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Abstract. Peer-to-Peer (P2P) networks are gaining increasing popularity in many
distributed applications such as file-sharing, network storage, web caching, search-
ing and indexing of relevant documents and P2P network-threat analysis. Many of
these applications require scalable analysis of data over aP2P network. This pa-
per starts by offering a brief overview of distributed data mining applications and
algorithms for P2P environments. Next it discusses some of the privacy concerns
with P2P data mining and points out the problems of existing privacy-preserving
multi-party data mining techniques. It further points out that most of the nice as-
sumptions of these existing privacy preserving techniquesfall apart in real-life
applications of privacy-preserving distributed data mining (PPDM). The paper
offers a more realistic formulation of the PPDM problem as a multi-party game
and points out some recent results.

1 Introduction

Peer-to-peer (P2P) systems such as Gnutella, Napster, e-Mule, Kazaa, and Freenet are
increasingly becoming popular for many applications that go beyond downloading mu-
sic without paying for it. P2P file sharing, P2P electronic commerce, and P2P moni-
toring based on a network of sensors are some examples. Noveldata integration ap-
plications such as P2P web mining from the data stored in the browser cache of dif-
ferent machines connected via a peer-to-peer network may revolutionize the business
of Internet search engines. A peer-to-peer clustering algorithm that clusters the URL-s
visited by each user (with due privacy-protection) in to different subjects by exchang-
ing information with other peers can be very useful for discovering web-usage patterns
of users. This may help characterizing each user based on their browsing pattern, and
forming clique of peers having similar interest. Also, thismay help routing query about
a particular topic to the most appropriate peer in a P2P network. There can be many
other similar interesting information integration and knowledge discovery applications
involving data distributed in a P2P network.

Privacy is an important issue in many of these P2P data miningapplications. Privacy-
preserving data mining offers many challenges in this domain. The algorithms must
scale up to very large networks and must be asynchronous. Moreover, many of the
assumptions (e.g. semihonest, abides by the protocol) thatexisting privacy-preserving
data mining algorithms make may not be valid. We may have somepeers trying to
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sabotage the computation. This paper presents a high-leveloverview of an effort to ad-
dress some of these problem using game theoretic framework for privacy-preserving
data mining.

The rest of the paper is organized as follows. In the next section (Section 2), we
present the related work on P2P computing and PPDM. A web-mining application that
motivates the need for game theoretic PPDM algorithms is presented next in Section 3.
The next few sections are devoted on describing the game theoretic approach for PPDM
and the preliminary results. We conclude the paper in Section 6.

2 Related work

This section presents a very brief related work both on data mining and privacy preserv-
ing techniques in P2P networks.

2.1 Data Mining in P2P Networks

Knowledge discovery and data mining from P2P network is a relatively new field with
little related literature. Some researchers have developed several different approaches
for computing basic operations (e.g. average, sum, max, random sampling) on P2P net-
works,e.g. Kempeet al. [8], Boyd et al. [4], Jelasity and Eiben [9] and Bawa et al. [3].
Mehyaret al. [15] proposed a new approach for averaging on a P2P network using the
Laplacian of a graph.

All the approaches mentioned so far require resources that scale directly with the
size of the system. For more scalable approaches, researchers explored the paradigm
of local algorithms for doing data mining in P2P network.Local algorithms [12, 16, 2,
11, 10] are ones in which the result is usually computed usinginformation from just a
handful of nearby neighbors. Still, it is possible to make definite claims about the cor-
rectness of the result. These algorithms are very scalable as resource requirements are
independent of the size of the system and a good fit for P2P networks spanning millions
of peers. Lately, simple thresholding basedlocal algorithms have been used for com-
plicated data mining tasks in P2P systems: majority voting [19], L2 norm thresholding
[18] and possibly more. For a detailed survey interested readers are urged to look into
[5].

2.2 Privacy Preserving Data Mining

Privacy-preserving data mining can be roughly divided intotwo groups: data hiding
and rule hiding. The main objective of data hiding is to transform the data or to design
new computation protocols so that the private data still remains private during and/or
after data mining operations; while the underlying data patterns or models can still be
discovered. Techniques like additive perturbation [1], multiplicative perturbation [14],
secure multi-party computation [20] all fall into this category. On the other hand, rule
hiding tries to transform the database such that the sensitive rules are masked, and all the
other underlying patterns can still be discovered [17]. Fora detailed review of PPDM
and game theory please refer to [7].
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3 Motivational Application: Peer-to-peer Client-Side Web-usage
Mining

Before we address the privacy issues in P2P data mining, we present a motivational
application in which preserving privacy of a peer’s data is important. We discuss an
exciting application of web usage mining using the conceptsof client-side web cache
and P2P technology based on [13] and emphasize the need for privacy in such mining
operation.

Traditional web mining has spent a considerable amount of effort on analyzing the
server logs. However, since the results of these analysis are not accessible to the users,
the later are deprived of their own generated knowledge which can potentially be used
for better searching, routing, forming trust-based communities etc. Dynamically aggre-
gating peers with similar interests could greatly enhance the capability of each individ-
ual, could facilitate knowledge sharing, and reduce the network load. In order to solve
this problem, we present a framework where the users themselves can form implicit
communities by sharing their own browsing behavior. Throughout the remainder of this
discussion, we use the term ‘peer’ and ‘user’ interchangeably, to refer to the same phys-
ical entity – a user (peer) browsing the Internet and connected to other users (peers) in
the network.

This application uses the frequency of the web domains a userhas visited during a
period of time as the user’s profile vector. Each user maintains a profile vector that keeps
the frequency of visit of common web-domains. To measure thesimilarity between two
users’ browsing patterns, we use inner product between their profile vectors. To do that,
the application usesorder statistics-basedlocal algorithm to measure inner product be-
tween different users’ profile vector and that information is used to form communities
such that users with high similarity in profile vectors are placed in the same commu-
nity. One of the big advantages of this framework is, any meta-level technique that can
measure similarity in metric space (vectors, trees and the like) can be plugged into this
framework , and help to form similarity based communities which will share common
interest between each other to enhance browsing/online experience.

It is obvious that user privacy is a big concern in such a P2P applications. Since
formation of these communities involves sharing the actualbrowsing data, it may vio-
late the privacy of the users. For any user it is imperative that its browsing data is not
revealed in its raw form while forming these communities – otherwise it is almost im-
possible to convince web users to take part in such P2P computation where every user
shares some data, does some computation and finally gets benefitted from the aggregate
result (by being part of a similar minded community). In order to safeguard each user’s
private data, Liu et al. [13] have used cryptographic secureinner product protocols to
compute the inner product between two users’ profile vectors. However, such secure
multi-party protocols are based on honest/semi-honest third party assumptions, which
assumes that a user or a group of users will follow the protocol as specified and will
not form a malicious liaison or do anything to extract private information from other
users. In real-life, however, such ideal assumptions fall apart since very little control
exists on each user’s behavior and there is no centralized coordinator or administrator
to monitor and govern all user activity. Besides, experimental results reported by Liu
et al. [13] show that this secure protocol is (1) computationally very intensive (2) ex-
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pensive from communication point of view and (3) not scalable at all. It is evident from
the results that privacy preserving techniques designed for standard data mining is not
going to work well in a P2P setup. A completely different approach is necessary to en-
sure privacy in a P2P setup. That motivates us to introduce a game theoretic approach
to privacy preserving data mining which does not suffer fromabove-mentioned issues
and relaxes some of the assumptions regarding user behavior.

4 Game Formulation

In this section we present a high level overview of PPDM algorithms designed as games.
We model the large-scale multi-party data mining applications as games where each

participant tries to maximize its benefit or utility score byoptimally choosing the strate-
gies during the entire PPDM process. LetD = {d1, d2, · · ·dn} be a collection ofn dif-
ferent nodes where each node represents a party with some privacy-sensitive data. The
goal is to compute certain functions of this multi-party data using some PPDM algo-
rithm. Most existing PPDM algorithms assume that every party cooperates and behaves
nicely.

For example, consider a well-understood algorithm for computing sum based on the
secure multi-party computation framework (details to be described in Section 5). Upon
receipt of a message, a node performs some local computation, changes its states, and
sends out some messages to other nodes. Most privacy-preserving data mining algo-
rithms for multi-party distributed environments work in a similar fashion. During the
execution of such a PPDM algorithm, each node may have the following objectives,
intentions, responsibilities: (1) perform or do not perform the local computation, (2)
communicate or do not communicate with the necessary parties, (3) protect the local
private data, (4) attack the messages received from other parties for divulging privacy-
sensitive information regarding other parties, and (5) collude with others to change the
protocols for achieving any of the above tasks. Our goal is toview multi-party privacy-
preserving data mining in a realistic scenario where the participating nodes are not
necessarily assumed to be well-behaved; rather we considerthem as real-life entities
with their own goals and objectives which control their own strategies for dealing with
each of the above listed dimensions.

The nodes in the system can adopt different strategies for communication, computa-
tion, collusion or launching of a privacy breach attack. Every such decision is motivated
by the utility associated with the choice. The utility valuerepresents the benefit that a
node gets by performing (not performing) a necessary communication or computation
step that is part of the protocol or by colluding (not colluding) with other nodes in the
network. The actions change the local state of the party. Theentire play of the game by
playeri can therefore be viewed as a process of traversing through a game tree where
each tree-node represents the local state described by player i’s initial state and mes-
sages communicated with other nodes. Each runr represents a path through the tree
ending at a leaf node. The leaf node for path (run)r is associated with a utility function
valueui(r). A strategyσi for playeri prescribes the action for this player at every node
along a path in the game tree. In the current scenario, the strategy prescribes the ac-
tions for computing, communication, privacy protection, privacy-breaching attack, and
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collusion with other parties. A strategyσi for playeri essentially generates the tuple
(I(M), I(R), I(S), I(A), I(G)) where theIs are indicator variables for a node’s compu-
tation, communication (receive and send), privacy attack and collusion strategies. Now
we can put together the overall objective function for the game of multi-party secure
sum computation.

ui(σ) = wm,icmU(I
(M)
i ) + wr,icrU(I

(R)
i,t ) + ws,icsU(I

(S)
i ) + wg,i

∑

j∈D−G

g(vj)(1)

HerecmU(I
(M)
i ) denotes the overall utility of performing a set of operationMi,t, in-

dicated byIM
i (similarly for other notations),w’s are the weights of the corresponding

computation, computation etc.,D denotes the set of all nodes,G denotes the set of
colluding nodes andg(vj) is the benefit of nodej, due to its local valuevj .

5 Illustration: Multi-Party Secure Sum Computation

Suppose there ares individual sites, each with a valuevj , j = 1, 2, . . . , s. It is known
that the sumv =

∑s

j=1 vj (to be computed) takes an integer value in the range0, 1, . . . , N−
1. The basic idea of secure sum is as follows. Assuming sites donot collude, site 1
generates a random numberR uniformly distributed in the range[0, N − 1], which is
independent of its local valuev1. Then site 1 addsR to its local valuev1 and transmits
(R + v1) modN to site 2. In general, fori = 2, . . . , s, site i performs the following
operation: receive a valuezi−1 from previous sitei − 1, add it to its own local value
vi and compute its modulusN . Then site 1, which knowsR, can subtractR from zs

to obtain the actual sum. This sum is further broadcast to allother sites. For this secure
sum protocol one may construct different utility functionsbased on different parameters
such as cost of communication, computation or the cost of launching a privacy attack.
It can be shown that a privacy-breach attack on a secure sum protocol by a single node
might not be very successful. Similarly it can be shown that the utility of collusion in
secure sum protocol depends on the size of the network, the number of colluding nodes,
and the range of values at the different nodes. [7].

5.1 Game Equilibrium

Let us consider this simple unconstrained version of the objective function given in 1. In
order to better understand the nature of the landscape let usconsider a special instance
of the objective function where the node performs all the communication related activi-
ties as required by the protocol resulting in the following objective function (neglecting
the constant term contributed by the communication-related factors):

ui(σ) = wm,icmU(I
(M)
i ) + wg,i

∑

j∈D−G

g(vj)

Figure 1 shows a plot of this function as a function ofcmU(I
(M)
i ) andk, the number of

colluding parties. It shows that the optimal solution takesa value ofk > 1. This implies
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Fig. 1. Plot of the overall objective function. The optimal strategy takes a value ofk > 1.

that in a realistic scenario for multi-party secure sum computation, parties will have a
tendency to collude. Therefore the non-collusion (k = 1) assumption that the classical
SMC-algorithm for secure sum makes is sub-optimal.

One way to deal with the problem is to penalize by increasing the cost of compu-
tation and communication. For example, if a party suspects acolluding group of size
k′ (an estimate ofk) then it may split every number used in a secure sum amongk′

different parts and demandk rounds of secure sum computation one for each of these
k′ parts. This increases the computation and communication cost byk-fold. This linear
increase in cost with respect tok, the suspected size of colluding group, may be used
to counteract any possible benefit that one may receive by joining a team of colluders.
The modified objective function with the penalty term is

ui(σ) = wm,icmU(I
(M)
i ) + wg,i

∑
j∈D−G g(vj) − wp ∗ k′

Herewp refers to the weight associated with the penalty. Figure 2 shows a plot of the
modified objective function. It shows that the globally optimal strategies are all for
k = 1. The strategies that adopt collusion always offer a sub-optimal solutions. An
appropriate amount of penalty for violation of the policy may reshape the objective
function in such a way that the optimal strategies correspond to the prescribed policy.
Our plan is to borrow the concept of Cheap Talk from game theory and economics [6]
in order to develop a distributed mechanism for penalizing policy violations. Cheap
Talk is simply a pre-play communication which carries no cost. Before the game starts,
each player engages in a discourse with each other in order toinfluence the outcome
of the game. For example, in the well known Prisoner’s Dilemma game one might
add a round of pre-play communication where each player announces the action they
intend to take. Although cheap talk may not effect the outcome of Prisoner’s Dilemma
game, in many other games the outcome may be significantly influenced by such pre-
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Fig. 2. Plot of the modified objective function. The globally optimal strategies are all fork = 1.

game communication. We would like to use Cheap Talk to communicate the threat of
penalty. Cheap talk works when the parties depend on each other, their preferences are
not opposite to each other, and the threat is real. The algorithm in the following section
describes a variant of the secure sum computation techniquethat offers a distributed
mechanism for penalizing policy violations using a cheap talk-like mechanism.

5.2 Secure Sum with Penalty: Distributed Control

Consider a network ofs nodes where a node can either begood or bad. Bad nodes col-
lude to reveal other nodes’ information; whilegood nodes follow the correct secure sum
protocol. Before the secure sum protocol starts, the colluding (bad) nodes send invita-
tions for collusions randomly to nodes in the network. If such a message is received by
a good node, then it knows that there are colluding groups in the network. To penalize
nodes that collude, thisgood node splits its local data intok′ random shares wherek′

is an estimate of the size of the largest colluding groups. One possible way to estimate
this could be based on the number of collusion-invitations agood node receives. On
the other side, thebad nodes, on receiving such invitation messages, form a fully con-
nected networks of colluding groups. After this the secure sum protocol starts, as in the
traditional secure sum protocol, nodes forward their own data (after doing the modulus
operation and random number addition). However, good nodesdo not send all the data
at one go – rather they send random shares at each round of the secure sum. Hence, it
takes several rounds for the secure sum to complete.

5.3 Results

We have implemented the above cheap talk-based solution without and performed multi-
agent simulations in order to study the behavior of the agents. This experiment assumes
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that the agents are rational in the sense that they choose actions that maximize their
utility function. The details of the experimental setup aredescribed in [7]. The results
obtained from our simulation are represented by the following figures.

Initially we start with a fixed percentage (say 30%) of the nodes to bebad. After
every round each node measures the cost (or penalty) it incurred due to collusion. If the
penalty sustained is too high (a dynamic threshold currently set by the user), some of
the bad nodes decide not to collude again. Once thesebad nodes turn intogood ones,
they send deallocate messages to their colluding groups andalso set their estimates of
collusion sizek′ same as the size of the collusion to which they belonged.

We observe in Figure 3 that for subsequent rounds of the secure sum computation
the cost or overall penalty assigned decreases as the numberof bad nodes decreases.
When the ratio ofbad to good nodes is significantly low, we can observe that the cost
almost reaches an equilibrium. This is because the contribution of the penalty function
becomes negligible and the total cost is governed mainly by the computation and com-
munication costs that remain almost constant over successive rounds of secure sum with
hardly any collusion.

In Figure 4 we have shown how the number ofbad nodes decrease with successive
rounds of secure sum computation. Thebad nodes in the network start any round of
secure sum with the intention to collude. However, some of them do not end up in any
collusion since their invitations for collusion are not reciprocated by thegood nodes. So
at any round ifb denotes the number ofbad nodes (nodes with intentions to collude),
the actual number of colluding nodesk is less than or equal tob. The plot with circular
markers demonstrate the decreasing values ofb in consecutive rounds of secure sum
whereas the one with square-shaped markers presents the decreasing values ofk. In ei-
ther case, we see that asb or k decreases, the rate of their convergence to zero gradually
falls due to the significantly low ratio ofgood to bad nodes in the network. The third
plot in Figure 4 represents the decrease in the number ofbad nodes in a network with
an initial count of 60% bad nodes. We observe that even if the number ofbad nodes in
the network be double, the algorithm still converges to the same state where the number
of colluding nodes in the network tend to zero.

6 Conclusion

This paper presented an overview of a new approach towards privacy preserving data
mining in P2P systems. It pointed out that many of the existing privacy-preserving data
mining algorithms often assume that the parties are well-behaved and they abide by
the protocols as expected. The paper offered a more realistic formulation of the PPDM
problem as a multi-party game where each party tries to maximize its own objective or
utility. This work opens up many new possibilities. It offers a new approach to study the
behavior of existing PPDM algorithms using a game theoreticapproach and invent new
onesviz. PPDM algorithms for computing inner product, clustering, and association
rule learning.
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