## MATH221

quiz \#3, 11/13/14
Total 100

Show all work legibly.
Name:

1. (20) Let $M_{2 \times 2}$ be the vector space of all $2 \times 2$ matrices. Define $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ by $T(A)=A-A^{T}$.
(a) (10) True or False? $T$ is a linear transformation.

Mark one and explain.

- True $\quad$ False
(b) (10) Describe the kernel of $T$.

The kernel of $T$ is:
2. (20) Find a basis for the set of vectors in $\mathbf{R}^{2}$ on the line $y=2 x$.

A basis is:
3. (20) Let $p_{1}(t)=1-3 t+5 t^{2}$, $p_{2}(t)=-3+10 t-7 t^{2}, p_{3}(t)=-4+5 t-6 t^{2}, p_{4}(t)=1-t^{2}$. True or False? The set $\left\{p_{1}(t), p_{2}(t), p_{3}(t), p_{4}(t)\right\}$ is linearly independent.

Mark one and explain.
ㅁ True $\quad$ False
4. (20) Let

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
-3 \\
-6 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-2 \\
3 \\
5
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{r}
-3 \\
5 \\
5
\end{array}\right] .
$$

Find dim $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$.
$\operatorname{dim} \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}=$
5. (20) If a $4 \times 7$ matrix $A$ has rank 3 , find $\operatorname{dim} \operatorname{Null} A$, $\operatorname{dim}$ Row $A$, and rank $A^{T}$.
$\operatorname{dim} \operatorname{Null} A=$ $\operatorname{dim}$ Row $A=$ $\operatorname{rank} A^{T}=$
6. (20) Let $A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right]$ be a $2 \times 3$ matrix of rank 1 . Suppose that $\mathbf{a}_{1} \neq 0$. True or False? There is a vector $\mathbf{c} \in \mathbf{R}^{3}$ so $\mathbf{a}_{1} \mathbf{c}^{T}=A$.

Mark one and explain.
ㅁ False $\quad$ True

