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Abstract: 
 
As the utility and ubiquity of information technology (IT) have increased, the deployment 
of poorly-written, insecure code has exploded. Hundreds of vulnerabilities are revealed 
by security defenders and malicious attackers each year. This ever-widening gap between 
good, secure software development supposedly taught in schools and the actual bug-
ridden code that is deployed will continue to plague our society and endanger our future.  
 
To combat this growing plague, we investigate how the existing undergraduate computer 
science curriculum at UMBC might be improved by including defensive programming 
concepts within the four required software development classes.  We utilize input and 
feedback from the course instructors to create materials for the undergraduate classes at 
the heart of the curriculum: CMSC 201 (Computer Science I for Majors), CMSC 202 
(Computer Science II for Majors), CMSC 341 (Data Structures), and CMSC 345 
(Software Engineering).  
 
We believe that stronger programmers, who write secure code by habit instead of by 
force, will be produced by a curriculum that repeatedly stresses basic defensive 
programming techniques. Techniques such as avoiding dangerous function calls and post- 
development analysis are simple enough that even first year students can incorporate, 
resulting in a lifetime of more secure software development. Students and instructors 
need to learn that the responsibilities of computer security lie not only with 
cryptographers, network engineers, and operating systems developers, but with anyone 
who writes software. 
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1.0 Introduction 
 

In the history of computing, security has always been an afterthought. Unless a particular 
application was designed for a security purpose, no thought was given to how a particular 
application could be exploited by malcontents or error-prone users. As a result of this, 
millions of hosts are compromised every year resulting in the loss of productivity, 
money, and privacy.  Mercifully, computer science is a relatively new field with an older 
generation that will exit the playing field in the coming decade. There is still time to 
reform the computer science education arena before we are forced to endure a permanent 
institutional mindset which neglects security. Impressing young students now with the 
fact that they will be responsible for future computer security problems – and teaching 
them how to avoid such problems through defensive programming tactics – will 
undoubtedly present a brighter millennium where societies can comfortably and safely 
use information technology to enhance their lives and lighten their burdens.   

1.1 Motivation 
 

 
Unfortunately, in most undergraduate institutions, security is a topic covered only in 
elective classes. Thus it is common for students to graduate with degrees in computer 
science without ever receiving instruction on security issues.  Through the personal 
experience of the researchers, it is evident that this problem is not at all unique to UMBC.  
If information systems are to be resistant to errors and malicious code, those who design 
the systems need to be made aware of security issues as they learn to program.   
 
An important step towards this goal is to expose computer science students to defensive 
programming concepts early and often in their coursework.  It is unnecessary to 
reconstruct an entire curriculum to this end. Instead, a set of learning modules could be 
included in existing courses to expose students to this material.  A learning module is a 
set of slides, and possibly some exercises or project descriptions, that can be easily added 
to an existing course. Ideally, one module could be tailor-made for almost every course in 
the catalog since nearly every subject in computer science has some impact on the 
security of its users.  The module would emphasize the security aspects most closely 
related to the course, perhaps exploring the underlying concepts of security principles 
learned in earlier courses.   
 
To limit the scope of this project, we have chosen to evaluate and provide defensive 
programming modules for four undergraduate courses at UMBC: CMSC 201 (Computer 
Science I for majors), CMSC 202 (Computer Science II for majors), CMSC 341 (Data 
Structures), and CMSC 345 (Software Engineering).  Teaching defensive programming 
principles and practices in these four courses will have the widest impact because all 
students graduating with a major or minor in computer science must complete them prior 
to graduation. Additionally these courses comprise the bulk of each student’s 
programming instruction. The skills they learn in these courses will effect their 
assignments in any other class or job situation for the rest of their lives.  
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We will proceed by first reviewing some of the previous work in the realm of defensive 
programming instruction. Then we recount the interviews and discussions we had with 
the instructors of the various UMBC courses. Followed by a list of our suggestions for 
improvement and the reaction of the instructors too our suggestions. Finally we provide 
some conclusions and open problems that still need to be resolved.  

2.0 Critical Review of Previous Work 
 

 

2.1 Current UMBC curriculum 
We begin our review of previous work by examining the current core programming 
curriculum at UMBC.  Upon entering the computer science degree program at UMBC, 
each student is required to complete a series of courses introducing them to computer 
programming and problem solving through software development.  These three courses 
are CMSC 201 (Computer Science I for majors), CMSC202 (Computer Science II for 
majors), and CMSC 341 (Data Structures).  Students majoring in Computer Science are 
also required to complete CMSC 345 (Software Engineering).  These courses work 
together to teach the novice Computer Science student the fundamental concepts of 
programming in the C language, advanced and object-oriented programming in C++, and 
developing data structures.  Each course is designed specifically for a certain level of 
programming expertise and each course builds upon the previous course material 
(requiring that course as a prerequisite) to give students a thorough understanding of 
programming concepts.   
 
While these courses strive to teach proper coding standards, language functionality, and 
basic problem solving, they mention very little about secure programming practices.  The 
general approach is to instruct students on which behaviors or functionalities of the 
language to avoid, without giving a thorough explanation of why these behaviors are 
dangerous.  We feel that in order for students to fully understand the implications of 
security (and the lack thereof) it is important to focus on these topics more thoroughly 
and present a more technical and in-depth examination of the concepts (within the scope 
of expectations for the respective courses). 
 

2.2 Federal Guidelines for Computer Security Education 
Since 1999, the National Security Agency has designated 36 universities as Centers of 
Academic Excellence in Information Assurance. In accordance with this designation 
these universities must adhere to a list of 10 qualifications including an overall 
curriculum mapped to various National Security Telecommunications and Information 
Systems Security Standards (NSTISSI). The foremost of which, number 4011, is the 
“National Training Standard for Information Systems Security (INFOSEC) 
Professionals,” dated June 20, 1994. This standard is meant to be viewed as a curriculum 
to teach students how to be INFOSEC professionals. Sadly, this standard is not sufficient 
substitute for our work. It focuses primarily on policy and general Automated 
Information Systems (AIS) management and planning. Though these are important 
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components for a graduate level course due to their more theoretical nature, this level of 
abstraction does not contain sufficient detail for teaching undergraduate students how to 
write code in a secure manner. Since software is a key component of any AIS, we believe 
that secure software development should be addressed at every step on the path towards a 
bachelor’s degree in computer science. 
 

2.3 The 2nd Annual Information Assurance Curriculum Development 
Workshop 
In June of 2002, Purdue University sponsored the second annual Information Assurance 
Curriculum Development Workshop. Melissa Dark and Jim Davis chronicled the 
experience in a paper called: “Report on Information Assurance Curriculum 
Development.” The workshop split up the participants into two groups: one focused on 
graduate level studies and one on undergraduate studies. The groups sought to classify 
the knowledge that students needed to attain into three domains: Declarative 
(memorization of facts & figures), Application (ability to use declarative knowledge 
previously acquired) and Synthesis (to create new solutions from existing knowledge). 
Out of the fourteen broad subject headings, only one was dedicated to secure software 
engineering practices. The four subjects listed (security of large software systems, 
programming language issues, software engineering techniques, and security issues) were 
good broad observations of the types of skills that the students should learn. However, 
detail was again lacking. A description of exactly what portions of an IA curriculum a 
student should be responsible for at a particular stage in his or her education was missing. 
A set of specific pitfalls and ways to avoid them in software engineering was not 
included. We hope that our work can start with these areas and provide specific solutions 
relative to the UMBC student, but generic enough in scope to allow other universities to 
benefit from our ideas.  
 

2.4 “Computer Security and Impact on Computer Education” 
Yang [YA01] examines the need for security to be taught in undergraduate curriculums.  
Many reasons why this is needed are given, and several outside sources of material are 
provided which may be helpful to those designing security lessons.  Integration of 
security topics into an existing curriculum is examined in detail, with suggestions for 
each course, though no details are provided.  Some time is also spent discussing the 
obstacles and issues facing anyone trying to enact real changes to a university’s 
curriculum. 

2.5 “Application of Security to the Computer Science Classroom” 
Vaughn [VA96] covers similar topics in a much more abbreviated fashion.  Specific 
recommendations are made for course content, but not as many courses are considered as 
in Yang’s paper [YA01].  The courses treated are: operating systems, database, software 
engineering, computer networking, and artificial intelligence.  It is interesting that for all 
its concern with security topics in advanced courses, this paper does not touch on 
including security instruction in introductory programming courses. 
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2.6 “Panel on Integrating Security Concepts into Existing Computer 
Courses” 
Mullins [MU02] writes a brief introduction to a panel discussion that was held at the 
SIGCE ’02 conference concerning the integration of security material into existing 
Computer Science courses.  This matches almost perfectly with our project.  
Unfortunately, this document only contains position statements from each of the panel 
members, and a transcript of the discussion does not seem to be available. 
 

3.0 Preliminary Interviews 
 

 
In order to develop material which will be usable in the courses at UMBC, we felt that 
the most effective tactic would be to solicit input from the instructors who teach those 
courses.  Before developing our material, we first conducted a round of preliminary 
interviews with the professors to give our project more direction.  In this phase, we 
sought to determine an appropriate format and quantity of content for each class.  Since it 
has been many years since any of the investigators were enrolled in equivalent classes, 
we also sought to verify that the proposed technical content of our new materials would 
be appropriate for students in these classes.  Finally, we investigated the possibilities for 
including some of our material in projects and assessments in order to reinforce student 
learning.  Additionally, we asked if the instructors had different opinions about which 
classes should be infused with secure programming material. 
 
The following is a list of the core concepts we want to include in our four classes: 

• The potential harm of programming errors and poorly secured code 
o Physical damage that has resulted due to unreliable code 
o Widespread malicious cyber-events against commercial companies, 

government agencies, and educational institutions 
o Financial impact of stolen credit cards or more serious bank account fraud 

• Common insecure practices that might be encountered at a student’s current 
instruction level 

o I/O data not validated 
� Can result in unexpected behavior in programs and invalid results 

o Segmentation faults due to accessing memory outside the bounds of an 
array 

o Data printed from the wrong memory addresses 
� Can potentially access and send sensitive information 

o Use of insecure functions such as strcpy() and gets() 
o Mishandled exceptions 
o Object Oriented programming issues 

� Class Destructors that don’t clear out sensitive data before the 
memory is deallocated 

� Lack of properly designed access control mechanisms utilizing 
public/private/protected/package modifiers 
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� Read-only accessor functions that return pointers instead of copies 
of the data referenced 

• Poorly commented and non-standardized code and how it can contribute to 
security problems. 

• Buffer overflows 
o What are they? 
o What is a buffer overflow attack? 
o How can buffer overflows/attacks be avoided? 

 

3.1 CMSC 201 
 
Sue Bogar and Dawn Block were the instructors interviewed for CMSC 201.  This course 
is the introductory Computer Science course for majors, and focuses on teaching them 
how to code in the C language.  Most of the students in this course are freshmen with 
very little formal programming experience or computer science skills in general.  
According to the instructors, many of the concepts of defensive programming might 
elude the students’ limited understanding.  However, the instructors believed there were 
several foundations that could be laid in 201 and embellished during later courses. 
 
The instructors maintained that there are not many places where one can specifically talk 
about security and give detailed examples because of the students’ limited experience. 
However, they did feel that there were plenty of opportunities to include “pointers” – a 
few sentences of material – throughout both the lecture and discussion notes.  The 
instructors also described opportunities to make sure students utilized defensive 
programming practices in the five projects they are assigned during the semester.  
Students could be encouraged to pay attention to these techniques by requiring them to 
discuss any security implications of their project in their design documentation.  Finally, 
questions could be added to the exams addressing some basic security issues as they 
relate to I/O validation and proper error handling. 
 
Both instructors were a bit hesitant to alter the curriculum, primarily because they felt 
that the existing course material is already overwhelming for the students.  Explaining 
basic security issues like buffer-overflows would be difficult due to the students’ lack of 
experience with concepts such as stacks, heaps, memory management, and advanced 
programming practices.  Both instructors seemed to think that advanced security concepts 
belonged in some course, but not in 201. 
 
One of the first steps that the instructors thought would be beneficial is to incorporate 
warnings into the lecture whenever possibly dangerous behaviors were presented.  The 
key concept of 201 is to teach students how to program effectively, using C as the 
medium for instruction.  To this end, there is already great stress placed on I/O validation.  
Further emphasis could be achieved with security case studies to really drive the point 
home.  Unfortunately neither of the instructors was very familiar with security issues 
beyond the basic dangers inherent to the language.  Yet both instructors thought that it 
would be a good idea to discuss potentially dangerous functions such as gets().  
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Currently, this is mentioned in lectures, and then the TA’s are asked to go into greater 
depth during the discussion section. 
 
One of the greatest obstacles to modifying this course is that while lecture notes are 
written each semester by the instructors, TA’s take turns writing the notes for the 
discussion sections.  This benefits the TA’s by providing them the opportunity to gain 
experience in preparing teaching material.  Unfortunately, this also results in notes which 
change every semester, and do not follow a standardized format. The discussion section 
notes are merely required to discuss lecture topics in greater depth.  Thus, each TA tends 
to incorporate his or her particular strengths and interests into the discussion notes.  
While the notes are peer reviewed, and ultimately accepted or rejected by the instructors 
based on the validity of the content, there is no requirement for security currently 
stressed.  It would be easy to examine three different versions of the same discussion 
from three different semesters and pick out similar concepts, but those concepts would be 
addressed differently depending on the TA’s background and the examples used.  This 
makes standardization difficult because the pool of TA’s is constantly changing. Even if 
instructors are convinced to incorporate defensive programming practices into their 
lectures, each semester’s TA’s would have to be reminded which security concepts to 
stress. 
 

3.2 CMSC 202 
 
Mr. Raouf and Mr. Frey  were the instructors interviewed for CMSC 202.  Currently, Mr. 
Frey is the course coordinator.  The stated goals for the class are to teach students general 
problem solving techniques, recursion, asymptotic algorithm analysis, basic data 
structures (linked lists, stacks, queues, binary search trees), abstract data types, memory 
allocation, functional parameters, basic sorting algorithms, object-oriented programming 
and C++ in general, and good coding practices. Learning of the course content is 
reinforced through five programming projects and three exams. 
 
Certainly defensive programming practices fall under the purview of “good coding 
practices”, so this course indeed seems to be an appropriate place to include our new 
material.  After talking with the instructors, it was apparent that small amounts of new 
material could be easily added to the lectures.  It was recommended that pointing out the 
relevant security pitfalls as new topics are covered would be much more effective than 
saving all security discussion until a lecture at the end of the class.  Also, the course is 
already very full of information, and it would be difficult to add a single block of new 
material anywhere in the course.  Thus making modifications on the order of a single 
slide or less to the relevant topics will make our results most easily adopted by the 
instructors, and should also be effective for the students. 
 
Including defensive programming in the projects and exams would be more difficult.  
The exams are already loaded enough with the existing content that including more 
security-related questions would likely be hard to accomplish while still making sure that 
students are tested thoroughly on the existing material.  The projects follow a similar 
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pattern, where adding another grading component would put too much strain on both 
students and graders.  For example, the projects already list user input validation as a 
grading component, but in practice it is not strictly enforced.  Apparently, if more 
emphasis was put on it, students would spend too much time working on that aspect, and 
not enough time learning the other larger concepts of the project.  Also, since input 
validation is stressed so much in 201, it doesn’t need quite so much attention in this class. 
It would, however, be both easy for the instructors and interesting for the students to have 
a project whose scenario raised security implications (i.e. working for a credit card or 
medical company).  The instructors suggested that a project regarding check digits for 
credit card numbers might suggest a good security theme.  Unfortunately, the later 
projects – the ones scheduled after our new content – are closely tied to the lecture 
material.  In teaching concepts like inheritance and polymorphism, the context of 
geometric shapes is used.  This context is extended and reinforced by the projects, and 
changing one of the later project scenarios would destroy the beneficial qualities of that 
relationship between lecture and project. 
 
We also gained some insight into what content we should include for the class.  Students 
in this class should be able to understand concepts regarding memory management and 
clearing sensitive data.  For example, it might be possible to examine what occurs in a 
malloc request, but the instructors would not be able to go into too much depth with 
operating system concepts, as the students have not taken that course yet.  A 
demonstration of how random old data can be picked up in freshly allocated memory 
would be appropriate.  Students would probably not be able to really understand how a 
lack of bounds-checking would lead to a stack-smashing exploit, but this is an 
appropriate place to demonstrate how failing to check bounds can lead to neighboring 
data accidentally (or intentionally!) being overwritten.  An effective demonstration of 
how mishandling pointers can lead to client programs with access to private data 
members would be good.  A recurring theme in the feedback was that our information 
should be concise, and reinforced with effective and dramatic demonstrations to capture 
students’ attention. 
 

3.3 CMSC 341 
 
Mr. Frey, Mr. Edleman, Dr. Peng, and Dr. Oates are the instructors interviewed for 
CMSC 341. Currently, Dr. Oates is serving as the course coordinator. This course has 
approximately 29 class meetings in which teachers cover topics relating to various data 
structures and their implementation. The class focuses on Abstract Data Types (ADT) 
and how to solve problems using them. ADT’s that describe how to manipulate stacks, 
queues, trees, heaps, hashes, and graphs are covered.  Student learning is reinforced 
through 5 programming projects assigned throughout the semester as well as three exams.  
 
In an attempt to be as practical as possible, our suggestions for incorporating defensive 
programming tactics for 341 revolved primarily around the class projects. Since this is 
where the rubber meets the road for the students, we felt that impacting them here would 
help reinforce the concepts better then merely lecturing to them. Of course the students 
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need to learn how to incorporate defensive programming into their projects before they 
start, so we felt that some lecture instruction would be needed as well. In order to 
evaluate what the students had learned we also inquired about the possibility of 
incorporating a security related test question on one or more of the exams. 
  
The first instructor interviewed felt initially that adding secure programming concepts 
might be simply too much work for the students to handle. He pointed out that most 
students consider 341 to be a challenging class and that adding additional security 
requirements to their programs and projects might be overwhelming. After further 
discussion, he felt that perhaps the best way to make the students more aware of security 
and defensive programming practices was to incorporate security related issues into the 
project descriptions in order to attract the students and make the projects more 
interesting. This has the benefit of not taking up lecture time and yet still exposes them to 
the necessity of defensive programming concepts. Each of the projects assigned in 341 
has two or three related questions that must be answered by the students. These questions 
are designed to make the students think about what they have done and why they solved 
the problem the way they did. The instructor thought that a question about something 
relating to security or defensive programming would fit nicely here. Additionally he felt 
that the best places to include defensive programming tactics was early in the semester, 
during the lectures on general programming techniques and debugging. Then as a 
reinforcement tactic, he thought that a review of some of the security concerns that the 
students should be aware of could be included in a lecture at the end of the semester. 
Finally, the instructor was adamant about not including security related questions on any 
exam.  
 
The second instructor interviewed did not feel that secure programming techniques 
belonged in the 341 curriculum at all. However after we had explained to him our ideas 
about how security should be woven throughout the CS curriculum he relented a little. 
After laying out all of our suggested improvements and ideas about where best to include 
defensive programming tactics, the instructor agreed that they were all good ideas. 
Unfortunately he was not very suggestive and did not provide any additional input as to 
how to incorporate security into the 341 curriculum. 
 
The third instructor interviewed was a wealth of suggestions and input. His initial 
concerns were very similar to the first interviewee that the students taking 341 are fairly 
overwhelmed by the class and its subject material as it is. He pointed out that in order to 
impact the students, security and defensive programming needed to be presented as more 
then mere meta-information. For example, students are told to include comments in their 
code, but the comments do not seem to be very important to them and therefore are not 
given the serious consideration they deserve. He pointed out that students at this level are 
best taught by specific example and that grand esoteric concepts will not be absorbed 
very well by the students. Similar to the first instructor, this instructor felt that perhaps 
the best place to include lecture notes on defensive programming would be at the front-
end of the class, during the lectures on good software development. He reinforced the 
idea that providing avenues for the instructors to teach their students should be easy for 
them to include and not generate too much extra work for them. Perhaps this instructor’s 
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most practical advice related to the development of object-oriented class destructors and 
ensuring that the memory areas controlled by the destructor were wiped clean before they 
were released. He also felt that the best way to teach defensive programming to students 
was to suggest security themes and introduce defensive concepts to them at the lower 
classes and then to provide a 400 level course that dealt specifically with the security 
topic. Lastly the instructor thought that the most difficult aspect of incorporating 
defensive programming techniques was not teaching the students, but convincing the 
instructors that it should be included in the first place. He recommended talking with the 
department head to discover his opinions on the matter.  
 
The fourth instructor interviewed, like all of the other 341 instructors, felt that 341 was 
perhaps not the best possible fit for defensive programming concepts.  However, he did 
believe that incorporating defensive programming in the final lecture of the semester 
would provide some benefit as it would give the students something to think about before 
they arrived in 345. CMSC 345 is the software development class that all undergraduates 
are required to take. This instructor believed that 345 was a much better place for security 
to be taught and that warming the students up to security in 341 would be useful. He 
stressed that any slides offered to the instructors should be concise and easy for them to 
understand. Finally, the instructor offered the opinion that students taking 202 would not 
be interested in security concepts at all.  
 

3.4 CMSC 345 
 
Acting on advice from our other interviews, we decided that CMSC 345 would also be a 
good place to include some new secure programming material.  This course is required 
for all Computer Science majors, but not minors.  Still, it is very attractive to us since it is 
the first class where students are working on a large group project. The students in this 
class are split up into groups and then assigned a customer for whom they must develop a 
software package. The package requires the interaction of several components including 
internet related applications and local end users.  This allows us to emphasize some 
secure programming concepts which have a more profound effect on larger projects. 
 
Ms. Mitchell is the instructor we interviewed for CMSC 345.  In talking with her, it was 
apparent that there is plenty of room for new material in the middle of the course, as 
students work on their semester-long project.  An entire lecture on secure programming 
would be easy to include in this course.  While we would need to be a little careful with 
technical content since students have not yet taken the operating systems class, this would 
be a good place to put our “capstone” secure programming material, reviewing and 
reinforcing the concepts learned in our previous courses. 
 

3.5 Department Head 
 
Following the suggestion of several of the instructors, we also interviewed Dr. Pinkston, 
the UMBC Computer Science department head. Dr. Pinkston thought the basic idea of 
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teaching security early and often was a great premise. He provided several excellent 
suggestions including the focus on defensive programming versus secure programming as 
a more accurate description of what we were advocating. Similar to the other instructors 
he felt that adding defensive programming to 201 and 202 might not be the best course of 
action but that incorporating such topics into 345 and possibly 313 was a better idea.  He 
suggested that if we were to insist upon including defensive programming in the earlier 
classes, then the best place to fit in the concepts would be within the ‘best programming 
practices’ section of the class. Dr. Pinkston pointed out that CMSC 313 (Computer 
Organization & Assembly Language Programming) might be a great place to add security 
concepts because of its focus on instruction set architecture and its relevance to buffer 
overflows. He felt that CMSC 345 (Software Design and Development) was an excellent 
capstone class for defensive programming. Dr. Pinkston felt that focusing on the security 
implications of requiring several programs to interact safely and the dangers inherent 
when one component fails would be especially germane to this class. Dr. Pinkston also 
mentioned that merely trying to scare the students into security would have no more 
effect then crying wolf. He recommended taking specific examples from the kinds of 
programs the students had written earlier in their academic career and showing them 
where insecure mistakes could have been included. Illustrating the possible ramifications 
of such errors, would be a much more effective training mechanism then just trying to 
frighten the students. Lastly because Dr. Pinkston was the department head, we asked 
him how we could go about convincing the department as a whole to adopt our 
suggestions into the curriculum. He pointed out that the department had already made 
commitments to the Federal Government to add additional security concepts to the 
UMBC CS curriculum. Additionally he mentioned that if a majority of the department 
felt that security issues should be included in the curriculum, then any individual resistant 
instructors would probably capitulate.   
 

4.0 Results 
 

 
For each of the four courses, we have produced new lecture material (see the appendices) 
as well as suggestions for improving projects and other assignments.  Where existing 
lectures have been modified, we will make available a copy of the complete original 
lecture notes or slides with our modifications included.  This should make it easy for 
instructors to make use of our suggestions.  After completing a draft of our changes, we 
revisited the course instructors to verify that we had produced useable results.  The 
outcome of those interviews will also be mentioned with each course’s suggested new 
materials. 
 

4.1 CMSC 201 
We recommend the following changes for the lectures within the CMSC 201 

curriculum.  Overall, this course does an excellent job preparing students for their career 
in computer science.  Data validation and structured programming are stressed, and basic 
problem solving is taught through rigorous projects and examinations.  Addition of too 
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much material regarding defensive programming practices at this level could overload 
students, so the volume of information should be minimized.  Any concepts that are 
introduced should be tied to the current curriculum, and should stress the fact that secure 
code is also easier to manage and debug.  We provide the following recommendations for 
lecture additions, with the understanding that while the order of the lectures sometimes 
changes slightly from semester to semester, the basic concepts covered in each lecture 
remains the same. 
 
Lecture 2: Control Structures, booleans, cautions 

• Introduction to data validation should occur in this lecture. 
Lecture 4: Tracing Function Calls 

• Mention the fact that the C compiler will let you do things that are technically 
insecure and dangerous.  The fact that it lets you write bad or insecure code does 
not justify such practices. 

Lecture 5: Purposes of Functions and Separate Compilation 
• Stress the importance of testing and how modular programming can lead to less 

testing and more reliable, secure code through code reuse.   
• Discuss the dangers of ignoring compiler warnings. 

Lecture 6: Top-Down Design / Designing a Project 
• Discuss the importance of keeping security in mind when designing programs. 
• Mention libraries that might be helpful. 

Lecture 7: (a link to the first project) 
• This project should grade students’ use of data validation techniques.   
• The design for this project should also include a brief discussion of security 

implications. 
Lecture 8: Arrays 

• Discuss the dangers of referencing data outside the bounds of an array.   
• Discuss the basic concept of a buffer overflow.   
• Discuss segmentation faults. 
• In the second project, students should be graded for avoidance of these errors.  

The design document should discuss the implications of using arrays and the 
possible dangers. 

Lecture 9: Passing Arrays,  Sorting and Searching 
• Carry the discussions from lecture 8 over into this lecture, since they are basically 

dealing with the same concepts. 
Lecture 11: Structures and Arrays of structs 

• Discuss the fact that structures do not allow for any protection of data.  Let the 
students know that C++ will introduce classes, which can remedy this problem. 

Lecture 12: Structures and Arrays of structs 
• Carry over the discussions from the last lecture.  Ask students why it could be 

beneficial to protect data stored within a structure-like data type. 
Lecture 13: Pointers 

• Introduce the concept of pointers, discuss initializing pointers to NULL.  
Lecture 14: Pointers Revisited 
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• Show how pointers are just like arrays and therefore subject to the same sorts of  
vulnerabilities. 

• Make sure students discuss any security implications that pointers might cause in 
their project. 

Lecture 15: Pointer Applications 
• Discuss how malloc() works, and how any memory allocated by malloc contains 

whatever data previously existed at that memory address.  Discuss the 
implications of this. 

Lecture 16: Pointers to Pointers, Command-Line Arguments 
• Stress the importance of data validation when dealing with command line 

arguments. 
• Explain that pointers to pointers and arrays of pointers can have the same security 

problems as traditional arrays and pointers. 
Lecture 17: Characters & Strings 

• Discuss some of the potential insecurities of the string.h library. 
Lecture 18: Streams, I/O and stdio.h 

• Discuss the dangers of gets() and other insecure functions dealing with strings and 
characters.  

• Make sure students avoid using insecure functions in their projects. 
Lecture 20: Pointers to Structs and Self-Referencing Structs 

• This lecture introduces self referencing structures in preparation for teaching 
linked lists.  Be sure to stress the importance of initializing pointers to NULL 
after declaration. 

Lecture 25: Stacks and Queues 
• Introduce the concept of a heap and a stack and let students know that they will 

learn more about them in future classes. 
Lecture 26: Memory Management 

• Discuss the dangers of printing un-initialized memory space. 
 

The instructors teaching 201 thought that adding too much material to the 
curriculum could overload the students.  They also felt that much of the material required 
to understand defensive programming concepts was beyond the understanding of students 
at this level.  However, they were supportive of adding a few references to security 
issues. 

4.2 CMSC 202 
 
In this course, we have inserted material into three lectures throughout the semester.  The 
lectures already mentioned some of the topics we were concerned with, but we felt that 
the security implications were not emphasized enough.  Our new material will add 
perhaps half an hour of additional content to the semester’s lectures, and should not 
impact any single lecture tremendously.   
 
A list of the lecture modifications in this course follows: 

• Lecture 2 (Standards and Practices) 
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• In “Why Bother with Standards” section (whystds.shtml), added bold text.  
Listed motivations for students to use secure programming practices 

• In  “Coding Practices” section (CodingPractices.html), added bold text. 
Extended the precondition example to include a section about bounds 
checking and how it relates to stating preconditions 

• Lecture 8/9: Pointers and Dynamic Memory 
• Added slide 10 

Explained that newly allocated data is not blank 
• Added slide 23-24 

Explained how deleted data is not cleared, how that relates to slide 10, and 
security implications of that 

• Lecture 10: Copy/Assignment 
• Added slide 7-8 

Extended discussion of default copy constructors and how they can 
interact with pointers to create security problems 
Used this to illustrate how being imprudent with pointers can create 
security problems 

 
We decided against modifying the project assignments for this class.  As mentioned 
before, the later projects share a sort of symbiotic relationship with the lecture material 
which we do not want to disrupt.  Earlier projects are assigned before most of our new 
material has been covered, so at best the project changes would be a review of material 
from CMSC 201.  We feel that this is best left in the earlier course. 
 
The instructors were very supportive of these changes, and felt that they could be easily 
included into the course.  This course is already in the process of being re-evaluated and 
modified by the coordinator, so now is a good time to introduce these changes.  Mr. Frey 
suggested that if some content regarding secure object design would be very beneficial, 
but we were unable to find good material of this sort to include. 

4.3 CMSC 341 
 
CMSC 341 is the data structures class at UMBC. As such it was important both to the 
researchers and the instructors that we not change the focus of the class from its 
appointed purpose. In order to accomplish this we first needed to understand what the 
course syllabus set forth to teach and what the course text book had to say in relation to 
security and defensive programming. Sadly, neither source mentioned anything about 
security whatsoever.  From our preliminary instructor interviews, it was apparent that a 
few slides provided at the beginning of the semester and some reinforcement in one of 
the projects would be a good way to teach the students defensive programming tactics.  
 
We developed seven slides that could be integrated into the current lecture series on basic 
programming issues. These slides covered topics first presented in 201 & 202 and 
included some new material as well: 

• Good Comments 
• I/O Validation 
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• Object Defense 
• Dangerous Functions 
• Post Processing/Static Analysis 
 

We also revised Project 3, emphasizing some of the security and defensive programming 
tactics learned earlier in the semester. The project was basically to make a Binary Search 
Tree (BST) that held bank customers’ account numbers and credit card numbers. This 
project does not change the core BST project currently used in the class, but does expose 
students to considering security issues like static analysis, I/O validation, and proper use 
of encryption to protect sensitive data.  
 
After developing our slides and the programming project proposal, we met with the 
various instructors for 341 again. In general the instructors were receptive to our 
additions. Some were quite interested in incorporating our ideas into their curriculum 
immediately. The instructors who currently lead the 341 instruction team, felt that the 
new additions were quite valuable and would do well to augment the students 
understanding of defensive programming. Unfortunately they felt that our proposed 
project may be a little more difficult than the students could handle. Still, the questions 
and tone of the project description were exactly the type of improvements they were 
expecting. One of the instructors, in particular, enthusiastically requested copies of our 
materials for use in his class next semester.  
 

4.4 CMSC 345 
 
In this course, we have suggested some modifications to the project description, and 
created an entire lecture regarding secure programming.  Also, the textbook currently 
used for this course does include some material on secure programming.  We have tried 
to incorporate this material into our lecture, and several of our slides were produced 
directly from material in the book.   
 
The lecture we created comes in two parts.  First, we examine secure programming 
techniques. Concepts learned in previous classes are reviewed and extended, and special 
attention is paid to the effects of a large group project.  Second, we present the anatomy 
of a stack-smashing attack, and ways such attacks can be avoided.  This material has been 
modified from William Byrd’s presentation on the same subject in CMSC 791.  We have 
had to strip down the material both for time and technical content.  However, we feel that 
this subject is important enough that students should be exposed to it at some point in the 
curriculum. 
 
We have suggested some small modifications to the project description concerning secure 
programming.  Security concepts have been added to the project description, and use of 
static analysis tools has been suggested.  Students have also been encouraged to add 
security to their project through freely available software modules found online. 
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Ms. Mitchell felt that the first part of the lecture fit very well with the course.  She 
suggested that the second part of the lecture be removed to a course such as CMSC 445.  
We agree with this, since the later class would allow us to cover that topic more in-depth.  
However, CMSC 445 is not offered frequently enough, so we will include our material to 
be used as a basis for future work.  Ms. Mitchell was supportive of using static analysis 
tools for the project, as it is a topic included in the textbook which she is also trying to 
include more in the lectures.  She felt that downloading freeware components and making 
security a required part of the project would be best moved to CMSC 445.  We agree that 
moving those elements to a more advanced class would be appropriate, and will still 
include them here as a basis for future work. 
 

5.0 Open Problems / Conclusions 
 

5.1 Open Problems 
First and foremost, the short timeframe of this project has not allowed us to evaluate the 
real effectiveness of our modifications.  If these changes can be enacted, their 
effectiveness certainly needs to be assessed.  We have several suggestions to this end.  
 
Our first testing suggestion would be to conduct surveys by randomly sampling students 
at various levels within the CS curriculum to ascertain their current experience and 
knowledge of security and defensive programming issues.  This would form a control for 
the experiment. Once our changes are enacted, a random sampling of students would be 
surveyed each semester to see how much they had learned in the different classes. By 
asking the same questions of all the students we would expect to see most of the 
questions left unanswered by the students attending earlier/lower level classes and more 
answered by students in the latter classes. This type of testing methodology might take 
several years to complete, and faces the usual problems of obtaining good survey 
responses, but could provide a very accurate picture of how effective our methods had 
been. This evaluation solution could be carried out with minimal impact on the 
instructors themselves.  
 
A second evaluation technique would be for later classes to assume that earlier classes 
had covered particular issues. These later classes would be able to begin instruction at a 
particular stage and be able to grade the students’ comprehension to this point in the CS 
curriculum on defensive programming and security awareness. This evaluation solution 
would require much more work from the department and the various class instructors. 
Though this method might clearly show the level of comprehension the students had 
attained, but the amount of work required could be prohibitive. 
 
A third evaluation technique would be to offer a contest of some sort to upper level 
students (juniors and above). The goal of the contest would be to see if the participants 
could: given a real-world project specification, develop a software solution for it, and 
then submit it to the contest judges for a security audit. The prize would have to be 
substantial enough to get the students interested in participating in the contest.  Perhaps 
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an outside vendor would be willing to sponsor such prizes. This would have the added 
benefit of involving the students with sponsors and exposing them to possible job 
opportunities after graduation. This type of contest would not be preceded by any 
particular class teaching security. Instead the students would be expected to have learned 
enough throughout their various classes at UMBC to enable them to write secure code. 
The shortfall of such an evaluation technique would be the difficulty in proving the 
impact of our educational ideas on the students work, versus their innate talent and 
propensity for security.  However if such a contest were offered to several universities in 
the area then perhaps the curriculum additions we are proposing could be a decisive 
factor in a UMBC team of students winning the competition. 
 
Another open problem in this area is to extend the modifications to every course in the 
curriculum.  Ideally, security modules and modifications could be developed for each 
course, emphasizing the secure programming concepts and general security issues 
associated with the material in that course.   
 
Finally, an entire secure programming course could be created.  It may or may not be 
difficult to find a semester’s worth of material on secure programming, but the effort 
should be made.  Our modifications in this project have been small, and aimed at 
impacting every student somewhat.  This approach has limited the depth of technical 
content we were able to include.  It would be wonderful if a 400-level elective class could 
be created for students interested in secure programming who already have the 
background provided by their earlier courses. 
 

5.2 Conclusions 
 
The prevalence of insecure information technology resources has been widely observed 
over the last decade. As we become increasingly reliant on these technologies, we need to 
ensure that our future reliance can be grounded in the knowledge that the software which 
drives these technologies was created by people who strive to ensure that it is safe and 
incorruptible. Teaching defensive programming tactics to each student who graduates 
with a degree in computer science will go a long way towards establishing society’s trust 
in information technology resources.  
 
The defensive programming paradigm is as earth-shattering now, at the turn of the 21st 
century, as the object oriented (OO) programming paradigm was in the late 20th century. 
Just as the OO method was initially met with resistance, so shall widespread adoption of 
secure programming practices be slowed by generations of lazy programmers and 
instructors who prefer to maintain the status-quo. Content to insist that defensive 
programming is too hard for their students to grasp, these instructors will continue to help 
produce mediocre programmers bent on performing the least amount of work required to 
get the job done.  
 
We have borne witness to a new generation of students: a generation raised in a world 
where sloppy programming and inattention to security has impacted their daily lives. 
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Guided by a drive to improve on the mistakes of their forerunners, these new software 
developers are starving for instruction that will enable them to succeed where their 
predecessors have failed. The instructors of today’s basic programming classes must cast 
off the shackles of laziness and complacency and lead these young minds towards a 
future bright with the hope of safe and trustworthy computing for all mankind.  
 
We have begun the assault on the shores of poor software development by providing a set 
of instruction tools and ideas that will introduce students to the defensive programming 
paradigm. These suggestions and concepts can be easily integrated into the four core 
computer science classes at UMBC, leaving instructors with little excuse for not 
incorporating them.  In order for our assault to be successful, our ideas and suggestions 
must be implemented as the first significant steps towards showing what a defensive 
programming based curriculum could look like at UMBC.  These course materials, while 
specific to UMBC, should still be very applicable to courses at other institutions. There is 
much work yet to be done in this battle, but we are undaunted.  We are encouraged by the 
instructor response to our ideas, and hope that remaining open problems will be solved by 
members of our team or others in this field.  The future of the world rests in the hands of 
students learning to program.  Providing them a strong foundation that allows them to 
write safer code will pay dividends for years to come. 
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