COMMUNICATIONS

Extending the
Reach of Business

Processes

Dipanjan Chakraborty, University of Maryland, Baltimore County
Hui Lei, IBM T.J. Watson Research Center

business process is a system-
atic set of activities by which
an enterprise conducts its
affairs. For example, a typi-
cal service parts business
receives parts orders from customers,
determines the appropriate distribu-
tion center to fill those orders, ships
the parts to the customers, orders
replacement parts from suppliers
when inventory falls below a certain
threshold, and periodically optimizes
the inventory level.

Computing technology has made
managing such activities much easier.
Enterprise systems maintain knowledge
of ongoing business processes and
engage people, Web services, software
agents, and other entities to execute
tasks as needed. Contemporary busi-
ness processes include product plan-
ning, software design, post-sale services,
supply-chain monitoring, travel request
approval, and job candidate evaluation.

Conventional business-process man-
agement systems rely on a workplace-
based staff that accesses enterprise
databases using high-end desktop com-
puters. However, these systems are inef-
ficient because they place the burden on
users to periodically “pull” tasks. They
also do not support direct synchronous
communication between users.

Various technologies—including
pagers, cell phones, pocket PCs, instant
messaging (IM), and the short message

Computer

service (SMS)—have emerged that
people can use to communicate even
when they are on the move or far
away. Many such devices support syn-
chronous communication as well as
proactively “pushing” messages to
users. However, these devices have no
mechanism to control or structure the
information that users are exchanging,
and they are not integrated with busi-
ness processes based on workplaces.

To address these problems, we have
designed and implemented PerCollab,
a middleware system that facilitates
structured collaboration between var-
ious communication devices for busi-
ness processes and pushes tasks to
users. Because people typically use a
subset of available mobile devices at a
given time, one of the system’s primary
functions is to dynamically determine
the most appropriate device based on
the user’s current context.

SYSTEM OVERVIEW

Figure 1 illustrates Percollab’s basic

architecture. The Business Process
Execution Language serves as the sys-
tem’s underlying process modeling for-
malism. Because BPEL assumes that all
business partners are abstracted as Web
services, we have introduced additional
constructs to represent human users
and define human interaction patterns.

Each business process defined in our
xBPEL extension has an external inter-
face defined in the Web Service
Definition Language (WSDL) that
applications use to initiate the process.
At invocation time, the business pro-
cess accepts configuration parameters
such as actual human participants and
acceptable communication devices.

PerCollab integrates
communication devices
with business processes
and pushes tasks to users.

Because all communication messages
exchanged in PerCollab are defined in
WSDL, the system components are
interoperable with other Web services.

Engine and translator

The driving component in PerCollab
is the BPEL engine, which determines
the list of required business tasks and
the order in which the system performs
these tasks based on the process defin-
ition. The engine executes human tasks
by dispatching them to the corre-
sponding participants via the interac-
tion controller. In addition to human
users, Web services can act as partners
or task consumers of the business
process; the BPEL engine communi-
cates with these Web services directly.

The xBPEL translator converts
process definitions in xBPEL to those in
standard BPEL. Apart from generating
BPEL policies, the translator generates
the required WSDL description of the
business process that invoking applica-
tions use to start the business process.

Interaction controller

The BPEL engine sends all human
tasks to the interaction controller,
which delegates them to the appropri-
ate communication device for each
user and sends the results back to the
engine. The interaction controller
exports itself as a Web service, thereby
facilitating its invocation using stan-
dard Web service interfaces.

When the interaction controller
receives a task, it obtains context-spe-
cific information about the intended
human participant and determines the
proper device or modality to use. The
controller uses an address-book service
to obtain the person’s device-specific
address such as cell phone number or
e-mail address and then communicates
the activity to the device-specific
modality adapter.

Tasks are either notification-based
for one-way activities or request-
response-based for two-way activities.
For two-way activities, the interaction
controller provides the modality
adapter with the desired reply’s mes-
sage format.

Communication with the modality
adapter can take one of two forms. A
blocking call waits for the reply from
the human participant, while a non-
blocking call uses events and callback
mechanisms to convey the reply to the
BPEL engine. The interaction con-
troller uses blocking calls for IM, cell
phones, and other connection-oriented
modalities while nonblocking calls are
for connectionless modalities such as
e-mail.

Context service

The context service is responsible for
collecting and managing contextual
information about the human partici-
pants, including the user’s preferred
communication device in different sit-
uations. It uses dynamic contextual
data such as IM online status and cal-
endar entries as well as static, user-
specified prioritization to determine the
appropriate device or modality. The
context service easily incorporates new
context data and supports both syn-

Invoking
applications
5 I
BPEL XBPEL Generated | BPEL
policies translator BPEL engine
policies

Interaction Web
Context service controller service
partners
Location / \
connectivity
activity IM SMS E-mail
preferences adapter | | adapter | | adapter

Figure 1. PerCollab system architecture. The Business Process Execution Language (BPEL)
serves as the underlying process modeling formalism. The system currently integrates
instant messaging (IM), short message service (SMS), and e-mail modalities.

chronous queries and asynchronous
callback functions.

Modality adapters

These plug-in components are
responsible for engaging human par-
ticipants via a specific device and
transcoding the messages to an appro-
priate format. Each type of adapter
caters to a specific class of devices—
such as cell phones, pagers, IM, and
SMS—and implements a uniform
interface.

Modality adapters

e use the modality-specific server to
establish a connection to the user;

e present tasks in the modality-spe-
cific format, obtain the reply from
the user, and return it in WSDL
format to the interaction con-
troller; and

® manage the connection with the
device, detect disconnections, and
ensure reliable message delivery
through retransmissions.

Modality adapters can be classified
according to their mode of operation.
Connection-oriented modalities such
as cell phones and IM maintain a con-
sistent connection per interaction ses-
sion; the connection closes only after
the entire interaction session is over.

Connectionless modalities such as
e-mail are state dependent and event
driven. The adapter models tasks as
events and sends them to the users,
who finish the tasks and return the
reply event to the adapter.

Space-sharing modalities such as
e-meetings require all participating
users to share a whiteboard or com-
mon workspace. Their design requires
using context-appropriate devices to
send “invite” messages to users to join
the shared space. Once all users have
joined, the modality adapters channel
tasks to the shared space and send
completed tasks back to the interaction
controller.

PerCollab uses a deadlock-free,
queue-based scheduling algorithm to
channel task inflow and outflow. Each

April 2004

Communications

On-Demand Solutions
customer support application

,/ Your Travel Request

Message Edit Help
[Collab Admin Plesee fill out 8 Travel Request form.
(Collsb Admin Pu
s
[Collsb Admin
[Callab Admi
[Mike
[Collab Admin
[ype youtet
form has been
Send eoters. | close |
Sollab Admin/Watson is responding... F‘ﬂ

SRR KEPEESCHIT

George

Figure 2. Travel request approval process. At each step, PerCollab selects a
communication device hased on dynamic user context and prepares the messages

in a device-appropriate way.

task contains user identifiers to indi-
cate who should perform it.

IMPLEMENTATION

Our PerCollab prototype integrates
e-mail, Sametime IM, and e-meeting
modalities. It uses the BPEL engine
from IBM’s alphaWorks; the xBPEL
translator, interaction controller, con-
text service, and modality adapters are
in-house developments. PerCollab sup-
ports cross-modality interaction—for
example, one participant can use IM
while another participant simultane-
ously uses a telephone.

Figure 2 illustrates PerCollab’s func-
tionality through a hypothetical travel
request approval involving Mike, a
customer service technician, and
George, his manager. At each step, the
system selects a communication device
based on dynamic user context and
prepares the messages in a device-
appropriate way.

In Step 1, the On-Demand Solutions
(ODS) customer support application

Computer

determines that Mike, who is currently
logged on to the company’s IM system,
should be dispatched to meet with a
client.

In Step 2, PerCollab instantiates the
approval process by prompting Mike
to complete a travel request form. The
different fields of the form such as pur-
pose, destination, and cost estimate
appear as individual messages so that
Mike can fill them out one by one.

The process then calls for George’s
approval, but he is in a meeting and
does not want to be interrupted. Thus,
in Step 3, PerCollab sends George an
e-mail message requesting him to
review Mike’s travel request form and
to fill out the attached travel approval
form. George finds the message in his
mailbox after returning from the meet-
ing. He grants Mike’s request by com-
pleting the travel approval form and
including it in an e-mail reply to
PerCollab.

Once George has replied, PerCollab
notifies Mike of the decision. In Step

4, PerCollab determines that Mike has
logged off IM and thus sends a short
message to his SMS-enabled cell phone
informing him that George has granted
his travel request.

Finally, in Step 5, PerCollab exits the
travel request approval process and
returns to the calling ODS application,
which then continues.

cation devices with workflow sys-

tems such as BPEL, PerCollab
extends the reach of business processes
to almost anywhere. It improves busi-
ness efficiency by proactively pushing
tasks to users, enhances user experi-
ences by selecting the most convenient
device based on dynamic context infor-
mation, and fosters collaboration by
imposing coordination policies and
structure.

B y integrating multiple communi-

Dipanjan Chakraborty is a PhD stu-
dent and research assistant in the
Department of Computer Science &
Electrical Engineering at the Univer-
sity of Maryland, Baltimore County.
Contact him at dchakr1@csee.umbc.
edu.

Hui Lei is a research staff member at
the IBM T.]. Watson Research Center.
Contact him at hlei@us.ibm.com or
visit his Web page at www.research.
ibm.com/people/h/blei.

Editor: Upkar Varshney, Department of
CIS, Georgia State University, Atlanta GA
30002-4015; uvarshney@gsu.edu

