
Calculating π to a million digits or more - a discursive approach

Samir Chettri

July 8, 2013

1 Why π?

Despite the hype explicit in the title of a recent book – ”Pi: A Biography of the World’s Most
Mysterious Number” [2], there are many reasons to study this number and compute it to a very
large number of digits. Here is why :

1. The number has been studied by a pantheon of mathematical greats including Newton,
Euler, Ramanujan et al. Retracing their mathematical steps is pleasurable.

2. Computing the digits to (say) the millionth digit could help test the hardware providing
the computational power.

3. It provides a good education in and applications of various aspects of computer science
and mathematics.

The emphasis in these notes is pedagogical. Specifically, this document discusses a powerful
technique due to Borwein, Bailey and Plouffe (BBP) [1] for calculating any digit of π in roughly
linear time without computing the intervening digits. Remarkably, an individual with a high
school grounding in mathematics and calculus (as is currently offered in many schools) will be
able to follow the arguments. Certainly most students at the end of their first year in a Computer
Science or Electrical Engineering degree program will find the text eminently comprehensible.
Moreover, with rudimentary skills in a computer language such as MATLAB or Python, code
may be written to perform the calculations.

2 Some mathematics - computer mathematics

Understanding how a computer works with numbers is important and will be used in future
sections. The presentation that follows is minimalistic with just enough detail to understand
the main arguments of this presentation.

1

2.1 Decimal numbers

Decimal numbers are the workhorse of science and engineering. This is not a tutorial on the
decimal number system in any detail, rather definitions and key concepts are discussed – the
intent being to get to to the destination with just the necessary amount of knowledge. While
there will be occasions when a circuitous route will be taken, it will always be with the goal in
mind.

Definition 2.1. The radix or base of a number system is the number of symbols used to represent
numbers.

The radix of the decimal system is 10 because it uses the symbols 0, 1, 2, . . . 9 to represent a
number. For octal, the radix is 8, for binary (next subsection) it is 2 (0, 1) etc. There is also
the notion of a radix point that permits separation between integers and fractions.

Any exposition on decimal numbers include the units, tenths, hundredths, thousandths etc.
places. For example the decimal number 7942 may be viewed in the following manner.

7 9 4 2
× × × ×

103 102 101 100

103 × 7 102 × 9 101 × 4 100 × 2

The above table emphasizes the notion that the number is 1000×7 + 100×9 + 10×4 + 1×2
or 7000 + 900 + 40 + 2 = 7942. Sometimes, in order to make things clear a number will have its
radix as a subscript to distinguish between other radices, e.g., 632510 6= 63258.

2.2 Binary numbers

The radix/base of the binary system of numbers is 2 and the symbols employed are {0, 1}, also
known as binary digits or bits. What does a binary number look like? It must use the symbols
0, 1 and these symbols only. For example a binary number is 1101. Again, to help disambiguation
from the decimal number 1101 (one thousand one hundred and one) it may written as 11012.

Humans use decimal numbers in everyday calculation, yet computers are most efficient when
using binary since the state of many of the devices used in modern machines may be “on/off”
or 0/1. This begs the question – if humans like decimal1 and computers prefer binary – how do
we convert from one to the other and vice–versa?

The following example will make clear how to convert a binary number (say, 11111000001102)
into decimal. The binary number is written below along with its associated powers of two. The

1This is perhaps not universal since the ancient Babylonians used a base-60 number system. The continued
use of hours, minutes and seconds in measuring angles is another example.

2

left–most bit, 1, also known as the most significant bit (MSB) is associated with 212, the next
bit to the right (also a 1) is associated with 211 and so on until we reach the least significant
bit (LSB) which is associated with 20 = 1. Notice the similarity (and difference) in binary
representation and its association with powers of two and the decimal representation and the
association with powers of ten.

1 1 1 1 1 0 0 0 0 0 1 1 0
× × × × × × × × × × × × ×
212 211 210 29 28 27 26 25 24 23 22 21 20

4096 2048 1024 512 256 0 0 0 0 0 4 2 0

To obtain the decimal number from the binary we just have to follow the multiplication
pattern above, i.e., 212 × 1 + 211 × 1 + 210 × 1 + 29 × 1 + 28 × 1 + 27 × 0 + 26 × 0 + 25 × 0 +
24 × 0 + 23 × 0 + 22 × 1 + 21 × 1 + 20 × 0 = 4096 + 2048 + 1024 + 512 + 256 + 4 + 2 = 7942.
Hence, 11111000001102 = 794210. this process of binary to decimal conversion is cometimes
called decoding.

The reverse process, i.e., decimal to binary conversion, also known as encoding, involves
repeated division. Since the answer is already known 794210 will be converted. The table below
illustrates the process with repeated division by two with the last line showing remainders (either
0 or 1). The results are obtained in reverse order, i.e., the LSB first and MSB last.

7942 3971 1985 992 496 248 124 62 31 15 7 3 1
÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷
2 2 2 2 2 2 2 2 2 2 2 2 2

0 1 1 0 0 0 0 0 1 1 1 1 1

Below is a MATLAB function, MyDec2BinConvert, that takes a positive decimal integer
and converts it to a binary representation using the process described above. As explained,
the output is reversed though the function may be modified to print it in conventional order.
Although MATLAB has its own converter (de2bi), the code MyDec2BinConvert will become
important in a later part of the document, so an understanding of the coding of the conversion
process is crucial.

function [] = MyDec2BinConvert(n)

% Obtain the binary representation of a decimal integer

% Number of bits needed to represent the number n

% ndigit = floor(log2(n)) + 1 - this may be used for

% loop control as opposed to the while loop below.

while (n > 0)

if (mod(n,2) == 1)

disp(’1’)

else

disp(’0’)

3

end

n = floor(n/2);

end

Binary addition and multiplication2 follows very simple rules. The tables show addition
(left) and multiplication (right)

+ 0 1 × 0 1
0 0 1 0 0 0
1 1 0 → carry 1 1 0 1

For binary addition of ones the result is 0 with a carry over of 1 as indicated in the table.

In subsequent sections multiplication of binary numbers by two will be needed - there is a
special structure to this multiplication.

a1 a2 a3 a4 a5 . . . an
× 1 0

0 0 0 0 0 . . . 0 0 (n zeros)
a1 a2 a3 a4 a5 . . . an
a1 a2 a3 a4 a5 . . . an 0

So multiplication by 210 = 102 leads to a left shift of the entire number with a 0 added to the
end, i.e., the MSB of the first number is a1 and it is multiplied by 2n−1, whereas in the result
the MSB is a1 and it is multiplied by 2n. The LSB is an in the first number and 0 in the result.

When multiplying mixed binary numbers (i.e., the number has integer and fractional parts)
with two, the binary point moves one point to the right3.

Example: Multiply this binary number 11.0010 0100 0011 1111 0110 1010 1000 1000 by 27.

This result is 110010 010.0 0011 1111 0110 1010 1000 1000, i.e., the binary radix point moves
seven places to the right.

2.3 Hexadecimal numbers

Consider any four–bit number XXXX2 where each bit could be either 0 or 1. The total number
of numbers that can be represented by four bits is 24 = 16 and the largest number representable

2Subtraction and division are also easy, but not needed in this document
3Similar to multiplying decimal numbers by ten

4

is 24−1 = 15. In the hexadecimal (“hex,” meaning six and “decimal,” meaning ten) system the
radix or base is sixteen and its symbols are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}. A table
showing conversions between hex, decimal and binary is below.

Decimal Hexadecimal Binary Decimal Hexadecimal Binary

0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

Hexadecimal converts readily to binary, and vice–versa, with no need for multiplications
or other mathematical operations. Consider 7E016. Simply use the conversion table provided
above to convert each hexadecimal number to its binary equivalent, e.g.,

Hex 7 E 0
Binary 0111 1110 0000

For the reverse process group the binary numbers in tetrads from the LSB adding zeros, if
necessary, at the MSB, and follow that by a mapping from the table above. For example,
100111000002 may be grouped as 100 1110 0000 and the conversion to 4E016 follows trivially.

Grouped binary 100 1110 0000
Augmented binary 0100 1110 0000

Hex 4 E 0

Mixed numbers are also easily converted from binary to hex and vice versa. The long binary
number 11.0010 0100 0011 1111 0110 1010 1000 10002 is represented as 3.243F6A88 in base
sixteen. The reverse process is left as an exercise for the reader.

Conversions from hex to decimal and decimal to hex follow the methodology outlined for
binary→decimal/decimal→binary, i.e., repeated use of factors of sixteen instead of two. For
example the hex number 3BA716 = 15, 72110. Details are shown below - note that the numbers
in the last row are added together to give the final result. The MATLAB function hex2dec may
be used for this purpose.

3 B A 7
× × × ×

163 162 161 160

3× 4096 11× 256 10× 16 7× 1

5

As with binary→decimal conversions, the binary→hexadecimal conversion requires repeated
division by sixteen while the remainders provide the decimal digits which are to be converted
to hex. Also, the hex number is output in reverse order, i.e., the most significant hex digit is on
the right and the least significant hex digit is on the left.

15271 954 59 3
÷ ÷ ÷ ÷
16 16 16 16

7 10 11 3
↓ ↓ ↓ ↓
7 A B 3

3 Some mathematics - number theory

This section serves to introduce some useful elementary number theory in a self contained
manner. As with the rest of the document, the goal is to extract the most useful concepts
efficiently. For more details the reader may wish to refer to the vast corpus of textbooks on the
subject.

3.1 The mod function

The (mod) function is the workhorse of number theory yet only involves simple mathematical
concepts. But first the basis of the (mod) – divisibility.

Definition: ∀a, b, k ∈ Z 4, a divides b (or b is divisible by a) if and only if b = ka. We write
this as a|b where ’“|” is taken to mean “divides” or “is divisible by.” There are two important
facts about divisibility that are needed.

Fact 3.1. ∀a, b, c ∈ Z, if a|b and a|c then a|(b+ c).

The proof is easy. Let k, l ∈ Z then b = ka and c = la. Adding b + c = (k + l)a or by
definition a|(b+ c) since k + l ∈ Z.

Fact 3.2. ∀a, b, c, j, k ∈ Z, if a|b and a|c then a|(jb+ kc).

It is easy to show that a|jb and a|kc. Let jb = l and kc = m (l ∈ Z and m ∈ Z). So a|l and
a|m. Using Fact 3.1 we know a|(l +m) or a|(jb+ kc).

4The notation Z is an abbreviation for all integers, i .e., {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. In the language of set
theory, Z, is the set of all integers and ∈ means “belongs to.” Thus a ∈ Z is shorthand for the statement “a is an
integer.”

6

The floor of x ∈ R, denoted bxc is the greatest integer less than or equal to x. For example
b3.14159c = 3 and b−3.14159c = −4.

Definition 3.1. ∀a, b, n ∈ Z, a ≡ b (mod m) means that b is the remainder when a is divided
by m. Another way of saying this is m|(a− b), i.e., m divides (a− b).

The ≡ sign is sometimes replaced by the = sign so we might write a = b (mod m).We will
use this in preference to ≡.

Example 7 = 3 (mod 4) is clearly true. What about −1 = 3 (mod 4)? This may shown to
be true by rewriting 4|(−1− 3) = 4|(−4).

One may generalize the above example by asking what numbers a ∈ Z when divided by 4 will
give a remainder of 3. Again, using the definition, the numbers in the series . . . ,−5,−1, 3, 7, 11, . . .
all have this property.

Property 3.1. ∀a1, b1, a2, b2, n ∈ Z, if a1 = b1 (mod n) and a2 = b2 (mod n), then (a1 + a2) =
(b1 + b2) (mod n) or n|(a1 − b1 + a2 − b2).

From the definition n|(a1 − b1) and n|(a2 − b2). Using Fact 3.1 on divisibility we have
n|(a1 − b1 + a2 − b2).

Property 3.2. ∀a1, b1, a2, b2, n ∈ Z, if a1 = b1 (mod n) and a2 = b2 (mod n), then (a1a2) =
(b1b2) (mod n).

Now n|(a1− b1) and n|(a2− b2). Using Fact 3.2 on divisibility (linear combinations) we have
n|(a2(a1−b1)+b1(a2−b2). Simplifying, n|(a1a2−b1b2) which by definition gives (a1a2) = (b1b2)
(mod n).

Multiplying, a1a2 = (b1 (mod n))(b2 (mod n)) = b1b2 (mod n). What this is saying is, if
we have a = b (mod n) and b can be factorized into b1, b2 then b1b2 (mod n) = (b1 (mod n))(b2
(mod n)). This property permits modulo operations on very large integers by performing con-
secutive modulo operations on its factors.

Property 3.3. If a = b (mod n), then b = a (mod n).

By definition n|(b−a), but it is also true that n|(−1)(a−b) or n|(b−a) =⇒ b = a (mod n).

Example Previously we considered 7 = 3 (mod 4) which can be read as 7 divided by 4
returns a remainder of 3. Using Property 3.3 we also have 3 = 7 (mod 4) which says that 3 is
the remainder when 7 is divided by 4. We will use this latter form, i.e., b = a (mod n) means
that b is the remainder when a is divided by n.

7

3.2 Successive Squaring

Doing remainders using mod seems easy enough until the numbers get very large. Consider the
following example.

Example Compute 710 mod 93 and 7365 mod 93.

We use MATLAB for this problem.

Listing 1: Illustration of mod in MATLAB

>> mod (7^10, 93)

ans =

25

Noting that 710 = 282475249, a remainder of 25 is obtained if this number is divided (long
division) by 93. The reader is encouraged to do this. But what about the latter problem?

>> y = mod (7^365 , 93)

y =

NaN

MATLAB says that it “Not a Number”. Further insight may be obtained as below:

>> 7^365

ans =

Inf

MATLAB says the number is too large to calculate in IEEE arithmetic. Again, a determined
human should be able to write the answer by repeated multiplication followed by division, but
does this mean that the problem is unsolvable by computer and are we fated to have humans
do these types of calculations by hand? Let us take the scenic route to answering that question.

Begin with the following series of calculations: 710 (mod 93) = 77 (mod 93)×73 (mod 93) =
77 (mod 93) × 343 (mod 93) = 77 (mod 93) × 64 (mod 93) = 7764 (mod 93). The calculation
to the right of the first = sign is a consequence of Property 3.2; now 73 = 343 which accounts
for 64 = 343 (mod 93) but by Property 3.3 we can write the final result.

The entire computation may be carried out but with some details hidden so as not to make

8

this exposition longer,

710 (mod 93) = 77 × 73 (mod 93)

= 77 × 343 (mod 93)

= 77 × 64 (mod 93)

= 76 × 7× 64 (mod 93)

= 76 × 76 (mod 93)

= 75 × 67 (mod 93)

= 74 × 4 (mod 93)

= 73 × 28 (mod 93)

= 72 × 196 (mod 93)

= 490 (mod 93)

Performing the final division gives a remainder of 25, exactly what MATLAB calculated. In
principle 7365 (mod 93) could be computed as above. However, one crucial observation will help
make computations quicker.

Consider 713 (mod 93) = 78 × 74 × 71 (mod 93) = 19. Now create a table as follows

71 = 7 = 7 (mod 93)
72 = (71)2 = 72 = 49 = 49 (mod 93)
74 = (72)2 = (49)2 = 2401 = 76 (mod 93)
78 = (74)2 = (76)2 = 5776 = 10 (mod 93)

Note that only 78, 74, and 71 are needed to perform the computation, but in order to get to 78

we need to calculate 74. Only three multiplications involving squaring the remainders 7, 49 and
76 are required. The mod function is also used four times.

To continue,

713 mod 93 = 78 × 74 × 71 mod 93
= (78 mod 93)× (74 mod 93)× (71 mod 93)
= (10 mod 93)× (76 mod 93)× (7 mod 93) (substitute from above table)
= (10× 76 mod 93)× (7 mod 93)
= (16 mod 93)× (7 mod 93)
= 19

Since we use the powers–of–two calculations above, we see that there are only three multiplica-
tions and two applications of mod. Thus the total calculation is 6 multiplications and 5 mod
applications.

Example Show that calculating 713 mod 93 would take twelve multiplications and numerous
uses of mod.

We can show that the number of multiplications to compute ak mod n is between dlog2 ke
and 2dlog2 ke, whereas, the direct method would take k multiplications. For k large enough
2dlog2 ke < k, proving the superiority of the method of successive squaring.

9

For clarity note that the powers of two that sum up to 13 in the above calculation could
explicitly be multiplied by 1 or 0, i.e., 13 = 1×23+1×22+0×21+1×20 = 8+4+0+1. Hence
it should be evident that the binary expansion of 1310 is [1 1 0 1] . If we read this string from
left to right we can clearly see which powers of 2 sum to 13 (i.e., 23, 22, 20) and in in particular
21 = 2 is not used in the fast calculation of 713 mod 93.

The naive method of squaring and the method of successive squares can be compared using
the following programs/functions.

function [NaivePower] = NaiveSquaresModulo(a, n, m)

%NaiveSquaresModulo This just loops around n times computing

%a^n mod m

NaivePower = 1;

for i = 1:n

NaivePower = mod(NaivePower*mod(a,m), m);

end

The method of successive squares is a more complicated code but still quite brief:

1 function [SSPower] = SSquares(a, n, m)

2 % SSquares Use the method of successive squares for powers

3 % modulo n. Detailed explanation in the text of this document

4

5 prod = 1;

6

7 while (n > 0)

8 if (mod(n,2) == 1)

9 prod = mod(prod*a,m);

10 end

11 a = mod(a^2,m);

12 n = floor(n/2);

13 end

14 SSPower = prod;

15

16 end

The reader should note that lines 8, 9 and 13 are identical with the previously presented
MyDec2BinConvert code and that this must be the case since the exponent n is being broken
into its powers of two.

Running SSquares and NaiveSquaresModulo gives,

>> disp([NaiveSquaresModulo (7,13,93) SSquares (7,13,93)])

10

19 19

i.e, each code produces the right answer.

The acid test comes upon comparing both for very large powers by running, TimeSSquaresNaiveSquares,
a test script.

% This script obtains CPU times of NaiveSquaresModulo and

% SSquares. SSquares is the fast method of performing squares

% modulo a number (method of successive squaring).

% Time to compute SSquares

t = cputime;

SSquares (12 ,1000000000 ,29);

eSSquares = cputime -t

% Time to compute SSquares

t = cputime;

NaiveSquaresModulo (12 ,1000000000 ,29);

eNaiveSquares = cputime -t

sprintf(’Successive Squares = %f, Naive method = %f’, ...

eSSquares , eNaiveSquares)

Running the program provides times in seconds.

>> TimeSSquaresNaiveSquares

ans =

Succesive Squares = 0.000000 , Naive method = 54.085547

The results are remarkable - the method of successive squares is hugely faster than the naive
method. Even when calculating a number to the billionth power, the clock tick in MATLAB
does not have enough resolution to measure the time.

4 Some mathematics - calculus

While calculus may be forbidding for some readers, it is absolutely essential in order to un-
derstand key concepts in subsequent calculations. Series (McLaurin, geometric) are required,
followed by elementary integral calculus. The three mathematical sections (computer mathe-
matics, number theory and calculus) are combined to describe an algorithm to calculate, first,
ln 2 and subsequently π.

11

4.1 Series

The Taylor series5 of f(x) about a is defined as

f(x) = f(a) + (x− a)f (1)(a) +
(x− a)2

2!
f (2)(a) +

(x− a)3

3!
f (3)(a) + . . .+

(x− a)n

n!
f (n)(a) + . . .

=
∞∑
k=0

f (k)(a)

k!
(x− a)k (1)

where f (n)(a) is the nth derivative of f(x) evaluated at x = a. The McLaurin series is the Taylor
series of f(x) about a = 0:

f(x) = f(0) + xf (1)(0) +
x2

2!
f (2)(0) +

x3

3!
f (3)(0) + . . .+

xn

n!
f (n)(0) + . . .

=

∞∑
k=0

f (k)(0)

k!
xk

Example: What is the McLaurin series of f(x) = ln (1 + x)? First obtain the derivatives of
the function and substitute in Equation (1)

f (1)(x) = 1
1+x =⇒ f (1)(0) = 1

f (2)(x) = −1
(1+x)2

=⇒ f (2)(0) = −1

f (3)(x) = x
(1+x)3

=⇒ f (3)(0) = 2

f (4)(x) = −6
(1+x)4

=⇒ f (4)(0) = −6

f (5)(x) = 24
(1+x)5

=⇒ f (5)(0) = −24
...

...
...

ln (1 + x) = 0 + x− 1

2
x2 +

1

3
x3 − 1

4
x4 +

1

5
x5 − . . .

=

∞∑
n=1

(−1)n+1

n
xn

Exercise: Write a MATLAB program to evaluate ln (1 + x) |x=0.5 and check the results on
a hand held calculator. This will provide practice in evaluating sums on the computer.6

The geometric series is starts with a constant first term and multiplies it repeatedly by x
- called the common ratio. Each term is added to the sum of the previous terms. There is a

5This definition does not discuss radius of convergence for both the Taylor and McLaurin series. This is an
important point, but note that all the functions in this document will satisfy standard convergence criteria.

6Note that calculators use a variety or series solutions (or variants thereof) to calculate mathematical functions

12

closed form solution to the series as shown below:

Sn = ax0 + ax1 + ax2 + ax3 + . . .+ axn−1

xSn = ax1 + ax2 + ax3 + . . .+ axn−1 + axn

Sn − xSn = ax0 − axn

Sn =
a(1− xn)

1− x

Assuming |x| < 1, the limit as n→∞

S∞ =

∞∑
i=0

axi = ax0 + ax1 + ax2 + . . . =
a

1− x
= S

The geometric series shows up frequently in many areas of science, engineering and computer
science.

Consider the geometric series with a = 1. Then

xk−1

1− x8
=

∞∑
n=0

xk−1+8n

∫ 1√
2

0

xk−1

1− x8
=

∫ 1√
2

0
(
∞∑
n=0

xk−1+8n)dx

=
∞∑
n=0

(
xk+8n

k + 8n
)

∣∣∣∣
1√
2

0

(exchanging order of integration and summation)

=

∞∑
n=0

(1√
2
)k+8n

k + 8n

∴
∫ 1√

2

0

xk−1

1− x8
=
∞∑
n=0

1

2k/216n(8n+ k)
(2)

Exercise: Repeatedly use Equation (2) to prove that

I =

∫ 1√
2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx =

∞∑
n=0

1

16n

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)
(3)

The right hand side of Equation (3) can be numerically evaluated using BBPSeriesPi

function [SumValBBP] = BBPSeriesPi(n)

%BBPSeriesPi Sum the BBP series for pi to n terms

% The formula may be found in "The BBP Algorithm for Pi", by

% David Bailey , published 17 Sep. 2006. This article is online.

13

SumValBBP = 0;

for i = 0:n

t1 = 8*i;

t = 4/(t1+1) - 2/(t1+4)- 1/(t1+5)- 1/(t1+6);

SumValBBP = SumValBBP + t/16^i;

end

This code produces the following output

>> disp([BBPSeriesPi (1); BBPSeriesPi (3); BBPSeriesPi (10)])

3.141422466422466

3.141592457567436

3.141592653589793

The last number indicates that the series might be approaching the value of π – the trick is to
prove it mathematically rather than through numerical experiments.

Start by substituting y = x
√

2 in the integral in Equation (3). This gives

I = 16

∫ 1

0

4
√

2− 2
√

2y3 −
√

2y4 −
√

2y5

16− y8
dy√

2
= 16

∫ 1

0

4− 2y3 − y4 − y5

16− y8
dy (4)

The common factors in the numerator and denominator are y2 + 2 and y2 + 2y + 2 which
simplifies the integral to

I =

∫ 1

0

16y − 16

(y2 − 2y + 1)(y2 − 2)
dy

Using a partial fraction decomposition leads to two simpler integrals

I =

∫ 1

0

4y

y2 − 2
dy −

∫ 1

0

4y − 8

y2 − 2y + 2
dy = I1 + I2.

Exercise Work through the algebra to show that the partial fraction expansion is correct,
i.e.,

4y

y2 − 2
+

4y − 8

y2 − 2y + 2
=

16y − 16

(y2 − 2y + 1)(y2 − 2)
.

I2 = −
∫ 1

0

4(y − 2)

(y − 1)2 + 1
dy = −

∫ 0

−1

4u− 4

u2 + 1
du (substitute u = y - 1)

Hence,

I2 =

∫ 0

−1

4

u2 + 1
du−

∫ 0

−1

4u

u2 + 1
du = I3 + I4.

14

Note that I3 is a well known antiderivative of tan−1 u7 with an extraneous factor of four.

I4 = −2

∫ 0

−1

2u

u2 + 1
du = −2

∫ 1

2

dt

t
(put u2 + 1 = t) = −2 ln t|12 = 2 ln 2.

So I2 has been evaluated.

It remains to evaluate I1 which can be achieved by substituting y2−2 = t to get a somewhat
familiar form

I1 =

∫ 1

0

4y

y2 − 2
dy = 2

∫ −1
−2

dt

t
,

which reminds us of I4. A further substitution of p = −1
t makes I1 amenable to integration

I1 = −2

∫ 1

1
2

p

dp
= −2 ln 2.

Therefore, I = I1 +I2 = I1 +I3 +I4 = −2 ln 2+
∫ 0
−1

4
u2+1

du+2 ln 2 = 4 tan−1 u
∣∣0
−1 = 0−4π4 = π.

So through a series of substitutions and manipulations we have

∞∑
i=0

1

16n

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)
= π. (5)

The numerical value of the LHS was evaluated using MATLAB (i.e., 3.141592653589793) and
it is now proven mathematically.

5 Putting it all together

This paper has introduced the reader to number systems (decimal, binary, hexadecimal), ele-
mentary number theory - culminating in the method of Successive Squares and the derivation
of a formula for π through simple integral calculus. Now it is time to put it all together to
calculate π to (say) the millionth hexadecimal digit without calculating any of the intervening
digits. Again, in order to explain the concepts, we take a detour through an easier problem.

5.1 Binary digits of ln 2

We know from our discussion of McLaurin series that

ln (1 + x) =

∞∑
n=1

(−1)n+1

n
xn

7Easily obtained from tables or in countless elementary calculus books

15

Substitute x = −1
2 to get the well known infinite series

ln 2 =

∞∑
n=1

1

n2n
.

Consider d ≥ 1, then

(2d ln 2) mod 1 =

(∞∑
n=1

2d−n

n

)
mod 1

=

(
d∑

n=1

2d−n

n
+

∞∑
n=d+1

2d−n

n

)
mod 1

Read Equations (6) from left to right: Multiplying ln 2 by 2d is equivalent to moving the
binary point of the binary representation of ln 2 by d places8. Taking mod 1 of the result is
equivalent to keeping the remainder and discarding everything before the binary point. Equiv-
alently the series representation of ln 2 should be multiplied by 2d and the remainder taken.
Subsequently the sum in question is divided into two parts – a “head” sum and a “tail” sum.
Each term in the head sum is typically greater than unity while it is guaranteed that each term
in the tail sum is less than unity. Thus the equation becomes

(2d ln 2) mod 1 =

(
d∑

n=1

(
2d−n

n

)
mod 1 +

∞∑
n=d+1

2d−n

n

)
mod 1 (6)

What would happen if the numerator in the head sum were replaced by 2d−n mod n? Effectively,
one would obtain the remainder of 2d−n when it is divided by n and this is precisely what is
required, i.e., we want to drop all terms before the binary point.

(2d ln 2) mod 1 =

(
d∑

n=1

(
2d−n mod n

n

)
mod 1 +

∞∑
n=d+1

2d−n

n

)
mod 1 (7)

A formal proof of the above can be accomplished by the following argument

a

b
mod 1 =

(
ba
b
c+

a mod b

b

)
mod 1 =

(
a mod b

b

)
mod 1

where bab c represents the integer part of a
b , but this is always an integer ≥ 0 whereas a mod b

b is
the part of a

b after the decimal point which is what was required in the first place.

This might seem like hair splitting but the specific formulation(
2d−n

n

)
mod 1 =

(
2d−n mod n

n

)
mod 1

8See section on binary arithmetic

16

permits invocation of the successive squares algorithm for the right hand side where the nu-
merator never exceeds n whereas the left hand side involves high powers of two followed by a
division by n.

Back to Equation (7). The head sum will have d terms (say d = 106) each involving large
powers of 2, but by using the succesive squares algorithm the numerator will never get very
large and each term in the sum can be calculated very quickly. The tail sum involves ever larger
numbers (i.e., 1

n2n−d , n > d) in the denominator and so need not go to ∞, only a few terms will
suffice – upto the machine accuracy to be precise.

And that in a nutshell is the algorithm to calculate the d+ 1th binary digit of ln 2. This can
easily be coded as shown in function Log2Binary below. Note that this presumes the existence
of a code to convert fractional decimal numbers to binary Fr dec2bin.9

function [BinDigitsLog2] = Log2Binary(StartDigit)

% Compute the binary digit of log(2) starting at StartDigit.

% Details are in David H. Bailey , "The BBP Algorithm for Pi",

% Sep. 17, 2006

% First the head sum

tmpsum1 = 0;

for i = 1: StartDigit

SSPower = SSquares(2, StartDigit -i, i);

tmpsum1 = mod(tmpsum1 + SSPower/i,1);

end

% Now the tail sum. Error is proportional to 1/(j*2^(j-digit))

tmpsum2 = 0;

for j = StartDigit +1: StartDigit +15

tmpsum2 = tmpsum2 + 1/(j*2^(j-StartDigit));

end

tmpsum = mod(tmpsum1+tmpsum2 ,1);

%Convert to binary and display binary numbers {0 1} from

%StartDigit digit onward

[BinDigitsLog2 , str_Fr , Fr_dec] = Fr_dec2bin (tmpsum);

end

9I obtained Fr dec2bin from the internet.

17

The code below, Log2Tests, is used to time each invocation of Log2Binary as well as to show
one subtle aid in debugging any code of its nature.

% Log2Tests.m

% Compute how long it takes to calculate the StartDigit bit in

% the binary representation of log(2). StartDigit numbers

% considered: 8, 100, 1000, 1^4, 10^5, 10^6, 10^6+1 , 10^7.

% Use the previously written function Log2Binary. Computing at

% 10^6 and 10^6 + 1 is a way of debugging the code

%

% NOTE: When 8 (or d) is input to Log2Binary , what is

% returned is the (d+1)th binary digit.

%

% Use t=cputime; compute binary digits of log(2); cputime -t

StartDigitList = [8 100 1000 10^4 10^5 10^6 10^6+1 10^7];

size(StartDigitList);

j = 1;

EndT = zeros(size(StartDigitList));

for i = StartDigitList

StartT = cputime;

tmp = Log2Binary(i);

EndT(j) = cputime - StartT;

str = sprintf(’%d %8d %s %d’, j, i+1, tmp (1:18) , EndT(j));

disp(str);

j = j + 1;

end

% Produce plots

SubsetArr = [1 2 3 4 5 6 8];

plot(log10(StartDigitList(SubsetArr)),EndT(SubsetArr),’b-o’)

title(’Time to compute ln(2)’)

xlabel(’(d+1)th digit of ln(2) - log scale’)

ylabel(’Time (sec)’)

Runing Log2Tests (which runs Log2Binary) produces results that can be analyzed for run
times. Consider the output for the 9th binary digit of π – it is a zero and the 10th, 11th and 12th,
are all ones. Now the decimal expansion of ln 2 = 0.6931471805 which gives, upon conversion,

18

ln 2 = 0.1011000101110010 clearly identifying the 9th through the 12th bits. Note that the
output for 106 and 106 + 1 are identical except that the bits of the latter are shifted to the
left by one. This fact can be used as a debugging tool. Also note that the code does not just
produce the (d + 1)th digit of ln 2 but several additional digits that depend on the precision of
the floating point arithmetic implementation (typically 64- or 32-bit).

>> Log2Tests

1 9 0.0111001000010111 0

2 101 0.0011111100101111 0

3 1001 0.0011111111010101 0

4 10001 0.0101101101100000 6.240040e-002

5 100001 0.0100101100111111 2.964019e-001

6 1000001 0.1010100100100011 3.510023e+000

7 1000002 0.0101001001000111 3.432022e+000

8 10000001 0.1011100101100110 3.878185e+001

The graph (Figure 1) shows the times taken by Log2Binary to obtain the (d + 1)th of ln 2
where d ∈ {8 102 103 104 105 106 106 + 1 107}. Note that the x–axis is scaled by log10,
hence the graph does not look like a straight line – however examination of the data (above)
shows the linear trend quite clearly. One would anticipate that the 100–millionth digit of ln 2
would take somewhat over six hours.

Figure 1: Time taken to calculate the (d+ 1)th bit of ln 2

19

5.2 Finally – The BBP formula for π

The previously derived formula for π is repeated below for convenience.

∞∑
i=0

1

16n

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)
= π. (8)

This formula was first derived by Bailey, Borwein and Plouffe (BBP) [1] in an entirely different
manner using considerably more complex techniques than used here. Subsequently BBP also
provided an elementary version of the proof – the version in this paper provides details missing
in the original publications.

To make things simpler write Equation (8) as

π = 4S1 − 2S4 − 1S5 − 1S6

where,

Sj =
∞∑
i=0

1

16n(8n+ j)
, j ∈ {1 4 5 6}

To get the (d+ 1)th hexadecimal digit of π simply multiply Equation (8) by 16d, followed by
mod1, to get

16dπ mod 1 = (4S1 − 2S4 − 1S5 − 1S6) mod 1

=
(

4× (16dS1) mod 1 − 2× (16dS4) mod 1

−(16dS5) mod 1 −(16dS1) mod 1
)

mod 1 (9)

It should be evident from our computations with ln 2 that each term in Equation (9) should
be broken into a head sum and a tail sum. Examine S1 in detail.

(16dS1) mod 1 =

((
d∑

n=0

16d−n

8n+ 1

)
mod 1 +

∞∑
n=d+1

16d−n

8n+ 1

)
mod 1

=

(
d∑

n=0

(
16d−n mod 8n+ 1

8n+ 1

)
mod 1 +

∞∑
n=d+1

16d−n

8n+ 1

)
mod 1 (10)

or more generally (j ∈ {1 4 5 6})

(16dSj) mod 1 =

(
d∑

n=0

(
16d−n mod 8n+ j

8n+ j

)
mod 1 +

∞∑
n=d+1

16d−n

8n+ j

)
mod 1 (11)

There are four such sums, the one described above for S1 and three others for S4, S5 and S6.
At the end of the calculation of the sums, the number will be converted to hexadecimal and the
first digit will be the required one.

20

5.3 What to do?

Since this write up culminates in an explanation of the BBP algorithm to calculate any digit
of π the reader should write MATLAB programs to perform this using Log2Binary as a guide.
The decimal to hexadecimal code is easy to write and there should be a separate function for
this.

It should be clear that calculating all the hexadecimal digits of π upto d is an easily paral-
lelizable problem. Simply have one computer calculate the digits of π from 106–106 + M1, the
second may calculate from 106 +M1 + 1–106 +M2 and so on. M1,M2 etc. may be optimized so
that each computer spends approximately the same time doing its computations.

6 Conclusion

This document introduces the reader to the elementary mathematics needed to calculate π to
any arbitrarily large digit. The exposition attempts to show the connection between number
theory, calculus and computer arithmetic in the solution of this problem. Take–home points are

1. There exist linear–time algorithms to calculate any hexadecimal digit of π without com-
puting the intervening digits

2. The computational (CPU) resources required for this problem are modest – a simple home
computer will do

3. The main memory requirements are similarly modest

4. The problem is very parallelizable – so all the digits from the first through the dth may be
calculated on multiple computers with only a small amount of additional code

5. The algorithm is simple to understand and easy to program

It is important to note that the BBP algorithm is far from being the fastest π algorithm –
however these other methods require considerably more complex mathematics (e.g., Fast Fourier
Transforms) and programming techniques.

21

References

[1] D. H. Bailey. On the rapid computation of various polylogarithmic constants. Mathematics
of Computation, 66(218):903–913, 1997.

[2] A. S. Posamenter and I. Lehman. Pi: A Biography of the World’s Most Mysterious Number.
Prometheus Books, Amherst, NY, 2004.

22

