## MATH221

quiz $\# 3,11 / 12 / 13$
Total 100
Solutions

Show all work legibly.
Name: $\qquad$

1. (20) Let $p_{1}(x)=2, p_{2}(x)=2+3 x$, and $p_{3}(x)=2+3 x+3 x^{2}$.

- (10) True or False? The vector set $\left\{p_{1}, p_{2}, p_{3}\right\}$ is linearly independent.

Solution. Consider a basis $\mathcal{B}=\left\{1, x, x^{2}\right\}$ in $P_{2}$. Note that

$$
\left[p_{1}\right]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right],\left[p_{2}\right]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right],\left[p_{3}\right]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]
$$

Since the vectors $\left[p_{1}\right]_{\mathcal{B}},\left[p_{2}\right]_{\mathcal{B}},\left[p_{3}\right]_{\mathcal{B}}$ are linearly independent the vector set $\left\{p_{1}, p_{2}, p_{3}\right\}$ is linearly independent.

Mark one and explain.

- True $\quad$ False
- (10) True or False? The vector set $\left\{p_{1}, p_{2}, p_{3}\right\}$ spans $P_{2}$.

Solution. Three linearly independent vectors $\left\{p_{1}, p_{2}, p_{3}\right\}$ (see the first part of the problem) span the space $P_{2}$.

Mark one and explain.

- True $\quad$ False

2. (20) Let $A$ be an $2 \times 3$ matrix so that the equation $A^{T} \mathbf{x}=0$ has only the trivial solution. True or False? $A \mathbf{x}=\mathbf{b}$ has a solution for all $\mathbf{b} \in \mathbf{R}^{2}$.

Solution. If $A^{T} \mathbf{x}=0$ always implies $\mathbf{x}=0$, then 2 rows of $A$ are linearly independent, and rank $A=2$. This means that 2 columns of $A$ are linearly independent, hence these columns span $\mathbf{R}^{2}$.

Mark one and explain.

- True
- False

3. (20) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & 9\end{array}\right]$. Compute $\operatorname{det} A$.

## Solution.

$$
\operatorname{det} A=3 \times \operatorname{det}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right]=0
$$

$\operatorname{det} A=$
4. (20) Let $A$ be a $2 \times 2$ matrix such that $\operatorname{det} A^{2}=0$. True or False? $A$ is invertible.

Solution. Since $0=\operatorname{det}(A \times A)=\operatorname{det} A \times \operatorname{det} A$, one has $\operatorname{det} A=0$, and $A$ is not invertible.
Mark one and explain.

- True $\quad$ False

5. (20) Let $A$ be a $2 \times 2$ matrix such that $A^{T} A=I$. True or False? $A$ is invertible.

Solution. Since $1=\operatorname{det} I=\operatorname{det}\left(A^{T} A\right)=\operatorname{det} A^{T} \times \operatorname{det} A$, one has $\operatorname{det} A \neq 0$, and $A$ is invertible.
6. (20) Let $M_{2 \times 2}$ be the vector space of all $2 \times 2$ matrices. Define $T: M \rightarrow M$ by $T(A)=A+A^{T}$. True or False? $T$ is a linear transformation.

Solution. The transformation $T_{1}(A)=A$ is linear. The transformation $T_{2}(A)=A^{T}$ satisfies:
(a) $T_{2}(c A)=(c A)^{T}=c A^{T}$,
(b) $T_{2}(A+B)=(A+B)^{T}=A^{T}+B^{T}$.

Hence the transformation $T_{2}$ is linear. The sum of two linear transformations $T=T_{1}+T_{2}$ is a linear transformation.

Mark one and explain.

- True
- False

