MATH221

quiz #2, 10/17/13Total 100 Solutions

Show all work legibly.

Name:_____

- 1. (20) Let T be a linear transformation that reflects a vector in \mathbf{R}^2 with respect to the 45° line y = x.
 - (a) (10) Find A the standard matrix for the linear transformation T.

Solution. $A = [T(\mathbf{e}_1)T(\mathbf{e}_2)]$. Note that $T(\mathbf{e}_1) = \mathbf{e}_2$, and $T(\mathbf{e}_2) = \mathbf{e}_1$. Hence $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. A =

(b) (10) True or False? T is one-to-one.

Solution. If $T\mathbf{x} = 0$, then $x_2 = x_1 = 0$. Hence T is one-to-one.

Mark one and explain.

2. (20) Let
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
.

(a) (10) Find A^{-1} if exists.

$$A^{-1} = A$$

(b) (10) If *B* is a 2 × 3 matrix so that $AB = C = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{bmatrix}$. Find *B*. Solution. AB = C, hence $B = A^{-1}C = \begin{bmatrix} 3 & 4 & 5 \\ 0 & 1 & 2 \end{bmatrix}$. B =

3. (20) Let A be a 2×2 matrix so that the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} . True or False? For some \mathbf{b} the equation $A\mathbf{x} = \mathbf{b}$ has more than one solution.

Solution. If $A\mathbf{x}_i = \mathbf{e}_i$, i = 1, 2, then $A[\mathbf{x}_1, \mathbf{x}_2] = I$, and $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2] = A^{-1}$. Suppose there is **b** such that $A\mathbf{y}_1 = \mathbf{b}$ and $A\mathbf{y}_2 = \mathbf{b}$ for $\mathbf{y}_1 \neq \mathbf{y}_2$. Note that $\mathbf{y} = \mathbf{y}_1 - \mathbf{y}_2 \neq \mathbf{0}$, $A\mathbf{y} = \mathbf{0}$, and

$$0 \neq \mathbf{y} = A^{-1}A\mathbf{y} = A^{-1}\mathbf{0} = \mathbf{0}.$$

This contradiction shows that the assumption about existence of **b** is wrong.

Mark one and explain.

- □ True □ False
- 4. (20) Suppose a linear transformation $T : \mathbf{R}^3 \to \mathbf{R}^3$ has the property $T(\mathbf{u}) = T(\mathbf{v})$ for any pair of vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^3$. Find A, the standard matrix of T.

Solution. Since for any vector \mathbf{x} one has $T(\mathbf{x}) = T(\mathbf{0}) = 0$ the matrix A is the zero matrix.

A =

5. (20) Let V be a vector space of all real valued functions of one real variable, i.e.

$$V = \{ f : f : \mathbf{R} \to \mathbf{R} \}.$$

Consider the transformation of V into **R** defined by T(f) = f(1). True or False? T is a linear transformation.

Solution. For two functions f and g, and two scalars a and b one has

$$T(af + bg) = af(1) + bg(1) = aT(f) + bT(g).$$

Mark one and explain.

□ True □ False

6. (20) Let V and W be vector spaces, and let $T : V \to W$ be a linear transformation. Given a subspace U of V, let T(U) denote the set of all images of the form $T(\mathbf{x})$ where $\mathbf{x} \in U$, i.e. $T(U) = \{\mathbf{y} : \mathbf{y} = T(\mathbf{x}) \text{ for some } \mathbf{x} \in V\}$. True or False? T(U) is a subspace of W.

Solution. If \mathbf{y}_1 , $\mathbf{y}_2 \in T(U)$, then there are \mathbf{x}_1 , $\mathbf{x}_2 \in V$ such that $T(\mathbf{x}_1) = \mathbf{y}_1$, and $T(\mathbf{x}_2) = \mathbf{y}_2$. Hence

$$c_1\mathbf{y}_1 + c_2\mathbf{y}_2 = T(c_1\mathbf{x}_1 + c_2\mathbf{x}_2) \in T(U).$$

Mark one and explain.

 \Box True \Box False