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ABSTRACT

Title of Thesis: A web-based interactive visualization tool to explore patterns of

amino acid substitution

Kamalika Das, Master of Science, 2005

Thesis directed by: Dr. Penny Rheingans

Among all the natural sciences, biology is the most data-rich subject. A few central

databases of biology are growing exponentially in size with time. There has also been

an exponential increase in the diversity of specialized databases in the last decade. These

vast repositories of data contain valuable information relevant to cutting-edge biological

research, such as research on genetic evolution. In their attempts to explain evolution,

biologists, to date, have relied on observations alone to explain the divergence of protein

sequences to form different types of organisms. Since amino acids are the basic building

blocks of protein molecules, understanding the effect of the properties of amino acids in the

substitution process might give biologists insight into genetic evolution. In this research,

we represent the relationship among the different amino acids and their physiochemical

properties using a graph-based visualization technique. We have developed a number of

new visualization schemes for aiding the understanding of the relationship between amino

acids’ properties and amino acid substitution patterns so that biologists can explain the

observations in genetic evolution in the form of a scientific cause-and-effect model.
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Chapter 1

Introduction

“The purpose of computing is insight, not numbers.” - R. Hamming, 1973.

Information visualization allows the user to visualize large data sets efficiently. Often the

information gathered from large repositories or databases is abstract and difficult to com-

prehend and use. Information visualization aids the process of interpreting these large data

sets by abstracting the raw data and representing it in a user-friendly graphical way. Like

good writing, good graphical displays make communication of ideas lucid, precise, and

efficient. On the other hand, bad graphical displays may distort or obscure information,

making it difficult to understand or analyze, thereby reducing the communicative effective-

ness. Efficient graphical displays give an overview of all relationships existing between

different entities in a data set, help focus attention on the important aspects of the relational

model, and show the details only on demand [6].

Computational biology is currently a fast-growing interdisciplinary area with ground-breaking

1
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Figure 1.1: Exponential growth of central databases in biology. (Reproduced, with permis-
sion, from Dr. Stephen Freeland’s slides, UMBC.)

contributions from both computing sciences and biology. Biologists all over the world are

trying to explain the process of evolution based on available data from several subfields of

biology. Biology is an extremely data-rich subject. A number of central databases in bi-

ology, such as the protein sequence database [9] and the human genetic mapping database

[38], are growing exponentially with time. Figure 1.1 shows the growth of such databases

over a period of 30 years from 1965 to 1995. This gives us an estimate of the amount

of data that bioinformatics deals with. There has also been an exponential increase in the

diversity of specialized databases. InterPro (an integrated resource of protein families, do-

mains and functional sites) and NDB (nucleic acid-containing structures) are examples of

such specialized databases. The current count of biological databases is 548, which is 162

more than the number that existed a year before [17]. Representing these vast repositories

of information in a comprehensible manner is a challenging task and so one major area of

research in information visualization is bioinformatic visualization.
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The objectives of visualizing the elements of these databases can vary. Sometimes the

observer wants to understand the overall relationship between biologically similar entities

belonging to one or multiple databases. Alternatively, the visualization can be an attempt

to find out biologically significant information such as chemical properties of different en-

tities and how these properties are responsible for shaping the existing theories of biology.

The choice of the visualization technique depends on the goal of the observer. Different

techniques have different advantages with respect to the amount or type of information that

is being conveyed to the observer.

The majority of current bioinformatic visualization systems concentrate on easily under-

standable representation of experimental data, such as comparison of evolutionary trees

[32], visualization of exact geometric structures of double-helix DNA [22], and 3D visual-

ization of protein molecules. These systems help in visualizing DNA sequences, annotating

the results generated by BLAST (Basic Logical Alignment Search Tool) [5] searches, and

facilitating protein alignment. However, the emphasis of most existing systems has been on

the visualization of geometrical structures of proteins. To date, little importance has been

attached to the actual study of the physical and chemical properties of amino acids, which

would enable biologists to explain genetic evolution.

To overcome this lacuna, we developed a visualization tool that displays amino acids and

their properties as a relational or causal model. Graphs are ubiquitous models for repre-

senting large groups of similar or related objects. They efficiently model many real-world

applications. The choice of the graph layout entails the optimization of its geometric and

topological objectives [13]. We use different graphs for visualizing different hierarchi-
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cal relationships between properties of amino acids and how these properties affect the

arrangement of amino acids to form long chains of polypeptides, which are more com-

monly known as proteins. For visualizing the relationships between amino acid pairs, we

use a minimum spanning tree representation. A similar view is also used for showing the

similarity between different amino acids. For understanding how the properties of amino

acids have influenced the similarity between them, we develop a number of new layout

algorithms where two minimum spanning trees are compared based on their joint layout.

Finally, we define a sparkler arm view for aligning different amino acids with respect to

their distances from a specific chosen one.

Chapter 2 provides the necessary biological motivation for understanding this work. Chap-

ter 3 discusses relevant related work. Chapters 4, 5, and 6 present the detailed approach

for each of the three visualization techniques that have been used in the system. Chapter 7

highlights the research contribution of this work in the fields of information visualization

and biology, as well as the results of this research and possible future work in this area.



Chapter 2

Biological Background

“Many biological problems are too complex to be solved by biologists alone,” says biologist

Gosta Nachman of Copenhagen University [33]. Biological experiments result in a huge

quantity of numerical data. This data contains valuable information relevant to cutting-

edge biological research. However, it is difficult for biologists to manually process such

a large quantity of numerical data to extract necessary information. Computer scientists

make this task easier by applying different data analysis techniques and transforming the

data to easily representable and comprehensible formats. Bioinformatics is the application

of computational sciences to facilitate research in biological sciences [4]. Therefore, a

basic understanding of the fundamental processes and theories of biology is essential for

appreciating this research work in bioinformatic visualization. Currently, biologists are

trying to explain the process of evolution by exploring the physical and chemical properties

of amino acids which are the building blocks of protein molecules in any living organism.

5
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2.1 Genes and Evolution

Genetic information is stored in the DNA of an organism. It is the encoded information

in the DNA that distinguishes one living being from another. It can be described as a set

of ‘how to’ instructions for building an organism. A DNA molecule encodes one or more

genes; a gene encodes a single protein, which is composed of a number of amino acids. The

language-based terminology reflects the fact that both genes and proteins are essentially 1-

dimensional arrays of chemical letters. Each DNA is composed of four nucleotides, which

are abbreviated as A, C, T, and G. The DNA nucleotides are transformed, by a process

called transcription, to mRNA nucleotides abbreviated as A, C, U, and G. Proteins, on the

other hand, are built from twenty different amino acids [16][47]. Figure 2.1 describes the

structures of the mRNA nucleotides. The figure also shows the chemical structures of these

20 amino acids built on these nucleotide bases.

Given the difference in size between the DNA and the protein alphabets, it is clear that

there cannot be a simple 1:1 correspondence between the nucleotides of a mRNA strand

and the amino acids of a protein. Triplets of mRNA nucleotides called codons translate into

a single amino acid. For example, the triplet GGG corresponds to the amino acid Glycine

(Gly) while ACG corresponds to the amino acid Serine (Ser). There is a standard genetic

code for this translation. The standard genetic code is a set of rules for a many-to-one

translation of the codons to the amino acids. Figure 2.2 shows the codon-amino acid pairs

that exist. The uppercase triplets such as UUU or GUC denote the codons, whereas the

other three-lettered groups such as Phe and Val correspond to amino acid abbreviations.
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Figure 2.1: Description of components of genetic code. (Image courtesy of Dr. Stephen
Freeland [16].)

Biologists, in their attempt to explain evolution are trying to answer a few fundamental

questions including

• How has a standard genetic code evolved over time?

• How has the process of evolution caused protein sequences to diverge?

• How can the understanding of evolution as a cause of protein sequence divergence

help in the prediction of protein structures?

• How can evolution explain the varied functions of genes and proteins?

• How can the understanding of the standard genetic code help in automating the pro-

cess of recognizing genes in a new genome?
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Figure 2.2: Standard genetic code. (Ref: http://evolvingcode.net/web-introduction.php)

• How can this study help researchers to build models of evolutionary relatedness?

For answering these questions, biologists have a plethora of information available on amino

acids and their physiochemical properties.

2.2 Amino Acid Data

Amino acids are molecules consisting of a single central carbon atom with four groups

attached to its four valencies. These groups are a hydrogen (H) atom, an amino (NH2)
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group, a carboxyl (COOH) group, and a ‘R’ group. The structure of the R group de-

termines which amino acid it is. There are 20 known amino acids in the genetic code.

Shuichi Kawashima and Minoru Kanehisa [26] first represented the different properties

of amino acids in the AAIndex database. The AAIndex database can be accessed at

http://www.genome.ad.jp/aaindex. An amino acid index is a property (physiochemical or

biochemical) of the amino acid. Each index is a 20-element vector; each element of the

vector is the value of that property for one of the 20 amino acids. The AAIndex database

consists of two parts: the first part is the index database and the second part is the mutation

matrix database. A similarity matrix, or mutation matrix, is a set of 20× 20 numerical

values calculated on the basis of the observed frequency with which one amino acid re-

places another over the course of evolution. These matrices are used for protein sequence

alignments and similarity searches [5]. The index and matrix data that we have used for

our system is taken from the “UMBC AAIndex Database” [10]. Blazej Bulka, a member

of the evolvingcode team at UMBC Biological Sciences department, has constructed this

database by modifying the original AAIndex database. The UMBC AAIndex database also

consists of two parts, namely, the indices and matrices. The version of the UMBC AAIndex

database that we are using for this research has 494 indices and 83 mutation matrices.

The indices represent physiochemical properties of amino acids. The range of values for

each property varies across the set of indices. To facilitate computations, all the indices in

the UMBC AAIndex database are linearly normalized with 0 corresponding to the mini-

mum observed value and 1 corresponding to the highest. Therefore, the amino acid index

data that we have used in our computations could have a value between 0 and 1. However,
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Amino acid 3-letter code Symbol Normalized value
Alanine Ala A 0.108
Arginine Arg R 0.767
Asparagine Asn N 0.442
Aspartic acid Asp D 0.449
Cysteine Cys C 0.357
Glutamine Gln Q 0.550
Glutamic acid Glu E 0.557
Glycine Gly G 0.0
Histidine His H 0.620
Isoleucine Ile I 0.434
Leucine Leu L 0.434
Lysine Lys K 0.550
Methionine Met M 0.574
Phenylalanine Phe F 0.698
Proline Pro P 0.310
Serine Ser S 0.232
Threonine T hr T 0.341
Tryptophan Trp W 1.0
Tyrosine Tyr Y 0.821
Valine Val V 0.326

Table 2.1: Index: Molecular Weight, Authors: Fasman, G.D., Index Number: 72 (Ref:
[10])

if the distribution of values of a property across the 20 amino acids is not linear, then the

linear normalization would fail to capture the nature of the distribution and might not yield

very accurate results.

One property (molecular weight) or amino acid index is shown in Table 2.1. The first

column of the table contains the name of the amino acid. The second column shows a

three-letter representation of the amino acid; the third column shows the symbol of the

amino acid; and the last column shows the value of the property for that amino acid. We

notice here that amino acid Glycine (Gly) has a very low molecular weight compared to

Arginine (Arg).
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The similarity or mutation matrices are 20×20 matrices where both the rows and columns

correspond to the amino acids. These matrices represent the observed “similarity” between

pairs of amino acids under different conditions and in different units of measurements. By

similarity we mean the tendency of one amino acid replacing another during evolution.

The matrix corresponds to a Markovian model of evolution in which amino acids mutate

randomly and independently from one another but according to some predefined probabil-

ities. A positive value of the (i,j)th element of the mutation matrix means that the observed

frequency of substitution of the amino acid at row i by the one at column j is more than the

probabilistic prediction, a negative value indicates that the observed frequency is less than

the expected frequency and the value of 0 indicates that the observed frequency is the same

as the predicted frequency. A diagonal element represents the chance that an amino acid is

not substituted.

One such similarity matrix is shown in Figure 2.3, displaying the BLOSUM45 substitution

matrix used in the bioinformatics tool BLAST [5]. It can be seen that amino acid R (Argi-

nine or Arg) replaces I (Isoleucine or Ile), and vice versa, much less often than expected,

whereas the frequency of substitution between N (Asparagine or Asn) and D (Aspartic Acid

or Asp) is quite high. The diagonal elements of the matrix have very high values, illustrat-

ing that the most common observation is that the amino acids do not get substituted very

frequently.

This research aims to help biologists to answer questions on evolution by using this data

on amino acids. We introduce a meaningful way of displaying the relationships that exist

among different indices and among different mutation matrices. The design allows the
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Figure 2.3: BLOSUM45 Substitution Matrix, Authors:Henikoff, S. and Henikoff, J.G [Ref:
http://www.evolvingcode.net:8080/aaindex/]

user to analyze the influence of a group of indices on a group of mutation matrices. The

visualization tool also allows the user to explore the amino acids based on their distances

(similarities) from a specific amino acid, thus linking observed evolution to the physics

behind it.
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2.3 Application

Researchers have developed a number of visualization tools in bioinformatics to repre-

sent different types of biological data such as the double helix DNA strands, 3D protein

molecule structures and 3D amino acid sidechains. However, the task that this visual-

ization tries to accomplish is different from the usual structure-visualization task. In this

research, following the work of Tomii and Kanehisa [43], we try to connect the existing

amino acid properties represented by the amino acid indices to their observed substitution

patterns represented by the mutation matrices. The dataset that we are looking at is not very

large. However, we are attempting to fit this data into a cause-and-effect model where we

attribute the relatedness of pairs of amino acids to their physical and chemical properties.

This study is interesting because other than the obvious utility in helping to understand the

origins and evolution of life, it will give the biologists an insight into the process of protein

formation which might help in designing new protein molecules for better drug design.

Before we go into the details of our system, we discuss the work of Tomii and Kanehisa

[43], which directly inspires this research. Tomii and Kanehisa prepared a single-linkage

hierarchical cluster analysis of the amino acid indices in the AAIndex database. They

also did a similar cluster analysis for the mutation matrices in the database and studied

the relationships between them. They reconstructed these matrices from the combination

of amino acid indices in order to find which properties of amino acids are reflected most.

In this work, the basic idea is that the diversity of amino acid properties is the key to the

structure, function and evolution of protein molecules, which is the main theme behind
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(a) (b)

Figure 2.4: Existing work influencing this research: (a) spanning tree generated by Tomii
and Kanehisa [43], (b) the webtool developed by Blazej Bulka to reconstruct the results of
Tomii et al.

our research as well. Existing work in this area include a web-based visualization tool

developed by Blazej Bulka at University of Maryland, Baltimore County. This tool allows

the users to visualize relations among amino acid properties, and relate them to the mutation

matrices. It also allows recreation of the results of cluster analysis described by Tomii and

Kanehisa. Figure 2.4 shows the results generated by Tomii and Kanehisa.

2.4 Design

Higher-dimensional visualization techniques are confusing for the human perception sys-

tem and can sometimes be misleading. Therefore, the representation should aim at reduc-

ing the dimensionality of the data and representing the important characteristics in terms

of a few salient features. An effective and intuitive representation would be one with the

lowest possible dimension with no ambiguity in representation of either the data or their
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relationships. Interactivity is needed to control the level of detail of the information being

displayed. Since these biological databases are growing rapidly in size, scalability of the

system is an important issue that needs to be considered at the design phase.

While designing the representation scheme, we keep in mind the desired characteristics of

the system, which can be summarized as:

• effective representation of high-dimensional data

• intuitive and interactive visualization technique well suited for the purpose

• unambiguous data representation

• appropriate choice of mathematical or statistical methods to suit the graphical model

• scalability of the system

2.4.1 2D vs. 3D Visualization

Considering the design requirements discussed above, we chose to reduce the dimensional-

ity of the representation from twenty to either two or three. Tree visualization can be either

2D or 3D. If a graph becomes too large, then a conventional 2D graph layout algorithm

might fail to scale up. In that case, 3D visualization can help in reducing the occlusion of

the layout due to the use of the third axis. Most 2D layout algorithms have been extended

to a 3D case in a hope to find more space for representing large data sets in the extra di-

mension that is added. However, almost all the challenges in graph visualization in two

dimensions are also present in 3D graph visualization, such as lack of efficient navigation

techniques, edge crossing minimization for large data sets, and finding an occlusion-free
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(a) (b)

(c)

Figure 2.5: The three basic views of the system: (a) the index spanning tree view, (b) the
joint layout view, (c) the Sparkler Arm view

view of a particular portion of the graph. For this thesis, we concentrate on 2D visualization

of graphs, because the data set that we are working with is not very large and can easily be

represented in the 2D screen space without occlusion problems. The 3D graph algorithms

also have higher time complexity and would make the system slower.

We designed three fundamental views that serve multiple purposes in terms of understand-

ing the relationships and analyzing the data. Figure 2.5 shows three basic views of the

system. The views are:
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• a single spanning tree view,

• a comparative view of two spanning trees, and

• a sparkler-arm view

The spanning tree view represents the relationships between similar elements of the database.

There are two types of spanning trees: the index spanning tree and the matrix spanning

tree. The index spanning tree depicts the relationships among the 494 different properties

of amino acids in the amino acid index database. The matrix spanning tree represents the

relationships among the 83 similarity matrices or mutation matrices.

The second comparative view allows the user to compare the two spanning trees (i.e. the

index and matrix spanning trees). For this representation, we compute the individual min-

imum spanning trees and then compute the distances of each index node from each of the

matrix nodes. The distance metric is based on the numerical values of the corresponding

index and the matrix as specified in the AAIndex database. We refer to this distance as the

computed distance of an edge connecting two nodes of the two trees. We choose a thresh-

old, displaying only those edges which represent a weight less than that threshold. This

draws the attention of the user to the most significant connections between the two trees.

This view allows the user to understand how the amino acid indices influence the observed

values of the similarity matrices.

In the sparkler-arm view, we explore the relationships among the twenty amino acids. Here,

the user is given the option of selecting an amino acid and a few similarity matrices. Then

we represent the remaining nineteen amino acids in increasing order of their computed
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distances from the selected amino acid for each one of the selected matrices. Each arm of

the sparkler corresponds to a similarity matrix.

2.5 User Interface

Our visualization tool has an efficient and user-friendly graphical user interface supporting

many functions. It supports a number of navigation functions such as zoom in, zoom

out, and graph panning by dragging individual nodes. It is interactive, allowing the user

to choose the details that are to be displayed in any particular view. It allows the user

to either view the entire database or select a group of nodes for display. The user can

select nodes either by checking individual rows of indices or matrices in a table or by

specifying a keyword for selection. It also allows the user to add new indices to the system

for visualization. Figure 2.6 shows the user interface design. The first button lets the user

read the database of indices or matrices and select the appropriate ones for display. It has

slider bars for on-the-fly modification of system parameters such as visualization thresholds

and a color index for easy reference of the color-coded amino acids. The graph information

section is the text area that displays information about selected entities when clicked. This

view helps us find similar mutation matrices.
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Figure 2.6: Graphical User Interface of the System



Chapter 3

Related Work

The fields of computational biology and bioinformatics have experienced rapid, ground-

breaking advancement in the last decade. A number of visualization tools have been devel-

oped to aid in the explanation of biological theories. These tools use different visualization

techniques, since each is tailored to serve the purpose for which it was built. The visual-

ization schemes depend on the amount of data to be represented, the dimensionality of the

data, and the nature of the information to be extracted out of the data.

Before reviewing the existing visualization tools and techniques, we first discuss the tool

that we are building and the techniques that we are using for the purpose. Our visualization

tool is a combination of multiple visualization techniques such as graph-based visualization

and the sparkler-arm visualization. In the spanning tree view of the system, we use different

graph visualization techniques to represent the spanning tree in the most meaningful way.

In the joint layout of the index and the matrix spanning trees, we have experimented with a

20
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number of new layouts, which are modifications of standard graph layout algorithms.

In the following sections we review the existing graph visualization techniques and discuss

our choices of specific techniques and modifications to those techniques to fit our require-

ments. We also review the broad categories of bioinformatic visualization and analyze the

novelty of this tool in the existing scenario.

3.1 Graph Visualization

The amino acid data can be classified as a high-dimensional relational data model, which

can be represented using a graph. Depending on the type of data to be represented, an

appropriate graph structure is chosen: general graphs, which can be drawn by either a

force-directed approach or a multi-dimensional approach; planar graphs; directed acyclic

graphs (DAGs); or trees.

There exist a number of efficient graph visualization techniques in two-dimensional or

three-dimensional space [24]. Depending on the nature of the system, different optimiza-

tion criteria are chosen for the graph structure being used. These optimization factors in-

clude edge bends or edge crossings, and algorithmic efficiency. Other important factors to

take into consideration while constructing a graph are the size of the graph and consistency

of the graph-structure in conveying information.

The force-directed method of graph drawing is based on the idea of a spring model. In

this technique, the nodes are placed randomly in the screen space. A repulsive force be-
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tween every pair of nodes and an attractive force along each edge is computed, and the

resultant net force is calculated. Based on the net force, the final positions of the nodes are

determined using gradient descent. Tutte’s barycenter algorithm [12], spring-embedding

algorithms [13], and gravitational force algorithms [13] are examples of existing force-

directed algorithms. Spring-embedded graphs are commonly used in representing graphs

such as telecommunication networks, where the number of nodes and edges is large. The

force-directed method is particularly useful when the edges of the graph can be assigned

weights based on the properties they represent.

Orthogonal graph drawing is a technique for generating planar graphs [14]. Applications

such as database diagrams, software engineering data-flow diagrams, and electrical circuit-

diagrams follow this pattern of graph drawing. Orthogonal graph drawing uses polylines to

represent edges. This means that each edge in a graph is broken into a chain of vertical and

horizontal straight lines. Optimization entails identifying a layout that uses uniform (short)

straight lines and that minimizes bends and crossings.

Hierarchical or upward line drawing results in a directed acyclic graph, which is used to

represent a hierarchical relationship between the different objects represented as nodes in

the graph. In this representation, the nodes are constrained to lie on different horizontal lay-

ers, depending on the hierarchical relationship they have with their immediate neighbors.

Sugiyama et al. [42] describe a hierarchical graph drawing algorithm for drawing DAGs.

Other ways of representing high-dimensional data are relational perspective mapping [29],

hyperbolic-plane mapping [46], and hierarchical topographic visualizations [25]. All these
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methods have been developed from a theoretical graph model perspective. They consist of

a number of intermediate steps and have very high time complexity that is exponential in

the number of nodes. Therefore, unless the relative distances of the high-dimensional data

set are important, these algorithms are not used for graph layout.

A tree is a specialized graph without any cycles. A classical tree layout algorithm by

Reingold and Tilford positions the child nodes below the parent node [37]. This algorithm

lays out the graph in horizontal layers recursively, considering each subtree as a tree with

the topmost node in the subtree being considered as the root of that tree. The root is always

located above both of its children. This algorithm runs in linear time (in number of nodes).

However, it requires prior knowledge of the parent-child relationship that exists between

the nodes. However, in a spanning tree representing relationships between entities, there

does not exist a hierarchical relation among nodes, therefore no node can be designated

deterministically as the root. Other tree layouts that exist are H-tree layouts for binary

trees [41], radial trees [15] and cone trees [31]. H-trees are grid embeddings of free trees

[15], which do not have a left-to-right ordering of nodes. In this technique, the nodes are

placed on the grid points and the edges are routed along the horizontal and vertical grids.

Therefore, this algorithm can only lay out binary trees. Radial tree drawing assumes the

same hierarchical structure as the Reingold-Tilford algorithm [37], but draws nodes at the

same level of hierarchy at the same radial distance from the root node. Cone trees are

generally used for 3-dimensional data and the hierarchical structure is still used.

Several tree visualization techniques are tailored to serve different requirements of biolo-

gists studying genetic evolution. TreeJuxtaposer [32] is a tool for comparing very large
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phylogenetic (evolutionary) trees. TreeJuxtaposer associates each node in one tree with

a corresponding similar node of the other tree. The nodes in the two trees that do not

have corresponding matches are the ones that relate to the structural difference between the

two trees. By studying such structural differences in evolutionary trees, biologists are able

to answer questions about the evolutionary process. Another phylogenetic tree compari-

son tool is the Tree Set Visualization Program [2]. This program represents a tree space

generated by comparing two trees using certain distance metrics using multi-dimensional

analysis.

The above tools are undoubtedly suited for the application they are built for. They can

effectively display a very large number of nodes without the user losing focus or context.

However, our application does not need a display for supporting thousands of nodes. On

the other hand, in our application we compare two spanning trees, the nodes of which

represent different entities, and in which the number of nodes in the two trees might be

different. Therefore, these tree comparison tools would not serve our purpose of visual-

ization, because they are based on the assumption that the trees being compared represent

similar objects and have approximately the same number of nodes. All the graph draw-

ing algorithms described here are used for different visualization applications. Some of

these algorithms are suitable for small number of nodes (of the order of a few hundred),

whereas some are good at representing very large number of nodes (tens of thousands).

Both orthogonal and hierarchical graph drawing require a very clear idea of the graph in

terms of the relationships among the nodes before laying out the graph. We use a mini-

mum spanning tree to represent our index and matrix data. A minimum spanning tree is
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constructed by iteratively discarding the unneccessary edges from a fully connected graph.

Therefore, in a minimum spanning tree, no node can be designated as the root. As a result,

we cannot use any of the above tree layout algorithms without modifying them to fit our

requirements. A computationally expensive solution to this problem is to find a node which

is the center of the tree, make that node the root node, and rank all other nodes based on

that assumption. However, since finding the root node and computing ranks of nodes in a

tree is a problem of significantly high time complexity (O(n2), where n is the number of

nodes), a good compromise would be to consider a random node as the root of the mini-

mum spanning tree, and to lay out the tree starting from that root. This is the technique that

we have used in our visualization. Since we have meaningful weights associated with the

edges of the amino acid graphs, we want the visualization to be reflective of the distance

between two nodes in the tree through the lengths of the edges. To accomplish this, we

have used spring embedding on the tree layout algorithm. The spring embedding algorithm

adjusts the nodes of the tree after the layout, so that the final layout is a combination of the

repulsive forces between the adjacent nodes of the tree and the spring tension forces due to

the edges. The spring embedding makes the graph taut and also modifies edge lengths to

represent the relationship between adjacent nodes.

3.2 Biovisualization

Visualization of biological data has been an important topic of research in the last decade.

There are a number of application areas in biology where visualization plays a key role,



26

including sequence analysis, comparison, and alignment, molecular evolution, genomics,

gene expression and gene regulatory networks analysis, and heterogeneous biological database

analysis.

Our work is in the area of visualization of heterogeneous biological databases. We are

working with the amino acid database, which does not provide a challenge in terms of

the size of the database, but calls for new visualization techniques suited for exploring the

relationships among different entities belonging to this database. The aim of this thesis is

to display 20-dimensional amino acid indices in a spanning tree structure, showing as much

detail as possible in a two-dimensional space. We also compare two spanning trees with

different numbers of nodes and relate the scoring matrices to the indices to gain insight into

the data.



Chapter 4

Minimum Spanning Tree Representation

One of the primary goals of this research is to develop an efficient visualization technique

for displaying the indices and the mutation matrices such that the inherent relationships that

exist between them are preserved. A connected graph seems to be an obvious choice for

representing this relational data model. The original work on which this research is based

used a single-linkage hierarchical clustering on the data to understand the relationship be-

tween the indices and matrices. The result of hierarchical clustering is a dendrogram, which

becomes cluttered when the number of nodes is high. To overcome this problem, Tomii et

al. [43] used a minimum spanning tree for visualization; we adopt the same minimum

spanning tree representation. A spanning tree of a graph G with n nodes is a connected

subgraph G′ of G that includes all n nodes and only as many edges as required to make G′

a tree (that is n− 1 edges). A graph can have many spanning trees; a minimum spanning

tree (MST) is one in which the sum of the weights of the edges in the spanning tree G′ is

27
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minimized. In this research, we have two separate views for displaying both the index and

the matrix databases. The next section describes the approach for generating these views

in details.

4.1 Spanning Tree Generation

We represent the data entities (indices or matrices) as nodes in the spanning tree. The edges

are connections between these nodes. To generate a minimum spanning tree from a general

graph, a weight (numerical value) needs to be associated with each edge. Following Tomii

and Kanehisa we define the weight w for an edge between a pair of nodes as

w = 1−|c|

where c is the product moment correlation coefficient of the node vectors, defined as the

ratio of the covariance of the two variables to the product of the individual standard devi-

ations [43]. The value of c lies in the range [−1,1], so w will be in the range [0,1]. Now,

for a set of n selected nodes, first the fully connected graph having n(n− 1)/2 undirected

edges is constructed. Every edge in this graph has a weight which is computed using the

above equation depending on the values of the nodes connected by that edge. Using these

weights, we generate a minimum spanning tree following Kruskal’s algorithm [11].
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4.2 Spanning Tree Layout

The original work of Tomii et al. [43] does not specify the graph layout scheme used

for their spanning tree representation. However, the web-based interactive tool built by

Blazej uses the graph layout package provided by Touchgraph, LLC [44]. The naı̈ve way

of laying out a MST in screen space is to randomly position the nodes in the space and

draw the relevant edge connections. However, a random layout is not acceptable because it

does not give us any information about closely related nodes (edges with low weights) and

results in unnecessary edge crossings. Figure 4.1 shows an example of a random layout of

a MST of forty amino acid indices. It can be seen that the layout is not of much help in

getting an intuition about the relationship between the nodes.

To overcome this problem, we use a modified Reingold-Tilford tree layout algorithm [37]

for laying out the MST. As discussed in Chapter 3, the Reingold-Tilford algorithm is useful

for laying out an ordered tree which has a distinct hierarchical structure (designated root

node). However, an MST is a free tree, so the Reingold-Tilford algorithm needs modifica-

tion before it can be applied to our system.

In order to apply Reingold-Tilford algorithm, we need to designate one of the nodes of the

MST as the root. There are three ways we can select the root of the MST: (1) designate

a node randomly as the root, (2) designate the node with the minimum of the maximum

distances from the leaf nodes as the root, or (3) make the node with the maximum degree

the root. The first method does not yield a good layout since there tend to be edge crossings.

The second technique has a high running time of O(n2), where n is the number of nodes.
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Figure 4.1: Random layout of the MST with 40 indices

In order to avoid such intensive computation, we use the last method for selecting the root

of the MST.

After selecting the root node, we assign levels to all nodes in the tree in compliance with

their distances from the root node and then apply a modified Reingold-Tilford algorithm.

The original Reingold-Tilford algorithm uses only a 180o space for each node and lays

out the tree in a strictly top-down fashion. This leads to wastage of screen space and

unnecessarily clutters the layout in the lower levels towards the leaf nodes, since the MST is

not a symmetric tree. We modified the algorithm such that each node can use the entire 360o

around it to place a child. This leads to better screen space utilization and less congestion of
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Figure 4.2: Modified Reingold-Tilford layout of the MST with 40 indices

nodes in one area. Also, instead of having fixed lengths of the edges for the tree, we make

the edge length proportional to the weights of the individual edges. Figure 4.2 illustrates

the layout using our modified Reingold-Tilford algorithm. However, we see in the figure

that some nodes are placed almost on top of other nodes. This is because the edge lengths

are proportional to the weights of the edges; if these weights are very low, then it results in

very short edges.

The solution to this problem is to apply spring embedding after laying out the graph using

the modified Reingold-Tilford algorithm. In spring embedding, given a set of nodes and

edges between them, the task is to find a configuration of the system such that the total
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(a) (b)

Figure 4.3: Variation of spring constant (a) ks = 500 (b) ks = 5

energy of the system is minimized. As a result, the graph is very taut and stable and it

has a compact layout. Algorithm 1 describes the spring embedding algorithm [13]. Spring

embedding uses two forces to calculate the lengths of the edges: the spring tension force

of the edges and the repulsive force of the adjacent nodes. There are two constants in the

algorithm; the spring constant (ks) and the repulsive force constant (kr). The former is set

to 5, while we use a value of 150000 for the repulsive force constant. A high value of

ks (500) makes the final edges long, resulting in edge crossings, as shown in Figure 4.3

(a). When we make ks relatively small (5), the layout becomes aesthetically better, as can

be seen in Figure 4.3 (b). Similarly, Figure 4.4 (a) shows that a small value of kr places

the nodes on top of each other, whereas increasing kr to a value as high as 150000 places

the nodes far away from each other, thus preventing obscuration due to partial or complete

overlap. Figure 4.4 (b) shows the graph layout with kr=150000.
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Algorithm 1 Spring Embedding

kRepulsiveForce = 50000
kSpringConstant = 5
edgeLength = 400
f actor = 0.001

for all nodes in the tree do
pick the first vertex (v)

//spring tension forces are only because of the adjacent edges, which try to
//keep the edge length ’lSpringLength’

for all adjacent edges do
select the adjacent node (u)
find the screen distance (only distance) between u and v
lSpringLength = const * weight of edge between u and v
forcex = kSpringConstant *(distance - lSpringLength)*(v.x-u.x)/distance
forcey = kSpringConstant *(distance - lSpringLength)*(v.y-u.y)/distance
sumofforcesx +=forcex;
sumofforcesy +=forcey;

end for

//repulsive forces are because of all nodes in the system

for all nodes do
select a node u
find distance between u and v
force = -1 * krepulsiveforce / (distance * distance)
forcex = force * (v.x - u.x) / (distance)
forcey = force * (v.y - u.y) / (distance)
sumofforcesx +=forcex
sumofforcesy +=forcey

end for

v.x = sumforcesx*factor;
v.y = sumforcesy*factor;

end for
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(a) (b)

Figure 4.4: Variation of repulsive force constant (a) kr = 50 (b) kr = 150000

4.3 Index Spanning Tree

The correlation coefficient c for indices is computed as follows [8]:

c =
∑n

i=1(xi − x)(yi − y)
[

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2

]1/2

For any two amino acid indices X and Y, xi represents the elements of X, and yi represents

those of Y. The means of the elements of X and Y are denoted by x̄i and ȳi, respectively,

and the number of elements by n. Since the correlation coefficient c is a measure of the

relatedness or dependency of two variables, its difference from 1 can be considered to be

the unrelatedness or distance between the variables.

For generating an index spanning tree, the user is allowed to choose a number of indices

from a table displaying the 494 available indices from the UMBC AAIndex database(Figure

4.5). Kruskal’s algorithm is applied to the fully connected graph constructed from these
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Figure 4.5: Graphical user interface for displaying the database of amino acid indices. It
gives the user the option to select individual indices for display

nodes and the modified Reingold-Tilford algorithm, along with spring embedding, then

produces the final layout.

A typical spanning tree view for forty amino acid indices is shown in Figure 4.6. There

is an edge between indices 1 and 120, which means that the distance between 1 and 120 is

less than the distance from index 1 to any other node. This tells the user that the normalized

relative frequency of extended structure (index 120) of an amino acid tends to be directly

related to its alpha-ch chemical shifts (index1).

If there is more than one index adjacent to a particular index, the user might want to know
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Figure 4.6: Minimum spanning tree from 40 selected indices

which of these indices is closest. Therefore, we print the distance of a selected (clicked)

index from all its adjacent indices. In Figure 4.7, we show the distance of index 123 from

its adjacent indices, 111 and 120. We can observe that 123 is closer to the two indices

111 and 120 than other indices, such as 1 and 109. However, of these two closest indices,

node 111 is closer to node 123, with a distance value of only 0.02. Another important

observation is that the spanning tree constructed depends on the nodes that are selected.

As an example, index X and index Y may both be present in two selections of nodes to

be displayed. However, there can be an edge between them in the first MST, and no edge

between them in the second MST, if there is a different index Z that is closer than Yto X in

the second MST.
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Figure 4.7: Details of Edge Lengths Shown in Text Area for the Index Spanning Tree

4.3.1 Banded Edges

In this spanning tree view of amino acid indices, by studying the adjacency of different

nodes, we can draw conclusions about the relatedness of pairs of indices. However, the

indices are 20-dimensional vectors, where each dimension is an amino acid. We say that

two properties or indices agree with each other when all 20 amino acids have correlated

values for the two properties. However, we are not able to deduce anything about the

difference of values for a particular amino acid in these two properties. To overcome this

difficulty, we enhance the index spanning tree view by incorporating the idea of banded

edges. If the user wants to see the difference in values of an amino acid in any pair of
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indices in a spanning tree, he can display this information by clicking on the “Show Banded

Edges” button in the toolbar. In this view, the monochromatic edges of the spanning tree

are replaced by thicker lines that are divided into 20 equal parts, each part representing an

amino acid. The 20 parts are color-coded, where each color stands for one of the twenty

amino acids. The color index is provided in the lower area of the left panel, as shown in

Figure 4.8. For example, we can see from the color index in Figure 4.8 that amino acid

Alanine (A) is dark blue in color. The colors are always arranged in order, starting from

the node with the lower index number. For example, in Figure 4.9, the order for the edge

between nodes 1 and 120 is from node 1 to node 120, whereas for the edge between nodes

120 and 114 it is from node 114 to node 120.

Once we have a way of representing the 20 amino acids in the graph, we can show how the

amino acids differ in the two properties by drawing perpendicular lines through each of the

colored blocks. The length of each perpendicular line is proportional to the difference in

values of each amino acid for the two properties at the ends of the edge under consideration.

However, representing all the perpendicular lines for all edges will render the visualization

scheme useless by adding too much clutter or unwanted details. Therefore, the perpen-

dicular lines are displayed for only those edges which are adjacent to a selected (clicked)

node. In Figure 4.9, node 109 is selected; the three edges adjacent to index 109 are those

connecting it to index 1, index 100, and index 103. The bars are visible for only those three

banded edges. The vertical line through the red band is long in the edge between 109 and

1, whereas there is a much shorter bar for the red band in the edge between 109 and 100.

This means that the value of amino acid Leucine (L) is similar for indices 109 and 100,



39

Figure 4.8: Banded edges in index spanning tree and color index as part of the graphical
user interface

whereas it is very different in indices 109 and 1. In the banded edges view, the absence

of a perpendicular line for any amino acid block indicates that the two properties have the

same value for both amino acids. On the other hand, the longest length of the line would

indicate the maximum difference. Thus, by looking at these three edges in Figure 4.9, we

can conclude that the distance between nodes 109 and 1 is much more than the distance

between 109 and 100 or between 109 and 103, since the perpendicular bars corresponding

to the amino acids in the edge between 109 and 1 are much longer than those for the edges

109-100 or 109-103. The text area to the left corroborates our claim. We can turn on the

perpendicular lines on the edges adjacent to a node by clicking on the node. By clicking on
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Figure 4.9: Banded edges in the index spanning tree with differences of values of amino
acids between the two associated properties shown as bars perpendicular to the blocks. The
length of the perpendicular bars is proportional to the difference value.

the same node again, we can turn off the line drawing. Therefore, at any instance, we can

click more than one node to get the details of the amino acids for each node. We can again

turn off the lines one by one by clicking on any of the selected nodes.

In the method described above, the user needs to click on a node to see the difference in

amino acid values between the two indices. But when the system has many nodes, then

this method will not be very efficient in representing the individual amino acid information

for all the nodes in the tree. To avoid this problem, our system also provides a second

way to visualize the difference in amino acid values between any two nodes currently in
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Figure 4.10: Banded Edges in Index Spanning Tree with α-value mapping of color

the selection. We map the difference in amino acid values between the nodes to the α-

value (opacity) of the colors assigned to each of the amino acids. For any two chosen

indices, the α-value of the maximum difference of the amino acid values is assigned a

value of 1.0 while the minimum difference is assigned a value of 0.2. The rest are linearly

interpolated in between. Figure 4.10 shows such a mapping for a set of indices. Among

the different amino acids for the edge between nodes 11 and 108, we see that three colors

orange, red and cyan are the most prominent, indicating that the difference in amino acid

values corresponding to these three colors (namely N, G and P) are very high for the two

nodes in consideration.
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Figure 4.11: Graphical user interface for displaying the database of similarity matrices. It
gives the user the option to select individual matrices for display

4.4 Matrix Spanning Tree

In the previous section, we described in detail how an index spanning tree is constructed

and displayed. In this section, we describe how the same technique can be applied to

construct a spanning tree of the amino acid similarity matrix data. There are 83 similarity

matrices. The table user interface for selecting from the 83 available matrices is shown in

Figure 4.11. Once the user selects a number of matrices by clicking on the checkboxes, he

can generate the tree by clicking on the “Generate Tree” button.

If two matrices are similar, then for any amino acid pair, the similarity value provided by
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Figure 4.12: Minimum Spanning Tree of 45 Similarity Matrices

one of the matrices is very close to that of the other one. To measure these distances,

we use the same distance metric discussed in the previous section. However, we need to

define the meaning of the weight metric w with respect to a 20×20 matrix, as opposed to

distance between two 20-dimensional column vectors. To compute the distance between

two matrices, we transform the 2-dimensional 20× 20 data to a 1-dimensional vector of

size 400, and then find the distance (weight) between the two 1-dimensional vectors in the

same way as the indices (using the correlation coefficient). Given this data, we generate a

fully connected graph, from which we generate a MST using Kruskal’s algorithm.

Figure 4.12 shows a spanning tree constructed from forty-five selected similarity matrices.
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Figure 4.13: Details of Edge Lengths Shown in Text Area for the Matrix Spanning Tree

There is an edge between matrices 2 and 27, which means that the distance between 2 and

27 is less than the distance between 2 and any other matrix. Matrix 2 is the log-odds scoring

matrix collected in 6.4-8.7 PAM, whereas matrix 27 is a structure-based comparison table.

Although these two similarity matrices were computed under different experimental con-

ditions using different comparison metrics, they agree in predicting which pairs of amino

acids are most likely to substitute for one another.

We also provide the user with all information regarding distances between a chosen matrix

and all its adjacent matrices. This becomes useful when a matrix has a number of adjacent

matrices and the user wants to know which of these adjacent nodes is closest to the con-
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cerned matrix, as shown in Figure 4.13. Here, node 27 is connected to nodes 2 and 34. By

clicking on node 27, the user can find out the distance of the adjacent nodes from 27 and

determine the closest among them (node 34 in this case). Due to the spring embedding of

the graph, edge lengths are closely correlated to the weights of the edges.

4.5 Evaluating the Spanning Tree Visualization

We have designed and performed a number of experiments to assess the performance of

the layout algorithms in terms of the tasks these graph-based visualizations are intended to

support. Given a set of indices or matrices, the spanning tree view lets the user identify the

closest node in the tree to any chosen node. To facilitate this task, the lengths of the edges

between every pair of nodes should reflect the “closeness” of two nodes. Since the graph is

a minimum spanning tree, if a node has only one edge, then that edge obviously connects

it to the node to which it is closest. If no edge exists between a pair of nodes, then the user

can definitely conclude that those two nodes do not share the minimum distance and their

distance in screen space is not considered for analysis. Therefore, we are only concerned

with those nodes with more than one adjacent edge. In the ideal case, our visualization

should enable the user to judge which of the adjacent nodes is the closest just by looking at

the lengths of the edges.

In this section, we report the results of four experiments that we conducted. Throughout

the rest of this section we denote the weight of an edge as the computed distance and the

length of the edge in screenspace as the physical distance. In the first set of experiments



46

we measure the difference between the computed distance and the physical distance, on

average, over all the edges. We call this difference the error; it quantifies the relationship

between these two distances. The lower the error, the more effective the visualization. This

experiment has been conducted for both the index and the matrix spanning tree. If a node

has only one adjacent node, the task of finding its closest node is trivial, since, in the MST

constructed, it will be adjacent to only its nearest node. However, if a node in the MST has

more than one adjacent node, then the layout of the tree plays a significant role in helping

the user to find the closest node.

In the second set of experiments, we evaluate the efficiency of our layout algorithm by

measuring the average difference between the lengths of the two edges adjacent to a node,

that have the lowest and the second lowest weights. If this difference is high, then, on

average, it should be possible to distinguish the closest pairs of nodes in a tree. This

experiment has also been done for both the index and the matrix spanning trees. Note that

our layout algorithm is deterministic; therefore, given a set of nodes, we will have the exact

same layout for different runs of the same experiment.

The first experiment that we have performed on the index spanning tree and the matrix

spanning tree is evaluating the total error in the graph. Let wi be the weight of an edge and

di be the corresponding physical distance between the nodes connected by that edge. The

total error is defined as

E =
n

∑
i=1

|
wi

W
−

di

D
|
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where W = ∑n
i=1(wi) and D = ∑n

i=1(di). This experiment gives us an overall idea about

the agreement of these two distances over all the edges of any displayed MST. This error

metric can take a minimum value of 0 and its asymptotic upper bound is 1. In the ideal

case, the error can have a value of 0, when for each edge, wi
W = di

D ; that is, when the physical

distances are perfectly proportional to their weights. The smaller the value of this metric,

the more accurate is the representation. The error will have a value of 0 when we use

only the modified Reingold-Tilford algorithm, with no spring embedding, since we make

the lengths of the edges proportional to their weights. Because this approach results in a

layout where the nodes may be on top of each other, we introduce spring embedding, which

increases the error, but improves the aesthetics. Figure 4.14 is the plot of the total error with

respect to the number of index nodes in the spanning tree. In this experiment, we select n

nodes and lay them out using the tool. Although our layout algorithm is deterministic, we

take an average of ten trials by selecting a different set of n indices for each value of n. In

Figure 4.14 we have also plotted three baseline cases: the green line represents the layout

in which the nodes are laid out using modified Reingold-Tilford and no spring embedding

has been applied to the layout; the black and the blue lines show the errors for random

layouts. The black line represents the layout where we apply spring embedding after the

layout, while the blue line shows the error for random layout without spring embedding.

Not surprisingly, the error is high for the two random layouts, since there is no correspon-

dence between the physical lengths of the edges and their weights. On the other hand, the

error is near 0 for the green line, since the edge lengths are perfectly proportional to the

weights.
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The red line represents the error for our spanning tree visualization. We see that this lay-

out performs much better than the random layout, because although spring embedding

repositions the nodes, it preserves the relationships between the weights and the physical

distances, thereby keeping the error lower. We also notice that this error decreases as the

number of nodes increases. This can be attributed to the effect of the repulsive force of

spring embedding. This force is exerted on a node by all other nodes in the graph. When

the number of nodes is large, then the repulsive force exerted by some nodes is nullified by

that of other nodes, resulting in lower error.

Finally, we note that the error is minimum when we do not use any spring embedding.

However, this layout is aesthetically not very pleasant, since at the end of the layout phase,

the nodes with low weights are placed almost on top of each other. Therefore, in the span-

ning tree view, we try to achieve a balance between error minimization and an aesthetically

pleasing layout and we optimize the layout algorithm parameters accordingly.

Figure 4.15 shows an error plot for the matrix nodes. Here also the red line represents the

error for our matrix spanning tree visualization scheme. The nature of the graph is very

similar to that of the index spanning tree.

In the second set of experiments, we have evaluated how efficient our visualization is, in

highlighting the edge with the lowest weight, for a node having multiple edges. Our second

set of experiments were performed on a subset of the nodes, because the nodes having a

single adjacent node have only one edge, which represents the minimum weight. We only

consider those nodes in the graph that have more than one adjacent edge. For each such
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Figure 4.14: Experimental Results Showing the Total Error for Different Sizes of the Index
Spanning Tree

node, we find the edges with the least and the second lowest weights. We compute the

difference in the physical lengths of the two edges. We repeat this process for all nodes

in the graph and take an average over all the differences. We plot these average difference

values against n, which is the number of selected nodes.

We plot two such graphs for both the index and the matrix spanning tree (Figure 4.16 and

Figure 4.17). In Figure 4.16, we see five lines. The blue line shows the results using a tree

layout algorithm for constructing the spanning tree, but, no spring embedding. The cyan

line corresponds to a random layout for the spanning tree and no spring embedding. The

magenta line represents the case where we choose a random layout for the spanning tree
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Figure 4.15: Experimental Results Showing the Total Error for Different Sizes of the Matrix
Spanning Tree

and display it after spring embedding.

The red and the green lines are the results of the evaluation of our visualization. The red

line is plotted after taking an average of the absolute differences, whereas the green line

is plotted after taking an average of the exact differences between the minimum and the

second minimum edge lengths. In the ideal situation, this difference should always be

positive; therefore, the two lines should coincide. If the red and the green lines differ to

a great extent, it indicates that the edge having the minimum weight does not have the

minimum length in the screen space.
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We notice that, except for a couple of observations, the average of the absolute value of the

difference is the same as the exact difference. This means that, in most cases, an edge with

the lowest weight has the shortest length. With all 494 index nodes selected, the number of

reversals of minimum and second minimum edge lengths is never more than 15%, which

is evident from the red and the green graphs. The reversal occurs only when a node is

dislocated from its correct location due to the combined attractive and repulsive forces as a

result of spring embedding. The cyan and magenta lines, representing the difference metric

for random layouts with and without spring embedding, have a somewhat arbitrary nature,

since the layout does not have any control over placement of the nodes. The blue line has

a difference value that is exactly proportional to the difference in the minimum and the

second minimum weights. In all the results in Figure 4.16, we see that the average absolute

difference is at least twenty-five, which is above the normal human perceptible distance

of five pixels [35]. This indicates that our spanning tree visualization successfully depicts

which are the two closest nodes in the tree. Figure 4.17 shows very similar observations

for the matrix spanning tree.

Our experiments prove that it is always possible for the user to identify the closest node

from a group to a given node by looking at the edge lengths. The first metric shows that

the overall error increases very slowly with the number of nodes. The system is highly

scalable and is easily able to present a large number of nodes. From the second metric, we

know that the difference between the minimum and second minimum lengths is greater than

the human perceptible range in eighty percent of the cases. Thus we can conclude that our

visualization scheme works fairly well in accomplishing what it is designed to do. The error
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Figure 4.16: Experimental results showing the average difference in lengths of the edges
representing the minimum weight and the second lowest weight. The red graph represents
the average of the absolute difference whereas the green graph represents that of the exact
difference.

graphs tell the users that for the index spanning tree, the graph becomes more accurate with

increasing size. Therefore, by looking at a spanning tree, the user should be able to spot

the closest pairs of connected nodes. For the matrix spanning tree, the error rate is slightly

higher than the index spanning tree. The second graph shows that in approximately 85%

of the cases, the user will be able to correctly say which node of a group of adjacent nodes

is closest to the concerned node by visually observing the differences in the edge lengths.
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Chapter 5

Comparing Spanning Trees

In the previous chapter, we discussed how we use a spanning tree representation to dis-

play amino acid indices and the amino acid similarity matrices. The index spanning tree

depicts the relationship among different physical and chemical properties of amino acids

and how the values of these properties vary from one amino acid to another. The matrix

spanning tree shows the relationship among different similarity matrices, where each sim-

ilarity matrix tells us about the similarity between pairs of amino acids calculated on the

basis of empirical results. Given these two spanning trees, an obvious idea would be to

link these two trees in some way and deduce some information from the joint structure.

The similarity matrices have been generated from experimental results and are, therefore,

observed values. Biologists have argued that there must be some pattern in these observed

similarities that is affected by the underlying properties of the amino acids [48],[18].

Therefore, we try to compare the two spanning trees by choosing an appropriate layout that

54
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will enable a user to infer about the influence of the indices on the matrices.

In the literature of graph visualization, there are a number of ways to compare two graphs.

Biologists compare evolutionary trees to come to important conclusions about the theory

of evolution. These evolutionary trees may include tens of thousands of nodes. TreeJuxta-

poser [32] is a tool for visualizing and comparing such evolutionary trees without loss of

focus and context. However, TreeJuxtaposer and other tree visualization tools work under

the basic assumptions that the trees have approximately the same number of nodes and that

the nodes and edges in the trees represent the same kind of objects and relationships. In

our system, we cannot make this assumption. One of the trees is a tree of indices, which

are twenty-element vectors, whereas the other one is a tree of matrices, which are 20×20

arrays. Furthermore, the numbers of nodes in the two trees are not necessarily equal.

Several problems can be solved using this visualization. We might want to know how a

particular index influences a group of similarity matrices. In that case, we would have to

compare one node of the index spanning tree to many nodes of the matrix spanning tree.

Alternatively, given a number of indices and a single matrix, we might want to find out

which index is most responsible for the values in the given similarity matrix. In this case,

we have many nodes of the index spanning tree and only one node of the matrix spanning

tree.



56

5.1 Layout Algorithms

In this chapter, we describe three 2D layout algorithms for jointly laying out two indepen-

dent spanning trees to enable a user to understand the relationship and influence of one

spanning tree on the other. The three algorithms are joint independent layout, joint layout

influenced by the index tree, and joint layout influenced by the matrix tree.

The joint independent layout approach explores the relationship between the nodes of the

two spanning trees without any constraints on the layout of the two trees. In the joint

layout influenced by the index tree, the layout of the matrix spanning tree is influenced by

the positions of the nodes of the index spanning tree. The index tree is first drawn using the

standard spanning tree layout algorithm. The nodes of the matrix tree are then positioned

near the nodes of the index tree to which they are the closest. In the third layout (joint

layout influenced by the matrix tree), the matrix tree is first laid out and the index nodes are

placed relative to the matrix nodes.

5.1.1 Joint Independent Layout

In this layout, the user first selects a number of indices from the index database and a

number of similarity matrices from the similarity matrix database. The first step of the

algorithm is to construct the two spanning trees using the technique described in the last

chapter. We then compute the distance between a matrix node and an index node for every

index-matrix pair. We refer to this distance as the computed inter-tree distance. The indices
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are normalized values of specific amino acid properties. For comparing one such index to

a similarity matrix we need to establish a relationship between these two amino acid data.

The difference between the ith and the jth entries of an amino acid index would tell us

about the disaggrement (or agreement) between two amino acids for a specific property.

Therefore we can create a matrix of these differences and use that to compute the inter-tree

distances. Since one of these is a one dimensional vector of size 20, and the other is a

two-dimensional vector of size 20× 20, we first apply a transformation on both to make

their dimensions agree so that mathematical operations can be applied on them. Given an

index vector, we first derive a 20×20 matrix where the (i,j)th element of the matrix is the

difference between the ith and jth element of the index vector. We then convert this 20×20

matrix to a 400×1 vector. We also convert each 20×20 matrix to a 400×1 vector. Now

that we have two vectors, we can easily compute the distance of these two vectors using the

distance equation of the previous chapter. Note, however, that this distance metric might not

be the best representative of the distance relationship between the indices and the matrices,

since the indices are linearly normalized values of the properties, and the matrices are log

odds of the original probabilities of the substitution matrices.

The next step of the algorithm is to lay out the two spanning trees as part of a single graph

(which may not be a spanning tree). We use spring embedding after laying out this new

graph, which has two types of nodes (index and matrix nodes) and three types of edges

(index-index, matrix-matrix, and index-matrix edges). We optimize this layout algorithm

for effective visualization. Instead of drawing all of the edges between each matrix node

and each index node, we display only those index-matrix edges that are greater than a
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predefined threshold. This reduces visual clutter by reducing the number of index-matrix

edges. If we were generating a graph from an index tree with m nodes and a matrix tree

with n nodes, then without the threshold, we would have to display m× n index-matrix

edges, which would make the graph very difficult to interpret. In our system, we provide

the option of changing the threshold dynamically, so that at any time the user will only see

the edges whose distances are below the chosen threshold. To make this visualization more

interpretable, we have mapped the opacity of the index-matrix edges based on the distances

they represent. For this purpose, we have normalized every index-matrix distance to have a

value between 0 and 1. We then map a distance of 0 to an opacity of 1 (completely opaque)

and a distance of 1 to an opacity 0 (transparent) and we linearly interpolate the opacities of

all the edges.

Figure 5.1 shows the joint independent layout as implemented in our system. We have

selected ten index (white) nodes and ten matrix (black) nodes. The red edges are the index-

matrix edges. One can easily note the reduction of the number of index-matrix edges from

100 (m×n) to approximately 30, with a threshold of 0.5. Standard functions such as graph

moving, node pinning and zooming are available in this view.

5.1.2 Joint Layout Influenced by the Index Tree

In the joint independent layout, the positions of the nodes in the graph do not depend on

the index-matrix distances. Therefore, an index node and a matrix node might be placed

far away from each other, even if the distance between them is small. This not only leads to
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Figure 5.1: Joint independent layout where positions of matrix nodes are determined by
spring embedding

unnecessary edge-crossings in the visualization, but also reduces the interpretability of the

graph in terms of analyzing the relationships between index and matrix nodes. In the joint

layout influenced by the index tree, we solve this problem by determining the position of

each matrix node based on the closest index node.

We first select a set of index nodes, lay out the index spanning tree, and then lay out the

nodes of the matrix spanning tree after computing the index-matrix distances. After all

such distances are computed for each matrix node, we arrange the distances in ascending

order. We then choose the edges that are to be drawn based on the current threshold. We

place every matrix node closest to the index node with the smallest computed inter-tree

distance from it. At the end of the layout process, all the matrix nodes have been placed
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near their respective closest index nodes.

If an index node is closest to more than one matrix node, and if all of them have the

same distance from the index node, then those matrix nodes are placed radially around that

index node at an equal physical (screen space distance) distance from that index node. The

physical distance is a function of the computed inter-tree distance (w = 1− c) between the

index matrix pair.

This layout helps us identify a group of matrices that is close to an index. However, choos-

ing the threshold plays an important role in this visualization. The lower the distance

between an index-matrix pair, the more significant the edge. When the threshold is rela-

tively low, the user can visualize only the most significant inter-tree edges. As the threshold

increases, the number of such edges also increases. Unlike the joint independent layout,

a change in the threshold value might lead to a change in the position of a matrix node,

depending on whether one of the edges originally displayed has to be removed or whether

a new edge has to be added to the display. The similarity between matrix nodes does not

affect this layout at all.

An important aspect of this layout is the study of the resulting matrix tree. In a matrix span-

ning tree, nodes are adjacent to each other only if the distance between them is minimum.

The similarity matrices are based on observations that the biologists are trying to explain

using the amino acid index data. If two matrix nodes have an edge between them, then they

are very similar to each other; they should, therefore, have very similar amino acid indices

influencing them. If in this layout influenced by the index spanning tree, the matrix nodes
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Figure 5.2: Joint layout influenced by index tree for threshold=0.5

with edges between them are still placed close to each other, then we can conclude that

the group of similar matrices are affected by the same index node, or by index nodes that

are most similar to each other. On the other hand, any exception to this behavior would

be considered as a special observation that could provide new information relevant to the

research on evolution.

Figure 5.2 shows a snapshot of the joint layout influenced by the index tree. The threshold

is set to the default value of 0.5. We see that matrix node 1 is strongly influenced by index

node 112 and that the former lies very close to the latter. Matrix node 1 has edges with

both index nodes 109 and 117. However, since the computed inter-tree distance of matrix

node 1 from index node 112 is the smallest (compared to the distance between matrix node
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Figure 5.3: Joint layout influenced by index tree for threshold=0.58

1 and the other two index nodes), matrix 1 is placed close to index node 112. The same

argument is true for matrix node 11, which is placed close to index node 109, although it

shares an edge with both index nodes 109 and 112.

Figure 5.3 shows what happens if the threshold is slightly increased. We see that for a

threshold of 0.58, several index-matrix edges are added to the graph. We also observe

that matrix nodes 11, 14, 15, and 16 change their locations. This is because while placing

the matrix nodes, we allow only those index nodes to influence the matrix nodes whose

index-matrix distance is less than the threshold. Since the threshold has now changed, the

location of the matrix node also changes. If we increase the threshold further to 0.75, we

see more red edges and more changes in the locations of the matrix nodes. If two matrix
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Figure 5.4: Joint layout influenced by index tree for threshold=0.75

nodes happen to be closest to the same index node and their individual distances to the

index node are also same, then we place the matrix nodes radially around that index node

in order to avoid overlapping.

The physical distance between the index node and each of the matrix nodes is a function

of the computed inter-tree distance between them. Figure 5.5 shows the graph structure

when the threshold is increased to the maximum value of 1.0. We see that all the index-

matrix edges are visible now. Due to opacity mapping, however, only the significant ones

are fully opaque, whereas the ones with higher computed inter-tree distances are partially

transparent.
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Figure 5.5: Joint layout influenced by index tree for threshold=1.0

5.1.3 Joint Layout Influenced by the Matrix Tree

The technique for this layout is similar to that of the previous section, with the index nodes

replaced by the matrix nodes and vice versa. This layout tells the user about the group of

indices that influence a mutation matrix. Figure 5.6 shows the layout of the graph influ-

enced by the matrix tree. According to our algorithm, we first lay out the black matrix

nodes using the tree layout algorithm and then apply spring embedding. The matrix tree

structure is preserved in this case, unlike the layout in the previous section. In the next step,

we determine the positions of the index nodes based on their closest distances to the matrix

nodes. As shown in Figure 5.6, both indices 104 and 105 are closest to the matrix node 26,

while index node 1 is influenced by matrix node 12.



65

Figure 5.6: Joint layout influenced by index tree for threshold=0.5

In both the matrix-influenced and index-influenced joint layouts, zooming and graph move-

ment are allowed as before. However, movement of individual nodes is not allowed in either

case because that might destroy the meaningful information about the relative proximity of

index and matrix nodes. For the index influenced layout, the user is only allowed to inter-

actively move the index nodes, which simultaneously guides the movement of the matrix

nodes, and vice versa for the matrix-influenced layout.
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5.2 Evaluation of the Three Joint Layouts

The three joint layouts described in this chapter facilitate different tasks for the biologists.

The effectiveness of the views can be measured by taking into consideration metrics such as

the distance between an index node and its closest matrix node. Ideally, a matrix node that

has the minimum computed inter-tree distance to an index node should be placed closest

to it in screen space, and the physical distance should increase as the computed distance

increases. This is where the matrix-based joint layout and the index-based joint layout

outperform the joint independent layout. In the joint independent layout, the two spanning

trees are first laid out on the screen independent of each other and spring embedding is

applied to both independently, which gives them a perfect tree layout. Finally, an edge

is drawn between each index-matrix pair if their distance is less than the threshold. This

layout fails to draw the user’s attention to the closest index matrix pairs and also results in

many edge crossings. However, if the user is interested in the overall tree structures of the

index spanning tree and the matrix spanning tree, then the joint independent layout would

be a better view.

The claims of effectiveness of the above layouts are corroborated by the results of the ex-

periments that we have conducted to evaluate the quality of our layout algorithm. For each

of the layouts, our main goal is to find out if the difference in the edge lengths of any two

matrix nodes, which are both adjacent to an index node, is greater than the human percep-

tible range. In order to experimentally verify this, we perform the following experiment.

For the joint independent layout, we choose a set of index nodes and matrix nodes and



67

10 20 30 40 50 60 70 80
20

30

40

50

60

70

80

90

100

110

Number of selected matrix nodes

D
is

ta
nc

e 
be

tw
ee

n 
ith

 a
nd

 i+
1th

 n
od

e 

Distance between 1st and 2nd node

Distance between 2nd and 3rd node

Distance between 3rd and 4th node

Distance between 4th and 5th node

Distance between 5th and 6th node

Figure 5.7: Experimental result showing the error between the first five indices (taken in
sequence) with increasing number of matrices for the joint independent layout

lay them out. We select only those nodes for which the number of red edges (inter-tree

edges) is five or more. We arrange these five red edges in ascending order based on their

computed inter-tree distances and note the respective physical distances for each edge. We

compute the difference between every consecutive pair of distances in this ordering. We

take an average of these differences for every node in the tree with more than five edges,

and plot these average differences against the number of selected nodes. We perform this

experiment for different numbers of index and matrix nodes and report an average of ten

runs for each choice of index and matrix nodes. It should be noted that the results reported

here are for a threshold of 0.5.

Figure 5.7 shows the average pairwise difference in the edge lengths of five index-matrix
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edges, arranged in increasing order of the computed inter-tree distances. The horizontal

axis shows an increasing number of nodes (both indices and matrices) for the joint inde-

pendent layout. The individual lines denote the average difference in physical distance

between the ith and (i+1)st node. The nature of the graph seem to be random. This is ex-

pected in this layout, since the indices and matrices are placed randomly according to their

own spanning tree structures, with no relationship with each other. With varying number

of nodes, these lines have no specific pattern.

Figures 5.8 and 5.9 show the pairwise difference in the physical lengths between the lowest

and second lowest weights, second lowest and third lowest and so on for five such pairs.

The graph shows an increasing pattern as the total number of selected nodes is increased.

The structure of the final layout is influenced by the index nodes in the first case and by

the matrix nodes in the second case. We call these nodes, which determine the shape of the

spanning trees, the influencing nodes, and the other type the influenced nodes. As we add

more influencing nodes in the layout, the difference in physical distances increases because,

in order to be placed closest to their corresponding influencing node, the influenced nodes

are pulled apart from other influenced nodes. Similarly, more influencing nodes means that

an influenced node can easily find a node closer to other influenced nodes, so the average

difference in distance decreases.
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Chapter 6

Sparkler Arm Visualization Technique

In the previous chapter, we focused on the joint layout of the index and matrix spanning

trees for their efficient comparison. In this chapter we present a different view of the data,

which we call the sparkler arm view. This view, unlike the others described so far, is not

graph visualization. This view helps the user to study the mutation matrices and compare

them with respect to any one amino acid.

6.1 Multiple Query Visualization

The sparkler arm visualization technique is inspired by the model proposed by Havre et al.

[23] for displaying the results of multiple queries. Havre et al. describe a visualization that

included a group of color-coded triangles in the center, where each such triangle represents

a query from the user. The triangles are arranged in a circle covering an angle of 2π .

71
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From each triangle, an arm extends radially outward and all results relevant to a triangle

or query are arranged in order of importance along that arm. The query results that are

most important or relevant are placed closer to the triangles at a smaller radius than the less

important ones.

6.2 Sparkler Arm Technique

In this layout, the user first selects a particular amino acid and then a number of similarity

matrices. The first step of the visualization algorithm is to take one of the chosen matrices

and select the row corresponding to the chosen amino acid. The elements of that row are

then arranged in descending order of magnitude. The values in the similarity matrices

indicate how similar two amino acids are. The higher the similarity value, the higher the

likelihood that one amino acid may substitute for the other during the course of evolution.

After arranging the elements of the matrix row in descending order, we discard the first

element, because the highest similarity of an amino acid is always with itself and it need

not be considered for our visualization. We then choose the remaining nineteen elements

and lay them out in a series of nineteen circles along a line, where each circle represents an

amino acid. Thus for a selected set of n matrices, we have n such sparkler arms projecting

from a central square representing the chosen amino acid.

In order to make the layout uniform, the sparkler arms are always placed equidistant from

each other, so they are distributed evenly over the entire span of 2π degrees. Each amino

acid is color-coded for our system. The color of the circle tells the user which amino acid it
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Figure 6.1: Sparkler Arm View with A (Alanine) as the chosen Amino Acid and 10 Muta-
tion Matrices

represents; the color index is always visible at the lower left panel to facilitate lookup. Also,

if the user scrolls his mouse through the display, the names of the amino acids appear as

tooltip texts. Each arm of the sparkler represents a matrix, with the matrix number printed

at the end of the arm. The names of the selected matrices are simultaneously displayed in

the graph information text panel. Figure 6.1 shows a sparkler arm view with ten selected

matrices and amino acid A (Alanine) representing the central element.

If a particular amino acid is closest to the central amino acid in many of the arms of the

sparkler arm view, then it can be inferred that, irrespective of the experimental conditions

under which the similarity matrices have been computed, and irrespective of the metrics

used for their computation, the amino acids are very similar. In Figure 6.1, we see that
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amino acid S is closest to A in six out of the ten sparkler arms. This means that S has a

very high probability of substituting for the amino acid A during evolution. On the other

hand, for a majority of the matrices chosen, if a particular amino acid is placed towards the

end of the arm, then it indicates that the amino acid is dissimilar to the one at the center

and hence it has a lower probability of replacing that amino acid during evolution. For

example, in Figure 6.1, we observe that amino acid W is last in the sequence in seven of

the ten arms of the sparkler.

6.3 Usefulness of the Sparkler Arm View

The sparkler arm view helps provide insight into the process of amino acid substitution. The

similarity matrices represent different patterns of amino acid substitution. Some entries of

these matrices are zero, implying that the corresponding pairs of amino acids never replace

one another during evolution. A high value denotes a very high observed frequency of one

amino acid replacing another. In a particular selection of matrices for the sparkler-arm view,

if the same colors (representing amino acids) appear closer towards the central amino acid

for a subgroup of matrices, then it can be inferred that the amino acid substitution pattern

is similar for all those matrices. If the same colors appear towards the end of the arms for

the other group of matrices, then these two sets of matrices might represent different types

of organisms. Therefore, by observing the distribution of colors in different arms of the

sparkler arm view, the user would be able to infer the similarity of mutation matrices. It

would then be possible to account for such similarity by looking at the relationship among
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these matrices and the amino acid indices using the joint layout visualization scheme.



Chapter 7

Research Contribution and Future Work

The analysis and visualization of biological research data is currently an active topic of

research in the bioinformatics community. This research is an addition to the existing liter-

ature of bioinformatics tools. However, this work has a considerable research contribution

from the point of view of both biology and visualization.

7.1 Research Contribution in Biology

Research on genetic evolution has always concentrated on widening the knowledge-base of

all possible patterns of amino acid substitution.In this research, we have developed a tool

that might be able to help biologists understand and explain the observations of genetic

evolution. Using this tool, amino acid substitution patterns are explained by associating

the properties of amino acids with the varied substitution patterns found in nature. Once

76
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the biologists understand the mechanism of amino acid substitution, they might be able

to predict new sequences containing amino acid pairs that have never substituted for one

another before. This will help in rational design of proteins which is “an attempt to modify

protein molecules for specific applications by predicting which amino acid sequence will

produce a protein with the desired properties.”

7.2 Research Contribution in Visualization

Although graph-based visualizations are widely used in many information visualization

applications, we are visualizing a special kind of graph called a minimum spanning tree.

Since a spanning tree does not have a well defined hierarchical structure, we choose a

particular node as the root of the tree and lay out the rest of the tree based on that assumption

using a new tree layout algorithm.

More significantly, in this research we compare two spanning trees having an unequal num-

ber of nodes. There is a considerable amount of literature in graph theory and graph visu-

alization for comparing graphs. However, they all work under the assumption that the two

graphs represent identical entities and have a comparable number of nodes. We do not base

our research on any such assumption. We have compared two entirely different entities,

namely, the amino acid indices and the mutation matrices. The number of indices or matri-

ces in a single visualization may also differ. We have developed a novel graph visualization

technique for accomplishing this task.



78

This thesis also provides an easy and simple way of representing 20-dimensional data in

two dimensions by using the banded edges view in the index spanning tree. Finally, the

sparkler-arm view, although not a new visualization scheme, is used as a distance measuring

tool, unlike the original work that describes the sparkler arm.

Our visualizations can provide new insights into research on genetic evolution. Currently,

genetic evolution is explained in terms of already observed evolutionary patterns. How-

ever, our tool would enable researchers to explore genetic evolution as a cause-and-effect

model. The physical and chemical properties of these amino acids would act as the cause

of amino acid substitutions generating new protein molecules, which is the fundamental

theory behind genetic evolution. This visualization algorithm, on the other hand, can be

extended to visualize any database of related or unrelated elements. It can also be used to

visualize results of cluster analysis for any data mining algorithm.

7.3 Future Work

This research establishes many new ideas and it would be interesting to study the strengths

and weaknesses of these methods. For example, the amino acid indices are linearly nor-

malized values of the original properties, which can have either linear or non-linear distri-

butions. It would be interesting to study the effect of the linear normalization on the results

produced by this tool, especially when the original distribution of the amino acid prop-

erty is non-linear. Again, the matrices representing the amino acid substitution patterns

are generated after applying different mathematical operations on the probability matrices.
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These mathematical operations range from simple normalization to log-odds calculations.

It would be useful to know the physical interpretation of the distance metric between the

amino acid indices and the mutation matrices. A user study on the usefulness of the dif-

ferent visualization schemes would enable us to understand the usefulness of this tool in

performing specific tasks. Finally, it would be interesting to know how well correlation

coefficient performs as a distance metric and what other alternatives exist in this scenario.

Several improvements to the tool could be made. The visualization scheme currently used

is 2D. However, it could be extended to 3D if the number of independent visual parameters

increases. Also, different visual cues such as hue mapping, brightness, and saturation map-

ping could be used on both the nodes and the edges if we want to capture more dimensions

of the data in the 2D screen space.

The existing technique computes a minimum spanning tree for depicting the closest ele-

ments of a graph. However, this spanning tree view is only able to tell the user about the

closest pairs of nodes in the graph. If the user wants to know the distance between a pair

of nodes in the spanning tree that do not have an edge between them, the current version of

the spanning tree visualization fails to give that information. To overcome this problem, we

can cluster the nodes of the spanning tree into a number of different groups based on their

properties. Color coding the different clusters would enable us to draw inferences about

the relationships between unconnected nodes in the spanning tree.
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7.4 Conclusion

Interpreting relationships among different entities belonging to different databases is a

challenging task. This tool enables biologists to construct interactively a relationship be-

tween a chosen group of indices and matrices. This not only allows them to visualize

20-dimensional data in 2D with ease and clarity, but also allows them to draw conclusions

about the ways in which the amino acid indices might have shaped the similarity matri-

ces. We use graph visualization combined with a geometric primitive-based sparkler arm

technique for representing these relationships effectively.
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