Name:
MATH221
quiz \#1, 09/28/11
Total 100
Solutions
Show all work legibly.

1. (20) Solve the system:

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
2 x_{2}-8 x_{3}=8 \\
-4 x_{1}+5 x_{2}+9 x_{3}=1
\end{array}
$$

Solution.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 13
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{rrrr}
1 & -2 & 0 & -13 \\
0 & 1 & 0 & 56 \\
0 & 0 & 1 & 13
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 99 \\
0 & 1 & 0 & 52 \\
0 & 0 & 1 & 13
\end{array}\right]} \\
& x_{1}=99 \quad x_{2}=56 \quad x_{3}=13
\end{aligned}
$$

2. (20) Write a system of equations that is equivalent to the vector equation

$$
x_{1}\left[\begin{array}{r}
6 \\
-1 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 \\
-7 \\
-5
\end{array}\right] .
$$

Solution. The system of equations is:

$$
6 x_{1}+2 x_{3}=1,-x_{1}+4 x_{2}+x_{3}=-7,5 x_{1}=-5 .
$$

3. (20) Determine the values of k and h for which the system

$$
2 x_{1}-6 x_{2}=k,-4 x_{1}+12 x_{2}=h
$$

is consistent.

Solution.

$$
\left[\begin{array}{rrr}
2 & -6 & k \\
-4 & 12 & h
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
2 & -6 & k \\
0 & 0 & h+2 k
\end{array}\right]
$$

The system is consistent if $h+2 k=0$
4. (20) Let

$$
A=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right]=\left[\begin{array}{rrr}
2 & 0 & -4 \\
-1 & 8 & 2 \\
1 & -2 & -2
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
10 \\
3 \\
0
\end{array}\right]
$$

- (15) True or False? b is in the set of all linear combinations of the columns of A.

Solution.

$$
\begin{gathered}
{\left[\begin{array}{rrrr}
2 & 0 & -4 & 10 \\
-1 & 8 & 2 & 3 \\
1 & -2 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & -2 & 0 \\
2 & 0 & -4 & 10 \\
-1 & 8 & 2 & 3
\end{array}\right] \rightarrow} \\
{\left[\begin{array}{rrrr}
1 & -2 & -2 & 0 \\
0 & 4 & 0 & 10 \\
0 & 6 & 0 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & -2 & 0 \\
0 & 1 & 0 & 5 / 2 \\
0 & 6 & 0 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & 0 & 5 / 2 \\
0 & 0 & 0 & -12
\end{array}\right] .}
\end{gathered}
$$

Mark one and explain.

- True \quad False
- True or False? span $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}=\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$

Solution. Note that $-2 \mathbf{a}_{1}=\mathbf{a}_{3}$.
Mark one and explain.

- True \quad False

5. (20) Let A be a 2×2 matrix, such that

$$
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad \text { and } A\left[\begin{array}{l}
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
7 \\
8
\end{array}\right]
$$

Compute $A\left[\begin{array}{r}7 \\ 10\end{array}\right]$.

Solution.

$$
\left[\begin{array}{r}
7 \\
10
\end{array}\right]=2\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
5 \\
6
\end{array}\right], \text { hence } A\left[\begin{array}{r}
7 \\
10
\end{array}\right]=\left[\begin{array}{l}
13 \\
16
\end{array}\right]
$$

6. (20) True or False? If A is a matrix such that $A \mathbf{x}=0$ has a unique solution, then for each \mathbf{b} the system $A \mathbf{x}=\mathbf{b}$ has a unique solution.

Solution.

Let $A=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. The equation $A \mathbf{x}=0$ has a unique solution, but $A \mathbf{x}=\mathbf{b}$ has no solution.
Mark one and explain.

- True \quad False

