
Commutative Queries

Richard Beigel Richard Chang

Yale University & University of Maryland Baltimore County

University of Maryland College Park

order of access

Given access to two oracles, which oracle should be queried first?

Does it matter?

• oracles must have different complexity

• complete languages of the Polynomial Hierarchy ΣPj and ΣPk , where j < k

• allow truth-table queries to each oracle

• recognize languages or compute functions

asking hard questions first

PHr-tt;Es-tt = r truth-table queries to H followed by s truth-table queries to E

E = easy oracle, ΣPj complete H = hard oracle, ΣPk complete j < k

M1(x)

H???

E?? E?? E?? E?? E?? E?? E?? E??

asking easy questions first

PEs-tt;Hr-tt = s truth-table queries to E followed by r truth-table queries to H

E = easy oracle, ΣPj complete H = hard oracle, ΣPk complete j < k

M2(x)

E??

H??? H??? H??? H???

asking all questions simultaneously

PEs-tt‖Hr-tt = s queries to E and r queries to H in parallel

E = easy oracle, ΣPj complete H = hard oracle, ΣPk complete j < k

M3(x)

E?? || H???

more notation

• Let PFAa-tt;Bb-tt denote the class of functions recognized by polynomial-
time Turing machines that ask a parallel queries to A followed by b parallel

queries to B.

• Let PFAa-tt‖Bb-tt denote the class of functions recognized by polynomial-
time Turing machines that ask a parallel queries to A simultaneous with b

parallel queries to B.

• Let PAa-tt;Bb-tt;Cc-tt;Dd-tt be the class of languages accepted by polynomial-
time Turing machines that ask a queries to A, b queries to B, c queries to

C and d queries to D in that order.

PFAa-tt‖Bb-tt is trivially contained in both PFAa-tt;Bb-tt and PBb-tt;Aa-tt.

results in this paper

• Does not hurt to ask hard questions first

PEs-tt;Hr-tt ⊆ PHr-tt;Es-tt

PFEs-tt;Hr-tt ⊆ PFHr-tt;Es-tt

• For language classes, order does not matter

PHr-tt;Es-tt ⊆ PEs-tt;Hr-tt

• For function classes, order matters unless PH collapses

PFHr-tt;Es-tt ⊆ PFEs-tt;Hr-tt =⇒ PH ⊆ ΣPj+1

where j < k, E is ΣPj complete and H is ΣPk -complete

prior & related works

• Hemaspaandra, Hempel & Wechsung 1995:

Order of queries to 2 complete languages from the Boolean Hierarchy

• Agrawal, Beigel & Thierauf 1996:

Strengthened results on queries to complete languages from the Boolean

Hierarchy. (Obtained independently from [HHW95].)

• Gasarch & McNicholl 1997(?):

Order of oracle queries in a recursion theoretic setting

delaying easy questions

Proof that PEs-tt;Hr-tt ⊆ PHr-tt;Es-tt :

M1(x)

E??

H??? H??? H??? H???

M2(x)

H???

E?? E?? E?? E?? E?? E?? E?? E??

•M2’s ith query H : Is M1’s ith query to H answered YES?

• queries to E are the same

• in fact, PEs-tt;Hr-tt ⊆ PHr-tt‖Es-tt

• proof for function classes identical

delaying hard questions

Proof that PHr-tt;Es-tt ⊆ PEs-tt;Hr-tt :

M2(x)

E??

H??? H??? H??? H???

M1(x)

H???

E?? E?? E?? E?? E?? E?? E?? E??

• Problem: Don’t know which queries to E to ask

• Solution: Use the first set of queries to E

• Count the number of mind changes to the true path.

mind changes: part 1

M1(x)

H???

E?? E?? E?? E?? E?? E?? E?? E??

Path i to Path j forms a mind change if:

• Zi = queries to H on Path i assumed to be answered YES.

• Zj = queries to H on Path j assumed to be answered YES.

• Zi ⊆ Zj ⊆ H .

•M1(x) accepts on Path i and rejects on Path j or vice versa.

mind changes: part 2

Finishing the mind change proof:

• paths beyond true path are not involved in mind changes

• maximum number of mind changes m ranges from 0 to r − 1

• m can be computed using r truth-table queries to H

•Whether M1(x) accepts on Path 0 can be computed using s queries to E

• m is odd: M1(x) accepts on true path iff M1(x) rejects on Path 0

• m is even: M1(x) accepts on true path iff M1(x) accepts on Path 0

We really proved that PHr-tt;Es-tt = PEs-tt‖Hr-tt.

hierarchies

How are the two classes PHa-tt;Eb-tt and PHc-tt;Ed-tt related?

• In the mind change proof, the s queries toE were used to determine whether
M1(x) accepts or rejects on Path 0. This can be replaced by a single query

to H .

• For all polynomial bounded s, PHr-tt;Es-tt ⊆ PH(r + 1)-tt.

• Nested hierarchy:

PHr-tt � PHr-tt‖E1-tt � PHr-tt‖E2-tt � · · · � PHr + 1-tt,

unless the Polynomial Hierarchy collapses.

extensions: many rounds of queries

What happens if you have many rounds of truth-table queries to E and H?

• Easy queries can still be delayed:

PHa-tt;Eb-tt;Hc-tt;Ed-tt ⊆ PHa-tt;Hc-tt;Eb-tt;Ed-tt.

• Rounds of queries to the same oracle can be combined:

PHa-tt;Hc-tt;Eb-tt;Ed-tt ⊆ PHr-tt;Es-tt

where r = (a + 1)(c + 1) and s = (b + 1)(d + 1).

• Plus: PHr-tt‖Es-tt ⊆ PHa-tt;Eb-tt;Hc-tt;Ed-tt.

• Therefore, PHa-tt;Eb-tt;Hc-tt;Ed-tt = PHr-tt‖Es-tt.

Complexity of language classes characterized by the number of queries.

The order of the queries does not matter for language classes.

function classes

For function classes, the order of oracle queries is critical.

•We can still delay easy questions (same proof as language classes):

PFEs-tt;Hr-tt ⊆ PFHr-tt;Es-tt

•We cannot delay hard questions unless PH collapses:

PFHr-tt;Es-tt ⊆ PFEs-tt;Hr-tt =⇒ PH ⊆ ΣPj+1

(Recall: j < k, E is ΣPj complete and H is ΣPk complete.)

• Proof uses the latest hard/easy argument [Buhrman & Fortnow, 1996] and

tree pruning techniques [Beigel, Kummer & Stephan, 1995]

a simple case

Let E be NP-complete, H be NPNP-complete. Use 1 query to each oracle.

Candidate function in PFH1-tt;E1-tt but not in PFE1-tt;H1-tt.

f(x, y, z) =

00 if x �∈ H and y �∈ E

01 if x �∈ H and y ∈ E

 = H(x)E(y) if x �∈ H

10 if x ∈ H and z �∈ E

11 if x ∈ H and z ∈ E

 = H(x)E(z) if x ∈ H

• H(x), E(y) and E(z) are characteristic functions

• H(x)E(y) means concatenation

• f(x, y, z) is easily computable in PFH1-tt;E1-tt

• Prove f(x, y, z) ∈ PFE1-tt;H1-tt =⇒ H ⊆ NPNP =⇒ PH ⊆ NPNP.

a hard/easy argument

A PFH1-tt;E1-tt machine and a PFE1-tt;H1-tt machine which compute f(x, y, z)

M1(x,y,z)

x ∈ H?

y ∈ E? z ∈ E?

00 01 10 11

n y

M2(x,y,z)

q1 ∈ E?

q2 ∈ H?

11 00 01 10

q3 ∈ H?

n y

• Both machines compute f(x, y, z) correctly

• Construct an NPNP machine for H which is coNPNP complete

• Use NP oracle to answer all queries to E

• Let OUT1 and OUT2 be the possible outputs of M1 and M2 after queries

to E are answered (some paths are eliminated)

• Example: y �∈ E, z �∈ E and q1 �∈ E

OUT1 = {00, 10} OUT2 = {00, 11}

easy case

x is easy if there exists y and z, |y| = |z| ≤ |x|k, such that OUT1 �= OUT2

x ∈ H?

M1(x,y,z)

y ∈ E? z ∈ E?

00 01

n y

M2(x,y,z)

q1 ∈ E?

q2 ∈ H?

11 00 01 10

q3 ∈ H?

n y

10 11

If y �∈ E, z �∈ E and q1 �∈ E, then OUT1 ∩ OUT2 = {00} =⇒ H(x) = 0

If x is easy, this NPNP algorithm recognizes H

• Guess y and z with length ≤ |x|k

• Compute OUT1 and OUT2 by simulatingM1(x, y, z) andM2(x, y, z) using

the NP oracle to answer all queries to E

• If OUT1 = OUT2, reject

• Otherwise, f(x, y, z) = OUT1∩OUT2 and the first bit of f(x, y, z) is H(x)

hard case

x is hard if for all y and z, |y| = |z| ≤ |x|k, OUT1 = OUT2

x ∈ H?

M1(x,y,z)

y ∈ E? z ∈ E?

10 1100 01

n y

M2(x,y,z)

q1 ∈ E?

q2 ∈ H?

11 00 01 10

q3 ∈ H?

n y

If y �∈ E, z ∈ E and q1 �∈ E, OUT1 = OUT2 = {00, 11} =⇒ E(y)E(z) = 01

• with 1 query to E, the outcome of two queries were determined.

• with 0 queries to E, we still have E(y)E(z) ∈ {01, 10}

• 2 out of 4 possibilities for E(y)E(z) eliminated using 0 queries!

• this is enough to prove that SAT ∈ P.

self-reduction tree for SAT

F

F0

F00

F000 F001

F01

F010 F011

F1

F10

F100 F101

F11

F110 F111

• Fw0 = Fw with first variable replaced by FALSE

• Fw1 = Fw with first variable replaced by TRUE

• Fw ∈ SAT ⇐⇒ (Fw0 ∈ SAT) ∨ (Fw1 ∈ SAT)

• use Beigel-Kummer-Stephan (BKS) tree pruning procedure:
Given 4 formulas, find 1 to drop “safely”

BKS tree pruning

Given Q = {F1, F2, F3, F4}, find i ∈ {1, 2, 3, 4} such that

Q ∩ SAT �= ∅ ⇐⇒ (Q− Fi) ∩ SAT �= ∅

(I.e., Fi is not the only element of Q in SAT.)

Since E is NP-complete, we can construct y and z such that

y ∈ E ⇐⇒ (F3 ∈ SAT) ∨ (F4 ∈ SAT)

z ∈ E ⇐⇒ (F2 ∈ SAT) ∨ (F4 ∈ SAT)

• Q ∩ SAT = {F1} =⇒ E(y)E(z) = 00. if E(y)E(z) �= 00, drop F1.

• Q ∩ SAT = {F2} =⇒ E(y)E(z) = 01. if E(y)E(z) �= 01, drop F2.

• Q ∩ SAT = {F3} =⇒ E(y)E(z) = 10. if E(y)E(z) �= 10, drop F3.

• Q ∩ SAT = {F4} =⇒ E(y)E(z) = 11. if E(y)E(z) �= 11, drop F4.

hard case: revisited

Need to show that H ∈ NPNP. Rewrite H as:

H = {x | (∀u, |u| = |x|)[g(x, u) ∈ SAT]}

PNP algorithm for H assuming x is hard:

• construct an NP machine N .

1. input x

2. Guess u, compute F = g(x, u)

3. use BKS tree pruning to find witness for F ∈ SAT.
4. if witness is found, reject

5. no witness after pruning, accept

• ask NP oracle whether x ∈ L(N)

• x �∈ L(N), accept /* since satisfying assignment found for each g(x, u) */

• x ∈ L(N), reject

wrapping up hard/easy argument

Problem: we don’t know if x is easy or hard.

Solution: Run easy and hard algorithms in parallel

Sanity check on combined algorithm

• x �∈ H and x is easy

◦ easy algorithm: works correctly and rejects.

◦ hard algorithm: N(x) cannot find a satisfying assignment for g(x, u) for
some u. Machine N accepts, hard algorithm rejects.

• x �∈ H and x is hard

◦ easy algorithm: cannot find y and z such that OUT1 �= OUT2. Rejects.

◦ hard algorithm: works correctly and rejects.

sanity check continued

• x ∈ H and x is easy

◦ easy algorithm: works correctly and accepts.

◦ hard algorithm: N(x) might be “lucky” and find satisfying assignments
for g(x, u), for every u. Algorithm might accept.

• x ∈ H and x is hard

◦ easy algorithm: cannot find y and z such that OUT1 �= OUT2. Rejects.

◦ hard algorithm: works correctly and accepts.

So, we have an NPNP algorithm for H .

Since H is NPNP complete, NPNP = coNPNP and PH collapses to NPNP.

conclusions

Let H be ΣPk complete and E be ΣPj complete, where j < k.

Does the order of oracle access matter?

• Language Classes: NO

• Function Classes: YES

