MATH221

quiz $\# 4,12 / 03 / 13$
Total 100
Solutions

Show all work legibly.
Name: \qquad

1. (20) Find the characteristic polynomial $\mathbf{p}(x)$ of the matrix $A=\left[\begin{array}{rr}6 & 2 \\ 21 & 7\end{array}\right]$.

Solution. $\mathbf{p}(x)=(\lambda-6)(\lambda-7)-42=\lambda(\lambda-13)$
$\mathbf{p}(x)=$
2. (20) Find the the eigenvalues and the corresponding eigenvectors of the matrix $A=\left[\begin{array}{rr}6 & 2 \\ 21 & 7\end{array}\right]$.

Solution. The roots of $0=\lambda(\lambda-13)$ are $\lambda_{1}=0$ and $\lambda_{2}=13$.
When $\lambda=0$ the solution of $\left[\begin{array}{rr}6 & 2 \\ 21 & 7\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is, for example, $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -3\end{array}\right]$.
When $\lambda=13$ the solution of $\left[\begin{array}{rr}-7 & 2 \\ 21 & -6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is, for example, $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 7\end{array}\right]$.
3. (20) Find the inverse V^{-1} of the matrix $V=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]=\left[\begin{array}{rr}1 & 2 \\ -3 & 7\end{array}\right]$.

Solution.

$$
\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
-3 & 7 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 13 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 1 & 3 / 13 & 1 / 13
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 7 / 13 & -2 / 13 \\
0 & 1 & 3 / 13 & 1 / 13
\end{array}\right]
$$

Hence $V^{-1}=\frac{1}{13}\left[\begin{array}{rr}7 & -2 \\ 3 & 1\end{array}\right]$.
4. (20) Compute A^{10} for $A=\left[\begin{array}{rr}6 & 2 \\ 21 & 7\end{array}\right]$.

Solution. Since $A=V D V^{-1}$ one has

$$
A^{10}=V D^{10} V^{-1}=\frac{1}{13}\left[\begin{array}{rr}
1 & 2 \\
-3 & -7
\end{array}\right]\left[\begin{array}{rr}
0 & 0 \\
0 & 13^{10}
\end{array}\right]\left[\begin{array}{rr}
7 & -2 \\
3 & 1
\end{array}\right]=13^{9}\left[\begin{array}{rr}
6 & 2 \\
-21 & -7
\end{array}\right] .
$$

$A=$
5. (20) Let L be a line in \mathbf{R}^{2} passing through the points $\mathbf{a}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
(a) (20) Wright a parametric equation for the line L.

Solution. $L=\{\mathbf{a}+t \mathbf{u}:-\infty<t<\infty\}$, where $\mathbf{u}=\frac{1}{\sqrt{2}}(\mathbf{b}-\mathbf{a})$ is a unit norm vector. $L=$
(b) (20) Find the projection \mathbf{p} of the vector $\mathbf{v}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ on L.

Solution. $L=\{\mathbf{a}+t \mathbf{u}:-\infty<t<\infty\}$, where $\mathbf{u}=\frac{1}{\sqrt{2}}(\mathbf{b}-\mathbf{a})$ is a unit norm vector. The projection $\mathbf{p}=\mathbf{a}+c \mathbf{u}$, and $\mathbf{v}-\mathbf{p}$ is orthogonal to to \mathbf{u}. That is $0=\mathbf{u}^{T}(\mathbf{v}-\mathbf{p})=$ $\mathbf{u}^{T}(\mathbf{v}-\mathbf{a}-c \mathbf{u})=\mathbf{u}^{T}(\mathbf{v}-\mathbf{a})-c$, and $c=\mathbf{u}^{T}(\mathbf{v}-\mathbf{a})$. Finally $\mathbf{p}=\mathbf{a}+\mathbf{u u}^{T}(\mathbf{v}-\mathbf{a})=\frac{1}{2}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$. $\mathrm{p}=$

