
AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 1

Theory and Practice of Theory and Practice of
Agent Communication Agent Communication

LanguagesLanguages
Tim FininTim Finin

University of Maryland
Baltimore County

Yannis Labrou
Fujitsu Laboratories of America

© 2002

ask-all

advertisesubscribe

tell
recommend

register

Introduction to Agents Introduction to Agents
& Agent & Agent

CommunicationCommunication

Agents: A system-building paradigm

Distributed
Systems

Database &
Knowledge base

Technology

Information
Retrieval

Machine
Learning

agents Cognitive
ScienceAI &Mobile code

objects
1982

agents
2001

structuredprogramming
1974= =

So, what’s a software agent?
• No consensus yet, but several key properties are

important to this emerging paradigm. Agents are:
–Autonomous, taking the initiative as appropriate
–Goal-directed, maintaining an agenda of goals which it pursues

until accomplished or believed impossible.
–Taskable: one agent can delegate rights/actions to another.
–Situated in an environment (computational and/or physical) which

it is aware of and reacts to.
–Cooperative with other agents (software or human) to accomplish

its tasks.
–Communicative with other agents (human

or software)
–Adaptive, modifying beliefs &

behavior based on experience

Software Agent Characteristics

Cooperation

Autonomy Adaptation

after Hyacinth Nwana, 1996

Note: these characteristics
are not independent and, in
general, support one
another.

Agent Architectures

• Mediated
architectures

• Multi-agent systems
• Markets and swarms

People are using several architectures
for agent-based information systems.

Mediated Architectures
• Agents generalize the client-server architecture which

has dominated the Internet since its beginning
• Wiederhold introduced the notion of a “mediated

architecture” for information systems

Server

Server

ServerC

C

C

C

C

C

Software
Object

Software
Object

Data
Object

Data
Object

Server

Server

Server
Software
Object

Software
Object

Data
Object

Data
Object

Clients

A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Server

Server

Data
Service

Data
Service

Server

Server

Data
Service

Data
Service

A

A

Multi-agent Systems

• Some research focuses on developing
sophisticated individual agents with advanced
capabilities.

• Other research is focused on multi-agent
systems (MAS) with an emphasis on
– agent-to-agent communication
– cooperation and collaboration
– team and coalition formation
– information sharing among the team
– joint beliefs, goals and plans

Agent markets and swarms

• Yet another architectural view is the
decentralized market or swarm.

• Key idea -- the parallel, autonomous actions of
a large collection of individual agents results in
emergent behavior of the collective.

• The market view usually assumes rational
agents whereas the swarm view, associated
with artificial life, does not.

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 2

Some key ideas
• Software agents offer a new paradigm for very large scale

distributed heterogeneous applications.
• The paradigm focuses on the interactions of autonomous,

cooperating processes which can adapt to humans and
other agents.

• Mobility is an orthogonal characteristic which many, but
not all, consider central.

• Intelligence is always a desirable characteristic but is not
required by the paradigm.

• The paradigm is still forming.

Why is communication
important?

• Most, but not all, would agree that
communication is a requirement for cooperation.

• Societies can do things that no individual (agent)
can.

• Diversity introduces heterogeneity.
• Autonomy encourages disregard for other

agents’ internal structure.
• Communicating agents need only care about

understanding a “common language”.

What is communication?
• Communication almost always means “communication in

a common language”
• “Language” does not include natural languages only.
• Understanding a “common language” means:

– understanding of its vocabulary, i.e., understanding of the
meaning of its tokens

– knowing how to effectively use the vocabulary to perform tasks,
achieve goals, effect one’s environment, etc.

• For software agents, an Agent Communication Language
(ACL) is primarily concerned with the vocabulary

Agent
Communication

Languages:
Useful Concepts

Agent Communication

• Agent-to-agent communication is key to
realizing the potential of the agent paradigm,
just as the development of human language
was key to the development of human
intelligence and societies.

• Agents use an Agent Communication
Language or ACL to communication
information and knowledge.

• Genesereth (CACM, 1992) defined a software
agent as any system which uses an ACL to
exchange information.

Some ACLs
•Is CORBA an ACL?
•Knowledge sharing approach

– KQML, KIF, Ontologies
•FIPA
•Ad hock languages

– e.g., SGI’s OAA

Shared objects, procedure calls
and data structures

Shared facts, rules, constraints,
procedures and knowledge

Shared beliefs, plans, goals,
and intentions

Shared
experiences
and strategies

e.g., CORBA,
RPC, RMI

e.g., KQML, FIPA,
KIF, Aglets

e.g., ?

Knowledge
Sharing

Intentional
Sharing

?

Object
Sharing

To communicate is to manipulate a
“common language”

• Effective agent communication involves two aspects:
– possessing the understanding of a “common language”, as

humans do for various domains and tasks
– using the common language in order to achieve tasks and goals,

and to effect an agent’s environment
• The understanding of the meaning of the tokens of a

language is the substrate for any form of
communication.

• Understanding the tokens alone, does not mean ability
to communicate; the use of (any) language is driven by
a purpose.

Agent Communication,
at the technical level

• Messages are transported using some lower-level
transport protocol (SMTP,TCP/IP, HTTP, IIOP, etc.)

• An Agent Communication Language (ACL) defines the
types of messages (and their meaning) that agents may
exchange.

• Over time, agents engage in “conversations.” Such
interaction protocols (negotiation, auction, etc.), defines
task-oriented, shared sequences of messages.

• Some higher-level conceptualization of an agent’s goals
and strategies drives the agent’s communicative (and
non-communicative) behavior.

What Comes Next
• Conceptual and theoretical foundations I

– The layered nature of communication, services, mobility
issues, Speech Act Theory, BDI

• Conceptual and theoretical foundations II
– Knowledge Representation and Ontology Issues

• The Knowledge Sharing Effort
– KIF, KQML, Ontolingua

• The Foundation for Intelligent Physical Agents
– FIPA ACL, FIPA Agent Platform

• Semantic accounts for ACLs
• Alternative approaches and languages
• APIs, Systems and Applications
• Trends and future directions
• Conclusions

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 3

Conceptual and Conceptual and
Theoretical Theoretical

Foundations IFoundations I

Historical Note:
Knowledge Sharing Effort

• Initiated by DARPA circa 1990
• Sponsored by DARPA, NSF, AFOSR, etc.
• Participation by dozens of researchers in academia

and industry.
• Developing techniques, methodologies and

software tools for knowledge sharing and
knowledge reuse.

• Sharing and reuse can occur at design,
implementation or execution time.

Knowledge Sharing Effort
• Knowledge sharing requires a communication which

requires a common language
• We can divide a language into syntax, semantics, and

pragmatics
• Some existing components that can be used

independently or together:
– KIF - knowledge Interchange Format (syntax)
– Ontolingua - a language for defining sharable

ontologies (semantics)
– KQML - a high-level interaction language

(pragmatics)

Propositional

Propositional
attitudes

Knowledge Interchange Format

• KIF ~ First order logic with
set theory

• An interlingua for encoded
declarative knowledge
– Takes translation among n

systems from O(n2) to O(n)

• Common language for reusable knowledge
– Implementation independent semantics
– Highly expressive - can represent knowledge in typical application KBs.
– Translatable - into and out of typical application languages
– Human readable - good for publishing reference models and ontologies.

• Current specification at http://logic.stanford.edu/

Know. Base
in

Lang1

KIF <-> Lang1 Translator

Sys 1
Know. Base

in
Lang2

KIF <-> Lang2 Translator

Sys 2

Know. Base
in KIF

Library

Know. Base
in

Lang3

Sys 3

KIF <-> Lang3 Translator

KIF

Common Semantics
Shared Ontologies and Ontolingua

• Ontology: A common vocabulary and agreed upon
meanings to describe a subject domain.

• Ontolingua is a language for building, publishing, and
sharing ontologies.
– A web-based interface to a browser/editor server.
– Ontologies can be automatically translated into

other content languages, including KIF, LOOM,
Prolog, etc.

– The language includes primitives for combining
ontologies.

Common Pragmatics
Knowledge Query and Manipulation Language
• KQML is a high-level, message-oriented, communication

language and protocol for information exchange
independent of content syntax and ontology.

• KQML is also independent of
– transport mechanism, e.g., tcp/ip, email, corba, IIOP, ...
– High level protocols, e.g., Contract Net, Auctions, …

• Each KQML message represents a single speech act (e.g.,
ask, tell, achieve, …) with an associated semantics and
protocol.

• KQML includes primitive message types of particular
interest to building interesting agent architectures (e.g., for
mediators, sharing intentions, etc.)

Common High-level Protocols
• There is also a need for communication agents to agree on

the agent-level protocols they will use.
• The protocol is often conveyed via an extra parameter on a

message
– (ask :from Alice :to Bob … :protocol auction42 …)

• Common protocols:
– Contract net
– Various auction protocols
– Name registration

• These protocols are often defined in terms of constraints on
possible conversations and can be expressed as
– Grammars (e.g., DFAs, ATNs, …)
– Petri networks
– Conversation plans
– Rules or axioms

Common Service Infrastructure
• Many agent systems assume a common set of

services such as:
– Agent Name Sever
– Broker or Facilitator
– Communication visualizer
– Certificate server

• These are often tied rather closely to an ACL since a
given service is implemented to speak a single ACL

• Moreover, some of the services (e.g., name
registration) may be logically ACL-dependent
– e.g., Some ACLs don’t have a notion of an agent’s name

and others have elaborate systems of naming

Speech Act Speech Act
Theory and BDI Theory and BDI

TheoriesTheories

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 4

The intentional level, BDI theories, speech
acts and ACLs: How do they all fit together?

• ACL have message types that are usually modeled
after speech acts

• Speech acts may be understood in terms of an
intentional-level description of an agent

• An intentional description makes references to
beliefs, desires, intentions and other modalities

• BDI frameworks have the power to describe an
agents’ behavior, including communicative
behavior

The intentional stance
• Agents have “propositional attitudes”
• Propositional attitudes are three-part relationship

between
– an agent,
– a content-bearing proposition (e.g., “it is

raining”), and
– a finite set of propositional attitudes an agent

might have with respect to the proposition (e.g.,
believing, asserting, fearing, wondering, hoping,
etc.)

• <a, fear, raining(tnow) >

On ascribing mental
qualities to machines

• The issue is not whether a system is really
intentional but whether we can coherently view it
as such (Daniel Dennett)

• Ascribing mental qualities to machines (John
McCarthy):
– legitimacy: the ascription expresses the same

information about a machine that it expresses about a
person

– usefulness: the ascription helps us understand the
structure of the machine, its past or future behavior, or
how to repair it or improve it.

BDI Agents, Theories and
Architectures

• BDI architectures describe the internal state of an
agent by the mental states of beliefs, goals and
intentions

• BDI theories provide a conceptual model of the
knowledge, goals, and commitments of an agent

• BDI agents have some (implicit or explicit)
representations of the corresponding attitudes

BDI Model and Communication

B + D => I
I => A

B + D => I
I => A

• Communication is a means to (1) reveal to others what our
BDI state is and (2) attempt to effect the BDI state of others.

• Note the recursion: an agent has beliefs about the world,
beliefs about other agents, beliefs about the beliefs of other
agents, beliefs about the beliefs another agent has about it, ...

Criticism of BDI theories

• The necessity of having all three modalities is
questioned from both ends:

• too few
• too many

• System builders question their relevance in practice:
• multi-modal BDI logics do not have complete

axiomatizations
• they are not efficiently computable

• There is a gap between theory and practice

Speech Act Theory

• Speakers do not just utter true or false sentences
• Speakers perform speech acts:

requests, suggestions, promises, threats, etc.
• Every utterance is a speech act

High level framework to account for human
communication
Language as Action (Austin)

Speech Act Theory (continued)

Example: “Shut the door !”
• locution

physical utterance with context and reference, i.e., who
is the speaker and the hearer, which door etc.

• illocution
the act of conveying intentions, i.e., speaker wants the
hearer to close the door

• perlocutions
actions that occur as a result of the illocution, i.e., hearer
closes the door

Conceptual and Conceptual and
Theoretical Theoretical

Foundations IIFoundations II

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 5

Representation and Reasoning

• Intelligent agents need to be able to represent and reason
about many things, including:
– models of other agents (human or artificial) beliefs, desires, intentions,

perceptions, plans, etc.
– task, task structures, plans, etc.
– meta-data about documents and collections of documents

• In general, they will need to communicate the same range of
knowledge.

• A variety of content languages have been used with ACLs,
including KIF, SL, Loom, Prolog, CLIPS, SQL, …

• There is a special interest in content languages that can serve
as a neutral, but expressive, interlingua for a wide range of
systems.

• We’ll look at KIF in a bit more detail.

KR Language Components
•A logical formalism
–Syntax for well formed formulae (wffs)
–Vocabulary of logical symbols (e.g., and, or, not, =>, ...)
–Interpretation semantics for the logical symbols, e.g.,

“(=> A B)” is true if and only if B is true or A is false.

•An ontology
–Vocabulary of non-logical symbols (relations,functions,constants)
–Definitions of non-primitive symbols, e.g.

(<=> (Bachelor ?x) (AND (Man ?x) (Unmarried ?x)))
–Axioms restricting the interpretations of primitive symbols, e.g.

(=> (Person ?x) (Gender (Mother ?x) Female))

•A proof theory
–Specification of the reasoning steps that are logically sound, e.g.

From “(=> S1 S2)” and “S1”, conclude “S2”

Classical Definitions Are Not Enough

• Definitions provide equivalent expressions
– R(x) ≡ Φ(x)
– E.g., bachelor(x) ≡ man(x) Λ ~married(x)

• Defined symbols can be eliminated by replacement
• KB is then expressed in terms of undefined symbols
• Undefined symbols are given “meaning” by axioms

– E.g., ~[on(x,y) Λ on(y,x)]

• Thus, ontologies must have both definitions and
axioms

O-O Languages Too Restrictive

• Frames, object schema, description logics are popular
KR languages used for ontologies

• They support definitional axioms of the form:
– R(x) ⇒ … Λ P(x) Λ … {subclass}
– R(x) ⇒ … Λ [S(x,y) ⇒ P(y)] Λ … {value class}
– R(x) ⇒ … Λ ∃ y S(x,y) Λ … {value cardinality}
…

• They don’t support –
– N-ary relations and functions
– Standard properties of relations and functions

E.g., transitive, symmetric
– Partial sufficient conditions

E.g., x>0 ⇒ R(x)…

Knowledge Interchange Format

• KIF ~ First order logic with
set theory

• An interlingua for encoded
declarative knowledge
– Takes translation among n

systems from O(n2) to O(n)

• Common language for reusable knowledge
– Implementation independent semantics
– Highly expressive - can represent knowledge in typical application KBs.
– Translatable - into and out of typical application languages
– Human readable - good for publishing reference models and ontologies.

• Current specification at http://logic.stanford.edu/

Know. Base
in

Lang1

KIF <-> Lang1 Translator

Sys 1
Know. Base

in
Lang2

KIF <-> Lang2 Translator

Sys 2

Know. Base
in KIF

Library

Know. Base
in

Lang3

Sys 3

KIF <-> Lang3 Translator

KIF

Other alternatives

• OKBC (see ontologies)
• Java objects (see AgentBuilder)
• SL (see FIPA)
• Constraints
• Database tuples
• RDF
• DAML
• ..your favorite representation language here..

OntologiesOntologies

Common Semantics
Shared Ontologies and Ontolingua

Ontology : A common vocabulary and agreed upon
meanings to describe a subject domain.

On*tol"o*gy (?), n. [Gr. the things which exist (pl.neut. of , , being,
p.pr. of to be) + -logy: cf.F. ontologie.]
That department of the science of metaphysics which
investigates and explains the nature and essential properties
and relations of all beings, as such, or the principles and
causes of being.
Webster's Revised Unabridged Dictionary (G & C. Merriam Co., 1913, edited by Noah Porter)

This is not a profoundly new idea …
–Vocabulary specification
–Domain theory
–Conceptual schema (for a data base)
–Class-subclass taxonomy
–Object schema

Importance of ontologies in
communication

• An example of the importance of ontologies in
communication is the fate of NASA’s Mars
Climate Orbiter

• It crashed into Mars on September 23, 1999
• JPL used metric units in their program controlling

the thrusters and Lockheed-Martin used imperial
units.

• Instead of establishing an orbit at an altitude of
140km, it did so at 60km, causing it to burn up in
the Martian atmosphere.

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 6

Conceptual Schemas

Table: price
*stockNo: integer; cost:

float

139
74.50
140
77.60
… …

Data
Base:

Data Base
Schema:

Conceptual
Schema:

A conceptual schema specifies the intended meaning of
concepts used in a data base

Auto
Product
Ontology

Product
Ontology

Units &
Measures
Ontology

price(x, y) =>
∃ (x’, y’) [auto_part(x’)

& part_no(x’) = x
& retail_price(x’, y’, Value-Inc)
& magnitude(y’, US_dollars) = y]

Implicit vs. Explicit Ontologies

• Systems which communicate and work together
must share an ontology.

• The shared ontology can be implicit or explicit.
• Implicit ontology are typically represented only by

procedures
• Explicit ontologies are (ideally) given a declarative

representation in a well defined knowledge
representation language.

Conceptualizations, Vocabularies and
Axiomitization

• Three important aspects to explicit ontologies
– Conceptualization involves the underlying model of the domain in

terms of objects, attributes and relations.
– Vocabulary involves assigning symbols or terms to refer to those

objects, attributes and relations.
– Axiomitization involves encoding rules and constraints which

capture significant aspects of the domain model.

• Two ontologies may
– be based on different conceptualizations
– be based on the same conceptualization but use different

vocabularies
– differ in how much they attempt to axiomitize the ontologies

Simple examples

fruit

pomme citron orange

fruit

apple lemon orange

fruit

apple citrus pear

lime lemon orange

fruit

tropical temperate

Ontologies vs. KBs
Ontologies are distinguished from KBs not by their
form, but by the role they play in representing
knowledge
– Consensus models for a domain
– Emphasis on properties that hold in all situations
– Emphasis on classes rather than instances
– Intended to support multiple tasks and methods
– Don’t change during problem solving and are suited for

“compiling” into tools
– Need to satisfy a community of use

• Emphasis on collaborative development
• Emphasis on translation to multiple logical formalisms

– Useful for education

Big Ontologies

• There are several large, general ontologies that are
freely available.

• Some examples are:
– Cyc - Original general purpose ontology
– WordNet - a large, on-line lexical reference system
– World Fact Book -- 5Meg of KIF sentences!
– UMLS - NLM’s Unified Medical Language System

• See http://www.cs.utexas.edu/users/mfkb/related.html
for more

Ontology Conclusions
• Shared ontologies are essential for agent communication

and knowledge sharing
• Ontology tools and standards are important

– Ontolingua and OKBC are good examples
– XML, RDF, DAML may be a next step

• Some large general ontologies are available
– Cyc, WFB, WordNet, …

• For more information…
– http://www.kr.org/top describes projects addressing major ontology

construction issues
– Ontology mailing list: send mail to majordomo@cs.umbc.edu with

“info ontology” in message body for information.
– ANSI Ad Hoc Group on Ontology Standards: http://WWW-

KSL.Stanford.EDU/onto-std/

Knowledge Knowledge
Sharing Effort Sharing Effort

(KSE)(KSE)

Knowledge Knowledge
Interchange Interchange
Format (KIF)Format (KIF)

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 7

KIF Syntax and Semantics
• Extended version of first order predicate logic
• Simple list-based linear ASCII syntax, e.g.,

(forall ?x (=> (P ?x) (Q ?x)))
(exisits ?person (mother mary ?person))
(=> (apple ?x) (red ?x))
(<<= (father ?x ?y) (and (child ?x ?y) (male ?x))

• Model-theoretic semantics
• KIF includes an axiomatic specification of large

function and relation vocabulary and a
vocabulary for numbers, sets, and lists

Implications and Rules
• KIF distinguishes between implications and rules.
• Implication (e.g., (=> (p ?x) (q ?x)) is a connective
• Rules are directed (forward or backward)

(=>> (p ?x) (q ?x)) vs. (<< = (q ?x) (p ?x))
• Rules involve derivation. E.g., from

(<<= (status-known ?x) (citizen ?x))
(<<= (status-known ?x) (not (citizen ?x)))

• we infer (status-known Joe) only if one of (citizen Joe) or
(not (citizen Joe)) can be inferred.

Functions and Relations
• Functions and relations are sets of lists in the universe of

discourse
(= r (setofall (listof n1 … nk) (r n1 … nk)))

• They can be arguments to other functions & relations
E.g., (transitive R), (inverse R1 R2), (one-one F), (range F)

• The can be "applied" to arguments
(holds ?r 1 2)
(value ?f 1 2)
(<=> (transitive ?r)

(=> (and (holds ?r ?x ?y) (holds ?r ?y ?z)) (holds ?r ?x ?z))))

Big KIF and Little KIF
• That KIF is highly expressive language is a

desirable feature; but there are disadvantages.
– complicates job of building fully conforming systems.
– resulting systems tend to be “heavyweight”

• KIF has “conformance categories” representing
dimensions of conformance and specifying
alternatives within that dimension.

• A “conformance profile” is a selection of
alternatives from each conformance category.

• System builders decide upon and adhere to a
conformance profile sensible for their applications.

KIF vs ANSI KIF

• KIF is the object of an ANSI Ad Hoc
standardization group (X3T2)

• ANSI KIF is somewhat different from previous
specs
–No non-monotonic rules
–Allow for possible (future) higher-order

extensions
–Defines a standard infix format for presenting

KIF

KIF Software
• Several KIF-based reasoners in LISP are available from

Stanford (e.g., EPILOG).
• IBM’s ABE (Agent Building Environment) & RAISE

reasoning engine use KIF as their external language.
• Stanford’s Ontolingua uses KIF as its internal language.
• Translators (partial) exist for a number of other KR

languages, including LOOM, Classic, CLIPS, Prolog,...
• Parsers for KIF exist which take KIF strings into C++ or

Java objects.

KIF Summary
• KIF is the only widely used interlingua for KB systems

– KIF is the focus of an ANSI standardization effort
– See KIF spec at <http://logic.stanford.edu/> and also

<http://www.cs.umbc.edu/kif> for more information.
• Its future outside the AI-related community is unclear

– It may not be acceptable to a wider community because its too
logic-oriented or not object-oriented or …

– Then again, it’s expressive power may win the day!
• Defining a mapping of KIF to XML might make it more

acceptable.

Knowledge Knowledge
Query and Query and

Manipulation Manipulation
Language Language

(KQML)(KQML)

• KQML is a high-level, message-oriented, communication
language and protocol for information exchange
independent of content syntax and ontology.

• KQML is independent of
– the transport mechanism (e.g., tcp/ip, email, corba objects, IIOP,

etc.)
– Independent of content language (e.g., KIF, SQL, STEP, Prolog,

etc.)
– Independent of the ontology assumed by the content.

• KQML includes primitive message types of particular
interest to building interesting agent architectures (e.g.,
for mediators, sharing intentions, etc.)

KQML
Knowledge Query and Manipulation

Language

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 8

KQML Specifications
• There are two KQML specification documents:

–Specification of the KQML Agent-Communication Language plus
example agent policies and architectures, The DARPA Knowledge
Sharing Initiative, External Interfaces Working Group, 1993.
http://www.cs.umbc.edu/papers/kqml93.pdf

–A Proposal for a new KQML Specification, Yannis Labrou and Tim
Finin, TR CS-97-03, Feb.1997, Computer Science and Electrical
Engineering Department, University of Maryland Baltimore County,
Baltimore, MD 21250.
http://www.cs.umbc.edu/kqml/papers/kqml97.pdf

• There are also many dialects and “extended” versions of
KQML plus lots of important concepts not addressed in
either specification document (e.g., security).

• We’ll mostly focus on the 1997 document plus other
ideas used in practice.

Multiple KQML dialects

1993
Spec
1993
Spec

1997
Spec
1997
Spec

Notional
KQML

DialectDialect

DialectDialect

ACLs

A KQML Message

Represents a single speech act or performative
ask, tell, reply, subscribe, achieve, monitor, ...

with an associated semantics and protocol
tell(i,j, Biφ) = fp[Bi Biφ ∧ ¬ Bi(Bifj Biφ ∨ Uifj Biφ)] ∧ re[Bj Biφ] ...

and a list of attribute/value pairs
:content, :language, :from, :in-reply-to

(tell :sender bhkAgent
:receiver fininBot
:in-reply-to id7.24.97.45391
:ontology ecbk12
:language Prolog
:content

“price(ISBN3429459,24.95)”)

performative

parameter
value

KQML Syntax
• KQML was originally defined as a language with a

particular linear syntax which is based on Lisp.

• Alternate syntaxes have been used, e.g., based on
SMTP, MIME, HTTP, etc.)
– There are proposals for a meta-syntax that can support

different syntactic dialects.

• KQML has also been mapped onto objects and
passed from agent to agent as objects (e.g., if in the
same memory space) or serialized objects.

• KQML is not about syntax.

Performatives (1997)

Deny
Subscribe

KQML
Performatives

RequestQuery

Meta

Promise

Inform

Inform

DB Basic

Achieve
Unachieve

Advertise
Unadvertise

Stream

Cursor

Basic

Goal

Network

Facilitation
Broker-one
Recommend-one
Recruit-one
Broker-all
Recommend-all
Recruit-all

Broadcast
Forward

Tell
Untell

Insert
Uninsert
Delete-one
Delete-all
Undelete

Stream
Eos

Ask-if
Ask-one
Ask-all

Stream
Eos

Reply

Standby
Ready
Next
Rest
Discard

Simple Query Performatives

A B

ask-one(P)

tell(P)

ask-all(P)

tell((p1 p2 p3...))

• The ask-one, ask-all, ask-if, and stream-all
performatives provide a basic query mechanism.

A B

ask-if(P)

Sorry

Stream-all(P)

tell(P1)
tell(P2)

tell(P3)
eos

Active Information
Performatives

• The subscribe performatives is used to request active
information services.

• subscribe(P) means roughly “Keep your response to P “Keep your response to P
current”current”

• Note that it’s content is an embedded KQML performative
and thus it’s :language is KQML

A B
Subscribe(ask(p))

tell(p), tell(p’),...

Facilitation Services

Facilitators are a class of agents who
• traffic in meta-knowledge about other agents.
• provide communication services such as:

– message forwarding and broadcasting
– resource discovery
– matchmaking
– content-based routing
– meta-knowledge queries

• Performatives of special interest to facilitators are
– advertise, broker, recruit, recommend, forward, broadcast, etc.

• Brokers are generally considered to focus on matchmaking
• Facilitators can be intelligent or not

– Intelligent facilitators use domain knowledge in matching services
needs and offers.

Capability Description

A BFACC

advertise(q2)
ask-all(advertise(P)

advertise(p2)
advertise(p1)

advertise(q1)

advertise(q3)

The advertise performative is used to describe
the performatives an agent is prepared to accept.

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 9

Facilitation Performatives

C
broker(ask(P))

B
advertise(ask(P))

ask(P)

tell(P)tell(P)

A
Broker

C
recruit(ask(P))

B
advertise(ask(P))

ask(P)

tell(P)

A

Recruit

C
recommend(ask(P))

B
adv(ask(P))

tell(P)

ask(P)
fwd(adv(ask(P)))

A

Recommend

The three facilitation
performatives come in a X-one
and X-all versions:
•Broker-one and broker-all

•Recruit-one and recruit-all

• recommend-one and recommend-all

Agent Names
• System for mapping agents into names is important in

most ACLs
• KQML assumes that names are local

– A can register with B under the name Alice
– A can register with C under the name Albert

• Doesn’t preclude the use of a central Agent Name
Server, an architecture used by most systems

• What gets registered under a name? Contact
information like:

name(albert, tcpip, [cujo.cs.umbc.edu,8080]).
Name(albert,smtp,[agenta@agents.umbc.edu)
name(albert,http,[www.agents.umbc.edu:8090/kqml/albert])

KQML Semantics
• Myth: KQML doesn’t have a good semantic

description.
• Reality: This was true for the first few years of its use,

but has not been true since 1994.
• Yannis Labrou defined a semantics in

– Yannis Labrou and Tim Finin, A semantics approach for KQML -- a
general purpose communication language for software agents, Third
International Conference on Information and Knowledge
Management (CIKM'94), Nov. 1994.

– Yannis Labrou, Semantics for an Agent Communication Language,
Ph.D. Thesis, UMBC, 1996.

– Yannis Labrou and Tim Finin, Semantics and Conversations for an
Agent Communication Language, in "Readings in Agents", Michael
Huhns and Munindar Singh (editors.), Morgan Kaufmann, 1997.
(reprint of IJCAI-97 paper).

• Other approaches to defining the semantics have
been partially explored (more on this later).

KQML APIs and System Interfaces

• There have been dozens of APIs written for KQML
• Written in and for different languages

– Lisp, Scheme, Prolog, C/C++, Java, CLIPS,
Smalltalk, Tcl, Perl, ...

• And interfacing to may different systems
– Loom, Cyc, SIMS (Information Integration), SIPE (Planning),

Various Databases, …
• More recent is the appearance of KQML-speaking

“agent shells”, offering more than just an API.
• More on these later

For More Information

• Mailing lists
–kqml@cs.umbc.edu
–send email to majordomo@cs.umbc.edu with

body text “info kqml” for more information
• Information server

–http://www.cs.umbc.edu/kqml/
• Specification documents

–1993: http://www.cs.umbc.edu/kqml/kqml93.pdf
–1996: http://www.cs.umbc.edu/kqml/kqml97.pdf

OntolinguaOntolingua

Ontolingua - Language
• Ontolingua allows full KIF

– 1st order logic with relation
constants in domain of discourse

– Extremely expressive
– Too much for most users
– Too much for most systems!

• Ontolingua provides an object-
oriented projection

• Statements within the o-o
sublanguage easy to make

– But any statement is allowed
• Ontolingua separates

representation from presentation

Ontolingua - Library
• Library of modules

supports reuse
• Authors assemble a new

ontology
–Assembly defines a general

graph
–Cycles are allowed (sports

and medicine)
• Authors may augment

definitions
–But you can never say less!
–Different authors may make

incompatible extensions

Ontolingua - Architecture

Ontology Library

Remote
Application Editor

HTTP
OKBC

or
KQML

BatchIDLIDL

Standalone
Application

Products
Documents

Agents

Commerce

• Authors, editors,
reviewers interaction
via the web interface

• Applications interact via
the OKBC or KQML
interface

• Batch translation of
ontologies supports the
construction of stand-
alone applications

------Author

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 10

Ontology Library and Editing Tools

Models of
Space

Browse Compare Compose Extend Check

°
��

��
��

��

Editing
Tools

Shared
Library

WordNet
Penman Ontology
CYC Upper Ontology

Models of
Time

Physical
Objects

Actions
& Causality

Lexicons &
Skeleton Ontologies

Common
Ontologies & Theories

Geography
& Terrain

Situations
& Contexts

Operations
Logistics
Sensor Management
Battlefield Situations
Command and Control

Domain-Specific
Ontologies & Theories

Basic Representation Concepts: Sets, Sequences, Arrays, Quantities, Probabilities

Ontolingua is a
language for building,
publishing, and sharing
ontologies.
– A web-based interface to

a browser/editor server
at
http://ontolingua.stanford
.edu/ and mirror sites.

– Ontologies can be
translated into a number
of content languages,
including KIF, LOOM,
Prolog, CLIPS, etc.

Ontolingua - Usage
• Ontolingua is (one of) the most widely used

knowledge development environments
– Available since 1/94 at http://ontolingua.stanford.edu
– Over 4500 total users, 1200 current users, 300 active users
– Over 4,200,000 user commands executed
– Recently averaging over 7000 commands per day
– Over 800 ontologies stored on the KSL server
– Mirror sites in Spain, Netherlands, UMBC, and corporate sites

• Applications include
– Enterprise modeling, electronic commerce, engineering,

ribosomal structure modeling, workflow modeling, molecular
biology, cross-disciplinary design and simulation, drug
interactions, medical vocabularies, software design reuse,
standards development

FIPAFIPA

What is FIPA
• The Foundation for Intelligent Physical Agents

(FIPA) is a non-profit association.
• FIPA’s purpose is to promote the success of

emerging agent-based applications, services
and equipment.

• FIPA’s goal is pursued by making available in
a timely manner, internationally agreed
specifications that maximise interoperability
across agent-based applications, services and
equipment.

• http://www.fipa.org/

Who is FIPA
• FIPA operates through the open international

collaboration of member organisations, which are
companies and universities active in the agent field.

• Companies: Alcatel, Boeing, British Telecom,
Deutsche Telekom, France Telecom, Fujitsu, Hitatchi,
HP, IBM, Fujitsu, Hewlett Packard, IBM, Intel, Lucent,
NEC, NHK, NTT, Nortel, Siemens, SUN, Telia,
Toshiba, etc.

• Universities and Research Institutes: GMD, EPFL,
Imperial, IRST, etc.

• Government Agencies: DARPA

FIPA’s Work Model
• FIPA’s work is built around annual rounds of FIPA specification

deliverables.
• FIPA97 laid the groundwork and focused on

– Agent management (common components, agent lifecycle)
– Agent communication (message format, semantics, interaction

protocols)
– Agent/Software interaction

• FIPA98 extended fipa97, dealing with
– Human-agent interaction
– Agent mobility
– Agent security
– Ontology services

• FIPA 99 is work in progress
– TC1: Agent Management
– TC2: Agent Communication Language
– TC3: Agent/Software Interaction
– TC4-TC7: Specification of Applications

The The
FIPA ACLFIPA ACL

TC2: Agent Communication
Language

• Called FIPA ACL
• Based on speech acts
• Messages are actions (communicative actions or CAs)
• Communicative acts are described in both a narrative

form and a formal semantics based on modal logic
• Syntax is similar to KQML
• Specification provides a normative description of high-

level interaction protocols (aka conversations)

Agent-Standardization - FIPA
Cooperation between Agents

CAs for Information Exchange
• proposition or reference as content
• Basic CAs:

– inform
– query-ref
– not-understood

• Advanced CAs:
– inform-if, inform-ref
– confirm, disconfirm
– subscribe

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 11

Agent-Standardization - FIPA
Cooperation between Agents

CAs for task delegation
• action-description as content
• Basic CAs:

– request
– agree
– refuse
– failure
– not-understood

• Advanced CAs:
– request-when, request-whenever
– cancel

Agent-Standardization - FIPA
Cooperation between Agents

CAs for Negotiation
• action-description and proposition as content
• Initiating CA

– cfp
• Negotiating CA

– propose
• Closing CAs

– accept-proposal
– reject-proposal

Agent-Standardization - FIPA
Cooperation between Agents

Example
(request

:sender (:name user_agent@bond.mchp.siemens.de:3410)
:receiver (:name hilton_hotel@tcp://hilton.com:5001)
:ontology fipa-pta
:language SL
:protocol fipa-request
:content
(action hilton_hotel@tcp://hilton.com:5001

(book-hotel (:arrival 04/07/1999) (:departure 12/07/1999)
(:infos ())
)))

FIPA 99: other possibilities to define content!

Agent-Standardization - FIPA
Cooperation between Agents

FIPA Cooperation
• CAs have their own formal semantics

– difficult to implement
– need not be implemented - agent must behave

according to semantics
• Interaction protocols define structured

conversations
– based on CAs
– basis for dialogues between agents
– basic set of pre-defined IPs
– own IPs can be defined

query

not-understood inform

Agent-Standardization - FIPA
Cooperation between Agents

FIPA-Query (simplified - for information
exchange)

Agent-Standardization - FIPA
Cooperation between Agents
Agent-Standardization - FIPA
Cooperation between Agents

request(action)

not-understood agreerefuse(reason)

failure(reason) inform-refinform(done())

FIPA-Request - for task delegation

Agent-Standardization - FIPA
Cooperation between Agents
Agent-Standardization - FIPA
Cooperation between Agents

cfp(action, pre1)

not-understood propose(pre2)refuse(reason)

accept-proposalreject-proposal

FIPA-Contract Net - for negotiation

Deadline

failure(reason) cancelinform(done)

The The
FIPA Agent FIPA Agent

PlatformPlatform

FIPA Agent Platform

AMS DF ACC

internal platform message transport

AAsoftware

IIOP

Agents belong to one or more
agent platforms which provide
basic services.

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 12

FIPA Agent Platform

AMS DF ACC

internal platform message transport

AAsoftware

IIOP

The AMS (Agent Management
System) provides services like
lifecycle management (creation,
deletion, pausing, …), name
registration, name lookup, and
authentication.

FIPA Agent Platform

AMS DF ACC

internal platform message transport

AAsoftware

IIOP

The DF (Directory Facilitator) provides
yellow pages services which describe
the attributes and capabilities of
agents in the platform.

FIPA Agent Platform

AMS DF ACC

internal platform message transport

AAsoftware

IIOP

The ACC (Agent
Communication Channel)
accepts and delivers message
between agents on different
platforms (+store and forward,
+firewalls)

FIPA Platform Implementations

• Several platforms have been implemented
– JADE/LEAP
– FIPA-OS
– Zeus (BT)
– Mecca (Siemens)
– Spawar
– Comtec

and interoperability has been demonstrated.

agentcities

• See
http://agentcities.com/
http://agentcities.net/

• A network of FIPA
platforms

• Each offers a set of
services

• Sample services
– Ping
– Weather

ACL ACL
SemanticsSemantics

Outline

• Cohen & Levesque
–Theory of Rational Agency
–Cohen & Levesque on ACL Semantics

• KQML Semantics (Labrou)
• FIPA ACL Semantics
• Comparing ACL semantics approaches

& Comments

Cohen & Cohen &
LevesqueLevesque

Rational Rational
AgencyAgency

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 13

The Cohen & Levesque
Approach

• Most attempts for semantics for ACL descend
from the work of Cohen & Levesque (C&L)

• Intention = Choice + Commitment
• Integration of Agent Theory and Semantics of

Communication Primitives
• A (partial) theory of rational agency
• Possible-worlds semantics

Commitments and Intentions

• Internal Commitment:
– (P-GOAL x p q) =

(1) (BEL x ¬p) ∧
(2) (GOAL x (LATER p)) ∧
(3) [KNOW x (PRIOR [(BEL x p) ∨ (BEL x �¬p) ∨ (BEL x �¬q)]

¬ [GOAL x (LATER p)])]
meaning
“(1) agent x believes p is currently false
(2) chooses that it be true later
(3) and x knows that before abandoning that choice, he
must either believe it is true, or that it will never be true,
or that some q (an escape clause) is false”

Intention

• (INTEND x a q) =
(P-GOAL x [DONE x (BEL x (HAPPENS a))?;a] q)
– x has the persistent goal of reaching a state at which it believes

that a will happen, after which (state) a does happen
• Intending is a special kind of commitment
• The agent is committed to arriving at a state in which he is

about to do the intended action next
• Thus an agent cannot be committed to doing something

accidentally or unknowingly
• “I intend for the sun to rise tomorrow” vs

“I intend to get an “A” in this course”

The p of P-GOAL

What has just happened, i.e.,
x believes that a will happen
next and a did happen

Thoughts on C &L Intention

• Just because an agent intends p, it does not mean
that the agent will even attempt to achieve p
– remember the “escape clause” in the P-GOAL definition

a “pessimistic” agent might drop all its goal because “the sky
is blue” or for any other reason

• The definition of intention does not guarantee a causal
relationship between the agent’s action and “an action
occurring”
– the agent is only required to reach a state that the agent

believes that will lead to “the action a occurring”

C& L on ACLC& L on ACL
SemanticsSemantics

ACLs a la Cohen & Levesque

• C&L object to the use of “performative” to
describe KQML’s communication primitives

• Communicative acts (CAs) are attempts to
communicate

• C&L build on their earlier work on rational
agency to define CAs as attempts that involve
two (or more) rational agents (teams)

• Interesting work that focuses on defining rational
agents and describing team formation.

Semantics for INFORM

• {INFORM speaker listener e p} =
{ATTEMPT speaker listener e

(know listener p)
[BMB listener speaker

(P-GOAL speaker (KNOW listener (KNOW speaker
P)))]}

• An INFORM is defined as an attempt in which to
make an “honest effort”, the speaker is committed
to making public that he is committed to the
listener’s knowing that he (the speaker) knows p.

Not present in
ATTEMPT def’n

The “honest effort” KQML KQML
SemanticsSemantics

Which Agent States? (Labrou
1996)

• Preconditions indicate the necessary state for an
agent in order to send a performative and for the
receiver to accept it and successfully process it.

• Postconditions describe the states of both
interlocutors after the successful utterance of a
performative (by the sender) and after the receipt and
processing (but before a counter utterance) of a
message (by the receiver).

• Preconditions indicate what can be assumed to be the
state of the interlocutors involved in an exchange.
Similarly, the postconditions are taken to describe the
states of the interlocutors assuming the successful
performance of the communication primitive

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 14

Semantics for TELL
TELL(A,B,X)

• A states to B that A believes X to be true (for A).
• bel(A,X)
• Pre(A): bel(A,X) ∧ know(A,want(B,know(B,S)))

where S may be bel(B,X) or NOT(bel(B,X))
Pre(B): intend(B,know(B,S))

• Post(A): know(A,know(B,bel(A,X)))
Post(B): know(B,bel(A,X))

• Completion: know(B,bel(A,X))
• The completion condition and postconditions hold

unless a SORRY or ERROR suggests B’s inability to
properly acknowledge the TELL.

Semantics for the proactive-
TELL

proactive-TELL(A,B,X)
• A states to B that A believes the content to be true.
• bel(A,X)
• Pre(A): bel(A,X)

Pre(B): NONE
• Post(A): know(A,know(B,bel(A,X)))

Post(B): know(B,bel(A,X))
• Completion: know(B,bel(A,X))
• The postconditions and completion condition hold

unless a SORRY or ERROR suggests B’s
inability to properly acknowledge the TELL.

FIPA ACL FIPA ACL
SemanticsSemantics

TC2: Agent Communication
Language

• Called FIPA ACL
• Based on speech acts
• Messages are actions (communicative actions or CAs)
• Communicative acts are described in both a narrative

form and a formal semantics based on modal logic
• Syntax is similar to KQML
• Specification provides a normative description of high-

level interaction protocols (aka conversations)

Outline of FIPA ACL Semantics

• A primitive’s meaning is defined in terms of
FPs and REs

• The Feasibility Preconditions of a CA define
the conditions that ought to be true before an
agent may plan to execute the CA

• The Rational Effect is the effect that an agent
hopes to bring about by performing an action
(but with no guarantee that the effect will be
achieved)

• The FPs and the REs involve agents state
descriptions that are given in SL

Semantic Language (SL)

• SL is the formal language used to define the
semantics of FIPA ACL

• In SL, logical propositions are expressed in a logic
of mental attitudes and actions

• The logical framework is a first order modal
language with identity (similar to Cohen &
Levesque)

• SL provides formalizations for three primitive
mental attitudes: Belief, Uncertainty and Choice
(or Goal); Intention is defined as a Persistent Goal

• SL can express propositions, objects and actions

An example of FIPA ACL
semantics (inform)

<i, inform(j, φ)>
FP: Biφ ∧ ¬ Bi(Bifjφ ∨ Uifjφ)
RE: Bjφ

Agent i informs agent j that (it is true that) it is raining
today:
(inform

:sender i
:receiver j
:content "weather(today,raining)"
:language Prolog
:ontology weather42)

Another example of FIPA ACL
semantics (request)

<i, request(j, a)>
FP: FP(a) [i\j] ∧ Bi Agent(j, a) ∧ ¬Bi Ij Done(a)
RE: Done(a)

Agent i requests j to open a file:
(request

:sender i
:receiver j
:content "open \"db.txt\" for input"
:language vb)

Evaluation of
ACLs and
Semantic

Approaches

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 15

Different ACLs: different
semantic approaches

• Different approaches to the semantics of an
ACL
– KQML semantics (Labrou 1996)
– FIPA ACL (FIPA ACL specification)
– ACL semantics (Cohen & Levesque)

• KQML’s semantics (Labrou 1996)
• Comparison between KQML and FIPA ACL

(primarily based on their semantics)
• Cohen & Levesque points on ACLs
• Why not KQML+KIF for an ACL?

Comparison of KQML tell and
FIPA ACL inform

• The difference is only observable in the semantics
• Syntactically the two messages are almost identical
• Both languages make the same basic assumption

of non-commitment to a content language (in this
performative)

• Semantically they differ at two levels:
– different ways to describe the primitive, i.e., pre-, post-,

completion conditions for KQML, FPs and REs for FIPA
ACL

– different language to describe the propositional (mental)
attitudes, e.g., KQML’s bel is not the same as FIPA ACL B
operator

How close can a FIPA ACL
primitive get to KQML tell?

<i, KQML-like-tell(j, Biφ)>
FP: Bi Biφ ∧ ¬ Bi(Bifj Biφ ∨ Uifj Biφ)
RE: Bj Biφ

which can be generated by replacing φ by Biφ in the
definition of inform:

<i, inform(j, φ)>
FP: Biφ ∧ ¬ Bi(Bifjφ ∨ Uifjφ)
RE: Bjφ

How do KQML and FIPA ACL
differ?

• Different semantics; mapping of KQML
performatives to FIPA primitives and vice
versa is a futile exercise.

• Different treatment of the “administration
primitives”; in FIPA ACL register, unregister,
etc., are treated as requests for action with
reserved (natural language) meaning

• No “facilitation primitives”, e.g., broker,
recommend, recruit, etc., in FIPA ACL

• Reserved content language: a very murky
issue ...

Does FIPA ACL require a
reserved content language?

• The answer is subject to interpretation, but a
fair answer would be that YES it does, in some
cases

• A distinction has to be drawn between how a
message looks (syntax) and what it means
(semantics).

• Some FIPA messages (e.g., request) use SL
as their content language.

• An agent that observes such messages have
to “understand” some SL; how much depends
on the particular message

Which ACL should I use?
• Programmers do not care about semantics

and their details.
• As long as the agent does not implement

modalities (belief, intention, etc.) the semantic
differences are irrelevant to the developer.

• The similar syntax guarantees that a
developer will not have to alter the code that
receives, parses and sends messages.

• The code that processes the primitives should
change depending on whether the code
observes the proper semantics.

Really ... which one is better?

• FIPA ACL is more powerful with composing
new primitives.

• The power stems from the power of the SL
language as a content language to describe
agents’ states.

• KQML’s weakness is its religious non-
commitment to a content language.

• Both have shortcomings; there are features
that developers would like to see in an ACL.

Shortcomings of Current ACLs

• Intentional level description: which mental
attitudes, what definitions?

• Problems with mental attitudes: from theory to
practice

• Can all desirable communication primitives be
modeled after speech acts? Should they?

• Flexible description of agents’ capabilities and
advertising of such capabilities.

• How can we test an agent’s compliance with the
ACL?

• Ease of extending an ACL

Alternative Alternative
approaches approaches

and and
languageslanguages

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 16

Alternatives to ACLs
• There are many alternatives to using ACLs for

communicating and sharing information.
• From oldest to newest...

– Natural language (Espanol)
– Database languages (SQL, …)
– Domain dependant (EDI, …)
– Distributed object systems (CORBA, ...)
– OKBC
– Service languages (e-speak, BizTalk, …)
– P2P and Grid computing
– Web languages (XML, RDF, DAML+OIL)

• One size won’t fit all, so we need to appreciate the
strengths and weaknesses.

• We will also see mixing, matching and morphing

NL as an ACL
• Natural languages are the preferred ACL for

human agents
• And have strongly influenced the theoretical

framework of ACLs for artificial agents
• Some artificial agents accept and interpret NL

utterances from humans and also use artificial
ACLs to talk to other artificial agents. (“Mr. Data,
make it so”)

• Some researchers predict a future in which NL
utterances will be used as the ultimate ACL for
all agents, human and software.

Database Languages
• The database field has developed techniques for

sharing information in a distributed environment.
• In fact, it has pioneered the theory and practice of

critical concepts like:
– concurrency control
– transactions
– replication
– security and access control
– common query languages (e.g., SQL, OQL)
– common APIs (e.g., ODBC, JDBC)

some of which the agents world has mostly ignored to
date.

Domain Dependant Languages

• There have always been specialized languages,
protocols, architectures and systems developed for
sharing particular knowledge, e.g.:
– Electronic Data Interchange (EDI) -- designed for sharing well

defined business documents (PO, RFQ, …)
– Z39.50 -- designed to allow an IR client application to talk to

an IR backend server.
– Napster: designed for sharing MP3 files

Domain Dependant Languages
Example -- EDI

• EDI involves the application to application exchange
of electronic data in support of standard business
transactions across enterprise boundaries in such a
way that no human interpretation or processing is
required.

• Two standards were developed in the 80’s: X12 in the
US and EDIFACT in the EU.

• These are designed to exchange such business
documents as purchase orders, requests for
quotations, etc. and their constituent parts.

• Oriented toward integration with legacy systems
• Now being reengineered for XML
• Not very general, expressive, flexible, or extensible

Distributed Objects
• Approaches to sharing objects in a distributed system

have been evolving over the past 15 years.
• CORBA
• Distributed Computing Environment (DCE) developed

by the Open Group in the early 90’s
• Java

– RMI
– Enterprise Java Beans (EJB)
– Jini

• OLE/COM/DCOM/ActiveX (Microsoft)
• SOAP

Distributed Objects -- Typical
Components

• A distributed object is an object that can be
accessed remotely. An object is typically
considered to encapsulate data and behavior.

• Remote procedure/method call
• Interface definition language by which one can

specify an object or class’s signature, I.e. its
methods and the number and types of their
arguments.

• ORB (Object request broker)
• Other standard services -- e.g., naming,

timing, security, persistence, etc.

CORBA ORB
• Defined by the OMG (Object Management

Group) http://omg.org/
• See the CRRBA FAQ for more information

http://www.aurora-tech.com/corba-faq/ The
ORB is the heart of a CRBA system and
mediates communication between clients and
servers.

• Inter-orb communication is less standard.
• One can access remote objects by name, or

by interface or by capability.
• This last feature is provided by the CORBA

trader service

Java

• Virtually all of what CORBA provides is also
available in Java via a combination of
– Java RMI
– Java RMI servers
– Beans and enterprise beans
– Jini
– Java event servers
– etc.

• Focusing on a single language has strong
advantages and disadvantages.

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 17

Java Beans and EJBs
•http://java.sun.com/beans/
•JavaBeans components, or Beans, are reusable software
components that can be manipulated visually in a builder tool.

•Typical unifying features that distinguish a Bean are:
– Introspection: enables a builder tool to analyze how a Bean works
– Customization: enables a developer to use an app builder tool to

customize the appearance and behavior of a Bean
– Events: enables Beans to communicate and connect together
– Properties: enable developers to customize and program with Beans
– Persistence: enables developers to customize Beans in an app builder,

and then retrieve those Beans, with customized features intact, for future
use

•Enterprise JavaBeans (EJBs) extends the JavaBeans
component model to handle the needs of
transactional business applications.

Jini
• Jini provides simple mechanisms which

enable devices to plug together to form
an impromptu community

• Each device provides services that other devices in the
community may use.
– These devices provide their own interfaces, which ensures

reliability and compatibility.
• Jini uses a lookup service with which devices and

services register.
• When a device plugs in, it goes through an add-in

protocol, called discovery and join-in.
– The device first locates the lookup service (discovery) and then

uploads an object that implements all of its services' interfaces
(join).

Jini

• To use a service, a person or a program locates it using
the lookup service. The service's object is copied from the
lookup service to the requesting device where it will be
used.

• The lookup service acts as an temporary intermediary to
connect a client looking for a service with that service.

• Once the connection is made, the lookup service is not
involved in any of the resulting interactions between that
client and that service.

• Jini also defines a leasing and transaction mechanism to
provide resilience in a dynamic networked environment.

Javaspaces
• JavaSpaces is a simple

unified mechanism for
dynamic communication,
coordination, and sharing
of objects between Java
technology-based network
resources like clients and
servers.

• It is based on the Linda
tuple-space model.

http://java.sun.com/products/javaspaces/

Comparison of
DCOM/CORBA/Java

ORB Platform
Availability

Applicable to Mechanism Implementations

COM/DCOM Originally PC
platforms, but
Becoming
available on other
platforms

"PC-centric"
distributed
systems
architecture

APIs to
proprietary
system

one

CORBA Platform-
independent and
interoperability
among platforms

General
distributed
system
architecture

Specification of
distributed object
technology

many

Java/RMI wherever Java
virtual machine
(VM) executes

General
distributed
system
architecture and
Web-based
Intranets

implementation of
distributed
object technology

various

SEI ~1997

SOAP: The Simple Object Access
Protocol

• SOAP is an XML/HTTP-based protocol for accessing services, objects
and servers in a platform-independent manner.

• The current IETF specification:
http://search.ietf.org/internet-drafts/draft-box-http-soap-01.txt

• The non-binary XML encoding provides flexibility and
platform independence

• The HTTP transport obviates many firewall problems.
• Offers several basic message oriented protocols, including

request-response and fire-and-forget.
• BizTalk builds on SOAP, adding more service oriented

features, such as QOS and routing information

SOAP: The Simple Object Access
Protocol

A SOAP Request
<SerializedStream SerializationPattern=

"urn:schemas-microsoft-com: soap:v1"
headers="#ref-0" main="#ref-1">

<headers id="ref-0">
<InterfaceName>

soap:cdl:com.develop.demos.purchase_b
ook

</InterfaceName>
<CustomerID>
CDFE06E0-4DB4-4809-A7CF-

4DDA32D5B081
</CustomerID>

</headers>
<PurchaseBook id="ref-1">

<_ _param0>0201379368</_ _param0>
</PurchaseBook>

</SerializedStream>

The SOAP Response
<SerializedStream SerializationPattern=

"urn:schemas-microsoft-com:soap:v1"
headers="#ref-0" main="#ref-1">

<headers id="ref-0">
<InterfaceName>

soap:cdl:com.develop.demos.purchase_boo
k

</InterfaceName>
<CustomerID>
CDFE06E0-4DB4-4809-A7CF-

4DDA32D5B081
</CustomerID>

</headers>
<PurchaseBook id="ref-1">

<_ _param0>0201379368</_ _param0>
</PurchaseBook>

</SerializedStream>

An example of a SOAP request-response pair

Open Knowledge Base
Connectivity

• http://ai.sri.com/~okbc/
• OKBC is to KBs what ODBC is to Databases -- defines a

standard API for frame-based KR systems
– Provides two access protocols (frame oriented operations and a

senential tell/ask) and a linear batch language (def-okbc)
– Supports a client-server model for interaction
– Provides an object-oriented view of a KRS
– Supports wide variation in underlying KRS

• Adopted as KRS interoperation protocol within DARPA
High Performance Knowledge Base (HPKB) program
– OKBC drivers available for Loom, Ontolingua, Ocelot, ATP,

JavaKB, TupleKB, ...
– OKBC applications include GKB (SRI), Jot (KSL), Ontolingua

(KSL), Riboweb (SMI), Protégé (SMI), Hike (SAIC), …

OKBC Runtime Architecture

O
K

B
C

 S
er

ve
r

Loom
Driver

ATP
Driver

Loom
API

ATP
API

C
App

O
K

B
C

 L
ib

Java
App

O
K

B
C

 L
ib

• Client-server architecture
• Client libraries in Java, C, Lisp

– From single source for
consistency

• Servers in Java, Lisp
• Drivers for Loom, Ontolingua,

Ocelot, ATP, Snark, Cyc, …
• Transparent network access
• Extensible connection model

– Allows alternative security,
authentication policies

• Support for efficient networking
– Client side caching
– Remote procedure language
– Enumerators with prefetch

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 18

Service Languages

• By service languages we mean a new class of
languages designed to facilitate service
description, service discovery, and application
data exchange.

• Examples include:
–toolTalk (DEC circa ‘96)
–e-speak (HP)
–BizTalk (Microsoft et. al.)

Broker

HP E-Speak
• See Http://e-speak.org/
• Defines a language and

protocols at the service layer
• Initial software components

released under GPL
• Services: Broker, Discovery,

Mediation, Composition
• Specification: Contracts,

Vocabularies, Services
• Security: E-Speak core as a

“sandbox”, local names,
certificates

• XML, Java: queries,
vocabularies, messaging

E-Speak Core
Discovery, Registration, Naming,

Security, Persistence, Messaging, Events,
Vocabularies, Repository, ...

Broker

Transports, Platforms, Languages
HTTP, TCP/IP, ESIP, RMI, Jini, CORBA, DCOM, …

COM+, EJB, Java, Perl, Python, ...

Community
of

Interest

Components
User Login, Billing,

Account Management, Authentication/Authorization,
Matching & Lookup, Anonymity, ...

E-Speak Component Bus
Service Selection, Provisioning and Dispatch

Microsoft’s BizTalk

• See http://biztalk.org/
• BizTalk is an industry initiative started by

Microsoft and supported by a wide range of
organizations, from technology vendors like
SAP and CommerceOne to technology users
like Boeing and BP/Amoco.

• BizTalk Framework™ is a set of guidelines for
how to publish schemas in XML and how to
use XML messages to easily integrate
software programs together in order to build
rich new solutions.

Web Languages
• As the web becomes increasingly pervasive

and important, it’s specialized languages for
representing and sharing information are
becoming more significant.

• Some key web languages
– HTML and web scraping
– XML and associated DTDs
– RDF and associated standards (e.g., RSS, PICS)
– More expressive web languages, such as SHOE

and DAML

Grid Computing

• See http://www.gridforum.org/
• Flexible, secure, coordinated resource

sharing among dynamic collections of
individuals, institutions, and resource

• Enable communities (“virtual
organizations”) to share geographically
distributed resources as they pursue
common goals -- assuming the absence
of … central location, central control,
omniscience, or existing trust relationships.

• Inspired by early systems like SETI

P2P

• P2P systems started out as simple file sharing
systems like Napster
– One or several simple data types
– Well defined data types

• Being generalized to more data types with beter
meta data

• Moving from centralized servers which act as
registrars and meta data repositories (e.g., Napster)
to fully decentralized systems (e.g., Gnutella)

Conclusions

• One size won’t fit all
• General purpose vs. specialized languages
• Things will continue to evolve
• Advice: if you are implementing a single

application, before you go with an ACL,
convince yourself that it’s not right for either
(1) a database approach or (2) a distributed
objects approach

ApplicationsApplications

Examples of Applications using
ACLs

There have been a number of large R&D
applications which used ACLs in an integral
way.

–Carrot - distributed information retrieval
–CIIMPLEX - Manufacturing planning and

scheduling
–Kimsac - Advising on government services
–Unisys NLA - Speech system toolkit
–UMDL - Univ. of Michigan Digital Libraries
– Infomaster - Information integration

AA’01 Tutorial on Agent Communication Languages May 2001

© Finin and Labrou, 2001 19

• Funder: National Institute of Standards and
Technology / Advanced Technology Program
• Technologies for the Integration of
Manufacturing Applications (TIMA)

• ~ $45M over six years in two ATP projects
• Goal: Plug and Play framework of business
objectives and integration-enabling tools
allowing a suite of solutions that can be
implemented “out-of-the-box” at small and
midsized manufacturing and process sites
including MES, ERP, Finite Scheduling, and
Capacity Analysis/Decision Support

• Objectives: interoperability, configurability,
adaptability, extensibility, plug and play.

ParticipantsParticipants
• IBM Corp
• Universities

University of Maryland Baltimore County
University of North Carolina at Charlotte
University of Florida

• Berclain USA Ltd.
• Boeing
• QAD Inc
• GSE Systems
• Lucent Technologies
• Ingersoll-Rand Co.

–Demand Solutions
–DLoG Remex Inc.

• Intercim
• EnvisionIt Software
• The Haley Corporation

CIIMPLEX
EECOMS

Consortium for Integrated Intelligent
Manufacturing Planning and Execution

Extended Enterprise Coalition for
Integrated
Collaborative Manufacturing Systems

Manufacturing Enterprise
Integration

• Integration of planning and execution is imperative for agile
manufacturing
– parts delivery is delayed by the part supplier
– a preferred customer asks to move ahead a delivery
– machine breaks down on shop floor

• This involves collaboration among business applications and managers
• Business applications are legacy systems

– not intended to talk to each other (no API, no means of communication)
– developed over long period of time (expensive to change)
– many decision steps are not covered (white space between applications)

• Multi-agent system (MAS) approach
– flexible and dynamic communication among applications
– plug-and-play
– interface agents to interact with people
– other agents to fill the white space between business applications

Negotiation among agents
in the Supply Chain

Supplier B

Post-event-for-price-quote

notify

Retailer Eval
Agent

Rejection
Process

Supplier A

Customer Rep

Customer

Order-
Forecast

Agent
Manufacturer

Retailer

Distributor

Inv entory
Control
 system

Purchase
Optimization

Agent

Production/
Inventory

Mgmt Agent

Get-supplier-list

4

4

4

4
3b

3b

3a

3a

3a

2

1

Manager

7

6

5

10a

10

98

13

12

11

10b

15

14

P1,A2

P2-P4

T1’,T2’,R2,R3,V1,A1

T1,T2,C1,C2,R1

C3

Goals
• Support automated or

semi-automated
negotiation among
applications in a supply-
chain

• Develop an approach
that can integrate with
existing business
practices and procedures

• Develop an approach
that uses standards and
technologies likely to be
acceptable to the
business community

Specific Approach
1 Use (modified) FIPA ACL primitives for negotiation

– Important contribution is the set of primitives and their semantics
2 Use XML, extended with KIF, as the content language

– KIF-based extensions allow the use of constraints and business
rules

3 Introduce the notion of adjustable autonomy into agent-
based supply chain negotiation
– Use of “decision rules” to decide how to respond augmented
– with “authorization rules” which decide if the action should be

reviewed for authorization and by whom.

Negotiation primitives

• Based on the FIPA ACL with extensions
• Basic negotiation primitives:

– cfp: call for proposals
– propose: propose (or counter-propose) an action
– accept-proposal: accept a proposal
– reject-proposal: reject a proposal (with optional reason)

• Other ACL primitives useful in negotiation
– inform, query, request, not_understood, refuse, ...
– advertise, subscribe, broker, register, …

• Specific negotiation protocols are defined using these
primitives
– e.g., Iterated-contract-net, English-auction, etc.

Defining negotiation protocols
• Different protocols can be

defined using the
communicative primitives
– contract-net
– iterated contract-net
– English auction
– etc

• Most protocols can be defined
with a simple deterministic
finite-state automata (DFA)
formalism. More complicated
ones will require CPNs.

• Negotiations can be
augmented by “side
conversations” composed of
queries, informs, etc.

not-understood refuse
reason

Deadline for proposals

reject-proposal
reason

failure
reason

inform
Done(action)

the manager cancels the
contract due to a change
of situation

cancel
reason

accept-proposal
proposal

propose
preconditions2

cfp
action
preconditions1

Basic FIPA-Contract-Net Protocol

