MATH221

Final Examination

December 16, 2014

Total 140

1. (20) Let $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$. Find a basis for the null space of A.

The basis for the null space of A is:

2. (20) Evaluate the determinant det A of the matrix $\begin{bmatrix} 2 & 2 & -3 & 1 \\ 0 & 1 & 2 & -1 \\ 3 & -1 & 4 & 1 \\ 2 & 3 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$
--	---

 $\det A =$

- 3. (20) Consider $\mathcal{B} = \left\{ \begin{bmatrix} 2\\0\\-1\\-3 \end{bmatrix}, \begin{bmatrix} 5\\-2\\4\\2 \end{bmatrix}, \begin{bmatrix} 0\\5\\-3\\-1 \end{bmatrix} \right\}$. (Note that \mathcal{B} is an orthogonal set of vectors.)
 - (10) Find the vector \mathbf{x} in the subspace $W = span(\mathcal{B})$ whose coordinate vector relative to the basis \mathcal{B} is the vector $(-2, 5, 3)^T$.

 $\mathbf{x} =$

• (10) The vector $\mathbf{v} = (24, 17, 29, -3)^T$ lies in the subspace W. Find its coordinates relative to the basis \mathcal{B} .

4. (20) Consider the linear system of equations

x	_	y	+	z	=	a
2x	+	y	_	3z	=	8
x	_	2y	+	3z	=	-5

It is given that x = 1; find the value of a.

5. (20) Let
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
.

• (10) Find a matrix P such that $P^{-1}AP = D$, where D is a diagonal matrix.

P =

• (10) Compute D.

D =

6. (20) $A_{n \times n}$ matrix satisfies det $(A^3) = -1$. Find det A.

 $\det A =$

- 7. (20) True or False. If $A_{2\times 2}$ matrix satisfying $A^2 = 0$, then
 - (a) (10 pts.) A = 0.

Mark one and explain.

 \Box True \Box False

(b) (10 pts.) $\det A = 0.$

Mark one and explain.

 \Box True \Box False