

Challenges for Web Search

The World-Wide Web is...

- Distributed
- Volatile
- Huge
- Unstructured
- Redundant
- Of variable quality
- Heterogeneous
- Multilingual

In an information system such as this,

- How should a user specify a query?
- How should he understand the results?

Lecture 13

Information Retrieval

- Between Fall 1998 and Summer 1999...
 - 40M computers connected to the Internet
 - 2.4-3M web servers
 - >200 countries, >100 languages
 - 200-350M web pages
 - 2-5Kb, 5-15 hyperlinks
 - Most links are local
 - Most pages <u>not</u> pointed to by external servers
 - · Formats: HTML, GIF, JPEG, ASCII, Postscript
 - Images average 14Kb
 - 5Kb * 300M = 1.5 terabytes of text on the Web

Information Retrieval

In 2002... 162M hosts on the Internet · (July 2002, ISC Internet Domain Survey) 36M web servers (surveyed?) (Sep 2002, Netcraft) Not many recent peer-reviewed surveys Growth may be much faster since 2000 Lecture 13 Information Retrieval

- http://www.archive.org/
- Crawls from Alexa and Compaq
- 4 billion pages (40TB) in 2001
- In 2002, 100TB and growing at 12TB/month
- Access
 - The Wayback Machine
 - · Researcher access via remote login

Information Retrieval

Definitions from Graph Theory

- Graph: set of nodes and edges between them
 - graphs can be undirected or directed
 - In-degree: # edges pointing to a node
 - Out-degree: # edges pointing out of a node
- Diameter
 - Maximum over all ordered pairs (u,v) of the shortest path from u to v
- Connected Component
 - a set of nodes in an undirected graph which are reachable from each other
 - Strongly Connected Component (SCC): directed

Lecture 13

Information Retrieval

Power Laws on the Web

- Power Law distributions
 - $P(i) \propto 1/i^k$, for small positive values of k
 - · Zipf's Law: a power law for ranks
- Power laws describe many things...
 - vocabulary, economics, sociological models, nucleotide sequences
- Including web phenomena
 - access statistics
 - # times users at a single site access particular pages
 - in/out-degree of web pages

Lecture 13

Information Retrieval

- Broder et al (2000), WWW9
- large-scale graph analysis of the Web
- two crawls from AltaVista
 - May 99: 203M pages, 1.5B links
 - · Oct 99: 271M pages, 2.1B links
- Built on previous web characterizations
 - # links pointing to a page follows a power law
 - most pairs of pages separated by a handful of links (about 20)

Information Retrieval

Results of Broder et al

- Fraction of pages with in-degree i

 1/i².¹
 - · resembles other, smaller studies
 - small webs resemble large webs (fractal)
- Sizes of connected components also follow a power law
- Largest WCC 91%, Largest SCC 26%
- Examined connectivity of the web using breadth-first search with random starting points.

Lecture 13

Information Retrieval

Paths and Connectivity

- Diameter of SCC is at least 28
 - whole web diameter is over 500
- Not all node pairs are connected
 - For random (u,v), P(path(u,v)) = 0.24
 - If a directed path exists, average length=16
 - Undirected paths, length = 6
- But the WWW in general is well-connected
 - Even if nodes with in-degree > 5 are removed, it still contains a weak component of ~59M nodes.

Lecture 13

Information Retrieval

- A fast, high-performance link database
- Input: a web crawl
- Creates database of hosts and URLs with all inlinks and out-links
 - includes non-crawled URLs references more than five times
 - 10 bytes/URL, 3.4 bytes/link
- 465MHz Compaq Alpha server, 12GB RAM
- Each crawl fits in 9.5GB of disk

Information Retrieval

Inlist Table

URL Database

- Two lists per URL
 - inlist: pointers to URL
 - · outlist: pointers from
- Heavy use of compression
 - front coding for URLs
 - integer coding for pointers

Lecture 13 Information Retrieval

14

Dutlist Table

The "Indexable Web"

- Lawrence and Giles (1998)
- Estimated search engine coverage by carefully analyzing query results
- Lower bound on "indexable web": 320M pages
- Search engines index a small fraction of this
 - Their study found HotBot covered 34%, followed by AltaVista (28%),
 Northern Light (20%),
 Excite (14%),
 Infoseek (10%), and Lycos (3%)

Lecture 13

Information Retrieval

Searching the Web

start of Thursday lecture

- Collection is immense (multi-Terabyte)
 - queries must be answered without accessing the source text
 - alternative: store the text (a la Google)
 - It should be possible to decide what to store
 - Only keep the best pages?
 - alternative: search through the network
 - Too slow for "pure" searching
 - Might be optimized if we could search "best-first"

Lecture 13

Information Retrieval

AltaVista Architecture

- Circa 1998
 - 20 multiprocessor machines
 - · 130 GB RAM, 500 GB disk (probably low)
- Query engine uses 75% of resources
- O(\$100M) in hardware costs

Lecture 13

Information Retrieval

- Full-text index
 - terms sorted into barrels for merging
- Link database
 - URLs, in/out links
- Parallel crawl approach

100 pages/sec

- Idea: coordinate among several web servers
- Harvest: gatherers and brokers
 - Gatherer collects and extracts information from one or more web servers
 - Brokers provide indexing and query interface
 - Receive info from one or more Gatherers
 - Updates indices
 - Can also filter information and send to other brokers
 - Also features caching and replication agents

Information Retrieval

- Cooperative Agent-based Routing and Retrieval of Text
- Individual search engines manage their own collections
- Broker agents gather metadata from the SEs that describe their collection
 - e.g. a centroid, or vector of document freqs
- Broker routes an incoming query based on similarity to metadata

Information Retrieval

Web Search Interfaces

- Most query interfaces are spare
 - Implicit AND or OR among search terms
 - Users don't know logical view of text
 - Most engines provide an "advanced" search feature
 - Boolean expressions, phrases, proximity operators, wildcard globs, regular expressions
- Results pages also don't give much information

Lecture 13

Information Retrieval

-										_		-
				qı								
								_	- 1			
-						, I V				V —	U	•
	\top		_		T^{-}					T -		

Measure	Average	Range
# words	2.35	0-393
# operators	0.41	0-958
Repetitions of each query	3.97	1-1.5 million
Queries/user session	2.02	1-173,325
Results screens/query	1.39	1-78,496

- 25% of users query with a single word
- 15% restrict to a prespecified topic
- 80% don't modify the query after first retrieval
- 85% only look at first results page
- 64% of queries are unique

Information Retrieval

- Traditional models
 - · vector space, probabilistic, etc.
 - operate on text only
- Hyperlink models
 - · link structure, anchor text
- Hard to assess performance of engines
 - proprietary algorithms
 - complicated engineering
 - but in general they are using known ideas

Information Retrieval

HITS Algorithm (Kleinberg 97)

- Hypertext Induced Topic Search
- How to identify good pages?
 - Authoritative pages are pointed to by many other pages
 - Hub pages point to many pages
- Identifies good hubs and authorities
- Recommends those as best results.

Lecture 13

Information Retrieval

HITS Algorithm (1)

- Find a focused subgraph Sσ of the web
 - Should be relatively small
 - Should be rich in pages relevant to the user's query
 - Should contain many good authorities
- To make the focused subgraph:
 - Fetch top t pages from a textual engine: Rσ
 - Expand Rσ with
 - all pages pointed to by a page in Rσ
 - some pages which point to pages in Rσ (max d per page)
 - don't add pages with URLs within same domain name
 - Return as Sσ

Lecture 13

Information Retrieval

- Now subgraph contains
 - authorities pointed to by initial ranked list
 - good connectivity among results
- How to determine authorities?
 - · Simple: order by in-degree
 - Confuses authorities with unversally popular pages (large in-degree, but lack relevance to topic)

Information Retrieval

Refining the Authority Concept

- Sets of authorities on a topic have
 - high in-degree for all authorities
 - significant overlap in the sets of pages that point to them
- These hubs point to multiple relevant authorities
- Mutually reinforcing relationship
 - a good hub points to many good authorities
 - a good authority is a page pointed to by many good hubs

Lecture 13

Information Retrieval

HITS Algorithm (2)

- H(p) = hub value of node p
- A(p) = authority value of node p
 - Initialize H(p) and A(p) to (1,1,1,...,1)

$$A(p) = \sum_{v \in S \mid v \to p} H(v)$$
v2

$$H(p) = \sum_{u \in S \mid p \to u} H(u)$$

normalize A(p) and H(p) after each iteration

Lecture 13

Information Retrieval

Convergence of HITS

- Typically, 20 iterations is sufficient for the largest elements of H(p) and A(p) to be stable
- If M is the adjacency matrix of subgraph
 - H(p) and A(p) converge to the principal eigenvectors of MM^T and M^TM, respectively
 - These are the also first columns of U and V from the singular value decomposition of M

Lecture 13

Information Retrieval

HII	S example	
• ()	ava) Authorities	
.328	http://www.gamelan.com/	Gamelan
.251	http://java.sun.com/	JavaSoft home
.190	http://www.digitalfocus.com/ digitalfocus/faq/howdoi.html	The Java Developer: HowDo
.190	http://lightyear.ncsa.uiuc.edu/	
	~srp/java/javabooks.html	The Java Book Pages
.183	http://sunsite.unc.edu/javafaq/	
	javafaq.html	comp.lang.java FAQ

Information Retrieval

31

Lecture 13

HITS example (2) ("search engines") Authorities .346 http://www.yahoo.com/ Yahoo! .291 http://www.excite.com/ **Excite** .239 http://www.mckinley.com/ Welcome to Magellan! .231 http://www.lycos.com/ Lycos Home Page http://www.altavista.digital.com/ AltaVista: Main Page .231 Can also be used to find "similar" pages "Find top t pages pointing to p." Lecture 13 Information Retrieval 32

PageRank (Brin and Page, 98)

- Consider a user browsing randomly
 - Will follow a random link on a page with uniform chance (1-q)
 - May get bored, jump to an unlinked page (q)
 - Never uses the "back" button
- Similar to a Markov chain
 - can use to compute the probability of browsing to any page.

Lecture 13

Information Retrieval

PageRank formula

- C(a) = out-degree of page a
- p₁...p_n pages pointing to page a
- $PR(a) = q + (1-q)\Sigma_{i=1..n} PR(p_i)/C(p_i)$
 - compute iteratively as in HITS
 - precomputed over all pages in the index
 - q is typically 0.15
 - converges to principal eigenvector of link matrix
- Underlying ranking formula used by Google

Lecture 13

Information Retrieval

What are the implications of...

The World-Wide Web is...

- Distributed
- Volatile
- Huge
- Unstructured
- Redundant
- Of variable quality
- Heterogeneous
- Multilingual

In an information system such as this,

- How should a user specify a query?
- How should he understand the results?

Lecture 13

Information Retrieval