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ABSTRACT

Title of Dissertation: Multiplicative Data Perturbation for
Privacy Preserving Data Mining

Kun Liu, Doctor of Philosophy, 2007

Dissertation directed by: Dr. Hillol Kargupta
Associate Professor
Department of Computer Science and
Electrical Engineering

Recent interest in the collection and monitoring of datagsiata mining technology
for the purpose of security and business-related appdicathas raised serious concerns
about privacy issues. For example, mining health care aatéhe detection of disease
outbreaks may require analyzing clinical records and phayntransaction data of many
individuals over a certain area. However, releasing anlegatg such diverse information
belonging to different parties may violate privacy laws aventually be a threat to civil
liberties. Privacy preserving data mining strives to pdeva solution to this dilemma. It
aims to allow useful data patterns to be discovered withomtpgromising privacy.

In 2000, Agrawal and Srikant proposed the addition of i.idhite noise for privacy
protection. However, Karguptet al. pointed out that additive noise can be easily filtered
off revealing a good approximation of the private data. Thiskes one wonder about
the possibility of using multiplicative noise. This distion systematically investigated
different multiplicative data perturbation techniques jwivacy preserving data mining.
These types of perturbation distort the private data byiplyihg some random noise and
only the perturbed version is released for data mining amalyExtensive theoretical and

experimental results were provided to support the follgypnmary contributions.



First, we examined the security issues of distance presgdata perturbation. This
technique is potentially very useful in that some importatia mining algorithms can be
efficiently applied to the perturbed data and produce ex#ied same results as if applied
to the original data. However, the issue of how well the ordiidata is hidden had not
been carefully studied. We took a step in this direction bysidering three types prior
knowledge an attacker may have and use to design attackdeelsito recover the original
data. Our results offered insight into the vulnerabilibégistance preserving perturbation.

Second, we explored a random projection-based data patiomkthat preserves the
inner products and Euclidean distances in the original deia high probabilities. We
proposed a maximum a posteriori probability (MAP) estirfladsed Bayes privacy model
to quantify the privacy. Guidelines were offered for theadatvner to control the pri-
vacy/accuracy tradeoff when perturbing the data. Themaktinalysis showed that this
perturbation provides higher privacy protection thanatise preserving perturbation, but

with little loss of accuracy.
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Chapter 1

INTRODUCTION

1.1 Background

OST of our daily activities are now routinely recorded andlgred by a variety
IVI of governmental and commercial organizations for the psgpaf security and
business related applications. From telephone calls witarard purchases, from Inter-
net surfing to medical prescription refills, we generate adth almost every action we
take. Collecting and analyzing such data are causing a roajaern about our privacy. A
Forbes cover story in November 199%now What You Did Last Nighhighlights the way
that different slices of consumer data can now be pulledtt@gdo create a vivid picture
of any individual's life [1]. Privacy has been gaining moiéeation since September 11.
To handle the terrorism, the government needed to exansigg data mining technology,
more information about individuals to detect unusual diseautbreaks, financial fraudu-
lent behaviors, network intrusions, etc. While all of thapglications of data mining can
benefit our society, there is also a negative side to thisn@olgy because it could be a
threat to the individuals’ privacy. Recently, we have heawach about national security
VS. privacy in newspapers, magazines, research articldspmtelevision talk shows [2].
In 2003, concerns over the U.S. Total Information Awarer(@so known as Terrorism

Information Awareness) project even led to the introductiba bill in the U.S. Senate that



2
would have banned any data mining programs in the U.S. Dapattof Defense. To elim-
inate the misguided impression, SIGKDD, an ACM’s specitriest group on knowledge
discovery and data mining, even sent out a letter to cl@ata Mining” is NOT Against

Civil Liberties[3]. However, as the letter pointed out that:

the best (and perhaps only) way to overcome the "limitatiofglata mining
techniques is to do more research in data mining, includiegsdike data secu-
rity and privacy preserving data mining, which are actuatifive and growing

research areas.

In 2000, Agrawal and Srikant [4] published their early workgivacy preserving data
mining. They proposed an additive data perturbation tegrefor decision tree construc-
tion in a client/server scenario. In their work, each clieas a numerical private attribute
x; and the server wants to learn the distribution of thesebats to build a classification
model. The clients mask their attributedy adding random noise drawn independently
from a known distribution. The server collects the values,;of r; and reconstructs;’s
distribution. However, Karguptet al.[5] later questioned the use of random additive noise
and pointed out that additive noise can be easily filteredrontany cases. Their work was
further extended by Huarggf al.[6], Guoet al.[7] and many else.

The drawback of additive noise makes one wonder about theplity of using mul-
tiplicative noise for protecting the data privacy. In thypé¢ of perturbation, the private data
is distorted by multiplying some random noise and only theysbed version is released
for data mining analysis. To our best knowledge, this teghaihas not been carefully
studied in the literature. This dissertation specificatiyeistigates different multiplicative
data perturbations for PPDM. It presents extensive thigateind experimental results on
the accuracy and privacy of each of the multiplicative dadyrbation techniques. Thus,

valuable information is gained into effectiveness of nplitiative perturbations for PPDM.
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1.2 Problem Statement

The problem we are interested in can be stated as follows. r§an@ation has a
private database and wishes to make it publicly availablel&ba analysis while keeping
the original data records private. To achieve this goak trganization transforms its
database into another form and only release that. A thirty plata miner or a researcher
can analyze and discover useful patterns of the origina ttam only the transformed

data. This is generally referred to as the census modeluagdted by Figure 1.1.

1.3 Contributions of this Dissertation

This dissertation has systematically studied multipheadata perturbation techniques

for privacy preserving data mining. It has made the follaywnain contributions.

1. We examined the effectiveness of distance preservingnbations in privacy pre-
serving data mining. These techniques are potentially ueeful in that some im-

portant data mining algorithms can be efficiently appliethestransformed data and
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produce exactly the same results as if applied to the olligata,e.g.,distance-based
clustering and k-nearest neighbor classification. Howeterissue of how well the
original data is hidden has, to our knowledge, not been ghyeftudied. We took
a step in this direction by assuming the role of an attackexedrwith three types
of prior information regarding the original data. We stutileow well the attacker
can recover the original data from the transformed data andipformation. Three
different attack techniques were developed. The first orsshaaed on linear algebra
and statistical theory, the second on principal componealyais (PCA), and the
third on independent component analysis (ICA). Our resaffered insight into the

advantages and vulnerabilities of distance preservinigeations.

2. We further proposed a random projection-based datarpattan that preserves dis-
tance with high probabilities, and derived the analytioebounds for the accuracy.
We proposed a maximum a posteriori probability (MAP) esteraased Bayes pri-
vacy model to quantify the privacy offered by the perturtsatiechnique. Our analy-
sis showed that, under mild assumptions, random projetiased data perturbation
did not offer the attacker more information about the pew@ata than what had been
implied by the distance preserving property of random iaea itself. In addition,
guidelines were offered for the data owner to control thegmy/accuracy tradeoff
when perturbing the data. Our theoretical analysis andrerpeatal results provided

valuable information about the characteristics of thigyrbation.

1.4 Dissertation Organization

This dissertation is organized as follows.
Chapter 1: This chapter presents the background of this researchrdidemn definition,

the contributions, and the organization of this disseotati
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Chapter 2: This chapter offers an overview of various techniques anthaumlogies that
have been developed in the privacy preserving data mingey dirnotes that the main con-
sideration in privacy preserving data mining is two fold:dh}a hiding sensitive raw data
should be modified or trimmed out from the original databak#enhe important underly-
ing patterns of the data should still be preserved, andii2)hiding sensitive knowledge
which can be discovered from the data should be filtered dw.objective of privacy pre-
serving data mining is to allow meaningful patterns to benidied while keeping private
information private during and after the mining process.
Chapter 3: This chapter briefly reviews two multiplicative data peb@ation techniques
that have been studied in the statistics community. Thederpations distort each data
element independently, and they are primarily used to nfaskitivate data while allowing
summary statisticse(g., sum, mean, variance) of the original data to be estimateds Th
chapter notes that these perturbation schemes are equitalthe additive perturbation
after a logarithmic transformation, and therefore, they\arinerable to many attacks de-
signed for additive perturbation. Moreover, the Eucliddmtances among data records are
generally not preserved after perturbation.
Chapter 4: This chapter discusses a new multiplicative perturbatchnique called dis-
tance preserving data perturbation. The perturbed dasees inner products and Euclid-
ean distances. Many important data mining algorithms casefti@ently applied to the
perturbed data and produce exactly the same results adliéapp the original data. This
chapter first talks about the basic mathematical propeofigkis perturbation. Then, it
addresses the security issues of this technique by studigingwell an attacker can re-
cover the original data from the perturbed data and other pnowledge. Three attack
algorithms are designed. The first is based on basic prepedtiinear algebra, the second
on principal component analysis (PCA), and the third on peshelent component analysis

(ICA). As such, valuable information is gained into the effeeness of distance preserving



transformation for privacy preserving data mining.

Chapter 5: This chapter proposes a random projection-based mulipledata perturba-
tion technique. This technique maps the data onto a loweemsonal space while main-
taining, with high probabilities, the pairwise Euclidedstdnces and the inner products of
the original data. This chapter first derives some analytiorebounds for the accuracy
of the distances preserved by random projection. Thenfetoh Bayes privacy model
to measure the privacy provided by the perturbation. To beerapecific, it considers the
use of maximum a posteriori probability (MAP) estimate toaeer the original data, and
to quantify the privacy. A closed-form expression about(tngper bound of the) privacy
breach is derived, which can be used together with the egondbs to guide the pertur-
bation in practice. Next, this chapter examines severahpyi disclosure scenarios and
analyzes the efficacy of the corresponding attacks.

Chapter 6: This chapter concludes this dissertation and outlines itteettbns for future

research.



Chapter 2

BACKGROUND AND RELATED WORK

Recent interest in the collection and monitoring of datagsiata mining technology
for the purpose of security and business-related appdicathas raised serious concerns
about privacy issues. Sometimes, individual or orgarozati entities may not be willing
to divulge the sensitive raw data; sometimes, the knowleahgkéor patterns detected by a
data mining system may be used in a counter-productive nmahaeviolates the privacy
policy. The main objective of privacy preserving data mgnis to develop algorithms for
modifying the original data or modifying the computatiorfmrcols in some way, so that
during and after the mining process, the private data amdgerknowledge remain private
while other underlying data patterns or models can stillflectvely identified.

There exists a growing body of literature on privacy presgndata mining. This
chapter presents a classification and an extended desaorgdtthe various techniques and
methodologies that have been developed in this area (sée Zdkfor a brief overview of

the categories).

2.1 Data Hiding

The main objective of data hiding is to transform the dataoaddsign new compu-

tation protocols so that the private data remains privatenguand/or after data mining
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Multiplicative Perturbation

Data Microaggregation

Data Anonymization

Data Swapping

Other Randomization Techniques
Sampling Method

\ Analytical Method

Secure Multi-Party Computation (SMC) / Cryptographic Boatls
Distributed Data Mining (DDM)

Value Distortion
Data Perturbationr

Data Hiding

Probability Distribution{

L o Data Perturbation
Rule Hiding Association Rule Hidin Data Blocking

Classification Rule Hiding Parsimonious Downgrading

Table 2.1. A brief overview of privacy preserving data mgiechniques.

operations while the underlying data patterns or modelstiifbe discovered.

2.1.1 Data Perturbation

Data perturbation techniques can be grouped into two maagosaes, which we call
the value distortion technique and probability distribattechnique. The value distortion
technique perturbs data elements or attributes directigtner additive noise, multiplica-
tive noise or some other randomization procedures. On tier band, the probability dis-
tribution technique considers the private database to laengle from a given population
that has a given probability distribution. In this case, pleeturbation replaces the original
database by another sample from the same (estimatedpdigin or by the distribution
itself.

Note that there has been extensive research in the aredisfisth databases (SDB)
on how to provide summary statistical information withoigalbsing individuals’ confi-
dential data€.g.,[8—10]). The privacy issues arise when the summary stegdiatie derived

from data of very few individuals. A popular disclosure aohimethod is data perturbation,
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which alters individual data in a way such that the summaatysgics remain approximately
the same. However, problems in data mining become somevifferiedt from those in
SDBs. Data mining techniques, such as clustering, claasdit, prediction and associ-
ation rule mining, are essentially relying on more sopba&gd relationships among data
records or data attributes, but not just simple summaristitt. This dissertation specif-
ically focuses on data perturbation for privacy presendaga mining. In the following,
we will primarily discuss different perturbation techneguin the data mining area. Some
important perturbation approaches in SDBs are also coerdlle sake of completeness.
Additive Perturbation The work in [4, 11] proposed an additive data perturbatiamh-te
nique for building decision tree classifiers. In this tecfus, each client has a numerical
attributex; and the server (or data miner) wants to learn the distribudgfdhese attributes
to build a classification model. The clients randomize théhibutesr; by adding random
noiser; drawn independently from a known distribution such as aarmfdistribution or
a Gaussian distribution. The server (or data miner) cdltdwt values of; + r; and recon-
structsz;’s distribution using a version of the Expectation-Maxiatinn (EM) algorithm.
This algorithm provably converges to the maximum likelid@stimate of the desired orig-
inal distribution [11].

Karguptaet al. [5] questioned the use of random additive noise and pointedhat
additive noise can be easily filtered out in many cases thapasgsibly compromise the
privacy. To be more specific, they proposed a random matsetd Spectral Filtering (SF)
technique to recover the original data from the perturbed.dgheir empirical results have
shown that the recovered data can be reasonably close toigireabdata. However, two
important questions remain to be answered: 1) What are #wretical lower bound and
upper bound of the reconstruction error; and 2) What are élgddctors that influence the
accuracy of the data reconstruction?

Guo and Wu [7] further investigated the Spectral Filteriaghnique and derived an
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upper bound for the Frobenius norm of the reconstructioor ersing matrix perturbation
theory. They also proposed a Singular Value DecomposiiD)-based reconstruction
method and derived a lower bound for the reconstructiorr €t&2]. They then proved the
equivalence between the SF and SVD approach, and as a tasultyer bound of SVD
approach can also be considered as the lower bound of thepfBéaap.

Huanget al. [6] pointed out that the key factor that decides the accuofdata recon-
struction is the correlation among the data attributes.irfiesults have shown that when
the correlations are high, the original data can be recoctgtd more accurately, that is,
more private information can be disclosed. They furtheppeed two data reconstruction
methods based on data correlations: one used the Prinagmap@nent Analysis (PCA),
and the other used the Bayes Estimate (BE) technique, whiekdence is a maximum a
posterior probability estimation. To improve privacy,yliesigned a modified additive per-
turbation scheme, in which they let the correlation of randwisesimilar to the original
data. This approach is similar with many data perturbatppr@aches used in the statistics
community €.9.,[13, 14]). Their results have shown that the reconstructiocuracy of
both PCA and BE techniques get worse as the similarity irra®a

Given the large body of existing signal-processing literaton filtering random ad-
ditive noise, the utility of random additive noise for priyapreserving data mining is not
quite clear.

Multiplicative Perturbation Two basic forms of multiplicative noise have been studied in
the statistics community [15]. One multiplies each datanelet by a random number that
has a truncated Gaussian distribution with mean one and san&nce. The other takes a
logarithmic transformation of the data first, adds multiar Gaussian noise, then takes the

exponential functioexp(.) of the noise-added data. Neither of these perturbatiorsepre
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pairwise distance among data recortls.

To facilitate large scale data mining applications, etwal.[16] proposed an approach
where the data is multiplied by a randomly generated matiix effect, the data is pro-
jected into a lower dimensional random space. This teclageserves distance on expec-
tation. Oliveira and Zaiane [17], Chen and Liu [18] discukH® use of random rotation
for privacy preserving clustering and classification. Thasthors observed that the dis-
tance preserving nature of random rotation enables a tlarty po produce exactly the
same data mining results on the perturbed data as if on thmakidata. However, they did
not analyze the privacy limitations of random rotation. kiual. [19] addressed the pri-
vacy issues of distance preserving perturbation (inclydatation) by studying how well
an attacker can recover the original data from the trangdrdata and prior information.
They proposed two attack techniques: the first is based an paperties of linear alge-
bra and the second on principal component analysis. Thalysis explicitly illuminated
scenarios where privacy can be breached. As such, valu#blenation was gained into
the effectiveness of distance preserving transformatiopfivacy preserving data mining.
Mukherjeeet al.[20] considered the use of discrete fourier transformati®iiT) and dis-
crete cosine transformation (DCT) to perturb the data. @rdyhigh energy DFT/DCT co-
efficients were used, and the transformed data in the newidaparoximately preserved
the Euclidean distance. The DFT/DCT coefficients were &rriermutated to enhance
the privacy protection level. However, the authors did rtdraa rigorous analysis of the
privacy. Also note that if no coefficients were dropped, thethnique would be fundamen-
tally the same as distance preserving transformationetbes, the privacy issues could be
analyzed using the model proposed by ktal. [19].

Data Microaggregation Data microaggregation is a popular data perturbation ambro

In Chapter 3 we will discuss these perturbation schemestailsle
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in the area of secure statistical databases (SDBs). Foraaatawvith a single private at-
tribute, univariate microaggregatioa.g.,[21]) sorts data records by the private attribute,
groups adjacent records into groups of small sizes, andceplthe individual private val-
ues in each group with the group average. Multivariate naiggoegation considers all the
attributes and groups data using a clustering technigug, [22, 23]). This approach pri-
marily considers the preservation of data covarianceawnlsté the pairwise distance among
data records.

Recently, two multivariate microaggregation approachestbeen proposed by re-
searchers in the data mining area. Aggarwal and Yu [24] ptede condensation approach
to privacy preserving data mining. This approach first garts the original data into mul-
tiple groups of predefined size. For each group, a certail lefvstatistical information
(e.g, mean and covariance) about different data records is magd. This statistical in-
formation is used to create anonymized data that has sistagistical characteristics to
the original dataset, and only the anonymized data is reteés data mining applica-
tions. This approach preserves data covariance insteae phirwise distance among data
records. Liet al. [25] proposed a kd-tree based perturbation method, whichrsesely
partitions a dataset into smaller subset such that datadeao each subset are more ho-
mogeneous after each partition. The private data in eackesabe then perturbed using
the subset average. The relationships between attribigesxpected to be preserved.
Data Anonymization Sweeney [26] developed tHeanonymityframework wherein the
original data is transformed so that the information for amgividual cannot be distin-
guished from k — 1) others. Generally speaking, anonymization is achievedippress-
ing (deleting) individual values from data recorésg, , name and social security numbers
are removed), and/or replacing every occurrence of cedtiibute values with a more
general valued.g, the zip codes 21250-21259 might be replaced with 2125*)aety of

refinements of this framework have been proposed sincdtil imppearance. Some of the
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work (e.g, [26,27]) start from the original dataset and systemdticalgreedily generalize
it into one that ist-anonymous. Some(g, [28]) start with a fully generalized dataset and
systematically specialize the dataset into one that ismahy k-anonymous.

The problem ofk-anonymization is not simply to find any~anonymization, but to,
instead, find one that is “good” or even “best” according tmeajuantifiable cost metric.
Each of the previous work provides its own unique cost metitc modeling desirable
anonymization. Cost metrics typically tally the infornatiloss resulting from the sup-
pression or generalizations applied. As an illustratioawill show two cost metrics here.

The first metric was proposed by Bayardo and Agrawal [28] s Thetric attempts to
capture in a straightforward way the desire to maintainedisibility between data records
as much as is allowed by a presettingtofThis discernibility metric assigns a penalty to
each data record based on how many records in the transfatataset are indistinguish-
able fromit. If an unsuppressed record falls into an indwespgvalence class of sizethat
record is assigned a penalty pflf a record is suppressed, it is assigned a penaltyof
the size of the original dataset. This penalty reflects tbetfeat a suppressed record cannot
be distinguished from any other record in the dataset. Thigioncan be mathematically

expressed as follows:

Cost(g.k,D) = > |EP+ > [D|E
VE S.U|E|>k vE S.1.|E|<k
where E is the equivalence classes of recordglrinduced by the anonymization func-
tion g. The first sum of the above expression computes perdtir each non-suppressed
record, the second for suppressed records.
The second cost metric was proposed by lyengar [29]. Thisienedin be applied
when records are associated with categorical class lafélss, the anonymization can

produce equivalence classes consist of records that af@mnivith respect to the class
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label. This classification metric assigns no penalty to asuppressed tuple if it belongs
to the majority class within its induced equivalence cladsother tuples are penalized a

value of 1. This metric can be mathematically stated asvalio

Cost(g,k,D) = Z (|minority(E)|) + Z |E|,
vE S.1. |E|>k vE S.t. |E|<k
where the minority function accepts a set of class labeledrds and returns the sub-
set of records belonging to any minority class with respedhat set. The first sum of
the above expression penalizes non-suppressed recoedset¢bnd penalizes suppressed
records. lyengar has shown that this metric produces aniazegndatasets that give better
classification models than do class oblivious metrics.

Recently, Machanavajjhat al.[30] pointed that simpl&-anonymitys vulnerable to
strong attacks due to the lack of diversity in the sensitttébaites. They proposed a new
privacy definition called-diversity. The main idea behirietliversity is the requirement that
the values of the sensitive attributes are well representedch group. Other enhanced
k-anonymitymodels have been proposed elsewhere [31, 32].

Data SwappingThis technique transforms the database by switching a sabatributes
between selected pairs of records so that the individuakdeentries are unmatched, but
the statistics €.g, marginal distributions of individual attributes) are m@ined across
the individual fields. This technique was first proposed byeDas and Reiss [33]. A
variety of refinements and applications of data swapping Heeen addressed since its
initial appearance. We refer readers to [34] for a thorougatment.

Other Randomization TechniquesThe work in [35, 36] considered categorical data per-
turbation in the context of association rule mining. Thigkwvas extended in [37] where a
rigorous framework for quantifying privacy breaches wasiduced. This framework uses

a key concept ofyi-amplification and applies without any assumptions of theeulying
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distribution from which the original data is drawn. The wam§38] considered this frame-
work again and showed how to optimally set the perturbataameters for reconstruction
while maintainingy-amplification. Along a related line, Verykios [39] considd pertur-
bation techniques that allow the discovery of some assoniatiles while hiding others
considered to be sensitive.

Sampling Method Liew et al. [40] proposed a probability distribution-based approach
for protecting a single confidential attribute in a privatgabase. This approach consists
of three steps: 1) estimate the underlying probability dgrfanction of the attribute; 2)
generate a new sample set from the estimated density funeta 3) substitute the new
sample for the original attribute in the same rank ordet,if)ahe smallest value of the new
sample should replace the smallest value in the origina, gatd so forth. This approach
is applicable to both numeric and categorical attributdse foise introduced by this ap-
proach is larger when the private database is small; thuterbeecurity is achieved, but
biased-query responses are provided with users. Whenzbéeftthe database increases,
the bias becomes smaller, but less security of confidertr#bate is achieved.

Analytical Method Lefonset al.[41] proposed an approach for protecting multi-numerical
sensitive attributes by replacing the original privateattase with its probability density.
The key contribution of their work lies in the approximatiofthe data distribution by
orthogonal polynomials. The coefficients used in the compan of the approximation
are called canonical coefficients. These coefficients ateswied for usage in an online
environment because they can be adopted easily in caseenfiams and deletions of the
database records. However, if the estimated probabiligitiefunction is a very precise
description of the original data, there is hardly any protecagainst partial disclosures.
On the other hand, if there is large deviation between thsitlefunction and the original
sensitive data, issues such as how to avoid bias and how tmttre trade-off between

precision and security need to be carefully addressed.
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2.1.2 Secure Multi-party Computation (SMC)

Definition Secure Multi-party Computation (SMC) [42] considers thelpem of evaluat-
ing a function of two or more parties’ secret inputs, such tfwaparty learns anything but
the designated output of the function. Concretely, we asswe have inputs, ..., z,,
where partyi ownsz;, and we want to compute functigitz, . .., x,) = (y1, ..., y,) Such
that party: getsy; and nothing more than that.

Example As an example, we may consider Yao’s millionaire’s probléwo millionaires
meet in the street and want to find out who is richer withoutif@to reveal their actual
fortune to each other. The function computed in this casesimgle comparison between
two numbers. If the result is that the first millionaire ishvée, then he knows that, but this
should be all the information he learns about the other guy.

Adversarial Behavior It is common to model cheating by considering adversarigigm
that attempt to obtain information about the private inmfttheir peers. SMC typically
studies two types of adversariess@mi-honesadversary (also known asassiveorhonest
but curiousadversary) is a party who follows the protocol properly, ggémpts to learn
additional information by analyzing all the intermediagsults and the messages received
during the protocol execution. On the other handnaliciousadversary may arbitrarily
deviate from the protocol specification. A malicious adaeyscould refuse to participate
in the protocol when the protocol is first invoked, could gitbte its input and enter the
protocol with an input other than the one provided with itdaould abort the protocol
prematurely. It is obviously easier to design a solutiorn thadecure against semi-honest
adversaries than it is to design a solution for maliciouseashries. In practice, people
usually first design a secure protocol for the semi-honestato, and then transform it to
a protocol that is secure against malicious adversarigs.ti@nsformation can be done by

requiring each party to use zero-knowledge proofs to prbaedach step that it is taking
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follows the protocol specification.
Privacy Generally speaking, an SMC protoqailivately computes a function if any in-
formation that a party can obtain can be essentially obtHnyethat party through its own
inputs and outputs. An alternative definition compareséselts of the actual computation
to that of anideal computation. Here theleal computation assumes there existsusted
party who does not deviate from the protocol specification at aldi does not attempt to
cheat. All parties send their private inputs to thested party who computes the function
and sends the appropriate results back to all the partiessaye protocol is secure or
private if anything that an adversary can learn in the actwald can also be learned in the
ideal world, namely from its own inputs and from the outpuiteceives from thérusted
party. In essence, protocols satisfying this definition prevenadversary from gaining
any extra advantage in the actual world over what it couleetgmined in an ideal world.
Building Blocks We describe here some representative building blocks afrsenulti-

party computation.

e Oblivious Transfer In cryptography, an oblivious transfer protocol is a proiday
which a sender sends some information to the receiver, uaires oblivious as to
what is sent. Oblivious transfer is one of the most imporfaotocols for secure
computation. It has been shown by Kilian [43] that oblivitkassfer is sufficient for
secure computation in the sense that given an implementatioblivious transfer
it is possible to securely evaluate any polynomial time cotable function without
any additional primitive. A simply form of oblivious traresf called “1 out of 2
oblivious transfer,”, denoted b7, was developed later by Shimon Even, Oded
Goldreich, and Abraham Lempel [44]. This protocol involtese parties, thesender
and thereceiver The sender’s input is a palr,, z;) and the receiver’s input is a
bit A € {0,1}. At the end of the protocol the receiver leatnsand nothing else,

and the sender learns nothing. Oblivious transfer prosocah be designed based
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on virtually all known constructions of trapdoor functigrisr example, public key
cryptosystems. In the case of semi-honest adversaries,gRist simple and efficient

protocols for oblivious transfer [44, 45].

As an illustration of the application of oblivious transfiet us consider the following
problem. Assume there are two parties. Party 1 helds {0,1},b, € {0,1}, and
party 2 holdsz, € {0,1},b, € {0,1}. We are interested in computing the function
f = (a1 + a2) - (by + b2) such that upon completion of the computation, Party
1 has a random numbet < {0,1}; Party 2 has a random number € {0,1}
such thate; + ¢o = (a; + az) - (by + b2). In other words, if we use the notation
(inputy, inputy) — (outputy, outputy) to define the result of a function, thehis

the function((aq, b1), (az, b2)) — (c1,c2). Here- corresponds to a bitwise AND and
+ corresponds to a bitwise XOR. The basic procedure for miyatomputingf is
illustrated in Algorithm 2.1.2.1. Table 2.2 shows the valwé both parties’ inputs

and outputs.

Algorithm 2.1.2.1 Privately Computing; + ¢, = (a1 + az) - (b1 + b2)

Inputs: Partyi holds(a;, b;) € {0,1} x {0,1},i=1,2.
Outputs Party 1 outputs;, Party 2 outputs,, andc; + ¢ = (a; + az) - (by + ba).

1: Party 1 randomly selects € {0,1}.

2: Party 1 and Party 2 engage in a 1-out-of-4 oblivious transfeere Party 1 plays the
sender and Party 2 plays the receiver. The input to the sénte 4-tuple{c; + a, -
bi,ci+ar-(by+1),c14+ (a1 +1)-by, 1+ (a1 +1)-(by+1)}. The input to the receiver
isl+ 209 + bg c {1, 273,4}.

e Circuit Evaluation Yao [42] presented a constant-round protocol for privateiy-
puting any probabilistic polynomial-time function. Theopwcol is based on express-

ing the function as a combinatorial circuit with gates defioeer some fixed base



Party 1: @, b1) (a1,b1) | (a1, b1) (a1, b1) (a1, b1)
Party 2: (o, bo) (0,0) (0,1) (1,0) (1,2)
OT} Input: 1 2 3 4
OT} Output: o+ 1+ 1+ 1+

ap-by |a-(bi+1) | (e +1)-b | (ag+1)-(by +1)
Party 2’s Outputd,): | c1+ c1+ c1+ c1+

ap-by |a-(bi+1) | (ar+1)-b | (g +1)-(by +1)
Party 1's Outputd;): | ¢; c C1 c1
¢+ e apby ap-(b1+1) | (ar+1)-by | (a1 +1)-(by+1)
(al + 0,2) . (bl -+ 62) a161 ay - (bl + 1) (CLl + 1) : bl (CLl + 1) : (bl + 1)
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Table 2.2. Truth table for privately computiag+ ¢ = (a1 + az) - (by + bo).

B. For example 3 can include all the functiong : {0,1}* x {0,1}* — {0,1}
(two-party case as an example). The bits of the input araethiato input wires
and are propagated through the gates. Yao’s protocol worksabing one of the
parties (Alice for example) first generates an “encryptedgarbled” circuit com-
puting f and send its representation to the other party (Bob for el@mn order
for Bob to obtain the garbled values of the input wires, bolisdand Bob engage,
for each input wire, in a 1-out-of-2 oblivious transfer. Asesult of the oblivious
transfer, Bob learns the garbled value of his input bit anthing about the garbled
value of the other bit, and Alice learns nothing. Now Bob hafficent information
to compute the output of the circuit on his own. After compgty, he can send
this value to Alice if she requires it. Generally speakingo protocol is inherently
inefficient because it uses a circuit representation ofuhetfon. The computational
complexity of the protocol is roughly linear in relation teetsize of Bob’s input. To
be more specific, the oblivious transfer stage requires gperentiation per bit of
Bob’s input. The communication complexity is linear in téda to the size of the
circuit. More accurately, a table of about 320-512 bits isegated and communi-

cated for every gate (assuming that all gates have two imdsone output). For
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more detailed analysis about the complexity, please refBirtkas’s work [46].

e Homomorphic Encryption A public-key cryptosystenP (G, E, D) is a collection
of probabilistic polynomial time algorithms for key gengoa, encryption and de-
cryption. The key generation algorithtd produces a private keyk and public
key pk with specified key size. Anybody can encrypt a message wehptlblic
key, but only the holder of a private key can actually dectpptmessage and read
it. The encryption algorithnE takes as an input a plaintext, a random value
and a public keyk and outputs the corresponding cipherté&j,(m, ). The de-
cryption algorithmD takes as an input a ciphertextand a private keyk (corre-
sponding to the public keyk) and outputs a plaintexb,.(c). It is required that
Dy (Ep(m, 7)) = m. The plaintext is usually assumed to be fr@m > wherey is

the product of two large primes. A public-key cryptosystearhoamomorphic when

vm17m27r17r2 € Z,LL?

Die(Epr(ma, 1) Ege(ma, ) modp®) = my +my mody;
D (Epr(my, 7)™ modyu?) = mymy mody;
D (Ep(mg,r2)™ modp®) = mymy modp.

This feature allows a party to add or multiply plaintexts gy simple computa-
tions with ciphertexts, without having the secret key. $alvbBomomorphic cryp-
tosystems€.g, [47,48]) in the literature are proved to be secure undesaeable

complexity assumptions.

A natural application of homomorphic encryption is privateer product computa-

The integers modul@, denotedZ,,, is the set of (equivalence classes of) integ@rsl, ..., — 1}.
Addition, subtraction, and multiplication i4,, are performed modulg.
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tion. It considers the problem of computing the inner praaii¢wo vectors owned
by two different parties (Alice and Bob for example), redpaty, so that neither
party should learn anything beyond what is implied by théypmown vector and the
output of the computation. Here the output for a party isegithe inner product or
nothing, depending on what the party is supposed to leara.algorithm described
in 2.1.2.2 was proposed by Goethatsal.[49]. It is directly based on homomorphic
encryption and has been proved to be private in a strong s&éad® more specific,
no probabilistic polynomial time algorithm substitutingeoparty can obtain a non-
negligible amount of information about the other party’sate input, except what

can be deduced from the input and output of this party.

Algorithm 2.1.2.2 Private Inner Product

Private Input of Alice: Vectorx = (zy,...,zq) € Z¢
Private Input of Bob: Vectory = (1, ..., ya) € Z¢
Output of Alice: x -y modpu
1: Alice generates a private and public key pair (sk, pk), amdisgk to Bob.
2: For eachi,i = 1,...d, Alice generates a random numberc 7, and sends; =
E,(z;,r;) to Bob.
3: Bob computess = [, ¢ mod? and sends back to Alice.

4: Alice computesk - y mody = Dy (w).

For the sake of completeness, we note that many private product protocols have
been proposed in the literature. Generally speaking, thiedecols can be classified
into two categories: 1) cryptosystem-based approacheshwdffer strong privacy
protection, but incur high communication and computaticarust .9, [50]) and
2) data perturbation-based approaches, which provideevgaik/acy protection but
allow more efficient solutions for more complicated dataingntasks €.g, [51]).

We refer interested readers to [49] for an overview on thiécto

e Commutative Encryption Simply speaking, a commutative encryption is a pair of
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encryption functionf andg such thatf(¢(z)) = g(f(z)). To be more concrete, we

borrow the definition used in [52].

Definition 2.1.1 (Commutative Encryption) A commutative encryptiafi is a com-
putable polynomial time functioti : Key F — Dom F, defined on finite com-
putable domains, and satisfying all properties listed belowe denotef,(z) =

f(e,z), and use &,” to mean “is chosen uniformly at random from.

1. Commutativity: For alk, ¢’ € Key F, we havef, o f! = fl o f.
2. Eachf, : Dom F — Dom F is a bijection.
3. The inversg ! is also computable in polynomial time given

4. The distribution ok =z, f.(x),y, f.(y) > is computationally indistinguishable
from the distribution< =z, f.(x),y,z >, wherez,y,z €, Dom F ande €,

Key F.

Property 1 says that the composition of the encryption with different keys is the
same irrespective of the order of encryption. Property 2 Hagt two different values
will never have the same encrypted value. Property 3 saygiten an encrypted
value f.(z) and the encryption key, we can findr in polynomial time. Property 4
says that given a valueand its encryptiory.(x) (but not the key) and a new value
y, we cannot distinguish betweef(y) and a random value in polynomial time.

Thus we cannot encryptor decryptf.(y) in polynomial time.

As an example, lebom F be all quadratic residues modulpwherep is a safe prime
numberj.e. bothp andg = (p — 1)/2 are primes. Lef{ey F be{1,2,...,q — 1}.

Then assuming the Decisional Diffie-Hellman hypothesis K)Bhe power function

fe(z) = z° modp



23

is a commutative encryption because

fe(fa(z)) = (z* modp)® modp = 2% mopp = (z* modp)? modp = fu(f.(z)).

Based on commutative encryption, Agrawéahl. [52] developed several secure pro-
tocols for set intersection, equijoin, intersection siaed equijoin size. We refer

interested readers to their work for more details.

Related Work The work in [45] detailed a rigorous introduction to SMC amgltographic
protocols. It has shown that any polynomial-time functiam de expressed as a combi-
natorial circuit of polynomial size, and is therefore ptelsg computable using a generic
circuit evaluation protocol. However, the communication @omputational complexity
of doing so makes this general approach infeasible for ldegasets. As a result, many
new, more efficient SMC techniques are being developed biperg a combination of
different approaches such as data perturbation, lineasfwamation, and cryptographic
primitives. The work in [46] offered a broad view of SMC framark and its applica-
tions to data mining. A collection of SMC tools useful foryacy preserving data mining
(e.g, secure sum, set union, inner product) were discussed jn [B&veral privacy pre-
serving data mining algorithms have been developed bas#tesa toolse.g, association
rule mining from vertically partitioned data [54] and harigally partitioned data [55],
clustering with distributed EM mixture modeling [56], andMeans clustering over verti-
cally partitioned data [57]. A detailed overview of theseheiques and applications can
be found in [58]. SMC and cryptographic protocols have alserbapplied for statistical
analysis [51], support vector machine [59], naive Bayessifecation [60], privacy preserv-
ing OLAP [61], Bayesian network structure computation [S0jormation sharing across
private databases [52], privacy preserving distributegilsilen tree induction [62] and many

others.
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2.1.3 Distributed Data Mining (DDM)

Bluntly put, distributed data mining (DDM) is data mining &ie the data and com-
putation are spread over many independent sites. For sopleans, the distributed
setting is more natural than the centralized one becausaatiaeis inherently distributed.
The bulk of DDM methods in the literature operate over anrabstarchitecture where
each site has a private memory containing its own portioh@fiiata. The sites can operate
independently and communicate by message-passing oveyaoh&onous network. Typ-
ically, communication is a bottleneck. Because commuiunas assumed to be carried
out exclusively by message-passing, a primary goal of magthads in the literature is to
minimize the number of messages sent. For more informabontcDDM, the reader is re-
ferred to two recent surveys [63,64]. These provide a breadwiew of DDM, touching on
issues such as: clustering, classification, associatiemmining, Bayesian network learn-
ing, basic statistics computation, and the historicals@dtDDM. An online repository for
DDM related publications can be found at [65].

Since DDM produces a global data mining model by exchangntgasmall amount
of information among the participating sites, it has beewpaed for many distributed pri-
vacy preserving data mining scenarios. The work in [66] pemgl a paradigm for clus-
tering distributed privacy sensitive data in an unsupexisr a semi-supervised scenario.
In this algorithm, each local data site builds a model andsimaits only the parameters
of the model to the central site where a global clustering ehdgl constructed. A dis-
tributed privacy preserving algorithm for Bayesian netvoarameter learning is reported

elsewhere [67].
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2.2 Rule Hidning

The main objective of rule hiding is to transform the dat&bssch that the sensitive
rules, for example, associate rules and classificatiorsrae masked, and all the other

underlying patterns can still be discovered.

2.2.1 Association Rule Hiding

Association rule hiding considers the problem of transiogrthe database so that
all the sensitive association rules are concealed and atiresensitive rules can still be
identified. The work in [68] gave a formal proof that finding eptimal solution to hide
sensitive large item sets is an NP-hard problem. For thsoreamany heuristic approaches
have been proposed to address the complexity issues. Fopéxahe perturbation-based
association rule hiding techniques [39, 69] are implenebiechanging a selected set of
1-values to O-values (in a binary database) or vice vershatdlie frequent item sets that
generate the sensitive rules are hidden or the support sitserrules is lowered to a user-
specified threshold. The blocking-based association rididp approach [70] replaces
certain attributes of the data with a question mark. Theodhiction of this new special
value in the dataset imposes some changes on the definittbe stipport and confidence
of an association rule. In this regard, the minimum suppadt @inimum confidence will
be changed into a minimum support interval and a minimum denfie interval. As long
as the support and/or the confidence of a sensitive rule éksvthe middle in these two

ranges, the confidentiality of data is expected to be pretect

2.2.2 Classification Rule Hiding

The work in [71] presented a framework that combines degisiee classification

and parsimonious downgrading. Here the term “parsimondmwengrading” refers to the
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phenomenon of trimming out sensitive information from aadat when it is transferred
from a secure environment (referred to as high) to a publioalo (referred to as low).
The objective of this work is to guarantee that the receifahe data will be unable to

build informative classification models for the data thaid$ downgraded.

2.3 Summary

Data mining technologies have enabled commercial and gowental organizations
to extract useful knowledge from data for the purpose ofiess and security related
applications. While successful applications are enconggaghere are increasing concerns
about the invasions to the privacy of personal informatidio. address these concerns,
researchers in the data mining community have proposedussolutions. This chapter
presents an overview of them. It has noted that the main deration in privacy preserving
data mining is two fold: 1ylata hiding sensitive raw data should be modified or trimmed
out from the original database while the important undedypatterns of the data should
still be preserved; and 2yle hiding sensitive knowledge which can be discovered from
the data should be filtered out. We refer interested readeagécent book, a survey and

an online bibliography [58, 72, 73] for more information abthis booming research area.



Chapter 3

TRADITIONAL MULTIPLICATIVE DATA
PERTURBATION

A statistical database (SDB) system is a database systdrallkbwas its users to re-
trieve aggregate statistics.@, sample mean and variance) for a subset of the entities rep-
resented in the database and prevents the collection afiation on specific individuals.
In the statistics community, there has been extensive re@dsea the problem of securing
SDBs against disclosure of confidential information. Thigénerally referred to atatis-
tical disclosure contral Statistical disclosure control approaches suggestdgeititerature
are classified into four general groups: conceptual, questriction, output perturbation
and data perturbation [8]. The conceptual approach prexadeamework for better under-
standing and investigating the security problem of siatittlatabase at the conceptual data
model level. It does not provide a specific implementatiatpdure. The query restriction
approach offers protection by either restricting the sizguery set or controlling the over-
lap among successive queries, etc. The output perturbagiproach perturbs the answer
to user queries while leaving the data in the database ugeldanThe data perturbation
approach introduces noise into the database and transfomts another version. This
dissertation primarily focuses on the data perturbatiqor@gch, and we refer interested

readers to [8] for more details about other approaches.
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Adding random noise to the private database is one commaenpaturbation ap-
proach. In this case, a random noise term is generated framsanbed distribution, and
the perturbed value takes the form; = z;; + r;;, wherez,; is thei-th attribute of thej-th
private data record, and; is the corresponding random noise. In the statistics conitgyun
this approach was primarily used to provide summary steaisinformation €.g, sum,
mean, variance, etc.) without disclosing individuals’ tdential data €.g, [74]). In the
privacy preserving data mining area, this approach wasideresl in [4, 11] for building
decision tree classifiers from private data. Recently, nmasgarchers have pointed out that
additive noise can be easily filtered out in many cases thgtleaa to compromising the
privacy [5—7]. Given the large body of existing signal-pgesing literature on filtering ran-
dom additive noise, the utility of random additive noisefioivacy-preserving data mining
is not quite clear.

The possible drawback of additive noise makes one wondartdabe possibility of
using multiplicative noiseife., y;; = x;; * r;;) for protecting the privacy of the data. Two
basic forms of multiplicative noise have been well studiethe statistics community [15].
One multiplies each data element by a random number thatthascated Gaussian distri-
bution with mean one and small variance. The other takesaitbgic transformation of
the data first, adds multivariate Gaussian noise, then thlkesxponential functioexp(.)
of the noise-added data. As noted in [15], the former peativh scheme was once used
by the Energy Information Administration in the U.S. Depaent of Energy to mask the
heating and cooling degree days, denoted:hy A random noise; is generated from a
Gaussian distribution with mean 1 and variandg25. The random noise is further trun-
cated such that the resulting numbegrsatisfie9).01 < |r;; — 1| < 0.6. The perturbed data
x;;7;; were released. This approach was also discussed in [75].

This chapter gives a brief review of these two perturbatwreses.
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3.1 Perturbation Scheme |

3.1.1 Perturbation Scheme

Let x; be thei-th attribute of a private database. Lgt be the value for the-th
attribute of thej-th record in the database=1,...,n, j = 1,...,m. Letr;; denote the

random noise corresponding:ig. The perturbed datg; is

Yij = TijTij,

wherer;; is independent and identically chosen from a Gaussianitalison with mean
wi (usually u; = 1) and variances?. In other words, all-;;'s for a giveni follow the
same distribution. In practice, the probability densitynofser (ignoring the subscript) is

usually doubly truncated as follows:

L oxp(—525 (r — p)?
f(r) = 2o (a2 (7~ 1)) for A<r < B.

B
[ exp(—52z (r — p)2)dr
1

= exp(— gz (r — 11)?)

2mo

o - o)

where A and B are the lower and upper truncation bounds éd) stands for the cumu-

lative probability up toA. The above equation can be further simplified as

Kz(-—h),
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3.1.2 Statistical Properties of the Perturbed Data

It has been proved in [15] that the mean and variance of thgnadi data attributes
can be estimated from the mean and variance of the pertudiad d

Mean of z;:

) = E(y:)
E(z:) TRz Z(Emy (3.1)

2k [ef

Because the data owner will relegsg o;, A and B, the data receiver can compute the
expected value of;.

Variance of z;:

Var(z;) = FE(x?) — (B(zy))?, (3.2)

where E(z;) can be easily calculated following Eq. 3.1, affd(z;))? can be computed

from the follow equations:

Varly] = EGHE(?) - (E@)E(r)?
= E(}){o} +u] +J§K[A;MiZ(A;Mi) - B@“"Z(B;“’J]
sz 2y
(Bl + 2P - (P
S22 2y

Although the original attribute’s mean and variance can siemated from the per-
turbed data, the inner product and Euclidean distance athengata records are not nec-

essarily preserved after perturbation. The following leasrdepict this situation.
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Lemma 3.1.1 Lety,; = x;;7;;, where each;; is independent and identically chosen from

a Gaussian distribution with mean 1 and variance Then

n n
E( E YijYik — E Tirg) = 0;
i1 i=1
n n n
2 2.2
Vcw’(g YijYik — g TijTiy) = O g T T

Proof:

E(Z YijYik — Z ﬂfzﬂfzk)
i=1 i=1

Var(z YijYik — Z TijTik)
=1 =1

n n
E( E a:ijrija:ikrik) — g TijLik

i=1 i=1

n n
E E(zijrijrixri) — E LijLik

i=1

E ng ng xzkE Tzk E Lij Tk

=1

0.

n
VGT(Z [L’ijrijflfik’l"ik)

i=1

n
E Var(xrieigri) +
i=1

n—1 n

25 E Cov(TpiTpjTpkTpks TqjTqj TakT k)
P:1 q:p+1

Z Var(xijrijxiknk)
=1
Z{E ST — (B(xigrgears))’}

Z{(l + UQ)%%'%%C - %2]%21@}

22
ZL' xzk
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O
The above lemma shows that although the inner product i€pred on expectation,

the variance of the error could be very large.

Lemma 3.1.2 Lety;; = x;;7;;, where eachr;; is independent and identically chosen from

a Gaussian distribution with mean 1 and variance Then

n n

E(Z(?ng - yz‘k)2 - Z(%J - xzk ZU x . - x

=1 =1
Proof: Let LHS denotes the left hand side of the above equation. We ha

n n

=1 i=1

E : 2,2 E
= E( ($ T ;- xzkjrzk 21'”7’1]371]4;7“@]@ ng xzkz
] =1

n n

= > (140”2 + (1 + 0%)af, — 2xgma) — Y (w15 — zax)?

i=1 =1
n n

- Z((ng - mik>2 + Uz(x?j + x?k)) - Z(xm xzk)Q

1

_ 2

= (wij — wik) —i—E o2 m A+ a? E (wij — k)
1

1= =1

= Z 02(3%' + x?k:)
i=1

1=

0
The above lemma shows that the Euclidean distance is narpeskafter perturba-

tion.
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3.2 Perturbation Scheme Il

3.2.1 Perturbation Scheme

Let z;; be the value for theé-th attribute of thej-th record in the database as before.

1=1,....,n,5=1,...,m. Let

U5 = In Lij-

We generate the random noise following the multivariatesseun distributionV (0, cXy),
where0 < ¢ < 1 andXy is the covariance matrix of variables, u-, . . ., u,. We denote

the noise as;;. Let

Zij = Uij Tt €,

yi; = exp(zy)
= exp(lnz;; +e;)
= xijexp(e;)

= xijhij-

The perturbed datg,; is released then. Note that this scheme assumes thay; alle
positive.
3.2.2 Statistical Properties of the Perturbed Data

It has been proved in [15] that the mean, variance and cowaiaf the original data

attributes can be estimated from the perturbed data.
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Mean of z;: Leto? = ¢Var(lnz;). We have

BE(z;) = 2 (3.3)

Variance of z;:

Var(z;) = E(2?) - (E(z;))?

— (B(x:))*. (3.4)

Covariance ofz; and z;:

Z;;n::[ Yik Z}T:l Yjik

> et YikYik m
Cov(z;, x;) = = — m i -1),(3.5
ov(@i, z;) {exp[(cfi2 +2poioj +07)/2] explo? + 03] }m=1).39)

wherep is the correlation coefficient af; andx;, and it can be obtained from the perturbed
data. Because the noise was generated to maintain the saml@ton structure, the corre-
lation between the perturbed data will be on average the sartteat between the original
data in log-scale.

Similar to perturbation scheme |, the inner product and i@laeh distance among
the data records are not preserved after perturbation. dlteving lemma depicts this

situation.

Lemma 3.2.1 Lety,; = x;;h;;, wherez,; and h;; are defined as before. We have

n n n n
o2 .
E(E YijYik — E %]fzk) = E TijTik€ " — 5 Tij ik,
i=1 i=1 i=1 i=1
n n n n

EQ (i — i) = Y (w5 —wu)?) = D (7 (] + ) — 2wygwie™) = > (wi; — war)”

i=1 i=1 i=1 =1

Proof: Becauseh; = exp(e;) ande; follows a Gaussian distribution with mean 0 and
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variances? (note thatr? = cVar(Inz;)), we can compute the mean and variancé,ais

follows.

400 1 —z2
B(h) = / T ds

e 2, 1 o
Var(h;) = / (" —e2)? e dx

E(h?) = (E(h))*+ Var(h;) = >,

Applying the above results to the proofs of Lemma 3.1.1 anchiba 3.1.2, we get the
expected results. O
The above lemma shows that in scheme I, the perturbed datardd preserve either

inner product or Euclidean distance.

3.3 Privacy Issues

On the surface, multiplicative perturbation seems to ckahg data more than addi-
tive perturbation. For example, perturbing a salargf0, 000 by adding$5000 (5% rela-
tive change) would be considered a compromise while at tme $ene perturbing a salary
of $10,000 by $5000 (50% relative change) would preserve the privacy of the data. On
the other hand, perturbirfgi 00, 000 and$10, 000 by multiplying by 2 would be accepted
because both havié0% relative change. However, by taking logarithms on the pbed
data, the multiplicative perturbation turns into an adeifperturbation. More specifically,
for perturbation scheme |, the logarithmic transformatodny;; gives uslnz;; + Inr;;,
where the noise terin r;; is chosen independent and identically from some distidouti

For perturbation scheme Il, after logarithmic transforioatwe haven z;;+e;;. The noise
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term is chosen fronV (0, ¢y, x ), whereX,, x is the covariance of the original data in log
scale. As noted in [5-7], the privacy of the former “additperturbation scheme” can be
easily breached in many cases. The latter “additive peatiol scheme” generates random
noise withsimilar covariance structure with the original data (in log scade)] therefore
offers better privacy protection. This kind of perturbatiwas also been extensively inves-
tigated in the literaturee(g, [6, 13, 14, 76]). In particular, the work in [6] shows thageth
accuracy of attacker’s estimation of the original data geisse as the similarity increases.

Before concluding this subsection, it should be noted thatlitionally, the privacy,
denoted by, provided by a perturbation technique for continuous dataeasured as the
variance of difference between the original data and peetlidata [8], thatid/ar(X—-Y"),
whereX represents the original data attribute antdhe perturbed attribute. This measure
can be made scale invariant with respect to the variangeasy = Var(X—-Y)/Var(X).
This measure is suited to quantifying the privacy of a sirgjtebute. In practice, an
attacker may also attempt to use a linear combination oféhieigbed attributes to estimate
confidential information of the linear combination of thegimal attributes. Measuring
the privacy offered for linear combinations is difficult la@ese there are too many such
combinations. A canonical correlation-based metric igluad13] that can measure the
maximum proportion of variance that an attacker can exgltairany linear combination
of the original attributes, using a linear combination & gferturbed and non-confidential
attributes. Lef\ denotes the largest eigenvalue of the following maﬂrj‘XXCXyC;;CYX,
where C'x x denotes the covariance of, C'xy the covariance o\ andY. The value
of \ represents the maximum proportion of variability in anyeln combination ofX
that can be explained by any linear combinationYof The privacy is defined ag =
1 — A. Thus, for any linear combination of, at leastl — X proportion of variability will
remain unexplained. These metrics do provide the data owitiemeaningful information

regarding the effectiveness of the perturbation methodmesway. However, they do not
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offer an insight on how the attackers could attack the pedtion if they had some prior
knowledge about the data. Trottiat al. [77] tried to address this issue by developing
a Bayesian attacker model to assess the performance of thelgaion techniques on
continuous microdata. They specifically investigated tiralgination of both additive noise
and multiplicative noise and allowed the attacker to usered data to enhance the chances
of disclosing the identity of a target individual. Their sifation showed that the probability
of the identity disclosure is a function of many key paramelig&e the variability amongst
profiles in the original data, the amount of attacker’s pinéormation, the amount of noise

introduced in the data, etc.

3.4 Summary

This chapter briefly reviews two traditional multiplicagidata perturbation techniques
that have been well studied in the statistics community.s€hgerturbations are primarily
used to mask the private data while allowing summary siegit.g, sum, mean, variance,
covariance) of the original data to be estimated.

In summary, these multiplicative perturbations have ttlefong advantages and dis-

advantages:

e The multiplicative perturbation is relative, that is, largalues in the original data are

perturbed more than smaller values.

¢ In practice, the first perturbation scheme is good if the degseminator only wants
to make minor changes to the original data; the second schesuges higher secu-

rity than the first one but maintains the data utility in thg-krale.

e These perturbation schemes are equivalent to additiverpetton after the loga-

rithmic transformation. Due to the large volume of reseancteriving private in-
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formation from the additive noise perturbed data, the sgcaf these perturbation

schemes is questionable.

e The objective of these perturbation schemes is to mask tveg@data while allowing
summary statistics to be estimated. However, problemstarmaing are somewhat
different. Data mining techniques, such as clusteringssifeation, prediction and
association rule mining, are essentially relying on monghssiicated relationships
among data records or data attributes, but not simple suynstatistics. The tradi-
tional multiplicative perturbations distort each datanedat independently, therefore
the Euclidean distance and inner product among data reemedasually not pre-

served, and the perturbed data cannot be used for many dategrapplications.

In the next chapter, we will present a new multiplicativeadagerturbation technique
calleddistance preserving data perturbatioihis technique preserves inner product and
Euclidean distance among data records. Therefore, maayniaing algorithms can be
efficientlyapplied to the perturbed data and prodegactly the sameesults as if applied
to the original datad.g, distance-based clustering, k-nearest neighbor classifig. We
further address the privacy issues of this technique byideriag three types of prior
knowledge an attacker may have and use to design attackdeesrto recover the original
data. As such, valuable information is gained into the ¢ffeness of distance preserving

transformation for privacy preserving data mining.



Chapter 4

EUCLIDEAN DISTANCE PRESERVING DATA
PERTURBATION

Recently, distance preserving data perturbation [16—&8]dained attention because
it mitigates the privacy/accuracy trade-off by guaramtgeerfect accuracy. Many impor-
tant data mining algorithms can leéicientlyapplied to the transformed data and produce
exactly the sameesults as if applied to the original dagg, distance-based clustering and
k-nearest neighbor classification. However, the issue wflell the original data is hidden
has, to our knowledge, not been carefully studied. In thagptér, we address this issue by
studying how well an attacker can recover the original datenfthe transformed data and
prior information. We restrict our attention to the classl@tance preserving transforma-
tions that fix the origin and consider recovery of the ori¢jofegta in the presence of three
different classes of prior information (described laté&ur analysis explicitly illuminates
scenarios where privacy can be breached. As such, valudblenation is gained into the
effectiveness of distance preserving transformation fimapy preserving data mining.

The remainder of this chapter is organized as follows. 8eetil discusses some ba-
sic mathematical properties of distance preserving toansdtions, the application of these
transformations to privacy preserving data mining, andyérgeration of orthogonal matri-

ces. Sections 4.2 and 4.3 defines the privacy breach mettithage classes of attacker’s

39
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prior knowledge. Sections 4.4, 4.5 and 4.6 examine in dbtail knowledge in each of
these classes can be used to estimate the original datalitransformed data. Finally,

Section 4.7 concludes this chapter.

4.1 Distance Preserving Transformations

This section offers an overview of distance preservingsi@mation: its definition,
application scenarios, etc. Throughout this chapter &snt¢herwise stated), all matrices
and vectors discussed are assumed to have real entries.ed@trs are assumed to be
column vectors and/’ denotes the transpose of any matrix An m x n matrix M is said
to be orthogonal iV’ M = I, then x n identity matrix. If M is square, it is orthogonal
if and only if M’ = M~ [78, pg. 17]. The determinant of any orthogonal matrix ibeit

+1 or—1. Let©Q,, denote the set of all x n, orthogonal matrices.

4.1.1 Definition and Fundamental Properties

To define the distance preserving transformation, let us aftigh the definition of
metric space In mathematics, a metric space is a Setith a global distance function
(the metricd) that, for every two points;, y in S, gives the distance between them as a
nonnegative real numbé(z, y). Usually, we denote a metric space by a 2-tudled). A

metric space must also satisfy
1. d(z,y) = 0 iff x = y (identity),
2. d(z,y) = d(y, x) (Symmetry),
3. d(z,y) + d(y, z) > d(z, z) (triangle inequality).

A metric spacgS;, d;) is isometric to a metric spade.,, d») if there is a bijection

T :S; — S, that preserves distances. Thatdg,z,y) = do(T'(x),T(y)) for all z,y € S;.
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The metric space which most closely corresponds to ourtimtuiinderstanding of
space is the Euclidean space, where the distdimween two points is the length of the
straight line connecting them. In this chapter, we spedificmnsider the Euclidean space
and defined(x,y) = ||z — yl||, the>-norm of vectorr — y. A functionT : R* — R"
is distance preserving in the Euclidean space if forzal) € R™, ||z — y|| = ||T(z) —
T(y)||. HereT is also called aigid motion It has been shown that any distance preserving
transformation is equivalent to an orthogonal transforomafiollowed by a translation [78,
pg. 128]. In other words, there existé, € O, andvy € R” such thatl” equalsr € R
— Mrx + vp. If T fixes the origin,7'(0) = 0, thenvy = 0; hence,T" is an orthogonal
transformation. Henceforth we assufids a distance preserving transformation which
fixes the origin — amrthogonal transformationSuch transformations preserve the length
(I*-norm) of vectorsy|z|| = ||T(z)]| (i.e., given anyM; € OQ,, ||z|| = ||Mrz||). Hence,
they mover along the surface of the hyper-sphere centered at the avigirradius||z||.

From a geometric perspective, an orthogonal transformagi@ither a rigid rotation
or a rotoinversion (a rotation followed by a reflection). Jiproperty was originally dis-
covered by Schoute in 1891 [79]. Coxeter [80] summarizecbBi&’s work and proved
that every orthogonal transformation can be expressed asdaigt of commutative rota-
tions and reflections. To be more specific, detdenote a rotationR a reflection,2¢ the
number of conjugate imaginary eigenvalues of the ortholgoa#ix M, andr the number
of (-1)’s in then — 2¢ real eigenvalues. The orthogonal transformation is exsjirksas
QIR"(2q +r < n). Especially, in 2D spacelet(M) = 1 corresponds to a rotation, while

det(M) = —1 represents a reflection.

4.1.2 Generation of Orthogonal Matrix

Many matrix decompositions involve orthogonal matriceshsas QR decomposition,

SVD, spectral decomposition and polar decomposition. Tiegee a uniformly distributed
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random orthogonal matrix, we usually fill a matrix with inéglent Gaussian random
entries, then use QR decomposition. Stewart [81] replausdiith a more efficient idea
that Diaconis and Shahshahani [82] later generalized asuthgroup algorithmWe refer

the reader to these references for detailed treatmento$tifiject.

4.1.3 Data Perturbation Model

Orthogonal transformation-based data perturbation campémented as follows.
Suppose the data owner has a private databgse,, with each column ofX being a
record and each row an attribute. The data owner generates<an orthogonal matrix
My, and computes

}/nxm - MT

nxn

Xnxm- (4.1)

The perturbed dat¥, ., is then released for future usage. As a taste of the many dgamp
and experiments to come later in this Chapter, Figure 4.tiges an example of how the
data looks before and after perturbation.

Next we describe the privacy application scenarios whetteogonal transformation
can be used to hide the data while allowing important padtéorbe discovereaithout

error.

4.1.4 Privacy Application Scenarios

Many data perturbation approaches pay a price in terms oad¢haracy of the es-
timated patterns for achieving the desired level of privaoytection. For example, an
additive perturbation-based approach adds noise to tlaemarder to make sure that the
data is sufficiently distorted so that the original data galoannot be identified accurately.

This also introduces noise in the patteregy( a decision tree, association rules) that a
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Original Data Perturbed Data

15

15

a N a ‘ ‘ ‘
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

FIG. 4.1. An example of distance preserving data perturbatath ©rigin fixed) in 2D
space.

data miner may be interested in computing. However, therereny application domains
(e.g, security, counter-terrorism) where losing accuracy forgcy may not be acceptable.
Detecting outlier activities from a large amount of data maguire highly precise data
analysis capabilities. After all, we do not want the pergtetrs of criminal activities to
enjoy the privacy-shield offered to the law abiding indivads.

Orthogonal transformation has a nice property that it px&sevector inner product
and distance in Euclidean space. Therefore, any data mahgagithms that rely on inner
product or Euclidean distance as a similarity criteria axkaiiant to orthogonal transfor-
mation. Put in other words, many data mining algorithms eaagplied to the transformed
data and produce exactly the same results as if applied tarigieal datage.g, KNN clas-
sifier, perceptron learning, support vector machine, digtebased clustering and outlier
detection. We refer the reader to [18] for a simple proof ¢ation-invariant classifiers.

In practice, orthogonal transformation-based data peation is particularly geared

towards the following privacy application scenarios:
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Census Scenario(see Figure 4.2(a)) An organization has a private datdsétach col-

umn is a data record) and wishes to make it publicly availtdyldata analysis while

keeping the original data records private. To accomplig) th= M, X is released

to the public. The distance preserving natur&'allows a public entity to easily re-

covery many useful patterns from For example, the cluster membership produced

by a Euclidean distance-based K-means clustering avill be exactly the same as

that produced orX. This model is widely studied in the field of security contii

statistical databases. We refer the reader to [8] for anvaexerof this topic.

Storage Outsourcing Scenario(see Figure 4.2(b)) An organization continuously gener-
ates private data records, but does not wish to invest inntnastructure (both per-
sonnel and hardware) needed to manage the storage. Oungpilnis job can be an
attractive alternative,e.,the data records are handed over to an outside agency that
manages their storage. However, the original data recoedsemsitive and the or-
ganization would rather avoid releasing them in the plaithéooutsourcing agency.
To accomplish this, the owner appli@sto each data record and releases the results
to the outsourcing agency. Whenever the owner wishes tevetrecords from the
outsourced database, she or he transforms the query byntiedsand sends it to the
outsourcing agency who carries out similarity comparisorttee data and, in turn,
sends the results back to the owner. This scenario is closialed to work on secure

database outsourcing.g, [83].

4.2 Privacy Breach

Orthogonal transformation-based data perturbation hasite property that many
data mining algorithms can be applied to the perturbed dedgpeoduce exactly the same

results as if applied to the original data. However, theassithow well the original data is
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Private Perturbed ——>{ | pata Miner
Database Database

Census Model
(@
query Storage Provider
>
Enterprise
Enterprise's
«< Private Database
reply

Secure Storage Outsourcing Model

FIG. 4.2. Privacy application scenarios where orthogonakfamation can be used to
hide the data while allowing important patterns to be digced without error.
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hidden has, to our knowledge, not been carefully studiedtakie a step in this direction
by assuming the role of an attacker armed with three typesiof information regarding
the original data. We examine how well the attacker can recthe original data from the
perturbed data and prior information.

Before stepping into the details of the attack algorithms fivst give the definition of
privacy breach We assume that an attacker will ha¥eandY and thatY” was produced
from X by an orthogonal transformation. The attacker will alsoehprior knowledge as
described in Section 4.3. The attacker will prodice R” and1 < ¢ < m, wherei is the

attacker’s estimate of;, the:'" data tuple (column) ik .

Definition 4.2.1 -Privacy Breach) For anye > 0, we say that ar-privacy breach oc-

curs if||2 — z;|| < ||23]|e.

Informally stated, an-privacy breach occurs if the attacker’'s estimate is wroitg w

relative error no more than We further define the probability of privacy breach as falo

Definition 4.2.2 (Probability of e-Privacy Breach) We definep(z;, €) as the probability
that ane-privacy breach occurs given that the attacker chgsee., p(z;, €) = Prob{||Z —

il < lla;le}.

4.3 Prior Knowledge

Let then x m matrix X denote a private dataset, with each columidfeing a record
and each row an attribute. We assume that the attacker kihavsansformation function
T is an orthogonal transformation and knows the perturbed Hat= M7;X. In most
realistic scenarios, the attacker has some additiomat knowledgewhich can potentially

be used effectively for breaching privacy. We considerdhypes of prior knowledge.
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Known input-output The attacker knows some collection of linearly indepengeintte
data records. In other words, the attacker has a set of §ngatependent input-
output pairs. In this scenario, we have developed an atigokitnm based on linear

algebra and statistics theory.

Known sample The attacker knows that the original dataset arose as indepésamples
of somen-dimensional random vectdr with unknown p.d.f. Also the attacker has
another collection of independent samples fignor technical reasons, we make a
mild additional assumption: the covariance matrid/ohas distinct eigenvalues. In
this scenario, we have developed a principal componenysisgPCA)-based attack

algorithm.

Independent signalsEach data attribute can be thought of as a time-varying kigkih
the signals, at any given time, are statistically indepahd@d all the signals are
non-Gaussian with the exception of one. In this scenariohaxge developed an

independent component analysis (ICA)-based attack dfgori

Next, we describe and analyze attack techniqueg&ah type ofprior knowledge listed

above.

4.4 Known Input-Output Attack

Consider the perturbation model

Y = My X &

(Yk Ym—k) = MT<Xk Xm—k)'

Let X, denote the firsk columns of X and X,, ;. the remainder (likewise fo¥’). We

assume that columns &f; are all linearly independent and, is known to the attackei{
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is, of course, also known). The attacker will producend1 < i < m — k such thatt is a
good estimate af, theit” column inX,, ;. (the (k + 7)™ column inX).

If £ = n, then the attacker can recover any columnXip_, perfectly asX,, , =
(Yka‘l)’Ym_k. Thus, we assume < n. Based on known information, the attacker can
narrow down the space of possibilities fofr to M(X,,,Y,) = {M € O, : MX,, = Y} }.
Because the attacker has no additional information, anlgesdfé matrices is equally likely
to have been/;. The attacker choosed uniformly from M( X}, Y;) and chooses index
1 <i<m-—kbased on(z;, €) (the probability that am-privacy breactoccurs given that
i was chosen), then produces= M'y; = M'Myx;. Later we will show how the attacker
can compute(z;, ¢) forall 1 <4 < m — k from ¢ andY” (known information).

Note thatM( X}, Y%), in most cases, is uncountable. As such, more precise defini-
tions are needed for “choosing uniformly from M( Xy, Yy)” and “the probability that

1M My — 2| < ||«

¢”. To do so, we first develop two key technical results.

4.4.1 Key Technical Results

Let Col(X}) denote the column space &f, and Col, (X)) denote its orthogonal
complementj.e, {z € R* : 2’w = 0, Vw € Col(X})}. Because the columns of; are
linearly independent, then the dimension(@#!(X}) is k. The “Fundamental Theorem
of Linear Algebra” [84, pg. 95] implies that the dimension@él , (X}) isn — k. Let Uy
(n x k) be the orthonormal basis fétol(X},), andU,,_ (n x (n— k)) the orthonormal basis
for Col, (X}). Givenn x p andn x ¢ matricesA and B, let[A|B] denote the: x (p + q)

matrix whose firsip columns ared and lastg are B. Likewise, givenp x n andgq x n

A
matricesA and B, let denote theép + ¢) x n matrix whose firsp rows areA and
B

lastq are B. Let U denotelUy|U,,—x|. Clearly,U is orthogonal.

The next Theorem provides a very useful alternate chaiaatem of MI( Xy, V). It
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Reflection Rotation

X y
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FiIG. 4.3. Reflection and rotation in 2D space. Solid markers tdetin@ original data and
hollow markers denote the perturbed data.

is used critically throughout our analysis of therivacy breach probability.

Theorem 4.4.1LetP denote{ MU, U, + MyU,,_PU! _, : VP € O,_;}, thenM (X}, Y%)
=P

Proof: Please see Appendix 4.8.1 for the proof. O
This theorem shows thafl(X,, Y;) has a closed-form expression:

M(X.,Y:) = {MyUU, + MyU,_PU.

3

—k . VP G @n_k}.

For some special cases, for example, whea n, M(Xy, Y;) has only one element
M~; which echoes the fact that whén= n the attacker can uniquely identify the pertur-
bation matrix, and perfectly recover the private data. Whenn — 1, M(( X}, Y%) has only
two element MU, U, £ MrU,_U,_«}. As an illustration, let us consider the orthog-
onal transformation in 2D space (shown in Figure 4.3). If wagyd&now one data point
(solid triangle) and its perturbed counterparthollow triangle) (in this casé = 1), we

are not able to determine whether it is a rotation of a refyectt If it was a rotation, the

1In 2D space, an orthogonal transformation is either a manatr a reflection, depending on whether the
determinant of the orthogonal matrix(is-1) or (—1).
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orthogonal perturbation matrix would be

cosf) —sinf

sinf) cosf

wheref = arccos(%). If it was a reflection, the orthogonal perturbation matrisuld

el
be

1 ufc — uf/ 2uzu,
2 2 ’
Uz 1 Uy 2,y uz —u?

whereu = (z + y)/2, u, is the first dimension of;, andu, is the second dimension af
Therefore, only if the attacker gets another data point ggarturbed version, can s/he
determine the original perturbation matrix, and hencevecother private data.

Theorem 4.4.1 leads to the following corollary, which isrgpto be used to derive the

closed-form expression @f z, €).
Corollary 4.4.2 Let L be the linear mapping/ € M(X,,Y},) — (MpU,_p,)' MU, _y.
1. Lis one-to-one and.(M( Xy, Y%)) = O, k.

2. Foranyz € R" and anyM € M(Xy, Yy), ||M'Mrx — z|| = ||L(M)'U],_,x —
Uyl

Proof: 1. Let M € M(Xy, Y%). By Theorem 4.4.1, there exists, € O,,_ such that\/ =
MTUkUI’C + MTUn—kPMUrIL_k- We have,

L(M) = (MpU,_x)MpUUU,—y + (M7pU, i) MpU, . PyU)_ Up— e

== O—I—P]u.
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Thus,L(M(Xy, Y:)) € O, _. Let us now considek/;, My € M(Xy, Y;) such thatl (M)
= L(M,). It follows that P;, = P, so, M; = M,. Therefore,L is one-to-one. Now
considerP € O,,_. By Theorem 4.4. 1 MU U, + MU, _PU! _,) € M(Xy, Yx), and,
by the above argument, sends this element t8. ThusQ,,_;, = L(M(Xy, Y)).
2. Becauséd/' € O, and anyM € M(Xy, ) equalsM U, U + MrU, _ L(M)U],_,,

it follows that

M Mrz — || = ||U(M'Mrz — )]
= ||U/(MTU]€U]; + MTUn_kL(M)U;l_k)/MTﬂf — U/.CL'H

= |Uk|Un-t]' UpUsx + [Uk|Un—] Up—. L(M) U}, _jz — [Ug|Un—s]'||
0

_ Uiz N Uz
0 L(M)U! _,x U _,x

= |[L(M)'U,_yz = U, _yz||.

O

Now we can address the issue of making precise definitionécfaosing A/ uni-

formly from M(X},Y;)” and “the probability that| A’ Mz — || < ||z||¢". First we

define a “uniform” probability measure avi( X}, Y;). Then we describe a procedure for
choosing a matrix\/ “uniformly” from M(X}, Y;).

Because0,,_,, is a locally compact topological group [78, pg. 293], it haklaar
probability measure, denoted Iy overB, the Borel algebra of),,_,, [85, pg. 65]. This
is commonly regarded as the standard uniform probabilitasuee ovelD,,_,.. Its key
property isleft-invariance for all B € B and allM € Q,,_y, u(B) = u(MB), i.e,, shifting
B by a rigid motion does not change the probability assignmé&himilarly, we need a

left-invariant probability measure on the Borel algebramdM (X}, Y;). Such a measure
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can be regarded as the uniform probability measur®i, Y;). ConsiderL !(B) =
{L~1(B) : B € B}. From Corollary 4.4.2 part 1, it follows thdt ! (B) is the Borel algebra
overM(Xy, Yy). Moreover,. o L forms a left-invariant probability measure on the Borel
algebra oveM (X, Y;). 2 Thus,u o L can be regarded as the uniform probability measure
onM(Xy, Yy).

There are standard algorithnesg, [86]) for generating a matrix which can be thought
to have been chosen frof,_;, according ta, i.e., uniformly. Thus, a matrix\/ can be
chosen uniformly fronM( X}, Y;) as follows: (i) generatéd® € O,,_, according to [86]
and (i) setM to L~1(P).

Now we give a precise definition ofz, ), the probability that| M’/ Mz —z|| < ||z||e
where M/ is chosen uniformly fronM(X,,Y;). Let M(z, ¢) denote{M € M(X,,Y;) :
||M'Mpz — z|| < ||z|le.} From Corollary 4.4.2 part 2, it follows that(M(z,¢)) =
{P € O ||P'U _x—U _,x|| <||lz|le}. Let O(x,U,_, €) denote this set. Because
O(z, U, ¢, €) is a closed subset @, ,, it is a Borel subset 00),, ;. Thus,M(z, ¢) is
a Borel subset oM (X}, Yi) (so, u o L is defined onM(z, €)). Formally thenp(z, €) is
defined to bei o L(M(z, €)) which equalsu(O(z, U,_y, €)).

4.4.2 A Closed-Form Expression for Privacy Breach

Let S, +(||U’_,z||) denote the hyper-sphere R"~* centered at the origin with ra-
dius ||U] _,x||. ForanyA C S, _«(||U/_,xl||), let SA(A) denote the surface area df
(assuming it is defined).Let S, (U _,x, ||z||¢) denote the portion of,, . (||U._,z||)
whose distance front// ,x is no larger than |z

Su—k([1Unpl]) |2 = Up ]| < ||le}-

€, i.e, Sk (U _,x,|lz||le) = {2z €

20 denotes a function composition.
3In Appendix 4.8.2 we provide a definition of surface area ogeh-sphere.
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It is shown in Appendix 4.8.2 that

SA(Sn—k(Uy 2 [|z[l€)

plr,e) =
(©0 = S AS U7l
_ (7) 2aresin <2||lufuzx||> if [|z|le < 2[|U;,_pl;
1 otherwise

An alternate characterization gt/ _, x|| yields a more intuitive form of the second
right-hand side. Considér,U; x, the orthogonal projection af into Col(X}). This is the
closest point inC'ol(X}) from z. So, the distance af from Col(X}), denotedi(z, X), is

naturally defined agz — U,U, z||. Observe that,

d(z, Xi) = [|U'(z = UpUz)|
B ka U,x
- 0
= k93||

Thus,

(4.2)

(1) 2arcsin <%) if ||z]le < 2d(z, Xy);
ple,€) = 7
1

otherwise
Alternate characterizations dfz, X}) and||z|| yield a right-hand side directly allow-
ing the adversary to computéx, ). Becausé\/r is orthogonall|z|| = || Mrx||. Because
Col(X}) has dimensiot and My is orthogonal, the@ol (M X)) = Col(Y}) has dimen-
sion k. So, there exist¥) ann x k orthogonal matrix such that'ol(V,) = Col(Y}).

“Note that the “otherwise” case includes= 0 and||z||e > 2||U/ _, ||
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Becausel, is orthogonal, theri,V/ Mz is the projection ofMrx into Col(Y}), thus,
d(Mrx,Yy) is||Vi Vi Mrx — Mrpx||. Next we show that(x, X) = d(Mrz, Yy).
Because& ol (X)) = Col(Uy), thenCol(MrXy) = Col(MrUy), $0,Col (V) = Col(Yy)
= Col(MyX}) = Col(M7Uy). Thus, there exists x k& matrix P such that, P = M Uy.
Observe that

P'P = (Vi,P)(V,P)

= (MrUy) (MrUy)

so, P is orthogonal. We have,

d(z, X)) = [|UUjz — 2]
= || MyUU My Mra — Myal|
= ||(VaP)(ViP) Mypa — Myzx||
= ||ViViMrx — Mrz||

— d(Mgx,Yy).

The above results show that the attacker could compute #tandied(x, X;) using the

perturbed data. Therefore, Equation 4.2 can be rewritten as

(1) 2arcsin <%> if ||Mrz||le < 2d(Mrx,Yy);

p(x,€) = (4.3)
1 otherwise



4.4.3 Known Input-Output Attack Algorithm

As stated earlier, the adversary chooﬂ%suniformly from M(X}, Y;) and1 < i <
m — k to maximizep(z;, €). The precise details of the attack technique can be seen in

Algorithm 4.4.3.1.

Algorithm 4.4.3.1 Known Input-Output Attack Technique

Inputs: X, an set of linearly independent columns froxnknown to the attacker and
Y = My X, known to the attacker, wherd; € O,, is an unknown, and > 0, known
to the attacker.

Outputs 1 <7 < m — k which maximizes(z;, ¢) andi € R” the corresponding estimate
of ;.

1: ComputeV;, ann x k, orthogonal matrix wher€'ol (V) = Col(Y}) from Y}, using the

Gram-Schmidt process.

Foreachl < j <m —kdo
Computed(y;, Vi) = [|ViViy; — y;ll and|fy;{]e.

Computep(z;, €) using Equation 4.3.

End For.

Seti « maxi<j<m_x{p(z;,€)}.

Choosel/ uniformly fromM(X,, ;).

Setz «— M’yg.

ON O RWN

4.4.4 Effectiveness of the Attack

In the previous sections, we have shown that: 1) the attaz®icompute the prob-
ability of privacy breach for a given private data record agldtive error bound; 2) the
larger thee, the higher the probability of privacy breach; 3) the claser private record is
to the column space of the known records, the higher the pifityaof privacy breach; and
4) the attacker could compute the distard¢e, X, ) using the perturbed data.

As a concrete example, let us consider the data in Table 4.4.a8%ume that the
attacker knows the perturbed data, the value,ofand also knows that; comes fromz; .

Because the distance of from the column space af; is 0, we havep(z,, €) = 1 for any
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T ) ZT3
Private Data | 25.0000| 30.0000| 45.0000
75.0000| 90.0000| 105.0000

Y1 Y2 Y3
Perturbed Data -42.0198| -50.4237| -68.5443

66.9652| 80.3582| 91.3875

Table 4.1. Example of Known Input-Output Attack.

¢ > 0. On the other hand, the distancexgffrom the column space af; is 9.4868, thus

p(zs,€) = L2 arcsin <2l|;:’1!5%8), e.g, p(xs,0.01) = 3.84%.

The maximum probability of as-privacy breach i (z;, €) = maxi<j<,,—i p(z;, €).

IEAIS

Lety(x;, €) denot e

From Equation 4.2, the breach probability goes to zerolyear
linearly with y(x;, ¢),°> and goes to one much faster @&, ¢) does. If the data owner
knows thatX,, is in the attacker’s prior knowledge, then the owner canqutoigainst this
attack by simply not releasing/;z; for any z; where~(z;, €) is unacceptably big. On
the other hand, if the owner does not know that is prior knowledge, then this attack

technique can be quite damaging.

4.5 Known Sample Attack

In this scenario, we assume that each data record arose aslependent sample
from a random vectoV” with unknown p.d.f. We also make the following mild technica
assumption: the population covariance mattix of VV has all distinct eigenvaluésWe
make this assumption because it holds in most practicatsins [87, pg. 27]. Further-
more, we assume that the attacker has a collectignsaimples that arose independently

from VV — these are denoted as the columns of mattrix

SFor smallz, arcsin(z) is approximately linear.

5Givenn x n matrix A, a complex numbeh is an eigenvalue ofl if and only if the determinate of
A — I, denotediet(A — I,,\), is zero. Becauséet(A — I,,x) is ann-degree polynomial, theA can have
at mostn distinct eigenvalues.
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In this section we design a Principal Component AnalysisAPkased attack tech-
nique. Unlike Section 4.4, we do not attempt a rigorous asiglgf the attacker’s success

probability. Instead, we analyze the recovery error thioexgperiments.

4.5.1 Principal Component Analysis (PCA) Preliminaries

Let ¥y, denote the population covariance matrix16f BecauseXy is ann x n,
symmetric matrix (and we assume it has all distinct eigares), it has: real eigenvalues
A1 > ... > A\, [84, pg. 295]. Associated with each eigenvaleis its eigenspace,
{z € R" : ¥yz = z\;}. It can be shown that becausg has distinct eigenvalues, the
eigenspaces are pair-wise orthogonal and each has dimems&[84, pg. 295]. As is
standard practice, we restrict our attention to only a smathber of eigenvectors. Let
Z(V); denote the set of all eigenvectorse R” such thatSyz = z)\; and||z|| = 1.
Now consider random vectdr(V') = M,V and letX,, ., denote its covariance matrix.
The eigenspaces aiy are related in a natural way to thosef,,.,, as shown by the

following theorem.

Theorem 4.5.1 The eigenvalues &I, andX,,,., are the same andl/; Z(V'); = Z(M7V);,
whereMpZ(V'); equals{Mrz : z € Z(V),;}; and Z(M7V'); denotes the set of eigenvec-

torsw € R" such that,,.vw = wA; and||w|| = 1.

Proof: First we derive an expression fa, in terms ofX,,,.v.

Supv = E[(MrV — E[M7V])(MrV — E[M7V])]
= E[Mp(V - E[V])(V — E[V]) Mf]
— MpE[(V — E[V))(V — E[V])| M}

= MpSy M.
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Now consider any eigenvalug of X,. Basic properties of the matrix determinate
show thatet (3 — I,,\;) equalsdet( MYy M. — I, \;). Therefore\; is an eigenvalue of
Sarpve !
We have shown that, and,,. have the same eigenvalues. Now consider any

non-zerow € R™. We have that

we Z(MrV);, & Yyvw=w\and||lw|] =1
& MYy Mpw = w); and|jw|| =1
& Zv(Mpw) = (Mzw)A; and||M7pw]| = 1
& Mpwe Z(V);
& we MpZ(V),.

U

Because all the eigenspaces’iaf have dimension one, it can be shown ti&dl/);
contains only two vectors such thatfl times one equals the other. Lgtbe the lexico-
graphically larger one. Therg(V), = {z;, —z;}. Let Z denote thex x n eigenvector
matrix whosei’* column isz;. Because the eigenspaces3af are pairwise orthogonal
and||z;|| = 1, Z is orthogonal. Similarly, we have th&(M;V'); = {w;, —w;} (w; is the
lexicographically larger among;, —w,) andW is the eigenvector matrix witi” column
w; (W is orthogonal). Note again that columns in batland!/ are ordered such that the
it" eigenvector is associated with ti& eigenvalue. The following result forms the basis

of the attacker’s attack algorithm.

Corollary 4.5.2 LetI,, be the space of alt x n, matrices with each diagonal entry1

"This simple proof is based on the definition of eigenvalues.
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and each off-diagonal entry @'( matrices in total). There exist9, € I,, such that\/; =

WDyZ'.

Proof: Theorem 4.5.1 implies that for all < i < n, Mrz; = w; of —Mrz; = w;.
Therefore, for somé, € 1,,, My ZD, = W. BecauseD, ' = D, andZ is orthogonal, the

desired result follows. O

4.5.2 Known Sample Attack (PCA Attack) Algorithm

First assume the attacker knows the population covariancandX,,.,. Thus, the
attacker can computé’, the eigenvector matrix &f,,.,,, andZ, the eigenvector matrix of
Y. By Corollary 4.5.2, the attacker knows thit- equalsiV’ Dy Z’ for someD,, € I,,, and
therefore, the original data would be recoveredyY = ZD,W'Y. The problem is how
to choose the righD from all the possible™ elements ifl,,. To do so, the attacker must
utilize S andY’, in particular, the fact that these arose as independerlsarfromV” and
M7V, respectively. For each € I,,, each column oV DZ'S arose as an independent
sample fromWDZ'V. If D = Dy, thenWDZ = My, so, WDZ'S andY should
come from the same p.d.f. The attacker will chodsec I,, such thati’ DZ’S is most
likely to have arisen from the same p.d.f. ¥as To make this choice, a similarity function
G(WDZ'S,Y)isintroduced, and th® that maximizes- is chosen. There might be many
ways to define this function. In this paper, we use a multatartiwo-sample hypothesis
test for equal distributions [88]. The two-sample problesawanes that there are two sets
of independent samples, zs, . . ., ., @andyy, yo, . . ., ym, Of independent random vectors
with distributionsF; and F;, respectively. The goal of two-sample problem is to fégt
Fy = F;, versus the composite alternatitg : F; # F,. For eachD < I,,, we compute
the p-value of the test o’ DZ’S andY’, denoted by(D). Here thep-value is defined

as the smallest level of significance at whifly would be rejected on a given data set.
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Smallp-values suggest that the null hypothesis is unlikely to be.tihe smaller it is, the
more convincing is the rejection of the null hypothesis. rEfiere the value of functioty
is nothing but they-value, and the) matrix that is associated with the highestalue is
chosen.
In practice, the population covariangg, and,,,, are unknown, and will be re-
placed by the sample covariantg andXy from S andY (independent samples arising

from V and M7 V). Algorithm 4.5.2.1 shows the complete PCA-based attackemure.

Algorithm 4.5.2.1 PCA-based Attack Technique

Inputs: S, ann x p matrix where each column arose as an independent samplel/from
(a random vector with unknown p.d.f whose covariance méiai all distinct eigen-
values).Y = MyX whereMy is an unknownp x n, orthogonal matrix; and is an
n X m unknown matrix where each column arose as an independeptes&om /.

Outputs 7, 1 < i < m, an estimation of;.

1: Compute sample covariance matkix from S and sample covariance matti- from
Y. [O(n*m + n’p)]

2: Compute the eigenvector matrix of £ and W of £y. Each eigenvector has unit

length and is sorted in the matrix by the corresponding eigiele. [0 (n?)]

: ChooseD = argmax{G(WDZ'S,Y) : D € I,}. [O(2"B)]

. ComputeX = ZDW'Y. [O(n® + n2m)]

. Choosel < ¢ < m randomly and set = X.

[ I S OV)

The computation cost of Algorithm 4.5.2.1@n*(m + p) + n® + 2"B) assuming
G(.,.) requiresO(B) computation. For the two-sample test,= (m + p)?, so, the total

computation of the algorithm i9(2"(m + p)?).

4.5.3 Experiments

To validate the PCA-based attack algorithm, we conducteemxents on both syn-
thetic and real world data. One such synthetic dataset ioarit&, 000 data points, which

are generated from a three-dimensional Gaussian distibutith mean(10, 10, 10) and
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FIG. 4.4. PCA-based attack for three-dimensional Gaussian dae average relative
error of the recovered data()265. (2% sample)

1 1.5 0.5

covariance| 15 3 25 |. The attacker ha300 sample data point2{; of the size of
05 25 75

original data) chosen from the same distribution. Figufeshows the results of perturba-

tion and recovery. It can be seen that although the pertuthtdis very different from the
original one, the recovered data almost overlaps with thgra data® To further examine
how sample size and relative error bounaffects the quality of the attack, we conducted
two sets of experiments. The first set of experiments (Figus show that when the
perturbation matrix and relative error bound are fixed, trabability of privacy breach
increases as the sample size increases. The second setdfreqs (Figure 4.6) depict
that when the perturbation matrix and the sample size ard,ftke probability of privacy
breach increases as the relative error bound (that thekattean tolerate) increases.

For the real world data, we chose the Adult Database andrlRéteognition Database

8Note that the shape of the perturbed data does not appeasiwgtgr to the shape of the original data
because the axes scales are not even.
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FIG. 4.5. Performance of PCA-based attaékG. 4.6. Performance of PCA-based attack
for three-dimensional Gaussian data w.for three-dimensional Gaussian data w.r.t.
sample size. The relative error bounds relative error bound. The sample ratio is
fixed to be0.02. The solid line shows a besfixed to be2%. The solid line shows a best
polynomial fit to the points. This line wagpolynomial fit to the points. This line was
generated with Matlab’s curving fitting toolgenerated with Matlab’s curving fitting tool-
box. box.

from the UCI machine learning repository. The Adult datateors32, 561 records, and
it is extracted from the census bureau database. For thegeigd visualization, we only
selected three numeric attributes: age, education-nunmams-per-week, for the experi-
ment. The Letter Recognition data 285000 instances antl numeric features. We chose
the first6 features (excluding the class label) for the experimen&sraddomly separated
each dataset into two disjoint sets. One set is viewed asrigmal data, and the other
one is the attacker's sample data, which account@%of the original data. Figure 4.7
shows the results of perturbation and PCA attack for Aduthdgigure 4.8 and 4.9 shows
the results of perturbation and PCA attack for Letter Redagndata. It can be seen that
the recovered data approximates the original data very. wellexamine the influence of
sample size and relative error bound, we fixed the orthogmeralirbation matrix, and per-
formed the same series of experiments as we did for Gausatan Eigure 4.10 and 4.11

give the results for Adult data. Figure 4.12 and 4.13 giveésellts for Letter Recognition
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FIG. 4.7. PCA-based attack for Adult data. The average relatina of the recovered
data is0.1081. (2% sample)

data.

From the above experiments, we have the following obsemati(1) the higher the
relative error bound the attacker can tolerate, the higieptobability of privacy breach;
(2) the larger the sample size, the better the quality of datavery; and (3) among these
three data sets, the PCA-based attack works best for Gauksi next Letter Recognition
data, and then Adult data. The first two observations requirexplainations. We will
discuss the third one in the next section.

To evaluate the complexity of the PCA attack algorithm, waegated multivariate
Gaussian data with dimensionality ranging frénto 12. Each data set contairf250
records,250 records of which are used as samples, and the remaiifio@ records as
private data. The energy test proposed in [88] was used tatifpaimilarity (G(., .)), The
experiment was conducted on a dual-processor workstatitn3®0GHz and2.99GHz
Xeon CPUs ang.00GB RAM. We observed that fa-dimensional data, it took43.1090
seconds, and fot2-dimensional data, it took.2442 x 10° seconds. As expected, the

running time goes up rapidly with number of dimensions. Heoevdor a modest number
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FIG. 4.8. Perturbation of the Letter Recod~IG. 4.9. PCA-based attack for Letter

nition data. This figure shows the firsf0 Recognition data. This figure shows the first

records from the original and the perturbed0 records from the original and the recov-

data. Each row in the figure depicts an ared data. Each row in the figure depicts an

tribute of the data. attribute of the data. The average relative er-
ror of the recovered data(s1008. (2% sam-

ple).
of dimensions, the algorithm still seems computationahsible.

4 5.4 Effectiveness of the Attack

The effectiveness of the PCA Attack algorithm depends ondwveelated aspects: 1)
covariance matrix estimation quality; and 2) the p.d.f.of V.
Covariance estimation quality: A great deal of work has been conducted in the statistics
community on estimating the covariance matrix of a randootorebased on independent
samples [87, Chapter 10.4]. Generally speaking, the qualithe estimation of sample

covariance is correlated with the following factors.

e Outliers Itis usually desirable to use a robust approach for coveea@stimation to
downweights the disproportionate effect of any outlyingorels. In all the experi-
ments we used the simple, standard sample covariance &stirgaven two length

m vectorsz andy, Cov(z,y) = ==& DD \wherer andy are the averages of

m—1
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FiG. 4.10. Performance of PCA-based a®G. 4.11. Performance of PCA-based at-
tack for Adult data w.r.t. sample size. Thiack for Adult data w.rt. relative error
relative error boundis fixed to be).10,0.15 bound. The sample ratio is fixed to B&
and0.20, respectively. and10%, respectively.

x andy. We note that any elaborate, robust estimation methodsdBdpter 10.4]

could be used without change by our approach.

e Sample SizelLoosely speaking, larger samples are better than smalheplea be-
cause larger samples tend to minimize the probability afreyrmaximize the accu-
racy of population estimates. The work in [89] investigdieth sample size and the
ratio of records to attributes. It showed that as the totailoer of samples increases,
the ratio becomes less important; the converse is also Bo¢h factors matter in

some sense, and ignoring either one can have errors of mokere

The p.d.f. of V: First, suppose the eigenvaluesXy are nearly identical. For exam-
ple, supposé’ has a diagonal covariance matrix whose diagonal entriem(fop-left to
bottom-right) arel, d — ¢, d — 2¢, . . ., d — ne whered — ne > 0 and0 < € < 1. In this case,
small errors in estimating,, from sampleS can produce a different ordering of the eigen-

vectors®, hence, large errors in the attacker’s recovery. As an edrease, whefy is the

9Note that the order of eigenvectors is determined by theagadd eigenvalues.
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Fic. 4.12. Performance of PCA-based &#G. 4.13. Performance of PCA-based at-
tack for Letter Recognition data w.r.t. samack for Letter Recognition data w.r.t. rela-
ple size. The relative error bourds fixed tive error bound. The sample ratio is fixed to
to be0.10, 0.15 and0.20, respectively. be2% and10%, respectively.

n-variate Gaussian with covariance matfjx for some constant, all the eigenvalues are
the same, and any vectors in the space can be the eigenyelstoPRCA attack algorithm
will fail.

Consider the minimum ratio of any pair of eigenvalues,, min{\;/\; : Vi #
Jii,j = 1,...,n} (we call this theminimum eigen-ratip We would expect that, the
smaller this value, the smaller the attacker’s successaibty. To examine this hypoth-

esis, we generated a three-dimensional dataset of tupheglesé independently from a

01 0 O
Gaussian with meafi0, 10, 10) and covariancd o 2 o |. By changing the value of
0 0 b

b from 2 to 40, we can change the minimum eigen-ratio of the covarianca frto 20. The
original data contains0, 000 tuples. We fixed the sample ratio to % and relative error
bounde = 0.05. Figure 4.14 shows that when all other parameters are fikedhigher the
eigen-ratio, the better the performance of the attack ahgar This actually explains why,
in our previous experiments, PCA attack works best for Gansiata, then Letter Recogni-
tion data, and then Adult data. A simple computation showasttie minimum eigen-ratios

of the Gaussian data, Letter Recognition data and Adult a&t&9.6003, 1.3109, 1.2734,
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Fic. 4.14. Performance of PCA-based &#G. 4.15. Performance of PCA-based at-
tack w.r.t. minimum eigen-ratio. The relatack w.r.t. a. The relative error bound is
tive error bound is fixed to bed.05, and the fixed to be0.05, and the sample ratio ¥%.
sample ratio i2%.

respectively.

Second, suppose for soni& # D, € I,, the p.d.f.,f, of V is invariant over D;
in the sense thaf,, and fp, can't be distinguished, wherg,. is the p.d.f.v € R" —
f(WD;Z"v). Then, the hypothesis test could possibly conclude &y, z'S, WD, Z'S
andY all arose from the same p.d.f., so thaluep(D,) may not be larger thap(D;),
and the attack algorithm will fail. We say thtis invariantif there exists somé, # D,
€ I,,, such thatf is invariant overD;.

We would expect that the closétris to invariance, the smaller the attacker’s success
probability. To examine this hypothesis we need a metricoieantifying the degree to
which f is invariant. Intuitively, the invariance of can be quantified as the degree to
which fp, and fp, are distinguishable (minimized over dll;, # D, € 1,,). To formalize
this definition, we use the symmetrized Kullback-Leiblemagencex L(g||h)+ K L(hl|g)
to measure the distance between two distributipasd/. This measurement is symmetric
and nonnegative, and when it is equal to zero, the distobstcan be regarded as indistin-

guishable. The symmetrized Kullback-Leibler distancenveein continuous distribution
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to h is defined as

e g(z) e h(z)
KL(gl|h) + KL(h|lg) = /_ a(los L+ /_ ) log S

So we quantify invariance as

Inv(f) = min {KL(fp,

D;#Do€l,

fpo) + KL(fp,

foo)} (4.4)

Clearly Inv(f) > 0 with equality exactly wherf is invariant. The behavior dfnv in
the general case is quite complicated. Howeverpfoariate Gaussian distributionspov
can be nicely simplified. First of all, fat-variate Gaussian distributiogsandh with the

same covariance matrix (assumed to be invertible) and mean vecigrandy,

KL(gl|h) + KL(h|lg) = (ttg — pn) =" (1tg — pn)- (4.5)
Second of all, we have the following theorem.
Theorem 4.5.3 Let D be any matrix iril,.
1. The covariance matrix ofp is WA, W’ whereAy is the eigenvalue matrix afy, .

2. The mean vector gfp is W DZ' 1y wherepu,, is the mean vector of (the p.d.f. of

V).
3. If f is multivariate Gaussian, thefy, is also multivariate Gaussian.

Proof: Follows directly from [90, Theorem 5.16]. 0
This theorem along with Equations 4.4 and 4.5 allows us tgBiynour invariance
metric in the case wherg¢ is a multi-variate Gaussian. Lat denote the mean vector of

fp, andu; the mean vector of,,. We have
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P ] Jppp— , _1 J—
Inv(f) = DﬁI&nDl?e]In(Ml 14o) Xy (ki 14o)
=, in, 1 (ZDW' — ZDgW' (W Ay W' )" (W D; Z' — W Do Z' ) juy
1 0 n
o : /! L —1 L /
= i iy Z(Di = Do)Ay (D = Do) Z gy

Clearly, Inv(f) goes to zero withsy. And, if we consider a simple path to zero —
along a straight line — the behavior bfv(f) can be nicely characterized. Consider some

fixed u € R". Givena > 0, defineuy asau. We have that

2 . / o —1 L /
Inv(f) =« p,min (' Z(D; — Do)Ay (D; — Do) Z' 1) -

Hence we see thdthw(f) approaches zero quadratically as — 0 along the line
defined byapu. With this result we can carry out experiments to measuretieet of the
degree to whicly is invariant on the attacker’s success probability. We gged a dataset

by sampling each tuple independently from a three-dimeagiGaussian with covariance
01 0 O

o 2 o | and mean vector, = «(1,1,1)". Note that the minimum eigen-ratio is

0 0 40
20, sufficiently large to isolate the effect of decreasing rasce on attacker’s success

probability. We vary the value ot from 0 to 10. The original dataset contairi®, 000
tuples. We fix the sample ratio to 28;, and relative error bound = 0.05. Figure 4.15
shows that as approaches zero (the mean approaches zero accordingdyprabability
of privacy breach drops to zero too; howeverpasins away from zero, the probability of

privacy breach increases very fast.
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4.6 Independent Signals Attack

In this scenario, we assume that the data is a collectiorgofis. All the signals, at
any given time, are statistically independent and all theas are non-Gaussian with the
exception of one. The attacker obtains the perturbed dathttee goal is to recover the
original signals. In this section, we propose an Indepen@emponent Analysis (ICA)-

based attack technique to do this job.

4.6.1 Independent Component Analysis (ICA) Preliminaries

Independent Component Analysis (ICA) [91] is a techniquadiscovering indepen-
dent hidden factors that are underlying a set of linear otinear mixtures of some un-
known variables, where the mixing system is also unknowres&hunknown variables are
assumed to be non-Gaussian and statistically indepenaiettthey are called the inde-
pendent components (ICs) of the observed data. This tewbings been widely used for
separation of artifacts in MEG (Magnetoencephalographtg,dmage noise reduction and
telecommunications [92].

A classical example of ICA is the cocktail party problem (Hgstrated in Figure
4.16). Imagine you are in a cocktail party, although diffeéreinds of background sounds
are mixed togetheg.g, music, other people’s chat, television news report, onevsiren
from a passing ambulance, you still have no problem idengfyhe discussion of your
neighbors. Itis not clear how human brains can separateffeestht sound sources. How-
ever, ICA is able to do it, if there are at least as many ‘eargeceivers in the room as
there are different simultaneous sound sources.

The basic ICA model can be defined as follows:

y(t) = Ax(t), (4.6)



71

FIG. 4.16. An illustration of the cocktail party problem. Whag Wave heard in a cocktalil
party are just linear (or nonlinear) combinations of diffier source audio signals.

wherez(t) = (z1(t), z2(t), ..., z,(t))" denotes am-dimensional vector collecting the
independent source signalgt),i = 1,2,...,n. Heret indicates the time dependence.
Each signalz;(¢) can be viewed as an outcome of a continuous-value randonegsoc
A'is ak x n unknown mixing matrix, which can be viewed as a mixing systeith &
receivers. The observed mixturei&) = (y1(t), y2(t), ..., yx(t))’. The aim of ICAis to
design a filter that can recover the original signals frony ¢éimé observed mixture. Because
y(t) = Az(t) = (AAP)(P~'A~1x(t)) for any diagonal matrix\ and permutation matrix

P, the recovered signals(t) can never have completely unique representation. So, the
uniqueness of the recovered signals found by ICA can onlylbeamteed up to permutation
and scaling ambiguities.

In practice, a linear filter is designed to get the recovergaisdsz (t) = (21 (¢), 22(t),
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., ()T from ak-dimensional inpuy () = (y1(t), y2(t), ..., yx(t))T. In other words,

z(t) = By(t), 4.7)

whereB is anl x k dimensional separating matrix. Combining Eq. 5.12 and Ef3,5ve
get
z(t) = BAz(t) = Zx(t), (4.8)

whereZ = BAis anl x n matrix. Each element of(¢) is thus a linear combination of
x;(t) with weights given by; ;, wherez; ; denotes théi, j)-th entry of Z.

Many ICA algorithms start with whitening the data., removing any correlations in
the observed datat). The source signals can then be found by an orthogonal tnanaf
tion of the whitened signals. The appropriate transforomais sought by maximizing the
independence of the signals. A review of different metricstieasuring independence can
be found in [92].

In general, by imposing the following fundamental restoies [92], all the source

signals can be separated out up to scaling and permutatibigaities:

e The source signals are statistically independeet, their joint probability density
function (PDF)f,«) (1 (%),

xo(t), ..., x,(t)) is factorizable in the following way:
fawy(@1(8), 22(2), ... 2a(t) = foi(t)(l’z'(t)),
i=1

wheref,, ) (z;(t)) denotes the marginal probability densityft).
e All the signals must be non-Gaussian with possible excepfane signal.

e The number of observed signaisnust be at least as large as the independent source
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signalsj.e., k > n.
e Matrix A has full column rank.

These restrictions have actually exposed the potentigletarof orthogonal transformation-
based perturbation where the mixing matrix is square andutlasolumn rank. The next

section gives the ICA attack algorithm.

4.6.2 Independent Signal Attack (ICA Attack) Algorithm

We assume the data is a collection of signals, where each fa¥, alenoted by
x;,1 = 1,...n, represents one signal. Each signal can be viewed as annoaitcba
continuous-value random processt), wheret indicates the time dependence. The data
owner publishe” = My X where My is an unknown orthogonal matrix. The attacker
obtainsY’, and the goal is to recoveX.

The attacker has some additional prior knowledge as fotldyg he signals are sta-
tistically independent,e., Vt, the joint p.d.f. f(z1(t), ..., z,(t)) = [, fx:i(t)), where
f(z;(t)) denotes the marginal probability density:gft). This assumption makes sense in
situations where each signal arises from unrelated squeagsvoice audio signals from
people in different conversations or pixel vectors fromalated pictures. 2) All the signals
must be non-Gaussian with the possible exception of onakidygorithm 4.6.2.1 gives
the basic procedure of ICA-based attacks. The next secéorodstrates the performance

of ICA-based attack in experiments.

4.6.3 Experiments

To demonstrate how ICA could attack the orthogonal tramsé&tion-based perturba-
tion when data is statistically independent and not Gaossie chose both image and

audio data for the experiments.
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Algorithm 4.6.2.1 ICA-based Attack Technique

Inputs: Y = MyX whereM is an unknown orthogonal matri¥ is an unknown matrix
where each row represents one signal. All the signals atistgtally independent. All
the signals are non-Gaussian with possible exception osigmeal.

Outputs The recovered datX.

1: The attacker uses independent component analysis (ICAYtwer the original signals
up to a scaling factor and row permutation.

First, we considered a datas¥t consisting of four signals (four rows). Each is a
picture of a natural scene represented byp@ x 338 pixel grid — the top row of Figure
4.17. Each grid is stretched out into a len@f2, 100 row vector. The perturbed versions,
rows of Y = M, X for a randomly generated orthogonal mathik-, can be seen in the
middle row of Figure 4.17. These appear to disguise the malgiquite well. However,
after applying ICA, the attacker produces estimates as isettre bottom row of Figure
4.17. Due to the scaling factor, the colors do not match, aredtd the row permutation,
the estimated figures appear in a different order than tlggnads. However, the content of

the original figures can be seen quite well.

FIG. 4.17. Performance of ICA on image data. The first row — odbjimages; the second
row — perturbed images; and the third row — recovered images.

Second, we considered four statistically independentaasignals, denoted asdax
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FIG. 4.18. A plot of four independent audio signals.

13, 129 matrix X (shown in Figure 4.18). A perturbation of these signals\ishm Figure
4.19) is generated by pre-multiplyingta 4 orthogonal matrix toX. The goal of ICA is to
recover the original signals using only the perturbed daigure 4.20 gives the estimated
signals through ICA. It can be seen that although the ordeeanplitude of the recovered
signals are not necessarily the same as those of the orajiesl the basic structure of the

original signals are recovered very well.

4.6.4 Effectiveness of the Attack

Becausey = M;APP'A1X for any diagonal matrix\ and permutation matrix
P, ICA can only recover the original signals up to permutatma scaling ambiguities.
However, in many application scenari@sg, when the data are natural images or audio
signals, these ambiguities do not cause significant tradblifying the contents of origi-
nal signals, and the recovered data might be sufficient adbrerivacy. The experiments

in the last section validate the effectiveness of ICA attack



FIG. 4.19. Perturbation of the original signals using a orthradonatrix.
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FIG. 4.20. Recovered signals using ICA.
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Note that if some of the source signals are correlated, they lbe lumped in the
same group and can never be separated out. If there is maorernleaGaussian signal, the
problem becomes more complicated. The output of the filter Ibeseither individual non-
Gaussian signals, individual Gaussian signals, or a mexfiiGaussian signals. Detailed

analysis can be found elsewhere [93].

4.7 Summary

In this chapter, we considered the use of distance-pregemaps (with origin fixed)
as a data perturbation technique for privacy preserving aaing. On the one hand, this
technique is quite useful as it allows many interesting datang algorithms to be applied
directly to the perturbed data and produce an error-fragdtyesg, K-means clustering and
K-nearest neighbor classification. On the other hand, tivagyr offered by distance pre-
serving transformations has, to our knowledge, not beehsuatiied. We take a step in this
direction by considering three types of prior knowledge #acker may have and use to
design attack techniques to recover the original data. Tsieigibased on basic properties
of linear algebra, the second on principal component aisalgsd the third on independent
component analysis. Our analysis explicitly illuminatesrgarios where privacy can be se-
riously breached. As such, valuable information is gaimeadl ihe effectiveness of distance

preserving transformation for privacy preserving dataingn

4.8 Appendix

4.8.1 Appendix |

Theoremd.4.1: LetP denote{ MU U, + MrU,_PU! , : VP € O,_}. We have

Proof: First we show thaM( Xy, ;) = M(Uy, M7Uy), i.e.,any orthogonal matri®/ that
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satisfies conditiol/ X, = Y}, also satisfies\/U,, = MrU,, and vice versa. Becau$g
is the orthonormal basis @fol(X}), there exists an invertible x k& matrix B such that

X, B = U,. ForanyM € Q,,, we have

M € M(X;,Ys) MX, =Y,
MX,B = My X;B

MU, = MpUy

r ¢ ¢ 2

M e M(Uk, MTUk)

We conclude thabl( Xy, Y;) = M(Uy, MrUy).
Now we complete the proof by showing thiek(U,, MUy) = P. We first show that
VMp € P, Mp € M(Uy, M7pUy). After that we will provevM € M(Uy, MrUy), M € P.

(1) For anyMp € P, we have:

MLMp = UULMLMpULU, + UULMy MU, PU._,
+ U P'U._ M,y MU, + Uy P'U._ M} MU, PU"_,

= UUi+ 0404 U,—U,_,

= [Uk|Un—t]
Uy

= UU =1,.

The above equations reply on the fact thgt U, = U,U,_, = 0. Therefore,Mp is

orthogonal. Also observe that
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MpU, = MTUkU,gUk -+ MTUn—k;PU;L_kUk

= MpU + 0.

Hence,Mp € M(Uy, MrUy), so,P C M(Uy, MrUy).
(2) Now considetM € M(Uy, MUy ). We assert that'ol (M1 U,,_) = Col(MU,, )
(to be proved later). Based on this assertion there eiists k) x (n — k) matrix P with

M7U,, P = MU, _;. Observe that

P'P = P/(MrU,_) (MrU,_;,)P
= (MrUp—iP) (M7U,—4P)
= (MU,_) (MU,—y)

- In—k-

Thus, P is orthogonal. Moreover,

MU = M[Up|Un_y]
= [MpUy|MU,_,]

= [MpUg|M7U,_P).
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Thus,

M = [MpUy|MpU,_PIU’

Uy

Ui
= MpUUL + MypU,_PU._,.

= [MpU|MyU,_;,P]

Therefore M € P, so,M(Uy, M7Uy) C P.

All that remains is to prove the assertiofivl(MrU,, ;) = Col(MU, ). Because
(MU,—x) (MUg) =0, thenCol(MU,,_) € Col, (MUy). Because\U,,_;, and MU, are
orthogonal, then the Fundamental Theorem of Linear Algebpéies that”ol, (M U,) and
Col(MU,_y) have the same dimension € k), thus,Col(MU, ;) = Col  (MUy). By re-
placing “M” with “ Mr" in the previous two sentences, we also concludethat MU, )
= Col, (MrUy). Finally, becausé! € M(Uy, MrUy), thenCol(MU) = Col(MrUy),
thus, Col, (MUy) = Col (MrUy). 1t follows that Col(MrU,_1) = Col  (MrUy) =
Col (MUy) = Col(MU,_y,). O

4.8.2 Appendix Il

Preliminaries: Recall some definitions. For real numher> 0, and integep > 1, let

Sy(«v) denote the hyper-sphere R centered at the origin with radiusi.e. {z € R? :

||z|| = a}. ForanyA C S,(«a), SA(A) denotes the surface area df(assuming it is
defined). To define surface area recall that a p@int. . ., z,) € S,(«) can be written in
hyper-spherical coordinat@s< ¢, < « (for 1 <i < p —2) and0 < 6,_; < 27 such that
x1 = acos(bh), xo = asin(0y)cos(Bs), . . ., xy_1 = asin(fy) - - - sin(f,_2)cos(6,_1), andz,

= asin(6y) - - - sin(f,—2)sin(6,_1).

Let II;(A) denote the projection afl onto thei’* hyper-spherical coordinate (for
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1 <i <p-—1). The surface are® A(.A), of (A) is defined to be

P! / e / §(2)sin? =2 (0)sin?3(0y) - - - sin(0,_2)db; - - - db,_1,
1M1 (A)  Op1€ll, 1 (A)
(provided the integral exists) whetedenotega, 6;, . . ., 6,_1) andd(z) equals one it €
A; zero otherwise.
Results: Forw € R?” andd > 0, let.S,(w, d) denote the portion of,(||w||) whose distance
from w is no larger thanl, i.e. S,(w,d) = {z € S,(||w]|) : ||z — w|| < d}. For any.A C
Sp(lJwl]]), letO(A) denote{ P € O,: P'w € A}. In this section, we prove the following

two statements.

L. w(O(S,y(w, d))) = o4,

SA(WSp(w,d) _ (1 . d ) . .
2. A = (W) 2aresin <2lel) if d < 2||wl||; 1 otherwise.

Because (||w||) equals two points (one jfw|| = 0), the results are obvious. Assume
p =2

Statement 1The proof of this fact is follows directly from basic propes of measure
theory. Because it is a tangent from the primary focus of #pep it is omitted.

Statement 2:BecauseSA(z;,d) equalsSA(zq,d) for any z1, 2z, € S,(||wl]), then
it suffices to prove the desired result for = ||w||e; wheree; is the first unit vector

(1,0,...,0). If d > 2[|uy

, all of SA(]|w||) is within d of w;. Thus, the surface area ratio
equals one as desired.

Assumel < d < ||w,||v/2. Consider the hyper-plangz,y,0,...,0) € RP}. Fig-
ure 4.21 depicts the intersection of this hyper-plane Wijitj|w;||). It can be shown that

% equals¢. Moreover, consider triangld BC. It is a right triangle with hy-
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FIG. 4.21. Hyper-plane intersection wigh(||w||).

potenuse lengthw, || and an angl¢ with opposite side lengt§. Therefore,sin(%) =

d
wi ]

S0,a = 2arcsm(m), yielding the desired result.

Finally, assume/2||w,|| < d < 2||w:||. Figure 4.22 depicts the intersection of the

hyper-plane{(z,y,0,...,0) € R’} with S,(||wy[|). It can be shown thag (e

equalsl — ¢ anda = 7 — b. Consider the right trianglel BC', it has hypotenuse length

2|

||lwi|| and an anglg with opposite side length. So,b = 2arcsin(zyi—) leading toa = 7

— 2aresin(57%—). Thus, the surface area ratio equals
2[[wa]

X T — QGTCSi”(z\\il\\) B QCLTCSZ'”(QHS,N)

™ v



FIG. 4.22. Hyper-plane intersection wigh,(||w||).
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Chapter 5

RANDOM PROJECTION-BASED DATA
PERTURBATION

This chapter considers a randomized multiplicative datdupgeation technique for
privacy preserving data mining. It is motivated by the wor&gented elsewhere [5-7, 19]
that pointed out some security problems of additive pedtion and distance preserving
perturbation. Specifically, this chapter explores the jpigy of using multiplicative ran-
dom projection matrices for constructing a new represemtaif the data. It can be proved
that the inner product and Euclidean distance are presamvbeé new data in the expec-
tation. This approach is fundamentally based on the Johbhsatenstrauss lemma [94],
which notes that any set @f points inn-dimensional Euclidean space can be embedded
into an O(“;—;”) dimensional space such that the pairwise distance of anyptias is
maintained with a high probability. Therefore, by projagtihe data onto a lower dimen-
sional random space, we can dramatically change its otifprma while preserving much
of its distance-related characteristics. This chaptesqirts extensive theoretical analysis
and experimental results on the accuracy and privacy ofahéam projection-based data
perturbation technique.

The remainder of this chapter is organized as follows. 8ed@il discusses the basic

mathematical properties of random projection. It derive®ia error bounds for the ac-

84



85
curacy of the distances preserved by random projectiontid®es.2 demonstrates some
privacy preserving data mining applications of the randeajgetion-based data perturba-
tion. Section 5.3 introduces Bayes privacy modeb measure the privacy offered by a
perturbation technique. To be more specific, it considezsuge of maximum a posteri-
ori probability (MAP) estimate to recover the original datad to quantify the privacy. A
closed-form expression about the (upper bound of the) gyikeeach is derived, which can
be used together with the error bounds to guide the periorbat practice. Section 5.4
examines several privacy breach scenarios (some of whighldeen investigated in Chap-
ter 4) and analyzes the efficacy of the corresponding ateadiniques. Finally, Section 5.5

concludes this chapter.

5.1 Random Projection

This section gives the basic definition of random projectiad its statistical proper-

ties.

5.1.1 Definition and Fundamental Properties

Random projection refers to the technique of projectingtaoéata points from a
high dimensional space to a randomly chosen lower dimeakgpace. Mathematically,
let X € R™™ bem data points im-dimensional space. The random projection method
multiplies X by a random matrix? € R¥*", reducing the: dimensions down to just. It
is well known that random projection preserves pairwiséadises in the expectation. This
technique has been successfully applied to a number ofcapipins, for example, VLSI
layout [95], nearest-neighbor search [96, 97], image arddiestering [98], distributed
decision tree construction [99], motifs in bio-sequend€X)] discovery, high-dimensional

Gaussian mixture models learning [101], half spaces amgsattions of half spaces learn-
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ing [102].
The key idea of random projection arises from the Johnsoddnstrauss Lemma

[94].

Lemma 5.1.1 (Johnson-Lindenstrauss Lemma)[94] For any ¢ such that) < ¢ < %

and any set of point§' in R™, with |S| = m, upon projection to a uniform randori+

dimensional subspace where> gl_ng"; + 1, the following property holds: with probability

€

atleast?, for every pairz, y € S,

(L= olle =yl <1/ (@) = FWI* < (1 +)llz = ylI*,

wheref(z), f(y) are the projections aof andy.

This lemma shows that any setsf points inn-dimensional Euclidean space can be em-
bedded into a®(2:*) dimensional space such that the pairwise distance of anpaivts

is maintained within a very small factor. This property imeglthat it is possible to change
the data’s original form by reducing its dimensionality fehinaintaining the pairwise inner
products and Euclidean distances (see Figure 5.1(a),)a4 (Bustrative examples). In the
next, we shall demonstrate how random matrices can be usédigdkind of transforma-

tion.

Lemma 5.1.2 Let R be ap x ¢ random matrix such that each entry; of R is independent
and identically distributed (i.i.d.) according to some aokvn distribution with mean zero

and variances2. Then,

E[RTR] = po?I, and E[RR"] = qo?1.
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FiG. 5.1. (a) The original data. (b) The perturbed data afted@amprojection, which
maps the data from 3D space onto 2D space. The random mathieosen from N(0,1).

Proof: Letr; ; ande; ; be thei,j-th entries of matrixk? and R” R, respectively.

p
Cij = E:Tt,ﬂ"m
p
Elei;] = E[D_ruire)

t
p

—_

E 'l"t Zrt,]
t=1

Because the entries of the random matrix are independemndantically distributed (i.i.d.),

Yoty Elr]Elrey) if i # 5
Elei;] =
P E[rfl] if i =7

t=1
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Now, note that[r; ;| = 0 andE[r7 ;] = o?; therefore,

0 if 1 # 7;
Elei;l = 7 So,E[RTR] = po?l.
po? ifi=j.
Similarly, we haveF|RR"] = qo?1. O

Intuitively, this result echoes the observation made dtezer [103] that in a high-
dimensional space, vectors with random directions are stimhogonal. Lemma 5.1.2

can be used to prove the following results.

Lemma 5.1.3 (Random Projection)Let X € R™*™ be a dataset ofn data points inn-
dimensional space. Lét be ak x n (k < n) random matrix such that each entry; of R
is independent and identically distributed (i.i.d.) aadimg to some unknown distribution

with mean zero and varianeg’. Further, let

1
Y = RX; then 5.1
NS (5.1)

EYTY] = XX,

This lemma shows that random projection preserves all jpserimner products ok’
in the expectation. The beauty of this property is that tmeirproduct is directly related

to many other distance-related metrics. To be more speffieny vectorse, y € R”,
e The Euclidean distance efandy is ||z — y||? = (z — y)T (x — y).

¢ If the data vectors have been normalized to unity, then teaeangle ofc andy is

T
cosf=——Y =zTy.
(] - 11yl
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¢ If the data vectors have been normalized to unity with zeranméhe sample corre-

lation coefficient ofr andy is

Yo
Yo wy; — = T

Py = =Ty.
V(D a? - Enly e Rul

Thus, if the data owner reduces the number of attributesefitita by projection,
the inner products and Euclidean distances among the datedseare still maintained.
Therefore, we can directly apply common data mining alpang to the new data without
accessing the original sensitive information.

In the next subsection, we will derive some error bounds attmuinner product and

Euclidean distance preserved by the random projection.

5.1.2 Accuracy Analysis

As noted by Lemma 5.1.2, the entries ®f(denoted byr; ; , i7" ;) should be i.i.d.
with zero mean and constant variance. In fact, this is thg aekessary condition for
preserving the pairwise distances [104]. However, diffeahoices of-; ; can change the
variance of the errors. It is often convenient to g} follow a symmetric distribution
about zero with a constance variance. A simple distribusaihe Gaussian distribution,
i.e, ri; ~ N(0,02). In this dissertation, unless stated otherwise, we willassthat the
random entries follow the Gaussian distributidif0, 2). The following lemma gives the

mean and variance of the projection error in the contextméirproduct computation.

Lemmab5.1.4 Let z, y be two data vectors ifR". Let R be ak x n random matrix.

Each entry ofR is independent and identically distributed (i.i.d.) acdimg to a Gaussian
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distribution with mean zero and varianeg. Further let
1 1

Rz, and o=
Vko, Vko,
Elu"™ -2yl = 0and

Varfu"v—a2Ty] = %(Z 7 ny + (Z ziyi)?).-

Ry . Then

u =

In particular, if bothz andy are normalized to unityy ", 27 Y. y2 = 1and (Y, z;y;)* < 1.

We have the upper bound of the variance as follows:

Varfu"v —27y] <

En

Proof: Please see Appendix 5.6.1 for the proof. O
Lemma 5.1.4 shows that the erra’ ¢ — 27y) of the inner product produced by the
random projection-based perturbation technique is zeraverage, and the variance is at
most the inverse of the dimensionality of the reduced spadéptied by 2 if the original
data vectors are normalized to unity. Actually, it can bevptbthate; ; is approximately
Gaussian [98]. The distortion also has an approximate Gausistribution with mean
0 and variance less than or equal20:. To validate the above claim, we chose a ran-
domly generated dataset from a uniform distributiof0iri] with 10, 000 records and 00
attributes. We normalized all the attributes to unity anchpared their pairwise inner prod-
ucts before and after random projection. Figure 5.2(a)ggike results, which depict that
even undeh0% data projection rate (wheh = 5000), the inner products still preserve
very well after perturbation, and the errors approximafeliow a Gaussian distribution
with mean zero and variance less tigik. Figure 5.2(b) shows the Root Mean Squared
Error (RMSE) of the estimated inner product matrix with o the dimensionality of

the reduced subspace. It can be seen thatiasreases, the error decreases exponentially,
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== Distribution of the errors

N (0, 2/5000)

Root Mean Squared Error

k

() (b)

FiG. 5.2. (a) Distribution of the error of the estimated innevgarcts. The dataset contains
10,000 records and 00 attributes. & = 50% x 10000 = 5000 (50% projection). The
random matrix is chosen fromv (0, 2). Note that the variance of the error is even smaller
than the variance of distributioN (0, 2/k). (b) Root Mean Squared Error (RMSE) of the
estimated inner products with respect to the dimensignalithe reduced subspace.

which means that the higher the dimensionality of the daabetter this technique works.
By applying Lemma 5.1.4 to the vector — y), we have the following lemma to

guantify the accuracy of the Euclidean distance preseritedrandom projection.

Lemma5.1.5Let z, y be two data vectors ifR”. Let R be ak x n random matrix.
Each entry ofR is independent and identically distributed (i.i.d.) aadioig to a Gaussian

distribution with mean zero and variane@. Further let

1 1
u = Rz, and v = Ry . Then
\/EO'T \/EO'T Y
El|lu—v|P =[x —yl|*l = oOand
2 2
Var(llu —[|* = ||z —y|’] = EHfU—yH‘l: E(Z(xi_yi)2>2'

i

The above two lemmas show that one can compute both pairwiglelBan distances and

inner products irk-dimensional space (insteadof.
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Next, we derive some formulae for the distribution of thejgcted data. Let: andv

be k-dimensional vectors defined as before. It is easy to show tha

2 o
S M NOD, i~
VIRIP7 lall2/E ™
w v b=l

T N(O7 1)7 T 192/ X Y
[ERNIRE ERZC

whereu; andv; are thei-th entry ¢ = 1,..., k) of vectoru andv, respectively, and?
is the chi-square distribution with degrees of freedom. Knowing the distribution of the
projected data enables us to derive sharp error bounds. dllogving lemma gives the

closed-form expression of the accuracy for estimating tindifflean distance.

Lemma 5.1.6 Letx, y be two data vectors iR". Let R be ak x n random matrix. Each
entry of R is independent and identically chosen from a Gaussianiligion with mean

zero and variance?. Further let

1 1
Rz, and v =
Vkao, Vko,

Kk(
Pr{=ellz =yl < |lu—v|P §U+fmx—yW}=A;)
c(1—e

u =

Ry . Then

1+e€

)
f(t; k)dt,

where f(¢; k) is the probability density function of chi-square disttilon with k-degrees

of freedom.

——t k21 =t2 i ¢ > 0
fk) = 2T

0 otherwise

HereT'(.) denotes the Gamma functiofi{z) = [ t*~ e "dLt.
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Fic. 5.3. The probability of the accuracy of random projectiantwk ande. Each entry
of the random matrix is i.i.d., chosen from a Gaussian distion with mean zero and

constant variance.
Proof:

Pri(l—e)llz —y|I* < [lu—v|* < 1+ o)l|w —y||*} =
klju — vlf?

EETIE <k(l+e¢€)}.

Pr{k(l—¢) <

The above equation implicitly assumes thag . Becausq'i“y—ﬁ!/k follows a chi-square

distribution withk degrees of freedom, we have

H _,UHZ k)(1+6
Pr{k(l —¢) < Tz —vIE <k(l+¢}= /

O
As an illustration, Figure 5.3 shows the actual probabdityhe accuracy with respect

to different values of ande.
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Similar results can be found elsewhere. For example, th& imdd.05] shows that if

k> % log m, then with probability at least — m ", for any rowsz, y, we have
(1=l —y|]> <[lu—2]* < (1 +¢)|lx —yl]*.
The work in [104, Theorem 2] shows that
Pr{1=ollz—ylP < [Ju—vl? <(@+o)|lz—yl*} =125,

for any0 < e < 1. This result implies that as the reduced dimensiondliilycreases, the
distortion drops exponentially, which echoes our previoliservations that the higher the

dimensionality of the data, the better the random projectiorks.

5.1.3 \Variations of Random Projection

For the sake of completeness, we give a brief review on eéiffevariations of random
projection in this section.

As we noted before, it is often convenient to tet, the entry of random matrix,
follow a symmetric distribution about zero with constanti@ace. Roughly speaking, all
such projections project the data onto a spherically randgperplane though the origin.
While this is conceptually simple, in practice, it amourdsnultiplying the data matrix
X with a dense matrix of real numbers. This can be a computtoexpensive task in
many real application scenarios. In his work, AchlioptadgJlasserted that one can replace

projections onto spherically random hyperplanes with nmaioipler and faster operations.
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Specifically, he proposed the use of the random matrix with ientries defined as follows:

1 with probability -
rij = Vsq 0  with probabilityl — 1,
—1 with probability -

where Achlioptas used = 1 or s = 3. Because the multiplication gf’s can be delayed,

no floating point arithmetic is needed and all computatioroants to highly optimized
database aggregation operations. When 3, one can achieve threefold speedup because
only one third of the data need to be processectlal.[106] further extended Achlioptas
work by pointing out that the random entries can be chosean fre 1,0, 1} with proba-
bilities {ﬁ, 1- ﬁ, ﬁ} for achieving a significany/n-fold speedup, with little loss in
accuracy.

Vempala [102] introduced a random projection techniquepheserves the Hamming
distance (which we will denote ag;) among binary vectors. Mathematically speaking,
let R be ak x n random matrix with each entry independently set to be 1 witibability
p and O with probabilityl — p. A vectorz in Z3 is projected into a vecton in Z% as
u = Rx. Here, the arithmetic is carried out modulo 2, so we get a éctor. As the
next lemma asserts, by choosipgppropriately, distance within a certain range can be
preserved approximately; distances outside this rangemigrbe distorted away from the

range.

Lemma5.1.7 [102, Lemma 7.2] Led < e < % andl <[ <n. Leteachentryof& x n
matrix R be chosen independently to be 1 with probabjlity 2 /I and 0 with the rest. Let

x,y be two vectors itZ} andu, v be obtained as

u=Rxr and v = Ry.
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There is a constant' such that with probability at least — 2¢~C<'*,

o If |z — yly < L, thenju —v|y < (1 + €)kpt.

o If L <|z—yly <L then(l — e)kp < =92 < (1 + €)kp.

le—ylg —

o If |z —yly > L, thenju—v|y > (1 — e)kpL.

5.2 Privacy Applications of Random Projection

In this section, we demonstrate several privacy preseatg mining applications of
the random projection-based perturbation technique h&lbatasets we used for the exper-
iments were chosen from the UCI Machine Learning Reposaad/KDD Archive without
any normalization. The random matrices were generated d&r@aussian distribution with
mean 0 and variance 4.

The application scenario can be defined as follows. Suppese &reV organizations
01,0,,...,0y; each organizatiod; has a private transaction databdsé;. A third
party data miner wants to learn certain statistical propedf the union of these databases
UY, DB;. These organizations are comfortable with this, but theyeluctant to disclose
their raw data. This is generally referred to as tkesus scenarias we discussed in the
previous chapters. Without loss of generality, we illustride application in both single-

party-input and two-party-input scenarios (as shown irufeéd.4).

5.2.1 Privacy Preserving Inner Product Computation from Distributed Data

Problem. Let X be ann-dimensional sensitive data vector owned by Alice ahbte an
n-dimensional sensitive data vector owned by Bob. A thirdypamants to compute the
inner product of these two vectors. None of these partiealdidaow the others’ private

data.
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, Alice: X Bob: Y ‘ Alice: X
Data Miner Data Miner
(a) (b

FIG. 5.4. (a) Distributed two-party-input computation modél Single-party-input
computation model.

Algorithm

1. Alice and Bob cooperatively generate a secret randomaaddse this seed to gen-

erate ak x n random matrix?.

2. Alice and Bob project their data onRF using R and release the perturbed version

U= \/Elm. RX andV = \/%07. RY to athird party.

3. The third party computes the inner product using the peetl datal/ andV and
getsUTV ~ XY,

Discussions Similarly, the third party can compute the Euclidean dis&aon the
perturbed data. When the data is properly normalized, theriproduct matrix is nothing
but the cosine angle or the correlation coefficienkoandY'.

Experiments We considered the Adult database from the UCI Machine liegrn
Repository for the experiment. This data set was originatlyacted from the 1994 census
bureau database. Without loss of generality, we selectefirdt 10, 000 rows of the data
with only two attributes (fnlwgt, education-num) and showWew the random projection
preserves the inner product and (the square of) the Eudlidistance between these two

attributes. Table 5.1 and 5.2 present the results 2veuns. Heref is the dimensionality
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k Mean() | Var(%) | Min(%) | Max(%)
100(1%) 9.91 0.41 0.07 23.47
5006%) 5.84 0.25 0.12 18.41
100010%) | 2.94 0.05 0.03 7.53
200000%) | 2.69 0.04 [001 |7.00
300060%) | 1.81 003 |027 |6.32

Table 5.1. Relative errors in computing the inner produd¢heftwo attributes.

k Mean(%) | Var(%) | Min(%) | Max(%)
100(1%) 10.44 0.67 1.51 32.58
5006%) | 4.97 029 |023 |18.32
1000(L0%) | 2.70 005 |011 |7.21
2000Q0%) | 2.59 0.03 0.31 6.90
300080%) | 1.80 0.01 0.61 3.91

Table 5.2. Relative errors in computing the square of thdiéeen distance of the two
attributes.

of the perturbed vectok; also represents the percentage of the dimensionality adrige
inal vector. It can be seen that when the vector is reduc&d%oof its original size, the
relative error of the estimated inner product and (the sgo&) the Euclidean distance is
only around1.80%. Figure 5.5 illustrates how the original data and the peddrdata look

alike.

5.2.2 Privacy Preserving K-Means Clustering from Distribued Data

Problem. Let X be ann x m, data matrix owned by Alice andl be ann x my matrix
owned by Bob. A third party wants to do clustering on the undbthese two data sets
(X : Y) without directly accessing the raw data.

Algorithm

1. Alice and Bob cooperatively generate a secret randomasedse this seed to gen-

erate ark x n random matrixR-.
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fnlwgt

berturbéd data origin‘al data’

education—-num

berturbéd data ‘ originél data’

60: /
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FIG. 5.5. Original data attributes and their perturbed coyates. The random projection
rate is 30 percent.

2. Alice and Bob project their data onRF using R and release the perturbed version

_ _1 _ 1
U=—RX,V=_LRY.

3. The third party does K-Means clustering over the datél$etl’).

Discussions The above algorithm is based on the fact that projectiosgmkes the
distance among vectors. Actually, random projection mapsiaita to a lower dimensional
random space while maintaining much of its variance just BCA. However, random
projection only require® (mnk)(k << n) computations to project am x m data ma-
trix into £ x m dimensions, while the computation complexity of estimgtine PCA is
O(n*m) + O(n?®). This algorithm can be generalized for other distancedsaga mining
applications such as nested-loop outlier detection, kestaeighbor search, etc.

ExperimentsFor this task, we chose the Synthetic Control Chart TiméeSetata set
from the UCI KDD Archive. This data set contains 600 examplesontrol charts, each

with 60 attributes. There are six different classes of admtnarts: normal, cyclic, increas-
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Clustered Instances
#Attributes 1 2 |13 |4 |5 6 Error Rate
60 (Original data) | 187 | 25| 41| 34| 117|196 | 0.00%
30 (50% Projection)| 188 | 25| 40| 34| 117|196 | 0.17%
20 (33% Projection)| 182 | 29 | 36| 32| 128 | 193 | 2.50%
10 (17% Projection)| 182 | 19| 65| 36 | 108 | 190 | 4.33%

Table 5.3. K-Means clustering from the original data andabturbed data.

ing trend, decreasing trend, upward shift and downward.sWié horizontally partitioned
the data into two subsets, performed random projections,tla@n conducted K-Means
clustering on the union of the projected data. Table 5.3 shibw results. It can be seen
that even with al 7% projection rate (the number of attributes is reduced ffiinto 10),

the clustering error rate is still as low 483%.

5.2.3 Privacy Preserving Linear Classification

Problem. Given a collection of sensitive data point¥ (i = 1,2,...,m) in R*, each
labelled as positive or negative, a third party data minemts/#o find a weight vectow
such that” z® > 0 for all positive pointst® andw”z® < 0 for all negative pointg:®,

Algorithm

1. The data owner generates a n random matrix? and projects the data ®* using

R such that) = \/ElU.R:):(i), Vi, and releases the perturbed data.

2. The third party runs the perceptron algorithniRift

(@) Letw = 0. Do until all the examples are correctly classified

i. Pick an arbitrary misclassified exampigand leti « w-+classlabel ()2 ).

Discussions Note that in this algorithm, the class labels are not pbedr Future

exampler is labelled positive iﬁDT(ﬁRx) > ( and negative otherwise. This is actually
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1
\/Eo'r

n-dimensional space. This also implies thats nothing but the projection af such that

the same as checking whether” R)x > 0, namely, a linear separator in the original

~ o 1
W= Rw and, therefore,

w3 = f%mwTRTf%me(i) ~wlz®,
This algorithm can be easily generalized for linear Supyector Machine (SVM) because
in the Lagrangian dual problem of the SVM task, the relatigmsf the original data points
is completely quantified by inner product.

Experiments We selected the Iris Plant Database from the UCI Machineriieg
Repository. This is a very small data set with 150 instanoesoaly 4 numeric attributes.
Our experiments show that even for such a small data set]dgbdthm still works well.
The data set contains 3 classes of 50 instances each, wiclrelass refers to a type of iris
plant (Iris-setosa, Iris-versicolor, Iris-virginica). 8¥nanually merged Iris-setosa and Iris-
versicolor together so that we could do a binary classificatin this data. The projection
rate is50%; hence, the data has only two attributes left after perticha We performed
a voted perceptron learning on both the original data angéhnteirbed data. The accuracy
on the original data over 10-fold cross validatiordis67%. The classification results on
the perturbed data over 10-fold cross validation are detratesl in Table 5.4. It shows

that the accuracy on the perturbed data over 10-fold crdg$atian is 86.67%, which is

91.55% as good as the results over the original data.
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1 2 3 4 5
66.67| 80.00| 100.00| 80.00| 93.33
Accuracy(t) 5 = 5 5 10
86.67| 80.00| 93.33 | 93.33| 93.33
Mean(%) 86.67
Std(%) 9.43

Table 5.4. Classification on the perturbed iris plant datx @@-fold cross validation.

5.3 Bayes Privacy Model

In this section', we discuss &8ayes privacy moddb measure the privacy offered
by a perturbation technique. This model considers attackeior and posteriori beliefs
about the data and uses Bayesian inference to evaluateittaeypr This model consists
of three building blocks: 1) the definition of attacker's@rand posteriori beliefs; 2) the
information non-disclosure principle; and 3) the impletagion of the principle.

Attacker’s Prior and Posteriori Beliefs: Let x be the unknown private data apde the
observed perturbed data. They can be viewed as the obsavati two random vectors
x andy, respectively. Le® be the attacker’s additional background knowledge. Furthe
let fx(z) be the probability density af and f|y e(z|y, #) be the conditional probability
density ofx giveny = y and@ = 6. We can define the attacker’s prior and posteriori belief

about the private data as follows:
e Attacker’s prior beliefa(z) = fx(x)
e Attacker's posteriori belief3(z, y, 0) = fxy.o(x|y, 0).

Having the perturbed data and the additional backgroundvlauge, the attacker

1Throughout this section, we use td®PER CASE BOLD LETTER to represent a random matrix and
the UPPER CASE REGULAR LETTER to represent an observatianraihdom matrix. We use thewer
case bold letterto denote a random vector and the lower case regular let@ernote an observation of a
random vector.
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could possibly derive private information about the oraidata. Ideally, a secure per-
turbation technique should conform to the following prpiei
Information Non-disclosure Principle: The perturbed data should provide the attacker
with little additional information beyond the attacker’sqr belief and other background
knowledge.

Implementation of the Principle: This principle is universal, but, depending on the appli-
cations, it can be instantiated in several different wayguantify the privacy offered by a

perturbation technique. For example, we have the folloyiogsible choices.

1. The(p1, p2)-privacy breach [37] happens wheriz) < p; and3(z,y,6) > py or
whena(z) > 1 — p; andf(x,y,0) < 1 — ps.

2. Analternate way is to measure the difference of the piestand the prior for a given

x (e.g, B(x,y,0) — a(x)) or over all the possible’s (e.g, max,(5(x,y, ) — a(x))).

3. Another possible way is to compute the maximum a postepiobability (MAP)

estimate ofk giveny = y and@ = 6:

'%J\/[AP(yy 8) = arg mgxﬁ(m, Y, 6) = arg mxax fx|y,0(x|y7 8)

With this estimation, we can either comparevith the attacker’s prior and back-
ground knowledge to see whethepffers any extra information. We can also com-
pute (theoretically or empirically) the probability of afprivacy breach (see Defin-
ition 4.2.2),i.e, Prob{||z — Z|| < ||Z||e}, wherez is the original data that actually

generateg through the perturbation.

The (p1, p2)-privacy breach [37] is a good metric to measure the infoionadisclo-
sure. However, it works only for discrete data. It assumesrds of both private data and

perturbed data are statistically independent, and it reguhe transition probability (the
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probability from one specific private data record to a spegiérturbed data record) to be
explicitly defined. These requirements make it difficult éprantifying privacy of multi-
plicative perturbation. In this dissertation, we use theximam a posteriori probability
(MAP) estimate to recover the original data and, therefarguantify the privacy offered
by random projection-based perturbation. We choose MARUmE 1) it has a solid sta-
tistics foundation; 2) it is closely related to maximum ateo®ri probability hypothesis
testing [90, Chapter 8]; 3)in the absence of a priori infaliorg MAP estimate is equiva-
lent to maximum likelihood estimate (MLE); 4) it often pramks estimates with errors that
are not much higher than the minimum mean square error; andsielatively easy to
derive the conditional probability density function in thrultiplicative data perturbation
scenario.

Next, We will first discuss the MAP estimate with the assumptihat the original
data arose as a sample from a multivariate distributionerAfiat, we will generalize the

results we have found to the matrix variate distributiomsec® [107].

5.3.1 MAP Estimate for Multivariate Distribution

Let the original data have attributes andn records. They can be considered as
observations of a random vector of lengthdenoted bk € R". LetR be ak x n random
matrix with each entry independent and identically chosemfN (0,1). Lety = ﬁRx.

We also make the following assumptions:

Assumption 5.3.1 (The Attacker’s Prior Belief aboutx) The attacker knows the range
of each entry ok, denoted by;, i = 1,...,n. In other words, the attacker knows that
x; € lai, b;]. Without other information, the attacker further assuntes each entry; is
independent and follows a uniform distribution with (z;) = ﬁ for a; < x; < b;, and

fx;(z;) = 0 otherwise.
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Assumption 5.3.2 (The Attacker’s Additional Background Knowledge) The attacker has
no other background knowledge about the original data, tha = (.

We are interested in computing the maximum a posteriorigidity (MAP) estimate

of x given the observatiop = y:

Taap(y) = argmax fiy (z]y). (5.2)

Using the Bayesian rule, we get the following formulae:

Tyvar(y) = argm;lex\y(ﬂy)
_ fy|x(y|x)fx(l'>
= argmax ———————
z fy(y
= argmax fyx(y|) fx (7). (5.3)
Note thaty is a k-dimensional random vector wityy = > 7, ryx;, i = 1,...,k,

wherer;; represents the entry on thigh row andj-th column ofR. It can be proved

that givenx = z, y follows a normal distribution with meap, = 0 and covariance

Sy =1 . Therefore, we can writé, . (y|x) as follows:
$T$
Fowlyl) = ez exp (—o (0 — i) S — )
y\x y (27T)k/2|2y‘1/2 2 y /"Ly y y My
k2 ky'y
(2maTx)k/? P ( 2xTx> ®.4)

From Eq. 5.4 and Assumption 5.3.1, we have

/{:% kyT 1 1 |
Foylo) fule) = Wexp( y y)

(2maTx 202 )by —ayby—ay b, —a,
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Because the logarithm is a monotone one-to-one functiorgamemaximize the fol-

lowing function instead:

log fy(y]2) fu(z) =1 ks (Y bt (55)
0 «ylr) fx(x) =In ————= - n -+-+1In .(5.
& JyxY (2maTx)k/2 22T x by — ay b, — a,
To solve the optimization problem, 1€, = {Ink — £In2r, letC, = ¥, In =1,
Eq. 5.5 can be simplified as
k T
D) Inzle — QiTgy: + C1 + Cs.
Further letz = 2™z, the function to be maximized becomes
k kyTy
——Inz — 5.6
5 2 5, (5.6)

such thal < z < u,wherel = >"" o andu = """, V7.

Now we can draw a graph to see if and where this function has>anmian value
in the region[/, »]. If it has a maximum at a point* € (/,u), we can set the derivative
to zero in order to findt*. In this case, it can be easily proved that= y7y, i.e, any
vector that satisfies”# = yTy is the optimal solution. This is interesting because we
know E[yTy] = zTz. Therefore, the maximum a posteriori estimation does notige
the attacker any more information about the private data Wizat has been implied by the
properties of projection itself. If the function has an eant maximum, either at = [ or
z = u, then, the derivative need not (and usually won’t) vanigmehHaving found™*, our
optimal solution is any point on the hyper-sph&re 7 = 2*.

In summary, under the assumptions 5.3.1 and 5.3.2, the mapdajection-based per-

turbation does not offer the attacker more information alioei private data than what has

been implied by the inner product preservation propersffitdf the attacker has no prior
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knowledge about the private data at all, the MAP estimatelsirnecomes a maximum
likelihood estimate [90, pages 337-338]. If the prior hdseodistributions, we might not
be able to derive a simple analytic solution to the maxinnrgproblem. In such situations,
the MAP estimate must be sought using numerical methods. MWdigcuss that scenario

in detail in Section 5.4.2.

5.3.2 Probability of e-Privacy Breach

In the previous section, we proved that, under mild asswnptianyz that satisfies
T2 = yTy is the maximum a posteriori probability (MAP) estimate o thriginal datar
given the perturbed data In other words;: can only be a point on the surface of a hyper-
sphere centered at the origin with radjiig| = \/yTy. In this section, we will compute
the probability ofe-privacy breachy(z, €) 2 when the attacker randomly chooses one such
Z.

Let S,.(||z||) denote the hyper-sphere Ri* centered at the origin with radiuge||.
For anyA C S,(||z||), let SA(A) denote the surface area df Let S, (x,||z||¢) denote
(

the portion ofS,,(||z||) whose distance from is no larger than|z

€ 1., Sy(z,||x|le) =
{z € S,(||z]|) : ||z —=z|| < ||z||e}. The probability of privacy breach depends on the value
of 27z, wherex is the original data point.

If 272 = yTy, thenS,(||z|]) = S.(||y|]) (the big hyper-sphere in Figure 5.6). The
probability of privacy breach is the ratio of the surfacesapéthe big hyper-sphere that is
within the small hyper-sphere to the whole surface areaebtt hyper-sphere. In Section

4.4.2 we derived the closed-form expression for the prditabf e-privacy breach for this

2Definition 4.2.2 defines the probability efprivacy breach(z, ¢) = Prob{||# — z|| < ||=||e}) for any
e > 0.
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scenario. Mathematically, we have

 SAS( llalle)
P = g ars )
| @) 2aresin (%) i [Jalle < 2/l
1 otherwise

If 272 < yTy orzTz > yTy, the ratio of the surface area is always smaller than the
ratio whenz”z = y*'y. Specifically, for the case shown in Figures 5.7 and 5.8, wesea
that the ratio is equal to 0. Therefore, the valug@f, ¢) whenz'z = y7y serves as an

upper bound for the probability efprivacy breach.

5.3.3 Privacy/Accuracy Control

In the previous section, we derived the closed-form exjpwassf the probability of
e-privacy breach (when’z = y’y) and its upper bound (Whert = # y*y). The com-
putation requires that the data owner knows both the ofigiatar and the perturbed data

y. However, in practice, the data owner usually wants to cbiite privacy and accuracy
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tradeoff before actually performing the perturbation. Histsection, we will discuss this
possibility and offer guidelines for the data owner to pertilne data.

Privacy: As illustrated in Figure 5.9, ifly|| < ||z|| — [|=|le or [ly|| > ||z|| + ||x||e, none
of the data points on the surface of a hyper-sphere centered at the origin aittus||y||
will satisfy ||z — x|| < ||z||e; hence, the probability of-privacy breach will be 0. So, the
question is what is the probability thit|| < ||z|| — ||z||e or [|y]| > [|=]| + ||x]]e.

In Section 5.1.2, we showed that

w2,
IR
Hence,
Prob{||y|| < [|]| — [llle or [ly]| > ||=|| + ||zle} =

Prob{|ly|I* < (1 —e)*[|=[|* or [[y[|* > (1 + €)*[|=||*} =

Pros{- g ezor 0o gy gy -
|||/ ||| |2/ K
k(1—e)? +o0
/ f(t; k)dt + / f(t; k)dt, (5.7)
) k(1+e€)2

where f(¢; k) is the probability density function of the chi-square disition with & de-
grees of freedom. Thus, Eq. 5.7 gives the probability thate) = 0 for a givene and
k.

Accuracy: Recall that Lemma 5.1.6 proved that for any dafta, =2 and their perturbed

versiony™, y? we have

Pri(l —m|lz® — 2@ < ||y —y?|? < (1 +p)l]aW — 2P|} =

k(1+n)
/ F(t: k), (5.8)
k

(1-n)
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[IxIle

FIG. 5.9. The shaded arealig|| < ||z|| — ||z||e or [ly|| > ||z|| + ||z||e.

wheren > 0 and f(t; k) is the probability density function of the chi-square disition
with £ degrees of freedom. As eithgior k£ increases, the probability increases (illustrated
in Figure 5.3). Therefore, Eq. 5.8 gives the probabilityhaf accuracy of random projection
for a givenn andk.

Combing Eq. 5.7 and Eqg. 5.8, the data owner could setup prigsad accuracy
thresholds (for a givenandn) and determine the value éfsuch that both conditions are
satisfied. As an illustration, let us look at Figure 5.10. sTfigure plots the probability
of the accuracy (for a given = 0.10) and the probability thap(z,e) = 0 (for a given
e = 0.01) with respect td:. It can be seen that dsincreases, the probability of the ac-

curacy increases, but the probability of zero privacy bnedecreases — a tradeoff between
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FiIG. 5.10. lllustration of privacy and accuracy control.

accuracy and privacy. If, for example, the data owner wants
Pr{(1 = )|z = 2@ <[ly® = y?|]> < 1+ p)[JaV — 2P|} > 80%, n = 0.10,

thenk should be greater than 320. If in the meantime, the data owoeld like to achieve
p(x,e) = 0,e = 0.01 with probability at least0%, thenk should be less than 750. There-

fore, the data owner simply chooses & (320, 750) and performs the perturbation.

5.3.4 MAP Estimate for Matrix Variate Distribution

In this section, we assume that the original data arose ampladrom a random
matrix instead of a random vector. This allows the attacerse the information of both
row-wise and column-wise dependencies of the perturbedatat the original data. Next,
we first present a brief introduction to some definitions drebtems from matrix algebra.
Then, we will derive the closed-form expression of the MARneate for the matrix variate

distribution.
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Definition 5.3.3 [108, pages 8] The Kronecker product of two matricEsn x n) = (a; ;)
andB(p x q) = (b;;), denoted byl ® B, is themp x ng matrix defined by

CLl’lB CLLQB s CLLnB

CLQ’]_B a27gB cee a27nB
A® B =

am,lB am,2B e am,nB

Definition 5.3.4 [108, pages 9] For a matrixX (n x m), vec(X) is thenm x 1 vector

defined as
e
+2)
vee(X) = ,
L (m)
wherez®, i = 1,...,mis thei-th column ofX.

Definition 5.3.5 [108, pages 55] The random matrR(k x n) is said to have a matrix
variate Gaussian distribution with mean matriX(k x n) and covariance matriX @ ¥,

whereX(k x k) > 0and¥(n x n) > 0, if vec(RT) ~ Ny, (vec(MT), ¥ ® ).

This definition tells us that if we create a single vector fromatrix R by stacking
the row vectors oR one after another, and if this vector follows a multivari@aussian
distribution, this random matriR has a matrix variate Gaussian distribution.

We shall use the notatidR ~ N, (M, X ® ¥). The density of the random matrk

is given by the following theorem.

Theorem 5.3.6 [108, pages 55] IR ~ N;,(M, ¥ ® V), then the probability density
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function ofR is given by
(27) 2% det () 2" det(@)_%ketr{—%Z_l(R — M)U Y (R - M)}, (5.9)

whereR € R M € R**", andetr is the exponential trace functienr{.} = exp(trace(.)).

Corollary 5.3.7 LetR be ak x n random matrix with each entry independent and identi-
cally distributed (i.i.d.) according taV (0, 1). R has a matrix variate Gaussian distribution

with mean matrix\/ = 0 and covariance matriX; ® I,,, denoted byR ~ Ny ,,(0, [, ® I,,).

Proof: Because each entry & is i.i.d. and follows aV (0, 1) distribution,vec(R”) has a
multivariate Gaussian distribution with mean 0 and covaréd,,, = [, ®I,,. By definition,

R has a matrix variate Gaussian distribution. O

Theorem 5.3.8LetR be ak x n random matrix with each entry independent and identi-
cally distributed (i.i.d.) according tav(0, 1). Let X (n x m) be a constant matrix. Further
assumerank(X) = m. LetY = ﬁRX. Y has a matrix variate Gaussian distribution

with mean matriX) and covarianced, ® %X TX.

Proof: According to [90, Theorem 5.16], each row vectonbhas a multivariate Gaussian
distribution with mean vector 0 and covarian,CtK TX. Because each entry & is sta-

tistically independent, any pairs of row vectorsYfare statistically independent too. We
can create a single vector by stacking row vector§vobne after another. According

to [90, Problem 5.7.8], the new vector follows a multivagi&aussian distribution with

XTXx 0 0
) ) ) 0 xTx ... 0
mean 0 and a block diagonal covariance ma%n _ _ . , . Therefore,
0 0 o XTx

by definition, we hav&y ~ Ny ,,,(0, I ® %XTX). Hence, the probability density function
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of Y conditioned onX is given by

1 1.1
Frx(Y]X) = (2r) 2™ det(EXTX)‘%ketr{—§Y(EXTX)_1YT},

whereX has full column rank. (5.10)

O
Armed with basic matrix algebra definitions and theories,cae now compute the
maximum a posteriori probability (MAP) estimate &f given the observatiol™ in the

matrix form.

XMAP(K 0) = arg m)?X fX\Y,B(X =X|Y =Y,0=0)

= argm}e(xxfy,mx(Y =Y, 0=01X=X)x(X=X)

To solve this maximization problem, we make the followingasptions:

Assumption 5.3.9 (The Attacker’s Prior Belief aboutX) The attacker assumes thg¢(X)

is uniform within some range.

Assumption 5.3.10 (The Attacker’s Additional Background Knowledge) The attacker
has no other background knowledge about the private dasd,ish6 = (.

Assumption 5.3.11 (Independent Records)Me assume bot andY have full column

rank. 3.

The first two assumptions are the same as the assumptionSonaddtivariate distri-
butions. The third assumption allows the attacker to caradly the linearly independent

records because linearly dependent records can be deroradtie independent records.

3Note thatY” having full column rank implicitly implies that > m.
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Under these assumptions, the MAP estimate becomes

N 1 1.1
Xaap(Y) = arg m)?x(zw)—%km det(%XTX)_%ketr{—§Y(EXTX)_1YT},

whereX andY have full column rank. (5.112)

The following theorem gives the solution to this maximinatproblem.

Theorem 5.3.12Any X that satisfies conditioX? X = Y'Y can be the optimal solution

to the problem defined in Eq. 5.11.

Proof: Please see Appendix 5.6.2 for the proof. O
Note that this result echoes the results we have for the vaulite case. If we consider
Y = RX as arandom matrix, we know[Y7Y] = X7 X. So the optimal solution we
have does not provide the attacker with more informatiorualize private dataX than
what has been implied by the properties of random projedtseif.
In the following part of this chapter, we will revisit someaatk techniques designed
in Chapter 4. We will see whether the random projection-tdgsgturbation is vulnerable

to these attacks.

5.4 Attack Techniques

In Chapter 4, we addressed the security issues of distagsemping perturbation by
assuming the role of an attacker armed with three types prformation regarding the
original data. We designed three different attack techescand examined how well the
attacker can recover the original data from the perturbéa aad prior information. In this
section, we study the privacy preserving properties of oamgrojection along the same

line. In particular, we consider the following prior knowllge the attacker could have.
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5.4.1 Prior Knowledge

Known input-output The attacker knows some collection of linearly indepengeintite
data records. In other words, the attacker has a set of §ngatependent input-

output pairs.

Known sample The attacker knows that the original dataset arose as indepésamples
of somen-dimensional random vectdr with unknown p.d.f. Also the attacker has

another collection of independent samples frigm

Independent signalsEach data attribute can be thought of as a time-varying kigkih
the signals, at any given time, are statistically indepatidend all the signals are

non-Gaussian with the exception of one.

Random matrix is disclosed The specific realization of the random matrix is disclosed.

Next, we analyze the security of random projection-baseaig®tion for each of the sce-

narios listed above.

5.4.2 Known Input-Output Attack

Consider the perturbation model

Y = %RX@
<YZD Ym—p) - iR(Xp Xm—p>'
VEk

Let X, denote the firsp columns of X and X,,_, the remainder (likewise fo¥’). We
assume that columns of, are all linearly independent and, is known to the attackei{
is, of course, also known). The attacker will producendl < : < m — p such that is a

good estimate of®), thei!" column inX,,_, (the(p + )" column inX). Here, we also
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assumer® is linearly independent ok, because otherwise its value can be derived from

a linear combination aok,,.

If p = n, then the attacker can recover the random matrix exactlpuss? =

\/EYXp‘l. Note that even in this case, the attacker may not be ablet tingexact value

of the original private data. This is different from the diste preserving perturbation. We

will discuss this case in Section 5.4.5 in detail. Throughbis section, we assume< n.

Next, we use the MAP estimate technique discussed in Sedii@l and 5.3.4 to recover

the private data given the known inputs and outputs.

The MAP estimate of a data recordgiven its perturbed versiomand known input-

output pairskX, =Y, is

Tarap(y,0)

arg max fyjy o(x = x|%RX =y, %RXp =)

g ma f (=R = 1, RX, = Yy = ) (o = 0
arg max fxyo(x =z, %Rx =, %RXP =Y),)

arg max fx,y,e(%Rx =, %RX;? =)

1
arg max fx7y7g(ﬁRX =Y),

whereX = [zX,] andY = [yY,].

The above equation can be written as

Tyap(y,0)

1 _ _ _
= al'gl’Ili‘inﬁRZ'Z(ﬁRZ = Y|Z = X)fz(z = X)

Assuming thatfz is uniform over some interval, we get

1

Tmapr(y,0) = afgmjxfﬁRZ\z(\/ERZ:Y‘Z:X)-
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According to Theorem 5.3.&%%‘2(%{{2 = Y|Z = X) has the following form:
k

1o S
(2m) " 2he+D) det(EXTX)—%ketr{—§Y(EXTX)—1YT},

whereX has full column rank.

Theorem 5.3.12 tells us that if we knew nothing abaytwe could solve the MAP
problem analytically. However, in the known input-outpgesario, we know all the
columns of X except for only one column. It is very difficult, if it is not ipossible, to
find an analytic solution in that case. Instead, we turn toenizal approaches to solve the
maximization problem. In our experiments, we used the Nbatiaplementatiorf of the
Nelder-Mead simplex algorithm [109] to find the optimal g@un. This is a direct search
method that attempts to optimize a scalar-valued nonlifigaction of n real variables
using only function values, without any numerical or analgradients. Since its publica-
tion in 1965, the Nelder-Mead simplex algorithm has becomeaf the most widely used
methods for nonlinear unconstrained optimization. Thekid@éd0], which contains a bib-
liography with thousands of references, is devoted emttcethis algorithm and variations.
Each iteration of this algorithm begins with a simplex. Hexesimplex inn-dimensional
space is characterized by thet+ 1 distinct vectors that are its vertices. In 2D space, a
simplex is a triangle; in 3D space, it is a pyramid. At eaclp stiethe search, a new pointin
or near the current simplex is generated. The function valuike new point is compared
with the function’s values at the vertices of the simplex,amglially, one of the vertices is
replaced by the new point, giving a new simplex. This stegpeated until the diameter
of the simplex is less than the specified tolerance.

To demonstrate the performance of the MAP estimate-basedrkmput-output at-

tack, we conducted experiments on the same Letter Recoguitita used in Section 4.5.3.

4http://www.mathworks.com/access/helpdesk/help/techdf/fminsearch.html
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This data hag0, 000 records and 6 numeric features. We chose the fiésteatures (ex-
cluding the class label) for the experiments. The setup@tttperiments is illustrated in

Algorithm 5.4.2.1.

Algorithm 5.4.2.1 MAP Estimate-based Known Input-Output Attack

Inputs: Let X denote the Letter Recognition Data with 6 attributes an@@Decords.
LetY = RX. Letk denote the number of rows @. Let p denote the number of
known columns of the private data.

1: for k =6to3do
2. forp=k—1toldo
3: for : = 1t0 100 do
4 Randomly choosé+ 1) independent columns from the original dafa Label
the first column to beinknown and all the other columngiown
Choose the correspondirig + 1) columns from the perturbed data
for j = 1to 100 do
7: Call the Nelder-Mead simplex algorithm to solve the maxguian problem.
The starting values for the unknown is the median of the knevarrandom
number in(—2, 2)

o g

8: end for
9: Choose the best estimation from the above 100 solutions.
10: Compute and record the relative error.
11: end for
12:  end for
13: end for

Therefore, for each fixefl andp, we have logged00 relative errors. We report the
mean, median, max, min, variance of the relative errors. Méraport the probability of
e-privacy breach. Note that in the experiments’ setup, wesbp+ 1 < k£ to makeY full
column rank. Otherwise, the function may not have an optifhhk experimental results
are shown in Tables 5.5, 5.6, 5.7, and 5.8. It can be seen shieanumber of known
input-output pairs decreases, the relative error inceeasethe dimension of the perturbed

data decreases, the relative error increases.
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median| mean | variance| min max | p(x,0.20) | p(x,0.30)
p=5| 0.0616| 0.0833| 0.0055 | 0.0002| 0.3429 0.91 0.99
p=4| 0.1459| 0.1954| 0.0242 | 0.0194| 0.7520 0.65 0.80
p=3| 0.2459| 0.2715| 0.0283 | 0.0289| 0.8564 0.38 0.61
p=2| 0.3234| 0.3668| 0.0496 | 0.0673| 1.2326| 0.21 0.49
p=1| 0.4230| 0.4905| 0.0814 | 0.0704| 1.3733 0.15 0.30

Table 5.5. Relative errors of the MAP estimate-based knowuatroutput attackk = 6

median| mean | variance| min max | p(x,0.20) | p(x,0.30)
p=4| 0.1742| 0.2982| 0.1351 | 0.0149| 2.3440 0.56 0.71
p=3| 0.2468| 0.3026| 0.0552 | 0.0263| 1.2620 0.37 0.65
p=2| 0.2844| 0.3588| 0.0629 | 0.0612| 1.2668 0.29 0.52
p=1| 0.4144| 0.4847| 0.0883 | 0.0964| 1.4718 0.13 0.29

Table 5.6. Relative errors of the MAP estimate-based knoywatroutput attackk = 5

5.4.3 Known Sample Attack

In this scenario, we assume that each data record arose aslggendent sample
from a random vectov” with unknown p.d.f. Furthermore, we assume that the attdwke
a collection ofp samples that arose independently froin

In Section 4.5 of Chapter 4, we designed a Principal CompoAaalysis (PCA)-
based attack technique. The basic idea is that the covariaatrix of the perturbed data
Y, is related to the covariance of the original data such that,,,. = My, M7,
where M is the orthogonal perturbation matrix (see Theorem 4.31dbwever, it can be
shown that in the random projection scenario, the randosniméoduced byR kills the
covariance in the perturbed data used by the PCA-basek attuecifically, given the
random vecto#/, it can be shown that z,, equals/,,y for some constan{. Any vector in
R* is an eigenvector of z,-; therefore, the PCA-based attack will not work. The follogi

theorem depicts this property.

Theorem 5.4.1Let V be a random vector iflR"*!. Let R be a random matrix iRF>*",
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median| mean | variance| min max | p(x,0.20) | p(x,0.30)
p=3| 0.2702| 0.3532| 0.0901 | 0.0501| 2.0506| 0.32 0.57
p=2| 0.2804| 0.3270| 0.0413 | 0.0203| 0.9647| 0.30 0.57
p=1| 0.4376| 0.4828| 0.0673 | 0.0896| 1.7386| 0.05 0.23
Table 5.7. Relative errors of the MAP estimate-based knowuati-output attackk = 4
median| mean | variance| min max | p(z,0.20) | p(z,0.30)
p=2| 0.3061| 0.3526| 0.0463 | 0.0439| 1.0456| 0.24 0.49
p=1| 0.4503| 0.4747| 0.0724 | 0.0896| 1.2360| 0.14 0.30

Table 5.8. Relative errors of the MAP estimate-based knoyuatioutput attackk = 3

each entry of R being i.i.d. with mean 0 and varian€elLetY = RV. LetY denote the

population covariance matrix df. LetXz, be the population covariance matrix &f/.

We havelyy = 1,7, wherey = o2E[> ", v7].

Proof:

Yry = E[(RV — E[RV])(RV — E[RV))"]

= E[(RV — E[R|E[V])(RV — E[R|E[V])"]

— E[RVVTRT].

Here, matrixRV VT RT can be expressed as

RVVTRT

It can be shown that thg, j)-thentry ¢ =1,... k,j =

71,1

T2,1

Tk,1

T1,n

T2,n

2

vy V1V2

VU1

Un VU1

v

Vnv2

V1Un

V2Un

n n n 2 92 e
E:q:ﬂ_Ezp:Lp¢qTLpTLquUq‘+'§:t:17}¢0t, if 4 =1

22:1 23:1 Ti,pT5,qVpVq;

if i £ j.

71,1

T2 722

T1,n T2,n

1,...,k)of RVVTRT is

Tk,1

Tk,2

Tk,n
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Therefore, thei, j)-th entry of E[RVVT R is

E[ZZﬂ Zzﬂ,p#q TipljqUpVq + 2?:1 Tit“?] = O—EE[Zt Uf]a if i = j;
E[Zzﬂ E;L:l Ti,prj,q”pvq] =0, if i £ 5.

This completes the proof. O

5.4.4 Independent Signals Attack

In Section 4.6 of Chapter 4, we introduced Independent CompiAnalysis (ICA)
as a possible tool for breaching privacy of distance présemerturbation. In this section,
we revisit ICA and show how to make random projection-basatupbation invulnerable
to this kind of attack.

Decomposability of ICA: Recall that the basic ICA model can be defined as follows:
y(t) = Ax(t), (5.12)

wherez(t) = (z1(t), 22(t), ..., z,(t))T denotes am-dimensional vector collecting the
independent source signalgt),i = 1,2,...,n. Heret indicates the time dependence.
Each signalz;(¢) can be viewed as an outcome of a continuous-value randonegsoc
A'is ak x n unknown mixing matrix, which can be viewed as a mixing systeith &
receivers. The observed mixturei&) = (y1(t), y2(t), ..., yx(t))’. The aim of ICAis to
design afilter that can recover the original signals frony ¢éimé observed mixture. Because
y(t) = Az(t) = (AAP)(P~'A~1z(t)) for any diagonal matrixA and permutation matrix

P, the recovered signals(t) can never have completely unique representation. So, the
uniqueness of the recovered signals found by ICA can onlylbesgnteed up to permutation
and scaling ambiguities.

In practice, a linear filter is designed to get the recoverguaads(t) = (1(t), Z2(t),
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., a(t)T from ak-dimensional inpuy(t) = (y1(t),y2(t), ..., yx(t))T. In other words,

we need to find ah x & matrix B such that

i(t) = By(t). (5.13)

Here, B is called the separating matrix. Combining Eqg. 5.12 and EL3,5ve get

#(t) = BAz(t) = Za(t), (5.14)

whereZ = BAis anl x n matrix. Each element of(¢) is thus a linear combination of
x;(t) with weights given by; ;, wherez; ; denotes théi, j)-th entry of Z.

Ideally, whenk > n (i.e., the number of receivers is greater than or equal to the
number of source signals), if the mixing matrixhas full column rank, there always exists
anl x k separating matri such thatZ = BA = I, wherel is an identity matrix. If
this is the case, we can recover all the signals simultamgapgo scaling and permutation
ambiguities.

Whenl < k < n (i.e., the number of sources is greater than the number of resgjver
itis generally not possible to design linear filters to sitaneously recover all these signals.
This kind of separation problem is termedmgrcomplete ICAr under-determined source
separation Cao and Liu [93] analyzed the conditions for the existericih® separating
matrix B. Next, we first introduce two definitions (Definition 5.4.1daB.4.2) and one
theorem (Theorem 5.4.2) from their work, which serve as irtgma building blocks in our

solutions.

Definition 5.4.1 (Partition Matrix) [93] A set ofn integersS = {1,2,...,n} can be

SThis implies that the number of recovered signals will bs lsn or equal to the number of the original
signals. This is reasonable because we cannot get mordssiaa the original ones.
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partitioned intol (I < n) disjoint subsets;, i = 1,2,...,l. Anl x n matrix Z is called a
partition matrix if its<, j-th entryz; ; = 1 whenj € S;, andz; ; = 0 otherwise.Z is called
a generalized partition matrix if it is a product of dnx n partition matrix and am x n

nonsingular diagonal matrix.

When none of the subs#t is empty,Z is simply a matrix in which each column has

only one nonzero entry and each row has at least one nonzeyo en

Definition 5.4.2 (-row Decomposable) [93] A k£ x n matrix A is called/-row decompos-
able if there exists ahx k£ matrix B such thatZ = B x A is anl x n generalized partition

matrix.

Therefore, if A is [-row decomposable, there exists a mathxthat enablesZ to
separate the source signals intdisjoint subgroups; each outpif(t),s = 1,2,...,lisa

linear combination of the source signals in one subgroap,

Zi'l' = ZZZ'JZL'j, i:]., 2, ,I
JES;
If for somei, S; = {p}, thenz; = z, ,z,, thatis, by usingZ, we can separate out one signal
x, up to scaling ambiguities. If the number of the disjoint siaegps isn (i.e., [ = n), every

subsetS; (: = 1, ...,1) contains only one element, and there will be a completeraépa.

Theorem 5.4.2 [93] Matrix A is [-row decomposable if and only if its columns can be
grouped intol disjoint groups such that the column vectors in each group larearly

independent of the vectors in all the other groups.

Proof: Please see the proof of Theorem 1 in [93]. O
Caoet al. proved that wherk < n, the source signals can at most be separated
into & disjoint groups from the observed mixture and at most 1 signals (independent

components) can be separated out.
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Our claim is that if we can control the structure of the mixmatrix A such that
A is nottwo-row decomposable, then there is no linear method that cdrafimatrix 3
for separating the source signals into two or more disjoiotigs. In that cases, it is not
possible to separate out any of the source signals. Thenioliptheorem characterizes this

property.

Theorem 5.4.3Any k x n (n > 2k,n > 2) random matrix with entries independent
and identically chosen from a continuous distribution ie tieal domain is not two-row

decomposable with probability 1.

Proof: For ak x n random matrix withn > 2k and any partition of its columns into two
non-empty sets, at least one set will have at léastembers. Thus, this set of columns
contains & x k sub-matrix, denoted a¥/. If M is nonsingular, itg: column vectors will
spanR* Euclidean space. In this case, there is always at least atervia one group
belonging to the space spanned by the other group, whichraesitisfy the requirements
in Theorem 5.4.2.

Now let us show thad/ is indeed nonsingular with probability 1. It has been proved
in[111, Theorem 3.3] that the probability thatA/7 is positive definite is 1° Because 1) a
matrix is positive definite if and only if all the eigenvalugfghis matrix are positive and 2)
a matrix is nonsingular if and only if all its eigenvalues amnzero [107, Theorem 1.2.2],
MM? is nonsingular with probability 1. Further note thatnk(M) = rank(MM?T) =
rank(M?T M) [112], thereforeM is nonsingular with probability 1. This completes the
proof. O

The above non-singularity property of a random matrix hae been proved in [107,
Theorem 3.2.1] when the random matrix is Gaussian. Thusettind n > 2k, there is

no linear filter that can separate the observed mixturestimboor more disjoint groups;

5We get this result by replacing the matrixin [111, Theorem 3.3] with an identity matrix.
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therefore, it is not possible to recover any of the sourceasy In Sectior?? we will
demonstrate this property with experiments.

The discussion in this section summarizes as:

e Whenk > n (i.e, the number of receiver is greater than or equal to the number
of source signals), all the source signals can be separatdtbm their mixture up
to scaling and permutation ambiguities if and only if 1) tignals are statistically
independent; 2) the mixing matrix has full column rank; and 3) at most one source

signal is Gaussian.

e When! < k < n (i.e, the number of receivers is less than the number of sources),
the source signals can at most be separatedkintisjoint groups from the mixtures
and at most — 1 signals can be separated out. In particular, when the mimiaigix
R is not two-row decomposablen( > 2k,n > 2, and with i.i.d. entries chosen
from a continuous distribution), there is no linear methuat tan find a matrix3 to

separate out any of the source signals.

Recent Work on Overcomplete ICA: Recently, overcomplete ICA:(< n) has drawn
much attention. It has been found that even whenn, if all the sources are non-Gaussian
and statistically independent, it is still possible to itiigrthe mixing matrix such that the it
is unique up to a right multiplication by a diagonal and a paation matrix [113, Theorem
3.1]. If it is also possible to determine the distributionadt), we could reconstruct the
source signals in a probabilistic sense. However, dedpitegh interest, the overcomplete
ICA problem has only been treated in particular cases. Uawat al. [114] proposed
a generalized method for learning overcomplete ICA in whioh source signals were
assumed to have a sparse distributiemy, Laplacian distribution. Several other similar
solutions to the separation of independent components fn@mn overcomplete mixtures

have been proposed [115-117]. However, if any Gaussiaalsigrere allowed, the mixing
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FIG. 5.11. Performance of ICA attack on random projection pbdd image data. The first
row — original images; the second row — perturbed imagesttaadthird row — recovered
images.

matrix would not be identifiable [118] and the distributiditloe source signals would not
be unique [113, Example 2 and 4]. Again, if the sources wereetaded, they would
cluster in the same group and only the real independent coemie hidden behind them
could possibly be found.

Experiments: To demonstrate that ICA attack cannot effectively breagphvacy of
random projection-based perturbation, we chose both iraageaudio data for the experi-
ments.

First, we considered the same image dataset used in Sedfiéof Chapter 4. The
dataset consists of four natural scene pictures represbgtad50 x 338 pixel grid — the
top row of Figure 5.11. Each grid is stretched out into a lbrige, 100 row vector. The
perturbed versions, rows &f = —— RX, can be seen in the middle row of Figure 5.11.

\/EUT
Here, the random projection compressed four pictures intptwo. After applying ICA,

the attacker produced estimates as seen in the bottom rowgwfeFs.11. It can be seen
that ICA can only produce two pictures and each of them ikastiixture of the original
four pictures. Thus, no pictures can be separated out irstieisario.

Second, we considered the same four audio signals used tiorsdd®.3 of Chapter
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(a) (b)

FIG. 5.12. (a) Linear mixture of the original four source sign@s shown in Figure 4.18)
with a 50% random projection rate.n(= 4,k = 2). (b) The recovered signals. It can
be observed that none of the original signals can be reaatstt and at most = 2
independent components can be found by ICA.

4 (shown in Figure 4.18). A perturbation of these signalseisegated by pre-multiplying
a 2 x 4 random matrix to them (shown in Figure 5.12(a)). The recedesignals after
applying ICA is shown in Figure 5.12(b). It can be seen theraft50% random projection,

the original four signals are compressed into two and ICAcanecover any of them.

5.4.5 Random Matrix is Disclosed

In this scenario, we assume that the random matrix itselfssl@sed. This can be
viewed as the worst case. Recall that for the distance ptieggverturbation, if the orthog-
onal matrix is known, the attacker can recover the origimghaxactly. In this section, we
analyze whether this perfect recovery also happens in rarmmtojection-based perturba-
tion.

Consider the modeY = RX, whereR € R¥" with k < n, andX € R™™,
This model can be viewed as a set of underdetermined systelmgar equations (more

unknowns than equations), each with the form Rx, wherez is ann x 1 column vector
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from X andy is the corresponding column vector frarh For each such linear system,
assuming bottR andy are known, we can prove that the solution is never unique.

In practice, the underdetermined system can be analyzed tle QR factorization

[119, 120]:

whereQ € R™ " is orthogonal andk € R*** is upper triangular. If? has full rank,.e.,

rank(R) = k, there is a unique solutian,,;,,_,.-» that minimizeg|z||,

Ry
= Q

Tmin_norm

0

R

= Q ) (R™R)™y
0

T(RRT)_ly

R
= Ry,

where BT = RT(RRT)~! is the pseudo-inverse dt. The complete solution set to the
underdetermined system= Rx can be composed by adding an arbitrary vector from the
null space ofR to x,,.;,_norm- IN Other words, any: satisfying the following condition can

be the solution.

A

r = xmin-norm—i_Aba

"This problem is referred to as finding a minimum norm solutman underdetermined system of linear
equations.
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whereA is the orthonormal basis for the null spacefdoéndb is an arbitrary vector.
Remark:The above result shows that even if the random mdtng known to the attacker,
it is still impossible to find the exact values afl the element®f vectorx. The best
we can do is to find the minimum norm solution. However, one m@msly whether it is
possible to completely identifyomeelements in the vectar. Obviously, if we can find as
many linearly independent equations as the unknown eleanemetcan partially solve the
system. In the following, we will discuss this possibility bsing the 7-secure” definition

introduced in [51, Definition 4.1].

Definition 5.4.3 (-secure) A matrix R is said to be-secure if by removing anycolumns

from R, the remaining sub-matrix still has a full row rank.

This property guarantees that any non-zero linear combmatf the row vectors ofR
contains at least + 1 non-zero elements. To prove this, let us assume that somar lin
combination of the row vectors has at méston-zero elements. If we remove thdse
corresponding columns from, then apply the same linear combination on all the row
vectors of the remaining sub-matrix, we will get a zero vecilithis implies that the row
vectors of this sub-matrix are linearly dependent and th& od this sub-matrix is not of
full row rank, which contradicts thesecure definition.

If the coefficient matrix of a linear equations systeni-gecure, each unknown vari-
able in a linear equation is disguised by at |dasther unknown variables no matter what
kind of non-zero linear combination produces this equatidow the question is whether
we can find +1 linearly independent equations that just involve thlesé unknowns? The
answer iNo. The following theorem (which can be viewed as a generatinatf [51, The-
orem 4.3]) proves that anly+ 1 non-zero linear combinations of the equations contains at

least2/ + 1 unknown variables if these+ 1 vectors are linearly independént.

8|f thesel + 1 vectors are not linearly independent, the 1 equations contaifi +  unknown variables.
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Theorem 5.4.4LetY be an(l + 1) x n matrix, where each row df is a nonzero linear
combination of row vectors i®R. If R is [-secure, the linear equations systgm= Tz

involves at leas?/ + 1 unknown variables if thedet 1 vectors are linearly independent.

Proof: Since row vectors of are all linearly independeng,= Tx can be transformed into
y = (I : T)x through a proper Gaussian elimination. Heris the(I+ 1) x (14 1) identity
matrix, T is a(l + 1) x (m — (I + 1)) matrix, and(! : T) is a vertical concatenation &f
andY. BecauseR is I-secure, each row d¢ff : T) contains at leagt+ 1 non-zero entries,
which corresponds tb+ 1 unknowns. Because in each row(df: T), there is a single 1
from I, there are at leagtnon-zero entries iff. Thus, the whole system contains at least
2[4+ 1 unknowns, with 4+ 1 unknowns being contributed kyand at least unknowns from
T. O

This theorem shows that if a coefficient matrix/isecure, any linear combinations
of the equations contains at ledst 1 variables. Therefore,it is not possible to fihg 1
linearly independent equations that just involve the samé variables, and the solutions
to any partial unknown variables are infinite.

Now let us consider thé x n random projection matrix and the restrictions of ICA
we discussed in the previous sections. When= 2k, after removing any: columns
from mixing matrix R, according to the proof of Theorem 5.4.3, we can concludethiza
remaining square matrix has a full row rank with probability Therefore, the system is
k-secure with probability 1. In other words, each unknownalae is disguised by at least
k other variables, and we cannot fikdinearly independent equations that just involve
these variables, so, the solutions are infinite. When 2k, the security level is even
higher because we can remove more columns while keepingutirenatrix full row rank

(however, the accuracy of the random projection will prapdle compromised if: is too

Herel" denotes the rank of the matrix formed by thésel vectors.
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small).
Remark:The above result shows that even if the random mdtng known to the attacker,
if R is k-secure, each unknown variable is masked by at leasher unknown variables
no matter how the equations are linear combined. So it is gsipte to find the exact value

of any elemenin the original data.

5.5 Summary

In this chapter, we studied a randomized multiplicativeqegrturbation technique for
privacy preserving data mining. This technique projectsdata onto a lower dimensional
random space while maintaining its distance related sitatiwith a high probability. The-
oretical and empirical results show that this techniquersfhigher privacy protection than
the orthogonal transformation-based distance presepérigrbation, but with little loss in
accuracy.

In summary, the random projection-based data perturbagasrihe following charac-

teristics:

e Random projection maps the original data to a lower dimeradisubspace while
maintaining much of its distance-related statistics. Thereof the inner product
produced by random projection is zero on average, and thanea&r is inversely
proportional to the dimensionality of the reduced spacelo8ex-form expression of
the accuracy for estimating the Euclidean distance can beedevhen the random

matrix has a matrix variate Gaussian distribution.

e Under mild assumptions, anythat satisfies:’ 2z = ¢’y is the maximum a poste-
riori probability (MAP) estimate of the original datagiven the perturbed data
From this perspective, random projection does not offeratteecker more informa-

tion about the private data than what has been implied by ithyepties of random
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projection itself.

e The analytic upper bound of the probabilityeprivacy breach can be derived in the

context of MAP estimate.

e The data owner could control the privacy and accuracy tifaded select an appro-

priate dimension for the reduced space.

e Random projection-based perturbation offers higher pyiyaotection than distance

preserving perturbation, but with little loss in accuracy.

5.6 Appendix

5.6.1 Appendix |

Key Technical Results for the Proof of Lemma 5.1dtr; ; ande; ; be thei,j-th entry
of matrix Ry, and RT R, respectively. Each; ; is independent and identically distributed
(i.i.d.) according toN (0, 0,). Now let us provel|e; ;| = ko?, Varle;;] = 2ko?, Vi; and
Elei ;] =0, Varle; ;| = ko, Vi, j,i # j.

Proof: Note thate;; = ;72 ande;; = Sp rirej, @ # j, We haveE[e;] =
E[Ci 2] = KE[] = ko? and Eigjle;) = B[ rry] = S0 Elreiry] =
Yoiy Elred Elry) = 0.

To obtain the variance of ;, we first computéz[e?,] = E[>"_ et sa1<pa<k Toilail =
kE[r}] + k(k — 1)E[r}|Elr?;] = 3ko, + k(k — 1)o} = (2k + k*)o;. The second to
the last equation in the above is based on the fact #iat;] = 30, for random vari-
abler,; ~ N(0,0,)%. Therefore,Varle;;] = Ele},] — (Ele;s])> = 2ko;. Similarly,
Eigi[€)] = Bt [ 188+ pgr<pash ToilpaTaiTag] = KE[ Dy riirgy]+0 = ko,

hence,Vari?gj[ei,j] = ]{30';41 O

%http://mathworld.wolfram.com/NormalDistribution.htm
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Lemma 5.1.4:Let x, y be two data vectors ifR". Let R be ak x n dimensional
random matrix. Each entry of the random matrix is independed identically distributed

(i.i.d.) according to a Gaussian distribution with mearoznd variance?. Further let

1 1
u= Rz, and v = Ry. Then
Vko, N
Eu™ —2"y] = o0and

Varu'v —a2ty] = %(Z ; ny + (Z 2i:)?).

In particular, if bothz andy are normalized to unityy ", 2? >~ y? = Land(}, z;y;)* < 1.

We have the upper bound of the variance as follows:

El

Var[u"v —27y] <

Proof: Using Lemma 5.1.2, the expectation of projection distortg

Euv — a2ty = E[kclff, v"RT Ry — 2™y
= k:i,? t"E[R"Rly — 2Ty
= k:;? kolaly — a'ly
=0

To compute the variance of the distortion, let us first expthe inner product between the



projected vectors as

1 1
ulv = 2T RT

Vo, Vko,

1
= 75v R'Ry

T

— k:(lf,? (Z Ti€iYi + Z Ti€;jY5)

i#]

1 1
= %02 Z Ti€;iYi + To? Z Ti€ijYj-
T T it

Ry
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Denote 5 >, zi€;y; as® and > i Ti€ijy; as W, ThenVar[u™v] = Var|®] +

Var[¥] + 2Cov[®, ¥].

Now, let us computé&'ov|[®, V:
Cov[®, U] = E[®U] — E[®]|E[V].
SinceLle; ;] = 0Vi,j,1 # j, SOE[¥] = 0. Hence,
Cov[®, V] = E[®V]-0

1
= 2ot E[Z Ti€;iYi X Z :Epe;mqu] .

{ P#q

It is straightforward to verify that’[¢; ;¢, ,] = 0 whenp # ¢. SoCov[®, V] = 0.
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1
Var[®] = [lm? Z Ti€5,iYi)
= k2o VC”"[Z Ti€; iYi]
= k?20'4 Z Zi€; zyz Z Ti€; zyz
= k204 Z L 62 zyz Z TpYp€p pTaYq€y.q] Z Ti€,iYi))
p#q
SinceEle; ;] = ko?, Ele},] = (2k + k?)o; andEle, peqq] = k20, we have
VCLT’[(I)] = k}2(74 (2k + ]{52)0;} Z x?yf + Z TpYpTqlq — (Z xiyi)Q
" i p#4q i
2
= (E +1) Z 13,21%2 + Z LpYpLqlq — (Z xz’yz‘>2
i p#£q {

The variance ofl is

Var[V]

k‘204

k24

! LB wieijy;)’]

Var Z Ti€; Y]

i#]
E[(Z wieij95)°] — (B> wieiju5))%)
i#j i#j

i#]

Z Z Ty TpYq L€ jep.q)-

i#£j p#q
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SinceLle; je,4] = 0 unlessi = p andj = ¢, ori = g andj = p, we have,

1
Var[¥] = k204(§ w3y ) wiyey) Eiglel )
Tty i#]

=) B DB R DTS DAL
T i i J#i

S OIED DITED DEEH) DETOED DES
= %(foZy?—i—(szyz)?—22%2%2)

Thus,

Var[u™v] = Var[®] + Var[¥] +0
2
= (E + 1) Z x?y? + Z LpYpLqlYq — (Z l'iyi)2

p#q

+%(Z 7 ZZ:ZJZQ - (Zi:%’yif - inzx?y%

i

= S () + (e

)

+ Z TpYpTqlq — (Z xiyi)z)

P#q

= %(Z xfzyf + (Z ziy;)?).

7

This gives the final result ar[u”v — 2Ty] = + (3=, 27 >, v + (3, wiwi)?)- O
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5.6.2 Appendix Il

Theorem5.3.12: Any X that satisfies conditiokX” X = Y7Y can be the optimal

solution to the problem defined as below (also in Eq. 5.11.)

N 1 1.1
Xaap(Y) = arg m)?x(zﬁ)—%km det(EXTX)‘%ketr{—EY(EXTX)‘lYT},

whereX andY have full column rank.
Proof: Let Z = (+ X7 X)~!. The maximization problem can be written as
N 1
Xuap(Y) = (2m) zhm det(Z)%etr{—§yzyT}.

Further letA = YZYT. SinceY has full column rank, without loss of generality,
we can assume that is invertible,i.e., kK = m. Therefore,A is also invertible andZ =

Y~-1AYT~'. The maximization problem can be written as

. ) ) .
Xuap(Y) = (2m) 2" det(yAYT 1)%etr{_§A}

, —1\k 1
= (2m) m det(Y YT )3 det(A)getr(—iA).
Since(27) 2™ is constant and’ is also fixed, we only need to maximize

det(A)getr(—%A),

s.t. R is positive definite.
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Let \; be the eigenvalue of, we have

der()f = ([TE =TT

J J

1 1 1 1
etr(—iA) = exp(trace(—§z4)) = 6513]?(—5 2]: Aj) = 1:[ e:vp(—§)\j)-
Therefore

1 k 1
det(A)getr(—ﬁA) = H)\f Hexp(—i)\j)
J J

k 1
= H A ea:p(—§)\j).
J

The functiong(w) = wgexp(—%w) has its maximum fow > 0 atw = k. So the
maximum ofdet(A)> etr(—1 A) is obtained when alk; = k.

Thus, we can takd = kI, wherel is identity matrix, so

7 = ylayT!
— Yy leryT !
— kYT

= kYTY) L
BecauseZ = (; X7 X)™!, we have

1
(GXTX) = RYTY)
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which implies that

XX =Y"'y.

Therefore, anyX that satisfies conditioX” X = Y7Y can the the optimal solution.



Chapter 6

CONCLUSIONS AND FUTURE WORK

Privacy is becoming an increasingly important issue in naatg mining applications
that deal with health care, security, finance, behavior ahdraypes of sensitive data.
It is particularly becoming important in counter-terroniand homeland security-related
applications. These applications may require creatin§jlesp constructing social network
models, and detecting terrorists’ communications. Allledrh involve the collection and
analysis of private sensitive data. For example, minindthezare data for the detection
of bio-terrorism may require analyzing clinical recordsdgrharmacy transactions data
of certain off-the-shelf drugs. However, releasing and loiming such diverse data sets
belonging to different parties may violate privacy laws.th®lugh health organizations
are allowed to release the data as long as the identifiers (ewme, SSN, address, etc.,)
are removed, it is not considered safe enough because nficktion attacks may be
constructed for linking different public data sets to idigrthe original subjects [26]. This
calls for well-designed techniques that pay careful aitb@nto hiding privacy sensitive
information while preserving the inherent patterns of thginal data. Privacy preserving
data mining (PPDM) strives to provide a solution to this peof. It aims to allow useful
data patterns to be extracted without compromising privacy

This dissertation specifically investigates the charésttes of different multiplica-
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tive data perturbation techniques for PPDM. First, we haieflig reviewed two traditional
multiplicative data perturbation techniques that havenbvegll studied in the statistics com-

munity. We have shown the following.

e These perturbations are primarily used to mask the privatie while allowing sum-
mary statistics€.g, sum, mean, variance, covariance) of the original data teshie
mated. Because each data element is distorted indepeydieatEuclidean distances

and inner products among the original data records arelyswalpreserved.

e These perturbation schemes are equivalent to additiverpetton after the loga-
rithmic transformation. Due to the large volume of reseancteriving private in-
formation from the additive noise perturbed data, the sgcaf these perturbation

schemes is questionable.

Next, we have examined the effectiveness of distance ptieggperturbation. Theo-

retical and experimental results have shown the following.

e This type of perturbation is essentially a series of rotetiand reflections of the data.
It exactly preserves the Euclidean distances and innemptsdn the original data.
Therefore, many interesting data mining algorithms canpgy@ied directly to the

perturbed data and produce an error-free result.

e However, this perturbation is vulnerable to many attack®iss known input-output

attacks, known sample attacks and independent signatksitta

Finally, we have explored a random projection-based peation. This technique
projects the data onto a lower dimensional subspace whiletamaing the pairwise dis-

tances of the original data records with high probabilitie have shown that
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e From the perspective of maximum a posteriori probabilityAfR) estimate, random
projection-based perturbation does not offer the attaciane information about the

private data than what has been implied by the propertiemmafom projection itself.

e The analytic bounds of the probability efprivacy breach (in the context of MAP
estimate) and the accuracy of the distance preservatiobecdarived. These bounds
can be used to guide the data owner to control the privacyfacg tradeoff when

perturbing the data.

e This perturbation offers higher privacy protection thastance preserving perturba-

tion, with little loss of accuracy.

We believe that the privacy issues are intrinsically comflecause they represent
an intersection of legal, governmental, commercial, elhémd personal positions. It is
not easy to produce one universal solution that addreskdeeak perspectives when the
very definition of privacy is still open to debate. But thegsere is on to take more pos-
itive steps to encourage privacy protection while doingadaining to benefit the society.
Many different PPDM techniques are now being proposed,touressi, and improved by
researchers and technologists. Sociologists, policyréxpand legal experts are also en-
couraged to work together to articulate and enforce resplendata mining practices. We
believe a good balance between the benefits in collectingaaalyzing the data and the
demand for privacy protection can be finally achieved. letakme and effort, but it is
worthwhile.

As an extension of this dissertation, we propose the folgwiossible directions for

future research.

Large scale distributed PPDM: Advances in computing and communication over wired
and wireless networks have resulted in many pervasiveildisttd computing en-

vironments. Many of these environments deal with differdistributed sources of
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voluminous data, multiple compute nodes, and distributgt gommunities. Par-
ticipating parties in such an environment may not all be lid&ome may decide
to behave like a “leech” to exploit the benefit of the systenthaiit contributing
much. Some may intentionally try to collude with other pestio expose the pri-
vate data of a specific individual. We believe that PPDM in gritiuted scenario
essentially looks like a game where each participant ta@saximize his/her benefit
by optimally choosing the strategies during the entire PRbtess. Therefore, it
is necessary to develop a game theoretic foundation oflaistid PPDM, formulate

PPDM algorithms based on that, and perform equilibriumares.

Combination of Secure Multi-Party Computation and Perturbation Techniques Secure
multi-party computation uses cryptographic protocolsiiavacy preserving distrib-
uted data mining. It offers strong privacy protection, buttvhigh communication
and computational complexity. On the other hand, data geation can efficiently
distort the data, but with lower privacy guarantees. It wiolbé ideal if we could

combine these two techniques to achieve both efficiency anaqy.
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