MATH221

quiz $\# 2,10 / 14 / 14$
Total 100
Solutions
Show all work legibly.
Name: \qquad

1. (20) Let T be a linear transformation from \mathbf{R}^{2} to \mathbf{R}^{3} so that $T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{r}1 \\ 3 \\ -1\end{array}\right]$, and $T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{r}-3 \\ 5 \\ 7\end{array}\right]$.

True or False? There is $\mathbf{x} \in \mathbf{R}^{2}$ so that $T(\mathbf{x})=\left[\begin{array}{r}-2 \\ 8 \\ 6\end{array}\right]$.
Solution. To answer the question we have to establish whether the equation $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{rr}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{r}-2 \\ 8 \\ 6\end{array}\right]$ is consistent.

$$
\left[\begin{array}{rrr}
1 & -3 & -2 \\
3 & 5 & 8 \\
-1 & 7 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -3 & -2 \\
0 & 14 & 14 \\
0 & 4 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -3 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$x_{1}=1$, and $x_{2}=1$.
Mark one and explain.
■ False \quad True
2. (20) True or False? If the equation $A \mathbf{x}=\mathbf{b}$ has two solutions $\mathbf{x}_{1} \neq \mathbf{x}_{2}$, then the columns of A are linearly independent.

Solution. Let $\mathbf{u}=\mathbf{x}_{1}-\mathbf{x}_{2} \neq 0$. Since $A \mathbf{x}_{1}=\mathbf{b}$, and $A \mathbf{x}_{2}=\mathbf{b}$ one has $A \mathbf{u}=0$, this shows that columns of A are linearly dependent.

Mark one and explain.

- True \quad False

3. (20) Let A and B be two 3×3 matrices, so that the first column of B is all zeros. True or False? The first column of $A B$ is all zeros.

Solution. Let $B=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right]$. Note that $A B=\left[A \mathbf{b}_{1}, A \mathbf{b}_{2}, A \mathbf{b}_{3}\right]$. If $\mathbf{b}_{1}=0$, then $A \mathbf{b}_{1}=0$.
Mark one and explain.

- False \quad True

4. (20) Find A^{-1}, where

$$
A=\left[\begin{array}{rrr}
1 & 0 & 3 \\
0 & 1 & 2 \\
4 & -3 & 8
\end{array}\right]
$$

Solution.

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & -4 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 2 & -4 & 3 & 1
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & -2 & 3 / 2 & 1 / 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & 4 & -2 & -1 \\
0 & 0 & 1 & -2 & 3 / 2 & 1 / 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 7 & -9 / 2 & -3 / 2 \\
0 & 1 & 0 & 4 & -2 & -1 \\
0 & 0 & 1 & -2 & 3 / 2 & 1 / 2
\end{array}\right]} \\
& A^{-1}=
\end{aligned}
$$

5. (20) Let A and B be $n \times n$ matrices. True or False? If $A B$ is invertible, then B is invertible.

Solution. If $B \mathbf{x}=0$, then $A B \mathbf{x}=0$. Since $A B$ is invertible $\mathbf{x}=0$.
Mark one and explain.

- True
- False

6. (20) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation so that $T\left(\mathbf{x}_{1}\right)=T\left(\mathbf{x}_{2}\right)$ for a pair of vectors $\mathbf{x}_{1} \neq \mathbf{x}_{2}$. True or False? T is an invertible linear transformation.

Solution. Let A be the standard matrix of T. One has $0=T\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)$. If the inverse transformation T^{-1} exists, then its standard matrix should be A^{-1}, and

$$
0=T^{-1}\left(T\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)=A^{-1}\left(A\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)=\mathbf{x}_{1}-\mathbf{x}_{2} \neq 0 .
$$

This contradiction shows that T^{-1} does not exist.
Mark one and explain.

- True
- False

