
 Page 1

Project Progress Report

Project title: A Strategy to Include Defensive Programming Tactics in the

Undergraduate Computer Science Curriculum at UMBC
Date: April 9, 2003
Investigator Names:

• Brian Roberts, Graduate Student @ UMBC, roberts2@umbc.edu
• Doug Cress, Graduate Student @ UMBC, cress1@umbc.edu
• John Simmons, Graduate Student @ UMBC, js5@umbc.edu

What we have accomplished so far

Our research project requires us to step out of the role of student and don the role of an
instructor. Unfortunately the three of us are somewhat lacking in experience as
instructors and felt that our first course of action should be to present our basic research
plan to the eight instructors responsible for the three core computer science classes 201,
202, & 341. While meeting with the teachers we solicited suggestions on ways to
improve our initial ideas and their thoughts on what the best strategy would be to
incorporate defensive programming techniques at UMBC. Surprisingly most of the
instructors interviewed felt that incorporating security and defensive programming ideas
at the lower level classes was a bad idea. The source of these comments appear to arise
from the instructors’ lack of education themselves in the danger of insecure code and its
impact on society as a whole, and the belief that the students in the beginning classes just
couldn’t ‘handle’ security subject matter. Counter to the instructor’s resistance we believe
that the major selling point of our whole project is that the same basic practices which
lead to bug-free programming also lead to secure programming. Additionally we feel that
concepts that are reinforced throughout a course of study, stand a stronger chance of
actually being retained by students.

As part of the interview process we determined that a consistent set of dangers that we as
a team were trying to convey to the students should be presented to the instructors. We
choose these concepts because we believe they could be easily understood by the students
and would illustrate the seriousness of the concepts they were about to learn.

• The harm that programming errors and poorly secured code cause
o Physical damage that has resulted due to bad code
o Widespread malicious cyber-events against companies, gov’t, & education
o Financial impact of stolen credit cards or more serious bank account fraud

• Common insecure practices that might be encountered at a student’s current
instruction level

o I/O data left un-validated
� Can result in unexpected behavior in programs and invalid results

 Page 2

o Segmentation faults due to accessing outside the bounds of an array
o Printing data from the wrong memory addresses

� Can potentially access and send sensitive information
o Use of insecure functions strcpy(), gets(), etc…
o Mishandled exceptions
o Object Oriented programming issues

� Class Destructors that don’t clear out sensitive data before the
memory is deallocated

� Lack of properly designed access control mechanisms utilizing
public/private/protected/package modifiers

� Read-only accessor functions that return pointers instead of copies
of the data referenced

• Poorly commented and non-standardized code and how it can contribute to
security problems.

Next we evaluated the basic curriculum of each of our targeted classes searching for the
best places to weave in defensive programming concepts. We then created course specific
suggestions and ideas that we hoped the instructors could then use to fill in these gaps.
Next we interviewed the instructors who were able to provide specific feedback regarding
the validity of our suggestions. During the interview process, the instructors provided
suggestions of their own on how to best go about incorporating defensive programming
practices within the context of their particular class. Please see appendix A for sample
questions asked of the instructors.

Beginning with CMSC 201 we briefly interviewed Sue Bogar and Dawn Block regarding
their thoughts on adding defensive programming practices to the 201 curriculum.
Basically 201 is the introductory computer science course for majors, teaching them how
to code in C. Most of the students in this course are freshman with very little formal
experience programming or computer science skills in general. According to the
instructors, many of the concepts of “defensive programming” might elude their students’
limited understanding. However, the instructors believed there were several foundations
that could be laid in 201 and embellished during later courses.

The instructors maintained that there aren’t many places where one can specifically talk
about security and give detailed examples because of the students’ limited experience.
However they did feel that there were plenty of opportunities to include “pointers”
throughout both the lecture and discussion notes. The instructors also described
opportunities to make sure students utilized defensive programming practices in the five
projects they are assigned during the semester. Students could be encouraged to pay
attention to these techniques by requiring them to discuss any security implications of
their project in their design documentation. Finally, questions could be added to the
exams addressing some basic security issues as they relate to I/O validation and proper
error handling.

Both Sue and Dawn were a bit reticent when it came to altering the curriculum primarily
because they felt that the students were faced with the very overwhelming task just of

 Page 3

learning the material already included in the curriculum. even explaining basic security
issues like buffer-overflows would be difficult due to the students’ lack of experience
with concepts such as stacks, heaps, memory management and advanced programming
practices. Both instructors seemed to think that security belonged in some course, but
neither wanted it in theirs.

One of the first steps that the instructors thought would be beneficial would be to
incorporate warnings into the lecture whenever possibly dangerous behaviors were
presented. The key concept of 201 is to teach students how to program effectively using
C as the medium for instruction. To this purpose, there is already great stress placed on
I/O validation. Further emphasis could be illustrated with security case studies to really
drive the point home. Unfortunately neither of the instructors was very familiar with
security issues beyond the basic dangers inherent to the language. Yet both instructors
thought that it would be a good idea to discuss potentially dangerous functions such as
gets() which they typically mention in lecture already and then ask the TA’s to go into
greater depth during the discussion section.

One of the greatest obstacles that we face in this course is that while lecture notes are
written each semester by the instructors, TA’s take turns writing the notes for the
discussion sections. This benefits the TA’s by providing them the opportunity to gain
experience in preparing teaching material. The problem with this approach is that the
notes change every semester, and there is no standardized format for notes. The
discussion section notes are merely required to discuss lecture topics in greater depth,
resulting in TA’s with particular strengths and interests incorporating those interests into
the discussion notes. While the notes are peer reviewed, and ultimately accepted or
rejected by the instructors based on the validity of the content, there is no requirement for
security currently stressed. It would be easy to examine three different versions of the
same discussion from three different semesters and pick out similar concepts, but those
concepts might be addressed differently depending on the TA’s background and the
examples used. This makes standardization difficult because the pool of TA’s is
constantly changing. Even if we convince the instructors to incorporate “defensive
programming” practices into their lectures, we would have to constantly reiterate the
point with the new TA’s every semester.

Next we interviewed the two instructors teaching CMSC 202 – Mr. Raouf and Mr. Frey.
Currently, Mr. Frey is the course coordinator. The stated goals for the class are to teach
students general problem solving techniques, recursion, asymptotic algorithm analysis,
basic data structures (linked lists, stacks, queues, binary search trees), abstract data types,
memory allocation, functional parameters, basic sorting algorithms, object-oriented
programming and C++ in general, and good coding practices. Absorption of the course
content is reinforced through five programming projects and three exams.

Certainly defensive programming practices fall under the purview of “good coding
practices”, so this course indeed seems to be an appropriate place to include our new
material. After talking with the instructors, it is apparent that small amounts of new
material are easily added to the lectures. Pointing out the relevant security pitfalls as new

 Page 4

topics are covered will be more effective than saving all security discussion until a lecture
at the end of the class. Also, the course is already very full of information, and it would
be difficult to add a single block of new material anywhere in the course. Thus making
modifications on the order of a single slide or less to the relevant topics will make our
results most easily adopted by the instructors, and should also be effective for the
students.

Including defensive programming in the projects and exams would be more difficult.
The exams are already loaded enough with the existing content that including more
security-related questions would likely be hard to accomplish while still making sure that
students are tested thoroughly on the existing material. The projects follow a similar
pattern. It would be both easy for the instructors and interesting for the students to have a
project whose scenario raised security implications (i.e. working for a credit card or
medical company). Mr. Raouf suggested that a project regarding check digits for credit
card numbers might suggest a good security theme. Including defensive programming
concepts in the grading criteria, however, would not be possible. For example, the
projects already list user input validation as a gradable criteria, but in practice it is not
strictly enforced. Apparently, if more emphasis was put on it, students would spend too
much time working on that aspect, and not enough time learning the other larger concepts
of the project.

We also gained some insight into the content we should include for the class. Students in
this class should be able to understand concepts referencing memory management and
clearing sensitive data. For example, it might be possible to examine what occurs in a
malloc request, but the instructors would not be able to go into too much depth with OS
concepts, as the students have not taken that course yet. A demonstration of how random
old data can be picked up in freshly allocated memory would be appropriate. Students
would probably not be able to really understand how a lack of bounds-checking would
lead to a stack-smashing exploit, but this is an appropriate place to demonstrate how
failing to check bounds can lead to neighboring data accidentally (or intentionally!) being
overwritten. An effective demonstration of how mishandling pointers can lead to client
programs with access to private data members would be good. A recurring theme in the
feedback was that our information should be concise, and reinforced with effective and
dramatic demonstrations to capture students’ attention.

Finally we interviewed the four instructors that take turns teaching CMSC 341 – Data
Structures: Mr. Frey, Mr. Edleman, Dr. Peng, and Dr. Oates. Currently Dr. Oates is
serving as the course coordinator. 341 has approximately 29 class meetings where the
teachers cover topics relating to various data structures and their implementation. The
class focuses on Abstract Data Types (ADT) and how to solve problems using them.
ADTs that describe how to manipulate stacks, queues, trees, heaps, hashes, and graphs
are covered in class and reinforced through 5 programming projects assigned throughout
the semester. Additionally the students’ understanding of the concepts taught in the class
are evaluated by three exams.

 Page 5

In an attempt to be as practical as possible our suggestions for incorporating defensive
programming tactics for 341 revolved primarily around the class projects. Since this is
where the rubber meets the road for the students we felt that impacting them here would
help reinforce the concepts better then merely talking at them during lecture. Of course
the students need to learn how to incorporate defensive programming into their projects
before they start, so we felt that some lecture instruction would be needed as well. In
order to evaluate what the students had learned we also inquired about the possibility of
incorporating security related test question on one or more of the exams. Lastly we asked
the instructors where they thought the best place was to teach defensive programming
and computer security related topics within the UMBC computer science curriculum.

Dr. Oates felt initially that secure programming concepts might be adding more work to
the students’ plate then they can handle. He pointed out that most of the students consider
341 to be a challenging class and that by adding additional security requirements to their
programs/projects might be overwhelming. After further discussions he felt that perhaps
the best way to make the students more aware of security and defensive programming
practices was to incorporate security related issues into the project descriptions in order
to attract the students and make the projects more interesting. This has the benefit of not
taking up lecture time and yet still exposes them to the necessity of defensive
programming techniques. Each of the projects assigned in 341 has 2 -3 questions that
must be answered by the students relating to the project. These questions are designed to
make the students think about what they have done and why they solved the problem the
way they did. Dr. Oates thought that a question about something relating to
security/defensive programming would fit nicely here. Additionally Dr. Oates felt that the
best places to include defensive programming tactics was early on in the semester during
the lectures on general programming techniques and debugging. Then as a reinforcement
tactic, he thought that a review of some of the security concerns that the students should
be aware of, could be included in a lecture at the end of the semester as well. Finally, Dr.
Oates was adamant about not including security related questions on any exam.

Mr. Frey did not feel that secure programming techniques belonged in the 341 curriculum
at all. However after we had explained to him our ideas about how security should be
woven throughout the CS curriculum he relented a little. After laying out all of our
suggested improvements and ideas about where best to include defensive programming
tactics, Mr. Frey said that they were all good ideas. Unfortunately he was not very
suggestive and did not provide any additional input as to how to incorporate security into
the 341 curriculum.

Mr. Edleman was a wealth of suggestions and input. His initial concerns were very
similar to Dr. Oates’ that the students taking 341 are pretty overwhelmed by the class and
its subject material as it is. He pointed out that in order to impact the students, security
and defensive programming needed to be presented as more then mere meta-information.
For example students are told to include comments in their code but the comments don’t
really seem to be very important to them and therefore aren’t given the serious
consideration they deserve. Mr. Edleman pointed out that students at this level are best
taught by specific example and that grand esoteric concepts will not be absorbed very

 Page 6

well by the students. Similar to Dr. Oates, Mr. Edleman felt that perhaps the best place to
include lecture notes on defensive programming would be at the front-end of the class,
during the lectures on good software development. He reinforced the idea that providing
avenues for the instructors to teach their students should be easy for them to include and
not generate too much extra work for them. Perhaps Mr. Edleman’s most practical advice
related to the development of object-oriented class destructors and ensuring that the
memory areas controlled by the destructor were wiped clean before they were released.
Mr. Edleman also felt that the best way to teach defensive programming to students was
to suggest security themes and introduce defensive concepts to them at the lower classes
and then to provide a 400 level course that dealt specifically with the security topic.
Lastly Mr. Edleman thought that the most difficult aspect of incorporating defensive
programming techniques was not teaching the students, but convincing the instructors
that it should be included in the first place. He recommended talking with Dr. Pinkston
the department head to see what his opinions were on the matter.

The last professor we interviewed for 341 was Dr. Peng. Like all of the previously
interviewed 341 instructors, Dr. Peng felt that 341 was perhaps not the best possible fit
for defensive programming concepts. However, Dr. Peng did believe that incorporating
defensive programming in the final lecture of the semester would provide some benefit as
it would give the students something to think about before they arrived in 345. CMSC
345 is the software development class that all undergraduates are required to take. Dr.
Peng believed that 345 was a much better place for security to be taught and that
warming the students up to security in 341 would be useful. Dr. Peng stressed that any
slides offered to the instructors should be concise and easy for them to understand.
Finally, Dr. Peng felt that students taking 202 would not be interested in security
concepts at all.

Following the suggestion of several of the instructors we also interviewed Dr. Pinkston
the UMBC CS department head. Dr. Pinkston thought the basic idea of teaching security
early and often was a great premise. He provided several excellent suggestions including
the focus on defensive programming vice secure programming as a more accurate
description of what we were advocating. Similar to the other instructors he felt that
adding defensive programming to 201 and 202 might not be the best course of action but
that incorporating such topics into 345 and possibly 313 was a better direction to head in.
He suggested that if we were to insist upon including defensive programming in the
earlier classes then the best place to fit in the concepts would be within the ‘best
programming practices’ section of the class. Dr. Pinkston pointed out that CMSC 313
(Computer Organization & Assembly Language Programming) might be a great place to
add security concepts because of its focus on instruction set architecture and the
subsequent relevance of which to buffer-overflows. He felt that CMSC 345 (Software
Design and Development) was an excellent capstone class for defensive programming.
The students in this class are split up into groups and then assigned a customer for whom
they must develop a software package. This package requires the interaction of several
components including internet related applications and local end users. Dr. Pinkston felt
that focusing on the security implications of requiring several programs to interact safely
and the dangers inherent when one component fails would be especially germane to this

 Page 7

class. Dr. Pinkston also mentioned that merely trying to scare the students into security
would have no more effect then crying wolf. He recommended taking specific examples
from the kinds of programs the students had written earlier in their academic career and
showing them where insecure mistakes could have been included. Illustrating the possible
ramifications of such errors, would be a much more effective training mechanism then
just trying to frighten the students. Lastly because Dr. Pinkston was the department head,
we asked him how we could go about convincing the department as a whole to adopt our
suggestions into the curriculum. He pointed out that the department had already made
commitments to the Federal Government to add additional security concepts to the
UMBC CS curriculum. He also mentioned that if a majority of the department felt that
security issues should be included in the curriculum, then the individual resistant
instructors would probably capitulate.

We have sought several testing methods in an effort to add more rigor to the evaluation of
our research. Unfortunately the time constraints placed on this project will limit our aility
to apply any of them. Our first testing solution would be to conduct surveys by sampling
students at various levels within the CS curriculum to ascertain their current experience
and knowledge of security and defensive programming issues. If we had the time we
would like to ask a sampling of students at various stages in the UMBC curriculum the
same basic questions. We would then, starting with the fall semester, begin to include our
suggestions and changes to the curriculum. Then at the beginning and end of every
semester we would survey a random sampling of the students to see how much they had
learned in the different classes. By asking the same questions of all the students we would
expect to see most of the questions left unanswered by the students attending
earlier/lower level classes and more answered by students in the latter classes. This type
of testing methodology might take several years to complete but would likely provide a
very accurate picture of how effective our methods had been. This evaluation solution
could be carried out with minimal impact on the instructors themselves.

A second evaluation technique would be for later classes to assume that earlier classes
had covered particular issues. These later classes would be able to begin instruction at a
particular stage and be able to grade the students comprehension to this point in the CS
curriculum on defensive programming and security awareness. This evaluation solution
would require much more work and buy in by the department and the various class
instructors. Though this method might clearly show the level of comprehension the
students had attained, the amount of work required by the instructors could be considered
prohibitive from their point of view.

A third evaluation technique would be to offer a contest of some sort to upper level
students (juniors and above). The goal of the contest would be to see if the participants
could take a real-world project specification, develop a software solution for it, and then
submit it for a security audit before the contest judges. The prize would have to be
substantial enough to get the students interested in participating in the contest. Perhaps an
outside vendor would be willing to sponsor such prizes. This would have the added
benefit of involving the students with sponsors and exposing them to possible job
opportunities after graduation. This type of contest would not be proceeded by any

 Page 8

particular class teaching security. Instead the students would be expected to have learned
enough throughout their various classes at UMBC to enable them to write secure code.
The shortfalls of such an evaluation technique would be the difficulty in proving the
impact of our educational ideas on the students work, vice their innate talent and
propensity for security. However if such a contest were offered to several universities in
the area then perhaps the curriculum additions we are proposing could be a decisive
factor in a UMBC team of students winning the competition. Unfortunately as with the
other evaluation techniques, we the investigators would not have the time to implement
such an idea within the bounds of time left for this project.

What remains to be accomplished

We have accomplished a great deal of work towards completing our proposed research
goals. However there are still details of the project that we have not yet addressed
completely. Since we have decided to incorporate CMSC 345 as our capstone defensive
programming class, we need to interview the instructors for that class and evaluate its
current curriculum to determine where the best fit for our supplements would be.
Additionally we have decided to tone down the amount of influence we wish to exert on
the lower-level classes (201,202) and therefore we need to spend some more time
fleshing out exactly what material is worth being covered in those classes versus being
saved for later inclusion in other classes. We still need to develop a project specification
for 341 that will incorporate more defensive programming aspects. And lastly we need to
determine whether or not we can evaluate our curriculum suggestions within the time left
this semester.

Difficulties encountered and solutions to them

We were surprised by the intense resistance from most of the instructors for the various
classes. Most of them felt that security and defensive programming were good things but
such concepts didn’t belong in their classes. As we have gathered input from them, we
have looked for ways to present our idea and convince the instructors of the necessity to
include them in their curriculums. We have decided on three solutions to solve this
resistance problem. First we will make our curriculum additions as simple and concise as
possible to allow the instructors to incorporate them as easily as possible into their
syllabi. Secondly we will provide some minimal education for the instructors themselves
consisting of a couple of slides that describe the dangers of insecure programming and
what some examples might look like, including a buffer-overflow example. Lastly we
will work with department leaders in order to lobby them on the importance of including
defensive programming into the UMBC CS curriculum.

Our second major difficulty is the long term nature of the project itself. When one is
trying to influence a group of people across the length of their educational experience,
one needs to interact with them throughout that whole time. Unfortunately our project

 Page 9

timeline only encompasses a single semester. With such a short timeframe within which
to study our problem, provide solutions, and then study the results we feel that we will
not be able to adequately quantify the effectiveness of our ideas. We have proposed
several suggestions of how we would like to go about testing our results but at this time,
we don’t see any particular solution to the problem.

Significant changes to proposal

Our project has undergone some significant changes since we first proposed it. The first
of which was the name change of the project. After meeting with several of the professors
we believed that a focus on secure programming was not as effective as a focus on
defensive programming. This has a little softer sound and will hopefully decrease the
amount of resistance that the instructors have thus far put forth. Additionally we feel that
such a focus allows the students to be more marketable when they seek employment
outside of the academic environment. Finally a curriculum-wide focus on defensive
programming allows UMBC to be more marketable to adult students seeking to
specialize in security.

Our second major change to the project was again predicated by the advice of the
professors that we have interviewed thus far. Many of them felt that focusing on security
at the lower level classes (201, 202, & 341) was too much for the students that were
taking the classes. In response to this we have decided to take more of a graduated
approach towards teaching the students about security. By introducing a few concepts in
201, then a few more in 202, and yet more in 341, and with a final capstone lecture in
345, we allow the students’ comprehension of security issues to grow as their
understanding of computer science in general grows. We felt that it was very important to
target the programming classes that all computer science majors were required to take in
order to have the broadest impact. Focusing on just a 400 level security class offered as
an alternative would not be sufficient for the kind of impact we are hoping to drive home
to the students.

Finally, due to feedback on our initial project proposal about a lack of a significant
research component, we have decided to interview the instructors both before we
developed materials and afterward. This new procedure will help to validate our
instruction methods and lend more legitimacy to our results.

Draft outline for final report

I. Introduction
 A. Abstract
 B. Why does the undergraduate community need more security training?
 C. Summary of results
II. Description of our solution
 A. Our initial approach to incorporating security into curriculum

 Page 10

 B. Initial negative instructor response
 C. Our resulting focus on defensive programming and multistage agenda
III. Proposed testing evaluation methods of our solution
 A. Survey procedures
 B. Alternative ideas
IV. Conclusions
 A. Remaining open problems
V. Bibliography
VI. Appendix
 A. Sample questions posed to instructors
 B. Resulting materials provided to department
 1. PowerPoint slides
 2. Project specifications for 341 & 345

Updated Bibliography

[AN96] Anonymous, “A Lab Engineer’s Check List for Writing Secure Unix Code”,
May 1996. ftp://ftp.auscert.org.au/pub/auscert/papers/secure_programming_checklist

[DD02] M. Dark, J. Davis, “Report on Information Assurance Curriculum
Development”, June 2002.
http://www.cerias.purdue.edu/education/post_secondary_education/undergrad_and_grad/
curriculum_development/information_assurance/report_info_assurance_cur_dev.pdf

[JMC94] J. McConnell, “National Training Standard for Information Systems Security
(INFOSEC) Professionals—NSTISSI No. 4011”, June 1994.
http://www.nstissc.gov/Assets/pdf/4011.pdf

[MU02] Mullins, “Panel on Integrating Security Concepts into Existing Computer
Courses”, March 2002, ACM SIGCE Bulletin, Vol. 34, p. 365

[NCSA] NCSA, “NCSA Secure Programming Guidelines”, no date.
http://archive.ncsa.uiuc.edu/General/Grid/ACES/security/programming/

[VA00] Richard Vaughn, “Application of Security to the Computer Science Classroom”,
March 2000, AMD SIGCE Bulletin, v. 32, p. 90

[YA01] T. Andrew Yang, “Computer Security and Impact on Computer Education”, May
2001, ACM Journal of Computing in Small Colleges vol. 16, p. 233

Evaluated Course Websites:
CMSC 201 Computer Science I for Majors (C programming)
 http://www.csee.umbc.edu/courses/undergraduate/201/spring03/
CMSC 202 Computer Science II for Majors (C++ programming)
 http://www.cs.umbc.edu/courses/undergraduate/202/spring03/

 Page 11

CMSC 341 Data Structures
 http://www.cs.umbc.edu/courses/undergraduate/341/spring03/index.shtml
CMSC 345 Software Design and Development
 http://www.csee.umbc.edu/courses/undergraduate/345/spring03/

Revised Schedule

March 19 Proposal
March 21 Evaluation of a peer proposal by email
March 28 Develop list of topics
March 31 Begin Interview of instructors
April 4 Develop coverage goals
April 8 Finalize midterm
April 9 Midterm delivery
April 10 Finish first interview round of instructors
April 11 Develop all course materials
April 14 Begin second round of Faculty interviews
April 18 Finish second round of Faculty interviews
April 21 Pre-draft of paper and presentation
April 23 Complete draft report and draft presentation for review
April 30 Referee report of a peer project
April 30 Oral presentations begin
May 7 Final report

Appendix A – Interview Questions

Sample Questions/suggestions for places to incorporate security into CMSC-341
I notice that there’s lecture space in the syllabus for an ‘advanced topics’ lecture. Would
a single lecture on security at the end of the semester be worth while? Or would it be
better to integrate security related slides throughout the course?

There appears to be 5 projects spread throughout the semester.

• Would a “security hazards that this data structure is prone to” section be
appropriate for each project on its description page?

• Would a security oriented question be appropriate as a third question (or as a
replacement) on the question page for each project?

• Would a security requirement for each project description be a gradable element?
o i.e. All input should be checked
o all array bounds must be protected
o use of the more secure functions and libraries must be included
o possibly use a tool to statically check for dangerous function calls (ITS4,

LCLint, Purify etc..)

 Page 12

• Would it be instructive to pick a student’s submission at random and remove any
identifying characteristics and then show it to the class pointing out the security
flaws in it? Of course the author would recognize his/her work, and therefore
everyone in the class would be on their toes so that their program is not shown.

• Would a change to one of the project descriptions to one with more of a security
flavor be useful? Of course the project’s focus would continue to be the data
structure intended to be taught according to the syllabus.

There appears to be 3 exams. Would it be possible to add a security related question to
each or any of the exams?

If you were to incorporate security into the core of UMBC computer science education
would you include the topic in 341? If not where would you place such instruction?

