MATH221

quiz #3, 11/13/14Total 100

Show all work legibly.

Name:_____

- 1. (20) Let $M_{2\times 2}$ be the vector space of all 2×2 matrices. Define $T : M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A A^T$.
 - (a) (10) True or False? T is a linear transformation.

Mark one and explain.

 \Box True \Box False

(b) (10) Describe the kernel of T.

The kernel of T is:

2. (20) Find a basis for the set of vectors in \mathbf{R}^2 on the line y = 2x.

A basis is:

3. (20) Let $p_1(t) = 1 - 3t + 5t^2$, $p_2(t) = -3 + 10t - 7t^2$, $p_3(t) = -4 + 5t - 6t^2$, $p_4(t) = 1 - t^2$. True or False? The set $\{p_1(t), p_2(t), p_3(t), p_4(t)\}$ is linearly independent.

Mark one and explain.

 $\hfill\square$ True $\hfill \square$ False

4. (20) Let

$$\mathbf{v}_1 = \begin{bmatrix} 1\\-2\\0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -3\\-6\\0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} -2\\3\\5 \end{bmatrix}, \ \mathbf{v}_4 = \begin{bmatrix} -3\\5\\5 \end{bmatrix}.$$

Find dim span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.

 $\dim \ \mathrm{span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{v}_4\} =$

5. (20) If a 4×7 matrix A has rank 3, find dim Null A, dim Row A, and rank A^{T} .

 $\dim \operatorname{Null} A =$ $\dim \operatorname{Row} A =$ $\operatorname{rank} A^T =$

6. (20) Let $A = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3]$ be a 2 × 3 matrix of rank 1. Suppose that $\mathbf{a}_1 \neq 0$. True or False? There is a vector $\mathbf{c} \in \mathbf{R}^3$ so $\mathbf{a}_1 \mathbf{c}^T = A$.

Mark one and explain.

 \Box False \Box True