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Abstract

Several challenging new applications demand the ability to do data mining on resource constrained devices. One such

application is that of monitoring physiological data streams obtained from wearable sensing devices. Such monitoring has

applications for pervasive healthcare management, be it for seniors, emergency response personnel, soldiers in the battlefield

or atheletes. A key requirement is that the monitoring system be able to run on resouce constrained handheld or wearable

devices. Orthogonal decision trees (ODTs) offer an effective way to construct a redundancy-free, accurate, and meaningful

representation of large decision-tree-ensembles often created by popular techniques such as Bagging, Boosting, Random

Forests and many distributed and data stream mining algorithms. Orthogonal decision trees are functionally orthogonal to

each other and they correspond to the principal components of the underlying function space. This paper discusses various

properties of the ODTs and their suitability for monitoring physiological data streams in a resource-constrained environment.

It offers experimental results to document the performance of orthogonal trees on grounds of accuracy, model complexity,

and other characteristics in a resource-constrained mobile environment.

1. Introduction

Analyzing and monitoring time-critical data streams using mobile and wearale devices in a ubiquitous manner is impor-

tant in many application domains. Online classification of the data streams in such resource constrained environments is a

challenging task that requires light-weight classifiers that are accurate but compact in representation. One class of such ap-

plications, detailed in the next section, involve the monitoring of physiological data streams obtained from wearable sensors.

These applications demand the ability to quickly classify relatively large amount of data. Decision trees (e.g., CART[3],

ID3[13], and C4.5 [14]) offer one way to construct rule-based patterns and classifiers from data; the construction techniques

are usually fast and scalable; therefore, they may be used for monitoring and mining data streams from ubiquitous devices

like PDAs, palmtops, and wearable computers. Ensemble learning techniques are used where single decision trees do not�
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provide sufficient accuracy. Boosting [5, 4], Bagging[1], Stacking [16], and random forests [2] are some of the well-known

ensemble-learning techniques. Many of these techniques often produce large ensembles that combine the outputs of a large

number of trees for producing the overall output.

In many time-critical applications such as monitoring data streams [15], particularly for resource constrained environments

[7], maintaining a large ensemble and using it for continuous monitoring is computationally challenging. A redundancy free

and meaningful compact representation of large ensembles is therefore needed. We have developed[8, 6] a technique to

construct redundancy-free decision trees-ensembles by constructing Orthogonal Decision Trees (ODTs). The technique first

constructs an algebraic representation of trees using multi-variate discrete Fourier bases. The new representation is then

used for eigen-analysis of the covariance matrix generated by the decision trees in Fourier representation. The proposed

approach converts the corresponding principal components to decision trees using a technique reported elsewhere [7]. These

trees are functionally orthogonal to each other and they span the underlying function space. These orthogonal trees are in

turn used for accurate (in many cases with improved accuracy) and redundancy-free (in the sense of orthogonal basis set)

compact representation of large ensembles. We use this compact orthogonal decision tree ensemble to implement a system

for monitoring physiological health data streams that can run on resource constrained PDA/wearable devices.

The rest of the paper is organized as follows: Section 2 discusses the importance of monitoring physiological data streams

using wearable devices and armbands available in the market. Section 3 presents the underlying theory for representation of

decision trees using their Fourier spectra. Section 4 describes the process of removing redundancy from decision tree ensem-

bles and Section 5 explains the method of construction of orthogonal decision trees. Sections 6 and 7 present experimental

results for ODTs and compares it with a well known ensemble learning technique. Finally, Section 8 concludes this paper.

2 Physiological Data Stream Monitoring

We draw two scenarios to illustrate the potential uses of the orthogonal decision trees. Both cases involve a situation

where a potentially complex decision space has to be examined, and yet the resources available on the devices that will run

the decision process are not sufficient to maintain and use ensembles.

Consider a real time environment to monitor the health effects of environmental toxins or disease pathogens on humans.

There are significant advances being made today in biochemical engineering to create extremely low cost sensors for var-

ious toxins[9] that could constantly monitor the environment and generate data streams over wireles networks. It is not

unreasonable to assume that similar sensors could be developed to detect disease causing pathogens. In addition, most state

health/environmental agencies and the federal government entities such as CDC and EPA have mobile labs and response

units that can test for the presence of pathogens or dangerous chemicals. The mobile units will have handheld devices with

wireless connections on which to send the data and/or their analysis. In addition, each hospital today generates reports on

admissions and discharges, and often reports that to various monitoring agencies. Given these disparate data streams, one

could analyze them to see if correlates can be found, alerting experts to potential cause-effect relations (Pfiesteria found in

Chesapeake Bay and hostpitals report many people with upset stomach who had seafood recently), potential epedemiological

events (field units report dead infected birds and elederly patients check in with viral fever symptoms, indicating tests needed



Figure 1. The Body Media SenseWear armband and The Vivometrics Life Shirt Garment

for west nile virus and preventive spraying), and more pertinent in present times, low grade chemical and biological attacks

(sensors detect particular toxins, mobile units find contaminated sites, hospitals show people who work at or near the sites

being admitted with unexplained symptoms). At present, much of this analysis is done “post facto” – experts hypothesize on

possible causes of ailments, then gather the data from disparate sources to confirm their hypotheses. Clearly, a more proactive

environment which could mine these diverse data strems to detect emergent patters would be extremely useful. This scenario,

of course, has some futuristic elements.

On a more present day note, there are now several wearable sensors on the market such as SenseWear armband from

BodyMedia1 , Wearable West2, and LifeShirt Garment from Vivometrics3 that can be used to monitor vital signs for a person

such as temperature, heartrate, heatflux, �����
	 etc.

The figure 14 on the left hand side shows the SenseWear armband that was used to collect the data. The sensors in this

band were capable of measuring the following:

1. Heat flux: The amount of heat dissipated by the body.

2. Accelerometer: Motion of the body

3. Galvanic Skin Response: Electrical conductivity between two points on the wearer’s arm

4. Skin Temperature: Temperature of the skin and is generally reflective of the body’s core temperature

5. Near-Body Temperature: Air temperature immediately around the wearer’s armband.

The subjects were expected to wear the armband as they went about their daily routine, and were required to timestamp the

beginning and end of an activity. For example, before starting to take a jog, they could press the timestamp button, and

when finished, they could press the button again to record the end of the activity. This body monitoring device can be worn

continuously, and can store up to 5 days of physiological data before it had to be retrieved. The LifeShirt Garment is yet

another example of an easy to wear shirt, that allows measurement of pulmonary functions via sensors woven into the shirt.

The figure 1 on the right hand side shows the heart monitor. Subjects are capable of measuring symptoms, moods, activities

and several other physiological characteristics.

1http://www.bodymedia.com/index.jsp
2http://www.smartextiles.info
3http://www.vivometrics.com
4The figures are obtained from http://www.cs.utexas.edu/users/sherstov/pdmc/ and http://www.vivometrics.com



Analysing these vital signs in real time using small form factor wearable computers has several valuable near term ap-

plications. For instance, one could monitor senior citizens living in assisted or independent housing, to alert physicians and

support personnel if the signs point to distress. Similarly, one could monitor athletes during games or practice. Given the

recent high profle deaths of athletes both at the professional and high school levels during practice, the importance of such

an application is fairly apparent. Other potential applications include battlefield monitoring of soldiers, or monitoring first

responders such as firefighters.

The paper offers a method for on line monitoring of physiological data using wearable or handheld (PDAs, cellphones)

devices. Data streams are sent to them from sensors using short range wireless networks such as PANs. Precomputed(based

on training data obtained previously) orthogonal decision trees and bagging ensembles are kept on these devices. The data

streams are classified using these precomputed models, which are updated on a periodic basis. It must be noted that while

the monitoring is in real time, the model computation is done off-line using stored data.

3. Fourier Transform of Decision Trees

Decision tree (e.g., CART[3], ID3[13], and C4.5 [14]) ensembles are widely used for classification and other related

applications. Ensemble classifiers generate the output by combining the outputs of several base classifiers that define the

ensemble. The ensemble approach often produce higher classification accuracy compared to the individual base classifiers.

Large ensembles perform well in terms of accuracy. However, they are often difficult to understand and transform into

actionable knowledge. Ensembles are sometimes also redundant. Therefore, it is important to construct a redudancy-free and

simple representation of such large ensembles that can be effectively used.

The rest of this paper exploits a linear algebraic representation of the trees in order to be able to construct compact,

redundancy-free orthogonal decision trees ([8], [6])that are in turn used for representing the ensemble. This paper adopts

multi-variate discrete Fourier representation [7] for various reasons discussed later. The following section reviews this mate-

rial.

This section briefly discusses the background material [7] necessary for the development of the proposed technique to

construct orthogonal decision trees. The proposed approach makes use of linear algebraic representation of the trees. In

order to do that that we first need to convert the trees into a numeric tree just in case the attributes are symbolic. This can be

done by simply using a codebook that replaces the symbols with numeric values in a consistent manner. Since the proposed

approach of constructing orthogonal trees uses this representation as an intermediate stage and eventually the physical tree is

converted back, the exact scheme for replacing the symbols (if any) does not matter as long as it is consistent.

Once the tree is converted to a discrete numeric function, we can also apply any appropriate analytical transformation if

necessary. Fourier transformation is one such interesting possibility. Fourier bases are orthogonal functions that can be used

to represent any discrete function. Consider the set of all � -dimensional feature vectors where the � -th feature can take ��
different categorical values. The Fourier basis set that spans this space is comprised of �
������ �� basis functions. Each Fourier



basis function is defined as, � �������� � !" �$#���&%  � � # ' �(%�)+*-,/.103246587 5(9:5
where ; and � are strings of length � ; < ' and = ' are > -th attribute-value in x and j, respectively; < '@? = 'BADCFEG? ! ?3HIH3H ��KJ
and  represents the feature-cardinality vector, �� ?3HIH3H  � ; � �� �L��� is called the j-th basis function. The vector ; is called a

partition, and the order of a partition ; is the number of non-zero feature values it contains. A Fourier basis function depends

on some < � only when the corresponding = �NM� E . If a partition ; has exactly O number of non-zeros values, then we say the

partition is of order O since the corresponding Fourier basis function depends only on those O number of variables that take

non-zero values in the partition ; .
A function PDQSRT�VUXW , that maps an � -dimensional discrete domain to a real-valued range, can be represented using

the Fourier basis functions: P �����Y�[Z �]\ � � ��^����� . where \ � is the Fourier Coefficient (FC) corresponding to the partition ;
and

� �� ����� is the complex conjugate of
� �� ����� ; \ � � ZD_ � �� ����� P ����� . The order of a Fourier coefficient is nothing but the

order of the corresponding partition. We shall often use terms like high order or low order coefficients to refer to a set of

Fourier coefficients whose orders are relatively large or small respectively. Energy of a spectrum is defined by the summationZ �]\ 	� . Let us also define the inner product between two spectra `ba %dc and `ea 	fc where `ea �gc �ih \ a ��c:j % \ a �gc:j 	 ?IH3HIH \ a ��ckjml nGl oqp is

the column matrix of all Fourier coefficients in an arbitrary but fixed order. Superscript r denotes the transpose operation

and sutvs denotes the total number of coefficients in the spectrum. The inner product, wx`ya %Kc ? `za 	{c}| �[Z �]\ a %dc:j � \ a 	fc:j �F~ We

will also use the definition of the inner product between a pair of real-valued functions defined over some domain � . This is

defined as w�P % ����� ? P 	 ����� | � ZD_���� P % ����� P 	 �L��� ~
Fourier transformations of bounded-depth decision trees have several properties that makes it an efficient one. More details

can be found elsewhere [10, 12].

3.1. Properties of Decision Trees in the Fourier Domain

This section considers the Fourier spectrum of decision trees with finite depths, bounded by some constant. The underlying

functions in such decision trees can be represented by a constant depth Boolean AND and OR circuit (or equivalently �}� �
circuit). Linial et al. [10] noted that the Fourier spectrum of �N� � circuit has very interesting properties and proved the

following lemma.

Lemma 1 (Linial, 1993) Let � and � be the size and depth of an �}� � circuit. Then�� � l+� a � c:���1� \ 	�e�D� � �-� �1���k�{�f	{�
where � � ; � denotes the order of the partition j and � is a non-negative integer. The term on the left hand side of the

inequality represents the energy of the spectrum captured by the coefficients with order greater than a given constant � . The

energy captured by all high order Fourier coefficients is small. This is because the energy of the Fourier coefficients of higher

order decays exponentially. This observation suggests that the spectrum of a Boolean decision tree (or equivalently bounded

depth function) can be approximated by computing only a small number of low order Fourier coefficients. So Fourier basis



offers an efficient numeric representation of a decision tree in the form of a linear function that can be easily stored and

manipulated. The exponential decay property of Fourier spectrum also holds for non-Boolean decision trees. The complete

proof is available elsewhere [12].

Let us also note that,

1. the Fourier spectrum of a decision tree can be efficiently computed [7] and

2. the Fourier spectrum can be directly used for constructing the tree [12].

In other words, we can go back and forth between the tree and its spectrum. This is philosophically similar to the switching

between the time and frequency domains in the traditional application of Fourier analysis for signal processing.

Fourier transformation of decision trees also preserves inner product. The functional behavior of a decision tree is defined

by the class labels it assigns. Therefore, if C � % ? � 	 ?IH3HIH � l � l J are the members of the domain � then the functional behavior

of a decision tree P ����� can be captured by the vector h P o 7 ��� ��h P ��� % � P �L� 	 � HIH3H P ��� l � l � o�p , where the superscript r denotes

the transpose operation. The following section describes a Fourier analysis-based technique for constructing redundancy-free

orthogonal representation of ensembles.

The following lemma proves that the inner product between two such vectors is identical to the same in between their

respective Fourier spectra.

Lemma 2 Given two functions P % �����@��Z ��\ a %Kc:j � � � � ����� and P 	 ��������Z �]\ a 	fc:j � � � � �L��� in Fourier representation. Thenw�P % ����� ? P 	 ����� | � w�`za %Kc ? `za 	{c�| .

Proof:

wDP % �L��� ? P 	 �L��� | � �_���� P % �L��� P 	 ������� �_���� � � j   \ a %dckj � � � � �L��� \ a 	fckj   �   � ������ � � j   \ a %dckj � \ a 	{ckj   �_���� � � � ����� �   � �L��� � � � \ a %dc:j � \ a 	fc:j � � w�`za %Kc ? `za 	{c�| ~
¡

The fourth step is true since Fourier basis functions are orthonormal. The following section presents a way to use this

representation for constructing orthogonal decision trees.

4 Removing Redundancies from Ensembles

Existing ensemble-learning techniques work by combining (usually a linear combination) the output of the base classifiers.

They do not structurally combine the classifiers themselves. As a result they often share a lot of redundancies. The Fourier

representation offers a unique way to fundamentally aggregate the trees and perform further analysis to construct an efficient

representation.



Let P£¢ ����� be the underlying function representing the ensemble of > different decision trees where the output is a weighted

linear combination of the outputs of the base classifiers. Then we can write,P£¢ �����¤� O^%6¥¦a %dc �L����§ O&	+¥£a 	{c ������§ H3HIH § O ' ¥¦a ' c ������� O^% �9 �©¨ � \ a %dc:j � � �� �����&§ HIH3H § O ' �� �©¨ 5 \ a ' c:j � � �� ����� ~
Where O � is the weight of the � �Lª decision tree and « � is the set of all partitions with non-zero Fourier coefficients in its

spectrum. Therefore, P ¢ �L���/� Z 9 �©¨ \ a ¢kckj � � �� �L��� , where \ a ¢kc:j � � Z '�g�(% O � \ a �gc:j � and ¬ �® '�g�(% ¬ � . Therefore, the Fourier

spectrum of P�¢ ����� (a linear ensemble classifier) is simply the weighted sum of the spectra of the member trees.

Consider the matrix ¯ where ¯°��j 9 � ¥¦a 9 c ���   � , where ¥£a 9 c �L�   � is the output of the tree ¥£a 9 c for input �   A � . ¯ is ans �8s�±e> matrix where s �8s is the size of the input domain and > is the total number of trees in the ensemble.

An ensemble classifier that combines the outputs of the base classifiers can be viewed as a function defined over the set

of all rows in ¯ . If ¯³²+j 9 denotes the = -th column matrix of ¯ then the ensemble classifier can be viewed as a function

of ¯ ²+j % ? ¯ ²+j 	 ?IH3H3H ¯ ²´j ' . When the ensemble classifier is a linear combination of the outputs of the base classifiers we haveµ � O % ¯ ²´j % § O 	 ¯ ²+j 	 § H3HIH O ' ¯ ²+j ' , where
µ

is the column matrix of the overall ensemble-output. Since the base classifiers

may have redundancy, we would like to construct a compact low-dimensional representation of the matrix ¯ . However,

explicit construction and manipulation of the matrix ¯ is difficult, since most practical applications deal with a very large

domain. We can try to construct an approximation of ¯ using only the available training data. One such approximation of¯ and its Principal Component Analysis-based projection is reported elsewhere [11]. Their technique performs PCA of the

matrix ¯ , projects the data in the representation defined by the eigenvectors of the covariance matrix of ¯ , and then performs

linear regression for computing the coefficients O % ? O(	 ?3H3HIH�? and O ' .

While the approach is interesting, it has a serious limitation. First of all, the construction of an approximation of ¯
even for the training data is computationally prohibiting for most large scale data mining applications. Moreover, this is

an approximation since the matrix is computed only over the observed data set of the entire domain. In the following we

demonstrate a novel way to perform a PCA of the matrix ¯ , defined over the entire domain. The approach uses the Fourier

spectra of the trees, Lemma 2, and works without explicitly generating the matrix ¯ . It is important to note that the PCA-

based regression scheme [11] offers a way to find the weightage for the members of the ensemble. It does not offer any way

to aggregate the tree structures and construct a new representation of the ensemble which the current approach does.

The following analysis will assume that the columns of the matrix ¯ are mean-zero. This restriction can be easily removed

with a simple extension of the analysis. Note that the covariance of the matrix ¯ is ¯ p ¯ . Let us denote this covariance

matrix by � . The � � ? = � -th entry of the matrix,

���Lj 9 � w�¯ ��¶ ? � � ? ¯ ��¶ ? = � | � w·¥¦a ��c �L��� ? ¥£a 9 c �L��� | � � ¸ \ a �gc:j ¸ \ a 9 c:j ¸ � w�`ea ��c ? `ea 9 c�| (1)

The third step is true by Lemma 2. Now let us the consider the matrix ¹ where ¹º�Lj 9 � \ a 9 c:j a �gc , i.e. the coefficient

corresponding to the � -th member of the partition set ¬ from the spectrum of the tree ¥»a 9 c . Equation 1 implies that the

covariance matrices of ¯ and ¹ are identical. Note that ¹ is an s ¬¼s{±Y> dimensional matrix. For most practical applications



s ¬ys�w8w½s �8s . Therefore analyzing ¹ using techniques like PCA is significantly easier. The following discourse outlines a

PCA-based approach.

PCA of the matrix ¹ produces a set of eigenvectors which in turn defines a set of Principal Components, ¾ % ? ¾ 	 ?3HIH3H ¾�¿ .
Let À�a 9 c:j Á be the = -th component of the Â -th eigenvector of the matrix ¹ p ¹ .

¾�Á � Ã�9 �(% À�a 9 c:j Á ¯ �:¶ ? = �v� ÄÅ Ã�9 �(% À�a 9 c:j Á ¥¦a 9 c �����:ÆÇ _���� � ÄÅ Ã�9 �(% À�a 9 c:j Á �   \ a 9 c:j   � �  ������ÆÇ _���� �ÉÈ �  �Ê  �j Á � �  �����:Ë _���� ~
Where Ê  �j Á �xZ Ã9 �&% À�a 9 c:j Á \ a 9 ckj   . The eigenvalue decomposition constructs a new representation of the underlying domain

where the feature corresponding to column vector ¾�Á is Ì�Á � Z   Ê  �j Á � �� ����� i.e., ¾�Á �Éh Ì�Á o _���� . Note that Ì©Á is a linear

combination of a set of Fourier spectra and therefore it is also a Fourier spectrum. Also note that ¾�Á -s are orthogonal which

is proved in the following.

The inner product between ¾�Á and ¾�Í for Â M�ÏÎ is,w�¾ Á ? ¾ Í | � w h Ì Á o _ ? h Ì Í o _ | � �  qj � Ê  qj Á Ê � j Í � _ �   ����� � � �L��� � �   Ê  �j Á Ê  �j Í � wÑÐ Á ? Ð Í | � E ~
Therefore, we conclude that the spectra corresponding to the orthonormal basis vectors ¾ Á and ¾ Í are themselves or-

thonormal. Let P�Á and P£Í be the functions corresponding to the spectra Ð�Á and ÐGÍ . In other words, P�Á �����8�½Z   Ê  �j Á �   �����
and P£Í ����� � Z   Ê  �j Í �   �L��� . Then by Lemma 2 we can also conclude that, wD¾�Á ? ¾�Í | � w�Ð�Á ? Ð]Í | � w�P£Á �L��� ? P¦Í �L��� | . This

implies that the inner product between the output vectors of the corresponding functions are also orthonormal to each other.

The following section defines orthogonal decision trees that makes use of these principal components.

4.1 Orthogonal Decision Trees

The analysis presented in the previous sections offers a way to construct the Fourier spectra of a set of functions that are

orthogonal to each other and therefore redundancy-free. These functions also define a basis and can be used to represent

any given decision tree in the ensemble in the form of a linear combination. Orthogonal decision trees can be defined as an

immediate extension of this framework.

A pair of decision trees P©% �L��� and P£	 ����� are orthogonal to each other if and only if w�P©Ò ����� ? P£Ó ����� | � E when Ê M�ÕÔ
and w�P�Ò ����� ? P£Ó ����� | � ! otherwise. The second condition is actually a slightly special case of orthogonal functions—

orthonormal condition. A set of trees are pairwise orthogonal if every possible pair of members of this set satisfy the

orthogonality condition.

The principal components ¾�% ? ¾]	 ?3HIH3H ¾ ¿ computed using the eigenvectors of the covariance matrix � are orthogonal

to each other themselves. Since each of these principal components is a Fourier spectrum in itself we can always con-

struct a decision tree from this spectrum using technique noted in Section 5. Although the tree looks physically different

from the Fourier spectrum, they are functionally identical. Therefore, the trees constructed from the principal components¾ % ? ¾ 	 ?IH3H3H ¾�¿ also maintain the orthogonality condition. These orthogonal trees now can be used to represent the entire

ensemble in a very compact and efficient manner. The following section reports some experimental results.



The orthogonality condition guarantees that the representation is not redundant. These orthogonal trees form a basis set

that spans the entire function space of the ensemble. The overall output of the ensemble is computed from the output of

these orthogonal trees. Specific details of the ensemble output computation depends on the adopted technique to compute

the overall output of the original ensemble. However, for most popular cases considered here boils down to computing the

average output. If we choose to go for weighted averages, we may also compute the coefficients corresponding to each ¾ Á by

simply performing linear regression.

The next section reports experimental results for orthogonal decision trees.

5. Experimental Results

This section first illustrates the performance of orthogonal decision trees on a physiological data set. It demonstrates the

construction of ODTs using four C4.5 trees and reports the structure of an orthogonal decision tree obtained from projecting

the trees along the first principle component. In resource constrained environments building a large number of trees is usually

not an option. Our experiments show that aggregated orthogonal decision trees have comparable accuracy to that of large

bagging ensembles. Therefore, aggregated ODT may be a good solution for classification problems on pdas, pocket pcs or

cell phones. Finally, the section describes an application on a pocket pc, which can be used to keep track of the physiological

conditions of people exposed to hazardous environments, such as fire-fighters trying to douse a fire, soldiers exposed to

chemical or biological warfare, and disaster rescue and response workers.

6 Physiological Data Monitoring

This section documents the performance of orthogonal decision trees on a physiological data set. It makes use of publicly

available data set in order to offer benchmarked results. This dataset5 was obtained from the Physiological Data Modeling

Contest6 held as part of the International Conference on Machine Learning, 2004. It comprises of several months of data

from more than a dozen subjects and was collected using BodyMedia7 wearable body monitors.

In our experiments, the training set consisted of 50,000 instances and 11 continuous and discrete valued attributes8. The

test set had 32,673 instances. The continous valued attributes were discretized using the WEKA software9. The final training

and test data sets had all discrete valued attributes. A binary classification problem was formulated, which monitored whether

an individual was engaged in a particular activity(class label=1) or not(class label=0) depending on the physiological sensor

readings.

C4.5 decision trees were built on data blocks of size 150 instances and the classification accuracy and tree complexity

was noted. These were then used to compute their Fourier spectra and the matrix of the Fourier coefficients was subjected

5Obtained from http://www.cs.utexas.edu/users/sherstov/pdmc/
6http://www.cs.utexas.edu/users/sherstov/pdmc/
7http://www.bodymedia.com/index.jsp
8The attributes used for the classification experiments were gender, galvanic skin temperature, heat flux, near body temperature, pedometer, skin temper-

ature, readings from the longitudinal and transverse accelerometer and time for recording an activity called session time
9http://www.cs.waikato.ac.nz/ml/weka/



Figure 2. Decision Trees built from four different samples of the physiological data set

Figure 3. An Orthogonal Decision Tree

to principle component analysis. Orthogonal trees were built, corresponding to the significant components and they were

combined using an uniform aggregation scheme. The accuracy and size of the orthogonal trees are noted and compared with

the corresponding results generated by Bagging using the same number of decision trees in the ensemble.

The Figure 2 illustrates four decision trees built on the uniformly sampled training data set(each of size 150). The first

decision tree, has a complexity 7 and considers attribute transverse acceleromenter reading, session time and near body

temperature as ideal for splits. Before pruning, only two instances are mis-classified giving an error of 1.3(%). After pruning,

there is no change in structure of the tree. The estimated error percentage is 4.9(%). The second, third and fourth decision

trees have complexities 5, 7, and 3 respectively. An illustration of an orthogonal decision tree obtained from the first principle

component, is shown in Figure 3.

Figure 4 illustrates the distribution of tree complexity and error in classification for the original C4.5 trees used to construct

an ODT ensemble. The total number of nodes in the original C4.5 trees varied between three and thirteen. The trees had an
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Figure 4. Histogram of tree complexity (left) and error (right) in classification for the original C4.5

trees.

error of less than 25(%). In comparison, the average complexity of the orthogonal decision trees was found to be 3 for all

the different ensemble sizes. In fact, for this particular dataset, the sensor reading corresponding to transverse accelerometer

attribute was found to be the most interesting. All the orthogonal decision trees used this attribute as the root node for building

the trees. The Figure 5 illustrates the distribution of error in classification for an ODT ensemble of 75 trees.

We compared the accuracy obtained from an aggregated orthogonal decision tree to that obtained from a bagging ensem-

ble(using the same number of trees in each case). Figure 6 plots the error in classification of the aggregated ODT and bagging

versus the number of decision trees in the ensemble. We found that the classification from an aggregated orthogonal decision

tree was better than bagging when the number of trees in the ensemble was smaller. With increase in number of trees in the

ensemble bagging provided a slightly better accuracy. It must be noted however, that in constrained environments such as in

pocket pcs, personal assistants and sensor network setting, increasing the number of trees in the ensemble arbitarily may not

be feasible due to memory constraints.

In resource constrained environments it is often necessary to keep track of the amount of memory used to store the

ensemble. In the current implementation storing a node data structure in a tree requires approximately 1 KB of memory.

Consider an ensemble of 20 trees. If the average number of nodes in the trees in the ensemble is 7, then we are required

to store 140 KB of data. Orthogonal decision trees on the other hand are smaller in size, with less redundancy. In the

experiments we performed they typically have a complexity of 3 nodes. This means that we need to store only 3 KB of data.

We define Tree Complexity Ratio (TCR) as the total number of nodes in the ODT versus the total number of nodes in

the bagging ensemble. Figure 6 plots the variation of the TCR as the number of trees in the ensemble increases. It may be

noted that in resource constrained environments one can opt for meaningful trees of smaller size and comparable accuracy as

opposed to larger ensembles with a slightly better accuracy.

An orthogonal decision tree also helps in the feature selection process and indicates which attributes are more important
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Figure 5. Histogram of error in classification in the ODT ensemble.

than others in the data set. The Figure 8 indicates the variance captured by the first principle component as the number of

trees in the ensemble was varied from 5 to 75 trees. As is expected, as the number of trees in the ensemble increases, the

first principle component captures most of the variance and those occupied by the second and third components gradually

decreases.

The following section illustrates the response time for classification on a pocket pc using a bagging ensemble and an

equivalent orthogonal decision tree ensemble.

7 Monitoring in Resource Constrained Environments

Resource Constrained environments such as personal digital assistants, pocket pcs, cell phones are often used to monitor

the physiological conditions of subjects. These devices present additional challenges in monitoring owing to the limited

battery power, memory restrictions and small displays that they have.

The previous section indicated that an aggregated orthogonal decision tree was small in size, and captured an accuracy

better or comparable to that of bagging when the ensemble size was small. Although bagging was found to perform better

in larger ensembles, the number of trees that needed to be stored was considerably larger and clearly not an option in the

resource constrained environments. Therefore a tradeoff exists between the memory usage and accuracy.

In order to test the response time for monitoring, we performed classification experiments on an HP iPAQ Pocket PC. We

assumed that physiological data blocks of size 40 instances were sent to the handheld device. Using training data obtained

previously, we precomputed C4.5 decision trees. The Fourier spectra of the trees were evaluated(preserving approximately

99(%) of the total energy) and the coefficient matrix was projected onto the most significant principal components.

Since the time required for computation is of considerable importance in resource constrained environments, we estimated



Figure 6. Comparison of error in classification for trees in the ensemble for aggregated ODT versus

Bagging.

Figure 7. Plot of Tree Complexity Ratio versus number of trees in the ensemble.

the response time for Bagging ensemble versus the equivalent ODT ensemble. We define response time as the time required to

produce an accuracy estimate from all the instances available by the specified classification scheme. The Figure 9 illustrates

the response time for a bagging ensemble and an equivalent ODT ensemble. Clearly the equivalent orthogonal decision

tree produces classification results faster than a bagging ensemble and this may be attributed to the fact that much of the

redundancy in bagging ensemble has been removed in the ODT ensemble. Our method thus offers a computationally efficient

method for classification on resource constrained devices.

8 Conclusions

Orthogonal decision trees offer an effective way to construct redundancy-free ensembles that are easier to understand

and apply. They are particularly useful in monitoring data streams using resource constrained platforms where storage

and CPU computing power are limited but fast response is important. ODTs are constructed from the Fourier spectra of

the decision trees in the ensemble. Redundancy is removed from the ensemble by performing a PCA of these Fourier



Figure 8. Variance captured by the first principle component versus number of trees in ensemble.

Figure 9. Plot of Response time for Bagging and equivalent ODT ensemble versus the number of

trees in the ensemble.

spectra. This offers an efficient representation of the ensemble, often needed for fast response in many real-time data mining

applications. This also allows a meaningful way to visualize the trees in a low dimensional space. This paper described

an application of orthogonal decision tree ensembles for monitoring physiological data streams in time-critical resource-

constrained environments. The current work is an extension of our earlier work [8], [6] in this area. We plan to explore

further applications of ODTs in other domains. We are also working on developing techniques that makes use of the spectral

representation of an ensembles for identifying its various functional and structural properties (e.g. stability).
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