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Abstract While literature within the field of privacy-preserving data min-
ing (PPDM) has been around for many years, attention has mostly been given
to the perturbation and anonymization of tabular data; understanding the role
of privacy over graphs and networks is still very much in its infancy. In this
chapter, we survey a very recent body of research on privacy-preserving data
analysis over graphs and networks in an effort to allow the reader to observe
common themes and future directions.

1.1 Introduction

The proliferation of social networks, online communities, peer-to-peer file
sharing and telecommunication systems has created large, complex graphs.
These graphs are of significant interest to researchers in various application
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2 Privacy-Preserving Data Analysis on Graphs and Social Networks

domains such as marketing, psychology, and epidemiology. Research in these
areas has revealed interesting properties of the data and presented efficient
ways of maintaining, mining and querying them. Distributed and ubiqui-
tous computing over these networks, which are essentially graph structures,
is also an emerging topic with increasing interest in the data mining commu-
nity. However, with the exception of some recent work, the privacy concerns
associated with data-analysis over graphs and networks have been largely ig-
nored. In this chapter, we provide a detailed survey of the very recent work
on privacy-preserving data analysis over graphs and networks in an effort to
allow the reader to observe common themes and future directions.

In a network, nodes correspond to individuals or other social entities, and
edges correspond to relationships between them. The privacy breaches in
a network can be grouped to three categories: 1) identity disclosure: the
identity of an individual who is associated with a node is revealed; 2) link
disclosure: the sensitive relationships between two individuals are disclosed;
and 3) content disclosure: the sensitive data associated with each node is
compromised, e.g., the email message sent and/or received by the individu-
als in a email communication network. A privacy-preservation system over
graphs and networks should consider all of these issues. However, compared
with existing anonymization and perturbation techniques of tabular data (see,
e.g., the survey book [3]), working with graphs and networks is much more
challenging due to the following reasons:

• It is difficult to model the background knowledge and the capability of
an attacker. Any topological structures of the graph can be exploited
by the attacker to derive private information. Two nodes that are indis-
tinguishable with respect to some structural metrics does not guarantee
they are on other metrics. Hence, it is not clear what are the most ap-
propriate privacy models for graphs and networks, and how to measure
the privacy breach in that setting.

• It is difficult to quantify the information loss. A graph can be worth
a thousand words. It contains rich information but there is no stan-
dard ways to quantify the information loss incurred by the changes of
its nodes and edges. How important are those network measures (e.g.,
degree, clustering coefficient, average path length, diameter, centrality,
betweenness, etc.) to graph-mining applications (e.g., clustering, com-
munity discovery, viral marketing, etc.)? How well should we preserve
those measures?

• It is even difficult to devise graph-modification algorithms that balance
the goals of preserving privacy with the utility of the data. Different
from tabular data where each tuple can be viewed as an independent
sample from some distribution, the nodes and edges in a graph are all
correlated. Therefore, the impact of a single change of an edge or a node
can spread across the whole network.
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• It is difficult to model the behavior of the participants involved in a
network-based collaborative computing environment. Some participants
may be quite honest and follow the rules; some may decide to behave
dishonestly and exploit the system without contributing much; some
may even intentionally try to collude with other parties to expose the
private data of a specific individual.

To combat these challenges, several authors have recently developed differ-
ent types of privacy models, adversaries, and graph-modification algorithms.
Unfortunately, none of the work is likely to solve all the problems in one
shot. Protecting against each kind of privacy breaches may require different
techniques or a combination of them. In this chapter, we detail a number of
recently developed techniques for each type of the disclosure described above.
We hope this survey can offer insight into the challenges and therefore oppor-
tunities in this emerging area.

The remainder of this chapter is organized as follow. Section 1.2 describes
definitions and notation used throughout. Section 1.3 discusses identity disclo-
sure. Section 1.4 details link disclosure. Section 1.5 briefs content disclosure.
Section 1.6 discusses privacy issues that arise from multi-party distributed
computing, which we believe can serve as a foundation for the research of
content disclosure over graphs and network with user interactions. Finally,
Section 1.7 outlines future directions and concludes the chapter.

1.2 Definitions and Notation

We model a social network as a graph G = (VG, EG), with vertices VG =
{v1, . . . , vn} corresponding to individuals and edges EG = {(vi, vj)|vi, vj ∈
VG, i 6= j, 1 ≤ i, j ≤ n} the social relationships among them. We use dG to
denote the degree sequence of G. That is, dG is a vector of size n, with the i-th
element dG(i) being the degree of the i-th node of G. A graph isomorphism
from G to H is a bijection: f : VG → VH such that an edge (u, v) ∈ EG if and
only if (f(u), f(v)) ∈ EH . A graph automorphism is a graph isomorphism with
itself, i.e., a mapping from the vertices of the given graph G back to vertices
of G such that the resulting graph is isomorphic with G. An automorphism f
is non-trivial if it is not the identity function. Through out this chapter, we
use the terms “network” and “graph” interchangeably.
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1.3 Identity Disclosure

The identity disclosure problem often arises from the scenario where the
data owner wants to publish or share, with a third party, a network that per-
mits useful analysis without disclosing the actual identity of the individuals
involved in the network. Here each individual is represented by a node on
the network. A common practice, called naive anonymization, removes the
personally identifying information associated with each node or replaces it
with a pseudo-random name. However, as we will show later in this section,
this simple approach does not always guarantee privacy. Under certain condi-
tions, the attackers can still re-identify the individuals by combining external
knowledge with the observed graph structure.

1.3.1 Active Attacks and Passive Attacks

Backstrom et al. [6] considered two different types of attacks on a naively-
anonymized social network. The first is an active attack, where an attacker
creates new user accounts and edges in the original network and uses them to
find targets and their relations in the anonymized network. The second is a
passive attack, where users of the system find themselves in the anonymized
network and discover identities and edge relations of other connected users.
These attacks are based on the uniqueness of small random subgraphs embed-
ded in an arbitrary network, using ideas related to those found in arguments
from Ramsey theory [13]. Interested readers may observe that identity dis-
closure often leads to link disclosure. However, in this section we focus on
identity disclosure and will discuss the latter in Section 1.4.

Next, we give the formal definition of the problem Backstrom et al. studied:

Problem 1.1 Given a social network G = (VG, EG) and an arbitrary set of
targeted users U = {u1, . . . , ub}, identify U in the naively-anonymized copy of
G and hence determine whether edge-relation (ui, uj) exists.

The active attack proceeds as follows. Before the anonymized graph is pro-
duced and published, the attacker registers k new user accounts {x1, . . . , xk}
in the system, and it connects them together to create a subgraph H. The
attacker then creates links between these new accounts to nodes in the target
set {u1, . . . , ub}, and potentially other nodes in G as well. These links are
created depending on the specific application scenario, e.g., by sending mes-
sages to the targeted users or adding targeted users to the friends list or the
address book of these new accounts. After the anonymized version of G is
released, the attacker solves a special instance of the subgraph isomorphism
problem to find H that is planted in G. Having identified H, the attacker can
locate targeted users {u1, . . . , ub}, thereby determining all the edge relations
among them.
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It should be noted that to make the above framework work, the subgraph
H has to satisfy the following properties: 1) it is uniquely identifiable in G
with high probability, regardless of G’s structure and regardless of how it is
attached to G; 2) it can be efficiently found from G by the attacker; and 3) H
has no non-trivial automorphisms. The proof of the correctness and efficiency
of the attacks is rather complicated, and we refer interested readers to [6] for
a better treatment. It has been shown that with |V | = n and k = Θ(log n)
new accounts, a randomly generated subgraph H will be unique with high
probability. Moreover, if the maximum node degree in H is Θ(log n), then H
can be recovered efficiently, as well as the identities of up to Θ(log2 n) targeted
nodes to whom the attacker created links from H. In practice, k can be set
to values even smaller than the suggested bounds.

The experiments on a 4.4-million-node and 77 million-edge social network
extracted from LiveJournal.com show that, the creation of 7 nodes by an
attacker can reveal an average of 70 targeted nodes, and hence compromise
the privacy of approximately 2400 edge relations among them. The authors
further showed that, in the worse case, at least Ω(

√
log n) nodes are needed

in any active attack to begin compromising the privacy of arbitrary targeted
nodes.

The passive attack is based on the observation that most nodes in a real so-
cial network already belong to a small uniquely identifiable subgraph. There-
fore, if a user u is able to collude with a coalition of (k − 1) friends after the
release of the network, he or she will be able to identify and compromise the
privacy of neighbors connected to this coalition. We refer readers to [6] for
more details.

1.3.2 k-Candidate Anonymity and Graph Randomization

Hay et al. [18] considered the problem of re-identifying a known individual
in the naively-anonymized network. They observed that the structural sim-
ilarity of the nodes in the graph and the background knowledge an attacker
obtains jointly determines the extent to which an individual can be distin-
guished. For example, if the attacker knows that somebody has exactly 5
social contacts, then he can locate all the nodes in the graph with degree 5.
If there are very limited nodes satisfying this property, then the target might
be uniquely identified.

Along this direction, the authors proposed a privacy model for social net-
works, which is based on the notion of k-anonymity [27].

Definition 1.1 (k-candidate anonymity) A graph satisfies k-candidate anonymity
with respect to a structural query if the number of the matching candidate
nodes is at least k.

Alternatively, an anonymized graph satisfies k-candidate anonymity if for a
given structural query, no individual can be identified with a probability higher
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than 1/k.
The query evaluates the existence of the neighbors of a node or the structure

of the subgraph in the vicinity of a node. It implicitly models the background
knowledge (or the power) of an attacker. In their work [18], Hey et al. studied
two types of queries: 1) vertex refinement query, which defines a class of
queries of increasing power to report the structural information about a node’s
position in the network. The weakest queryH0(x) simply returns the identifier
(or the pseudo-random name) of node x; H1(x) returns the degree of x; H2(x)
returns the degree of each neighbor of x, and so on. 2) subgraph knowledge
query, which verifies the existence of a specific type of subgraph around the
target node. The descriptive power of such a query is measured by counting
the number of edges (also known as edge facts) contained the subgraph.

To protect against these types of attacks, the authors studied a random-
perturbation technique that modifies the graph through a sequence of random
edge-deletions followed by edge-insertions. While this approach can poten-
tially reduce the risk of re-identification, it does not guarantee that the modi-
fied graph satisfies k-candidate anonymity, neither does it guarantee that the
utility of the original graph can be well preserved. This technique is fur-
ther studied by Ying and Wu [34] in the context of sensitive link/relationship
protection. They evaluated the impact of edge randomization on some spec-
trum properties of the graph, and developed a new strategy to better preserve
these properties without sacrificing much of the privacy. We will detail their
technique in Section 1.4.3.

1.3.3 k-Degree Anonymity and Minimal Edge Modifications

Liu and Terzi [25] studied a specific graph-anonymity model called k-degree
anonymity, which prevents the re-identification of individuals by adversaries
with a priori knowledge of the degrees of certain nodes. Note that this is
related to the vertex refinement query discussed in Section 1.3.2.

Definition 1.2 (k-degree anonymity) A graph G = (VG, EG) is k-degree
anonymous if every node v ∈ VG has the same degree with at least (k − 1)
other nodes.

Based on this privacy model, the authors addressed the following problem:

Problem 1.2 Given a graph G = (VG, EG) and an integer k, modify G via
a set of edge-addition operations in order to construct a new graph G′ =
(VG′ , EG′) such that 1) G′ is k-degree anonymous; 2) VG′ = VG; and 3)
EG′ ∩ EG = EG.

It is easy to see that one could transform G to the complete graph, in which
all nodes share the same degree. Although such an anonymization would
preserve privacy, it would make the anonymized graph useless for any study.
For that reason, the authors imposed the additional requirement that the



Privacy-Preserving Data Analysis on Graphs and Social Networks 7

minimum number of edge-additions is made. This constraint tries to capture
the requirement of structural similarity between the input and output graphs.
Note that minimizing the number of additional edges can be translated into
minimizing the L1 distance of the degree sequence of G and G′, since it holds
that |EG′ | − |EG| = 1

2L1(dG′ − dG). With this observation, the authors
proposed a two-step framework for the graph-anonymization problem. The
algorithms proceed as follows:

1. First, starting from the original degree sequence dG, construct a new
degree sequence d′ that is k-anonymous and the cost L1(d′ − dG) is
minimized.

2. Given the new degree sequence d′, construct a graph G′(VG′ , EG′) such
that dG′ = d′, VG′ = VG and EG′ ∩ EG = EG (or EG′ ∩ EG ≈ EG in
the relaxed version).

The first step is solved by a linear-time dynamic programming algorithm; the
second step is solved by a set of graph-construction algorithms which are re-
lated to the realizability of degree sequences. The authors also extended their
algorithms to allow for edge deletions as well as simultaneous edge additions
and deletions. Experiments on a large spectrum of synthetic and real network
datasets demonstrate that their algorithms are efficient and can effectively
preserve the graph utility while satisfying k-degree anonymity.

1.3.4 k-Neighborhood Anonymity and Graph Isomorphism

Zhou and Pei [36] considered the subgraph constructed by the immediate
neighbors of a target node. The assumption is that the unique structure of
the neighborhood subgraph can be used by the attacker to distinguish the
target from other nodes. This observation is closely related to the subgraph
knowledge queries discussed in Section 1.3.2. Based on this assumption, the
authors defined a new notion of the anonymity on graphs, which we call the
k-neighborhood anonymity.

Definition 1.3 (k-neighborhood anonymity) A node is k-anonymous in
a graph G if there are at least (k− 1) other nodes v1, . . . , vk−1 ∈ VG such that
the subgraphs constructed by the neighbors of each node v1, . . . , vk−1 are all
isomorphic. A graph satisfies k-neighborhood anonymity if all the nodes are
k-anonymous as defined above.

Following this definition, the authors specifically considered the following
problem:

Problem 1.3 Given a graph G = (VG, EG) and an integer k, construct a new
graph G′ = (VG′ , EG′) such that 1) G′ is k-neighborhood anonymous; 2) VG′ =
VG; 3) EG′ ⊇ EG; and 4) the information loss incurred by anonymization is
not too much.
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The algorithm for solving the above problem consists of three steps. First,
it marks all the nodes as “unanonymized” and sorts them in descending order
of their neighborhood size. Here the “neighborhood size” is defined as the
number of edges and nodes of the subgraph constructed by the immediate
neighbors of a node. Then, the algorithm picks up the first “unanonymized”
node u from the sorted list, finds the top (k − 1) other nodes {v1, . . . , vk−1}
from the list whose neighborhood subgraphs are most similar to that of u
(we call it subgraph similarity computation). Next, the algorithm iteratively
considers every pair of nodes (u, vi), i = 1, . . . , k− 1, and for each pair (u, vi),
the algorithm modifies the neighborhood subgraph of u and the neighborhood
subgraph of vi to make them isomorphic to each other. The modification is
performed by adding extra edges while keeping the nodes intact (we call it
subgraph isomorphism modification). After all the neighborhood subgraphs
of these k nodes are pair-wise isomorphic, the algorithm marks these k nodes
as “anonymized”. The process continues until all the nodes in the graph are
“anonymized”.

The information loss is measured by three factors: 1) extra edges added
to the neighborhood; 2) nodes that were not in the neighborhood of the
anonymized nodes but are now in; and 3) information loss due to the value
generalization of the node’s label if there is any such operations. Since the
subgraph similarity computation and subgraph isomorphism modification are
all based on greedy heuristics, there is no guarantee that the information
loss is minimal, therefore, the utility of the anonymized graph can only be
evaluated empirically.

1.3.5 Personally Identifying Information on Social Network-
ing Sites

So far we have restricted our discussion to the problem of privacy-preserving
graph publishing and sharing, and have largely ignored the privacy risks as-
sociated with personal information sharing in the real social networks such as
Facebook and MySpace.

While specific goals and patterns vary significantly across these social net-
working sites, the most common model is based on the presentation of the
user’s profile and the visualization of his connections to others. As the profile
and connection often reveal vast amounts of personal and sometimes sensitive
information (e.g., photo, birth date, phone number, current residence, dating
preference, current relationship status, political views, and various interests),
it is highly likely that a user can be uniquely identified even if he does not
openly expose his identity.

In an effort to quantify the privacy risk associated with these networks, Ac-
quisti and Gross [2] combined online social network data and other publicly
available data sets in order to estimate whether it is possible to re-identify
PII (personally identifying information) from simple PI (personal informa-
tion). This re-identification may happen, through photos, demographic data,
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category-based representations of interests that indicate unique or rare over-
laps of hobbies. Their research supports the claim that large amounts of
private information are available publicly.

1.4 Link Disclosure

The link disclosure problem is centered around the protection of the con-
nection between vertices in a network. Two entities in a social network may
have a myriad of connections. Some that are safe for the public to know and
others that should remain private. Techniques to solve this problem, while
still extracting analytic value from the network, have just started to emerge
in the literature. In this section, we describe some recent work in this area.

1.4.1 Link Re-identification

Zheleva and Getoor [35] focused on the problem of link re-identification,
which they define as inferring sensitive relationships from anonymized graph
data. Graph nodes represent entities that are assumed to have multiple re-
lationships, which are modelled as edges, between them. Edges may be of
different types and can be classified as either sensitive or observed. The core
problem addressed was how to minimize the probability of predicting sensitive
edges based on the observed edges. The goal is to attain privacy preservation
of the edge information, while still producing anonymized data that is useful.
Utility is measured by the number of observational edges removed. The higher
the number of removed observations, the lower the overall utility.

This goal is achieved by employing one of the five anonymization approaches
outlined in the paper. Their first algorithm, called Intact edges, removes all
sensitive edges and leaves all the observational ones. The second algorithm,
called Partial edge removal, deletes observational edges that may contribute to
the inference of a sensitive relationship. The criteria is left up to the reader to
set. They demonstrate this algorithm using a random removal strategy. In the
first two approaches, the number of nodes in the graph was unchanged and the
edges constructed as links between their anonymized versions. In the cluster-
edge anonymization approach, all the anonymized nodes are collapsed into a
single node (per cluster) and a decision is made on which edges to include
in the collapsed graph. The Cluster-edge anonymization with constraints ap-
proach uses a more restrictive sanitization technique for the observed edges, by
creating edges between equivalence classes if and only if the equivalence class
nodes have the same constraints as any two nodes in the original graph. The
final approach, called Removed edges, removes all relationships/edges from the
graph. They recognize that the effectiveness of the approaches depend on the
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structural and statistical characteristics of the underlying graph. The experi-
ments were carried out on a variety of graphs with varying characteristics and
confirmed intuitive expectations, e.g., as the number of observational edges
decreased, so did the number of correctly identified sensitive relationships.

In short, Zheleva and Getoor concentrated on an often unexamined aspect
of link disclosure - mitigating the risk of link re-identification.

1.4.2 Privacy-Preserving Link Analysis

Duan et al. [12] proposed an algorithm that enables link analysis in sit-
uations where there is no stated link structure between the nodes. They
constrained their discussion to the domain of expert identification and au-
thoritative document discovery and leverage the observation that a user’s
level of expertise is reflected by the document they access. Their Secure On-
line HITS algorithm is an extension of Kleinberg’s HIT algorithm [21], where
they replaced the 0-1 hyperlink property with a non-negative value, i.e., a
weight, which models the user’s behavior.

Given users and their behaviors, whether through access logging systems
or other means, they construct a graph such that the users are vertices and
log entries represent edges between two users. Then an eigengap (difference
between the largest and the second largest eigenvalues) is computed using
their online eigenvector calculation method, which performs in environments
where frequent updates are the norm, by estimating the perturbation upper
bound and delaying applying updates when possible. Due to the fact that they
were logging (possibly) sensitive information from which they build the graph,
they augmented their basic algorithm to address the privacy concerns. This
was done by leveraging public key encryption to ensure that only aggregate
or encrypted data was exposed.

To empirically test the algorithm, they ran it on the Enron Email Dataset
[9]. They used the message count between the sender and the recipient as the
weight in order to determine if the algorithm could identify the central figures
in the social network. The experiments demonstrated that their algorithm
provided estimated rankings that closely matched the actual ones.

In short, Duan et al. furthered the state of the art by demonstrating how
core principles, like access pattern inference, can be used to construct graph
structure, when none appears to exist.

1.4.3 Random Perturbation for Private Relationship Pro-
tection

Ying and Wu [34] studied two randomization techniques to protect private
relationships. The first one, called Rand Add/Del, modifies the graph by a
sequence of random edge-additions followed by edge-deletions. The second,
called Rand Switch, randomly switches a pair of edges to produce a new
edge set Ẽ ← E\{(t, w), (u, v)} ∪ {(t, v), (w, u)} provided that (t, v) /∈ E and
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(w, u) /∈ E, and repeats this process many times. The first randomization
preserves the total number of edges in the original graph, while the second
one maintains the degree of each node.

The authors evaluated, both empirically and theoretically, the impact of
randomization on the eigen-spectrum of the graph. In particular, they fo-
cused on two important eigenvalues: 1) the largest eigenvalue of the adjacency
matrix, which is closely related to the maximum degree, chromatic number,
clique number and subgraph centrality of a graph; and 2) the second smallest
eigenvalue of the Laplacian matrix (also known as algebraic connectivity [14]),
which reflects how well connected the overall graph is, and has implications
for properties such as clustering and synchronizability.

Using some theoretical results from Cvetkovic et al. [10], the authors de-
veloped the spectrum-preserving versions of Rand Add/Del and Rand Switch.
The new algorithms selectively choose the edges that should be added, re-
moved, or switched in order to control the changes of the eigenvalues. The
privacy is evaluated by the prior and posterior belief of the existence of an
edge. The authors developed closed-form expressions for evaluating Rand
Add/Del and Rand Switch, and claimed that their spectrum-preserving coun-
terparts should not differ much in protecting the privacy.

1.4.4 Cryptographic Protocols for Private Relationships Pro-
tection

Carminati et al. [7] considered an access control model where only au-
thorized users who satisfy some access conditions are granted right to the
resources owned by another user in a social network. Here the resources can
be personal profiles, blogs, photos, etc.

The access conditions specify the type of the relationship between the re-
questor and owner (e.g., colleagues, alumni), the depth of this relationship
(e.g., length of the friendship chain), and the trust level (e.g., fully trusted,
semi-trusted). Since knowing who is trusted by a user and to what extent
disclose a lot about that user’s personal interests, it is desirable to protect
that information during the authentication process.

For this reason, the authors developed a symmetric-key protocol to enforce a
selective dissemination of the relationship information during the authentica-
tion. This problem is further studied by Domingo-Ferrer [11], who developed
a public-key protocol that does the same job as [7], without requiring a trusted
third party.

1.4.5 Deriving Link Structure of the Entire Network

Korolova et al. [22] considered the problem that an attacker wants to derive
the link structure of the entire network by collecting neighborhood information
of some compromised users, who are either bribed or whose accounts are
broken by the attacker. These users are chosen using different criteria, e.g.,
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uniformly at random (Random), in the descending order of their node degrees
(Highest-Degree), etc.

Analysis shows that the number of users needed to be compromised in order
to cover a constant fraction of the entire network drops exponentially with
increase in the lookahead parameter `. Here a network has a lookahead ` if
a registered user can see all of the links and nodes incident to him within
distance ` from him. For example, a social network has ` = 0 if a user can
only see who are his immediate neighbors; has ` = 1 if a user an see who
are his immediate neighbors as well as his neighbors’ immediate neighbors.
A good example of a social network with ` = 1 is LinkedIn. Experiments on
a 572,949-node friendship graph extracted from LiveJournal.com show that
1) Highest-Degree yields the best performance while Random performs the
worst; and 2) in order to obtain 80% coverage of the graph using lookahead 2,
Highest-Degree needs to bribe 6,308 users; to obtain the same coverage using
lookahead 3, Highest-Degree only needs to bribe 36 users.

1.4.6 Synthetic Graph Generation

Instead of modifying the graph to have it satisfy some k-anonymity criteria,
Leskovec and Faloutsos [23] considered the problem of synthetic-graph gener-
ation. That is, given a large graph G, compute the most likely parameters Θ
that would generate a synthetic-graph G′ having the same properties as G.
Hence, the data owner can publish G′ without revealing the exact information
about the original graph G.

The parameter Θ = [θij ] defined in [23] is a n1 × n1 probability matrix,
where n1 << n and the element θij ∈ [0, 1] indicates the probability that
edge (i, j) is present. Given the original graph G, Θ is calculated by max-
imum likelihood estimation: arg maxΘ P (G|Θ). To evaluate this formula,
the authors developed a linear-time algorithm (a naive approach would take
super-exponential time) by exploiting the structure of Kronecker product and
by using a sampling technique.

Given the estimated parameter Θ, one can sample an initiator graph G1

with n1 nodes, and by recursion produce successively larger graphs G2, . . . , Gk

such that the k-th graph Gk is on nk = nk
1 nodes. To be more specific,

let AG denote the adjacency matrix of a graph G, we have AGk
= Ak

G1
=

AGk−1⊗AG1 , where ⊗ is the Kronecker product and the graph corresponding
to AGk

is called Kronecker graph. Note that this approach assumes that
Kronecker Graphs, which is self-similar and based on a recursive construction,
is a good model for the real graph G. We refer interested readers to [23] and
the references wherein for more details.
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1.5 Content Disclosure

Content disclosure is normally an issue when the private data associated
with a user on the network is disclosed to others. A very interesting exam-
ple recently arose from Facebook’s “Beacon” service, a “social ads” system
where your own expressed brand preferences and Internet browsing habits,
and even your very identity are used to market goods and services to you and
your friends. For example, adding the latest season of LOST to your queue on
Blockbuster.com might have Facebook place an ad for Blockbuster straight on
your friends’ news feeds. This helps Facebook and its partners (Blockbuster
in this example) make money because, as Facebook’s CEO Mark Zuckerberg
extols, “nothing influences a person more than a recommendation from a
trusted friend.” This may be fine in some situation, but there may be some
things that one is not prepared to share with the entire world. From the users
perspective, they want to ask how to avoid the disclosure of their personal pri-
vate information while still enjoying the benefit of social advertisement, e.g.,
promise of free iTunes songs and movies. From the company’s perspective,
they want to know how to assure the users that their privacy is not compro-
mised while doing social advertisement. Privacy concerns regarding content
disclosure exist in other application scenarios such as social recommendation,
etc.

Protecting against this kind of disclosure is an important research and en-
gineering problem. However, the work in the literature thus far does not take
into account the impact of graph structures as other two types of disclosures,
but mostly focuses on 1) simple opt-in and opt-out setting and 2) standard
data perturbation and anonymization for tabular data. The first approach al-
lows the registered user to determine whether he wants to disable the service,
and it is being used in limited application scenarios. The second approach
is more generic and it relies on traditional privacy-preserving data masking
techniques [3] to change the data that is to be shared.

1.6 Privacy in Multi-Party Distributed Computing

Since users and companies on a social network usually share and exchange
some information, or jointly perform some task, we can see a connection
between online activities and multi-party distributed computing. Here the
graph structure may not play as an important role as in identity and link
disclosure problems, but rather the behavior of users on the network and
the task they want to achieve determines the extent to which the privacy
is breached. Therefore, we believe that the privacy-preservation research in
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distributed computing can form a foundation for research on content disclosure
for graphs and networks. Next, we introduce some work in that area aimed
at offering insights into the solutions to content disclosure for graphs and
networks.

1.6.1 Secure Multi-Party Computation

Privacy-preservation objectives in distributed computing can often be framed
as instances of secure multi-party computation (SMC) [33, 16], wherein mul-
tiple parties, each having a private input, want to compute some function
of these inputs without revealing any information other than the function’s
output. For example, the private input could be each party’s income and
the computation would return who is the richest. This example is known as
the millionaire’s problem and was first discussed by Yao [33]. Usually, it is
assumed that 1/3 or 1/2 of the parties may be “bad” (or called “malicious”),
while everyone else is assume to be good (or called “semi-honest”) and they
execute the computation protocol as instructed. Although general approaches
to SMC were proposed for a variety of settings in the 1980s, the computational
and communication complexities hindered the application of SMC to privacy-
preserving distributed data mining. In 2000, Lindell and Pinkas [24] designed
an two-party SMC version of the ID3 algorithm for constructing a classifica-
tion tree. They showed that a privacy-preserving data-mining task does not
have to be cast as a monolithic SMC problem which requires an expensive
general SMC solution. Instead, the task may be decomposed into small mod-
ules, with each module being implemented with special-purpose efficient SMC
protocols. The key to such construction is that we are able to ensure secure
chaining of the small SMC components. We prevent information from leaking
at the seams between the components by having them produce not public in-
termediate outputs but rather individual party shares of the outputs. These
shares may be fed as inputs to further SMC components. Since Lindell and
Pinkas’ pioneering work, a variety of SMC solutions for privacy-preserving
distributed data mining have been proposed, questioned, and refined. We
refer interested readers to [26, 8, 31, 3] for a thorough treatment. However,
it should be noted that, as of today, a majority of the research in this area
are still limited to two-party computation with the assumption of semi-honest
behavior. Therefore they may not scale well in an application scenario with
many malicious participants and large data sets.

A relatively new area of research is the application of game theory to analyze
the rational behavior of the participants. Here, we would like to consider what
happens if the participants are all trying to maximize their own benefits,
rather than being simply “bad” and “good”. In the next section we briefly
mention some work in this area.
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1.6.2 Game-Theoretic Framework for Privacy-Preserving Com-
putation

1.6.2.1 Preliminaries of Game Theory

Before describing the game-theoretic framework for privacy-preserving dis-
tributed computing, we first provide a brief background of game theory.

A game is an interaction or a series of interactions between players, which
assumes that 1) the players pursue well defined objectives (they are rational)
and 2) they take into account their knowledge or expectations of other players’
behavior (they reason strategically). For simplicity, we start by considering
the most basic game - the strategic game.

Definition 1.4 (Strategic game) The strategic game consists of
• a finite set P : the set of players,

• for each player i ∈ P a nonempty set Ai: the set of actions available to
player i,

• for each player i ∈ P a preference relation �i on A = ×j∈P Aj: the
preference relation of player i.

The preference relation �i of player i can be specified by a utility function
ui : A→ R (also called a payoff function), in the sense that for any a ∈ A, b ∈
A, ui(a) ≥ ui(b) whenever a �i b. The values of such a function is often
referred to as utilities (or payoffs). Here a or b is called the action profile,
which consists of a set of actions, one for each player. Therefore, the utility
(or payoff) of player i depends not only on the action chosen by himself,
but also the actions chosen by all the other players. Mathematically, for any
action profile a ∈ A, let ai be the action chosen by player i and a−i be the
list of actions chosen by all the other players except i, the utility of player i
is ui(a) = ui({ai, a−i}).

One of the fundamental concepts in game theory is the Nash equilibrium:

Definition 1.5 (Nash equilibrium) A Nash equilibrium of a strategic game
is an action profile a∗ ∈ A such that for every player i ∈ P we have

ui({a∗i , a∗−i}) ≥ ui({ai, a
∗
−i}) for all ai ∈ Ai.

Therefore, Nash equilibrium defines a set of actions (an action profile) that
captures a steady state of the game in which no player can do better by
unilaterally changing her action while all other players do not change their
actions. A game can have zero, one, or more than one Nash equilibrium.

Next, we introduce game-theoretic approaches in three different settings:
secret sharing, sovereign information sharing and multi-party privacy-preserving
data mining.
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1.6.2.2 Rational Secret Sharing

Secret sharing is one of the main building blocks in modern cryptography.
Shamir’s secret sharing scheme [29] allows one to share a secret s (a natural
number) among n other parties, so that any m of them may reconstruct it.
The idea is as follows: party 0, who wants to share the secret, chooses an
(m− 1) degree polynomial f such that f(0) = s, and tells party i the value of
f(i), i = 1, . . . , n. Thus f(i) is party i’s share of the secret. Any m of parties
{1, . . . , n} can jointly recover the secret by reconstructing the polynomial
using Lagrange interpolation. However, any subset of parties with size less
than m do not have any idea what the secret is. The underlying assumption
of this protocol is that, at most n −m parties are “bad” and “bad” parties
cannot prevent the “good” parties from reconstructing the secret.

While in some situations, it makes sense to consider that some parties are
“good” and some are “bad”; for other applications, it may be more realis-
tic to view parties as rational individuals who are trying to maximize their
benefits. The parties have certain preference over outcomes and can be ex-
pected to follow the protocol if and only if doing so increases their expected
benefits. In this spirit is the work of Halpern and Teague [17], who consid-
ered the secret sharing problem where all parties are rational: 1) they prefer
to get the secret to not getting it; 2) they prefer that as few as possible of
the other parties get it. The authors showed that, under these assumptions,
parties running Shamir’s protocol will not cooperate. Using game-theoretic
terminology, we say that for any party, not sending his share weakly domi-
nates sending his share. To cope with this situation, the authors developed a
randomized secret-sharing mechanism with constant expected running time,
where the recommended strategy is a Nash equilibrium that survives iterated
deletion of weakly-dominated strategies. The results were extended to secure
multi-party computation with rational participants.

Abraham et al. [1] later introduced k -resilient Nash equilibrium, a joint
strategy where no member of a coalition of size up to k can do better even
if the whole coalition defects. The authors showed that such k -resilient Nash
equilibrium exist for Shamir’s secret sharing problem [29], which can be viewed
as an extension of Halpern and Teague’s work [17] since they did not consider
collusion among the parties.

1.6.2.3 On Honesty in Sovereign Information Sharing

Sovereign information sharing [4] allows autonomous entities to compute
queries across their databases in such a way that no extra information is re-
vealed other than the result of the computation. Agarwal and Terzi [5] took
a game-theoretic approach to address the following problem in a sovereign
information-sharing setting: how to ensure that all the rational participants
behave honestly by providing truthful information, even though they can bene-
fit from cheating. They modelled the problem as a strategic game and showed
that if nobody is punished for cheating, honest behavior cannot be an equi-
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librium of the game. They therefore added a central auditing device that
periodically checks whether any participant has cheated by altering his input.
Whenever the device finds out a cheating participant, it penalizes him. The
authors derived conditions under which a unique Nash equilibrium is achieved
such that every participant provides truthful information. The relationship
between the frequency of auditing and the amount of punishment in terms of
benefits and losses from cheating was also derived.

A related work is the one by Kleinberg et al. [20], who considered different
information-exchange scenarios and quantified the willingness of the partici-
pants to share their private information using solution concepts from coalition
games. Note that Agarwal and Terzi are interested in quantifying when peo-
ple are willing to provide truthful information in a game, while Kleinberg et
al. are interested in quantifying whether people are willing to participate in
the game at all.

1.6.2.4 Game-Theoretic Framework for Secure-Sum Computation

In a multi-party privacy-preserving data mining environment, each par-
ticipant has certain responsibilities in terms of computation, communication
and privacy protection. However, depending on the characteristics of these
participants and their objectives, they can quit the process prematurely, pro-
vide bogus inputs, and collude with others to derive private information they
should not know. Kargupta et al. [19] also took a game-theoretic approach to
analyze this phenomenon and presented Nash equilibrium analysis of a well-
known multi-party secure-sum computation [28, 8]. The basic idea is again to
model the strategies and utilities of the participants as a game and penalize
malicious behavior by increasing the cost of computation and communication.
For example, if a participant suspects a colluding group of size k′, then he
may split the every number used in a secure sum into αk′ pieces, α > 0, and
demand αk′ rounds of secure-sum computation one for each piece. This sim-
ple strategy increases the computation and communication cost by αk′-fold,
which may counteract the possible benefit that one may receive by joining a
team of colluders.

1.7 Conclusion and Future Work

This chapter provides a detailed survey of the very recent research on
privacy-preserving data analysis over graphs and networks. Due to space
constraints, we refer interested readers to [15, 32, 30] for other related work
on this topic.

Before concluding this chapter, we present a set of recommendations for
future research in this emerging area.
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• Develop identity anonymity models for graphs and networks. Much
of the existing research for identity disclosure is built upon the notion
of k-anonymity. The fundamental research question remains “What
is the ideal base model for privacy-preserving analysis of graphs and
networks?”

• Develop efficient and effective graph-modification algorithms for sensi-
tive link protection. A lot of the existing work leverages randomization
techniques that change the graph, which is rather heuristic and does not
preserve the utility of the graph very well.

• Understand the privacy constraints in the Web 2.0 environment. De-
velop privacy-preserving techniques to enable core value-added Web 2.0
services, such as social advertisement and recommendation.

• Develop workload-aware metrics that adequately quantify levels of in-
formation loss of graph data.

• Create a benchmark graph data repository. This would let researchers
compare algorithms to more clearly understand the differences among
various approaches.

It is our belief that the future will see a growth in the demand of privacy-
protection techniques for not only social network but also other types of
networks, such as communication and peer-to-peer networks. As more re-
searchers, engineers and legal experts delve into this area, standards and the-
ory will begin to take shape. As these are established, the next generation
of privacy-preserving data analysis will be a fertile ground for all concerned
with the privacy implications in our society.
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