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Abstract—Inner product measures how closely two feature interest and not all of them. Many other applications such
vectors are related. It is an important primitive for many popular  as network intrusion detection over data streams [4], query
data mining tasks, e.qg., clustering, classification, correlation com routing in sensor networks, efficient decision tree corcsion

putation, and decision tree construction. If the entire data set is . distributed . td trate th dself t
available at a single site, then computing the inner product matrix In distributed environment demonstrate the same neecse

and identifying the top (in terms of magnitude) entries is trivial.  €ntire data can be conveniently accessed, it is easy to dempu
However, in many real-world scenarios, data is distributed across the inner product matrix and determine the top ones. However

many locations and transmitting the data to a central server much of the world’s data is distributed over a multitude of
would be quite communication-intensive and not scalable. This systems connected by communications channels of varying

paper presents an approximatelocal algorithm for identifying . . . A
top-l inner products among pairs of feature vectors in a large capacity. This calls for new techniques to perform data ngni

asynchronous distributed environment such as a peer-to-peer in @ distributed environment.

(P2P) network. We develop a probabilistic algorithm for this In this paper, we consider the problem of identifying the
purpose using order statistics and Hoeffding bound. We present glgbal top} inner products (attribute-wise) from distributed
experimental results to show the effectiveness and scalability data. We assume that data is scattered among a large number
of the algorithm. Finally, we demonstrate an application of )

this technique for interest-based community formation in a P2P of peers such that each peer has exactly the same set of
environment. attributes (or features). In the data mining literaturds tis

Index Terms— distributed data mining, inner product, peer-to- often referred to as horlzontally partitioned (homoge_nﬂ’pu
peer network distributed) data scenario. We propose an order statibised
approximatdocal algorithm for solving the problem. Here the
local algorithm is one where a peer communicates only with
. INTRODUCTION its neighbors (formal definition given later). At the heaft o
HE inner product between two vectors measures havur algorithm are the ordinal approximation based on tle=ori
similar or close they are to each other. It is a verfrom order statistics [5] and the cardinal approximatioings
important primitive for many data mining tasks such as clugdoeffding bound [6]. To the best of our knowledge, there does
tering, classification, correlation computation and decisree not exist any algorithm in the literature that can do a global
construction [1][2]. In many application scenarios, it ifsem ranking in a distributed setting without global communicat
desirable to know only the top inner products. For examplef all the data. Our experimental results demonstrate that
consider the formation of interest-based online commesitithe algorithm achieves very high accuracy with only a small
in a peer-to-peer (P2P) environment [3]. P2P networks dir@ction of the communication required for data centralaa
large, dynamic, asynchronous, and with little central ount  The rest of the paper is organized as follows. Section Il
It is very difficult, if not impossible, to transfer all the @a overviews some related work. Section Ill introduces theanot
to a single peer to do the computation since no one wouidns, problem definition and a brief overview of the algiomit.
have such extensive storage and computational capahiliti®ection IV and V present the details of the algorithm. Sectio
let alone the enormous communication overhead. In the @nliXl gives the definition of thelocal algorithm and proves
community formation example, each peer may be associatbdt our algorithm is indeedocal. Section VIl studies the
with a feature vector describing its web surfing patternstaed accuracy and communication complexity of the algorithm,
goal is to find peers having similar interest (browsing patg while Section VIII presents the experimental results. Bect
This helps in routing queries to peers with relevant intesresd X demonstrates an application of our technique, i.e.,ntlie
resulting in better network-search results. In most casash side web mining for community formation in a P2P setting.
peer may be interested in finding only a few peers with simil&ection X compares this work to other existing distributed
inner product computation algorithms. Finally, Section Xl
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nodes, and users. This area has seen considerable am@umibt directly applicable to many asynchronous largeescal
of research during the last decade. For a formal introdactimetworks such as Mobile ah-hoc networks, vehicular ad hoc
to the area, interested readers are referred to the booksn@pworks and P2P networks which is the focus of this work.

Kargupta et al. [7] and [8]. Fagin [11] presents a way of combining query results
In this section, we present a brief overview of the worklerived from multiple systems. Often disparate databasds a
related to this area of research. type of the query run on them return different types of
results; Fagin’s paper talks about combining them. It also

A. Distributed inner product computation proposes techniques to retrieve tbglements from distributed

- atabases. Our algorithm is applicable when there are a larg

o CIENTY  mber of nodes. Fagin’s solution, when applied to our syste
computing inner product when feature vectors are distetut : : L i
would require every peer to communicate resulting in a highl

between two parties. These transformations project the tat S . :
. ; : . communication-intensive algorithm.
a new low-dimensional space where the inner product is pré- . . . S
In the area of information retrieval, several techniqueistex

served. The dominant Fourier and/or wavelet coefficiengs afror top+ object identification. Balke et al. [12] propose a

transmitted to other parties and the inner product can il - ;
- o super-peer approach for finding the top objects. The top
computed from those coefficients with high accuracy. Random™ .
o . o - gueries are handled by the super peers and any other peer
projection [9] is another communication-efficient approac.
: o : in the network can contact these super peers to get the
for inner product computation in a two-party scenario. This . .
. . ._.answers to these queries. They also discuss ways to select
technique has been used by Giannella et al. [1] for decisign

tree construction over distributed data. Interested neadee ese super-peers so that any peer can find its closest super

referred to [1] for details. These techniques work well fgpt peer efficiently. There are also techniques which exploes th
X rﬁtrieval algorithms taking into account the relative rizgs

parties, but do not scale well to large asynchronous networ| ) . .

More discussions are given in Section X, 0 objgcts. Many of thgse algorithms depend on gossip-based

techniques for spreading the ranks of its objects [13]. The

major problems with gossip protocols are that they are slow

B. Identifying topk items (convergence can take a long time) and not very scalable due
Several techniques exist in the literature for ranking gento global communication.

of a dataset. Wolff et al. [10] present a local algorithm tteat

be used for monitoring the entries in a certain percentile ¢f. peer-to-Peer data mining

the population. In their paper, the authors describe a ritgjor

voting algorithm, where each ped?;, has a real numbd;,

and a thresholdr > 0 (the same threshold at all peers)

P2P data mining is a relatively new research area. It pays
careful attention to the distributed resources of data, mam
ing, communication, and human factors in order to use them
M a near optimal fashion. Clustering in P2P networks [14],
rﬁssociation rule mining [10], monitoring L2 norm [15] are
@ome of the recent work in this area. Interested readers are

>, b; is abovent wheren is the number of peers in the
network. This technique can be potentially used to find
D e oLl Mot it beong o e refene 1o an overew paper by Data et . (1],
P € pop L ’ jor disacaget -, the next section, we present a high-level overview of
is the communication complexity — a separate majority \gtin

: . our algorithm to identify the top inner product entries from
problem needs to be invoked for every inner product entE 9 fy P P

and thus the system will not scale well for large number kﬁe _i_nner product matrices constructed out of horizontally
N : O%amuoned data.

features. In the worst case, the communication complexity
the majority voting algorithm may become equal to the orderII
of the size of the network.

Distributed topk monitoring by Babcock et al. [4] presents )
a way of monitoring the answers to continuous queries ov8r Notations
data streams produced at physically distributed locatibms  We assume that there ar¢ nodes P, P, ..., Ps in the
their paper, the authors assume a central node and thke topetwork. Since we are dealing with horizontally partitidne
set is always determined by the central node. The coordinattata, let there be: global features, common to all peers.
node finds the answers to the tépgueries and distributes The local data set for peeP; is denoted byD,; having r4
it to all the monitor agents. Along with it, the central nodeows andc columns. The union of the data sets of all the
also distributes a set of constraints. These constraifdaa peers isU;_,;D; = D, which is the global dataset. The inner
monitor node to validate if the current tdpset matches with product matrix at peeP;, denoted byA,, is ac x ¢ matrix
what it finds from the local stream. If the validation resultsvhose (i, j)!" entry is the inner product between thé&
are true, nothing needs to be done. Otherwise, the monitord j** feature vector inDy. In matrix notation,A; can be
agent sends an alert to the coordinator node. The coordinatomputed as\, = D2D,. The global inner product matrix,
node re-computes the tdp-set based on the current datalenoted byA, can be formed by pointwise addition of all
distribution and sends out both the new tomnd new set the inner product matrices of all the peers. In other words,
of constraints to be validated by each monitor agent. Sinttee (i, )" entry of A is Ali, j] = ijl Aqli, j]. Since the
the paper assumes that there is a central node, this teehniouner product matrix is symmetric about the diagonal and the

I. NOTATIONS, PROBLEM DEFINITION AND OVERVIEW
OF THEALGORITHM



diagonal elements are the inner product of the feature w&cto IV. BUILDING BLOCKS

with themselves, we consider only the upper triangular matr - Thjs section elaborates on some building blocks that are

excluding the diagonal. Thus we have;< distinct entries necessary to understand our distributed algorithm for tiden
in the set of inner prOdUCtS that we consider at each SW?ing Significant inner product entries.

Henceforth, any reference th (or A;'s) would indicate the
upper triangular inner product matrix excluding the diaa_a;lonA Decomposable inner product computation
r

elements. We also assume that the entries of all the inne ) ) )
product matrices& or A,'s) are labeled with a single index. Let x andy be twor-dimensional feature vectors. The inner

For example, the(i, /)" entry of A, Ali, ] is now denoted Product between andy is defined as:
by A[(i—1)x (c— &)+ (j—i)], 1 <i<j<5<.

< X,y > = Z TiYi-
B. Problem definition i=1

Without loss of generality we assume thfl] > A[2] > Now in our scenario, the values af andy are distributed

> A [(i ) x(e—i)+ (- Z.)i > > A[C2*C] is the oVver the network. The inner product of those two vectors are:
> 5 > > 3

non-increasing ordering of the values of the global innedpr ™ 5 | ra s
uct matrixA. Given such an ordering and a valu¢between 1 <xy> = Y zyi=> > wy| => I
and 100), the top-percentile of the inner product entries con- i=1 =1 d=1

sist of the following setF = {AULA[Q]?"-?AM% x 56]} where peerP; has anry-dimensional vector, which if;'s

such that|/F| = k. Now, given a connected and undirecte@ontribution towards the inner product betweerandy. I,
graph G(V, E) with [V| = S and |E| = e and each node js the local inner product of thé’;-th peer. Visiting all the
having its local inner product matrid; (as defined in the peers is infeasible especially in large systems and hence we

previous section), our goal is to identify sorhelements from resort to sampling from a subset of peers in order to estimate
F using local inner product matrice&; and some locally < x y >.

exchanged information among the peers.

d=1 |j=

B. Ordinal approximation

c Ov.enne\'/v of the algonthm. L Given a data set horizontally partitioned among peers,
Having discussed the notations and problem definition, W&, \vant to find some top-entries which are in the top-

are now in a position to present an overyiew of our algorithrrﬂ,ercem”e of the population. A trivial approach to this lpkem

We develop an approximatecal algorithm to solve the \q,id be to collect the entire data set from all peers and

problem, which relies on random sampling in the network,nnare all the pairwise inner products among the features.

to avoid traversing all the nodes for collecting data. At thepig simple approach, however, does not work in a large-

heart of this algorithm are the ordinal approximation based gqgie distributed P2P environment because the overhead of

theories from order statistics and cardinal approximatising  ¢ommunication would be extremely high. Order statisticaris

Hoeffding bo_un_d. . excellent choice in this case, since, by considering oniyalls
Order statistics provides a lower bound on the numbgg: o samples from the entire population, we can still poedu

of samples required to identify the top percentile of a daf@ reasonably good solution with probabilistic performance

Q|str|but|on with a user-specified confidence level. Themef o 5rantees. Order statistics has been applied in a number of

it can be used to compute the number of samples (tgﬂ‘ferent fields such as classifier learning [17], sensowneis

number of global inner products) required to determine theg) anq discrete event optimization [19]. Next we discthes
top{ inner product entries. We call thisrdinal sampling application of order statistics in our framework.

since we are primarily interested in estimating the re@tiv | ot X pe a continuous random variable with a strictly

ordering in this case. However, since the value of each wmmcreasing cumulative density function (CDHx (z). Let

(i.e., the global value of each attribute-wise inner pra}ducg be the population percentile of order i.e. Fx(¢,) =

is distributed at different sites, we have to estimate it bﬁr{x < &) = p, eg. & is called the median of the
. ) 5 ) < &} = p, eg. &,

doing a second round of sampling. We call this t&dinal istribution. Suppose we take independent samples from

sampling These random samplings are done in the netwoyk, given populatiorX and write the ordered samples as
using random walks. A node in the network that wants t91 < a9 < --- < x,. We are interested in computing the
n-

identify some of thg highest inner product entries of thédglo | 51,e of that guarantees

inner product matrix, launches random walks to collect the

ordinal and cardinal samples. Once the initiator node get& b Pr{z, > ¢&,} > g,for a given constany.
the estimates of the ordinal samples, it can then arrange th‘iemma 4.1 (Ordinal Approximation):et a1,z 7 be
teriemﬁnizdmta npn—(ljngreaswig ordeg_ThIe;, (_de_periij]mg Ort]htrrz“?.i.d. samples drawn from an underlying distribution. They
node can make decisions about the laprer product enfries &6 214080 SUCh tha <y < ... < .. Then P(r, >

) = 1—p", where¢, is thep'” percentile of th lation.
in the global data set. Thus, the initiator node could ccaire:lugp) Proof  wherec, is thep™ percentile of the populatio
about the globally most related features in the datasetowtth '

actually getting every other nodes’ data. Pzy, >¢&)=1—Plx, <&)=1—-F,(&,)=1—-p"



m let Q, = L3>, x be the sample mean. Then, when
Now if the above probability is bounded by a confidenge ,, > % we have
we can rewrite the above equation as
Pr{Qm — E(X) > €} < ¢,
log(1 —q) Pr{EX) - Qn > €} <.
Tlog(p) (1) Proof: Following Lemma 4.2, we have

For example, forg = 0.95 and p = 0.80, the value of Pr{Qm — E(X) > €} < exp (W> <.
n obtained from the above expression is 14. That is, if we (b—a)?
took 14 independent samples from any distribution, we catherefore,
be 95% confident thaB0% of the population would be below
the largest order statistic, 4. In other words, any sample with 2me? (b—a)’ln (q)
value greater or equal te;4, would be in the top20 percentile _m = =7 92 @)
of the population with95% confidence. Note that, the value
of n decreases by decreasipgFor detailed treatment of this
subject we refer the reader to David’s book [5].

WhenX is discrete, the equatiofix () = p does not have
a unique solution. Howeveg,, can still be defined byr{z <
&t <p < Pr{z <¢,}. This givest, uniquely unles¥x (&,)

1—p">q:>n2[

Note that0 < ¢’ < 1, 0 < e < 1 and both are parameters
determined by the user. For examplepif- a = 5, ¢’ = 0.05
ande = 0.5, we havem > 150. In other words, if we take at
least 150 samples for estimating the mean of a random variabl

X : P . having a range 5, the probability that the difference betwee
equalsp, in Wh'Ch. case, again lies in an interval. It ca}r\lf IOethe true mean and the mean of the population is greater than
shown that in this casePr{z, < &} < L(n.1) = p". g5 s |ess than by 0.05.¢. Pr (Qm — E[X] > 0.5) < 0.05

whereI,(n, 1) is the incomplete beta function. Therefore, Nnd Pr (E[X] — @ > 0.5) < 0.05). Note that, as both and
the discrete scenario, we have ¢ decreasesy increases.

Priz, > &} = 1-Priz, <&} In a distributed scenario, the peer which initiates the camd

walk needs to estimate this value of For each attribute

¢i, it can compute the value of; using only the range of

This does not change the conclusion in Equation 1. each attribute. Them can be set to the maximum of all the
individual m;’s i.e. m = max$_,{m;}, wherec is the number
of attributes as defined in Section IlI-A.

> 1—-p">q.

C. Cardinal approximation

Or_dinal decision theory, as presented in the previous@ecti n,  Random sampling and random walk
provides a bound on the number of samples that needs to be . . . .
drawn from any population so that the highest-valued sample! "€ cardinal sampling process that we just discussed re-
is in the topp percentile of the population. However, in ordefUires collecting samples from the peers. Random walk is a

to apply ordinal approximation, we need to estimate each B@pular technique for random sampling from the network. It

these ordinal samples using another round of sampling. \kn be performed by modeling the network as an undirected

refer to this ascardinal sampling In our distributed scenario, graph with transition probability on each edge, and defining

the samples are the inner product entry at each node. Therefd cOrreésponding Markov chain. Random walks of prescribed
we need to visit a number of nodes for estimating each ordi&N9th on this graph produce a stationary state probability
sample. In order to derive bounds on the number of peefgctor and the corresponding random sample. The simplest
to sample ) for estimating each of these ordinal sampleg@ndom walk algorithm chooses an outgoing edge at every

we have used the Hoeffding Bound [6] which bounds the tEﬂPde with equal p_robabilitye.g. i_f a node ha_\g degree five,
probability of a distribution. each of the edges is traversed with a probability 0.2. Howeve

Lemma 4.2 (Hoeffding Bound):et z;, i € {1 m} be it can be shown that this approach does not yield a uniform
m independ.ent samples of a randon:’variamé;\/}fr{ values Sample of the network unless the degrees of all nodes aré equa

in the rangefa, b]. Let the sample mean b@,, = L 3. z. (see [20] for example).. Since typical .Iarge—sfcale RZP netwo
Then for anye > 0, we have te_nds to have non_-unlform degre_e dlstrlbutlon,_thls apq:fnog
will generate a biased sample in most practical scenarios.

Pr{Qm—EX)> ¢} <exp (- 2me” ) Figure 1(a) shows the non-uniform selection probabilitings
" == (b—a)?)’ a power-law graph of 5000 nodes.

2me? Fortunately, the elegant Metropolis-Hastings algoritt2h] [

Pr{E(X) = Qm > €} < exp < b a)Q) [22] implies a simple way to modify the transition probatyili

so that it leads to a uniform stationary state distributiand
Next, we show how the Hoeffding bound can be used therefore results in uniform sample. Such a technique has be

derive an upper bound on the valueof used by Datta et al. [23] to generate uniform samples from a
Lemma 4.3 (Cardinal Approximation)-et xz;, P2P network. In this paper, we use an adaptation [24] of this
i € {l,...,m} be m independent samples drawnclassical algorithm. Next we briefly introduce the Metrapel

from a population X with values in the range[a,b]. Hastings algorithm for random walk.
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Fig. 1. Performance of three different random walks on a pdasertopology of 5000 Nodes.

Let G(V, E) be a connected undirected graph wjth| = For random walk to reach a stationary state, we need an
S nodes andE| = e edges. Letd; denote the degree of aestimate of the network size. There exists several teclksiqu
nodei, 1 < i < S. The set of neighbors of nodeis given in the literature to solve this problem. Examples include th
by I'(i) whereV; € T'(i), edge(i,j) € E. Let T = {p;;} capture-recapture method proposed by Mane et al. [26] and
represent the: x n transition probability matrix, wherg,; the aggregate computation as proposed by Bawa et al. [27].
is the probability of walking from nodé to nodej in one
message hop0(< pi; < 1 and}_;p; = 1). Algorithm 1y p2p A GORITHM FORIDENTIFYING THE SIGNIFICANT
gives the basic protocol for generating tfifisin a distributed INNER PRODUCT ENTRIES
fashion using the Metropolis Hastings protocol. Note thests
need not know the entire matrik in order to a random walk.
All that peer P; needs is one row of this matri¥;, which
gives the transition from nod&; to all other nodes.

Using the building blocks discussed in the previous section
we now describe our algorithm for doing distributed selati
of somel elements from the top-percentile of the population
when there aré: elements in the top-percentile { < k).
Algorithm 1 Distributed Metropolis-Hastings (DMH) [22], = The process is started by the initiator node in the network
[24] that decides to find the top few entries in the distributedinn
product matrix. Our algorithm needs to know three paranseter
— (1) number of ordinal samples to colleef){ (2) the number
of peers to visit for estimating each sampte)( and (3)n
indices of the inner product matrix corresponding to the
samples to collect. Based on the desired level of confidence
(¢), the percentile) of the population to monitor, the range
R, the accuracy and ¢’ (Section IV-C), the initiator knows
pij as follows: L ‘ _ the values of these parameters using the results of Seation |
1/ max(d;,d;)  if i # j andj € T(7) It launchesm x n random walks and after all these walks
pij =9 1- Zjel“(v?) pij Q= J terminate, the samples are sent back to the initiator node. T
0 __otherwise initiator then needs to add all the samples having the same
Termination: Once thep;;'s have been populated &1 ey ‘it then orders the samples and the highest one is the
« [pia piz -+ pis]. Terminate DHM. threshold. Any inner product value greater than this threshold
is expected to be in the tgppercentile of the population with

This algorithm generates a symmetric transition probghbili the chosen confidence. Hence the overall approach consists o
matrix and has proven to produce uniform sampling viéhe following tasks:
random walk. Lo®asz [20] showed that the length of random 1) sample size computatipn
walk (\) necessary to reach to stationary state is of the order of2) sample collection
O(log S). Empirical results show that when the length of walk 3) threshold detectignand
is 10 x log S, this algorithm converges to uniform distribution. 4) some top-inner product elements identification
Figure 1(b) shows the probability of selection using theach of these steps is further discussed below.
Metropolis-Hastings algorithm over a simulated networkhwi
5000 nodes. As can be easily seen, the probability of selecti . )
is near uniform for nodes with different degrees. We alsd- Sample size computation
compared this technique with the Degree Balanced RandonThe initiator P, first selects a confidence leveland the
Walk (DRW) proposed by Orponen et al. [25]. Experimentsrder of population percentilg it would tolerate. Based on
(Figure 1(c)) shows that the probability is nearly uniform ithe bound derived in Section IV-B, the initiator calculatks
this case as well. However, this technigue requires a velgti number of samplesi required to compute the threshold such
long walk length in order to achieve stationarity. Therefor that any inner product that is greater than this threshold is
we choose the MH algorithm for collecting samples from thamong the top percentile of the population of inner products.
network. It also randomly generates indices (each betweeh < i <

Input of peer P;: Its degreed;

Output of peer P;: A row (7;) of transition matrix7’

On initialization: P; sends out &egree message to all
Pj € F(Pl)

On receiving a messagelfegree): If it has received the
degree information from alP; € T'(F;) it can compute




<~c) which will be sampled for the set of all the inner producf\Igorithm 2 Distributed selection of sample&)¢d.Samp)
entries. The initiator also uses the Hoeffding bound (®ecti Input of peer P;: D, - the local databasd;(d) - set of
IV-C) to find the value ofm, or the number of peers to visit immediate neighbors oP;, a row T, of the transition

for estimating each of theseordinal samples. Thus, after this matrix T’
step, the initiator peer knows the valueraf n and the actual Output of peer P;: Sends the sample if the random walk

indices of the inner product entries to be sampled. terminates at this peer
On receiving a messagel(oken):
B. Sample collection Token = Token - 1

Given the sample size ai and the number of peers to FétchSamplelndex
visit m, the initiator invokesm x n random walks using the ~FetchInitiatorNodeNum o
protocols described in Section IV-D to choose independent!P Address and Port number of the initiator node
samples from the network. Since estimating one single innerif Token = 0 then _
product entry requires sampling peers for the same indexed ~ Pick the element whose index fsmplelndex from
entry, each random walk carries with it the index number of Dg.
the element to be sampled. Also each random walk carries SendSamplelndex to the InitiatorNodeNum.
the IP address and port number of the initiator node so that Wait for new T'oken messages for other random walks
the terminal node of a random walk can send its inner producté/se
entry directly to the initiator node. At the end of these ramd SendSamplelndez, Initiator NodeNum 10 a _
walks P; hasm x n samples where there are different ne_lghbor selected according to the transition matrix
indices andm inner product values for every index of the end if
inner product.

C. Threshold detection Definition 6.1 (-neighborhood of a vertex)Let

Once the initiator node gets all the samples, its next taskGs = (V> £) be the graph representing the network where
to identify the threshold. Since inner product is decomptesa denotes the set of nodes ahdrepresents the edges between
for every indexi, peer P; sums up the all then entries the nodes. Thex-neighborhood of a vertex < V is the
corresponding to the same indexlt then finds the largest collection of vertices at distancea or less from it in G:

of this n aggregated set of inner product entries and this Jex(v, V) = {uldist(u,v) < a}, wheredist(u, v) denotes the
the threshold. length of the shortest path in betweerandv and the length

of a path is defined as the number of edges in it.
Definition 6.2 @-local query): Let G = (V, E) be a graph
as defined in last definition. Let each node V' store a data
The above technique would giVe the peel’ a Way to |dent|géth An a-local queryby some vertex is a query whose
one of the items in the tob,— where there aré: elements response can be Computed using some funcﬁoﬁa(v))
in the topp percentile of the population. We can extend thighere X, (v) = {X,|v € T (v, V)}.
to find somel of the topk elements [ < k). All that @ pefinition 6.3 (¢, ~)-local algorithm): An  algorithm is
peer Py needs to do is to launch x m x | random walks. cajled (a,~)-local if it never requires computation of &-
Now after aggregating the results we haseelements and for |ocal query such tha > o and the total size of the response
every n element we can find a threshold. Thus we will havg, a1 sucha-local queries sent out by a peer is bounded by
I thresholds. The ordinal framework guarantees that each of, can be a constant or a function parameterized by the size
thesel thresholds are in the toppercentile of the population. of the network whiley can be parameterized by both the size
OrdSamp (Algorithm 2) presents the sample collectionyf the data of a peer and the size of the network.
technique for a _Sj'”gle random walk_ using the ordinal e call such and, v)-local algorithmefficientif both o and
framework. The initiator sends a token (|n|t.|al|zed to aval ~ are either small constants or some slow growing functions
equal to the length of the random wal, its IP address, (gup-linear) with respect to its parameters. The following
port number [hitiatorNodeNun and the index of the element|emma, Lemma 6.1 proves that Algorithm 2l@al according
(Sampleindexto sample for this random walk. When a nodg, this definition.
gets this token, it decrements its value by 1. If the value | s ima 6.1 (Locality)The OrdSamp algorithm is

of the token. becomes 0, the inner product entry indexed ?@(ZogS),nml)-local wheres is the number of nodes in the
Samplelndexs selected from the local data set and sent bagjyork and the other items are as defined in Section IV.

to the initiator node. Proof: We prove this using the property of random walks.
The initiator node, launche®)(nml) independent random
walks. Each random walk has a walk length of O@9gSo
VI. LOCAL ALGORITHM the maximum number of hops that a query can propagate
In this section we first definéocal algorithms and then for finding each samples is O(I6y. While returning these
prove that the algorithm that we have developed in this papsamples, back to the initiator, it is a 1-hop process. Note
is local. that in the sample collection process, all the random walks

D. Some tog-inner product elements identification



are launched using the same walk length. Hence the entire Proof:
algorithm is an(O(logS),nml)-local since the number of

queries isnmi. [ ] Plin>&) = 1- Pn(i"” < &)
Note that theOrdSamp algorithm is efficient sincea = -
. . - = 1- P <
O(logS) is a slowly growing polynomial compared to the }i[l (Ta = &)
network sizeS andy = nml is a small number, independent n m
of the netwprk sizg. We have given typical examplle values of - 1_ H P Zqu[d] <&
n, m and!l in Sections IV-B, IV-C and V-D respectively. a1 Py
Similarly we can show that the running time of our algo- n ™Al
rithm is O(nmi x logs). = 1-JI> (m < 5”)
The previous definition discusses about the efficiency of d=1 m m
such algorithms, it does not specify the.quality of the resul _ " p( A < &
There are two types of local algorithms in terms of accuracy: - H [d] < m
exactand approximate In an exact local algorithm, once the dzl ~ .
computation terminates, the result computed by each peer -1 HP Ald] — pa < o~ Hd
is the same as that compared to a centralized execution o Ld = %4
. d=1 m vm
[10]. However, such algorithms have only been developed n
till date for very simple thresholding functions (e.¢x;norm = 1— H P (Z < & Md] W)
[15]). For more complicated tasks, researchers have peapos prait m gd
approximate local algorithms using probabilistic teclugg n ¢ Jm
(for example K-means [14]). Next, we define the notation for = 1- H P ([ . ] U)
measuring the quality of local algorithms. d=1
Definition 6.4 (€, 0) correct local algorithm): An local al- [ ]

gorithm is €,4) correct if it returns the result of a query Step 2 follows directly from step 1. Now sindg is a sum
within an e-distance of its actual result with a probability ofof all the elements obtained by visiting peers, we must have
(1 —6), where the actual result is computed on a centralizey = Y | A;[d] V d. Finally, since} ;" A;[d] is a sum
data ands is the probability that the result is outside the of random variables we have used Central Limit Theorem to
radius. derive the final expression.

The algorithm we have developed in this paper is both Hence the probability of error iHZ—l(I)S % — pa| Y.

(O(logsS),nml)-local and €, 0) correct, wherel — 6 = ¢, Tnis shows that as increases, the error in

2 )5 T ) ecreases since each
as defined in Section IV-B and corresponds t0 the error gy of the product isb(.), which is the area under a unit
discussed in the next section.

Normal variable and is less than or equal to 1. Alsonas
increases, the expression inside decreases and thus the
overall probability of error decreases. For a special case i
In this section we analyze the error bound and the messagigich all the ;;’s and oy's are %qual to say: and o, the

complexity of our distributed algorithm. error becomesp ([% _ M] %ﬁ) — hence as: increases,

the error decreases exponentially.

VIl. ERRORBOUND AND MESSAGECOMPLEXITY

A. Error bound

In our distributed algorithm there are two sources of err
— (1) error due to ordinal sampling and (2) due to cardin
sampling. Letz,, Zo, ..., %, denote the samples as found by The distributed algorithm that we just described launches
the distributed algorithm (the subscripts correspond te tm x m x [ parallel random walks each of length such
indexing scheme defined in 1lI-A). Note that each of thegbat each random walk will return a single element. The
Z4-s are estimated by aggregating the values ofditeentry coordinator node can then aggregates these samples, aad find
of the inner product matrix fromm peers. The value of thel thresholds. We will use this model to analyze the message
the d'* entry for thei'® peer is given byA;[d]. Therefore, complexity.
Fqg = Y7, Agld). Let A[d] = w denote the mean For each such a random walk, the initiator node needs to

. Message complexity

of the estimatesyd € {1,...,n}. Lemma 7.1 derives the send the following four information in the message:

probability that the thresholde. #,, is greater than the!" 1) Token Number - Integer 32 bits

percentile of the population. 2) Index of the inner product entry to sample - Integer 32
Lemma 7.1 (Error):Let %4, %o,...,2, be then samples bits

found by the distributed algorithm. They are ordered such 3) IP Address - Integer 32 bits

that 21 < %o < --- < &,. Then, P(%, > &) = 1 — 4) Port Number - Integer 32 bits

I, @ ({% - Md} %7) wherep; andog are the mean and  The message complexity for this step 528 x m x n x [ x
standard deviation of the feature of the population comagp A = 128mnl\ bits. Since at the end of each random walk, the
ing to Z4, &, is the population percentile of orderand ®(.) terminal node needs to send the sampled element back to the
is the area under the standard normal curve. initiator node, it would need 64 bits (assuming that eachyent



of the inner product matrix can be represented as a double x10°

number). Thus, the overall message complexity for the entir g6 Zgiesft‘r‘ifsgtzeedd
sample collection process i$28mnlA + 64nml = O(mnli\) & || » Population Percentile ]
bits. Substituting the values af andm from equations 1 and g {] H’
2 respectively, and using0 * log(S) as the value of\, the ’g“ } H’ o
message complexity can be rewritten as, £3 . . ]
I
2 /
1L+ 2010g(5)] |6 0T l0g (L= 0) |y I

2e2log(p)

where the symbols are defined in the respective sectiong Not
that this expression is independent of the number of feature
¢, the number of rows:; and is logarithmic with respect to
the number of nodes.

Now, considering the centralized algorithm, if each peer
has a dataset of siz¢ x ¢ =O(r;c), then the total message
complexity for the centralized scheme can be written as :
64 x r; x ¢ x S = O(r;cS) bits. Hence, the communication 5 5
complexity of the centralized algorithm is dependent lihea ' “Percentile
on the size of the data set;(and¢) and network §).
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Fig. 2. Relative values of the estimated highest order siaffdistributed
and centralized experiments) with corresponding valuescafah population

VIIl. EXPERIMENTS AND PERFORMANCEEVALUATION percentile (top figure) and corresponding cost (bottom &yur

In this section, we study the performance of the proposed
inner product identification algorithm.

We report here three sets of experiments - (1) performance

A. Network topology, simulator and data generation of the algorithm when monitoring increasing percentile of
’ population, (2) the scalability of our algorithm, and (3eth

Our network topology is generated using the ASWaxmalye ot of increasing the cardinal sampling:, We have re-
Model from BRITE [28], a universal topology generator orted both the quality and cost whenever appropriate. 4$nle
The generator initially assigns node degrees from a pOWenanyise noted we have the following default values for the
law distribution and then proceeds to interconnect the 80dgigarant parameters: (13=500, (2)¢=100, (3)n=19 (=85%
using Waxman'’s probability model. Power-law random grapghd 4=95%), (4)m = 35 (R = 5,¢ = 0.5,¢ = 0.5), (5) I=1,
is often used in the literature to model large non—unifor%) A = 10 x logS, and (7)r; (number of data rows for each
network topologies. It is believed that P2P networks Cm‘forpeer) = 500. Each random experiment was run for 100 trials

to SUCh_ power Iaw topologies [29]. We use the DiSIribUtegnd the we plot both the average and the standard deviation.
Data Mining Toolkit (DDMT) [30] developed by the DIADIC . . . . .
1) Experiments with different percentile of populatioim

research lab at UMBC to simulate the distributed computing. . .
environment. this experiment we compared the accuracy of the distributed

The experimental data consists of tuples generated frcﬁjr.gomhm W.'th the centrah; ed one. We have experimented
different random distributions. Each column of the data f‘@-"th three different percentilep} vaIue; of 95, 90 and 85 for
generated from a fixed uniform distribution (with a fixec}NhICh the ”“”?ber of samples. required are 5.9’ 29 an'd 19
range). Thus, there are as many different distributionshas trespectlvgly. F|gure_ 2 shows th_e eﬁ‘ect_ on quality and cot_t;tw
number of features. The centralized data set is then uniﬁorrﬁ:hangeS in population percentile. In Figure 2 (top), theusar

) b ; )

split (so that each peer has the same number of tuples) amBRy'ts re?rr]esslnt the actupt pgrcentllz ‘t)g the dpotpulanon,b

all the peers to simulate a horizontally partitioned scienar whereas Ine blue square error bars and e red star error bars
represent the threshold for the same confidence and pdecenti

for the distributed and centralized scenario respectiusiyng

B. Performance ordinal approximation. The distance between the red (stars

We study the applicability of the ordinal approximatiorerror bars and the green circular dots represents the eneotal
theories in our distributed environment by comparing therdinal approximation whereas the difference between dde r
results produced by the centralized algorithm. By a ceiaedl (Stars) error bars and the blue (squares) error bars in tyehgr
algorithm we mean centralizing the entire data set of &Rn be attributed to the cardinal approximation introduced
peers and running the ordinal approximation on this data st the distributed environment. We notice that in both the
Our measurement metric consisted of two quantities — (¢§ntralized and distributed scenario, the threshold isitgre
Quality and (2)Cost By quality we measure the thresholdghan the actuap™ percentile of the population. This means
detected both in the distributed and centralized scenasio that there will be no false positives in ordinal estimation.
compared to the actual percentile of the population. Cdstse  Figure 2 (bottom) compares the communication of our
to the message exchanged in Kilobytes (KB) for doing thegorithm with that of the centralized version for monitagi
computation with reference to a centralized scheme. different percentiles of populationp) plotted in the log-
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Fig. 3. Variation of the threshold detected by the centealiand distributed Fig. 4. Quality and cost with changes in number of features.

algorithms (top figure) and cost (bottom figure) with changeshie size of
the network.

and distributed estimates are very close. Since there igge la
scale. Since the number of features= 100, 7; = 500 difference in the scale, the points are close (almost on fop o
and S = 500 remain constant, messages for the centraliz&RCch other). The number of features has no effect on the cost
experiments for different percentiles does not changehén tof the distributed algorithm, while the same for the cermed
distributed scenario, the expression in Section VII-B igdis lgorithm increases linearly as shown in Figure 4 (bottom

for finding the number of messages. In all cases, our algurittigure)-

outperforms the centralizing scheme in terms of message3) EXperiments with increasing.: This section presents
complexity. the quality and cost of the algorithm as the percentage of

2) Scalability: We test the scalability of our algorithm bothcardinal samplingst) increases. Figure 5 (top figure) shows

with respect to the number of nodes and number of featufd§ €ffect on the highest threshold detected with incregsin

of the dataset. In both cases we plot the quality and cost@mPplingm. The trend is clear - as we increase the per-
the algorithm. centage of network sampled, the distributed threshold (red

For the scalability w.r.t. the number of peers, we keep thdars) approaches the centralized threshold (blue squanes
number of data points per peer constant (500). Figure 3 (t5jgure 5 (bottom figure), plotted in the log-scale, the mgssa
figure) shows the effect on the threshold detected as the sinsmitted increase as the percentage of network sampled
of the network is changed (all the other parameters are at thCreases. On the_other hand, for the centralized versien th
default values). As can be seen from the figure, the threshéiSsage complexity is a constant.
detected by both the centralized and distributed expetisnen Overall, this experiment shows that the estimation of our
using order statistics are greater than e percentile of the @lgorithm is comparable to the corresponding centralized v
population. Moreover, the centralized and distributeéhestes sion at a cost which is far less than its centralized couaterp
are quite close for different sizes of the network. This shiow
that our proposed distributed algorithm has good accuracy w IX. APPLICATION

scalability. _ ~An interesting application of this technique is clientesid
Figure 3 (bottom figure) shows the cost of the algorithiyep mining. In this section we discuss how we modify our

(plotted in log-scale) with increasing number of nodes. ther qqer statistics based tdpitem identification technique for

centralized algorithm, the effect of the number of nod8SS s application. Interested readers are referred to tiephy

linear. On the other hand, it is logarithmic for the distiéth | j, et al. [3] for a detailed discussion on this application.
algorithm (refer to Section VII-B for details). This mearet

the proposed distributed algorithm is far more communacati - ) ) o

efficient than the centralized counterpart as corroborded A Why P2P communities and client-side web mining

the experiments here. According to Maslow’s theory [31], social motive, which
In the other scalability experiment, we varied the numbaelrives people to seek contact with others and to build sérigf

of features ¢). The results are shown in Figure 4. Figure 4elations with them, is one of the most basic needs of human

(top figure) shows that the quality of our estimate is quiteeings. The tendency to have affiliations with others isblesi

good — in all cases, the highest order statistic is greatm theven in virtual environments such as the World Wide Web.

the actual percentile of the population. Also, the cerzeali Many online communities like Google and Yahoo! groups
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x 10° predefined ontology, and therefore they have lots of fleitybil

; ;gg:rtifsl'jtzeedd of describing their interests. However, the gain of flexibil
25 e Population Percentile comes at the price of accuracy because of the uncertainty of
24 i]“]‘ & H] kl & concepts. We refer the reader to [33] for a brief survey of
5 existing ontology matching approaches.
§3 Khambatti et al. proposed a P2P community discovery
[=) o0 0 0 L] [ ] L ] ° . . . .
I approach where each peer is associated with a set of agfsibut
2 101595 50 60 & that represent the interests of that peer [34]. These atéib
Percentage of network sampled are chosen from a controlled vocabulary that each peer agree
10° — ‘ with. In this paper, we also assume each peer has a set of
e Kok * attributes, which we call as profile vector. The differense i
ilo that each interest in the profile vector can be given a wemht t
2104 show its importance. Moreover, we do not simply check the
g __*.*_C_e_f]‘_r?['_ze" intersection of attributes, instead, we quantitativelynpoite
=10° - ol the similarity between profile vectors (using inner proguct
= " and we use an order statistics-based algorithm that can tell
2

=
o

RN rr:g\t/\\;v s:lrzllar a pair of peers are to each other in the whole
Trust-based community formation is usually discussed in
the scenario of file sharing and service providing. The nmtat
“trust” is a measure used by a peer to evaluate other peer's
capability of providing a good quality service or resourthis
provide the user a place to share knowledge, and to requeést gst is based on information about the peer’s past behavior
offer services. Traditional web mining has spent lots obe e refer the reader to [35] as a starting point on this topic.
on the web server sides.g. to analyze the server log. We|n this paper, we are interested in forming a community based
propose a framework that utilizes the client-side inforio@t on peers’ interests without considering the past intevastiof
namely, the web browsing cache. In many cases the servsgers.
side web data is inaccessible to the user who generated thghere exists another area of research that focuses on the lin
data — so no information about that data is available to tR&ucture analysis of network to identify patterns of iatetion.
user. On the other hand, using the data at the source maclfae example, Scott identified the various cliques, comptmen
itself (which we call the client-side data), we can learnesal and circles into which networks are formed [36]. The draw-
interesting facts about the data and develop several sgsteiack of link analysis-based approach is that it depends @n th
(e.g. P2P community, recommender systems etc.). We defisgble link structure of the network, and therefore preetud
a P2P community as a collection of nodes in the netwokk peer from being a member of more than one community
that share common interests. Communities can then exchagggultaneously.
information for better query routing for example. Compared
with other related work, our framework has the followingC. Peer profiles
specific features: A crucial issue in forming P2P communities is to create
« It applies the order statistics-based algorithm alreadgdeer profiles that accurately reflect a peer’s interestss&he
discussed to quantify the similarity between peers ovéterests can be either explicitly claimed by a peer, or im-
the network. This approach allows a peer to build plicitly discovered from the peer’s behaviors. A peer'sfeo
community with hierarchical structure. is usually represented by a keyword/concept vector. Txagko
« Any technigue in which the similarity between two peerst al. proposed techniques to implicitly build ontologysbd
can be expressed in metric space (vectors, trees and tiser profiles by automatically monitoring the user’'s browsi
like) can be plugged into our framework. habits [37]. Figure 6 shows a sample ontology for user profile
We point out that any approach that represents a peer’s @rofil
. in a feature vector can be used in our framework. In this paper
B. Related work: P2P communities we use the frequency of the web domains a peer has visited
Generally speaking, the research on self-formation of P2laring a period of time as the peer’s profile vector. To avoid
communities can be grouped into four major categories: ff)e uncertainty of ontology matching, we expect all peers to
ontology matching-based approach; 2) attribute simifaritagree on the same ontology defined by a controlled vocabulary
based approach; 3) trust-based approach; and 3) link asraly$n this paper, this means that all peers agree on a superset of
based approach. We briefly introduce each of them as followgeb domain names.
Castano et al. addressed the problem of formation of se-
mantic P2P communities [32]. Each peer is associated with Bn Similarity measurement
ontology which gives a semantically rich representatiothef =~ The goal of community formation is to find peers sharing
interests that the peer exposes to the network. The adwantagnilar interests. However, if we choose a similarity measu
of this approach is that peers do not have to agree on the sament(2, and simply setup a subjective threshold such that peers

Fig. 5. Quality and cost with changes in cardinal sampling.(
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which area this buddy belongs to. A peer could also specify a

p value and only invite those belonging to tpgpercentile area

to be her community members. The community could be ex-

panded to include members from members’s community. For

. o . example, in Figure 7, Peet, P;, H are the first level members

with similarities greater than this threshold can be gralipgwith largerp) of community initiated byP;. PeerC, F' andG

together, we can’'t represent the essential charactexistic ;e the second level members (with smajieiof community.

a social community, nameljjierarchy. In a social network, Note thatP; is also a initiator of another community, and it

a person may have multi-level friends, where the first levelhs E as its first level community member. PeérP;, H, E

might be family members and closest friends, the second |eY,%mpose an extended P2P community initiatedfhy

might be some colleagues who are not so familiar with. A \we yse the scalar product between two profile vectors to

person could also have indirect friends from his/her fr'ﬂéndquantify the similarity between two peers. Other similarit

social network. A P2P community from one peer’s perspectigetrics such as Euclidean distance, graphs, trees can also

should also have such a kind of hierarchical structure. at pe applied in our framework without any hurdle. In the next

some peers share more interests with this peer, while othg(fhsection we discuss how the community is actually formed.

share less. Note than in this application, since each peer has the entire
To achieve this goal, we use our order statistics-basggctor, there is no need for cardinal sampling. We can simply

approach which enables a peer to know how similar the othgs an ordinal sampling of the entries of the inner product
peer is to itself. In other words, our statistical measuneimegntries in order to identify the top few.

guarantees that if the similarity between pgerand P; is

above a thresholdP; can determine with confidence level ) i

¢ that P; is among the topr percentile most similar peersE: Community formation process

of P;’s. As a running example, let us assume there are 5We address the P2P community formation process under
peers{ P, P,, P3, Py, Ps} in the network, and the similarity the assumptions that: 1) each peer can be a member of
measures betweeR; and all other peers arl, 3,2,4}, re- multiple virtual communities; 2) peers interact with eather
spectively, where the higher the value, the higher the sitityl by submitting or replying queries to determine the poténtia
If P, knows the similarity between her anB; is 4, our members of a given community; and 3) there is no super peer
approach will enableP; to know with high confidence that as a centralized authority.

Ps is among the to@25% most similar peers of?;’s in the The P2P community emerges as a pégr,called commu-

Fig. 6. A sample ontology for user profile.

network, without computing all the similarity values. nity initiator, invokes a community discovery process whic
Now we formally define a P2P community based on owonsists of the following tasksample size computation, per-
above discussion. centile estimation, member identification, member notifica

Definition 9.1 (2, p, ¢)-P2P Community):A (2, p, ¢)-P2P and acceptanceand community expansion.
community from peerP;’s view is a collection of peers in Sample Size Computation: The initiator P; first selects a
the network, denoted bg, such that the similarity measuresconfidence level and the order of population percentibeit
2 betweenP; and all the members i@ are among the top- would tolerate. It can then find the sample sizas discussed
percentile of the population of similarity measures betw&e in Section IV-B. Note that for this scenario a peer does not
and all the peers in the network, with confidence leyel need to do a cardinal sampling since we are dealing with a
Definition 9.2 (Extended(; p, q)-P2P Community):An special case of the distributed inner product computatiene h
extended Q, p, ¢)-P2P community from peeP;’s view is the — when each peer has only one feature vector and not a matrix
union of C (defined by the above Definition) and all the peersf local inner product elements.
from the €2, p, ¢)-P2P community of each member ¢h Percentile Estimation: Given the sample size, the initiator
These two definitions implicitly capture the hierarchicainvokes n» random walks using the protocols described in
characteristics of the community. When a peer finds a simil8ection IV-D to choose independent sample peers in the
buddy, she could compute the percentile value and determimetwork. Whenever a new peét; is chosen, it replies ta@;
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with its address and port number, and builds an end-to-end 1600 S — .

. . entralized scenario
connection withP;. Then P; computes the scalar product of [ Distributed scenario
its profile vector andP;’s profile vector. AfterP; collects all 21550 ® Actual Quantile value)
the n scalar products, it finds the largest one as the threshold §
for percentile of ordep. These two steps are very similar to £ 1500
the first two steps of the algorithm discussed in Section V. & °
Member Identification: The initiator P, composes a dis- 1450 ®
covery message containing its address and port number, as 08 o o5
well as a time-to-live (TTL) parameter defining the maximum Percentile

number of hops allowed for the discovery propagation. Then

. . . Fig. 8. uality value w.r.t. the order of percentile.
the discovery message is sent to &) neighbors. When 9 Qualty P

a peer P; receives this message, it replies 1§ with its TABLE |

address and port numbeP; then invokes a scalar product AvERAGE NUMBER OF COMMUNITY MEMBERS FOUND BY THE INITIATOR
computation withP; to get the similarity value. If TTL> 0, WITH DIFFERENTTTL VALUES.

P; forwards the discovery message to all its neighbors, except

for the peer from which the message has been received. Each | TTL || Friends/peer, Messages/pe€r

peer discards duplicate copies of the same discovery messag 1 5 30

possibly received. 2 22 31

Member Invitation and Acceptance: The initiator P; 3 55 30

evaluates the quality of the discovered peers by comparing
the similarity values with the different levels of threstiolf
the similarity is above the threshol@®; sends an invitation 2) Performance:Having discussed about the data and the
message to that peer. If the similarity is below the first levgimulator setup we are in a position to report the experiadent
of threshold,P; still could analyze, with the same confidenceesults.
level and order of percentile’. Given this information,P, Random Sampling and Percentile Estimation:This ex-
can decide whether to send an invitation to a peer with legeriment evaluates the accuracy of random sampling and
similarity. Once a peerP; receives an invitation messagepercentile estimation. We chose three differentvalues -
it decides whether to accept it or not by replying with a80%, 85% and90%. In all the three cases, the confidence level
acceptance message. Receiving the acceptance mes3age,was set td5%, and the size of the network was fixed1a0
recordsF; in its cache. nodes. LetP; be the community initiator. The population can
Community Expansion: When a peerP; accepts the invi- be defined as the set of all pairwise scalar products bet#een
tation, it replies to the initiator with an acceptance mgssa and all the other peers. Now, B, wants to find similar peers
as well as with the member lists in its local cache. Thesgho are in the tog percentile of the population, it launches
members are from the P2P community or extended P2&hdom walks. The terminal peer for each random walk refers
community initiated byP;. The peers thalP; receives from to a sample and®;, computes the scalar product between its
P;, however, belong to the lowest level of friends Bfin its  own vector and the vector owned by the samplesorts all the
hierarchical network, since they are not directly disceeeby n scalar products and finds the largest one as the threshold of
P; and are just part of its social network through associatiopercentile of ordep. Figure 8 shows estimated threshold in the
As a reward P; sends the current member list in its local cachéistributed experiment. To compare the results with cdintrd
to P;. In this way, each peer has an extended P2P commun#gmpling,P; first collects the pairwise scalar products between
itself and all the peers in the networle; then performs a

F. Experiments random sampling of size and finds the largest scalar product.
In this section, we study the performance of the proposddhe threshold found by this approach is illustrated by the
framework for P2P community formation. stars in Figure 8. Figure 8 also shows the actual population

1) Data Preparation:We use the web domains a peer hapercentile of orderp. As is evident from these results, the
browsed to create the profile vector. Each element of theovecthreshold found through random sampling and order stagisti
corresponds to the frequency that the domain has beendsisiteeory is above the actual population percentile. Theesémy
by the peer during a period of time. The data was collectestalar product greater than this threshold can be recogjige
from the IE history files of volunteers from UMBC and Johnamong the top percentile population with high confidence.
Hopkins University. There are total0842 browsing history Community Formation: Once the threshold is detected, the
records in our data set, and 3318 unique web domains. Thesat step is to form the communities. The size of the network
records are randomly split and distributed to peers in owas fixed to bel00. Table | shows the average number of
network simulator so that each peer can compute its owmembers found by a community initiator with respect to
profile vector. As we have stated previously, we assume different TTL values using the community expansion scheme.
the peers agree on the same profile ontolagythe same set The table also shows the number of messages per peer. Since
of domain names, and therefore, all the profile vectors haiteremains a constant, we expect good scalability of our
the same size 3318. Figure 9 shows a snapshot of a peer’algorithm.
profile. Table Il presents the number of community members formed



AVERAGE NUMBER OF COMMUNITY MEMBERS FOUND BY THE INITIATOR
WITH INCREASING NUMBER OF NODES

TABLE Il

| #nodes|| Friends/peerf Messages/peelr

100 10 30
500 25 30
1000 23 30
2000 33 34

Peer Profile Ontology o =" X

Top

D enwikipedia.org
D mathworld wolfram.com 28%
D weaney phdcomics.com 5%
[ wwrwcafepress.com 3%

3%

[ java.sun.com 6%
D wanny. slashdot.org E%
[ newsyahoocom — 15%
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estimating distribution free confidence intervals for plagion
percentiles. Cardinal sampling helps to combine the inner
product values that are distributed among the peers. Exper-
imental results substantiate our claims regarding acguaad
message complexity of our algorithm.

Besides having direct algorithmic contributions, this @ap
suggests and adopts an important concept in large distdbut
computing systems Hocal approximate algorithms. Local
algorithms are natural candidates for applications in darg
dynamic networks because of their good scalability. Local
algorithms can beexact or approximate However, the class
of exact local algorithms that currently exist in the liteena
work for simple primitives such as average and L2-norm. For
solving more complicated distributed problems, reseasche
have developed approximate solutions. The ordinal armlysi
technique developed in this paper belongs to this genre -of ap
proximate local algorithms. As demonstrated by the sinnofat
results, our algorithm performs well both in terms of acecyra

D w05 Umbc.edu 5%

O. . of results and communication intensity. In future, we hope t
use this algorithm for solving real-life challenges in diztited

settings such as the internet and sensor networks.

Fig. 9. Snapshot of a peer’s profile.
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X. DISCUSSION

In this section we compare the communication complexity
of our algorithm with some existing distributed inner pratiu
computation techniques. One of the most widely used methods
is random projection. Considering a vector of dimensipr 1 (1]
at each site and a network of sisg the communication com-
plexity of random projection method for finding the pairwise[2]
inner products is(5) x k = O(S2k), wherek x r;, is a
random matrix such that < r;. Under a similar setting, the
communication complexity of our algorithm @(n xlog(S)+  [3]
n x r;) wheren is the number of ordinal samples required
(which in most cases is very small). The dominating factor fo4
P2P networks is the siz€; hence our algorithm scales well
compared to the random projection method ever is of the [g]
order of S. Egecioglu et al. [38] propose a technique in which[ ]
the inner product can be computed using only two floatingr]
point numbers. Although this technique is very efficient, it
is still a two-party protocol, and it cannot identify top em 8]
products in a population distributed over many places witho
communicating with all the parties. However, we can adopl!
these efficient inner product protocols in our ordinal and
cardinal approximation framework and achieve more efficieLo]
and effective solutions.

(11]
Xl. CONCLUSIONS

In this paper we have developed a distributed algorithm 67
efficiently identifying topt inner products from horizontally
partitioned data. To achieve low communication overheaa, W3l
use an order statistics-based approach together withnzrdi
sampling. Ordinal statistics provides a general framework

ers for their valuable comments.
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