤ m−k which maximizesρ(xî, ǫ) andx̂ ∈ Rn the corresponding estimate
of xî.

1: ComputeVk ann× k, orthogonal matrix whereCol(Vk) = Col(Yk) from Yk using the
Gram-Schmidt process.

2: For each1 ≤ j ≤ m− k do
3: Computed(yj, Yk) = ||VkV

′
kyj − yj || and||yj||ǫ.

4: Computeρ(xj , ǫ) using Equation 4.3.
5: End For.
6: Setî←max1≤j≤m−k{ρ(xj , ǫ)}.
7: ChooseM̂ uniformly fromM(Xk, Yk).
8: Setx̂← M̂ ′yî.

4.4.4 Effectiveness of the Attack

In the previous sections, we have shown that: 1) the attackercan compute the prob-

ability of privacy breach for a given private data record andrelative error boundǫ; 2) the

larger theǫ, the higher the probability of privacy breach; 3) the closerthe private record is

to the column space of the known records, the higher the probability of privacy breach; and

4) the attacker could compute the distanced(x, Xk) using the perturbed data.

As a concrete example, let us consider the data in Table 4.1. We assume that the

attacker knows the perturbed data, the value ofx1, and also knows thaty1 comes fromx1.

Because the distance ofx2 from the column space ofx1 is 0, we haveρ(x2, ǫ) = 1 for any
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Private Data
x1 x2 x3

25.0000 30.0000 45.0000
75.0000 90.0000 105.0000

Perturbed Data
y1 y2 y3

-42.0198 -50.4237 -68.5443
66.9652 80.3582 91.3875

Table 4.1. Example of Known Input-Output Attack.

ǫ > 0. On the other hand, the distance ofx3 from the column space ofx1 is 9.4868, thus

ρ(x3, ǫ) = 1
π
2 arcsin

(

||x3||ǫ
2×9.4868

)

, e.g., ρ(x3, 0.01) = 3.84%.

The maximum probability of anǫ-privacy breach isρ(xî, ǫ) = max1≤j≤m−k ρ(xj , ǫ).

Let γ(xî, ǫ) denote ||xî||ǫ
2d(xî,Xk)

. From Equation 4.2, the breach probability goes to zero nearly

linearly with γ(xî, ǫ),
5 and goes to one much faster asγ(xî, ǫ) does. If the data owner

knows thatXk is in the attacker’s prior knowledge, then the owner can protect against this

attack by simply not releasingMT xj for any xj whereγ(xj , ǫ) is unacceptably big. On

the other hand, if the owner does not know thatXk is prior knowledge, then this attack

technique can be quite damaging.

4.5 Known Sample Attack

In this scenario, we assume that each data record arose as an independent sample

from a random vectorV with unknown p.d.f. We also make the following mild technical

assumption: the population covariance matrixΣV of V has all distinct eigenvalues.6 We

make this assumption because it holds in most practical situations [87, pg. 27]. Further-

more, we assume that the attacker has a collection ofp samples that arose independently

from V – these are denoted as the columns of matrixS.

5For smallz, arcsin(z) is approximately linear.
6Given n × n matrix A, a complex numberλ is an eigenvalue ofA if and only if the determinate of

A− Inλ, denoteddet(A− Inλ), is zero. Becausedet(A− Inx) is ann-degree polynomial, thenA can have
at mostn distinct eigenvalues.
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In this section we design a Principal Component Analysis (PCA)-based attack tech-

nique. Unlike Section 4.4, we do not attempt a rigorous analysis of the attacker’s success

probability. Instead, we analyze the recovery error through experiments.

4.5.1 Principal Component Analysis (PCA) Preliminaries

Let ΣV denote the population covariance matrix ofV . BecauseΣV is an n × n,

symmetric matrix (and we assume it has all distinct eigenvalues), it hasn real eigenvalues

λ1 > . . . > λn [84, pg. 295]. Associated with each eigenvalueλi is its eigenspace,

{z ∈ Rn : ΣV z = zλi}. It can be shown that becauseΣV has distinct eigenvalues, the

eigenspaces are pair-wise orthogonal and each has dimension one [84, pg. 295]. As is

standard practice, we restrict our attention to only a smallnumber of eigenvectors. Let

Z(V )i denote the set of all eigenvectorsz ∈ Rn such thatΣV z = zλi and ||z|| = 1.

Now consider random vectorT (V ) = MT V and letΣMT V denote its covariance matrix.

The eigenspaces ofΣV are related in a natural way to those ofΣMT V , as shown by the

following theorem.

Theorem 4.5.1 The eigenvalues ofΣV andΣMT V are the same andMTZ(V )i = Z(MT V )i,

whereMTZ(V )i equals{MT z : z ∈ Z(V )i}; andZ(MT V )i denotes the set of eigenvec-

torsw ∈ Rn such thatΣMT V w = wλi and||w|| = 1.

Proof: First we derive an expression forΣV in terms ofΣMT V .

ΣMT V = E[(MT V − E[MT V ])(MT V − E[MT V ])′]

= E[MT (V − E[V ])(V − E[V ])′M ′
T ]

= MT E[(V − E[V ])(V − E[V ])′]M ′
T

= MT ΣV M ′
T .
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Now consider any eigenvalueλi of ΣV . Basic properties of the matrix determinate

show thatdet(ΣV − Inλi) equalsdet(MT ΣV M ′
T − Inλi). Therefore,λi is an eigenvalue of

ΣMT V . 7

We have shown thatΣV andΣMT V have the same eigenvalues. Now consider any

non-zerow ∈ Rn. We have that

w ∈ Z(MT V )i ⇔ ΣMT V w = wλi and||w|| = 1

⇔ MT ΣV M ′
T w = wλi and||w|| = 1

⇔ ΣV (M ′
T w) = (M ′

T w)λi and||M ′
T w|| = 1

⇔ M ′
T w ∈ Z(V )i

⇔ w ∈ MTZ(V )i.

�

Because all the eigenspaces ofΣV have dimension one, it can be shown thatZ(V )i

contains only two vectors such that−1 times one equals the other. Letzi be the lexico-

graphically larger one. Then,Z(V )i = {zi,−zi}. Let Z denote then × n eigenvector

matrix whoseith column iszi. Because the eigenspaces ofΣV are pairwise orthogonal

and||zi|| = 1, Z is orthogonal. Similarly, we have thatZ(MT V )i = {wi,−wi} (wi is the

lexicographically larger amongwi,−wi) andW is the eigenvector matrix withith column

wi (W is orthogonal). Note again that columns in bothZ andW are ordered such that the

ith eigenvector is associated with theith eigenvalue. The following result forms the basis

of the attacker’s attack algorithm.

Corollary 4.5.2 Let In be the space of alln × n, matrices with each diagonal entry±1

7This simple proof is based on the definition of eigenvalues.
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and each off-diagonal entry 0 (2n matrices in total). There existsD0 ∈ In such thatMT =

WD0Z
′.

Proof: Theorem 4.5.1 implies that for all1 ≤ i ≤ n, MT zi = wi or −MT zi = wi.

Therefore, for someD0 ∈ In, MT ZD0 = W . BecauseD−1
0 = D0 andZ is orthogonal, the

desired result follows. �

4.5.2 Known Sample Attack (PCA Attack) Algorithm

First assume the attacker knows the population covarianceΣV andΣMT V . Thus, the

attacker can computeW , the eigenvector matrix ofΣMT V , andZ, the eigenvector matrix of

ΣV . By Corollary 4.5.2, the attacker knows thatMT equalsWD0Z
′ for someD0 ∈ In, and

therefore, the original data would be recovered byM ′
T Y = ZD0W

′Y . The problem is how

to choose the rightD from all the possible2n elements inIn. To do so, the attacker must

utilize S andY , in particular, the fact that these arose as independent samples fromV and

MT V , respectively. For eachD ∈ In, each column ofWDZ ′S arose as an independent

sample fromWDZ ′V . If D = D0, thenWDZ ′ = MT , so, WDZ ′S and Y should

come from the same p.d.f. The attacker will chooseD ∈ In such thatWDZ ′S is most

likely to have arisen from the same p.d.f. asY . To make this choice, a similarity function

G(WDZ ′S, Y ) is introduced, and theD that maximizesG is chosen. There might be many

ways to define this function. In this paper, we use a multivariate two-sample hypothesis

test for equal distributions [88]. The two-sample problem assumes that there are two sets

of independent samplesx1, x2, . . . , xm1
andy1, y2, . . . , ym2

of independent random vectors

with distributionsF1 andF2, respectively. The goal of two-sample problem is to testH0 :

F1 = F2, versus the composite alternativeH1 : F1 6= F2. For eachD ∈ In, we compute

thep-value of the test onWDZ ′S andY , denoted byp(D). Here thep-value is defined

as the smallest level of significance at whichH0 would be rejected on a given data set.
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Smallp-values suggest that the null hypothesis is unlikely to be true. The smaller it is, the

more convincing is the rejection of the null hypothesis. Therefore the value of functionG

is nothing but thep-value, and theD matrix that is associated with the highestp-value is

chosen.

In practice, the population covarianceΣV andΣMT V are unknown, and will be re-

placed by the sample covarianceΣS andΣY from S andY (independent samples arising

from V andMT V ). Algorithm 4.5.2.1 shows the complete PCA-based attack procedure.

Algorithm 4.5.2.1 PCA-based Attack Technique

Inputs: S, ann × p matrix where each column arose as an independent sample fromV
(a random vector with unknown p.d.f whose covariance matrixhas all distinct eigen-
values).Y = MT X whereMT is an unknown,n× n, orthogonal matrix; andX is an
n×m unknown matrix where each column arose as an independent sample fromV .

Outputs x̂, 1 ≤ î ≤ m, an estimation ofxî.
1: Compute sample covariance matrixΣ̂S from S and sample covariance matrix̂ΣY from

Y . [O(n2m + n2p)]
2: Compute the eigenvector matrix̂Z of Σ̂S andŴ of Σ̂Y . Each eigenvector has unit

length and is sorted in the matrix by the corresponding eigenvalue. [O(n3)]
3: ChooseD = argmax{G(ŴDẐ ′S, Y ) : D ∈ In}. [O(2nB)]
4: ComputeX̂ = ẐDŴ ′Y . [O(n3 + n2m)]
5: Choose1 ≤ î ≤ m randomly and set̂x = X̂î.

The computation cost of Algorithm 4.5.2.1 isO(n2(m + p) + n3 + 2nB) assuming

G(., .) requiresO(B) computation. For the two-sample test,B = (m + p)2, so, the total

computation of the algorithm isO(2n(m + p)2).

4.5.3 Experiments

To validate the PCA-based attack algorithm, we conducted experiments on both syn-

thetic and real world data. One such synthetic dataset contains 10, 000 data points, which

are generated from a three-dimensional Gaussian distribution with mean(10, 10, 10) and
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FIG. 4.4. PCA-based attack for three-dimensional Gaussian data. The average relative
error of the recovered data is0.0265. (2% sample)

covariance





1 1.5 0.5

1.5 3 2.5

0.5 2.5 75



. The attacker has200 sample data points (2% of the size of

original data) chosen from the same distribution. Figure 4.4 shows the results of perturba-

tion and recovery. It can be seen that although the perturbeddata is very different from the

original one, the recovered data almost overlaps with the original data.8 To further examine

how sample size and relative error boundǫ affects the quality of the attack, we conducted

two sets of experiments. The first set of experiments (Figure4.5) show that when the

perturbation matrix and relative error bound are fixed, the probability of privacy breach

increases as the sample size increases. The second set of experiments (Figure 4.6) depict

that when the perturbation matrix and the sample size are fixed, the probability of privacy

breach increases as the relative error bound (that the attacker can tolerate) increases.

For the real world data, we chose the Adult Database and Letter Recognition Database

8Note that the shape of the perturbed data does not appear verysimilar to the shape of the original data
because the axes scales are not even.
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FIG. 4.5. Performance of PCA-based attack
for three-dimensional Gaussian data w.r.t.
sample size. The relative error boundǫ is
fixed to be0.02. The solid line shows a best
polynomial fit to the points. This line was
generated with Matlab’s curving fitting tool-
box.
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FIG. 4.6. Performance of PCA-based attack
for three-dimensional Gaussian data w.r.t.
relative error bound. The sample ratio is
fixed to be2%. The solid line shows a best
polynomial fit to the points. This line was
generated with Matlab’s curving fitting tool-
box.

from the UCI machine learning repository. The Adult data contains32, 561 records, and

it is extracted from the census bureau database. For the purpose of visualization, we only

selected three numeric attributes: age, education-num andhours-per-week, for the experi-

ment. The Letter Recognition data has20, 000 instances and16 numeric features. We chose

the first6 features (excluding the class label) for the experiments. We randomly separated

each dataset into two disjoint sets. One set is viewed as the original data, and the other

one is the attacker’s sample data, which accounts for2% of the original data. Figure 4.7

shows the results of perturbation and PCA attack for Adult data. Figure 4.8 and 4.9 shows

the results of perturbation and PCA attack for Letter Recognition data. It can be seen that

the recovered data approximates the original data very well. To examine the influence of

sample size and relative error bound, we fixed the orthogonalperturbation matrix, and per-

formed the same series of experiments as we did for Gaussian data. Figure 4.10 and 4.11

give the results for Adult data. Figure 4.12 and 4.13 give theresults for Letter Recognition
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FIG. 4.7. PCA-based attack for Adult data. The average relativeerror of the recovered
data is0.1081. (2% sample)

data.

From the above experiments, we have the following observations: (1) the higher the

relative error bound the attacker can tolerate, the higher the probability of privacy breach;

(2) the larger the sample size, the better the quality of datarecovery; and (3) among these

three data sets, the PCA-based attack works best for Gaussian data, next Letter Recognition

data, and then Adult data. The first two observations requireno explainations. We will

discuss the third one in the next section.

To evaluate the complexity of the PCA attack algorithm, we generated multivariate

Gaussian data with dimensionality ranging from2 to 12. Each data set contains5250

records,250 records of which are used as samples, and the remaining5000 records as

private data. The energy test proposed in [88] was used to quantify similarity (G(., .)), The

experiment was conducted on a dual-processor workstation with 3.00GHz and2.99GHz

Xeon CPUs and3.00GB RAM. We observed that for2-dimensional data, it took143.1090

seconds, and for12-dimensional data, it took1.2442 × 105 seconds. As expected, the

running time goes up rapidly with number of dimensions. However for a modest number
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of dimensions, the algorithm still seems computationally feasible.

4.5.4 Effectiveness of the Attack

The effectiveness of the PCA Attack algorithm depends on twocorrelated aspects: 1)

covariance matrix estimation quality; and 2) the p.d.f.,f , of V .

Covariance estimation quality: A great deal of work has been conducted in the statistics

community on estimating the covariance matrix of a random vector based on independent

samples [87, Chapter 10.4]. Generally speaking, the quality of the estimation of sample

covariance is correlated with the following factors.

• Outliers It is usually desirable to use a robust approach for covariance estimation to

downweights the disproportionate effect of any outlying records. In all the experi-

ments we used the simple, standard sample covariance estimator: given two length

m vectorsx andy, Cov(x, y) =
Pm

ℓ=1
(xℓ−x)(yℓ−y)

m−1
wherex andy are the averages of
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FIG. 4.10. Performance of PCA-based at-
tack for Adult data w.r.t. sample size. The
relative error boundǫ is fixed to be0.10, 0.15
and0.20, respectively.
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FIG. 4.11. Performance of PCA-based at-
tack for Adult data w.r.t. relative error
bound. The sample ratio is fixed to be2%
and10%, respectively.

x andy. We note that any elaborate, robust estimation methods [87,Chapter 10.4]

could be used without change by our approach.

• Sample SizeLoosely speaking, larger samples are better than smaller samples be-

cause larger samples tend to minimize the probability of errors, maximize the accu-

racy of population estimates. The work in [89] investigatedboth sample size and the

ratio of records to attributes. It showed that as the total number of samples increases,

the ratio becomes less important; the converse is also true.Both factors matter in

some sense, and ignoring either one can have errors of inference.

The p.d.f. of V : First, suppose the eigenvalues ofΣV are nearly identical. For exam-

ple, supposeV has a diagonal covariance matrix whose diagonal entries (from top-left to

bottom-right) ared, d− ǫ, d−2ǫ, . . ., d−nǫ whered−nǫ > 0 and0 < ǫ < 1. In this case,

small errors in estimatingΣV from sampleS can produce a different ordering of the eigen-

vectors9, hence, large errors in the attacker’s recovery. As an extreme case, whenV is the

9Note that the order of eigenvectors is determined by the values of eigenvalues.
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FIG. 4.12. Performance of PCA-based at-
tack for Letter Recognition data w.r.t. sam-
ple size. The relative error boundǫ is fixed
to be0.10, 0.15 and0.20, respectively.
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FIG. 4.13. Performance of PCA-based at-
tack for Letter Recognition data w.r.t. rela-
tive error bound. The sample ratio is fixed to
be2% and10%, respectively.

n-variate Gaussian with covariance matrixInγ for some constantγ, all the eigenvalues are

the same, and any vectors in the space can be the eigenvectors, the PCA attack algorithm

will fail.

Consider the minimum ratio of any pair of eigenvalues,i.e., min{λi/λj : ∀i 6=

j; i, j = 1, . . . , n} (we call this theminimum eigen-ratio). We would expect that, the

smaller this value, the smaller the attacker’s success probability. To examine this hypoth-

esis, we generated a three-dimensional dataset of tuples sampled independently from a

Gaussian with mean(10, 10, 10) and covariance





0.1 0 0

0 2 0

0 0 b



. By changing the value of

b from 2 to 40, we can change the minimum eigen-ratio of the covariance from 1 to 20. The

original data contains10, 000 tuples. We fixed the sample ratio to be2% and relative error

boundǫ = 0.05. Figure 4.14 shows that when all other parameters are fixed, the higher the

eigen-ratio, the better the performance of the attack algorithm. This actually explains why,

in our previous experiments, PCA attack works best for Gaussian data, then Letter Recogni-

tion data, and then Adult data. A simple computation shows that the minimum eigen-ratios

of the Gaussian data, Letter Recognition data and Adult dataare19.6003, 1.3109, 1.2734,
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FIG. 4.14. Performance of PCA-based at-
tack w.r.t. minimum eigen-ratio. The rela-
tive error boundǫ is fixed to be0.05, and the
sample ratio is2%.
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FIG. 4.15. Performance of PCA-based at-
tack w.r.t. α. The relative error boundǫ is
fixed to be0.05, and the sample ratio is2%.

respectively.

Second, suppose for someDi 6= D0 ∈ In, the p.d.f.,f , of V is invariant overDi

in the sense thatfDi
andfD0

can’t be distinguished, wherefDi
is the p.d.f. v ∈ Rn 7→

f(WDiZ
′v). Then, the hypothesis test could possibly conclude thatWD0Z

′S, WDiZ
′S

andY all arose from the same p.d.f., so thep-valuep(D0) may not be larger thanp(Di),

and the attack algorithm will fail. We say thatf is invariant if there exists someDi 6= D0

∈ In, such thatf is invariant overDi.

We would expect that the closerf is to invariance, the smaller the attacker’s success

probability. To examine this hypothesis we need a metric forquantifying the degree to

which f is invariant. Intuitively, the invariance off can be quantified as the degree to

which fDi
andfD0

are distinguishable (minimized over allDi 6= D0 ∈ In). To formalize

this definition, we use the symmetrized Kullback-Leibler divergenceKL(g||h)+KL(h||g)

to measure the distance between two distributionsg andh. This measurement is symmetric

and nonnegative, and when it is equal to zero, the distributions can be regarded as indistin-

guishable. The symmetrized Kullback-Leibler distance between continuous distributiong
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to h is defined as

KL(g||h) + KL(h||g) =

∫ +∞

−∞
g(x) log

g(x)

h(x)
dx +

∫ +∞

−∞
h(x) log

h(x)

g(x)
dx.

So we quantify invariance as

Inv(f) = min
Di 6=D0∈In

{KL(fDi
||fD0

) + KL(fDi
||fD0

)} , (4.4)

ClearlyInv(f) ≥ 0 with equality exactly whenf is invariant. The behavior ofInv in

the general case is quite complicated. However, forn-variate Gaussian distributions,Inv

can be nicely simplified. First of all, forn-variate Gaussian distributionsg andh with the

same covariance matrixΣ (assumed to be invertible) and mean vectorsµg andµh,

KL(g||h) + KL(h||g) = (µg − µh)
′Σ−1(µg − µh). (4.5)

Second of all, we have the following theorem.

Theorem 4.5.3 LetD be any matrix inIn.

1. The covariance matrix offD is WΛV W ′ whereΛV is the eigenvalue matrix ofΣV .

2. The mean vector offD is WDZ ′µV whereµV is the mean vector off (the p.d.f. of

V ).

3. If f is multivariate Gaussian, thenfD is also multivariate Gaussian.

Proof: Follows directly from [90, Theorem 5.16]. �

This theorem along with Equations 4.4 and 4.5 allows us to simplify our invariance

metric in the case wheref is a multi-variate Gaussian. Letµ0 denote the mean vector of

fD0
andµi the mean vector offDi

. We have
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Inv(f) = min
Di 6=D0∈In

(µi − µ0)
′Σ−1

V (µi − µ0)

= min
Di 6=D0∈In

µ′
V (ZDiW

′ − ZD0W
′)(WΛV W ′)−1(WDiZ

′ −WD0Z
′)µV

= min
Di 6=D0∈In

µ′
V Z(Di −D0)Λ

−1
V (Di −D0)Z

′µV .

Clearly, Inv(f) goes to zero withµV . And, if we consider a simple path to zero –

along a straight line – the behavior ofInv(f) can be nicely characterized. Consider some

fixedµ ∈ Rn. Givenα ≥ 0, defineµV asαµ. We have that

Inv(f) = α2 min
Di 6=D0∈In

(

µ′Z(Di −D0)Λ
−1
V (Di −D0)Z

′µ
)

.

Hence we see thatInv(f) approaches zero quadratically asµV → 0 along the line

defined byαµ. With this result we can carry out experiments to measure theeffect of the

degree to whichf is invariant on the attacker’s success probability. We generated a dataset

by sampling each tuple independently from a three-dimensional Gaussian with covariance




0.1 0 0

0 2 0

0 0 40



 and mean vectorµV = α(1, 1, 1)′. Note that the minimum eigen-ratio is

20, sufficiently large to isolate the effect of decreasing invariance on attacker’s success

probability. We vary the value ofα from 0 to 10. The original dataset contains10, 000

tuples. We fix the sample ratio to be2%, and relative error boundǫ = 0.05. Figure 4.15

shows that asα approaches zero (the mean approaches zero accordingly), the probability

of privacy breach drops to zero too; however, asα runs away from zero, the probability of

privacy breach increases very fast.
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4.6 Independent Signals Attack

In this scenario, we assume that the data is a collection of signals. All the signals, at

any given time, are statistically independent and all the signals are non-Gaussian with the

exception of one. The attacker obtains the perturbed data, and the goal is to recover the

original signals. In this section, we propose an Independent Component Analysis (ICA)-

based attack technique to do this job.

4.6.1 Independent Component Analysis (ICA) Preliminaries

Independent Component Analysis (ICA) [91] is a technique for discovering indepen-

dent hidden factors that are underlying a set of linear or nonlinear mixtures of some un-

known variables, where the mixing system is also unknown. These unknown variables are

assumed to be non-Gaussian and statistically independent,and they are called the inde-

pendent components (ICs) of the observed data. This technique has been widely used for

separation of artifacts in MEG (Magnetoencephalography) data, image noise reduction and

telecommunications [92].

A classical example of ICA is the cocktail party problem (as illustrated in Figure

4.16). Imagine you are in a cocktail party, although different kinds of background sounds

are mixed together,e.g., music, other people’s chat, television news report, or even a siren

from a passing ambulance, you still have no problem identifying the discussion of your

neighbors. It is not clear how human brains can separate the different sound sources. How-

ever, ICA is able to do it, if there are at least as many ‘ears’ or receivers in the room as

there are different simultaneous sound sources.

The basic ICA model can be defined as follows:

y(t) = Ax(t), (4.6)
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FIG. 4.16. An illustration of the cocktail party problem. What we have heard in a cocktail
party are just linear (or nonlinear) combinations of different source audio signals.

wherex(t) = (x1(t), x2(t), . . . , xn(t))T denotes ann-dimensional vector collecting then

independent source signalsxi(t), i = 1, 2, . . . , n. Heret indicates the time dependence.

Each signalxi(t) can be viewed as an outcome of a continuous-value random process.

A is a k × n unknown mixing matrix, which can be viewed as a mixing systemwith k

receivers. The observed mixture isy(t) = (y1(t), y2(t), . . . , yk(t))
T . The aim of ICA is to

design a filter that can recover the original signals from only the observed mixture. Because

y(t) = Ax(t) = (AΛP )(P−1Λ−1x(t)) for any diagonal matrixΛ and permutation matrix

P , the recovered signalsx(t) can never have completely unique representation. So, the

uniqueness of the recovered signals found by ICA can only be guaranteed up to permutation

and scaling ambiguities.

In practice, a linear filter is designed to get the recovered signalsx̂(t) = (x̂1(t), x̂2(t),
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. . . , x̂l(t))
T from ak-dimensional inputy(t) = (y1(t), y2(t), . . . , yk(t))

T . In other words,

x̂(t) = By(t), (4.7)

whereB is anl × k dimensional separating matrix. Combining Eq. 5.12 and Eq. 5.13, we

get

x̂(t) = BAx(t) = Zx(t), (4.8)

whereZ = BA is an l × n matrix. Each element of̂x(t) is thus a linear combination of

xi(t) with weights given byzi,j , wherezi,j denotes the(i, j)-th entry ofZ.

Many ICA algorithms start with whitening the data,i.e., removing any correlations in

the observed datay(t). The source signals can then be found by an orthogonal transforma-

tion of the whitened signals. The appropriate transformation is sought by maximizing the

independence of the signals. A review of different metrics for measuring independence can

be found in [92].

In general, by imposing the following fundamental restrictions [92], all the source

signals can be separated out up to scaling and permutation ambiguities:

• The source signals are statistically independent,i.e., their joint probability density

function (PDF)fx(t)(x1(t),

x2(t), . . . , xn(t)) is factorizable in the following way:

fx(t)(x1(t), x2(t), . . . , xn(t)) =

n
∏

i=1

fxi(t)(xi(t)),

wherefxi(t)(xi(t)) denotes the marginal probability density ofxi(t).

• All the signals must be non-Gaussian with possible exception of one signal.

• The number of observed signalsk must be at least as large as the independent source
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signals,i.e., k ≥ n.

• Matrix A has full column rank.

These restrictions have actually exposed the potential dangers of orthogonal transformation-

based perturbation where the mixing matrix is square and hasfull column rank. The next

section gives the ICA attack algorithm.

4.6.2 Independent Signal Attack (ICA Attack) Algorithm

We assume the data is a collection of signals, where each row of X, denoted by

xi, i = 1, . . . n, represents one signal. Each signal can be viewed as an outcome of a

continuous-value random processxi(t), wheret indicates the time dependence. The data

owner publishesY = MT X whereMT is an unknown orthogonal matrix. The attacker

obtainsY , and the goal is to recoverX.

The attacker has some additional prior knowledge as follows: 1) The signals are sta-

tistically independent,i.e.,∀t, the joint p.d.f.f(x1(t), . . . , xn(t)) =
∏n

i=1 f(xi(t)), where

f(xi(t)) denotes the marginal probability density ofxi(t). This assumption makes sense in

situations where each signal arises from unrelated sources, e.g., voice audio signals from

people in different conversations or pixel vectors from unrelated pictures. 2) All the signals

must be non-Gaussian with the possible exception of one signal. Algorithm 4.6.2.1 gives

the basic procedure of ICA-based attacks. The next section demonstrates the performance

of ICA-based attack in experiments.

4.6.3 Experiments

To demonstrate how ICA could attack the orthogonal transformation-based perturba-

tion when data is statistically independent and not Gaussian, we chose both image and

audio data for the experiments.
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Algorithm 4.6.2.1 ICA-based Attack Technique

Inputs: Y = MT X whereMT is an unknown orthogonal matrix;X is an unknown matrix
where each row represents one signal. All the signals are statistically independent. All
the signals are non-Gaussian with possible exception of onesignal.

Outputs The recovered datâX.
1: The attacker uses independent component analysis (ICA) to recover the original signals

up to a scaling factor and row permutation.

First, we considered a datasetX consisting of four signals (four rows). Each is a

picture of a natural scene represented by a450 × 338 pixel grid – the top row of Figure

4.17. Each grid is stretched out into a length152, 100 row vector. The perturbed versions,

rows ofY = MT X for a randomly generated orthogonal matrixMT , can be seen in the

middle row of Figure 4.17. These appear to disguise the originals quite well. However,

after applying ICA, the attacker produces estimates as seenin the bottom row of Figure

4.17. Due to the scaling factor, the colors do not match, and due to the row permutation,

the estimated figures appear in a different order than the originals. However, the content of

the original figures can be seen quite well.

FIG. 4.17. Performance of ICA on image data. The first row – original images; the second
row – perturbed images; and the third row – recovered images.

Second, we considered four statistically independent audio signals, denoted as a4 ×
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FIG. 4.18. A plot of four independent audio signals.

13, 129 matrixX (shown in Figure 4.18). A perturbation of these signals (shown in Figure

4.19) is generated by pre-multiplying a4×4 orthogonal matrix toX. The goal of ICA is to

recover the original signals using only the perturbed data.Figure 4.20 gives the estimated

signals through ICA. It can be seen that although the order and amplitude of the recovered

signals are not necessarily the same as those of the originalones, the basic structure of the

original signals are recovered very well.

4.6.4 Effectiveness of the Attack

BecauseY = MT ΛPP−1Λ−1X for any diagonal matrixΛ and permutation matrix

P , ICA can only recover the original signals up to permutationand scaling ambiguities.

However, in many application scenarios,e.g., when the data are natural images or audio

signals, these ambiguities do not cause significant troubleidentifying the contents of origi-

nal signals, and the recovered data might be sufficient to breach privacy. The experiments

in the last section validate the effectiveness of ICA attack.
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FIG. 4.19. Perturbation of the original signals using a orthogonal matrix.
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FIG. 4.20. Recovered signals using ICA.
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Note that if some of the source signals are correlated, they may be lumped in the

same group and can never be separated out. If there is more than one Gaussian signal, the

problem becomes more complicated. The output of the filter may be either individual non-

Gaussian signals, individual Gaussian signals, or a mixture of Gaussian signals. Detailed

analysis can be found elsewhere [93].

4.7 Summary

In this chapter, we considered the use of distance-preserving maps (with origin fixed)

as a data perturbation technique for privacy preserving data mining. On the one hand, this

technique is quite useful as it allows many interesting datamining algorithms to be applied

directly to the perturbed data and produce an error-free result, e.g., K-means clustering and

K-nearest neighbor classification. On the other hand, the privacy offered by distance pre-

serving transformations has, to our knowledge, not been well-studied. We take a step in this

direction by considering three types of prior knowledge an attacker may have and use to

design attack techniques to recover the original data. The first is based on basic properties

of linear algebra, the second on principal component analysis, and the third on independent

component analysis. Our analysis explicitly illuminates scenarios where privacy can be se-

riously breached. As such, valuable information is gained into the effectiveness of distance

preserving transformation for privacy preserving data mining.

4.8 Appendix

4.8.1 Appendix I

Theorem4.4.1: LetP denote{MT UkU
′
k + MT Un−kPU ′

n−k : ∀P ∈ On−k}. We have

thatM(Xk, Yk) = P.

Proof: First we show thatM(Xk, Yk) = M(Uk, MT Uk), i.e.,any orthogonal matrixM that
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satisfies conditionMXk = Yk also satisfiesMUk = MT Uk, and vice versa. BecauseUk

is the orthonormal basis ofCol(Xk), there exists an invertiblek × k matrix B such that

XkB = Uk. For anyM ∈ On, we have

M ∈M(Xk, Yk) ⇔ MXk = Yk

⇔ MXkB = MT XkB

⇔ MUk = MT Uk

⇔ M ∈M(Uk, MT Uk).

We conclude thatM(Xk, Yk) = M(Uk, MT Uk).

Now we complete the proof by showing thatM(Uk, MT Uk) = P. We first show that

∀MP ∈ P, MP ∈M(Uk, MT Uk). After that we will prove∀M ∈ M(Uk, MT Uk), M ∈ P.

(1) For anyMP ∈ P, we have:

M ′
P MP = UkU

′
kM

′
T MT UkU

′
k + UkU

′
kM

′
T MT Un−kPU ′

n−k

+ Un−kP
′U ′

n−kM
′
T MT UkU

′
k + Un−kP

′U ′
n−kM

′
T MT Un−kPU ′

n−k

= UkU
′
k + 0 + 0 + Un−kU

′
n−k

= [Uk|Un−k]





U ′
k

U ′
n−k





= UU ′ = In.

The above equations reply on the fact thatU ′
n−kUk = U ′

kUn−k = 0. Therefore,MP is

orthogonal. Also observe that
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MP Uk = MT UkU
′
kUk + MT Un−kPU ′

n−kUk

= MT Uk + 0.

Hence,MP ∈M(Uk, MT Uk), so,P ⊆M(Uk, MT Uk).

(2) Now considerM ∈M(Uk, MT Uk). We assert thatCol(MT Un−k) = Col(MUn−k)

(to be proved later). Based on this assertion there exists(n − k)× (n − k) matrixP with

MT Un−kP = MUn−k. Observe that

P ′P = P ′(MT Un−k)
′(MT Un−k)P

= (MT Un−kP )′(MT Un−kP )

= (MUn−k)
′(MUn−k)

= In−k.

Thus,P is orthogonal. Moreover,

MU = M [Uk|Un−k]

= [MT Uk|MUn−k]

= [MT Uk|MT Un−kP ].
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Thus,

M = [MT Uk|MT Un−kP ]U ′

= [MT Uk|MT Un−kP ]





U ′
k

U ′
n−k





= MT UkU
′
k + MT Un−kPU ′

n−k.

Therefore,M ∈ P, so,M(Uk, MT Uk) ⊆ P.

All that remains is to prove the assertion:Col(MT Un−k) = Col(MUn−k). Because

(MUn−k)
′(MUk) = 0, thenCol(MUn−k) ⊆ Col⊥(MUk). BecauseMUn−k andMUk are

orthogonal, then the Fundamental Theorem of Linear Algebraimplies thatCol⊥(MUk) and

Col(MUn−k) have the same dimension (n−k), thus,Col(MUn−k) = Col⊥(MUk). By re-

placing “M” with “ MT ” in the previous two sentences, we also conclude thatCol(MT Un−k)

= Col⊥(MT Uk). Finally, becauseM ∈ M(Uk, MT Uk), thenCol(MUk) = Col(MT Uk),

thus, Col⊥(MUk) = Col⊥(MT Uk). It follows that Col(MT Un−k) = Col⊥(MT Uk) =

Col⊥(MUk) = Col(MUn−k). �

4.8.2 Appendix II

Preliminaries: Recall some definitions. For real numberα ≥ 0, and integerp ≥ 1, let

Sp(α) denote the hyper-sphere inRp centered at the origin with radiusα i.e. {x ∈ Rp :

||x|| = α}. For anyA ⊆ Sp(α), SA(A) denotes the surface area ofA (assuming it is

defined). To define surface area recall that a point(x1, . . . , xp) ∈ Sp(α) can be written in

hyper-spherical coordinates0 ≤ θi ≤ π (for 1 ≤ i ≤ p − 2) and0 ≤ θp−1 ≤ 2π such that

x1 = αcos(θ1), x2 = αsin(θ1)cos(θ2), . . ., xp−1 = αsin(θ1) · · · sin(θp−2)cos(θp−1), andxp

= αsin(θ1) · · · sin(θp−2)sin(θp−1).

Let Πi(A) denote the projection ofA onto theith hyper-spherical coordinate (for
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1 ≤ i ≤ p− 1). The surface area,SA(A), of (A) is defined to be

αp−1

∫

θ1∈Π1(A)

· · ·
∫

θp−1∈Πp−1(A)

δ(z)sinp−2(θ1)sin
p−3(θ2) · · · sin(θp−2)dθ1 · · · dθp−1,

(provided the integral exists) wherez denotes(α, θ1, . . . , θp−1) andδ(z) equals one ifz ∈

A; zero otherwise.

Results:Forw ∈ Rp andd ≥ 0, letSp(w, d) denote the portion ofSp(||w||) whose distance

from w is no larger thand, i.e. Sp(w, d) = {z ∈ Sp(||w||) : ||z − w|| ≤ d}. For anyA ⊆
Sp(||w||), let O(A) denote{P ∈ Op: P ′w ∈ A}. In this section, we prove the following

two statements.

1. µ(O(Sp(w, d))) = SA(Sp(w,d))

SA(Sp(||w||)) .

2. SA(Sp(w,d))

SA(Sp(||w||)) =
(

1
π

)

2arcsin
(

d
2||w||

)

if d ≤ 2||w||; 1 otherwise.

BecauseS1(||w||) equals two points (one if||w|| = 0), the results are obvious. Assume

p ≥ 2.

Statement 1:The proof of this fact is follows directly from basic properties of measure

theory. Because it is a tangent from the primary focus of the paper, it is omitted.

Statement 2:BecauseSA(z1, d) equalsSA(z2, d) for any z1, z2 ∈ Sp(||w||), then

it suffices to prove the desired result forw1 = ||w||e1 wheree1 is the first unit vector

(1, 0, . . . , 0)′. If d > 2||w1||, all of SA(||w1||) is within d of w1. Thus, the surface area ratio

equals one as desired.

Assume0 ≤ d ≤ ||w1||
√

2. Consider the hyper-plane{(x, y, 0, . . . , 0) ∈ Rp}. Fig-

ure 4.21 depicts the intersection of this hyper-plane withSp(||w1||). It can be shown that

SA(Sp(w1,d))
SA(Sp(||w1||)) equalsa

π
. Moreover, consider triangleABC. It is a right triangle with hy-
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FIG. 4.21. Hyper-plane intersection withSp(||w||).

potenuse length||w1|| and an anglea
2

with opposite side lengthd
2
. Therefore,sin(a

2
) =

d
2||w1|| . So,a = 2arcsin( d

2||w1||), yielding the desired result.

Finally, assume
√

2||w1|| < d ≤ 2||w1||. Figure 4.22 depicts the intersection of the

hyper-plane{(x, y, 0, . . . , 0) ∈ R
p} with Sp(||w1||). It can be shown thatSA(Sp(w1,d))

SA(Sp(||w1||))

equals1 − a
π

anda = π − b. Consider the right triangleABC; it has hypotenuse length

||w1|| and an angleb
2

with opposite side lengthd
2
. So,b = 2arcsin( d

2||w1||) leading toa = π

− 2arcsin( d
2||w1||). Thus, the surface area ratio equals

1−
π − 2arcsin( d

2||w1||)

π
=

2arcsin( d
2||w1||)

π
.
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Chapter 5

RANDOM PROJECTION-BASED DATA

PERTURBATION

This chapter considers a randomized multiplicative data perturbation technique for

privacy preserving data mining. It is motivated by the work presented elsewhere [5–7, 19]

that pointed out some security problems of additive perturbation and distance preserving

perturbation. Specifically, this chapter explores the possibility of using multiplicative ran-

dom projection matrices for constructing a new representation of the data. It can be proved

that the inner product and Euclidean distance are preservedin the new data in the expec-

tation. This approach is fundamentally based on the Johnson-Lindenstrauss lemma [94],

which notes that any set ofm points inn-dimensional Euclidean space can be embedded

into an O( lnm
ǫ2

) dimensional space such that the pairwise distance of any twopoints is

maintained with a high probability. Therefore, by projecting the data onto a lower dimen-

sional random space, we can dramatically change its original form while preserving much

of its distance-related characteristics. This chapter presents extensive theoretical analysis

and experimental results on the accuracy and privacy of the random projection-based data

perturbation technique.

The remainder of this chapter is organized as follows. Section 5.1 discusses the basic

mathematical properties of random projection. It derives some error bounds for the ac-

84
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curacy of the distances preserved by random projection. Section 5.2 demonstrates some

privacy preserving data mining applications of the random projection-based data perturba-

tion. Section 5.3 introduces aBayes privacy modelto measure the privacy offered by a

perturbation technique. To be more specific, it considers the use of maximum a posteri-

ori probability (MAP) estimate to recover the original dataand to quantify the privacy. A

closed-form expression about the (upper bound of the) privacy breach is derived, which can

be used together with the error bounds to guide the perturbation in practice. Section 5.4

examines several privacy breach scenarios (some of which have been investigated in Chap-

ter 4) and analyzes the efficacy of the corresponding attack techniques. Finally, Section 5.5

concludes this chapter.

5.1 Random Projection

This section gives the basic definition of random projectionand its statistical proper-

ties.

5.1.1 Definition and Fundamental Properties

Random projection refers to the technique of projecting a set of data points from a

high dimensional space to a randomly chosen lower dimensional space. Mathematically,

let X ∈ R
n×m bem data points inn-dimensional space. The random projection method

multipliesX by a random matrixR ∈ Rk×n, reducing then dimensions down to justk. It

is well known that random projection preserves pairwise distances in the expectation. This

technique has been successfully applied to a number of applications, for example, VLSI

layout [95], nearest-neighbor search [96, 97], image and text clustering [98], distributed

decision tree construction [99], motifs in bio-sequences [100] discovery, high-dimensional

Gaussian mixture models learning [101], half spaces and intersections of half spaces learn-
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ing [102].

The key idea of random projection arises from the Johnson-Lindenstrauss Lemma

[94].

Lemma 5.1.1 (Johnson-Lindenstrauss Lemma) [94] For any ǫ such that0 < ǫ < 1
2
,

and any set of pointsS in Rn, with |S| = m, upon projection to a uniform randomk-

dimensional subspace wherek ≥ 9 lnm
ǫ2− 2

3
ǫ3

+1, the following property holds: with probability

at least1
2
, for every pairx, y ∈ S,

(1− ǫ)||x− y||2 ≤ ||f(x)− f(y)||2 ≤ (1 + ǫ)||x− y||2,

wheref(x), f(y) are the projections ofx andy.

This lemma shows that any set ofm points inn-dimensional Euclidean space can be em-

bedded into anO( lnm
ǫ2

) dimensional space such that the pairwise distance of any twopoints

is maintained within a very small factor. This property implies that it is possible to change

the data’s original form by reducing its dimensionality while maintaining the pairwise inner

products and Euclidean distances (see Figure 5.1(a), 5.1(b) as illustrative examples). In the

next, we shall demonstrate how random matrices can be used for this kind of transforma-

tion.

Lemma 5.1.2 LetR be ap×q random matrix such that each entryri,j of R is independent

and identically distributed (i.i.d.) according to some unknown distribution with mean zero

and varianceσ2
r . Then,

E[RT R] = pσ2
rI, andE[RRT ] = qσ2

rI.
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FIG. 5.1. (a) The original data. (b) The perturbed data after random projection, which
maps the data from 3D space onto 2D space. The random matrix ischosen from N(0,1).

Proof: Let ri,j andǫi,j be thei,j-th entries of matrixR andRT R, respectively.

ǫi,j =

p
∑

t=1

rt,irt,j .

E[ǫi,j ] = E[

p
∑

t=1

rt,irt,j ]

=

p
∑

t=1

E[rt,irt,j ].

Because the entries of the random matrix are independent andidentically distributed (i.i.d.),

E[ǫi,j ] =



















∑p
t=1 E[rt,i]E[rt,j ] if i 6= j;

∑p
t=1 E[r2

t,i] if i = j.
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Now, note thatE[ri,j ] = 0 andE[r2
i,j ] = σ2

r ; therefore,

E[ǫi,j ] =







0 if i 6= j;

pσ2
r if i = j.

So,E[RT R] = pσ2
rI.

Similarly, we haveE[RRT ] = qσ2
rI. �

Intuitively, this result echoes the observation made elsewhere [103] that in a high-

dimensional space, vectors with random directions are almost orthogonal. Lemma 5.1.2

can be used to prove the following results.

Lemma 5.1.3 (Random Projection)Let X ∈ Rn×m be a dataset ofm data points inn-

dimensional space. LetR be ak × n (k < n) random matrix such that each entryri,j of R

is independent and identically distributed (i.i.d.) according to some unknown distribution

with mean zero and varianceσ2
r . Further, let

Y =
1√
kσr

RX; then (5.1)

E[Y T Y ] = XT X.

This lemma shows that random projection preserves all pairwise inner products ofX

in the expectation. The beauty of this property is that the inner product is directly related

to many other distance-related metrics. To be more specific,for any vectorsx, y ∈ R
n,

• The Euclidean distance ofx andy is ||x− y||2 = (x− y)T (x− y).

• If the data vectors have been normalized to unity, then the cosine angle ofx andy is

cos θ =
xT y

||x|| · ||y|| = xT y.



89

• If the data vectors have been normalized to unity with zero mean, the sample corre-

lation coefficient ofx andy is

ρx,y =

∑

xiyi −
P

xi
P

yi

n
√

(
∑

x2
i − (

P
xi)2

m
)(

∑

y2
i − (

P
yi)2

n
)

= xT y.

Thus, if the data owner reduces the number of attributes of the data by projection,

the inner products and Euclidean distances among the data records are still maintained.

Therefore, we can directly apply common data mining algorithms to the new data without

accessing the original sensitive information.

In the next subsection, we will derive some error bounds about the inner product and

Euclidean distance preserved by the random projection.

5.1.2 Accuracy Analysis

As noted by Lemma 5.1.2, the entries ofR (denoted byri,j , n
i=1

m
j=1) should be i.i.d.

with zero mean and constant variance. In fact, this is the only necessary condition for

preserving the pairwise distances [104]. However, different choices ofri,j can change the

variance of the errors. It is often convenient to letri,j follow a symmetric distribution

about zero with a constance variance. A simple distributionis the Gaussian distribution,

i.e., ri,j ∼ N(0, σ2
r ). In this dissertation, unless stated otherwise, we will assume that the

random entries follow the Gaussian distributionN(0, σ2
r). The following lemma gives the

mean and variance of the projection error in the context of inner product computation.

Lemma 5.1.4 Let x, y be two data vectors inRn. Let R be a k × n random matrix.

Each entry ofR is independent and identically distributed (i.i.d.) according to a Gaussian
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distribution with mean zero and varianceσ2
r . Further let

u =
1√
kσr

Rx, and v =
1√
kσr

Ry . Then

E[uT v − xT y] = 0 and

V ar[uT v − xT y] =
1

k
(
∑

i

x2
i

∑

i

y2
i + (

∑

i

xiyi)
2).

In particular, if bothx andy are normalized to unity,
∑

i x
2
i

∑

i y
2
i = 1 and(

∑

i xiyi)
2 ≤ 1.

We have the upper bound of the variance as follows:

V ar[uTv − xT y] ≤ 2

k
.

Proof: Please see Appendix 5.6.1 for the proof. �

Lemma 5.1.4 shows that the error (uT v − xT y) of the inner product produced by the

random projection-based perturbation technique is zero onaverage, and the variance is at

most the inverse of the dimensionality of the reduced space multiplied by 2 if the original

data vectors are normalized to unity. Actually, it can be proved thatǫi,j is approximately

Gaussian [98]. The distortion also has an approximate Gaussian distribution with mean

0 and variance less than or equal to2/k. To validate the above claim, we chose a ran-

domly generated dataset from a uniform distribution in[0, 1] with 10, 000 records and100

attributes. We normalized all the attributes to unity and compared their pairwise inner prod-

ucts before and after random projection. Figure 5.2(a) gives the results, which depict that

even under50% data projection rate (whenk = 5000), the inner products still preserve

very well after perturbation, and the errors approximatelyfollow a Gaussian distribution

with mean zero and variance less than2/k. Figure 5.2(b) shows the Root Mean Squared

Error (RMSE) of the estimated inner product matrix with respect to the dimensionality of

the reduced subspace. It can be seen that ask increases, the error decreases exponentially,



91

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

50

100

150

200

250

300

350

Distribution of the errors

N (0, 2/5000) 

(a)

500 1000 2000 3000 4000 5000
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

k

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

(b)

FIG. 5.2. (a) Distribution of the error of the estimated inner products. The dataset contains
10, 000 records and100 attributes. k = 50% × 10000 = 5000 (50% projection). The
random matrix is chosen fromN(0, 2). Note that the variance of the error is even smaller
than the variance of distributionN(0, 2/k). (b) Root Mean Squared Error (RMSE) of the
estimated inner products with respect to the dimensionality of the reduced subspace.

which means that the higher the dimensionality of the data, the better this technique works.

By applying Lemma 5.1.4 to the vector(x − y), we have the following lemma to

quantify the accuracy of the Euclidean distance preserved after random projection.

Lemma 5.1.5 Let x, y be two data vectors inRn. Let R be a k × n random matrix.

Each entry ofR is independent and identically distributed (i.i.d.) according to a Gaussian

distribution with mean zero and varianceσ2
r . Further let

u =
1√
kσr

Rx, and v =
1√
kσr

Ry . Then

E[||u− v||2 − ||x− y||2] = 0 and

V ar[||u− v||2 − ||x− y||2] =
2

k
||x− y||4 =

2

k
(
∑

i

(xi − yi)
2)2.

The above two lemmas show that one can compute both pairwise Euclidean distances and

inner products ink-dimensional space (instead ofn).
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Next, we derive some formulae for the distribution of the projected data. Letu andv

bek-dimensional vectors defined as before. It is easy to show that

ui
√

||x||2/k
∼ N(0, 1),

||u||2
||x||2/k ∼ χ2

k;

ui − vi
√

||x− y||2/k
∼ N(0, 1),

||u− v||2
||x− y||2/k ∼ χ2

k,

whereui andvi are thei-th entry (i = 1, . . . , k) of vectoru andv, respectively, andχ2
k

is the chi-square distribution withk degrees of freedom. Knowing the distribution of the

projected data enables us to derive sharp error bounds. The following lemma gives the

closed-form expression of the accuracy for estimating the Euclidean distance.

Lemma 5.1.6 Let x, y be two data vectors inRn. LetR be ak × n random matrix. Each

entry ofR is independent and identically chosen from a Gaussian distribution with mean

zero and varianceσ2
r . Further let

u =
1√
kσr

Rx, and v =
1√
kσr

Ry . Then

Pr{(1− ǫ)||x− y||2 ≤ ||u− v||2 ≤ (1 + ǫ)||x− y||2} =

∫ k(1+ǫ)

k(1−ǫ)

f(t; k)dt,

wheref(t; k) is the probability density function of chi-square distribution with k-degrees

of freedom.

f(t; k) =







1
2k/2Γ(k/2)

tk/2−1e−t/2 if t > 0;

0 otherwise.

HereΓ(.) denotes the Gamma function:Γ(z) =
∫ ∞
0

tz−1e−tdt.
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FIG. 5.3. The probability of the accuracy of random projection w.r.t. k andǫ. Each entry
of the random matrix is i.i.d., chosen from a Gaussian distribution with mean zero and
constant variance.

Proof:

Pr{(1− ǫ)||x− y||2 ≤ ||u− v||2 ≤ (1 + ǫ)||x− y||2} =

Pr{k(1− ǫ) ≤ k||u− v||2
||x− y||2 ≤ k(1 + ǫ)}.

The above equation implicitly assumes thatx 6= y. Because ||u−v||2
||x−y||2/k

follows a chi-square

distribution withk degrees of freedom, we have

Pr{k(1− ǫ) ≤ k||u− v||2
||x− y||2 ≤ k(1 + ǫ)} =

∫ k(1+ǫ)

k(1−ǫ)

f(t; k)dt.

�

As an illustration, Figure 5.3 shows the actual probabilityof the accuracy with respect

to different values ofk andǫ.
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Similar results can be found elsewhere. For example, the work in [105] shows that if

k ≥ 4+2γ
ǫ2/2−ǫ3/3

log m, then with probability at least1−m−γ , for any rowsx, y, we have

(1− ǫ)||x− y||2 ≤ ||u− v||2 ≤ (1 + ǫ)||x− y||2.

The work in [104, Theorem 2] shows that

Pr{(1− ǫ)||x− y||2 ≤ ||u− v||2 ≤ (1 + ǫ)||x− y||2} ≥ 1− 2e−(ǫ2−ǫ3)k
4 ,

for any0 < ǫ < 1. This result implies that as the reduced dimensionalityk increases, the

distortion drops exponentially, which echoes our previousobservations that the higher the

dimensionality of the data, the better the random projection works.

5.1.3 Variations of Random Projection

For the sake of completeness, we give a brief review on different variations of random

projection in this section.

As we noted before, it is often convenient to letri,j, the entry of random matrix,

follow a symmetric distribution about zero with constant variance. Roughly speaking, all

such projections project the data onto a spherically randomhyperplane though the origin.

While this is conceptually simple, in practice, it amounts to multiplying the data matrix

X with a dense matrix of real numbers. This can be a computationally expensive task in

many real application scenarios. In his work, Achlioptas [105] asserted that one can replace

projections onto spherically random hyperplanes with muchsimpler and faster operations.
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Specifically, he proposed the use of the random matrix with i.i.d. entries defined as follows:

ri,j =
√

s



















1 with probability 1
2s

0 with probability1− 1
2
,

−1 with probability 1
2s

where Achlioptas useds = 1 or s = 3. Because the multiplication of
√

s can be delayed,

no floating point arithmetic is needed and all computation amounts to highly optimized

database aggregation operations. Whens = 3, one can achieve threefold speedup because

only one third of the data need to be processed. Liet al. [106] further extended Achlioptas

work by pointing out that the random entries can be chosen from {−1, 0, 1} with proba-

bilities { 1
2
√

n
, 1− 1√

n
, 1

2
√

n
} for achieving a significant

√
n-fold speedup, with little loss in

accuracy.

Vempala [102] introduced a random projection technique that preserves the Hamming

distance (which we will denote as|.|H) among binary vectors. Mathematically speaking,

let R be ak × n random matrix with each entry independently set to be 1 with probability

p and 0 with probability1 − p. A vectorx in Z
n
2 is projected into a vectoru in Z

k
2 as

u = Rx. Here, the arithmetic is carried out modulo 2, so we get a 0,1 vector. As the

next lemma asserts, by choosingp appropriately, distance within a certain range can be

preserved approximately; distances outside this range canonly be distorted away from the

range.

Lemma 5.1.7 [102, Lemma 7.2] Let0 ≤ ǫ ≤ 1
2

and1 ≤ l ≤ n. Let each entry of ak × n

matrixR be chosen independently to be 1 with probabilityp = ǫ2/l and 0 with the rest. Let

x, y be two vectors inZn
2 andu, v be obtained as

u = Rx and v = Ry.
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There is a constantC such that with probability at least1− 2e−Cǫ4k,

• If |x− y|H < l
4
, then|u− v|H < (1 + ǫ)kp l

4
.

• If l
4
≤ |x− y|H ≤ l

2ǫ
, then(1− ǫ)kp ≤ |u−v|H

|x−y|H ≤ (1 + ǫ)kp.

• If |x− y|H > l
2ǫ

, then|u− v|H > (1− ǫ)kp l
2ǫ

.

5.2 Privacy Applications of Random Projection

In this section, we demonstrate several privacy preservingdata mining applications of

the random projection-based perturbation technique. All the datasets we used for the exper-

iments were chosen from the UCI Machine Learning Repositoryand KDD Archive without

any normalization. The random matrices were generated froma Gaussian distribution with

mean 0 and variance 4.

The application scenario can be defined as follows. Suppose there areN organizations

O1, O2, . . . , ON ; each organizationOi has a private transaction databaseDBi. A third

party data miner wants to learn certain statistical properties of the union of these databases
⋃N

i=1 DBi. These organizations are comfortable with this, but they are reluctant to disclose

their raw data. This is generally referred to as thecensus scenarioas we discussed in the

previous chapters. Without loss of generality, we illustrate the application in both single-

party-input and two-party-input scenarios (as shown in Figure 5.4).

5.2.1 Privacy Preserving Inner Product Computation from Distributed Data

Problem. Let X be ann-dimensional sensitive data vector owned by Alice andY be an

n-dimensional sensitive data vector owned by Bob. A third party wants to compute the

inner product of these two vectors. None of these parties should know the others’ private

data.
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FIG. 5.4. (a) Distributed two-party-input computation model.(b) Single-party-input
computation model.

Algorithm:

1. Alice and Bob cooperatively generate a secret random seedand use this seed to gen-

erate ak × n random matrixR.

2. Alice and Bob project their data ontoRk usingR and release the perturbed version

U = 1√
kσr

RX andV = 1√
kσr

RY to a third party.

3. The third party computes the inner product using the perturbed dataU andV and

getsUT V ≈ XT Y .

Discussions: Similarly, the third party can compute the Euclidean distance on the

perturbed data. When the data is properly normalized, the inner product matrix is nothing

but the cosine angle or the correlation coefficient ofX andY .

Experiments: We considered the Adult database from the UCI Machine Learning

Repository for the experiment. This data set was originallyextracted from the 1994 census

bureau database. Without loss of generality, we selected the first10, 000 rows of the data

with only two attributes (fnlwgt, education-num) and showed how the random projection

preserves the inner product and (the square of) the Euclidean distance between these two

attributes. Table 5.1 and 5.2 present the results over20 runs. Here,k is the dimensionality
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k Mean(%) Var(%) Min(%) Max(%)
100(1%) 9.91 0.41 0.07 23.47
500(5%) 5.84 0.25 0.12 18.41
1000(10%) 2.94 0.05 0.03 7.53
2000(20%) 2.69 0.04 0.01 7.00
3000(30%) 1.81 0.03 0.27 6.32

Table 5.1. Relative errors in computing the inner product ofthe two attributes.

k Mean(%) Var(%) Min(%) Max(%)
100(1%) 10.44 0.67 1.51 32.58
500(5%) 4.97 0.29 0.23 18.32
1000(10%) 2.70 0.05 0.11 7.21
2000(20%) 2.59 0.03 0.31 6.90
3000(30%) 1.80 0.01 0.61 3.91

Table 5.2. Relative errors in computing the square of the Euclidean distance of the two
attributes.

of the perturbed vector,k also represents the percentage of the dimensionality of theorig-

inal vector. It can be seen that when the vector is reduced to30% of its original size, the

relative error of the estimated inner product and (the square of ) the Euclidean distance is

only around1.80%. Figure 5.5 illustrates how the original data and the perturbed data look

alike.

5.2.2 Privacy Preserving K-Means Clustering from Distributed Data

Problem. Let X be ann ×m1 data matrix owned by Alice andY be ann × m2 matrix

owned by Bob. A third party wants to do clustering on the unionof these two data sets

(X : Y ) without directly accessing the raw data.

Algorithm:

1. Alice and Bob cooperatively generate a secret random seedand use this seed to gen-

erate ank × n random matrixR.
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FIG. 5.5. Original data attributes and their perturbed counterparts. The random projection
rate is 30 percent.

2. Alice and Bob project their data ontoRk usingR and release the perturbed version

U = 1√
kσr

RX, V = 1√
kσr

RY .

3. The third party does K-Means clustering over the data set(U : V ).

Discussions: The above algorithm is based on the fact that projection preserves the

distance among vectors. Actually, random projection maps the data to a lower dimensional

random space while maintaining much of its variance just like PCA. However, random

projection only requiresO(mnk)(k << n) computations to project ann × m data ma-

trix into k × m dimensions, while the computation complexity of estimating the PCA is

O(n2m) + O(n3). This algorithm can be generalized for other distance-based data mining

applications such as nested-loop outlier detection, k-nearest neighbor search, etc.

Experiments: For this task, we chose the Synthetic Control Chart Time Series data set

from the UCI KDD Archive. This data set contains 600 examplesof control charts, each

with 60 attributes. There are six different classes of control charts: normal, cyclic, increas-
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Clustered Instances
#Attributes 1 2 3 4 5 6 Error Rate
60 (Original data) 187 25 41 34 117 196 0.00%
30 (50% Projection) 188 25 40 34 117 196 0.17%
20 (33% Projection) 182 29 36 32 128 193 2.50%
10 (17% Projection) 182 19 65 36 108 190 4.33%

Table 5.3. K-Means clustering from the original data and theperturbed data.

ing trend, decreasing trend, upward shift and downward shift. We horizontally partitioned

the data into two subsets, performed random projections, and then conducted K-Means

clustering on the union of the projected data. Table 5.3 shows the results. It can be seen

that even with a17% projection rate (the number of attributes is reduced from60 to 10),

the clustering error rate is still as low as4.33%.

5.2.3 Privacy Preserving Linear Classification

Problem. Given a collection of sensitive data pointsx(i) (i = 1, 2, . . . , m) in Rn, each

labelled as positive or negative, a third party data miner wants to find a weight vectorw

such thatwTx(i) > 0 for all positive pointsx(i) andwT x(i) < 0 for all negative pointsx(i).

Algorithm:

1. The data owner generates ak×n random matrixR and projects the data toRk using

R such that̂x(i) = 1√
kσr

Rx(i), ∀i, and releases the perturbed data.

2. The third party runs the perceptron algorithm inRk:

(a) Letŵ = 0. Do until all the examples are correctly classified

i. Pick an arbitrary misclassified examplex̂i and letŵ ← ŵ+classlabel(x̂(i))x̂(i).

Discussions: Note that in this algorithm, the class labels are not perturbed. Future

examplex is labelled positive ifŵT ( 1√
kσr

Rx) > 0 and negative otherwise. This is actually
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the same as checking whether(ŵT 1√
kσr

R)x > 0, namely, a linear separator in the original

n-dimensional space. This also implies thatŵ is nothing but the projection ofw such that

ŵ = 1√
kσr

Rw and, therefore,

ŵT x̂(i) =
1√
kσr

wT RT 1√
kσr

Rx(i) ≈ wT x(i).

This algorithm can be easily generalized for linear SupportVector Machine (SVM) because

in the Lagrangian dual problem of the SVM task, the relationship of the original data points

is completely quantified by inner product.

Experiments: We selected the Iris Plant Database from the UCI Machine Learning

Repository. This is a very small data set with 150 instances and only 4 numeric attributes.

Our experiments show that even for such a small data set, the algorithm still works well.

The data set contains 3 classes of 50 instances each, where each class refers to a type of iris

plant (Iris-setosa, Iris-versicolor, Iris-virginica). We manually merged Iris-setosa and Iris-

versicolor together so that we could do a binary classification on this data. The projection

rate is50%; hence, the data has only two attributes left after perturbation. We performed

a voted perceptron learning on both the original data and theperturbed data. The accuracy

on the original data over 10-fold cross validation is94.67%. The classification results on

the perturbed data over 10-fold cross validation are demonstrated in Table 5.4. It shows

that the accuracy on the perturbed data over 10-fold cross validation is86.67%, which is

91.55% as good as the results over the original data.



102

Accuracy(%)

1 2 3 4 5
66.67 80.00 100.00 80.00 93.33

6 7 8 9 10
86.67 80.00 93.33 93.33 93.33

Mean(%) 86.67
Std(%) 9.43

Table 5.4. Classification on the perturbed iris plant data over 10-fold cross validation.

5.3 Bayes Privacy Model

In this section1, we discuss aBayes privacy modelto measure the privacy offered

by a perturbation technique. This model considers attacker’s prior and posteriori beliefs

about the data and uses Bayesian inference to evaluate the privacy. This model consists

of three building blocks: 1) the definition of attacker’s prior and posteriori beliefs; 2) the

information non-disclosure principle; and 3) the implementation of the principle.

Attacker’s Prior and Posteriori Beliefs: Let x be the unknown private data andy be the

observed perturbed data. They can be viewed as the observations of two random vectors

x andy, respectively. Letθ be the attacker’s additional background knowledge. Further

let fx(x) be the probability density ofx andfx|y,θ(x|y, θ) be the conditional probability

density ofx giveny = y andθ = θ. We can define the attacker’s prior and posteriori belief

about the private data as follows:

• Attacker’s prior belief:α(x) = fx(x)

• Attacker’s posteriori belief:β(x, y, θ) = fx|y,θ(x|y, θ).

Having the perturbed data and the additional background knowledge, the attacker

1Throughout this section, we use theUPPER CASE BOLD LETTER to represent a random matrix and
the UPPER CASE REGULAR LETTER to represent an observation ofa random matrix. We use thelower
case bold letterto denote a random vector and the lower case regular letter todenote an observation of a
random vector.
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could possibly derive private information about the original data. Ideally, a secure per-

turbation technique should conform to the following principle.

Information Non-disclosure Principle: The perturbed data should provide the attacker

with little additional information beyond the attacker’s prior belief and other background

knowledge.

Implementation of the Principle: This principle is universal, but, depending on the appli-

cations, it can be instantiated in several different ways toquantify the privacy offered by a

perturbation technique. For example, we have the followingpossible choices.

1. The(ρ1, ρ2)-privacy breach [37] happens whenα(x) < ρ1 andβ(x, y, θ) > ρ2 or

whenα(x) > 1− ρ1 andβ(x, y, θ) < 1− ρ2.

2. An alternate way is to measure the difference of the posteriori and the prior for a given

x (e.g., β(x, y, θ)−α(x)) or over all the possiblex’s (e.g., maxx(β(x, y, θ)−α(x))).

3. Another possible way is to compute the maximum a posteriori probability (MAP)

estimate ofx giveny = y andθ = θ:

x̂MAP (y, θ) = arg max
x

β(x, y, θ) = arg max
x

fx|y,θ(x|y, θ).

With this estimation, we can either comparex̂ with the attacker’s prior and back-

ground knowledge to see whetherx̂ offers any extra information. We can also com-

pute (theoretically or empirically) the probability of anǫ-privacy breach (see Defin-

ition 4.2.2),i.e., Prob{||x̂ − x̃|| ≤ ||x̃||ǫ}, wherex̃ is the original data that actually

generatesy through the perturbation.

The (ρ1, ρ2)-privacy breach [37] is a good metric to measure the information disclo-

sure. However, it works only for discrete data. It assumes records of both private data and

perturbed data are statistically independent, and it requires the transition probability (the
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probability from one specific private data record to a specific perturbed data record) to be

explicitly defined. These requirements make it difficult forquantifying privacy of multi-

plicative perturbation. In this dissertation, we use the maximum a posteriori probability

(MAP) estimate to recover the original data and, therefore,to quantify the privacy offered

by random projection-based perturbation. We choose MAP because 1) it has a solid sta-

tistics foundation; 2) it is closely related to maximum a posteriori probability hypothesis

testing [90, Chapter 8]; 3)in the absence of a priori information, MAP estimate is equiva-

lent to maximum likelihood estimate (MLE); 4) it often produces estimates with errors that

are not much higher than the minimum mean square error; and 5)it is relatively easy to

derive the conditional probability density function in themultiplicative data perturbation

scenario.

Next, We will first discuss the MAP estimate with the assumption that the original

data arose as a sample from a multivariate distribution. After that, we will generalize the

results we have found to the matrix variate distribution scenario [107].

5.3.1 MAP Estimate for Multivariate Distribution

Let the original data haven attributes andm records. They can be considered as

observations of a random vector of lengthn, denoted byx ∈ R
n. LetR be ak×n random

matrix with each entry independent and identically chosen from N(0, 1). Let y = 1√
k
Rx.

We also make the following assumptions:

Assumption 5.3.1 (The Attacker’s Prior Belief aboutx) The attacker knows the range

of each entry ofx, denoted byxi, i = 1, . . . , n. In other words, the attacker knows that

xi ∈ [ai, bi]. Without other information, the attacker further assumes that each entryxi is

independent and follows a uniform distribution withfxi
(xi) = 1

bi−ai
for ai ≤ xi ≤ bi, and

fxi
(xi) = 0 otherwise.
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Assumption 5.3.2 (The Attacker’s Additional Background Knowledge) The attacker has

no other background knowledge about the original data, thatis, θ = ∅.

We are interested in computing the maximum a posteriori probability (MAP) estimate

of x given the observationy = y:

x̂MAP (y) = arg max
x

fx|y(x|y). (5.2)

Using the Bayesian rule, we get the following formulae:

x̂MAP (y) = arg max
x

fx|y(x|y)

= arg max
x

fy|x(y|x)fx(x)

fy(y)

= arg max
x

fy|x(y|x)fx(x). (5.3)

Note thaty is a k-dimensional random vector withyi =
∑n

j=1 rijxj , i = 1, . . . , k,

whererij represents the entry on thei-th row andj-th column ofR. It can be proved

that givenx = x, y follows a normal distribution with meanµy = 0 and covariance

Σy = 1
k







xT x

. . .

xT x






. Therefore, we can writefy|x(y|x) as follows:

fy|x(y|x) =
1

(2π)k/2|Σy|1/2
exp

(

−1

2
(y − µy)T Σ−1

y (y − µy)

)

=
k

1

2

(2πxT x)k/2
exp

(

−kyTy

2xT x

)

. (5.4)

From Eq. 5.4 and Assumption 5.3.1, we have

fy|x(y|x)fx(x) =
k

1

2

(2πxT x)k/2
exp

(

−kyTy

2σ2

)

1

b1 − a1

1

b2 − a2
. . .

1

bn − an
.
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Because the logarithm is a monotone one-to-one function, wecan maximize the fol-

lowing function instead:

log fy|x(y|x)fx(x) = ln
k

1

2

(2πxT x)k/2
+

(

−kyT y

2xT x

)

+ ln
1

b1 − a1
+ · · ·+ ln

1

bn − an
.(5.5)

To solve the optimization problem, letC1 = 1
2
ln k − k

2
ln 2π, let C2 = Σn

i=1 ln 1
bi−ai

,

Eq. 5.5 can be simplified as

−k

2
ln xT x− kyTy

2xT x
+ C1 + C2.

Further letz = xT x, the function to be maximized becomes

−k

2
ln z − kyT y

2z
, (5.6)

such thatl ≤ z ≤ u, wherel =
∑n

i=1 a2
i andu =

∑n
i=1 b2

i .

Now we can draw a graph to see if and where this function has a maximum value

in the region[l, u]. If it has a maximum at a pointz∗ ∈ (l, u), we can set the derivative

to zero in order to findz∗. In this case, it can be easily proved thatz∗ = yT y, i.e., any

vectorx̂ that satisfieŝxT x̂ = yT y is the optimal solution. This is interesting because we

know E[yTy] = xT x. Therefore, the maximum a posteriori estimation does not provide

the attacker any more information about the private data than what has been implied by the

properties of projection itself. If the function has an end-point maximum, either atz = l or

z = u, then, the derivative need not (and usually won’t) vanish there. Having foundz∗, our

optimal solution is any point on the hyper-sphere
∑n

i x̂2
i = z∗.

In summary, under the assumptions 5.3.1 and 5.3.2, the random projection-based per-

turbation does not offer the attacker more information about the private data than what has

been implied by the inner product preservation property itself. If the attacker has no prior
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knowledge about the private data at all, the MAP estimate simply becomes a maximum

likelihood estimate [90, pages 337–338]. If the prior has other distributions, we might not

be able to derive a simple analytic solution to the maximization problem. In such situations,

the MAP estimate must be sought using numerical methods. We will discuss that scenario

in detail in Section 5.4.2.

5.3.2 Probability of ǫ-Privacy Breach

In the previous section, we proved that, under mild assumptions, anyx̂ that satisfies

x̂T x̂ = yTy is the maximum a posteriori probability (MAP) estimate of the original datax

given the perturbed datay. In other words,̂x can only be a point on the surface of a hyper-

sphere centered at the origin with radius||y|| =
√

yTy. In this section, we will compute

the probability ofǫ-privacy breachρ(x, ǫ) 2 when the attacker randomly chooses one such

x̂.

Let Sn(||x||) denote the hyper-sphere inRn centered at the origin with radius||x||.

For anyA ⊆ Sn(||x||), let SA(A) denote the surface area ofA. Let Sn(x, ||x||ǫ) denote

the portion ofSn(||x||) whose distance fromx is no larger than||x||ǫ, i.e., Sn(x, ||x||ǫ) =

{x̂ ∈ Sn(||x||) : ||x̂−x|| ≤ ||x||ǫ}. The probability of privacy breach depends on the value

of xT x, wherex is the original data point.

If xT x = yT y, thenSn(||x||) = Sn(||y||) (the big hyper-sphere in Figure 5.6). The

probability of privacy breach is the ratio of the surface area of the big hyper-sphere that is

within the small hyper-sphere to the whole surface area of the big hyper-sphere. In Section

4.4.2 we derived the closed-form expression for the probability of ǫ-privacy breach for this

2Definition 4.2.2 defines the probability ofǫ-privacy breachρ(x, ǫ) = Prob{||x̂− x|| ≤ ||x||ǫ}) for any
ǫ > 0.
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FIG. 5.6. MAP estimate
whenxT x = yTy.
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FIG. 5.7. MAP estimate
whenxT x < yTy.
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FIG. 5.8. MAP estimate
whenxT x > yTy.

scenario. Mathematically, we have

ρ(x, ǫ) =
SA(Sn(x, ||x||ǫ))

SA(Sn(||x||))

=







(

1
π

)

2arcsin
(

||x||ǫ
2||x||

)

if ||x||ǫ < 2||x||;

1 otherwise.

If xT x < yTy or xT x > yTy, the ratio of the surface area is always smaller than the

ratio whenxT x = yTy. Specifically, for the case shown in Figures 5.7 and 5.8, we can see

that the ratio is equal to 0. Therefore, the value ofρ(x, ǫ) whenxT x = yTy serves as an

upper bound for the probability ofǫ-privacy breach.

5.3.3 Privacy/Accuracy Control

In the previous section, we derived the closed-form expression of the probability of

ǫ-privacy breach (whenxT x = yTy) and its upper bound (whenxT x 6= yTy). The com-

putation requires that the data owner knows both the original datax and the perturbed data

y. However, in practice, the data owner usually wants to control the privacy and accuracy
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tradeoff before actually performing the perturbation. In this section, we will discuss this

possibility and offer guidelines for the data owner to perturb the data.

Privacy: As illustrated in Figure 5.9, if||y|| < ||x|| − ||x||ǫ or ||y|| > ||x|| + ||x||ǫ, none

of the data pointŝx on the surface of a hyper-sphere centered at the origin with radius||y||
will satisfy ||x̂− x|| ≤ ||x||ǫ; hence, the probability ofǫ-privacy breach will be 0. So, the

question is what is the probability that||y|| < ||x|| − ||x||ǫ or ||y|| > ||x||+ ||x||ǫ.

In Section 5.1.2, we showed that

||y||2
||x||2/k ∼ χ2

k.

Hence,

Prob{||y|| < ||x|| − ||x||ǫ or ||y|| > ||x||+ ||x||ǫ} =

Prob{||y||2 < (1− ǫ)2||x||2 or ||y||2 > (1 + ǫ)2||x||2} =

Prob{ ||y||
2

||x||2/k < k(1− ǫ)2 or
||y||2
||x||2/k > k(1 + ǫ)2} =

∫ k(1−ǫ)2

−∞
f(t; k)dt +

∫ +∞

k(1+ǫ)2
f(t; k)dt, (5.7)

wheref(t; k) is the probability density function of the chi-square distribution with k de-

grees of freedom. Thus, Eq. 5.7 gives the probability thatρ(x, ǫ) = 0 for a givenǫ and

k.

Accuracy: Recall that Lemma 5.1.6 proved that for any datax(1), x(2) and their perturbed

versiony(1), y(2), we have

Pr{(1− η)||x(1) − x(2)||2 ≤ ||y(1) − y(2)||2 ≤ (1 + η)||x(1) − x(2)||2} =
∫ k(1+η)

k(1−η)

f(t; k)dt, (5.8)
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FIG. 5.9. The shaded area is||y|| < ||x|| − ||x||ǫ or ||y|| > ||x||+ ||x||ǫ.

whereη > 0 andf(t; k) is the probability density function of the chi-square distribution

with k degrees of freedom. As eitherη or k increases, the probability increases (illustrated

in Figure 5.3). Therefore, Eq. 5.8 gives the probability of the accuracy of random projection

for a givenη andk.

Combing Eq. 5.7 and Eq. 5.8, the data owner could setup privacy and accuracy

thresholds (for a givenǫ andη) and determine the value ofk such that both conditions are

satisfied. As an illustration, let us look at Figure 5.10. This figure plots the probability

of the accuracy (for a givenη = 0.10) and the probability thatρ(x, ǫ) = 0 (for a given

ǫ = 0.01) with respect tok. It can be seen that ask increases, the probability of the ac-

curacy increases, but the probability of zero privacy breach decreases – a tradeoff between
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accuracy and privacy. If, for example, the data owner wants

Pr{(1− η)||x(1) − x(2)||2 ≤ ||y(1) − y(2)||2 ≤ (1 + η)||x(1) − x(2)||2} ≥ 80%, η = 0.10,

thenk should be greater than 320. If in the meantime, the data ownerwould like to achieve

ρ(x, ǫ) = 0, ǫ = 0.01 with probability at least70%, thenk should be less than 750. There-

fore, the data owner simply chooses ak in (320, 750) and performs the perturbation.

5.3.4 MAP Estimate for Matrix Variate Distribution

In this section, we assume that the original data arose as a sample from a random

matrix instead of a random vector. This allows the attacker to use the information of both

row-wise and column-wise dependencies of the perturbed data and the original data. Next,

we first present a brief introduction to some definitions and theorems from matrix algebra.

Then, we will derive the closed-form expression of the MAP estimate for the matrix variate

distribution.
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Definition 5.3.3 [108, pages 8] The Kronecker product of two matricesA(m×n) = (ai,j)

andB(p× q) = (bi,j), denoted byA⊗ B, is themp× nq matrix defined by

A⊗B =



















a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a2,nB

...
...

...
...

am,1B am,2B · · · am,nB



















.

Definition 5.3.4 [108, pages 9] For a matrixX(n × m), vec(X) is thenm × 1 vector

defined as

vec(X) =



















x(1)

x(2)

...

x(m)



















,

wherex(i), i = 1, . . . , m is thei-th column ofX.

Definition 5.3.5 [108, pages 55] The random matrixR(k × n) is said to have a matrix

variate Gaussian distribution with mean matrixM(k × n) and covariance matrixΣ ⊗ Ψ,

whereΣ(k × k) > 0 andΨ(n× n) > 0, if vec(RT ) ∼ Nkn(vec(MT ), Σ⊗Ψ).

This definition tells us that if we create a single vector frommatrix R by stacking

the row vectors ofR one after another, and if this vector follows a multivariateGaussian

distribution, this random matrixR has a matrix variate Gaussian distribution.

We shall use the notationR ∼ Nk,n(M, Σ⊗Ψ). The density of the random matrixR

is given by the following theorem.

Theorem 5.3.6 [108, pages 55] IfR ∼ Nk,n(M, Σ ⊗ Ψ), then the probability density
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function ofR is given by

(2π)−
1

2
kn det(Σ)−

1

2
n det(Ψ)−

1

2
ketr{−1

2
Σ−1(R−M)Ψ−1(R −M)T}, (5.9)

whereR ∈ Rk×n, M ∈ Rk×n, andetr is the exponential trace functionetr{.} = exp(trace(.)).

Corollary 5.3.7 LetR be ak × n random matrix with each entry independent and identi-

cally distributed (i.i.d.) according toN(0, 1). R has a matrix variate Gaussian distribution

with mean matrixM = 0 and covariance matrixIk⊗ In, denoted byR ∼ Nk,n(0, Ik⊗ In).

Proof: Because each entry ofR is i.i.d. and follows aN(0, 1) distribution,vec(RT ) has a

multivariate Gaussian distribution with mean 0 and covarianceIkn = Ik⊗In. By definition,

R has a matrix variate Gaussian distribution. �

Theorem 5.3.8 Let R be ak × n random matrix with each entry independent and identi-

cally distributed (i.i.d.) according toN(0, 1). LetX(n×m) be a constant matrix. Further

assumerank(X) = m. Let Y = 1√
k
RX. Y has a matrix variate Gaussian distribution

with mean matrix0 and covarianceIk ⊗ 1
k
XT X.

Proof: According to [90, Theorem 5.16], each row vector ofY has a multivariate Gaussian

distribution with mean vector 0 and covariance1
k
XT X. Because each entry ofR is sta-

tistically independent, any pairs of row vectors ofY are statistically independent too. We

can create a single vector by stacking row vectors ofY one after another. According

to [90, Problem 5.7.8], the new vector follows a multivariate Gaussian distribution with

mean 0 and a block diagonal covariance matrix1
k











XT X 0 · · · 0

0 XT X · · · 0

...
...

. . .
...

0 0 · · · XT X











. Therefore,

by definition, we haveY ∼ Nk,m(0, Ik ⊗ 1
k
XTX). Hence, the probability density function
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of Y conditioned onX is given by

fY|X(Y |X) = (2π)−
1

2
km det(

1

k
XT X)−

1

2
ketr{−1

2
Y (

1

k
XT X)−1Y T},

whereX has full column rank. (5.10)

�

Armed with basic matrix algebra definitions and theories, wecan now compute the

maximum a posteriori probability (MAP) estimate ofX given the observationY in the

matrix form.

X̂MAP (Y, θ) = arg max
X

fX|Y,θ(X = X|Y = Y, θ = θ)

= arg max
X

fY,θ|X(Y = Y, θ = θ|X = X)fX(X = X)

To solve this maximization problem, we make the following assumptions:

Assumption 5.3.9 (The Attacker’s Prior Belief aboutX) The attacker assumes thatfX(X)

is uniform within some range.

Assumption 5.3.10 (The Attacker’s Additional Background Knowledge) The attacker

has no other background knowledge about the private data, that is,θ = ∅.

Assumption 5.3.11 (Independent Records)We assume bothX andY have full column

rank. 3.

The first two assumptions are the same as the assumptions madefor multivariate distri-

butions. The third assumption allows the attacker to consider only the linearly independent

records because linearly dependent records can be derived from the independent records.

3Note thatY having full column rank implicitly implies thatk ≥ m.
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Under these assumptions, the MAP estimate becomes

X̂MAP (Y ) = arg max
X

(2π)−
1

2
km det(

1

k
XT X)−

1

2
ketr{−1

2
Y (

1

k
XT X)−1Y T},

whereX andY have full column rank. (5.11)

The following theorem gives the solution to this maximization problem.

Theorem 5.3.12AnyX that satisfies conditionXT X = Y T Y can be the optimal solution

to the problem defined in Eq. 5.11.

Proof: Please see Appendix 5.6.2 for the proof. �

Note that this result echoes the results we have for the multivariate case. If we consider

Y = RX as a random matrix, we knowE[YTY] = XT X. So the optimal solution we

have does not provide the attacker with more information about the private dataX than

what has been implied by the properties of random projectionitself.

In the following part of this chapter, we will revisit some attack techniques designed

in Chapter 4. We will see whether the random projection-based perturbation is vulnerable

to these attacks.

5.4 Attack Techniques

In Chapter 4, we addressed the security issues of distance preserving perturbation by

assuming the role of an attacker armed with three types priorinformation regarding the

original data. We designed three different attack techniques and examined how well the

attacker can recover the original data from the perturbed data and prior information. In this

section, we study the privacy preserving properties of random projection along the same

line. In particular, we consider the following prior knowledge the attacker could have.
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5.4.1 Prior Knowledge

Known input-output The attacker knows some collection of linearly independentprivate

data records. In other words, the attacker has a set of linearly independent input-

output pairs.

Known sample The attacker knows that the original dataset arose as independent samples

of somen-dimensional random vectorV with unknown p.d.f. Also the attacker has

another collection of independent samples fromV .

Independent signalsEach data attribute can be thought of as a time-varying signal. All

the signals, at any given time, are statistically independent; and all the signals are

non-Gaussian with the exception of one.

Random matrix is disclosed The specific realization of the random matrix is disclosed.

Next, we analyze the security of random projection-based perturbation for each of the sce-

narios listed above.

5.4.2 Known Input-Output Attack

Consider the perturbation model

Y =
1√
k
RX ⇔

(

Yp Ym−p

)

=
1√
k
R

(

Xp Xm−p

)

.

Let Xp denote the firstp columns ofX andXm−p the remainder (likewise forY ). We

assume that columns ofXp are all linearly independent andXp is known to the attacker (Y

is, of course, also known). The attacker will producex̂ and1 ≤ î ≤ m− p such that̂x is a

good estimate ofx(̂i), the îth column inXm−p (the(p + î)th column inX). Here, we also
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assumex(̂i) is linearly independent ofXp because otherwise its value can be derived from

a linear combination ofXp.

If p = n, then the attacker can recover the random matrix exactly becauseR =
√

kY X−1
p . Note that even in this case, the attacker may not be able to get the exact value

of the original private data. This is different from the distance preserving perturbation. We

will discuss this case in Section 5.4.5 in detail. Throughout this section, we assumep < n.

Next, we use the MAP estimate technique discussed in Sections 5.3.1 and 5.3.4 to recover

the private data given the known inputs and outputs.

The MAP estimate of a data recordx given its perturbed versiony and known input-

output pairsRXp = Yp is

x̂MAP (y, θ) = arg max
x

fx|y,θ(x = x| 1√
k
Rx = y,

1√
k
RXp = Yp)

= arg max
x

fy,θ|x(
1√
k
Rx = y,

1√
k
RXp = Yp|x = x)fx(x = x)

= arg max
x

fx,y,θ(x = x,
1√
k
Rx = y,

1√
k
RXp = Yp)

= arg max
x

fx,y,θ(
1√
k
Rx = y,

1√
k
RXp = Yp)

= arg max
x

fx,y,θ(
1√
k
RX̄ = Ȳ ),

whereX̄ = [xXp] andȲ = [yYp].

The above equation can be written as

x̂MAP (y, θ) = arg max
x

f 1√
k
RZ|Z(

1√
k
RZ = Ȳ |Z = X̄)fZ(Z = X̄).

Assuming thatfZ is uniform over some interval, we get

x̂MAP (y, θ) = arg max
x

f 1√
k
RZ|Z(

1√
k
RZ = Ȳ |Z = X̄).
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According to Theorem 5.3.8,f 1√
k
RZ|Z( 1√

k
RZ = Ȳ |Z = X̄) has the following form:

(2π)−
1

2
k(p+1) det(

1

k
X̄T X̄)−

1

2
ketr{−1

2
Ȳ (

1

k
X̄T X̄)−1Ȳ T},

whereX̄ has full column rank.

Theorem 5.3.12 tells us that if we knew nothing aboutX̄, we could solve the MAP

problem analytically. However, in the known input-output scenario, we know all the

columns ofX̄ except for only one column. It is very difficult, if it is not impossible, to

find an analytic solution in that case. Instead, we turn to numerical approaches to solve the

maximization problem. In our experiments, we used the Matlab implementation4 of the

Nelder-Mead simplex algorithm [109] to find the optimal solution. This is a direct search

method that attempts to optimize a scalar-valued nonlinearfunction of n real variables

using only function values, without any numerical or analytic gradients. Since its publica-

tion in 1965, the Nelder-Mead simplex algorithm has become one of the most widely used

methods for nonlinear unconstrained optimization. The book [110], which contains a bib-

liography with thousands of references, is devoted entirely to this algorithm and variations.

Each iteration of this algorithm begins with a simplex. Here, a simplex inn-dimensional

space is characterized by then + 1 distinct vectors that are its vertices. In 2D space, a

simplex is a triangle; in 3D space, it is a pyramid. At each step of the search, a new point in

or near the current simplex is generated. The function valueat the new point is compared

with the function’s values at the vertices of the simplex and, usually, one of the vertices is

replaced by the new point, giving a new simplex. This step is repeated until the diameter

of the simplex is less than the specified tolerance.

To demonstrate the performance of the MAP estimate-based known input-output at-

tack, we conducted experiments on the same Letter Recognition data used in Section 4.5.3.

4http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fminsearch.html
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This data has20, 000 records and16 numeric features. We chose the first6 features (ex-

cluding the class label) for the experiments. The setup of the experiments is illustrated in

Algorithm 5.4.2.1.

Algorithm 5.4.2.1 MAP Estimate-based Known Input-Output Attack

Inputs: Let X denote the Letter Recognition Data with 6 attributes and 20,000 records.
Let Y = RX. Let k denote the number of rows ofR. Let p denote the number of
known columns of the private data.

1: for k = 6 to 3 do
2: for p = k − 1 to 1 do
3: for i = 1 to 100 do
4: Randomly choose(p+1) independent columns from the original dataX. Label

the first column to beunknown, and all the other columnsknown.
5: Choose the corresponding(p + 1) columns from the perturbed dataY .
6: for j = 1 to 100 do
7: Call the Nelder-Mead simplex algorithm to solve the maximization problem.

The starting values for the unknown is the median of the known+ a random
number in(−2, 2)

8: end for
9: Choose the best estimation from the above 100 solutions.

10: Compute and record the relative error.
11: end for
12: end for
13: end for

Therefore, for each fixedk andp, we have logged100 relative errors. We report the

mean, median, max, min, variance of the relative errors. We also report the probability of

ǫ-privacy breach. Note that in the experiments’ setup, we choosep + 1 ≤ k to makeY full

column rank. Otherwise, the function may not have an optimal. The experimental results

are shown in Tables 5.5, 5.6, 5.7, and 5.8. It can be seen that as the number of known

input-output pairs decreases, the relative error increases; as the dimension of the perturbed

data decreases, the relative error increases.
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median mean variance min max ρ(x, 0.20) ρ(x, 0.30)
p=5 0.0616 0.0833 0.0055 0.0002 0.3429 0.91 0.99
p=4 0.1459 0.1954 0.0242 0.0194 0.7520 0.65 0.80
p=3 0.2459 0.2715 0.0283 0.0289 0.8564 0.38 0.61
p=2 0.3234 0.3668 0.0496 0.0673 1.2326 0.21 0.49
p=1 0.4230 0.4905 0.0814 0.0704 1.3733 0.15 0.30

Table 5.5. Relative errors of the MAP estimate-based known input-output attack.k = 6

median mean variance min max ρ(x, 0.20) ρ(x, 0.30)
p=4 0.1742 0.2982 0.1351 0.0149 2.3440 0.56 0.71
p=3 0.2468 0.3026 0.0552 0.0263 1.2620 0.37 0.65
p=2 0.2844 0.3588 0.0629 0.0612 1.2668 0.29 0.52
p=1 0.4144 0.4847 0.0883 0.0964 1.4718 0.13 0.29

Table 5.6. Relative errors of the MAP estimate-based known input-output attack.k = 5

5.4.3 Known Sample Attack

In this scenario, we assume that each data record arose as an independent sample

from a random vectorV with unknown p.d.f. Furthermore, we assume that the attacker has

a collection ofp samples that arose independently fromV .

In Section 4.5 of Chapter 4, we designed a Principal Component Analysis (PCA)-

based attack technique. The basic idea is that the covariance matrix of the perturbed data

ΣMT V is related to the covariance of the original dataΣV such thatΣMT V = MT ΣV MT
T ,

whereMT is the orthogonal perturbation matrix (see Theorem 4.5.1).However, it can be

shown that in the random projection scenario, the randomness introduced byR kills the

covariance in the perturbed data used by the PCA-based attack. Specifically, given the

random vectorV , it can be shown thatΣRV equalsInγ for some constantγ. Any vector in

Rk is an eigenvector ofΣRV ; therefore, the PCA-based attack will not work. The following

theorem depicts this property.

Theorem 5.4.1 Let V be a random vector inRn×1. Let R be a random matrix inRk×n,
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median mean variance min max ρ(x, 0.20) ρ(x, 0.30)
p=3 0.2702 0.3532 0.0901 0.0501 2.0506 0.32 0.57
p=2 0.2804 0.3270 0.0413 0.0203 0.9647 0.30 0.57
p=1 0.4376 0.4828 0.0673 0.0896 1.7386 0.05 0.23

Table 5.7. Relative errors of the MAP estimate-based known input-output attack.k = 4

median mean variance min max ρ(x, 0.20) ρ(x, 0.30)
p=2 0.3061 0.3526 0.0463 0.0439 1.0456 0.24 0.49
p=1 0.4503 0.4747 0.0724 0.0896 1.2360 0.14 0.30

Table 5.8. Relative errors of the MAP estimate-based known input-output attack.k = 3

each entry of R being i.i.d. with mean 0 and varianceσ2
r . LetY = RV . LetΣV denote the

population covariance matrix ofV . LetΣRV be the population covariance matrix ofRV .

We haveΣRV = Inγ, whereγ = σ2
rE[

∑

t v
2
t ].

Proof:

ΣRV = E[(RV − E[RV ])(RV − E[RV ])T ]

= E[(RV − E[R]E[V ])(RV −E[R]E[V ])T ]

= E[RV V T RT ].

Here, matrixRV V T RT can be expressed as

RV V T RT =











r1,1 r1,2 · · · r1,n

r2,1 r2,2 · · · r2,n

...
...

. . .
...

rk,1 rk,2 · · · rk,n





















v2

1
v1v2 · · · v1vn

v2v1 v2

2
· · · v2vn

...
...

. . .
...

vnv1 vnv2 · · · v2
n











.











r1,1 r2,1 · · · rk,1

r1,2 r2,2 · · · rk,2

...
...

. . .
...

r1,n r2,n · · · rk,n











.

It can be shown that the(i, j)-th entry (i = 1, . . . , k, j = 1, . . . , k) of RV V T RT is







∑n
q=1

∑n
p=1,p 6=q ri,prj,qvpvq +

∑n
t=1 r2

i,tv
2
t , if i = j;

∑n
q=1

∑n
p=1 ri,prj,qvpvq, if i 6= j.
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Therefore, the(i, j)-th entry ofE[RV V T RT ] is







E[
∑n

q=1

∑n
p=1,p 6=q ri,prj,qvpvq +

∑n
t=1 r2

i,tv
2
t ] = σ2

rE[
∑

t v
2
t ], if i = j;

E[
∑n

q=1

∑n
p=1 ri,prj,qvpvq] = 0, if i 6= j.

This completes the proof. �

5.4.4 Independent Signals Attack

In Section 4.6 of Chapter 4, we introduced Independent Component Analysis (ICA)

as a possible tool for breaching privacy of distance preserving perturbation. In this section,

we revisit ICA and show how to make random projection-based perturbation invulnerable

to this kind of attack.

Decomposability of ICA: Recall that the basic ICA model can be defined as follows:

y(t) = Ax(t), (5.12)

wherex(t) = (x1(t), x2(t), . . . , xn(t))T denotes ann-dimensional vector collecting then

independent source signalsxi(t), i = 1, 2, . . . , n. Heret indicates the time dependence.

Each signalxi(t) can be viewed as an outcome of a continuous-value random process.

A is a k × n unknown mixing matrix, which can be viewed as a mixing systemwith k

receivers. The observed mixture isy(t) = (y1(t), y2(t), . . . , yk(t))
T . The aim of ICA is to

design a filter that can recover the original signals from only the observed mixture. Because

y(t) = Ax(t) = (AΛP )(P−1Λ−1x(t)) for any diagonal matrixΛ and permutation matrix

P , the recovered signalsx(t) can never have completely unique representation. So, the

uniqueness of the recovered signals found by ICA can only be guaranteed up to permutation

and scaling ambiguities.

In practice, a linear filter is designed to get the recovered signalsx̂(t) = (x̂1(t), x̂2(t),
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. . . , x̂l(t))
T from ak-dimensional inputy(t) = (y1(t), y2(t), . . . , yk(t))

T . In other words,

we need to find anl × k matrixB such that

x̂(t) = By(t). (5.13)

Here,B is called the separating matrix. Combining Eq. 5.12 and Eq. 5.13, we get

x̂(t) = BAx(t) = Zx(t), (5.14)

whereZ = BA is an l × n matrix. Each element of̂x(t) is thus a linear combination of

xi(t) with weights given byzi,j , wherezi,j denotes the(i, j)-th entry ofZ.

Ideally, whenk ≥ n (i.e., the number of receivers is greater than or equal to the

number of source signals), if the mixing matrixA has full column rank, there always exists

an l × k separating matrixB such thatZ = BA = I, whereI is an identity matrix. If

this is the case, we can recover all the signals simultaneously up to scaling and permutation

ambiguities.

Whenl ≤ k < n (i.e., the number of sources is greater than the number of receivers),5

it is generally not possible to design linear filters to simultaneously recover all these signals.

This kind of separation problem is termed asovercomplete ICAor under-determined source

separation. Cao and Liu [93] analyzed the conditions for the existence of the separating

matrix B. Next, we first introduce two definitions (Definition 5.4.1 and 5.4.2) and one

theorem (Theorem 5.4.2) from their work, which serve as important building blocks in our

solutions.

Definition 5.4.1 (Partition Matrix) [93] A set ofn integersS = {1, 2, . . . , n} can be

5This implies that the number of recovered signals will be less than or equal to the number of the original
signals. This is reasonable because we cannot get more signals than the original ones.
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partitioned intol (l ≤ n) disjoint subsetsSi, i = 1, 2, . . . , l. An l × n matrixZ is called a

partition matrix if itsi, j-th entryzi,j = 1 whenj ∈ Si, andzi,j = 0 otherwise.Z is called

a generalized partition matrix if it is a product of anl × n partition matrix and ann × n

nonsingular diagonal matrix.

When none of the subsetSi is empty,Z is simply a matrix in which each column has

only one nonzero entry and each row has at least one nonzero entry.

Definition 5.4.2 (l-row Decomposable) [93] A k×n matrixA is calledl-row decompos-

able if there exists anl×k matrixB such thatZ = B×A is anl×n generalized partition

matrix.

Therefore, ifA is l-row decomposable, there exists a matrixB that enablesZ to

separate the source signals intol disjoint subgroups; each outputx̂i(t), i = 1, 2, . . . , l is a

linear combination of the source signals in one subgroup,i.e.,

x̂i =
∑

j∈Si

zi,jxj , i = 1, 2, . . . , l

If for somei, Si = {p}, thenx̂i = zi,pxp, that is, by usingZ, we can separate out one signal

xp up to scaling ambiguities. If the number of the disjoint subgroups isn (i.e., l = n), every

subsetSi (i = 1, . . . , l) contains only one element, and there will be a complete separation.

Theorem 5.4.2 [93] Matrix A is l-row decomposable if and only if its columns can be

grouped intol disjoint groups such that the column vectors in each group are linearly

independent of the vectors in all the other groups.

Proof: Please see the proof of Theorem 1 in [93]. �

Cao et al. proved that whenk < n, the source signals can at most be separated

into k disjoint groups from the observed mixture and at mostk − 1 signals (independent

components) can be separated out.
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Our claim is that if we can control the structure of the mixingmatrix A such that

A is not two-row decomposable, then there is no linear method that can find a matrixB

for separating the source signals into two or more disjoint groups. In that cases, it is not

possible to separate out any of the source signals. The following theorem characterizes this

property.

Theorem 5.4.3 Any k × n (n ≥ 2k, n ≥ 2) random matrix with entries independent

and identically chosen from a continuous distribution in the real domain is not two-row

decomposable with probability 1.

Proof: For ak × n random matrix withn ≥ 2k and any partition of its columns into two

non-empty sets, at least one set will have at leastk members. Thus, this set of columns

contains ak × k sub-matrix, denoted asM . If M is nonsingular, itsk column vectors will

spanR
k Euclidean space. In this case, there is always at least one vector in one group

belonging to the space spanned by the other group, which doesnot satisfy the requirements

in Theorem 5.4.2.

Now let us show thatM is indeed nonsingular with probability 1. It has been proved

in [111, Theorem 3.3] that the probability thatMMT is positive definite is 1.6 Because 1) a

matrix is positive definite if and only if all the eigenvaluesof this matrix are positive and 2)

a matrix is nonsingular if and only if all its eigenvalues arenonzero [107, Theorem 1.2.2],

MMT is nonsingular with probability 1. Further note thatrank(M) = rank(MMT ) =

rank(MT M) [112], thereforeM is nonsingular with probability 1. This completes the

proof. �

The above non-singularity property of a random matrix has also been proved in [107,

Theorem 3.2.1] when the random matrix is Gaussian. Thus, by letting n ≥ 2k, there is

no linear filter that can separate the observed mixtures intotwo or more disjoint groups;

6We get this result by replacing the matrixA in [111, Theorem 3.3] with an identity matrix.
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therefore, it is not possible to recover any of the source signals. In Section?? we will

demonstrate this property with experiments.

The discussion in this section summarizes as:

• Whenk ≥ n (i.e., the number of receiver is greater than or equal to the number

of source signals), all the source signals can be separated out from their mixture up

to scaling and permutation ambiguities if and only if 1) the signals are statistically

independent; 2) the mixing matrixA has full column rank; and 3) at most one source

signal is Gaussian.

• Whenl ≤ k < n (i.e., the number of receivers is less than the number of sources),

the source signals can at most be separated intok disjoint groups from the mixtures

and at mostk− 1 signals can be separated out. In particular, when the mixingmatrix

R is not two-row decomposable (n ≥ 2k, n ≥ 2, and with i.i.d. entries chosen

from a continuous distribution), there is no linear method that can find a matrixB to

separate out any of the source signals.

Recent Work on Overcomplete ICA: Recently, overcomplete ICA (k < n) has drawn

much attention. It has been found that even whenk < n, if all the sources are non-Gaussian

and statistically independent, it is still possible to identify the mixing matrix such that the it

is unique up to a right multiplication by a diagonal and a permutation matrix [113, Theorem

3.1]. If it is also possible to determine the distribution ofx(t), we could reconstruct the

source signals in a probabilistic sense. However, despite its high interest, the overcomplete

ICA problem has only been treated in particular cases. Lewicki et al. [114] proposed

a generalized method for learning overcomplete ICA in whichthe source signals were

assumed to have a sparse distribution,e.g., Laplacian distribution. Several other similar

solutions to the separation of independent components fromtheir overcomplete mixtures

have been proposed [115–117]. However, if any Gaussian signals were allowed, the mixing
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FIG. 5.11. Performance of ICA attack on random projection perturbed image data. The first
row – original images; the second row – perturbed images; andthe third row – recovered
images.

matrix would not be identifiable [118] and the distribution of the source signals would not

be unique [113, Example 2 and 4]. Again, if the sources were correlated, they would

cluster in the same group and only the real independent components hidden behind them

could possibly be found.

Experiments: To demonstrate that ICA attack cannot effectively breach the privacy of

random projection-based perturbation, we chose both imageand audio data for the experi-

ments.

First, we considered the same image dataset used in Section 4.6.3 of Chapter 4. The

dataset consists of four natural scene pictures represented by a450× 338 pixel grid – the

top row of Figure 5.11. Each grid is stretched out into a length 152, 100 row vector. The

perturbed versions, rows ofY = 1√
kσr

RX, can be seen in the middle row of Figure 5.11.

Here, the random projection compressed four pictures into only two. After applying ICA,

the attacker produced estimates as seen in the bottom row of Figure 5.11. It can be seen

that ICA can only produce two pictures and each of them is still a mixture of the original

four pictures. Thus, no pictures can be separated out in thisscenario.

Second, we considered the same four audio signals used in Section 4.6.3 of Chapter
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FIG. 5.12. (a) Linear mixture of the original four source signals (as shown in Figure 4.18)
with a 50% random projection rate. (n = 4, k = 2). (b) The recovered signals. It can
be observed that none of the original signals can be reconstructed and at mostk = 2
independent components can be found by ICA.

4 (shown in Figure 4.18). A perturbation of these signals is generated by pre-multiplying

a 2 × 4 random matrix to them (shown in Figure 5.12(a)). The recovered signals after

applying ICA is shown in Figure 5.12(b). It can be seen that after a50% random projection,

the original four signals are compressed into two and ICA cannot recover any of them.

5.4.5 Random Matrix is Disclosed

In this scenario, we assume that the random matrix itself is disclosed. This can be

viewed as the worst case. Recall that for the distance preserving perturbation, if the orthog-

onal matrix is known, the attacker can recover the original data exactly. In this section, we

analyze whether this perfect recovery also happens in random projection-based perturba-

tion.

Consider the modelY = RX, whereR ∈ R
k×n with k < n, andX ∈ R

n×m.

This model can be viewed as a set of underdetermined systems of linear equations (more

unknowns than equations), each with the formy = Rx, wherex is ann× 1 column vector
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from X andy is the corresponding column vector fromY . For each such linear system,

assuming bothR andy are known, we can prove that the solution is never unique.

In practice, the underdetermined system can be analyzed using the QR factorization

[119,120]:

RT = Q





R
0



 ,

whereQ ∈ Rn×n is orthogonal andR ∈ Rk×k is upper triangular. IfR has full rank,i.e.,

rank(R) = k, there is a unique solutionxmin norm that minimizes||x||2 7:

xmin norm = Q





R−T y

0





= Q





R
0



 (RTR)−1y

= RT (RRT )−1y

= R†y,

whereR† = RT (RRT )−1 is the pseudo-inverse ofR. The complete solution set to the

underdetermined systemy = Rx can be composed by adding an arbitrary vector from the

null space ofR to xmin norm. In other words, anŷx satisfying the following condition can

be the solution.

x̂ = xmin norm + Ab,

7This problem is referred to as finding a minimum norm solutionto an underdetermined system of linear
equations.
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whereA is the orthonormal basis for the null space ofR andb is an arbitrary vector.

Remark:The above result shows that even if the random matrixR is known to the attacker,

it is still impossible to find the exact values ofall the elementsof vector x. The best

we can do is to find the minimum norm solution. However, one mayask whether it is

possible to completely identifysomeelements in the vectorx. Obviously, if we can find as

many linearly independent equations as the unknown elements, we can partially solve the

system. In the following, we will discuss this possibility by using the “l-secure” definition

introduced in [51, Definition 4.1].

Definition 5.4.3 (l-secure) A matrixR is said to bel-secure if by removing anyl columns

fromR, the remaining sub-matrix still has a full row rank.

This property guarantees that any non-zero linear combination of the row vectors ofR

contains at leastl + 1 non-zero elements. To prove this, let us assume that some linear

combination of the row vectors has at mostl non-zero elements. If we remove thesel

corresponding columns fromR, then apply the same linear combination on all the row

vectors of the remaining sub-matrix, we will get a zero vector. This implies that the row

vectors of this sub-matrix are linearly dependent and the rank of this sub-matrix is not of

full row rank, which contradicts thel-secure definition.

If the coefficient matrix of a linear equations system isl-secure, each unknown vari-

able in a linear equation is disguised by at leastl other unknown variables no matter what

kind of non-zero linear combination produces this equation. Now the question is whether

we can findl+1 linearly independent equations that just involve thesel+1 unknowns? The

answer isNo. The following theorem (which can be viewed as a generalization of [51, The-

orem 4.3]) proves that anyl + 1 non-zero linear combinations of the equations contains at

least2l + 1 unknown variables if thesel + 1 vectors are linearly independent.8

8If thesel + 1 vectors are not linearly independent, thel + 1 equations containΓ + l unknown variables.
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Theorem 5.4.4 Let Υ be an(l + 1) × n matrix, where each row ofΥ is a nonzero linear

combination of row vectors inR. If R is l-secure, the linear equations systemy = Υx

involves at least2l + 1 unknown variables if thesel + 1 vectors are linearly independent.

Proof: Since row vectors ofΥ are all linearly independent,y = Υx can be transformed into

y = (I : Υ̃)x through a proper Gaussian elimination. Here,I is the(l+1)×(l+1) identity

matrix, Υ̃ is a(l + 1)× (m − (l + 1)) matrix, and(I : Υ̃) is a vertical concatenation ofI

andΥ̃. BecauseR is l-secure, each row of(I : Υ̃) contains at leastl + 1 non-zero entries,

which corresponds tol + 1 unknowns. Because in each row of(I : Υ̃), there is a single 1

from I, there are at leastl non-zero entries iñΥ. Thus, the whole system contains at least

2l+1 unknowns, withl+1 unknowns being contributed byI and at leastl unknowns from

Υ̃. �

This theorem shows that if a coefficient matrix isl-secure, any linear combinations

of the equations contains at leastl + 1 variables. Therefore,it is not possible to findl + 1

linearly independent equations that just involve the samel + 1 variables, and the solutions

to any partial unknown variables are infinite.

Now let us consider thek × n random projection matrix and the restrictions of ICA

we discussed in the previous sections. Whenn = 2k, after removing anyk columns

from mixing matrixR, according to the proof of Theorem 5.4.3, we can conclude that the

remaining square matrix has a full row rank with probability1. Therefore, the system is

k-secure with probability 1. In other words, each unknown variable is disguised by at least

k other variables, and we cannot findk linearly independent equations that just involve

these variables, so, the solutions are infinite. Whenn > 2k, the security level is even

higher because we can remove more columns while keeping the sub-matrix full row rank

(however, the accuracy of the random projection will probably be compromised ifk is too

HereΓ denotes the rank of the matrix formed by thesel + 1 vectors.
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small).

Remark:The above result shows that even if the random matrixR is known to the attacker,

if R is k-secure, each unknown variable is masked by at leastk other unknown variables

no matter how the equations are linear combined. So it is impossible to find the exact value

of any elementin the original data.

5.5 Summary

In this chapter, we studied a randomized multiplicative data perturbation technique for

privacy preserving data mining. This technique projects the data onto a lower dimensional

random space while maintaining its distance related statistics with a high probability. The-

oretical and empirical results show that this technique offers higher privacy protection than

the orthogonal transformation-based distance preservingperturbation, but with little loss in

accuracy.

In summary, the random projection-based data perturbationhas the following charac-

teristics:

• Random projection maps the original data to a lower dimensional subspace while

maintaining much of its distance-related statistics. The error of the inner product

produced by random projection is zero on average, and the variance is inversely

proportional to the dimensionality of the reduced space. A closed-form expression of

the accuracy for estimating the Euclidean distance can be derived when the random

matrix has a matrix variate Gaussian distribution.

• Under mild assumptions, anŷx that satisfieŝxT x̂ = yT y is the maximum a poste-

riori probability (MAP) estimate of the original datax given the perturbed datay.

From this perspective, random projection does not offer theattacker more informa-

tion about the private data than what has been implied by the properties of random
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projection itself.

• The analytic upper bound of the probability ofǫ-privacy breach can be derived in the

context of MAP estimate.

• The data owner could control the privacy and accuracy tradeoff and select an appro-

priate dimension for the reduced space.

• Random projection-based perturbation offers higher privacy protection than distance

preserving perturbation, but with little loss in accuracy.

5.6 Appendix

5.6.1 Appendix I

Key Technical Results for the Proof of Lemma 5.1.4:Let ri,j andǫi,j be thei,j-th entry

of matrixRk×n andRT R, respectively. Eachri,j is independent and identically distributed

(i.i.d.) according toN(0, σr). Now let us proveE[ǫi,i] = kσ2
r , V ar[ǫi,i] = 2kσ4

r , ∀i; and

E[ǫi,j ] = 0, V ar[ǫi,j ] = kσ4
r , ∀i, j, i 6= j.

Proof: Note thatǫi,i =
∑k

t=1 r2
t,i and ǫi,j =

∑k
t=1 rt,irt,j, i 6= j, we haveE[ǫi,i] =

E[
∑k

t=1 r2
t,i] = kE[r2

t,i] = kσ2
r andEi6=j [ǫi,j ] = E[

∑k
t=1 rt,irt,j] =

∑k
t=1 E[rt,irt,j ] =

∑k
t=1 E[rt,i]E[rt,j ] = 0.

To obtain the variance ofǫi,i, we first computeE[ǫ2
i,i] = E[

∑k
t=1 r4

t,i+
∑

p 6=q,1≤p,q≤k r2
p,ir

2
q,i] =

kE[r4
t,i] + k(k − 1)E[r2

p,i]E[r2
q,i] = 3kσ4

r + k(k − 1)σ4
r = (2k + k2)σ4

r . The second to

the last equation in the above is based on the fact thatE[r4
t,j ] = 3σ4

r for random vari-

able rt,j ∼ N(0, σr)
9. Therefore,V ar[ǫi,i] = E[ǫ2

i,i] − (E[ǫi,i])
2 = 2kσ4

r . Similarly,

Ei6=j [ǫ
2
i,j] = Ei6=j[

∑k
t=1 r2

t,ir
2
t,j+

∑

p 6=q,1≤p,q≤k rp,irp,jrq,irq,j] = kE[
∑k

t=1 r2
t,ir

2
t,j ]+0 = kσ4

r ,

hence,V ari6=j[ǫi,j ] = kσ4
r . �

9http://mathworld.wolfram.com/NormalDistribution.html
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Lemma 5.1.4:Let x, y be two data vectors inRn. Let R be ak × n dimensional

random matrix. Each entry of the random matrix is independent and identically distributed

(i.i.d.) according to a Gaussian distribution with mean zero and varianceσ2
r . Further let

u =
1√
kσr

Rx, and v =
1√
kσr

Ry. Then

E[uTv − xT y] = 0 and

V ar[uTv − xT y] =
1

k
(
∑

i

x2
i

∑

i

y2
i + (

∑

i

xiyi)
2).

In particular, if bothx andy are normalized to unity,
∑

i x
2
i

∑

i y
2
i = 1 and(

∑

i xiyi)
2 ≤ 1.

We have the upper bound of the variance as follows:

V ar[uTv − xT y] ≤ 2

k
.

Proof: Using Lemma 5.1.2, the expectation of projection distortion is

E[uT v − xT y] = E[
1

kσ2
r

xT RT Ry − xT y]

=
1

kσ2
r

xT E[RT R]y − xT y

=
1

kσ2
r

kσ2
rx

T y − xT y

= 0.

To compute the variance of the distortion, let us first express the inner product between the
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projected vectors as

uT v =
1√
kσr

xT RT 1√
kσr

Ry

=
1

kσ2
r

xT RT Ry

=
1

kσ2
r

(
∑

i

xiǫi,iyi +
∑

i6=j

xiǫi,jyj)

=
1

kσ2
r

∑

i

xiǫi,iyi +
1

kσ2
r

∑

i6=j

xiǫi,jyj.

Denote 1
kσ2

r

∑

i xiǫi,iyi as Φ and 1
kσ2

r

∑

i6=j xiǫi,jyj as Ψ. ThenV ar[uTv] = V ar[Φ] +

V ar[Ψ] + 2Cov[Φ, Ψ].

Now, let us computeCov[Φ, Ψ]:

Cov[Φ, Ψ] = E[ΦΨ]− E[Φ]E[Ψ].

SinceE[ǫi,j ] = 0 ∀i, j, i 6= j, soE[Ψ] = 0. Hence,

Cov[Φ, Ψ] = E[ΦΨ]− 0

=
1

k2σ4
r

E[
∑

i

xiǫi,iyi ×
∑

p 6=q

xpǫp,qyq].

It is straightforward to verify thatE[ǫi,iǫp,q] = 0 whenp 6= q. SoCov[Φ, Ψ] = 0.
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The variance ofΦ is

V ar[Φ] = V ar[
1

kσ2
r

∑

i

xiǫi,iyi]

=
1

k2σ4
r

V ar[
∑

i

xiǫi,iyi]

=
1

k2σ4
r

(E[(
∑

i

xiǫi,iyi)
2]− (E[

∑

i

xiǫi,iyi])
2)

=
1

k2σ4
r

(E[
∑

i

x2
i ǫ

2
i,iy

2
i +

∑

p 6=q

xpypǫp,pxqyqǫq,q]− (E[
∑

i

xiǫi,iyi])
2).

SinceE[ǫi,i] = kσ2
r , E[ǫ2

i,i] = (2k + k2)σ4
r andE[ǫp,pǫq,q] = k2σ4

r , we have

V ar[Φ] =
1

k2σ4
r

(2k + k2)σ4
r

∑

i

x2
i y

2
i +

∑

p 6=q

xpypxqyq − (
∑

i

xiyi)
2

= (
2

k
+ 1)

∑

i

x2
i y

2
i +

∑

p 6=q

xpypxqyq − (
∑

i

xiyi)
2.

The variance ofΨ is

V ar[Ψ] =
1

k2σ4
r

V ar[
∑

i6=j

xiǫi,jyj]

=
1

k2σ4
r

(E[(
∑

i6=j

xiǫi,jyj)
2]− (E[

∑

i6=j

xiǫi,jyj])
2)

=
1

k2σ4
r

(E[(
∑

i6=j

xiǫi,jyj)
2]− 0

=
1

k2σ4
r

∑

i6=j

∑

p 6=q

xiyjxpyqE[ǫi,jǫp,q].
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SinceE[ǫi,jǫp,q] = 0 unlessi = p andj = q, or i = q andj = p, we have,

V ar[Ψ] =
1

k2σ4
r

(
∑

i6=j

x2
i y

2
j +

∑

i6=j

xiyjxjyi)Ei6=j [ǫ
2
i,j]

=
1

k2σ4
r

(
∑

i

x2
i

∑

j 6=i

y2
j +

∑

i

xiyi

∑

j 6=i

xjyj)kσ4
r

=
1

k
(
∑

i

x2
i

∑

i

y2
i −

∑

i

x2
i y

2
i + (

∑

i

xiyi)
2 −

∑

i

x2
i y

2
i )

=
1

k
(
∑

i

x2
i

∑

i

y2
i + (

∑

i

xiyi)
2 − 2

∑

i

x2
i y

2
i ).

Thus,

V ar[uT v] = V ar[Φ] + V ar[Ψ] + 0

= (
2

k
+ 1)

∑

i

x2
i y

2
i +

∑

p 6=q

xpypxqyq − (
∑

i

xiyi)
2

+
1

k
(
∑

i

x2
i

∑

i

y2
i + (

∑

i

xiyi)
2 − 2

∑

i

x2
i y

2
i )

=
1

k
(
∑

i

x2
i y

2
i + (

∑

i

xiyi)
2) + (

∑

i

x2
i y

2
i

+
∑

p 6=q

xpypxqyq − (
∑

i

xiyi)
2)

=
1

k
(
∑

i

x2
i

∑

i

y2
i + (

∑

i

xiyi)
2).

This gives the final resultV ar[uTv − xT y] = 1
k
(
∑

i x
2
i

∑

i y
2
i + (

∑

i xiyi)
2). �
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5.6.2 Appendix II

Theorem5.3.12: AnyX that satisfies conditionXT X = Y T Y can be the optimal

solution to the problem defined as below (also in Eq. 5.11.)

X̂MAP (Y ) = arg max
X

(2π)−
1

2
km det(

1

k
XT X)−

1

2
ketr{−1

2
Y (

1

k
XT X)−1Y T},

whereX andY have full column rank.

Proof: Let Z = ( 1
k
XT X)−1. The maximization problem can be written as

X̂MAP (Y ) = (2π)−
1

2
km det(Z)

k
2 etr{−1

2
Y ZY T}.

Further letA = Y ZY T . SinceY has full column rank, without loss of generality,

we can assume thatY is invertible,i.e., k = m. Therefore,A is also invertible andZ =

Y −1AY T −1. The maximization problem can be written as

X̂MAP (Y ) = (2π)−
1

2
km det(Y −1AY T −1

)
k
2 etr{−1

2
A}

= (2π)−
1

2
km det(Y −1Y T −1

)
k
2 det(A)

k
2 etr(−1

2
A).

Since(2π)−
1

2
km is constant andY is also fixed, we only need to maximize

det(A)
k
2 etr(−1

2
A),

s.t.R is positive definite.
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Let λj be the eigenvalue ofA, we have

det(A)
k
2 = (

∏

j

λj)
k
2 =

∏

j

λ
k
2

j ;

etr(−1

2
A) = exp(trace(−1

2
A)) = exp(−1

2

∑

j

λj) =
∏

j

exp(−1

2
λj).

Therefore

det(A)
k
2 etr(−1

2
A) =

∏

j

λ
k
2

j

∏

j

exp(−1

2
λj)

=
∏

j

λ
k
2

j exp(−1

2
λj).

The functiong(w) = w
k
2 exp(−1

2
w) has its maximum forw > 0 at w = k. So the

maximum ofdet(A)
k
2 etr(−1

2
A) is obtained when allλj = k.

Thus, we can takeA = kI, whereI is identity matrix, so

Z = Y −1AY T −1

= Y −1kIY T −1

= kY −1Y T −1

= k(Y T Y )−1.

BecauseZ = ( 1
k
XT X)−1, we have

(
1

k
XT X)−1 = k(Y T Y )−1,
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which implies that

XT X = Y T Y.

Therefore, anyX that satisfies conditionXT X = Y T Y can the the optimal solution.

�



Chapter 6

CONCLUSIONS AND FUTURE WORK

Privacy is becoming an increasingly important issue in manydata mining applications

that deal with health care, security, finance, behavior and other types of sensitive data.

It is particularly becoming important in counter-terrorism and homeland security-related

applications. These applications may require creating profiles, constructing social network

models, and detecting terrorists’ communications. All of them involve the collection and

analysis of private sensitive data. For example, mining health care data for the detection

of bio-terrorism may require analyzing clinical records and pharmacy transactions data

of certain off-the-shelf drugs. However, releasing and combining such diverse data sets

belonging to different parties may violate privacy laws. Although health organizations

are allowed to release the data as long as the identifiers (e.g., name, SSN, address, etc.,)

are removed, it is not considered safe enough because re-identification attacks may be

constructed for linking different public data sets to identify the original subjects [26]. This

calls for well-designed techniques that pay careful attention to hiding privacy sensitive

information while preserving the inherent patterns of the original data. Privacy preserving

data mining (PPDM) strives to provide a solution to this problem. It aims to allow useful

data patterns to be extracted without compromising privacy.

This dissertation specifically investigates the characteristics of different multiplica-
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tive data perturbation techniques for PPDM. First, we have briefly reviewed two traditional

multiplicative data perturbation techniques that have been well studied in the statistics com-

munity. We have shown the following.

• These perturbations are primarily used to mask the private data while allowing sum-

mary statistics (e.g., sum, mean, variance, covariance) of the original data to beesti-

mated. Because each data element is distorted independently, the Euclidean distances

and inner products among the original data records are usually not preserved.

• These perturbation schemes are equivalent to additive perturbation after the loga-

rithmic transformation. Due to the large volume of researchin deriving private in-

formation from the additive noise perturbed data, the security of these perturbation

schemes is questionable.

Next, we have examined the effectiveness of distance preserving perturbation. Theo-

retical and experimental results have shown the following.

• This type of perturbation is essentially a series of rotations and reflections of the data.

It exactly preserves the Euclidean distances and inner products in the original data.

Therefore, many interesting data mining algorithms can be applied directly to the

perturbed data and produce an error-free result.

• However, this perturbation is vulnerable to many attacks such as known input-output

attacks, known sample attacks and independent signals attacks.

Finally, we have explored a random projection-based perturbation. This technique

projects the data onto a lower dimensional subspace while maintaining the pairwise dis-

tances of the original data records with high probabilities. We have shown that
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• From the perspective of maximum a posteriori probability (MAP) estimate, random

projection-based perturbation does not offer the attackermore information about the

private data than what has been implied by the properties of random projection itself.

• The analytic bounds of the probability ofǫ-privacy breach (in the context of MAP

estimate) and the accuracy of the distance preservation canbe derived. These bounds

can be used to guide the data owner to control the privacy/accuracy tradeoff when

perturbing the data.

• This perturbation offers higher privacy protection than distance preserving perturba-

tion, with little loss of accuracy.

We believe that the privacy issues are intrinsically complex because they represent

an intersection of legal, governmental, commercial, ethical and personal positions. It is

not easy to produce one universal solution that addresses all these perspectives when the

very definition of privacy is still open to debate. But the pressure is on to take more pos-

itive steps to encourage privacy protection while doing data mining to benefit the society.

Many different PPDM techniques are now being proposed, questioned, and improved by

researchers and technologists. Sociologists, policy experts, and legal experts are also en-

couraged to work together to articulate and enforce responsible data mining practices. We

believe a good balance between the benefits in collecting andanalyzing the data and the

demand for privacy protection can be finally achieved. It takes time and effort, but it is

worthwhile.

As an extension of this dissertation, we propose the following possible directions for

future research.

Large scale distributed PPDM: Advances in computing and communication over wired

and wireless networks have resulted in many pervasive distributed computing en-

vironments. Many of these environments deal with differentdistributed sources of
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voluminous data, multiple compute nodes, and distributed user communities. Par-

ticipating parties in such an environment may not all be ideal. Some may decide

to behave like a “leech” to exploit the benefit of the system without contributing

much. Some may intentionally try to collude with other parties to expose the pri-

vate data of a specific individual. We believe that PPDM in a distributed scenario

essentially looks like a game where each participant tries to maximize his/her benefit

by optimally choosing the strategies during the entire PPDMprocess. Therefore, it

is necessary to develop a game theoretic foundation of distributed PPDM, formulate

PPDM algorithms based on that, and perform equilibrium analyzes.

Combination of Secure Multi-Party Computation and Perturbation Techniques Secure

multi-party computation uses cryptographic protocols forprivacy preserving distrib-

uted data mining. It offers strong privacy protection, but with high communication

and computational complexity. On the other hand, data perturbation can efficiently

distort the data, but with lower privacy guarantees. It would be ideal if we could

combine these two techniques to achieve both efficiency and privacy.
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