MATH221

Final Examination
December 16, 2014
Total 140

1. (20) Let $A=\left[\begin{array}{rrrr}1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2\end{array}\right]$. Find a basis for the null space of A.
2. (20) Evaluate the determinant det A of the matrix $\left[\begin{array}{rrrr}2 & 2 & -3 & 1 \\ 0 & 1 & 2 & -1 \\ 3 & -1 & 4 & 1 \\ 2 & 3 & 0 & 0\end{array}\right]$.
3. (20) Consider $\mathcal{B}=\left\{\left[\begin{array}{r}2 \\ 0 \\ -1 \\ -3\end{array}\right],\left[\begin{array}{r}5 \\ -2 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{r}0 \\ 5 \\ 3 \\ -1\end{array}\right]\right\}$. (Note that \mathcal{B} is an orthogonal set of vectors.)

- (10) Find the vector \mathbf{x} in the subspace $W=\operatorname{span}(\mathcal{B})$ whose coordinate vector relative to the basis \mathcal{B} is the vector $(-2,5,3)^{T}$.
$\mathrm{x}=$
- (10) The vector $\mathbf{v}=(24,17,29,-3)^{T}$ lies in the subspace W. Find its coordinates relative to the basis \mathcal{B}.
$[\mathbf{v}]_{\mathcal{B}}=$

4. (20) Consider the linear system of equations

$$
\begin{aligned}
x-y+z & =a \\
2 x+y-3 z & =8 \\
x-2 y+3 z & =-5
\end{aligned}
$$

It is given that $x=1$; find the value of a.
$a=$
5. (20) Let $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.

- (10) Find a matrix P such that $P^{-1} A P=D$, where D is a diagonal matrix.
$P=$
- (10) Compute D.
$D=$

6. (20) $A_{n \times n}$ matrix satisfies $\operatorname{det}\left(A^{3}\right)=-1$. Find $\operatorname{det} A$.
$\operatorname{det} A=$
7. (20) True or False. If $A_{2 \times 2}$ matrix satisfying $A^{2}=0$, then
(a) (10 pts.) $\quad A=0$.

Mark one and explain.

- True \quad False
(b) ($\mathbf{1 0}$ pts.) $\operatorname{det} A=0$.

Mark one and explain.

- True \quad False

