MATH221

quiz \#2, 10/17/13
Total 100
Solutions
$\underline{\text { Show all work legibly. }}$
Name: \qquad

1. (20) Let T be a linear transformation that reflects a vector in \mathbf{R}^{2} with respect to the 45° line $y=x$.
(a) (10) Find A the standard matrix for the linear transformation T.

Solution. $A=\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right)\right]$. Note that $T\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}$, and $T\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}$. Hence $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. $A=$
(b) (10) True or False? T is one-to-one.

Solution. If $T \mathbf{x}=0$, then $x_{2}=x_{1}=0$. Hence T is one-to-one.
Mark one and explain.

- True \quad False

2. (20) Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
(a) (10) Find A^{-1} if exists. $A^{-1}=A$.
(b) (10) If B is a 2×3 matrix so that $A B=C=\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 5\end{array}\right]$. Find B.

Solution. $A B=C$, hence $B=A^{-1} C=\left[\begin{array}{lll}3 & 4 & 5 \\ 0 & 1 & 2\end{array}\right]$. $B=$
3. (20) Let A be a 2×2 matrix so that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for each \mathbf{b}. True or False? For some \mathbf{b} the equation $A \mathbf{x}=\mathbf{b}$ has more than one solution.

Solution. If $A \mathbf{x}_{i}=\mathbf{e}_{i}, i=1,2$, then $A\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]=I$, and $\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]=A^{-1}$. Suppose there is \mathbf{b} such that $A \mathbf{y}_{1}=\mathbf{b}$ and $A \mathbf{y}_{2}=\mathbf{b}$ for $\mathbf{y}_{1} \neq \mathbf{y}_{2}$. Note that $\mathbf{y}=\mathbf{y}_{1}-\mathbf{y}_{2} \neq \mathbf{0}, A \mathbf{y}=\mathbf{0}$, and

$$
0 \neq \mathbf{y}=A^{-1} A \mathbf{y}=A^{-1} \mathbf{0}=\mathbf{0}
$$

This contradiction shows that the assumption about existence of \mathbf{b} is wrong.

Mark one and explain.

- True \quad False

4. (20) Suppose a linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ has the property $T(\mathbf{u})=T(\mathbf{v})$ for any pair of vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{3}$. Find A, the standard matrix of T.

Solution. Since for any vector \mathbf{x} one has $T(\mathbf{x})=T(\mathbf{0})=0$ the matrix A is the zero matrix.
$A=$
5. (20) Let V be a vector space of all real valued functions of one real variable, i.e.

$$
V=\{f: f: \mathbf{R} \rightarrow \mathbf{R}\}
$$

Consider the transformation of V into \mathbf{R} defined by $T(f)=f(1)$. True or False? T is a linear transformation.

Solution. For two functions f and g, and two scalars a and b one has

$$
T(a f+b g)=a f(1)+b g(1)=a T(f)+b T(g) .
$$

Mark one and explain.

- True \quad False

6. (20) Let V and W be vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Given a subspace U of V, let $T(U)$ denote the set of all images of the form $T(\mathbf{x})$ where $\mathbf{x} \in U$, i.e. $T(U)=\{\mathbf{y}: \mathbf{y}=T(\mathbf{x})$ for some $\mathbf{x} \in V\}$. True or False? $T(U)$ is a subspace of W.

Solution. If $\mathbf{y}_{1}, \mathbf{y}_{2} \in T(U)$, then there are $\mathbf{x}_{1}, \mathbf{x}_{2} \in V$ such that $T\left(\mathbf{x}_{1}\right)=\mathbf{y}_{1}$, and $T\left(\mathbf{x}_{2}\right)=\mathbf{y}_{2}$. Hence

$$
c_{1} \mathbf{y}_{1}+c_{2} \mathbf{y}_{2}=T\left(c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}\right) \in T(U)
$$

Mark one and explain.

- True \quad False

