

A Strategy to Integrate Defensive Programming into the
Undergraduate Computer Science Curriculum at

UMBC

Doug Cress Brian Roberts John Simmons
cress1@umbc.edu roberts1@umbc.edu js5@umbc.edu

Computer Science Department

University of Maryland Baltimore County
May 14, 2003

Abstract:

As the utility and ubiquity of information technology (IT) have increased, the deployment
of poorly-written, insecure code has exploded. Hundreds of vulnerabilities are revealed
by security defenders and malicious attackers each year. This ever-widening gap between
good, secure software development supposedly taught in schools and the actual bug-
ridden code that is deployed will continue to plague our society and endanger our future.

To combat this growing plague, we investigate how the existing undergraduate computer
science curriculum at UMBC might be improved by including defensive programming
concepts within the four required software development classes. We utilize input and
feedback from the course instructors to create materials for the undergraduate classes at
the heart of the curriculum: CMSC 201 (Computer Science I for Majors), CMSC 202
(Computer Science II for Majors), CMSC 341 (Data Structures), and CMSC 345
(Software Engineering).

We believe that stronger programmers, who write secure code by habit instead of by
force, will be produced by a curriculum that repeatedly stresses basic defensive
programming techniques. Techniques such as avoiding dangerous function calls and post-
development analysis are simple enough that even first year students can incorporate,
resulting in a lifetime of more secure software development. Students and instructors
need to learn that the responsibilities of computer security lie not only with
cryptographers, network engineers, and operating systems developers, but with anyone
who writes software.

Keywords:
Undergraduate Education, Computer Security Education, Secure Programming,
Defensive Programming, Computer Science Curriculum

Table of Contents

1.0 Introduction……………………………………………..1
1.1 Motivation..1
2.0 Critical Review of Previous work....................................2

2.1 Current UMBC curriculum……………………...2
2.2 Federal Guidelines for Computer Security….…..2

Education
2.3 The 2nd Annual Information Assurance…………3

Curriculum Development Workshop
2.4 “Computer Security and Impact on Computer…..3

Education”
2.5 “Application of Security to the Computer………3

Science Classroom”
2.6 “Panel on Integrating Security Concepts into…..4

Existing Computer Courses”
3.0 Preliminary Interviews...4

3.1 CMSC 201 ...5
3.2 CMSC 202 ...6
3.3 CMSC 341 ...7
3.4 CMSC 345 ...9
3.5 Department Head ...9

4.0 Results..10
4.1 CMSC 201 ...10
4.2 CMSC 202 ...12
4.3 CMSC 341 ...13
4.4 CMSC 345 ...14

5.0 Open problems/Conclusions ..15
5.1 Open problems ...15
5.2 Conclusions……………………………………...16

6.1 Bibliography ..17
 6.2 Acknowledgements..17

Appendix A: Materials for CMSC 201
Appendix B: Materials for CMSC 202
Appendix C: Materials for CMSC 341
Appendix D: Materials for CMSC 345

 Page 1

1.0 Introduction

In the history of computing, security has always been an afterthought. Unless a particular
application was designed for a security purpose, no thought was given to how a particular
application could be exploited by malcontents or error-prone users. As a result of this,
millions of hosts are compromised every year resulting in the loss of productivity,
money, and privacy. Mercifully, computer science is a relatively new field with an older
generation that will exit the playing field in the coming decade. There is still time to
reform the computer science education arena before we are forced to endure a permanent
institutional mindset which neglects security. Impressing young students now with the
fact that they will be responsible for future computer security problems – and teaching
them how to avoid such problems through defensive programming tactics – will
undoubtedly present a brighter millennium where societies can comfortably and safely
use information technology to enhance their lives and lighten their burdens.

1.1 Motivation

Unfortunately, in most undergraduate institutions, security is a topic covered only in
elective classes. Thus it is common for students to graduate with degrees in computer
science without ever receiving instruction on security issues. Through the personal
experience of the researchers, it is evident that this problem is not at all unique to UMBC.
If information systems are to be resistant to errors and malicious code, those who design
the systems need to be made aware of security issues as they learn to program.

An important step towards this goal is to expose computer science students to defensive
programming concepts early and often in their coursework. It is unnecessary to
reconstruct an entire curriculum to this end. Instead, a set of learning modules could be
included in existing courses to expose students to this material. A learning module is a
set of slides, and possibly some exercises or project descriptions, that can be easily added
to an existing course. Ideally, one module could be tailor-made for almost every course in
the catalog since nearly every subject in computer science has some impact on the
security of its users. The module would emphasize the security aspects most closely
related to the course, perhaps exploring the underlying concepts of security principles
learned in earlier courses.

To limit the scope of this project, we have chosen to evaluate and provide defensive
programming modules for four undergraduate courses at UMBC: CMSC 201 (Computer
Science I for majors), CMSC 202 (Computer Science II for majors), CMSC 341 (Data
Structures), and CMSC 345 (Software Engineering). Teaching defensive programming
principles and practices in these four courses will have the widest impact because all
students graduating with a major or minor in computer science must complete them prior
to graduation. Additionally these courses comprise the bulk of each student’s
programming instruction. The skills they learn in these courses will effect their
assignments in any other class or job situation for the rest of their lives.

 Page 2

We will proceed by first reviewing some of the previous work in the realm of defensive
programming instruction. Then we recount the interviews and discussions we had with
the instructors of the various UMBC courses. Followed by a list of our suggestions for
improvement and the reaction of the instructors too our suggestions. Finally we provide
some conclusions and open problems that still need to be resolved.

2.0 Critical Review of Previous Work

2.1 Current UMBC curriculum
We begin our review of previous work by examining the current core programming
curriculum at UMBC. Upon entering the computer science degree program at UMBC,
each student is required to complete a series of courses introducing them to computer
programming and problem solving through software development. These three courses
are CMSC 201 (Computer Science I for majors), CMSC202 (Computer Science II for
majors), and CMSC 341 (Data Structures). Students majoring in Computer Science are
also required to complete CMSC 345 (Software Engineering). These courses work
together to teach the novice Computer Science student the fundamental concepts of
programming in the C language, advanced and object-oriented programming in C++, and
developing data structures. Each course is designed specifically for a certain level of
programming expertise and each course builds upon the previous course material
(requiring that course as a prerequisite) to give students a thorough understanding of
programming concepts.

While these courses strive to teach proper coding standards, language functionality, and
basic problem solving, they mention very little about secure programming practices. The
general approach is to instruct students on which behaviors or functionalities of the
language to avoid, without giving a thorough explanation of why these behaviors are
dangerous. We feel that in order for students to fully understand the implications of
security (and the lack thereof) it is important to focus on these topics more thoroughly
and present a more technical and in-depth examination of the concepts (within the scope
of expectations for the respective courses).

2.2 Federal Guidelines for Computer Security Education
Since 1999, the National Security Agency has designated 36 universities as Centers of
Academic Excellence in Information Assurance. In accordance with this designation
these universities must adhere to a list of 10 qualifications including an overall
curriculum mapped to various National Security Telecommunications and Information
Systems Security Standards (NSTISSI). The foremost of which, number 4011, is the
“National Training Standard for Information Systems Security (INFOSEC)
Professionals,” dated June 20, 1994. This standard is meant to be viewed as a curriculum
to teach students how to be INFOSEC professionals. Sadly, this standard is not sufficient
substitute for our work. It focuses primarily on policy and general Automated
Information Systems (AIS) management and planning. Though these are important

 Page 3

components for a graduate level course due to their more theoretical nature, this level of
abstraction does not contain sufficient detail for teaching undergraduate students how to
write code in a secure manner. Since software is a key component of any AIS, we believe
that secure software development should be addressed at every step on the path towards a
bachelor’s degree in computer science.

2.3 The 2nd Annual Information Assurance Curriculum Development
Workshop
In June of 2002, Purdue University sponsored the second annual Information Assurance
Curriculum Development Workshop. Melissa Dark and Jim Davis chronicled the
experience in a paper called: “Report on Information Assurance Curriculum
Development.” The workshop split up the participants into two groups: one focused on
graduate level studies and one on undergraduate studies. The groups sought to classify
the knowledge that students needed to attain into three domains: Declarative
(memorization of facts & figures), Application (ability to use declarative knowledge
previously acquired) and Synthesis (to create new solutions from existing knowledge).
Out of the fourteen broad subject headings, only one was dedicated to secure software
engineering practices. The four subjects listed (security of large software systems,
programming language issues, software engineering techniques, and security issues) were
good broad observations of the types of skills that the students should learn. However,
detail was again lacking. A description of exactly what portions of an IA curriculum a
student should be responsible for at a particular stage in his or her education was missing.
A set of specific pitfalls and ways to avoid them in software engineering was not
included. We hope that our work can start with these areas and provide specific solutions
relative to the UMBC student, but generic enough in scope to allow other universities to
benefit from our ideas.

2.4 “Computer Security and Impact on Computer Education”
Yang [YA01] examines the need for security to be taught in undergraduate curriculums.
Many reasons why this is needed are given, and several outside sources of material are
provided which may be helpful to those designing security lessons. Integration of
security topics into an existing curriculum is examined in detail, with suggestions for
each course, though no details are provided. Some time is also spent discussing the
obstacles and issues facing anyone trying to enact real changes to a university’s
curriculum.

2.5 “Application of Security to the Computer Science Classroom”
Vaughn [VA96] covers similar topics in a much more abbreviated fashion. Specific
recommendations are made for course content, but not as many courses are considered as
in Yang’s paper [YA01]. The courses treated are: operating systems, database, software
engineering, computer networking, and artificial intelligence. It is interesting that for all
its concern with security topics in advanced courses, this paper does not touch on
including security instruction in introductory programming courses.

 Page 4

2.6 “Panel on Integrating Security Concepts into Existing Computer
Courses”
Mullins [MU02] writes a brief introduction to a panel discussion that was held at the
SIGCE ’02 conference concerning the integration of security material into existing
Computer Science courses. This matches almost perfectly with our project.
Unfortunately, this document only contains position statements from each of the panel
members, and a transcript of the discussion does not seem to be available.

3.0 Preliminary Interviews

In order to develop material which will be usable in the courses at UMBC, we felt that
the most effective tactic would be to solicit input from the instructors who teach those
courses. Before developing our material, we first conducted a round of preliminary
interviews with the professors to give our project more direction. In this phase, we
sought to determine an appropriate format and quantity of content for each class. Since it
has been many years since any of the investigators were enrolled in equivalent classes,
we also sought to verify that the proposed technical content of our new materials would
be appropriate for students in these classes. Finally, we investigated the possibilities for
including some of our material in projects and assessments in order to reinforce student
learning. Additionally, we asked if the instructors had different opinions about which
classes should be infused with secure programming material.

The following is a list of the core concepts we want to include in our four classes:

• The potential harm of programming errors and poorly secured code
o Physical damage that has resulted due to unreliable code
o Widespread malicious cyber-events against commercial companies,

government agencies, and educational institutions
o Financial impact of stolen credit cards or more serious bank account fraud

• Common insecure practices that might be encountered at a student’s current
instruction level

o I/O data not validated
� Can result in unexpected behavior in programs and invalid results

o Segmentation faults due to accessing memory outside the bounds of an
array

o Data printed from the wrong memory addresses
� Can potentially access and send sensitive information

o Use of insecure functions such as strcpy() and gets()
o Mishandled exceptions
o Object Oriented programming issues

� Class Destructors that don’t clear out sensitive data before the
memory is deallocated

� Lack of properly designed access control mechanisms utilizing
public/private/protected/package modifiers

 Page 5

� Read-only accessor functions that return pointers instead of copies
of the data referenced

• Poorly commented and non-standardized code and how it can contribute to
security problems.

• Buffer overflows
o What are they?
o What is a buffer overflow attack?
o How can buffer overflows/attacks be avoided?

3.1 CMSC 201

Sue Bogar and Dawn Block were the instructors interviewed for CMSC 201. This course
is the introductory Computer Science course for majors, and focuses on teaching them
how to code in the C language. Most of the students in this course are freshmen with
very little formal programming experience or computer science skills in general.
According to the instructors, many of the concepts of defensive programming might
elude the students’ limited understanding. However, the instructors believed there were
several foundations that could be laid in 201 and embellished during later courses.

The instructors maintained that there are not many places where one can specifically talk
about security and give detailed examples because of the students’ limited experience.
However, they did feel that there were plenty of opportunities to include “pointers” – a
few sentences of material – throughout both the lecture and discussion notes. The
instructors also described opportunities to make sure students utilized defensive
programming practices in the five projects they are assigned during the semester.
Students could be encouraged to pay attention to these techniques by requiring them to
discuss any security implications of their project in their design documentation. Finally,
questions could be added to the exams addressing some basic security issues as they
relate to I/O validation and proper error handling.

Both instructors were a bit hesitant to alter the curriculum, primarily because they felt
that the existing course material is already overwhelming for the students. Explaining
basic security issues like buffer-overflows would be difficult due to the students’ lack of
experience with concepts such as stacks, heaps, memory management, and advanced
programming practices. Both instructors seemed to think that advanced security concepts
belonged in some course, but not in 201.

One of the first steps that the instructors thought would be beneficial is to incorporate
warnings into the lecture whenever possibly dangerous behaviors were presented. The
key concept of 201 is to teach students how to program effectively, using C as the
medium for instruction. To this end, there is already great stress placed on I/O validation.
Further emphasis could be achieved with security case studies to really drive the point
home. Unfortunately neither of the instructors was very familiar with security issues
beyond the basic dangers inherent to the language. Yet both instructors thought that it
would be a good idea to discuss potentially dangerous functions such as gets().

 Page 6

Currently, this is mentioned in lectures, and then the TA’s are asked to go into greater
depth during the discussion section.

One of the greatest obstacles to modifying this course is that while lecture notes are
written each semester by the instructors, TA’s take turns writing the notes for the
discussion sections. This benefits the TA’s by providing them the opportunity to gain
experience in preparing teaching material. Unfortunately, this also results in notes which
change every semester, and do not follow a standardized format. The discussion section
notes are merely required to discuss lecture topics in greater depth. Thus, each TA tends
to incorporate his or her particular strengths and interests into the discussion notes.
While the notes are peer reviewed, and ultimately accepted or rejected by the instructors
based on the validity of the content, there is no requirement for security currently
stressed. It would be easy to examine three different versions of the same discussion
from three different semesters and pick out similar concepts, but those concepts would be
addressed differently depending on the TA’s background and the examples used. This
makes standardization difficult because the pool of TA’s is constantly changing. Even if
instructors are convinced to incorporate defensive programming practices into their
lectures, each semester’s TA’s would have to be reminded which security concepts to
stress.

3.2 CMSC 202

Mr. Raouf and Mr. Frey were the instructors interviewed for CMSC 202. Currently, Mr.
Frey is the course coordinator. The stated goals for the class are to teach students general
problem solving techniques, recursion, asymptotic algorithm analysis, basic data
structures (linked lists, stacks, queues, binary search trees), abstract data types, memory
allocation, functional parameters, basic sorting algorithms, object-oriented programming
and C++ in general, and good coding practices. Learning of the course content is
reinforced through five programming projects and three exams.

Certainly defensive programming practices fall under the purview of “good coding
practices”, so this course indeed seems to be an appropriate place to include our new
material. After talking with the instructors, it was apparent that small amounts of new
material could be easily added to the lectures. It was recommended that pointing out the
relevant security pitfalls as new topics are covered would be much more effective than
saving all security discussion until a lecture at the end of the class. Also, the course is
already very full of information, and it would be difficult to add a single block of new
material anywhere in the course. Thus making modifications on the order of a single
slide or less to the relevant topics will make our results most easily adopted by the
instructors, and should also be effective for the students.

Including defensive programming in the projects and exams would be more difficult.
The exams are already loaded enough with the existing content that including more
security-related questions would likely be hard to accomplish while still making sure that
students are tested thoroughly on the existing material. The projects follow a similar

 Page 7

pattern, where adding another grading component would put too much strain on both
students and graders. For example, the projects already list user input validation as a
grading component, but in practice it is not strictly enforced. Apparently, if more
emphasis was put on it, students would spend too much time working on that aspect, and
not enough time learning the other larger concepts of the project. Also, since input
validation is stressed so much in 201, it doesn’t need quite so much attention in this class.
It would, however, be both easy for the instructors and interesting for the students to have
a project whose scenario raised security implications (i.e. working for a credit card or
medical company). The instructors suggested that a project regarding check digits for
credit card numbers might suggest a good security theme. Unfortunately, the later
projects – the ones scheduled after our new content – are closely tied to the lecture
material. In teaching concepts like inheritance and polymorphism, the context of
geometric shapes is used. This context is extended and reinforced by the projects, and
changing one of the later project scenarios would destroy the beneficial qualities of that
relationship between lecture and project.

We also gained some insight into what content we should include for the class. Students
in this class should be able to understand concepts regarding memory management and
clearing sensitive data. For example, it might be possible to examine what occurs in a
malloc request, but the instructors would not be able to go into too much depth with
operating system concepts, as the students have not taken that course yet. A
demonstration of how random old data can be picked up in freshly allocated memory
would be appropriate. Students would probably not be able to really understand how a
lack of bounds-checking would lead to a stack-smashing exploit, but this is an
appropriate place to demonstrate how failing to check bounds can lead to neighboring
data accidentally (or intentionally!) being overwritten. An effective demonstration of
how mishandling pointers can lead to client programs with access to private data
members would be good. A recurring theme in the feedback was that our information
should be concise, and reinforced with effective and dramatic demonstrations to capture
students’ attention.

3.3 CMSC 341

Mr. Frey, Mr. Edleman, Dr. Peng, and Dr. Oates are the instructors interviewed for
CMSC 341. Currently, Dr. Oates is serving as the course coordinator. This course has
approximately 29 class meetings in which teachers cover topics relating to various data
structures and their implementation. The class focuses on Abstract Data Types (ADT)
and how to solve problems using them. ADT’s that describe how to manipulate stacks,
queues, trees, heaps, hashes, and graphs are covered. Student learning is reinforced
through 5 programming projects assigned throughout the semester as well as three exams.

In an attempt to be as practical as possible, our suggestions for incorporating defensive
programming tactics for 341 revolved primarily around the class projects. Since this is
where the rubber meets the road for the students, we felt that impacting them here would
help reinforce the concepts better then merely lecturing to them. Of course the students

 Page 8

need to learn how to incorporate defensive programming into their projects before they
start, so we felt that some lecture instruction would be needed as well. In order to
evaluate what the students had learned we also inquired about the possibility of
incorporating a security related test question on one or more of the exams.

The first instructor interviewed felt initially that adding secure programming concepts
might be simply too much work for the students to handle. He pointed out that most
students consider 341 to be a challenging class and that adding additional security
requirements to their programs and projects might be overwhelming. After further
discussion, he felt that perhaps the best way to make the students more aware of security
and defensive programming practices was to incorporate security related issues into the
project descriptions in order to attract the students and make the projects more
interesting. This has the benefit of not taking up lecture time and yet still exposes them to
the necessity of defensive programming concepts. Each of the projects assigned in 341
has two or three related questions that must be answered by the students. These questions
are designed to make the students think about what they have done and why they solved
the problem the way they did. The instructor thought that a question about something
relating to security or defensive programming would fit nicely here. Additionally he felt
that the best places to include defensive programming tactics was early in the semester,
during the lectures on general programming techniques and debugging. Then as a
reinforcement tactic, he thought that a review of some of the security concerns that the
students should be aware of could be included in a lecture at the end of the semester.
Finally, the instructor was adamant about not including security related questions on any
exam.

The second instructor interviewed did not feel that secure programming techniques
belonged in the 341 curriculum at all. However after we had explained to him our ideas
about how security should be woven throughout the CS curriculum he relented a little.
After laying out all of our suggested improvements and ideas about where best to include
defensive programming tactics, the instructor agreed that they were all good ideas.
Unfortunately he was not very suggestive and did not provide any additional input as to
how to incorporate security into the 341 curriculum.

The third instructor interviewed was a wealth of suggestions and input. His initial
concerns were very similar to the first interviewee that the students taking 341 are fairly
overwhelmed by the class and its subject material as it is. He pointed out that in order to
impact the students, security and defensive programming needed to be presented as more
then mere meta-information. For example, students are told to include comments in their
code, but the comments do not seem to be very important to them and therefore are not
given the serious consideration they deserve. He pointed out that students at this level are
best taught by specific example and that grand esoteric concepts will not be absorbed
very well by the students. Similar to the first instructor, this instructor felt that perhaps
the best place to include lecture notes on defensive programming would be at the front-
end of the class, during the lectures on good software development. He reinforced the
idea that providing avenues for the instructors to teach their students should be easy for
them to include and not generate too much extra work for them. Perhaps this instructor’s

 Page 9

most practical advice related to the development of object-oriented class destructors and
ensuring that the memory areas controlled by the destructor were wiped clean before they
were released. He also felt that the best way to teach defensive programming to students
was to suggest security themes and introduce defensive concepts to them at the lower
classes and then to provide a 400 level course that dealt specifically with the security
topic. Lastly the instructor thought that the most difficult aspect of incorporating
defensive programming techniques was not teaching the students, but convincing the
instructors that it should be included in the first place. He recommended talking with the
department head to discover his opinions on the matter.

The fourth instructor interviewed, like all of the other 341 instructors, felt that 341 was
perhaps not the best possible fit for defensive programming concepts. However, he did
believe that incorporating defensive programming in the final lecture of the semester
would provide some benefit as it would give the students something to think about before
they arrived in 345. CMSC 345 is the software development class that all undergraduates
are required to take. This instructor believed that 345 was a much better place for security
to be taught and that warming the students up to security in 341 would be useful. He
stressed that any slides offered to the instructors should be concise and easy for them to
understand. Finally, the instructor offered the opinion that students taking 202 would not
be interested in security concepts at all.

3.4 CMSC 345

Acting on advice from our other interviews, we decided that CMSC 345 would also be a
good place to include some new secure programming material. This course is required
for all Computer Science majors, but not minors. Still, it is very attractive to us since it is
the first class where students are working on a large group project. The students in this
class are split up into groups and then assigned a customer for whom they must develop a
software package. The package requires the interaction of several components including
internet related applications and local end users. This allows us to emphasize some
secure programming concepts which have a more profound effect on larger projects.

Ms. Mitchell is the instructor we interviewed for CMSC 345. In talking with her, it was
apparent that there is plenty of room for new material in the middle of the course, as
students work on their semester-long project. An entire lecture on secure programming
would be easy to include in this course. While we would need to be a little careful with
technical content since students have not yet taken the operating systems class, this would
be a good place to put our “capstone” secure programming material, reviewing and
reinforcing the concepts learned in our previous courses.

3.5 Department Head

Following the suggestion of several of the instructors, we also interviewed Dr. Pinkston,
the UMBC Computer Science department head. Dr. Pinkston thought the basic idea of

 Page 10

teaching security early and often was a great premise. He provided several excellent
suggestions including the focus on defensive programming versus secure programming as
a more accurate description of what we were advocating. Similar to the other instructors
he felt that adding defensive programming to 201 and 202 might not be the best course of
action but that incorporating such topics into 345 and possibly 313 was a better idea. He
suggested that if we were to insist upon including defensive programming in the earlier
classes, then the best place to fit in the concepts would be within the ‘best programming
practices’ section of the class. Dr. Pinkston pointed out that CMSC 313 (Computer
Organization & Assembly Language Programming) might be a great place to add security
concepts because of its focus on instruction set architecture and its relevance to buffer
overflows. He felt that CMSC 345 (Software Design and Development) was an excellent
capstone class for defensive programming. Dr. Pinkston felt that focusing on the security
implications of requiring several programs to interact safely and the dangers inherent
when one component fails would be especially germane to this class. Dr. Pinkston also
mentioned that merely trying to scare the students into security would have no more
effect then crying wolf. He recommended taking specific examples from the kinds of
programs the students had written earlier in their academic career and showing them
where insecure mistakes could have been included. Illustrating the possible ramifications
of such errors, would be a much more effective training mechanism then just trying to
frighten the students. Lastly because Dr. Pinkston was the department head, we asked
him how we could go about convincing the department as a whole to adopt our
suggestions into the curriculum. He pointed out that the department had already made
commitments to the Federal Government to add additional security concepts to the
UMBC CS curriculum. Additionally he mentioned that if a majority of the department
felt that security issues should be included in the curriculum, then any individual resistant
instructors would probably capitulate.

4.0 Results

For each of the four courses, we have produced new lecture material (see the appendices)
as well as suggestions for improving projects and other assignments. Where existing
lectures have been modified, we will make available a copy of the complete original
lecture notes or slides with our modifications included. This should make it easy for
instructors to make use of our suggestions. After completing a draft of our changes, we
revisited the course instructors to verify that we had produced useable results. The
outcome of those interviews will also be mentioned with each course’s suggested new
materials.

4.1 CMSC 201
We recommend the following changes for the lectures within the CMSC 201

curriculum. Overall, this course does an excellent job preparing students for their career
in computer science. Data validation and structured programming are stressed, and basic
problem solving is taught through rigorous projects and examinations. Addition of too

 Page 11

much material regarding defensive programming practices at this level could overload
students, so the volume of information should be minimized. Any concepts that are
introduced should be tied to the current curriculum, and should stress the fact that secure
code is also easier to manage and debug. We provide the following recommendations for
lecture additions, with the understanding that while the order of the lectures sometimes
changes slightly from semester to semester, the basic concepts covered in each lecture
remains the same.

Lecture 2: Control Structures, booleans, cautions

• Introduction to data validation should occur in this lecture.
Lecture 4: Tracing Function Calls

• Mention the fact that the C compiler will let you do things that are technically
insecure and dangerous. The fact that it lets you write bad or insecure code does
not justify such practices.

Lecture 5: Purposes of Functions and Separate Compilation
• Stress the importance of testing and how modular programming can lead to less

testing and more reliable, secure code through code reuse.
• Discuss the dangers of ignoring compiler warnings.

Lecture 6: Top-Down Design / Designing a Project
• Discuss the importance of keeping security in mind when designing programs.
• Mention libraries that might be helpful.

Lecture 7: (a link to the first project)
• This project should grade students’ use of data validation techniques.
• The design for this project should also include a brief discussion of security

implications.
Lecture 8: Arrays

• Discuss the dangers of referencing data outside the bounds of an array.
• Discuss the basic concept of a buffer overflow.
• Discuss segmentation faults.
• In the second project, students should be graded for avoidance of these errors.

The design document should discuss the implications of using arrays and the
possible dangers.

Lecture 9: Passing Arrays, Sorting and Searching
• Carry the discussions from lecture 8 over into this lecture, since they are basically

dealing with the same concepts.
Lecture 11: Structures and Arrays of structs

• Discuss the fact that structures do not allow for any protection of data. Let the
students know that C++ will introduce classes, which can remedy this problem.

Lecture 12: Structures and Arrays of structs
• Carry over the discussions from the last lecture. Ask students why it could be

beneficial to protect data stored within a structure-like data type.
Lecture 13: Pointers

• Introduce the concept of pointers, discuss initializing pointers to NULL.
Lecture 14: Pointers Revisited

 Page 12

• Show how pointers are just like arrays and therefore subject to the same sorts of
vulnerabilities.

• Make sure students discuss any security implications that pointers might cause in
their project.

Lecture 15: Pointer Applications
• Discuss how malloc() works, and how any memory allocated by malloc contains

whatever data previously existed at that memory address. Discuss the
implications of this.

Lecture 16: Pointers to Pointers, Command-Line Arguments
• Stress the importance of data validation when dealing with command line

arguments.
• Explain that pointers to pointers and arrays of pointers can have the same security

problems as traditional arrays and pointers.
Lecture 17: Characters & Strings

• Discuss some of the potential insecurities of the string.h library.
Lecture 18: Streams, I/O and stdio.h

• Discuss the dangers of gets() and other insecure functions dealing with strings and
characters.

• Make sure students avoid using insecure functions in their projects.
Lecture 20: Pointers to Structs and Self-Referencing Structs

• This lecture introduces self referencing structures in preparation for teaching
linked lists. Be sure to stress the importance of initializing pointers to NULL
after declaration.

Lecture 25: Stacks and Queues
• Introduce the concept of a heap and a stack and let students know that they will

learn more about them in future classes.
Lecture 26: Memory Management

• Discuss the dangers of printing un-initialized memory space.

The instructors teaching 201 thought that adding too much material to the
curriculum could overload the students. They also felt that much of the material required
to understand defensive programming concepts was beyond the understanding of students
at this level. However, they were supportive of adding a few references to security
issues.

4.2 CMSC 202

In this course, we have inserted material into three lectures throughout the semester. The
lectures already mentioned some of the topics we were concerned with, but we felt that
the security implications were not emphasized enough. Our new material will add
perhaps half an hour of additional content to the semester’s lectures, and should not
impact any single lecture tremendously.

A list of the lecture modifications in this course follows:

• Lecture 2 (Standards and Practices)

 Page 13

• In “Why Bother with Standards” section (whystds.shtml), added bold text.
Listed motivations for students to use secure programming practices

• In “Coding Practices” section (CodingPractices.html), added bold text.
Extended the precondition example to include a section about bounds
checking and how it relates to stating preconditions

• Lecture 8/9: Pointers and Dynamic Memory
• Added slide 10

Explained that newly allocated data is not blank
• Added slide 23-24

Explained how deleted data is not cleared, how that relates to slide 10, and
security implications of that

• Lecture 10: Copy/Assignment
• Added slide 7-8

Extended discussion of default copy constructors and how they can
interact with pointers to create security problems
Used this to illustrate how being imprudent with pointers can create
security problems

We decided against modifying the project assignments for this class. As mentioned
before, the later projects share a sort of symbiotic relationship with the lecture material
which we do not want to disrupt. Earlier projects are assigned before most of our new
material has been covered, so at best the project changes would be a review of material
from CMSC 201. We feel that this is best left in the earlier course.

The instructors were very supportive of these changes, and felt that they could be easily
included into the course. This course is already in the process of being re-evaluated and
modified by the coordinator, so now is a good time to introduce these changes. Mr. Frey
suggested that if some content regarding secure object design would be very beneficial,
but we were unable to find good material of this sort to include.

4.3 CMSC 341

CMSC 341 is the data structures class at UMBC. As such it was important both to the
researchers and the instructors that we not change the focus of the class from its
appointed purpose. In order to accomplish this we first needed to understand what the
course syllabus set forth to teach and what the course text book had to say in relation to
security and defensive programming. Sadly, neither source mentioned anything about
security whatsoever. From our preliminary instructor interviews, it was apparent that a
few slides provided at the beginning of the semester and some reinforcement in one of
the projects would be a good way to teach the students defensive programming tactics.

We developed seven slides that could be integrated into the current lecture series on basic
programming issues. These slides covered topics first presented in 201 & 202 and
included some new material as well:

• Good Comments
• I/O Validation

 Page 14

• Object Defense
• Dangerous Functions
• Post Processing/Static Analysis

We also revised Project 3, emphasizing some of the security and defensive programming
tactics learned earlier in the semester. The project was basically to make a Binary Search
Tree (BST) that held bank customers’ account numbers and credit card numbers. This
project does not change the core BST project currently used in the class, but does expose
students to considering security issues like static analysis, I/O validation, and proper use
of encryption to protect sensitive data.

After developing our slides and the programming project proposal, we met with the
various instructors for 341 again. In general the instructors were receptive to our
additions. Some were quite interested in incorporating our ideas into their curriculum
immediately. The instructors who currently lead the 341 instruction team, felt that the
new additions were quite valuable and would do well to augment the students
understanding of defensive programming. Unfortunately they felt that our proposed
project may be a little more difficult than the students could handle. Still, the questions
and tone of the project description were exactly the type of improvements they were
expecting. One of the instructors, in particular, enthusiastically requested copies of our
materials for use in his class next semester.

4.4 CMSC 345

In this course, we have suggested some modifications to the project description, and
created an entire lecture regarding secure programming. Also, the textbook currently
used for this course does include some material on secure programming. We have tried
to incorporate this material into our lecture, and several of our slides were produced
directly from material in the book.

The lecture we created comes in two parts. First, we examine secure programming
techniques. Concepts learned in previous classes are reviewed and extended, and special
attention is paid to the effects of a large group project. Second, we present the anatomy
of a stack-smashing attack, and ways such attacks can be avoided. This material has been
modified from William Byrd’s presentation on the same subject in CMSC 791. We have
had to strip down the material both for time and technical content. However, we feel that
this subject is important enough that students should be exposed to it at some point in the
curriculum.

We have suggested some small modifications to the project description concerning secure
programming. Security concepts have been added to the project description, and use of
static analysis tools has been suggested. Students have also been encouraged to add
security to their project through freely available software modules found online.

 Page 15

Ms. Mitchell felt that the first part of the lecture fit very well with the course. She
suggested that the second part of the lecture be removed to a course such as CMSC 445.
We agree with this, since the later class would allow us to cover that topic more in-depth.
However, CMSC 445 is not offered frequently enough, so we will include our material to
be used as a basis for future work. Ms. Mitchell was supportive of using static analysis
tools for the project, as it is a topic included in the textbook which she is also trying to
include more in the lectures. She felt that downloading freeware components and making
security a required part of the project would be best moved to CMSC 445. We agree that
moving those elements to a more advanced class would be appropriate, and will still
include them here as a basis for future work.

5.0 Open Problems / Conclusions

5.1 Open Problems
First and foremost, the short timeframe of this project has not allowed us to evaluate the
real effectiveness of our modifications. If these changes can be enacted, their
effectiveness certainly needs to be assessed. We have several suggestions to this end.

Our first testing suggestion would be to conduct surveys by randomly sampling students
at various levels within the CS curriculum to ascertain their current experience and
knowledge of security and defensive programming issues. This would form a control for
the experiment. Once our changes are enacted, a random sampling of students would be
surveyed each semester to see how much they had learned in the different classes. By
asking the same questions of all the students we would expect to see most of the
questions left unanswered by the students attending earlier/lower level classes and more
answered by students in the latter classes. This type of testing methodology might take
several years to complete, and faces the usual problems of obtaining good survey
responses, but could provide a very accurate picture of how effective our methods had
been. This evaluation solution could be carried out with minimal impact on the
instructors themselves.

A second evaluation technique would be for later classes to assume that earlier classes
had covered particular issues. These later classes would be able to begin instruction at a
particular stage and be able to grade the students’ comprehension to this point in the CS
curriculum on defensive programming and security awareness. This evaluation solution
would require much more work from the department and the various class instructors.
Though this method might clearly show the level of comprehension the students had
attained, but the amount of work required could be prohibitive.

A third evaluation technique would be to offer a contest of some sort to upper level
students (juniors and above). The goal of the contest would be to see if the participants
could: given a real-world project specification, develop a software solution for it, and
then submit it to the contest judges for a security audit. The prize would have to be
substantial enough to get the students interested in participating in the contest. Perhaps

 Page 16

an outside vendor would be willing to sponsor such prizes. This would have the added
benefit of involving the students with sponsors and exposing them to possible job
opportunities after graduation. This type of contest would not be preceded by any
particular class teaching security. Instead the students would be expected to have learned
enough throughout their various classes at UMBC to enable them to write secure code.
The shortfall of such an evaluation technique would be the difficulty in proving the
impact of our educational ideas on the students work, versus their innate talent and
propensity for security. However if such a contest were offered to several universities in
the area then perhaps the curriculum additions we are proposing could be a decisive
factor in a UMBC team of students winning the competition.

Another open problem in this area is to extend the modifications to every course in the
curriculum. Ideally, security modules and modifications could be developed for each
course, emphasizing the secure programming concepts and general security issues
associated with the material in that course.

Finally, an entire secure programming course could be created. It may or may not be
difficult to find a semester’s worth of material on secure programming, but the effort
should be made. Our modifications in this project have been small, and aimed at
impacting every student somewhat. This approach has limited the depth of technical
content we were able to include. It would be wonderful if a 400-level elective class could
be created for students interested in secure programming who already have the
background provided by their earlier courses.

5.2 Conclusions

The prevalence of insecure information technology resources has been widely observed
over the last decade. As we become increasingly reliant on these technologies, we need to
ensure that our future reliance can be grounded in the knowledge that the software which
drives these technologies was created by people who strive to ensure that it is safe and
incorruptible. Teaching defensive programming tactics to each student who graduates
with a degree in computer science will go a long way towards establishing society’s trust
in information technology resources.

The defensive programming paradigm is as earth-shattering now, at the turn of the 21st
century, as the object oriented (OO) programming paradigm was in the late 20th century.
Just as the OO method was initially met with resistance, so shall widespread adoption of
secure programming practices be slowed by generations of lazy programmers and
instructors who prefer to maintain the status-quo. Content to insist that defensive
programming is too hard for their students to grasp, these instructors will continue to help
produce mediocre programmers bent on performing the least amount of work required to
get the job done.

We have borne witness to a new generation of students: a generation raised in a world
where sloppy programming and inattention to security has impacted their daily lives.

 Page 17

Guided by a drive to improve on the mistakes of their forerunners, these new software
developers are starving for instruction that will enable them to succeed where their
predecessors have failed. The instructors of today’s basic programming classes must cast
off the shackles of laziness and complacency and lead these young minds towards a
future bright with the hope of safe and trustworthy computing for all mankind.

We have begun the assault on the shores of poor software development by providing a set
of instruction tools and ideas that will introduce students to the defensive programming
paradigm. These suggestions and concepts can be easily integrated into the four core
computer science classes at UMBC, leaving instructors with little excuse for not
incorporating them. In order for our assault to be successful, our ideas and suggestions
must be implemented as the first significant steps towards showing what a defensive
programming based curriculum could look like at UMBC. These course materials, while
specific to UMBC, should still be very applicable to courses at other institutions. There is
much work yet to be done in this battle, but we are undaunted. We are encouraged by the
instructor response to our ideas, and hope that remaining open problems will be solved by
members of our team or others in this field. The future of the world rests in the hands of
students learning to program. Providing them a strong foundation that allows them to
write safer code will pay dividends for years to come.

6.0 Bibliography

[AN96] Anonymous, “A Lab Engineer’s Check List for Writing Secure Unix Code”,
May 1996. ftp://ftp.auscert.org.au/pub/auscert/papers/secure_programming_checklist

[DD02] M. Dark, J. Davis, “Report on Information Assurance Curriculum
Development”, June 2002.
http://www.cerias.purdue.edu/education/post_secondary_education/undergrad_and_grad/
curriculum_development/information_assurance/report_info_assurance_cur_dev.pdf

[DW00] D. Wheeler, “Secure Programming for Linux HOWTO”; available:
http://www.theorygroup.com/Theory/FAQ/Secure-Programs-HOWTO.html; Feb. 2000

[NG02] N. Gray, “Class notes for CS1 & CS2—Iterators”;
http://www.uow.edu.au/~nabg/ABC/iter.html ; 2002

[JMC94] J. McConnell, “National Training Standard for Information Systems Security
(INFOSEC) Professionals—NSTISSI No. 4011”, June 1994.
http://www.nstissc.gov/Assets/pdf/4011.pdf

[MU02] Mullins, “Panel on Integrating Security Concepts into Existing Computer
Courses”, March 2002, ACM SIGCE Bulletin, Vol. 34, p. 365

 Page 18

[NCSA] NCSA, “NCSA Secure Programming Guidelines”, no date.
http://archive.ncsa.uiuc.edu/General/Grid/ACES/security/programming/

[IS01] I. Sommerille, “Software Engineering 6th edition”, Addison Wessley, Chapters
16,17,18,& 21. ©2001

[VA00] Richard Vaughn, “Application of Security to the Computer Science Classroom”,
March 2000, AMD SIGCE Bulletin, v. 32, p. 90

[VBKM00] Viega,Bloch,Kohno,McGraw, “ ITS4: A Static Vulnerability Scanner for C
and C++”, Dec. 2000, Presented at Annual Computer Security Applications Conference,
http://www.acsac.org/2000/papers/78.pdf

[YA01] T. Andrew Yang, “Computer Security and Impact on Computer Education”, May
2001, ACM Journal of Computing in Small Colleges vol. 16, p. 233

Evaluated UMBC Course Websites:
CMSC 201 Computer Science I for Majors (C programming)
 http://www.csee.umbc.edu/courses/undergraduate/201/spring03/
CMSC 202 Computer Science II for Majors (C++ programming)
 http://www.cs.umbc.edu/courses/undergraduate/202/spring03/
CMSC 341 Data Structures
 http://www.cs.umbc.edu/courses/undergraduate/341/spring03/index.shtml
CMSC 345 Software Design and Development
 http://www.csee.umbc.edu/courses/undergraduate/345/spring03/

6.1 Acknowledgements

We would like to say a special word of thanks to the course instructors interviewed
throughout this project: Ms. Block, Ms. Bogar, Mr. Edelman, Mr. Frey, Dr. Oates, Dr.
Peng, Dr. Pinkston, and Mr. Raouf. Without their generous input, feedback, and
comments, this project would not have been possible.

We would also like to thank Dr. Sherman for his instruction, editing, comments, and
guidance throughout the semester while we worked on this project.

