MATH221

quiz #2, 10/14/14

Total 100

Solutions

Show all work legibly.

Name:

1. (20) Let T be a linear transformation from \mathbf{R}^2 to \mathbf{R}^3 so that $T(\mathbf{e}_1) = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}$, and $T(\mathbf{e}_2) = \begin{bmatrix} -3\\ 5\\ 7 \end{bmatrix}$. True or False? There is $\mathbf{x} \in \mathbf{R}^2$ so that $T(\mathbf{x}) = \begin{bmatrix} -2\\ 8\\ 6 \end{bmatrix}$.

Solution. To answer the question we have to establish whether the equation $A\mathbf{x} = \mathbf{b}$, where $A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ 8 \\ 6 \end{bmatrix}$ is consistent. $\begin{bmatrix} 1 & -3 & -2 \\ 3 & 5 & 8 \\ -1 & 7 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & -2 \\ 0 & 14 & 14 \\ 0 & 4 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

 $x_1 = 1$, and $x_2 = 1$.

Mark one and explain.

- □ False □ True
- 2. (20) True or False? If the equation $A\mathbf{x} = \mathbf{b}$ has two solutions $\mathbf{x}_1 \neq \mathbf{x}_2$, then the columns of A are linearly independent.

Solution. Let $\mathbf{u} = \mathbf{x}_1 - \mathbf{x}_2 \neq 0$. Since $A\mathbf{x}_1 = \mathbf{b}$, and $A\mathbf{x}_2 = \mathbf{b}$ one has $A\mathbf{u} = 0$, this shows that columns of A are linearly dependent.

Mark one and explain.

- □ True □ False
- 3. (20) Let A and B be two 3×3 matrices, so that the first column of B is all zeros. True or False? The first column of AB is all zeros.

Solution. Let $B = [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3]$. Note that $AB = [A\mathbf{b}_1, A\mathbf{b}_2, A\mathbf{b}_3]$. If $\mathbf{b}_1 = 0$, then $A\mathbf{b}_1 = 0$.

Mark one and explain.

 \square False \square True

4. (20) Find A^{-1} , where

$$A = \left[\begin{array}{rrrr} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 4 & -3 & 8 \end{array} \right].$$

Solution.

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & -4 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 3/2 & 1/2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & 4 & -2 & -1 \\ 0 & 0 & 1 & -2 & 3/2 & 1/2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & 4 & -2 & -1 \\ 0 & 0 & 1 & -2 & 3/2 & 1/2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 7 & -9/2 & -3/2 \\ 0 & 1 & 0 & 4 & -2 & -1 \\ 0 & 0 & 1 & -2 & 3/2 & 1/2 \end{bmatrix} A^{-1} =$$

5. (20) Let A and B be $n \times n$ matrices. True or False? If AB is invertible, then B is invertible. Solution. If $B\mathbf{x} = 0$, then $AB\mathbf{x} = 0$. Since AB is invertible $\mathbf{x} = 0$.

Mark one and explain.

 $\hfill \Box$ True $\hfill \Box$ False

6. (20) Let $T : \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation so that $T(\mathbf{x}_1) = T(\mathbf{x}_2)$ for a pair of vectors $\mathbf{x}_1 \neq \mathbf{x}_2$. True or False? *T* is an invertible linear transformation.

Solution. Let A be the standard matrix of T. One has $0 = T(\mathbf{x}_1 - \mathbf{x}_2) = A(\mathbf{x}_1 - \mathbf{x}_2)$. If the inverse transformation T^{-1} exists, then its standard matrix should be A^{-1} , and

$$0 = T^{-1} \left(T(\mathbf{x}_1 - \mathbf{x}_2) \right) = A^{-1} \left(A(\mathbf{x}_1 - \mathbf{x}_2) \right) = \mathbf{x}_1 - \mathbf{x}_2 \neq 0.$$

This contradiction shows that T^{-1} does not exist.

Mark one and explain.

□ True □ False