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Abstract. We present a collective approach to mine Bayesian networks
from distributed heterogenous web-log data streams. In this approach
we first learn a local Bayesian network at each site using the local data.
Then each site identifies the observations that are most likely to be evi-
dence of coupling between local and non-local variables and transmits a
subset of these observations to a central site. Another Bayesian network
is learnt at the central site using the data transmitted from the local
site. The local and central Bayesian networks are combined to obtain
a collective Bayesian network, that models the entire data. This tech-
nique is then suitably adapted to an online Bayesian learning technique,
where the network parameters are updated sequentially based on new
data from multiple streams. We applied this technique to mine multiple
data streams where data centralization is difficult because of large re-
sponse time and scalability issues. This approach is particularly suitable
for mining applications with distributed sources of data streams in an
environment with non-zero communication cost (e.g. wireless networks).
Experimental results and theoretical justification that demonstrate the
feasibility of our approach are presented.

1 Introduction

The World Wide Web (WWW) is growing at an astounding rate. In order to
optimize tasks such as Web site design, Web server design, and to simplify navi-
gation through a Web site, the analysis of how the Web is used is very important.
Usage information can be used to optimize web site design. For example, if we
find that 80% of users who buy a computer model A in a web shop also visit links
to a specific peripheral device B, or software package C, we can set up appropri-
ate dynamic links for such users. Another example is for web server design. The
different resources like html, jpeg, midi etc. are typically distributed among a
set of servers. If we find a significant fraction of users requesting resources from
server A also request some resource from server B, we can either keep a copy of
those resources in server A or re-distribute the resources among the servers in
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a different fashion to minimize the communication between servers. Web server
log contains records of user interactions when request for the resources in the
servers is received. This contains a wealth of data for the analysis of web usage
and identifying different patterns.

In an increasingly mobile world, the log data for an individual user would
be distributed among many servers. For example, consider a subscriber of a
wireless network who travels frequently and uses her PDA and cell phone to do
business and personal transactions; her transactions go through different servers
depending upon her location during the transaction. The PDA has very limited
memory and communication ability, and her wireless service provider could offer
more personalized service by paying careful attention to her needs and tastes.
This may be useful for choosing the instant messages appropriate for her interests
and physical location. For example, if she is visiting the Baltimore area the
company may choose to send her instant messages regarding the area Sushi
and Italian restaurants that she usually prefers, or local concert information.
Since too many of such instant messages are likely to be considered a nuisance,
accurate personalization is very important.

In this scenario, the web log files of the user are distributed in different sites
of the service provider. Since these log files are very large, it’s not feasible to
transmit them to a central site for analysis. Moreover, these transaction data are
heterogeneous. There is no guarantee that the user will perform the same type
of transactions at every location. The user may choose to perform a wide vari-
ety of transactions at different sites (e.g. ordering pizza, purchasing gifts, bank
transactions, monitoring personal financial portfolio, checking local weather).
Therefore the features defining the transactions observed at different sites are
likely to be different in general although we may have some overlap (e.g. moni-
toring personal financial portfolio, weather). Traditional data mining approach
to this problem is aggregating all the log files to a central site before analysis.
This would involve substantial data communication, large response time, and
this approach does not scale well. A collective learning approach, that builds an
overall model for the data based on local models, is a more logical approach.

A further challenge to collective learning is posed when the dataset is an
online stream of observations. In this case, at each time point, we want to learn
a model based on the observations upto that time point. In order to reduce
computational complexity, this has to be done in an incremental fashion. In
other words, at time k + 1, we need to update the model obtained at time
k, using the new set of observations available at time k + 1. We refer to this
incremental updating process as online learning, as opposed to a batch mode
learning approach, where we store all the past data and at each time k, we learn
a model afresh using all the data obtained upto that time point.

In this paper, we consider a Bayesian network (BN) to model the user log
data, which is distributed over different sites. Specifically, we address the problem
of learning a BN from heterogenous distributed data. A collective data mining
(CDM) approach introduced earlier by Kargupta et. al. [11, 13] is used to learn
a BN from distributed data. Section 2 provides some background and reviews
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Table 1. Homogeneous case: Site A with a table for credit card transaction records.

Account No. Amount Location Previous Unusual transaction

11992346 -42.84 Seattle Poor Yes
12993339 2613.33 Seattle Good No
45633341 432.42 Portland Okay No
55564999 128.32 Spokane Okay Yes

Table 2. Homogeneous case: Site B with a table for credit card transaction records.

Account No. Amount Location Previous Unusual transaction

87992364 446.32 Berkeley Good No
67845921 978.24 Orinda Good Yes
85621341 719.42 Walnut Okay No
95345998 -256.40 Francisco Bad Yes

existing literature in related area. Section 3 presents our approach to distributed
web log mining using Bayesian networks. An approach to learn a global Bayesian
network from distributed data, with selective data transmission is presented. We
then extend this approach to online Bayesian learning for multiple data streams.
This is particularly relevant to real-time and time-sensitive applications like
stock-market data or web-log data. Experimental results are presented in Section
4. Finally, we provide some discussions and concluding remarks in Section 5.

2 Background and related work

In this section, we first illustrate the difference between homogenous and het-
erogenous databases. We then review important literature related to Bayesian
networks (BN) and web mining and provide a brief review of BNs.

Distributed data mining (DDM) must deal with different possibilities of data
distribution. Different sites may contain data for a common set of features of
the problem domain. In case of relational data this would mean a consistent
database schema across all the sites. This is the homogeneous case. Tables 1 and
2 illustrate this case using an example from a hypothetical credit card transaction
domain.1 There are two data sites A and B, connected by a network. The DDM-
objective in such a domain may be to find patterns of fraudulent transactions.
Note that both the tables have the same schema.

In the general case the data sites may be heterogeneous. In other words, sites
may contain tables with different schemata. Different features are observed at
different sites. Let us illustrate this case with relational data. Table 3 shows
two data-tables at site X. The upper table contains weather-related data and
the lower one contains demographic data. Table 4 shows the content of site Y,
which contains holiday toy sales data. The objective of the DDM process may be

1 Please note that the credit card domain may not always have consistent schema.
The domain is used just for illustration.
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Table 3. Heterogeneous case: Site X with two tables, one for weather and the other
for demography.

City Temp. Humidity Wind
Chill

Boise 20 24% 10
Spokane 32 48% 12
Seattle 63 88% 4

Portland 51 86% 4
Vancouver 47 52% 6

City State Size Average Proportion
earning of small

businesses

Boise ID Small Low 0.041
Spokane WA Medium Medium 0.022
Seattle WA Large High 0.014

Portland OR Large High 0.017
Vancouver BC Medium Medium 0.031

Table 4. Heterogeneous case: Site Y with one table holiday toy sales.

State Best Selling Item Price ($) Number Items Sold

WA Snarc Action Figure 47.99 23K
ID Power Toads 23.50 2K
BC Light Saber 19.99 5K
OR Super Squirter 24.99 142K
CA Super Fun Ball 9.99 24K

detecting relations between the toy sales, the demographic and weather related
features. In the general heterogeneous case the tables may be related through
different sets of key indices. For example, Tables 3(upper) and (lower) are related
through the key feature City; on the other hand Table 3 (lower) and Table 4 are
related through key feature State. Note that the key is just an index and is
usually not a variable of interest in the knowledge discovery process. The role of
the key index is only to link observations across different sites. For example, in
a time series data, the time index can be used to link observations of variables
made at different sites. For a web log mining application, this key could be
produced using either a “cookie” or the user IP address (in combination with
other log data like time of access). In this paper, we consider the heterogenous
data scenario described above.

2.1 Related Work

A BN is a probabilistic graphical model that represents uncertain knowledge [19,
12, 3].

The problem of online Bayesian learning for centralized data has been ad-
dressed in the literature. In [21, 2, 7], the authors give methods to update the
parameters of a Bayesian network when the network structure is known. In
general, this updating process is based on the maximum a posteriori (MAP)
framework. In [15], a MAP method for updating the Bayesian network structure
is proposed. Friedman [8] provides an incremental network structure updating
method for online Bayesian learning.

An important problem is how to learn the Bayesian network from data in dis-
tributed sites. The centralized solution to this problem is to download all datasets
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from distributed sites. Kenji [14] worked on the homogeneous distributed learn-
ing scenario. In this case, every distributed site has the same feature but different
observations. In this paper, we address the heterogenous case, where each site
has data about only a subset of the features. To our knowledge, there is no
significant work that addresses the heterogenous case.

We now review some important work reported on mining useful pattern from
web logs. The concept of applying data mining algorithm to web log was proposed
in [4, 17]. Chen et. al. [4] introduce the concept of maximal forward reference,
whereas Mannila et. al. [17] propose discovering frequent episodes from web log.
In [1] the sequential pattern mining technique is used to discover user patterns.
The application of web log mining in improving web sites design, system perfor-
mance analysis, and building dynamic links is reported in [6, 20]. Cooley et. al.
[5] address the preprocessing technique for web log mining. Some work on using
probability model in web mining has also been reported. In [9] the authors use
probabilistic relational models to optimize web site design, whereas Pazzani [18]
uses a naive Bayesian classifier to learn user preference.

2.2 A brief review of Bayesian networks

A Bayesian network (BN) is a probabilistic graph model. It can be defined as a
pair (G, p), where G = (V, E) is a directed acyclic graph (DAG). Here, V is the
node set which represents variables in the problem domain and E is the edge
set which denotes probabilistic relationships among the variables. For a variable
X ∈ V, a parent of X is a node from which there exists a directed link to X.
Figure 1 is a BN called the ASIA model (adapted from [16]). The variables
are Dyspnoea, Tuberculosis, Lung cancer, Bronchitis, Asia, X-ray, Either, and
Smoking. They are all binary variables.

Let pa(X) denote the set of parents of X, then the conditional independence
property can be represented as follows:

P (X | V \ X) = P (X | pa(X)). (1)

This property can simplify the computations in a Bayesian network model. For
example, the joint distribution of the set of all variables in V can be written as
a product of conditional probabilities as follows:

P (V) =
∏

X∈V

P (X | pa(X)). (2)

The set of conditional distributions {P (X | pa(X)), X ∈ V} are called the
parameters of a Bayesian network. If variable X has no parents, then P (X |
pa(X)) = P (X) is the marginal distribution of X. The ordering of variables
constitutes a constraint on the structure of a Bayesian network. If variable X

appears before variable Y , then Y can not be a parent of X.
Two important issues in using a Bayesian network are : (a) learning a Bayesian

network and (b) probabilistic inference. Learning a BN involves learning the
structure of the network (the directed graph), and obtaining the conditional
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Fig. 1. ASIA Model

probabilities (parameters) associated with the network. Once a Bayesian net-
work is constructed, we usually need to determine various probabilities of interest
from the model. This process is referred to as probabilistic inference.

Bayesian network is an important tool to model probabilistic or imperfect re-
lationship among problem variables. It gives useful information about the mutual
dependencies among the features in the application domain. Such information
can be used for gaining better understanding about the dynamics of the process
under observation. It is thus a promising tool to model customer usage patterns
in web data mining applications, where specific user preferences can be modeled
as in terms of conditional probabilities associated with the different features.

3 Collective Bayesian learning

In the following, we discuss our collective approach to learning a Bayesian net-
work that is specifically designed for a distributed data scenario.

The primary steps in our approach are:
(a) Learn local BNs (local model) involving the variables observed at each site
based on local data set.
(b) At each site, based on the local BN, identify the observations that are most
likely to be evidence of coupling between local and non-local variables. Transmit
a subset of these observations to a central site.
(c) At the central site, a limited number of observations of all the variables are
now available. Using this to learn a non-local BN consisting of links between
variables across two or more sites.
(d)Combine the local models with the links discovered at the central site to
obtain a collective BN.

The non-local BN thus constructed would be effective in identifying associa-
tions between variables across sites, whereas the local BNs would detect associ-
ations among local variables at each site. The conditional probabilities can also
be estimated in a similar manner. Those probabilities that involve only vari-
ables from a single site can be estimated locally, whereas the ones that involve
variables from different sites can be estimated at the central site. Same method-
ology could be used to update the network based on new data. First, the new
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data is tested for how well it fits with the local model. If there is an acceptable
statistical fit, the observation is used to update the local conditional probability
estimates. Otherwise, it is also transmitted to the central site to update the ap-
propriate conditional probabilities (of cross terms). Finally, a collective BN can
be obtained by taking the union of nodes and edges of the local BNs and the
nonlocal BN and using the conditional probabilities from the appropriate BNs.
Probabilistic inference can now be performed based on this collective BN. Note
that transmitting the local BNs to the central site would involve a significantly
lower communication as compared to transmitting the local data.

It is quite evident that learning probabilistic relationships between variables
that belong to a single local site is straightforward and does not pose any addi-
tional difficulty as compared to a centralized approach.2 The important objec-
tive is to correctly identify the coupling between variables that belong to two (or
more) sites. These correspond to the edges in the graph that connect variables
between two sites and the conditional probability(ies) at the associated node(s).
In the following, we describe our approach to selecting observations at the local
sites that are most likely to be evidence of strong coupling between variables
at two different sites. The key idea of our approach is that the samples that do
not fit well with the local models are likely to be evidence of coupling between
local and non-local variables. We transmit these samples to a central site and
use them to learn a collective Bayesian network.

3.1 Selection of samples for transmission to global site

For simplicity, we will assume that the data is distributed between two sites
and will illustrate the approach using the BN in Figure 1. The extension of this
approach to more than two sites is straightforward. Let us denote by A and B, the
variables in the left and right groups, respectively, in Figure 1. We assume that
the observations for A are available at site A, whereas the observations for B are
available at a different site B. Furthermore, we assume that there is a common
feature (“key” or index) that can be used to associate a given observation in site
A to a corresponding observation in site B. Naturally, V = A ∪ B.

At each local site, a local Bayesian network can be learned using only samples
in this site. This would give a BN structure involving only the local variables at
each site and the associated conditional probabilities. Let pA(.) and pB(.) de-
note the estimated probability function involving the local variables. This is the
product of the conditional probabilities as indicated by (2). Since pA(x), pB(x)
denote the probability or likelihood of obtaining observation x at sites A and B,
we would call these probability functions the likelihood functions lA(.) and lB(.),
for the local model obtained at sites A and B, respectively. The observations at
each site are ranked based on how well it fits the local model, using the local
likelihood functions. The observations at site A with large likelihood under lA(.)
are evidence of “local relationships” between site A variables, whereas those with

2 This may not be true for arbitrary Bayesian network structure. We will discuss this
issue further in the last section.
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low likelihoods under lA(.) are possible evidence of “cross relationships” between
variables across sites. Let S(A) denote the set of keys associated with the latter
observations (those with low likelihood under lA(.)). In practice, this step can
be implemented in different ways. For example, we can set a threshold ρA and
if lA(x) ≤ ρA, then x ∈ SA. The sites A and B transmit the set of keys SA, SB ,
respectively, to a central site, where the intersection S = SA ∩ SB is computed.
The observations corresponding to the set of keys in S are then obtained from
each of the local sites by the central site.

The following argument justifies our selection strategy. Using the rules of
probability, and the assumed conditional independence in the BN of Figure 1, it
is easy to show that:

P (V) = P (A,B) = P (A | B)P (B) = P (A | nb(A))P (B), (3)

where nb(A) = {B,L} is the set of variables in B, which have a link connecting
it to a variable in A. In particular,

P (A | nb(A)) = P (A)P (T | A)P (X | E)P (E | T,L)P (D | E,B). (4)

Note that, the first three terms in the right-hand side of (4) involve variables
local to site A, whereas the last two terms are the so-called cross terms, involving
variables from sites A and B. Similarly, it can be shown that

P (V) = P (A,B) = P (B | A)P (A) = P (B | nb(B))P (A), (5)

where nb(B) = {E,D} and

P (B | nb(B)) = P (S)P (B | S)P (L | S)P (E | T,L)P (D | E,B). (6)

Therefore, an observation {A = a, T = t, E = e,X = x,D = d, S = s, L =
l, B = b} with low likelihood at both sites A and B; i.e. for which both P (A) =
P (A = a, T = t, E = e,X = x,D = d) and P (B) = P (S = s, L = l, B = b) are
small, is an indication that both P (A | nb(A)) and P (B | nb(B)) are large for
that observation (since observations with small P (V) are less likely to occur).
Notice from (4) and (6) that the terms common to both P (A | nb(A)) and
P (B | nb(B)) are precisely the conditional probabilities that involve variables
from both sites A and B. In other words, this is an observation that indicates a
coupling of variables between sites A and B and should hence be transmitted to
a central site to identify the specific coupling links and the associated conditional
probabilities.

In a sense, our approach to learning the cross terms in the BN involves a
selective sampling of the given dataset that is most relevant to the identification
of coupling between the sites. This is a type of importance sampling, where we
select the observations that have high conditional probabilities corresponding
to the terms involving variables from both sites. Naturally, when the values of
the different variables (features) from the different sites, corresponding to these
selected observations are pooled together at the central site, we can learn the
coupling links as well as estimate the associated conditional distributions. These
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selected observations will, by design, not be useful to identify the links in the BN
that are local to the individual sites. This has been verified in our experiments
(see Section 4).

3.2 Online Distributed Bayesian Network Learning

The proposed collective approach to learning a BN is well suited for a scenario
with multiple data streams. Suppose we have an existing BN model, which has to
be constantly updated based on new data from multiple streams. For simplicity,
we will consider only the problem of updating the BN parameters, assuming
that the network structure is known. As in the case of batch mode learning, we
shall use techniques for online updating of BN parameters for centralized data.
In the centralized case, there exists simple techniques for parameter updating for
commonly used models like the unrestricted multinomial model. For example,
let us denote by pijl = Pr(xi = l | paxi

= j), the conditional probability at node
i, given the parents of node i. We can then obtain the estimate pijl(k +1) of pijl

at step k + 1 as follows (see [10, Section 5]):

pijl(k + 1) =
αijl(k) + Nijl(k + 1)

αij(k) + Nij(k + 1)
, (7)

where αij(k) =
∑

l αijl(k) and Nij(k+1) =
∑

l Nijl(k+1). In eq. (7), Nijl(k+1)
denotes the number of observations in the dataset obtained at time k + 1 for
which, xi = l and paxi

= j, and we can set αijl(k + 1) = αijl(k) + Nijl(k + 1).
Note that Nijl(k) are a set of sufficient statistics for the data observed at time
k.

For online distributed case, parameters for local terms can be updated using
the same technique as in a centralized case. Next, we need to update the pa-
rameters for the cross-links, without transmitting all the data to a central site.
Again we choose the samples with low likelihood in local sites and transmit them
to a central site. This is then used to update the cross-terms at the central site.
We can summarize our approach by the following steps:

1. Learn an initial collective Bayesian network from the first dataset observed
(unless a prior model is already given). Thus we have a local BN at each site
and a set of cross-terms at the central site.

2. At each step k:
– Update the local BN parameters at each site using eq. (7).
– Update the likelihood threshold at each local site, based on the sample

mean value of the observed likelihoods. This is the threshold used to
determine if a sample is to be transmitted to a central site (see Section
3.1).

– Transmit the low likelihood samples to a central site.
– Update the parameters of the cross-terms at the central site.
– Combine the updated local terms and cross terms to get an updated

collective Bayesian network.
3. Increment k and repeat step (2) for the next set of data.
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4 Experimental Results

We tested our approach on two different datasets. A small real web log dataset
was used for batch mode distributed Bayesian learning. This was used to test
both structure and parameter learning. We also tested our online distributed
learning approach on a simulated web log dataset. More extensive examples
for batch mode learning, demonstrating scalability with respect to number of
distributed sites will be presented elsewhere. We present our results for the three
cases in the following two subsections.

4.1 Webserver Log Data

In this experiment, we used data from real world domain — a web server log
data. This experiment illustrates the ability of the proposed collective learning
approach to learn the parameters of a BN from real world web log data. Web
server log contains records of user interactions when request for the resources
in the servers is received. Web log mining can provide useful information about
different user profiles. This in turn can be used to offer personalized services as
well as to better design and organize the web resources based on usage history.

In our application, the raw web log file was obtained from the web server of
the School of EECS at Washington State University — http://www.eecs.wsu.

edu. There are three steps in our processing. First we preprocess the raw web
log file to transform it to a session form which is useful to our application. This
involves identifying a sequence of logs as a single session, based on the IP address
(or cookies if available) and time of access. Each session corresponds to the logs
from a single user in a single web session. We consider each session as a data sam-
ple. Then we categorize the resource (html, video, audio etc.) requested from the
server into different categories. For our example, based on the different resources
on the EECS web server, we considered eight categories: E-EE Faculty, C-CS
Faculty, L-Lab and facilities, T-Contact Information, A-Admission Information,
U-Course Information, H-EECS Home, and R-Research. These categories are
our features. In general, we would have several tens (or perhaps a couple of hun-
dred) of categories, depending on the webserver. This categorization has to be
done carefully, and would have to be automated for a large web server. Finally,
each feature value in a session is set to one or zero, depending on whether the
user requested resources corresponding to that category. An 8-feature, binary
dataset was thus obtained, which was used to learn a BN.

A central BN was first obtained using the whole dataset. Figure 2 depicts
the structure of this centralized BN. We then split the features into two sets,
corresponding to a scenario where the resources are split into two different web
servers. Site A has features E, C, T, and U and site B has features L, A, H, and
R. We assumed that the BN structure was known, and estimated the parameters
(probability distribution) of the BN using our collective BN learning approach.
Figure 3 shows the KL distance between the central BN and the collective BN as
a function of the fraction of observations communicated. Clearly the parameters
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Fig. 2. Bayesian Network Structure learnt from Web Log Data
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Fig. 3. KL distance between joint probabilities

of collective BN is close to that of central BN even with a small fraction of data
communication.

4.2 Online distributed learning

We now illustrate the results of online BN parameter learning, assuming the
network structure is known. We use the model shown in Figure 4. The 32 nodes
in the network are distributed among four different sites. Nodes 1, 5, 10, 15, 16,
22, 23, 24, 30, and 31 are in site A. Nodes 2, 6, 7, 11, 17, 18, 25, 26, and 32 are
in site B. Nodes 3, 8, 12, 19, 20, and 27 are in site C. Nodes 4, 9, 13, 14, 21,
28, and 29 are in site D. A dataset with 80000 observations was generated. We
assumed that at each step k, 5000 observations of the data are available (for a
total of 16 steps).

We denote by Bbe, the Bayesian network obtained by using all the 80,000
samples in batch mode (the data is still distributed into four sites). We denote
by Bol(k), the Bayesian network obtained at step k using our online learning
approach and by Bba(k), the Bayesian network obtained using a reular batch
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Fig. 4. Bayesian network for online distributed parameter learning

mode learning, but using only data observed upto time k. We choose three
typical cross terms (nodes 12, 27, and 28) and compute the KL distance between
the conditional probabilities to evaluate the preformance of online distributed
method. The results are depicted in Figure 5.

Figure 5 (left) shows the KL distance between the conditional probabilities for
the networks Bol(k) and Bbe for the three nodes. We can see that the perfomance
of online distributed method is good, with the error (in terms of KL distance)
dropping rapidly. Figure 5 (right) shows the KL distance between the conditional
probabilities for the networks Bba(k) and Bol for the three nodes. We can see
that the perfomance of a network learned using our online distributed method
is comparable to that learned using a batch mode method, with the same data.

5 Discussions and Conclusions

We have presented an approach to learning Bayesian networks from distributed
heterogenous data. This is based on a collective learning strategy, where a lo-
cal model is obtained at each site and the global associations are determined
by a selective transmission of data to a central site. In our experiments, the
performance of the collective Bayesian network was quite comparable to that
obtained from a centralized approach, even for a small data communication. To
our knowledge, this is the first approach to learning Bayesian networks from
distributed heterogenous data.

Bayesian networks are used to model probabilistic relationships among fea-
tures and are well suited for modeling user patterns and preferences in web
mining applications. Moreover, our collective learning approach lends itself to
easy update of the model based on new observations, particularly when these
observations are also distributed. This is ideally suited for a online learning appli-
cations with multiple data streams. Our experiments (some presented elsewhere)
suggest that the collective learning scales well with respect to number of sites,
samples, and features.



BN learning for multiple data streams 43

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

step k

KL
 d

is
ta

nc
e

node 12
node 27
node 28

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

step k

KL
 d

is
ta

nc
e

node 12
node 27
node 28

Fig. 5. Simulation results for online Bayesian learning: (left) KL distance between the
conditional probabilities for the networks Bol(k) and Bbe for three nodes (right) KL
distance between the conditional probabilities for the networks Bol(k) and Bba for three
nodes

Many interesting applications are possible from a BN model of the web log
data. For example, specific structures in the overall BN would indicate special
user patterns. This could be used to identify new user patterns and accordingly
personalize offers and services provided to such users. Another interesting appli-
cation is to classify the users into different groups based on their usage patterns.
This can be thought of decomposing the overall BN (obtained from the log data
by collective learning) into a number of sub-BNs, each sub-BN representing a
specific group having similar preferences. We are actively pursuing these ideas
and would report results in a future publication.

We now discuss some limitations of our proposed approach, which suggest
possible directions for future work.

– Hidden node at local sites: For certain network structures, it may not
be possible to obtain the correct (local) links, based on local data at that
site. For example, consider the ASIA model shown in Figure 1, where the
observations corresponding to variables A, T , E, and X are available at site
A and those corresponding to variables S, L, B, and D are available at
site B. In this case, when we learn a local BN at site B, we would expect
a (false) edge from node L to node D, because of the edges L → E and
E → D in the overall BN and the fact that node E is “hidden” (unobserved)
at site B. This was verified experimentally as well. However, the cross-links
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L → E and E → D were still detected correctly at the central site, using our
“selctively sampled” data. Therefore, it is necessary to re-examine the local
links after discovering the cross-links. In other words, some post-processing
of the resulting overall BN is required to eliminate such false local edges. This
can be done by evaluating an appropriate score metric on BN configurations
with and without such suspect local links. We are currently pursuing this
issue. Note, however, that we do not encounter this problem in the examples
presented in Section 4.

– Assumptions about the data: As mentioned earlier, we assume the ex-
istence of a key that links observations across sites. Moreover, we consider
a simple heterogenous partition of data, where the variable set at different
sites are non-overlapping. We also assume that our data is stationary (all
data points come from the same distribution) and free of outliers. These
are simplifying assumptions to derive a reasonable algorithm for distributed
Bayesian learning. Suitable learning strategies that would allow us to relax
of some of these assumptions would be an important area of research.

– Structure Learning: Even when the data is centralized, learning the struc-
ture of BN is considerably more involved than estimating the parameters or
probabilities associated with the network. In a distributed data scenarion,
the problem of obtaining the correct network structure is even more pro-
nounced. The “hidden node” problem discussed earlier is one example of
this. As in the centralized case, prior domain knowledge at each local site,
in the form of probabilistic independence or direct causation, would be very
helpful. Our experiments on the ASIA model demonstrate that the proposed
collective BN learning approach to obtain the network structure is reason-
able, at least for simple cases. However, this is just a beginning and deserves
careful investigation.

– Performance Bounds: Our approach to “selective sampling” of data that
maybe evidence of cross-terms is reasonable based on the discussion in Sec-
tion 3 (see eq. (3)-(6)). This was verified experimentally for the three exam-
ples in Section 4. Currently, we are working towards obtaining bounds for
the performance of our collective BN as compared to that obtained from a
centralized approach, as a function of the data communication involved.
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