
The current landscape of
Agent Communication Languages

Yannis Labrou, Tim Finin and Yun Peng
LABORATORY for ADVANCED INFORMATION TECHNOLOGY

Computer Science and Electrical Engineering Department,
University of Maryland, Baltimore County,

fjklabrou,finin,ypengg@cs.umbc.edu
Phone: (410) 455 3624 Fax:(410) 455 3969

Abstract

Despite the substantial number of multi-agent systems
that use an Agent Communication Language (ACL) the dust
has not settled yet over the landscape of ACLs. The se-
mantic specification issues have monopolized the debate at
the expense of other important pragmatic issues that must
be adequately resolved in the immediate future if ACLs
are going to support the development of robust agent sys-
tems. After introducing some of the basic concepts relating
to Agent Communication Languages, we cover KQML and
FIPA ACL, the two existing fully-specified ACLs. We give
a brief introduction to their semantics and the issues re-
lating to semantic descriptions of ACLs. We then shift our
focus beyond the semantics and point to problems and lim-
itations shared by both ACLs. Questions such as the nature
of conformance of an agent system with an ACL specifica-
tion and issues such as naming, registration, authentication,
basic facilitation services,etc., may or may not be (techni-
cally speaking) part of an ACL specification, but we feel that
the answers and solutions to such problems can “make or
break” an ACL. We finally discuss the future of ACL stan-
dardization efforts and identify the issues that are likely to
emerge as we gain experience in building and deploying
agent-based systems.

Final draft of a paper to appear in IEEEIntelligent Sys-
tems, volume 14, number 2, March/April, 1999.

1 Introduction

The most noble and profitable invention of all other
was that of speech, consisting of names or appellation,

and their connection; whereby men register their thoughts,
recall them when they are past, and also declare them one

to another for mutual utility and conversation; without

which there had been amongst men neither Commonwealth, nor
society, nor contract, nor peace, no more than amongst

lions, bears and wolves.
– Thomas Hobbes, Leviathan, I, 4

Although the first primates that could be considered our
remote ancestors appeared 1 to 2 million years ago (depend-
ing on who you ask and the latest findings), it has only
been less than 50,000 years since our species “invented”
what we would recognize today as a language. In that short
time (evolutionary) we managed to raise ourselves to a level
unparalleled by other creatures on our planet. Admittedly,
the attribution of such dramatic advancement solely to lan-
guage is not something that can be proven, but language
must have something to do with it. Is it a mere coinci-
dence that the emergence of language coincides with the
beginning of complex, long-lived communities? Obviously,
language fostered complex interactions between the mem-
bers of a community but beyond facilitating the day-to-day
business, language “granted” memory to communities. The
experiences and acquired knowledge of its members could
be conveyed to the next generation.

For a language to be alanguage, it does not have to be a
spoken, “natural language” like English, or Greek, or Man-
darin Chinese. The signs that baseball managers, coaches
and players use, or the sign language for the deaf are ex-
amples oflanguagesthat exhibit a fundamental property of
useful languages: the meaning of their tokens are shared.
This is not to say that one can not have a private language,
whose symbols are only understood to herself; simply, there
is not much you can do with such a language. If this pri-
vate language becomes public, well now “we are talking.”
Which leads us to a fundamental characteristic of any lan-
guage,i.e., languages exist to serve a purpose, namely the
communication between willing (and occasionally, unwill-
ing) participants.

Whereas evolution was the engine of language devel-

1



opment for human agents, standardization efforts have as-
sumed the role for software agents. Agents1 [3, 16] is
suggest a paradigm for software development which em-
phasizes autonomy (both at design time and run time),
adaptivity (change is everywhere) and cooperativity (hu-
mans agents do it all the time, so should the software ones,
too). This approach seems appealing in a world of dis-
tributed, heterogeneous systems. Languages for communi-
cating agents promise to play the role that language played
for their human counterparts. Agents need an Agent Com-
munication Language (ACL) in order to interact in a shared
language, hiding the details of their internals and to build
communities of agents that can tackle problems that no in-
dividual agent can.

After introducing some concepts useful in discussing
Agent Communication Languages2 (Section 2) we trace
the emergence and the context of ACLs (Section 3) giving
us the opportunity to re-iterate the relevance of (content)
representation languages and ontologies to ACLs. KQML
is our vehicle for introducing the fundamental notions of an
ACL (Section 4). The semantics of KQML have been the
single most important debate issue over the years and we
include a brief overview (Section 4.1). The Foundation for
Intelligent Physical Agents (FIPA) is the first organized ef-
fort focusing on developing standards in the broader area
of agents; after introducing FIPA (Section 5) we discuss
FIPA ACL (Section 5.1). Since FIPA ACL follows the same
basic concepts with KQML we give a flavor of its seman-
tics which is the major point of difference with respect to
KQML. As we attempt a comparative evaluation of KQML
and FIPA ACL (Section 6) we try to go beyond the dom-
inant issue of semantics and point to problems and limita-
tions that both ACLs have and ought to be addressed. While
in this forward-looking mood we take a look at a few of the
many systems that have used an ACL in the past, emphasiz-
ing the aspects that manifest the areas and issues of immedi-
ate concern and future work (Section 7). Before concluding
we discuss the future of standardization efforts in the area
of ACLs and the issues that emerge as central as ACLs get
used by systems (Section 8).

2 Basic concepts of an Agent Communication
Language

An ACL provides agents with a means to exchange in-
formation and knowledge; Genesereth has gone as far as
equating agency with the ability of a system to exchange
knowledge using an ACL [13]. Of course other means and

1We will always meansoftware agentswhen mentioningagents.
2We will use ACL as the abbreviation for Agent Communication Lan-

guage, when referring to an ACL as a concept or to ACLs collectively.
There is an ACL simply namedACL but the context will hopefully disam-
biguate what we mean.

approaches have been used over the years to achieve the
lofty goal of seamless exchange of information and knowl-
edge between applications. From Remote Procedure Call
(RPC) or Remote Method Invocation (RMI), to CORBA
and Object Request Brokers (ORB's) the goal has been
the same. What distinguishes ACLs from past such efforts
are theobjects of discourseand their semantic complex-
ity. ACLs like KQML or FIPA ACL, stand a level above
CORBA, because: (1) they handle propositions, rules and
actions instead of simple objects (with no semantics asso-
ciated with them), and (2) the ACL message describe a de-
sired state in a declarative language, rather than a procedure
or method. But ACLs by no mean cover the entire spectrum
of what applications may want to exchange. More complex
objectscan and should be exchanged between agents, such
as shared plans and goals, or even shared experiences and
long-term strategies.

At the technical level, when using an ACL, agents trans-
port messages over the network using some lower-level pro-
tocol (SMTP, TCP/IP, IIOP, HTTP, etc.). The ACL itself de-
fines the types of messages (and their meaning) that agents
may exchange. Agents though, do not just engage in sin-
gle message exchanges but they haveconversations, i.e.
task-oriented, shared sequences of messages that they fol-
low, such as a negotiation or an auction. At the same time,
some higher-level conceptualization of the agent's strate-
gies and behaviors drives the agent's communicative (and
non-communicative) behavior.

Traditionally, we understand the message types of ACLs
asspeech acts, which in turn are usually accounted for in
terms of beliefs, desires, intentions and similar modalities.
This kind of intentional-level description can either be just
a useful way to view a system or it can have a concrete com-
putational aspect. The latter case describes a large range of
BDI3 agents which have some (implicit or explicit) repre-
sentation of the corresponding modalities. This represen-
tation is built on top of a substrate that describes the con-
ceptual model of knowledge, goals and commitments of an
agents, commonly known as a BDI theory. Despite the crit-
icism that BDI theories and BDI agents have faced, such as
the number and choice of modalities and the fact that multi-
modal BDI logics have neither complete axiomatizations
nor they are efficiently computable, they offer an appealing
framework to account for agent communications, because
agents, when communicating, they communicate their BDI
states and/or attempt to alter their interlocutors BDI states.

3 The origin of ACLs

The Knowledge Sharing Effort [21, 24] (KSE) was ini-
tiated circa 1990 by DARPA and it enjoyed the participa-

3BDI stands forBelief, Desire(or Goal) andIntention.

2



tion of dozens of researchers from both academia and in-
dustry. Its goal was to develop techniques, methodologies
and software tools forknowledge sharing and knowledge
reuse, at design, implementation, or executiontime. The
central concept of the KSE was that knowledge sharing re-
quires communication, which in turn, requires a common
language; the KSE focused on defining that common lan-
guage. In the KSE model, software systems are viewed as
(virtual) knowledge bases that exchange propositions using
a language that expresses various complex attitudes4 inter-
est in,etc.) about these propositions.

Although originally agents were not part of the KSE vo-
cabulary the conceptual break-down of the “common lan-
guage problem” is applicable to what we currently refer to
as agents. Expressions in a given agent's native language
should be understood by some other agent that uses a dif-
ferent implementation language and domain assumptions.
So, the first layer is that of (syntactic) translation between
languages in the same family (or between families) of lan-
guages5. An other layer is concerned with guaranteeing
that the semantic content of tokens is preserved among ap-
plications; in other words, the same concept, object, or en-
tity has a uniform meaning across applications even if dif-
ferent “names” are used to refer to it. Every agent incorpo-
rates some view of the domain (and the domain knowledge)
it applies to. The technical term for this body of “back-
ground” knowledge isontology. More formally, an ontol-
ogy is a particular conceptualization of a set of objects, con-
cepts and other entities about which knowledge is expressed
and of the relationships that hold among them. An ontology
consists of terms, their definitions, and axioms relating them
[15]; terms are normally organized in a taxonomy.

A final layer addresses the communication between
agents. This is not about transporting bits and bytes be-
tween agents; agents should be able to communicate com-
plex “attitudes” about their information and knowledge con-
tent. Agents need to ask other agents, to inform them, to
request their services for a task, to find other agents who
can assist them, to monitor values and objects, and so on.
Such functionality, in an open environment, can not be pro-
vided by a simple Remote Procedure Call (RPC) mecha-
nism. Agents issue requests by specifying not a procedure
but a desired state in a declarative language,i.e., in some
Agent Communication Language.

Within the KSE, these layers were viewed as indepen-

4The proper term ispropositional attitudes. Propositional attitudes
are three-part relationships between: (1) an agent, (2) a content-bearing
proposition (e.g., “it is raining”), and (3) a finite set of propositional
attitudes an agent might have with respect to the proposition (e.g., be-
lieving, asserting, fearing, wondering, hoping,etc.). For example,<
a;fear; raining(tnow) > .

5The Object Management Group (OMG) standardization effort is an
example of work in this direction, within the family of object-oriented
languages.

dent of another. The ACL is only concerned with captur-
ing propositional attitudes, regardless of how propositions
are expressed. But still, propositions are what agents will
be “talking” about. KIF, [12] a particular logic language,
was proposed within the KSE as a standard to use to de-
scribe things within computer systems,e.g., expert systems,
databases, intelligent agents, etc. Moreover, it was specif-
ically designed, within the context of the KSE, to make it
useful as an “interlingua”. By this we mean a language
which is useful as a mediator in the translation of other lan-
guages. KIF is a prefix version of first order predicate calcu-
lus with extensions to support non-monotonic reasoning and
definitions. The language description includes both a speci-
fication for its syntax and one for its semantics. Ontolingua
[11] and a variety of supporting tools, was the KSE “solu-
tion” to the problem of developing and maintaining ontolo-
gies. Researchers at Stanford's Knowledge Systems Labo-
ratory have developed a set of tools and services to support
the process of achieving consensus on common shared on-
tologies by geographically distributed groups. These tools
are built around Ontolingua, a language designed for de-
scribing ontologies with it, and make use of the world-wide
web to enable wide access and provide users with the abil-
ity to publish, browse, create, and edit ontologies stored on
an ontology server. Users can quickly assemble a new on-
tology from a library of existing modules, extend the result
with new definitions and constraints, check for logical con-
sistency, and publish the result back to the library.

4 KQML and ACL concepts

KQML [1, 18] illustrates the basic concepts of existing
ACLs. “Existing ACLs” are KQML with its many dialects
and variants, and FIPA ACL. With the exception ofACL, a
KQML variant that assumes KIF as the content language,
all KQML dialects and FIPA ACL follow the same basic
concepts of KQML that we discuss here. KQML is a high-
level, message-oriented communication language and pro-
tocol for information exchange independent of content syn-
tax and applicable ontology. So, KQML is independent of
the transport mechanism (TCP/IP, SMTP, IIOP,etc.), inde-
pendent of the content language (KIF, SQL, STEP, Prolog,
etc.) and independent of the ontology assumed by the con-
tent.

The KQML language is divided into three layers: the
content layer, the message layer, and the communication
layer. The content layer bears the actual content of the mes-
sage, in the programs own representation language. KQML
can carry any representation language, including languages
expressed as ASCII strings and those expressed using a bi-
nary notation. Every KQML implementation ignores the
content portion of the message, except to determine where it
ends. The communication level encodes a set of features to

3



the message which describe the lower level communication
parameters, such as the identity of the sender and recipient,
and a unique identifier associated with the communication.
It is the message layer that is used to encode a message
that one application would like to transmit to another. The
message layer forms the core of the KQML language, and
determines the kinds of interactions one can have with a
KQML-speaking agent. The primary function of the mes-
sage layer is to identify the network protocol to be used to
deliver the message and to supply a speech act or performa-
tive which the sender attaches to the content (such as that it
is an assertion, a query, a command, or any of a set of known
performatives6). In addition, since the content is opaque to
KQML, this layer also includes optional features which de-
scribe the content language, the ontology it assumes, and
some type of description of the content, such as a descriptor
naming a topic within the ontology. These features make it
possible for KQML implementations to analyze, route and
properly deliver messages even though their content is in-
accessible.

The syntax of KQML is based on the familiars-
expressionused in Lisp, i.e., a balanced parenthesis list.
The initial element of the list is the performative; the re-
maining elements are the performative's arguments as key-
word/value pairs. Because the language is relatively sim-
ple, the actual syntax is not significant and can be changed
if necessary in the future. The syntax reveals the roots of
the initial implementations, which were done in Common
Lisp; it has turned out to be quite flexible. A KQML mes-
sage from agentjoe representing a query about the price of
a share of IBM stock might be encoded as:

(ask-one
:sender joe
:content (PRICE IBM ?price)
:receiver stock-server
:reply-with ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

In this message, the KQML performative isask-one, the
content is(price ibm ?price), the ontology assumed by the
query is identified by the tokennyse-ticks, the receiver of the
message is to be a server identified asstock-serverand the
query is written in a language calledLPROLOG. The value
of the :content keyword is the content level, the values

6KQML as adopted the term performative to mean any of its primitive
message types. In speech act theory a performative is an utterance that “
succeeds” simply because the speaker says or asserts he is doing so. In
English such utterances typically appear in a first-person, present tense
declarative form, often accompanied by “hereby”, as in “I hereby request
you to turn on the computer.” Cohen [8] has argued that this is a a poor term
to use for all ACL primitive message types, since not all can be construed
as actions that the sender can make so just by the sending. We continue to
use the term for KQML for historical reasons.

of the:reply-with , :sender , :receiver keywords
form the communication layer and the performative name,
with the:language and:ontology form the message
layer. In due time,stock-servermight send tojoe the fol-
lowing KQML message:

(tell
:sender stock-server
:content (PRICE IBM 14)
:receiver joe
:in-reply-to ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

Though there is a predefined set of reserved performa-
tives, it is neither a minimal required set nor a closed one.
A KQML agent may choose to handle only a few (perhaps
one or two) performatives. The set is extensible; a commu-
nity of agents may choose to use additional performatives
if they agree on their interpretation and the protocol associ-
ated with each. However, an implementation that chooses
to implement one of the reserved performatives must imple-
ment it in the standard way.

One of the design criteria for KQML was to produce a
language that could support a wide variety of interesting
agent architectures. Thus, KQML introduces a small num-
ber of KQML performatives which are used by agents to
describe the meta-data specifying the information require-
ments and capabilities; KQML also introduces a special
class of agents calledcommunication facilitators[13]. A fa-
cilitator is an agent that performs various useful communi-
cation services,e.g.maintaining a registry of service names,
forwarding messages to named services, routing messages
based on content, providing “matchmaking” between infor-
mation providers and clients, and providing mediation and
translation services.

4.1 Semantics for KQML

During the first few years of use, KQML existed with
only an informal and partial semantic description. This was
identified as one of its shortcomings [8]. During the past
few years, several efforts to provide a formal semantics have
been put forth.

In [17, 19, 20] the semantics of KQML are provided in
terms ofpreconditions, postconditionsandcompletion con-
ditions for each performative. Assuming a senderA and
a receiverB, the preconditions indicate the necessary state
for an agent in order to send a performative (Pre(A)) and for
the receiver to accept it and successfully process it (Pre(B)).
If the preconditions do not hold aerror or sorry will be the
most likely response. Postconditions that describe the states
of both interlocutors after thesuccessfulutterance of a per-
formative (by the sender) and after the receipt and process-

4



ing (but before a counter utterance) of a message (by the
receiver). The postconditions (Post(A)andPost(B), respec-
tively) hold unless asorryor anerror is sent as aresponseto
report the unsuccessful processing of the message. A com-
pletion condition for the performative (Completion) indi-
cates the final state, after possibly a conversation has taken
place and the intention associated with the performative that
started the conversation, has been fulfilled.

Establishing the preconditions of a performative does not
guarantee its successful execution and performance. The
preconditions only indicate what can be assumed to be the
state of the interlocutors involved in an exchange. Sim-
ilarly, the postconditions are taken to describe the states
of the interlocutors assuming the successful performance
of the communication primitive. Preconditions, postcon-
ditions and completion conditions describe states of agents
in a language of mental attitudes (belief, knowledge, desire
and intention) and action descriptors (for sending a mes-
sage and processing a message). No semantic models for
the mental attitudes are provided but the language used to
describe agents' states severely restricts the ways they can
be combined to compose agents' states.

The following is an example of semantics for senderA

and receiverB in this framework

tell(A;B;X)

� Pre(A): BEL(A,X) ^ KNOW(A,WANT-
(B,KNOW(B,S)))
Pre(B): INT(B,KNOW(B,S))
where S may be any of BEL(B,X), or
:(BEL(B,X)).

� Post(A):
KNOW(A,K NOW(B,BEL(A,X)))
Post(B): KNOW(B,BEL(A,X))

� Completion: KNOW(B,BEL(A,X))

This semantics fortell suggest that an agent can not of-
fer unsolicited information to some other agent. This can be
easily amended by introducing another performative, let us
call it proactive-tellwhich has the same semantic descrip-
tion as tell but with thePre(A) being BEL(A,X), and an
emptyPre(B).

The other semantic approach [8, 27] builds on earlier
work on defining rational agency [9]. In this body of work,
the termperformativeis deemed inappropriate to describe
KQML's communication primitives and the suggested ap-
proach views the language's reserved message types asat-
temptsfor communication. These attempts involve two (or
more) rational agents that (temporarily) form “teams” in or-
der to engage in communication. This approach strongly
links the ACL semantics to the agent theory assumed for
the agents involved in an ACL exchange.

5 The Foundation for Intelligent Physical
Agents

The Foundation for Intelligent Physical Agents (FIPA)
is a non-profit association whose purpose is to “promote the
success of emerging agent-based applications, services and
equipment.” FIPA's goal is to make available specifications
that maximize interoperability across agent-based systems.
As the above description suggests, FIPA is a standards orga-
nization in the area of software agents. The often confusing
“physical” adjective in its name was originally intended to
cover agents of the robotic variety but over time the adjec-
tive's presence has come to serve as a reminder that physi-
cal, i.e., human agents and interaction with them is part of
the association's scope.

FIPA operates through the open international collabo-
ration of member organizations, which are companies and
universities that are active in the field. European and Far
Eastern technology companies have been among he earli-
est and most active participations, including Alcatel, British
Telecom, France Telecom, Deutsche Telecom, Hitatchi,
NEC, NHK, NTT, Nortel, Siemens and Telia.

FIPA's operations are built around annual rounds of spec-
ification deliverables. Current specification is FIPA97 and
can be found at the FIPA home-page7 Themodus operandi
of FIPA is to assign tasks to Technical Committees (TCs)
that have the primary responsibility for producing, main-
taining and updating the specifications that are applicable
to their tasks. The TC that is most important in the scope
of this paper is the TC charged with producing a speci-
fication for an Agent Communication Language. Along
with the TC in charge of Agent Management (agent ser-
vices, such as facilitation, registration and agent platforms)
and Agent/Software Interaction (integration of agents with
legacy software applications) they form the backbone of the
FIPA specifications.

5.1 The FIPA Agent Communication
Language and its semantics

The FIPA Agent Communication Language (FIPA
ACL), like KQML, is based on speech act theory: messages
are actions, or communicative acts, as they are intended to
perform some action by virtue of being sent. The specifica-
tion consists of a set of message types and the description of
their pragmatics, that is, the effects on the mental attitudes
of the sender and receiver agents. Every communicative act
is described with both a narrative form and a formal seman-
tics based on modal logic. The specification also provides
the normative description of a set of high-level interaction

7which washttp://drogo.cselt.stet.it/fipa at the
writing of this paper; a new official FIPA page isunder construction, at
http://www.fipa.org

5



protocols, including requesting an action, contract net and
several kinds of auctions.

The FIPA ACL is superficially similar to KQML. Its syn-
tax is identical to that of KQML's except for the different
names for some reserved primitives. Thus, it maintains the
KQML approach of separating the outer “language” that de-
fines the intended meaning of the message and the inner
language, or “content language” that denotes the expression
towards which the beliefs, desires and intentions of the in-
terlocutors, as described by the meaning of the communi-
cation primitive, apply. The FIPA ACL specification doc-
ument claims that FIPA ACL (like KQML) does not make
any commitment to a particular content language. Although
such a claim holds true for most primitives, there are FIPA
ACL primitives for which some understanding of the lan-
guage SL (Semantic Language) is necessary for the receiv-
ing agent to understand and process the primitive.8 We will
discuss this important point later.

SL, standing forSemantic Language[?], is the formal
language used to define the semantics of the FIPA ACL. SL
is a quantified, multi-modal logic with modal operators for
beliefs (B), desires (D), uncertain beliefs (U ) and inten-
tions (persistent goals,PG). SL can represent propositions,
objects and actions. Its origins can be traced to the work of
Cohen and Levesque [9], but its current form is primarily
based on the work of Sadek [26]. A detailed description of
SL, including its own semantics, is outside the scope of this
paper and can be found in the FIPA ACL specification.

The semantics of each communicative act (CA) are spec-
ified as sets of SL formulae that describe the act'sfeasibility
preconditionsand therational effect. For a given CAa, the
feasibility preconditionsFP (a) describe the conditions that
have to hold for the sender of the CA. That is, in order for
an agent to properly perform the communicative acta by
sending a particular message, the feasibility preconditions
must hold for the sender. Note that the agent is not required
to obliged to performa if FP (a) holds, merely that it can,
if it chooses. An communicative act'srational effectrepre-
sents the effect that an agent can expect to occur as a result
of performing the action and typically specified conditions
which should hold true of the recipient. Note that the re-
ceiving agent is not required to ensure that the expected ef-
fect comes about and may indeed find it impossible. Thus
an agent may use its knowledge of the rational effect in or-
der to plan what communicative act to perform, but it is not
entitled to automatically assume that the rational effect nec-
essarily holds.

8KQML has been criticized for the use of the termperformativeto re-
fer to the communication primitives. In FIPA ACL, the communication
primitives are calledcommunicative actsor CAs, for short. Despite the
differences in naming, KQML performatives and FIPA ACL communica-
tive acts refer to the same kind of entity. In order to avoid confusion we
will use the terms “performative”, “(communication) primitive” and “com-
municative act” interchangeably

Conformance with the FIPA ACL should be taken to
mean that when agentA send CAx, theFP (x) for a should
hold; the not to be guaranteedRE(x) is irrelevant to the
conformance issue.

This introduction should be enough for a basic under-
standing of the following example which shows the specifi-
cation of the communicative actinform in which agenti
informs agentj of content�.

< i; inform(j; �) >
FP: Bi(�) ^ : Bi(Bifj (�) _ Uifj(�))
RE: Bj(�)

The content ofinform is a proposition and it's meaning
is that the sender informs the receiver that a given proposi-
tion is true. According to this semantics, the sending agent:

� holds that the proposition is true (Bi(�));

� does not already believe that the receiver has
any knowledge of the truth of the proposition
(:Bi(Bifj(�) _Uifj(�)).

� intends that the receiving agent also comes to believe
that the proposition is true (this is the rational effect
Bj(�) );

6 Comparing ACLs

KQML and FIPA ACL are almost identical with respect
to their basic concepts and the principles they observe and
differ primarily in the details of their semantic frameworks.
In one sense this difference is substantial, resulting in an
impossibility of coming up with exact mappings or trans-
formation between KQML performatives and their com-
pletely equivalent FIPA primitives, or vice versa. On the
other hand, the ineluctable differences that remain might be
of little importance to many agents' programmers, if their
agents are not true BDI agents. We will elaborate on this
argument in Section 8.

Both languages make the same basic assumption of a
non-commitment to a reserved content language. In the
FIPA ACL case though, some (limited) understanding of
SL is necessary to properly process a received message (as
in the case of therequest CA). The two languages have the
same syntax,i.e., a KQML message and a FIPA ACL mes-
sage, will look syntactically identical, except of course for
the different names they use for the communication primi-
tives. This is an important attribute of FIPA ACL.9 Since a
large part of making an agent system communication-ready,
is to provide code that will parse incoming messages, com-
pose messages for transport and channel them through the

9Originally, FIPA ACL employed a different Prolog-ish syntax; the
syntax was changed to KQML's syntax to facilitate the transition of KQML
systems to FIPA ACL

6



network using some lower-level network protocol, this in-
frastructure will be the same regardless of the choice of
ACL.

These encouraging thoughts do not apply to the seman-
tics of the two languages. If you follow the KQML se-
mantics described in [17], semantically they differ at the
level of what constitutes the semantic description (precondi-
tions, postconditions and completion conditions for KQML
and feasibility preconditions and rational effect for FIPA
ACL) and also, at the level of the choice and definitions of
the modalities they employ (the language used to describe
agents' states). Although one can approximate the KQML
primitives in FIPA's framework and vice versa, a complete
and accurate translation is not, in general, possible. For ex-
ample, to define a CA in the FIPA ACL which approximates
KQML's tell, you can replace� in the definition ofinform
with Bi�.

Another difference between the two ACLs is in their
treatment of the registration and facilitation primitives.
These primitives cover a range of important pragmatic is-
sues, such as registering, updating registration information
and finding other agents that can be of assistance in process-
ing requests. In KQML these tasks are associated with per-
formatives that are treated as first class objects in KQML.
FIPA ACL, seeking a more pure ACL, does not consider
these tasks to be communication primitives (CAs) in their
own right and they are treated instead as requests for ac-
tion; FIPA ACL, in turn, defines a range of reserved actions
that cover the registration and life-cycles tasks. In this ap-
proach, the reserved actions do not have formally defined
specifications or semantics and are defined in terms of nat-
ural language descriptions. Moreover FIPA ACL does not
currently provide facilitation primitives. Many ACL users
have expressed their desire to have in FIPA ACL the facili-
tation primitives (broker, recommendandrecruit) that they
are accustomed to from KQML. Users' requests serve as a
sobering reminder of the truth that for an ACL to be practi-
cal a careful mix of theoretic and pragmatic considerations
is needed.

The emergence of FIPA ACL might be a additional
headache for implementors who have to decide for them-
selves which one of the two ACLs to use. Our answer is
bound to cause more headaches. For a system to use KQML
(or FIPA ACL for that matter) the following things have to
be provided:

1. a suite of APIs that facilitate the composition, send-
ing and receiving of ACL messages,

2. an infrastructure of services that assist agents with
naming, registration and basic facilitation services
(finding other agents that can do things for your
agent), and

3. the code that for every reserved message type (per-
formative or communicative act) takes the action(s)
prescribed by the semantics, for the particular appli-
cation; this code depends on the application language,
the domain and the details of the agent system that
uses the ACL.

Normally as a programmer you would only have to pro-
vide (3). Items (1) and (2) should be re-usable components
that you can just integrate into your application code; actu-
ally (2) does not even need to be integrated because itought
to be provided as continuous running services that a new
agent can just use. The sad truth of standardization in ACL
languages is that these services have not been the focus of
the standardization efforts. There is no service where one
can register an agent by just sending a registration message.
The disagreement on the issue of such services has resulted
(in part) to a multitude of APIs.10 Every multi-agent sys-
tem that uses an ACL has a home-grown implementation of
these APIs (there are more than a handful of APIs written
in Java, for Java agents) and its own infrastructure of basic
services. Providing the code that processes the primitives is
more of an art than a science. Existing semantic approaches
rely on multi-modal logics that are often non-computable
and/or have no efficient implementation. The process of
grounding the theory into code will result in a system that
differs substantially (and probably unpredictably) from the
theory (in paper) that it follows. To make matters worse, if
the code does not implement at all the modalities assumed
by the semantics, the programmer will most likely follow
his (or her) intuitive understanding of the semantics of the
communication primitives.

The similarity in basic assumptions and syntax, should
(in theory) mean that only (3) ought to change depending
of your choice of an ACL. And even then, much to the dis-
may of those involved in defining the semantics of ACLs,
the implementors' intuitive understanding of the primitives
might prevail over the concise semantic definitions. So, un-
less an agent implements modalities (such as belief, desire,
intention and so on) following theparticular agent theory
that the semantic account suggests, the decision should be
based on pragmatic concerns.

7 Features of ACL-supporting systems and
applications

Over the past few years, a multitude of applications and
systems have appeared that are build around an agent com-
munication languages. Instead of providing a compendium

10The other reasons are (a) the minor syntactic differences between the
various KQML “interpretations” and (b) the different naming schemes em-
ployed by the various KQML-speaking agent systems.

7



of such systems we will focus on a few that give us the op-
portunity to discuss features and characteristics that exem-
plify current approaches and trends. The systems we will
be discussing belong in one of the following two categories:
(a) applications,i.e. multi-agent systems that use an ACL
for inter-agent communication, and (b) APIs that facilitate
the incorporation of ACL-speaking capabilities into an ap-
plication. Since the ACL itself is an abstraction,i.e. a col-
lection of communication primitives that are deemed useful
for higher level communication between agents, there is no
such thing as an “implementation” of an ACL.

Infosleuth [2, 22] is a project by MCC that emphasizes
the semantic integration of heterogeneous information in an
open dynamic environment. The communicating agents11

, primarily written in Java, are supported by an infrastruc-
ture of basic services (agents) for authentication, brokering,
monitoring, and visualization of the agents' interaction. An
integral part of the architecture is the ontology agent that as-
sists with the semantic integration of the handled informa-
tion. Infosleuth agents engage in conversations rather than
single-message exchanges. Knowledgeable Agent oriented
System (KAoS) [4] is a Boeing project aimed at providing
an infrastructure for agent development. It relies heavily on
object oriented technology (using for example a CORBA-
based message delivery mechanism) and emphasizes per-
sistent interaction between agents that take into account not
only the particular communication primitive but the con-
tent of the message and the applicable conversation poli-
cies. Agents are designed supporting specialized suites of
interactions. Infomaster [14] is an information integration
system (from Stanford) that is usingACL as its ACL.ACL
is KQML with KIF as the content language. The result-
ing language does not observe the distinction between the
content layer and the message layer. Infomaster integrates
structured information sources giving the illusion of a cen-
tralized homogeneous information system.

Java Agent Template, Lite (JATLite) is a package of
Java programs, developed at Stanford, that allow users to
quickly create communicating agents. Agents run as applets
launched from a browser and for that reason all agents reg-
ister with an Agent Message Router facilitator (AMR) that
handles message delivery. The Java-based Agent Frame-
work for Multi-Agent Systems (JAFMAS) [5, 6] is a set
of classes to support implementing communicating agents
in Java; it was developed at the University of Cincinnati.
JAFMAS supports directed (point-to-point) communication
as well as subject-based broadcast communications. The
JAFMAS environment, which has support for conversa-
tions, is used in AARIA [23], a manufacturing planning
and scheduling project. Jackal [10], developed at UMBC,

11The ACL is KQML. All the systems we mention here, are using some
variant of KQML as their ACL. As of the spring of 1998 there were no
published, deployed systems claiming to use the FIPA ACL.

is another Java package that allows applications written in
Java to communicate via an ACL (KQML is currently the
ACL of choice, but FIPA ACL could be easily supported).
Jackal is being used in the CIIMPLEX project [25, 7] which
involves manufacturing planning and scheduling. Jackal
strongly emphasizes conversations between agents and pro-
vides a flexible framework for designing agents around con-
versations and includes extensive support for registration,
naming and control of agents.

We would like to focus on the following characteristics
of these systems:

� Java is rapidly becoming the language of choice. Im-
plementing BDI agents with traditional AI languages
is problematic enough, but we have little experience
and fewer tools in doing so with object-oriented lan-
guages like Java. This raises again the problem of
existing semantic approaches and the conformance
problem.

� Many of the new API offer support for conversations.
Conversations offer an intuitive manner to structure
an agent's activities. Also, given the problematic na-
ture of compliance with the ACL's semantic account,
conversations shift the focus from the internals of the
agent to its observable behavior (sequences of mes-
sages it sends to other agents). Agents can agree on
a conversation protocol for a particular task (negoti-
ation or auction) and then engage in a scripted inter-
action. We do not suggest that this is a conformance
test, but it might be useful for an agent designer to
know that its interlocutors engage in a scripted, pre-
specified communicative behavior.

� Every single implementation introduces its own vari-
ety of supporting agents and services, for tasks such
as naming, authentication, monitoring and brokering.
Some agreement is needed on the assumptions of
these services so that such services can be provided
as a standard suite of tools.

8 The future of ACLs and the important is-
sues

We do not believe that KQML and FIPA ACL are in con-
flict. They both express the same basic ideas about what an
agent communication language is. KQML does not have an
official body behind it orchestrating its evolution but FIPA
ACL does. At the same time, KQML development model,
based on experimentation and continuous feedback from its
community of users has helped KQML grow with an em-
phasis on practical concerns of agent development. The
FIPA ACL does not have a community of users yet, as no
FIPA ACL applications have appeared, and thus FIPA ACL

8



is untested in practice. It does, however, enjoy the support
of an organization with a concrete, comprehensive agenda.
In the immediate future, FIPA ACL's choices will be put
to the test as applications that use it are deployed. A new
DARPA-sponsored initiative in the area of agents promises
to help guide the next iteration of ACLs in the U.S. research
community.

Semantics have dominated the debate surrounding
ACLs. Despite the substantial amount of work on this prob-
lem, the issue of an agent's conformance with the ACL
semantics (assuming approaches such as the ones outlined
here) is as thorny as ever [28] and it puts into question the
degree of usefulness of such semantic accounts. In the near
future the more pragmatic concerns ought to be addressed.
Offering naming and registration services, along with basic
brokering facilities should be among the immediate goals
of the ACL community. Another area that requires atten-
tion is that of defining basic ontologies for speaking about
agents and their query-answering capabilities and require-
ments. Existing ACLs offer a rather narrow and inflexible
way for performing such tasks. Finally, it would be useful to
standardize some of the basic conversation protocols for the
more fundamental tasks. This will be of particular interest
to these programmers that have no affinity for the standard
BDI approach. All of these pragmatic issues are very impor-
tant for the deployment of agent applications. Their avail-
ability will reduce the overhead of agent development and
will allow for the shift of focus to what agentsdo. The de-
sign and development of the infrastructure for communica-
tion has consumed the time and resources of those involved
with agent development, at the expense of compelling new
applications that naturally fit the agent software paradigm.
Within the FIPA community there is an effort to address
some of these issues but the process is still at an early stage
and it remains to be seen to what extend it incorporates the
experiences and lessons from dealing with these issues.

Agents are usually mentioned within the context of the
WWW and the Internet is the arena in which they are ex-
pected to compete. But KQML and FIPA ACL have fol-
lowed their path away from the mainstream of Internet tech-
nologies and standards. No major player has a manifested
interest in ACLs, no Internet standardization organization
has ACLs in their agenda. Should existing ACLs become
more Internet-friendly? And if so, how? Taking advantage
of XML (and possibly RDF) seems like a reasonable course
of action, especially when it comes to describing agents'
features and capabilities. But even at the syntactic level,
how about replacing KQML's Lisp-like syntax with XML?
Our point is that an ACL is an abstract idea that over time
has evolved to describe some concrete and relatively well-
understood concepts but this journey has taken place on the
sidelines of the revolution we have been experiencing in the
past few years. Continuously running services for agents

and better integration with existing and emerging web tech-
nologies might push ACLs into the “field.”

9 Conclusions

The concept of a standard communication language for
software agents that is based on speech acts has found wide
appeal, both among researchers interested in working out
the theory of agent communication as well as those with the
aim of engineering practical software systems. Many re-
searchers believe that the development of an effective, rich
ACL is one of the keys to the agent paradigm.

The KQML language was among the first such ACL to
be developed and used. Moreover, is the only one which
has enjoyed substantial use by more than its developers to
date. However, after eight years of experimentation and ex-
perience there are still serious signs of immaturity: (1) in
general, different KQML implementations can not interop-
erate; (2) there is no fixed specification sanctioned by some
consensus-creating body; and (3) there is no agreed-upon
semantics foundation. Is the KQML experiment a failure?

We think not. KQML has played a large role in defining
what an Agent Communication Language is and what the
issues are when it comes to integrating communication into
agent systems. Although existing KQML implementations
tend not to interoperate, this is mainly due to a lack of a real
motivation to do so. Agent-based systems research is still at
an early stage of development, and there has been no ben-
efit to individual research groups in focusing on the inter-
operability issues. Although the lack of a sanctioned spec-
ification has probably impeded the adoption of KQML for
many big projects, it has had the benefit of allowing much
experimentation with dialects and variations on the theme.
We hope that the current FIPA effort will supply the needed
sanctioning body for the next iteration of a KQML-like lan-
guage.

Finally, the semantics issue is in practice much less im-
portant than it sounds as long as the problem of defining and
identifying conformance to the semantics, is not resolved.
But given the possibility that it might be impossible to find
a satisfactory solution to the latter problem, we will be left
with a justifiable sense of disappointment, as computer sci-
entists, for a language that lacks formal, verifiable seman-
tics. However, this disappointment need not touch the pro-
grammers who want register their agents, find other agents,
to send and receive ACL messages. What they will find
much more disappointing is a lack of standard conventions
for the basic agent services, such as naming, authentication,
registration, capability definition, and facilitation. Our fo-
cus on the semantic clarity and purity is partly responsible
for the slighting of these crucial issues. After all, what could
does it do to have an agent that conforms with some ACL
semantic account if you cannot register your agent and send

9



(and receive) ACL messages?

References

[1] ARPA Knowledge Sharing Initiative. Specifica-
tion of the KQML agent-communication language.
ARPA Knowledge Sharing Initiative, External Inter-
faces Working Group, July 1993.

[2] R. J. Bayardo, W. Bohrer, A. Cichocki, J. J. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk., G. Martin, M. No-
dine, M. Rashid, M. Rusinkiewicz., R. Shea, C. Un-
nikrishnan, A. Unruh, and D. Woelk. Infosleuth:
Agent-based semantic integration of information in
open and dynamic systems. InSigMod, 1997.

[3] Jeffrey Bradshaw, editor.Software Agents. AAAI
Press/The MIT Press, 1997.

[4] Jeffrey M. Bradshaw, Stuart Dutfield, Pete Benoit, and
John D. Woolley. Kaos: Toward an industrial-strength
open agent architecture. In Jeffrey M. Bradshaw, edi-
tor, Software Agents. AAAI/MIT Press, 1997.

[5] Deepika Chauhan. JAFMAS: A Java-Based Agent
Framework for Multiagent Systems Development and
Implementation. M.s., University of Cincinnati, 1997.

[6] Deepika Chauhan and Albert Baker. JAFMAS: A mul-
tiagent application development system. In Michael
Wooldridge and Tim Finin, editors,Proceedings of
the second ACM Conference on Autonomous Agents,
1998.

[7] Bill Chu, W. Tolone, J. Long, R. Willhelm, Y. Peng,
T. Finin, and M. Mathews. Toward intelligent inte-
grated manufacturing planning-execution.The Inter-
national Journal of Agile Manufacturing, 1998.

[8] Philip R. Cohen and H.J. Levesque. Communicative
actions for artificial agents. InProceedings of the 1st
InternationalConference on Multi-Agent Systems (IC-
MAS'95). AAAI Press, June 1995.

[9] P.R. Cohen and H.J. Levesque. Persistence, intention,
and commitment. In P. R. Cohen, J. Morgan, and M. E.
Pollack, editors,Intentions in Communication, pages
33–69. MIT Press, Cambridge, MA, 1990.

[10] R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng
Luan, Yun Peng, Ian Soboroff, James Mayfield, and
Akram Boughannam. Jackal: a java-based tool for
agent development. InWorking Papers of the AAAI-98
Workshop on Software Tools for Developing Agents.
AAAI Press, july 1998.

[11] Adam Farquhar, Richard Fikes, and James Rice. The
ontolingua server: A tool for collaborative ontology
construction. Technical Report KSL-96-26,, Stanford
Knowledge Systems Laboratory, 1996 1996.

[12] M. Genesereth and R. Fikes et. al. Knowledge Inter-
change Format, Version 3.0 Reference Manual. Tech-
nical report, Computer Science Department, Stanford
University, 1992.

[13] Michael R. Genesereth and Steven P. Katchpel. Soft-
ware agents.CACM, 37(7):48–53, 147, 1994.

[14] Michael R. Genesereth, Arthur M. Keller, and
Oliver M. Duschka. Infomaster: An information in-
tegration system. InProceedings of the ACM SIG-
MOD International Conference on Management of
Data, May 1997.

[15] Thomas R. Gruber. A translation approach to portable
ontology specifications. Knowledge Acquisition,
2:199–220, 1993.

[16] Michael Huhns and Munindar Singh, editors.Read-
ings in Agents. Morgan Kaufmann, 1997.

[17] Yannis Labrou.Semantics for an Agent Communica-
tion Language. PhD thesis, University of Maryland,
Baltimore County, August 1996.

[18] Yannis Labrou and Tim Finin. A proposal for a new
kqml specification. Technical Report Technical Re-
port TR-CS-97-03, University of Maryland Baltimore
County, 1997.

[19] Yannis Labrou and Tim Finin. Semantics and con-
versations for an agent communication language. In
Michael Huhns and Munindar Singh, editors,Read-
ings in Agents. Morgan Kaufmann, 1997. Reprint of
a paper from the Proceedings of the Fifteenth Inter-
national Joint Conference on Artificial Intelligence,
Nagoya, Japan, 1997 (IJCAI-97).

[20] Yannis Labrou and Tim Finin. Semantics for an agent
communication language. In Michael Wooldridge, Jo-
erg P. Muller, and Milind Tambe, editors,Agent The-
ories, Architectures and Languages IV, Lecture Notes
in Artificial Intelligence. Springer-Verlag, 1998.

[21] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil,
T. Senator, and W. Swartout. Enabling technology for
knowledge sharing.AI Magazine, 12(3):36–56, Fall,
1991.

[22] Marian Nodine and Amy Unruh. Facilitating open
communication in agent systems: The infosleuth in-
frastructure. In M. Singh, A. Rao, and M. Woolridge,

10



editors,4th International Workshop on Agent Theo-
ries, Architectures, and Languages, Providence, RI,
1997.

[23] H.V.D. Parunak, A.D. Baker, and S.J. Clark.
The AARIA agent architecture: An example of
requirements-driven agent-based system design. In
Proceeding of the First International Conference
on Autonomous Agents (ICAA'97), pages 482–483,
February 1997.

[24] Ramesh S. Patil, Richard E. Fikes, Peter F. Patel-
Schneider, Don McKay, Tim Finin, Thomas Gruber,
and Robert Neches. The darpa knowledge sharing ef-
fort: Progress report. In Michael Huhns and Munindar
Singh, editors,Readings in Agents. Morgan Kaufmann
Publishers, 1997. (reprint of KR-92 paper).

[25] Yun Peng, Tim Finin, Yannis Labrou, Bill Chu,
J.Long, William Tolone, and Akram Boughannam. A
multi-agent system for enterprise integration”.Jour-
nal of Applied Artificial Intelligence, 1998.

[26] M.D. Sadek. A study in the logic of intention. In
Proceedings of the 3rd Conference on Principles of
Knowledge Representation and Reasoning (KR'92),
pages 462–473, Cambridge, MA, 1992.

[27] Ira A. Smith and Philip R. Cohen. Toward a seman-
tics for an agent communications language based on
speech-acts. InProceedings of the 13th National Con-
ference on Artificial Intelligence. AAAI/MIT Press,
August, 1996.

[28] Michael Wooldridge. Verifiable semantics for agent
communication languages. InInternational Con-
ference on Multi-Agent Systems (ICMAS'98), Paris,
France, 1998.

11


