
Semi-Automatic Stencil Creation through Error Minimization

Jonathan Bronson∗

University of Maryland

Baltimore County

Penny Rheingans†

University of Maryland

Baltimore County

Marc Olano‡

University of Maryland

Baltimore County

Figure 1: An example of input mesh, minimum error bridges, and final stencil image.

Abstract

Creating physical stencils from 3D meshes is a unique rendering
challenge that has not been previously addressed. The task is a
problem of two competing goals: forming a single, well-connected
and stable stencil sheet, while simultaneously limiting the error in-
troduced by pieces of bridging material. Under these conflicting
goals, it can often be difficult to create visually pleasing stencils
from complicated imagery by hand. Even for well-behaved images,
expressive stencils can be time-consuming to craft manually.

We present a method for generating expressive stencils from polyg-
onal meshes or images. In our system, users provide input geometry
and can adjust desired view, lighting conditions, line thickness, and
bridge preferences to achieve their final desired stencil. The stencil
creation algorithm makes use of multiple metrics to measure the
appropriateness of connections between unstable stencil regions.
These metrics describe local features to help minimize the distor-
tion of the abstracted image caused by stabilizing bridges. The al-
gorithm also uses local statistics to choose a best fit connection that
maintains both structural integrity and local shape information. We
demonstrate our algorithm on physical media including construc-
tion paper and sheet metal.

Keywords: automatic stencil creation, theatrical gobos, non-
photorealistic rendering, view-dependent visualization

1 Introduction

Often in graphic design the details of an image are not as important
as the essential impression the viewer takes away from it. Sten-
cils capture this essential impression, giving an abstracted view of

∗jonbronson@umbc.edu
†rheingan@umbc.edu
‡olano@umbc.edu

Figure 2: An example of a lighting gobo. In a valid stencil such
as this, the template is a single, connected piece of material. All
islands are connected by a bridge to the main sheet.

objects in a way that allows them to be readily identifiable. Addi-
tionally, stencils provide an easy means of reproduction for logos,
symbols, and images.

In theatrical lighting, a metal or glass stencil, known as a gobo or
template, is placed before the lens of a lighting instrument, much
like a slide in a slide projector. The lighting instrument can then
project these images onto the scene. Gobos made of glass avoid the
connectivity constraints of stencils, while allowing color within the
gobo to be projected. However, metal gobos, such as the one shown
in Figure 2, remain the most popular for their price and durability.
A similar device known as a cookie, used for film or photography,
is a stencil cut from plywood or poster board and placed in front of
the light.

Stencils, gobos, and cookies all have the common features of being
constructed from a single sheet of flat material, and of including
structural elements in the design such that the sheet stays together.
Stencil media can be either paper, poster board, plastic, wood, or
metal, with the thickness of the material defining the level of detail
that the stencil can support. A thinner material can capture more
detail but is less likely to maintain its shape.

Throughout this paper we will refer to all these forms, regardless of
the media or purpose, by the generic term stencil. A stencil can be
characterized as containing two types of regions, one positive and
one negative. A negative region is an empty space through which
paint or light may pass, while a positive region is an entirely con-
nected surface of material, either directly connected or connected
by unobtrusive bridges through negative space. Images in the pa-



per will represent negative space with black and positive space with
white. When used on actual media, the negative space can be any
color of paint or projected light, and the positive regions will be a
cast shadow or base color of a painted material.

2 Motivation

Until now, artistic stencils have been designed manually, usually
from pre-existing pictures or photographs. Artists decide which re-
gions will be cut away, while being careful not to remove important
regions of the image. To accomplish this, they must manually iden-
tify regions that will fall away when cut out, and designate a strip
of material that will remain to maintain connectivity. The pieces
that will fall out are commonly referred to as islands. Naturally, the
connections between islands, or from an island to the stencil frame,
are referred to as bridges. Figure 2 shows a gobo with several of
these features identified.

The challenge for the artist throughout this process is to maintain
the physical integrity of the template, while being careful not to
remove important image details. This task involves visually identi-
fying all potential islands as well as choosing aesthetically pleasing
bridges to connect these islands to the rest of the stencil. Even for
somewhat simple stencils it can sometimes be very difficult to vi-
sually discern which regions are ‘connected’ to the stencil. As the
complexity increases, this task becomes increasingly vexing. High
frequency details can lead to a very large number of islands, each
of which must be identified and accounted for by the artist. Image
editing software can aid this process, but it is still up to the artist to
ensure connectivity constraints.

If a technique were available to help choose bridges appropriately,
professional artists would be more free to focus on the imagery it-
self and others might be more inclined to utilize the advantages of
stencils. Furthermore, a mechanism to generate these stencils di-
rectly from 3D geometry provides a means of bringing digital art-
work back into a real world medium. We present an approach for
the semiautomatic creation of physically valid stencils from images
or arbitrary polygonal models. Users provide the geometry or pre-
pared 2D images for the stencil creation and our algorithm chooses
a set of bridges that causes the least amount of information loss
while still fully connecting all disjoint regions. We demonstrate two
methods of construction, manually cutting from a printed template
and photo-etching, as well as two applications, painting templates
and lighting gobos.

3 Related Work

Automatic generation of stencils has not been a widely studied
topic, so our method draws upon the work of researchers in other
areas of non-photorealistic rendering. We borrow techniques from
cartoon shading to achieve the stark dark and light features. Silhou-
ettes [Markosian et al. 1997; Raskar and Cohen 1999] and sugges-
tive contours [DeCarlo et al. 2003] also have a strong effect on the
quality of the final stencil. Depending on the exact style wanted, a
wide variety of approaches is available [Isenberg et al. 2003]. These
chosen methods provide us with a useful abstraction of the image
to be created. At a minimum, we must reduce the image to exactly
two tones, but the manner in which we do this determines the final
style. That being said, if one intends to generate stencils from pho-
tographic data a powerful abstraction method will greatly improve
the clarity of the stencil image. DeCarlo and Santella [2002] pro-
vided one such method that could be used in conjunction with our
stencil algorithm to help develop clean stencils from photographs.
Their segmentation method might be a starting point for an alterna-
tive approach to choosing bridges.

Non-photorealistic rendering (NPR) produces images that mimic
the styles artists use in physical media. Several techniques aim at
producing stylized images that, like stencils, are at their core a se-
ries of segmented regions. Examples include the rendering of batiks
[Wyvill et al. 2004] and mosaics [Hausner 2001; Kim and Pellacini
2002]. The key difference between the other techniques and stencil
creation is that in the other algorithms a method for segmenting the
image in a coherent way is the heart of the algorithm. In contrast,
we are starting with a series of segmented regions and looking for a
suitable means of reconnecting them. The final product is similar in
the sense that the result is a lossy abstraction of the original image,
and the artistic style comes from the manner in which that loss oc-
curs. In batik the style comes from the cracks, in mosaic from the
gaps between tiles as well as the color abstraction, and in stencils
from the artificial bridges connecting islands.

A few works, like ours, have taken the process one step further to
convert the NPR results back into the physical media that inspired
them. The program and algorithms developed can serve as a means
to express inherently mathematical forms in artistic styles [Fergu-
son 1992; Eisenberg et al. 2005], as a means of creating 3D analogs
to 2D art [Yen and Séquin 2001; Raskar et al. 2002; Kaplan and
Salesin 2004], or as a means to aid an artist through the tedious
or complex portions of the artistic process [Lang 1996; Mitani and
Suzuki 2004]. Our work falls in this final class, assisting the artist
to produce complex, yet inherently artistic, works.

Perhaps the closest recent work is in topological simplification and
filtering. Williams and Rossignac [2005a; 2005b] have created
topological filtering operators that can simplify the topology of re-
gions of an image, but their operators were not intended to produce
stencil images, and do not. The creation of bridges between posi-
tive regions is counter to the goals of their algorithm. Wood et al.
[2004] perform similar operations to cut loops and fill holes in 3D
isosurface models, but their algorithm operates on surfaces in 3D,
not 2D stencils.

4 Approach

During the creation of a stencil, there are two competing pressures
driving the bridge selection process. One is the desire to maintain a
single, structurally sound sheet of material. It is maximally satisfied
when there are no holes in the sheet. The other is the desire to re-
duce the error caused by the two-toned abstraction of the stencil. It
is maximally satisfied when there are absolutely no bridges added.
The challenge of stencil creation is finding a balance between these
pressures, whether through an algorithm or by hand.

The style of the bridges may also be considered as an added con-
straint. Typically in the physical media, we see bridges as straight
strips of material. One downside to this is that the strip imposes its
shape onto the negative region of the stencil that it is crossing. One
way to address this problem would be to draw bridges along the
principal curvatures. A strong argument has been made that strokes
in these directions tend to help the visual system see shapes more
clearly [Girshick et al. 2000]. However, a curved bridge will also
be longer and introduce a greater change to the overall edge bound-
aries. The user must decide the trade-off between longer bridges
and better shape suggestion.

The general approach taken in this paper is one of abstraction and
error minimization. Beginning with a two-toned abstraction, we
identify the positive regions of the image that are not connected
to the outer frame through some path. We call these disconnected
regions islands. We will add the minimum number of bridges nec-
essary and in optimal locations to connect all islands into one con-
tinuous piece of material. If we consider the islands as nodes in
a graph, and all possible bridges as edges between nodes, we are



Figure 3: Two images are shown with the graphs that represent
them superimposed. Each node represents either an island or the
stencil frame itself. Each edge represents a set of possible ways to
union the islands.

interested in constructing a minimal spanning tree where cost is de-
fined by how badly a bridge disrupts the abstract image. Figure
3 shows two examples of images with their potential connectivity
graph superimposed.

For users who have polygonal data available, the first stage is in-
teractive, allowing the user to tune a two-toned image by adjusting
viewing and lighting conditions. Alternatively, the user can provide
a two-toned image directly. The second stage is entirely image-
based. Constructing the data for bridge optimization takes a few
seconds, so the full scene-to-stencil process is not real-time, but it
is fast enough that users are free to alter the scene parameters and
quickly see the affect on the output stencil.

5 Two-Tone Image Creation

Part of the power of a stencil is its incredible abstraction ability.
We can remove much of the lighting information and still clearly
discern the object. We use a combination of silhouette line draw-
ings [Markosian et al. 1997] and a simple toon shader for creating
black and white images from polygonal models. The shader starts
with a Lambertian model of lighting with specular highlights and
a user-defined threshold. If the intensity of a given pixel is above
the threshold, it is made a positive (white) region; if it is below, it
becomes a negative (black) region. It is conceivable that an artist
would like a stencil of the highlighted regions of a scene, rather than
the shaded ones. It is a trivial matter to reverse the stencil process
and connect lit regions, so we only present the first case.

The lighting source chosen for the scene has a large impact on the
resulting two-toned image. It is characteristic of 20th century artis-
tic stencils to be created in a chiaroscuro shading style, that is, with
dramatic lighting from some angle. For this reason, we chose to im-
plement the lighting as a point light source at close proximity to the
geometry. Other choices for lighting will not affect the stencil cre-
ation process, but may greatly impact the resulting aesthetic value.
For very simple objects, this two-toned rendering will occasionally
create an image that is itself a valid stencil, but in general we need
to do more.

It is usually not desirable to have edges entirely removed in light re-
gions. For this reason, we perform silhouette rendering [Markosian
et al. 1997] and add suggestive contours [DeCarlo et al. 2003] to
increase the level of detail in some models not easily identifiable
strictly from the shadow regions. Excessive contours are avoided
since stencils are meant to be an abstraction. The results of this
can be seen in Figure 4. The left image shows the model rendered
with standard Lambertian model. The center image is the same

Figure 4: This image conveys the simple process to create a two-
toned image from the original rendering.

Figure 5: Each island is identified and all border pixels are stored
as possible bridge starting locations. The right close-up shows can-
didate locations darkened for clarity.

model rendered strictly with the two-tone thresholding, while the
right image is the two-toned shader with silhouettes added. Notice
that all shape information is lost within both dark and light regions
and must be implied. The most important features added by this
approach occur at the regions where positive and negative meet.
These shadow lines tend to accentuate the curvature of the object
while the silhouettes give a definitive boundary to areas that might
otherwise be unclear.

6 Island & Candidate Identification

Having reduced the image down to only two values, the next task is
to identify regions that must be connected. We identify islands with
a simple fill algorithm and store them in an island data structure so
that we can later treat them as nodes in a graph. Figure 3 shows two
examples of connectivity graphs. All border pixels within an island
are considered candidate locations for the start of possible bridges.

Since we are working in black-and-white image space, we may
have issues with aliasing. An orphaned, positive pixel completely
surrounded by a negative region has no orientation information.
The original renderer places this pixel to approximate specific color
and shading. Unfortunately, adding a bridge to such a small is-
land greatly overcompensates for the importance of the pixel itself.
To avoid this, we implement a topological filtering [Williams and
Rossignac 2005a] composed of dilation and erosion to close off
these small areas before the stencil process begins. As with other
forms of aliasing, supersampling can help alleviate the problem.

7 Bridge Selection

Once we have identified all islands we must choose a method to
connect them. After considering some of the implications of the
bridging process, a solution presents itself. Clearly all islands re-
quire at least one bridge to be connected to the stencil sheet. Fur-



S0

S1

S3

S2

S4

Figure 6: Bridge costs can be approximated by a series of small
strips. Joining together adjacent strips will create wider bridges.
Once a strip, S0, is chosen as the new starting location for a bridge,
the least costing adjacent strip Si will be added into the bridge set
until the required width is achieved. Once all strips S0 through SN
have been identified, a bridge polygon can be formed from their
endpoints.

ther, since at least one bridge choice is required, minimizing the
cost of this bridge will reduce the overall error caused by the ab-
straction. This process of connecting minimal error bridges until
the stencil is fully connected is a slightly more complicated mini-
mal spanning tree problem. Instead of a single edge between nodes,
we are forced to consider a set of edges between any pair of nodes.
Each edge within this set is really a candidate bridge between the
two stencil regions represented by the nodes. The abstract edge in
the stencil graph will be given the cost of the minimal costing bridge
within its set. However, for any given island there are uncountably
many bridge choices and this set cannot be exhausted. Instead, we
break up the perimeter of the island into very small bridge strips.
Using this approach, a bridge of any given width may be formed as
the aggregate of several neighboring strips. Similarly, the cost of
a given bridge will simply be the combined cost of the strips from
which it is comprised.

As seen in Figure 6, these bridge strips are simple paths in 2D space,
originating from a candidate on one island and finishing on a dif-
ferent island. All pixels that the path crosses through will be con-
sidered part of the strip. The only consistent property of these path
directions in the physical media is that they tend to connect at very
orthogonal angles. Our method is to trace a path in the direction
of the image gradient. A short walk will lead us to a neighbor-
ing island and we simply record pixels crossed along the way. We
need not worry about concave islands because our bridge strips only
terminate when they have reached a different island than they orig-
inated from. Excessively long paths will incur too large a cost to
ever be chosen. In order to identify when a strip has bridged a neg-
ative space, we store a sparse mapping of pixels to islands which
contain them. Each island in the image will build a set of these
strips that will completely encompass the perimeter. One or more
groups of these strips will later combine to form the full bridge in
the final image.

7.1 Bridge Strip Cost Function

In order to use these bridge strips as approximators, we need a
means to evaluate their cost. This cost will be the total sum of
the error introduced by each new pixel within a particular strip,
with penalties for bridges which are in poor locations. The follow-
ing function C represents our combined cost for a particular bridge

Figure 7: This image shows the curvature values calculated for
candidates. The scale ranges from red (very curvy) to green (very
straight). To the right is the ellipse generated by the eigenvectors of
the covariance matrix of the local window.

strip. The cost function consists of two types of information: static
costs, which are the accumulation of individual pixel costs; and se-
mantic costs, which are formed by the location and orientation of
the strips and the fitness of their local neighborhood. Given a set of
P pixels which comprise the strip, we write the cost function as:

C(P) = w0

P

∑
i=1

Ii+w1L
α +w2κ +w3σ2

C (1)

where

∑
P
i=1 Ii = Combined Intensity Difference

Lα = Bridge Length Penalty

κ = Local Curvature of Island border

σ2
C = Variance of Cost over Local Neighborhood.

and w0 −w3 are the corresponding weights.

There are three basic components that contribute to the cost of the
bridge strip. First, each pixel will alter the intensity of the origi-
nal two-toned image. This error can be accumulated along the path
of the strip by storing the squared difference of intensity between
the original grayscale rendering and pure white, the color of the
bridges. Although this value is accumulated across multiple pix-
els, it is not sufficiently indicative of the aesthetic cost of longer
bridges. To account for the bridge length in and of itself, we add
a separate penalty, Lα . This penalty should be very minimal at
short distances, but grow quickly as bridges become longer. The
reason for this is that at small distances the other metrics are much
more important factors in choosing aesthetically pleasing bridges.
However, in practice, as bridges become longer, the length quickly
outweighs the cost of bad lighting and curvature values. We found
1 < α < 2 to be sufficient for this purpose.

We would also like to avoid placing bridges in regions of high cur-
vature. These areas are usually essential to understanding the shape
of the object. We account for this by computing the covariance ma-
trix of the coordinates of neighboring candidate bridge locations.
This covariance matrix captures the statistical distribution of these
locations and the ratio of the matrix’s eigenvalues tells us the lin-
earity of these points. This gives us a useful estimate of the local
curvature. As seen in Figure 7, areas of high curvature have a small
eigenvalue ratio whereas more linear edges have a high eigenvalue
ratio.

The number of neighbors we include in our estimation will directly
impact the perceived curvature. We cannot take into account ev-
ery possible window of neighbors around each location of the is-



Right Span

Central Span

Left Span

Figure 8: For each bridge strip being evaluated, metrics are com-
puted using three separate windows: Leftward, Centered, and
Rightward. These windows are evaluated independently to best rep-
resent the ability to place a full bridge at this location.

land border, but we can be smart about our estimation. We already
know the size of the island and can therefore compute the combined
bridge width needed for stability. This width is directly propor-
tional to the area of the island. Using this width, we have a window
over which to compute the curvature. In order to account for local
features we compute three separate values: A leftward window, a
rightward window, and a centered window. Figure 8 shows an ex-
ample of this. Of the three windows, we choose the minimum cost
to represent the candidate’s best available option if it were to be a
part of a bridge.

Finally, if we are to approximate a bridge of a particular width by
a series of strips, we need to account for the cost of neighboring
strips that will also comprise the finished bridge. That is, given a
particular strip, how suitable are its fellow neighbors in joining it?
We treat this in the same fashion as the curvature, by computing the
variance of cost along the island strips for the same sized windows,
leftward, rightward, and centered. This value is particular helpful in
avoiding outliers which appear to be good bridge locations but can
only tolerate a bridge width smaller than necessary to support the
island. Later, we can simply expand our bridge across the cheap-
est neighbor strips available. Using this information, we can also
weight the bridges to prefer locations that are directly adjacent to
high variability, something that can often be seen in the physical
media.

8 Growing the Stencil

With the knowledge of our islands and the cost of bridges available,
we can now grow the primary stencil structure by constructing the
minimal spanning tree. For every edge chosen for the tree, we unite
the two islands into a new structure we refer to as an island group.
This group has all the properties of an island itself but ignores self
connections. When the tree is complete, we will be left with a single
island group structure containing all bridge strips we need for the
foundation of our stencil. One advantage to this approach is that
the number of edges is monotonically increasing so a solution will
always be found. Figure 9 shows an example of this process on a
trefoil knot.

Once we are satisfied with the locations of each island’s bridges,
we grow them to the size required to support the stencil area. For
any bridge between two islands, the size of the smaller island will
be used. This ensures that large islands do not obscure details of
smaller ones. It also ensures that the frame of the stencil does not
generate excessively large bridges.

Figure 9: Each iteration of the stencil creation algorithm examines
edges which directly connect to the existing spanning tree. Each
edge reports its cost as that of the minimum cost bridge strip in its
set. The edge with the least costing representative is added to the
spanning tree.

To grow a bridge, we start with the one approximator strip chosen as
the starting location. Then we iteratively add the neighboring strip
with the lowest cost. Once we have achieved the desired width, the
strip endpoints can be used as vertices to render a white polygon
which will bridge the two islands. If the actual error exceeds the
estimated error by a user-defined amount, we will cut the bridge
size in half and add an additional support bridge in the next cheapest
location. In practice, most stencils do not require extra bridges for
added support, even with a flimsy stencil media.

9 Results

Our method creates effective and physically valid stencils when
applied to either simple or complex models. The length of time
required to generate the stencil will be proportional to the total
perimeter of all islands found in the image. Providing proper
weights for the metrics of the cost function is a task left to the
user, but in practice we found general rankings of importance that
seemed to hold true. For simple objects with small bridge lengths,
lighting variance appeared to be the most crucial factor in gener-
ating high quality stencils. As more detailed silhouettes appeared,
local curvature began to trump lighting. Both of these metrics be-
come less important when one bridge length was particularly longer
than other choices.

Figure 10 demonstrates the importance of the metrics we use to de-
termine good bridges. Using only intensity difference and bridge
length achieves reasonable results, but destroys interesting features
like the subtle curves of the pawns base. By raising the weight-
ing of the local curvatures we see the lowest cost bridge move to
a more uniform region. Figure 11 shows several more models that
have been turned into stencils while Figure 12 shows several sten-
cils that were fabricated for prints and gobos. The painted images
were created using two layers, the empty silhouettes as a base with
the generated stencil on top. Cutting for prints was done by hand



Figure 10: Left: Grayscale rendering of a pawn, Center: Stencil
generated when local curvature is ranked relatively low compared
to lighting, Right: Stencil generated when curvature is slightly more
important than lighting

with a craft knife while the metal gobos were photoetched.

10 Conclusions and Future Work

We present an easy-to-use and powerful method for creating sten-
cils from polygonal models and images. The method allows artistic
control over the appearance of the stencil through the view, light
position, and lighting threshold, but automates the creation of sten-
cil shapes by connecting the stencil together into a single connected
sheet for fabrication and use. We have demonstrated our system on
a variety of models, and shown the stencils are robust enough to be
used with real media such as painted stencils and theatrical gobos.

One additional step that might improve the structural integrity of
the stencils would be to perform a final refinement. This could con-
ceivably be done by measuring the physical forces on each island
by a pull such as gravity and attempting to maximally cancel it with
minimal added edges.

Most of the methods presented in this paper address the automatic
portion of the stencil process, but adding user interaction to drag
and drop bridges might also aid in the creation process. Though we
feel we have captured the most essential bridge cost metrics, there
are many more which could be taken into account. The added statis-
tics will likely have user-preferred weights, and not be inherently
more important than one other. We will leave finding additional
evaluation criteria to future work.

Finally, scaling is an issue in stencil creation, particularly with re-
spect to aliasing issues stemming primarily from the line drawing.
Using a technique for scalable line drawings [Ni et al. 2006] might
yield more clearly abstracted results for smaller scaled stencils.

References

DECARLO, D., AND SANTELLA, A. 2002. Stylization and ab-
straction of photographs. ACM Trans. Graph. 21, 3, 769–776.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND

SANTELLA, A. 2003. Suggestive contours for conveying shape.
ACM Trans. Graph. 22, 3, 848–855.

EISENBERG, M., ELUMEZE, N., BUECHLEY, L., BLAUVELT, G.,
HENDRIX, S., AND EISENBERG, A. 2005. The homespun mu-
seum: computers, fabrication,and the design of personalized ex-
hibits. In C&C ’05: Proceedings of the 5th conference on Cre-
ativity & cognition, ACM Press, New York, NY, USA, 13–21.

Figure 11: Several different stencils created using our algorithm.

FERGUSON, H. 1992. Computer interactive sculpture. In I3D ’92:
Proceedings of the 1992 symposium on Interactive 3D graphics,
ACM Press, New York, NY, USA, 109–116.

GIRSHICK, A., INTERRANTE, V., HAKER, S., AND LEMOINE, T.
2000. Line direction matters: an argument for the use of prin-
cipal directions in 3d line drawings. In NPAR ’00: Proceedings
of the 1st international symposium on Non-photorealistic ani-
mation and rendering, ACM Press, New York, NY, USA, ACM,
43–52.

HAUSNER, A. 2001. Simulating decorative mosaics. In SIG-
GRAPH ’01: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 573–580.

ISENBERG, T., FREUDENBERG, B., HALPER, N.,
SCHLECHTWEG, S., AND STROTHOTTE, T. 2003. A de-
veloper’s guide to silhouette algorithms for polygonal models.
IEEE Computer Graphics and Applications 23, 4, 28–37.

KAPLAN, C. S., AND SALESIN, D. H. 2004. Islamic star patterns
in absolute geometry. ACM Trans. Graph. 23, 2, 97–119.



KIM, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 657–664.

LANG, R. J. 1996. A computational algorithm for origami design.
In SCG ’96: Proceedings of the twelfth annual symposium on
Computational geometry, ACM Press, New York, NY, USA, 98–
105.

MARKOSIAN, L., KOWALSKI, M. A., GOLDSTEIN, D.,
TRYCHIN, S. J., HUGHES, J. F., AND BOURDEV, L. D. 1997.
Real-time nonphotorealistic rendering. In SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, ACM, 415–420.

MITANI, J., AND SUZUKI, H. 2004. Making papercraft toys from
meshes using strip-based approximate unfolding. In SIGGRAPH
’04: ACM SIGGRAPH 2004 Papers, ACM Press, New York, NY,
USA, 259–263.

NI, A., JEONG, K., LEE, S., AND MARKOSIAN, L. 2006. Multi-
scale line drawings from 3d meshes. In I3D ’06: Proceedings
of the 2006 symposium on Interactive 3D graphics and games,
ACM Press, New York, NY, USA, ACM, 133–137.

RASKAR, R., AND COHEN, M. 1999. Image precision silhouette
edges. In I3D ’99: Proceedings of the 1999 symposium on In-
teractive 3D graphics, ACM Press, New York, NY, USA, ACM,
135–140.

RASKAR, R., ZIEGLER, R., AND WILLWACHER, T. 2002. Car-
toon dioramas in motion. In NPAR ’02: Proceedings of the 2nd
international symposium on Non-photorealistic animation and
rendering, ACM Press, New York, NY, USA, 7–ff.

WILLIAMS, J., AND ROSSIGNAC, J. 2005. Mason: morphological
simplification. Graph. Models 67, 4, 285–303.

WILLIAMS, J., AND ROSSIGNAC, J. 2005. Tightening: curvature-
limiting morphological simplification. In SPM ’05: Proceedings
of the 2005 ACM symposium on Solid and physical modeling,
ACM Press, New York, NY, USA, ACM, 107–112.

Figure 12: The images above show the 4-stage progression of the
two stencils, from 3D model, to stencil design, to the fabricated
gobo or stencil frame, and finally to the projected shadow and
painted image. These stencils were produced using an earlier ver-
sion of our algorithm.

WOOD, Z., HOPPE, H., DESBRUN, M., AND SCHRÖDER, P.
2004. Removing excess topology from isosurfaces. ACM Trans.
Graph. 23, 2, 190–208.

WYVILL, B., VAN OVERVELD, K., AND CARPENDALE, S. 2004.
Rendering cracks in batik. In NPAR ’04: Proceedings of the 3rd
international symposium on Non-photorealistic animation and
rendering, ACM, New York, NY, USA, 61–149.

YEN, J., AND SÉQUIN, C. 2001. Escher sphere construction kit.
In I3D ’01: Proceedings of the 2001 symposium on Interactive
3D graphics, ACM Press, New York, NY, USA, 95–98.


