MATH221

quiz #2, 10/14/14 Total 100

Show all work legibly.

Name:_____

1. (20) Let T be a linear transformation from \mathbf{R}^2 to \mathbf{R}^3 so that $T(\mathbf{e}_1) = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}$, and $T(\mathbf{e}_2) = \begin{bmatrix} -3\\ 5\\ 7 \end{bmatrix}$. True or False? There is $\mathbf{x} \in \mathbf{R}^2$ so that $T(\mathbf{x}) = \begin{bmatrix} -2\\ 8\\ 6 \end{bmatrix}$.

Mark one and explain.

 \Box False \Box True $x_1 = x_2 =$

2. (20) True or False? If the equation $A\mathbf{x} = \mathbf{b}$ has two solutions $\mathbf{x}_1 \neq \mathbf{x}_2$, then the columns of A are linearly independent.

Mark one and explain.

 $\hfill\square$ True $\hfill \square$ False

3. (20) Let A and B be two 3×3 matrices, so that the first column of B is all zeros. True or False? The first column of AB is all zeros.

Mark one and explain.

 \square False \square True

4. (20) Find A^{-1} , where

$$A = \left[\begin{array}{rrrr} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 4 & -3 & 8 \end{array} \right].$$

5. (20) Let A and B be $n \times n$ matrices. True or False? If AB is invertible, then B is invertible.

Mark one and explain.

 $\hfill\square$ True $\hfill\square$ False

6. (20) Let $T : \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation so that $T(\mathbf{x}_1) = T(\mathbf{x}_2)$ for a pair of vectors $\mathbf{x}_1 \neq \mathbf{x}_2$. True or False? *T* is an invertible linear transformation.

Mark one and explain.

 $\hfill\square$ True $\hfill \square$ False