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Abstract

This paper explores the difference between parallel
and serial queries to an NP-complete oracle, SAT, from
the perspective of functions with a limited number of
output bits. For polynomial-time bounded query lan-
guage classes, which can be considered as functions
with 1-bit output, previous work has shown that 2 se-
rial queries to SAT is equivalent to 8 parallel queries
to SAT. In contrast, for function classes with no limit
on the number of output bits, previous work has shown
that there exists a function that can be computed in
polynomial time using 3 parallel queries to SAT, but
cannot be computed using 2 serial queries to SAT, un-
less P = NP. The results in this paper show that there
exists a function with 2-bit output that can be computed
using 3 parallel queries to SAT, but cannot be computed
using 2 serial queries to SAT, unless the Polynomial
Hierarchy collapses.

1. Introduction

An important topic in the study of bounded query
classes is the difference between parallel and serial ora-
cle access mechanisms. When an oracle Turing ma-
chine uses the parallel oracle access mechanism, all
of the queries to the oracle are asked simultaneously.
Then, the oracle’s replies are given as a bit-vector. In
contrast, when a Turing machine makes serial queries,
the queries can depend on the replies to the previ-
ous queries. The difference between parallel and serial
queries also highlights the difference between bounded
query language and function classes. For example, for
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language classes, for all constants k, there is a tight
equivalence between parallel and serial queries to an
NP-complete language (e.g., SAT) [5]:

PSAT[k] _ pSAT|[2"-1] (1)

This equality is proven using the mind change tech-
nique. On the other hand, for bounded query function
classes, while it is trivial to show that

PFSATI PFSATII[2’€*1],
we also know that [7]
PESATIK] _ PFSATII[2“1] — P = NP. (2)

The proof in this case is based upon the following
enumerability argument. Consider the function Xg,éfl
which, on input Fi,..., Fyr_;, outputs a string with
2% —1 bits where the ith bit is 1 if and only if F; € SAT.

Clearly, xgﬁfl can be computed by a PFSATIR 1) 1

chine. However, a PFSATIE] machine has only 2* possi-
ble outputs which cannot include all of the 22" -1 pos-

sible values of xgﬁ_Tl. The enumerability argument ex-

SAT are

missing from the list of possible outputs of a PFSATIH
machine to collapse NP down to P [7].

The results stated in (1) and (2) leave us in a bit of
confusion because we cannot say outright that 2% — 1
parallel queries are stronger than k serial queries. This
is only true for functions and not languages. And even
in the case of function classes it is not clear if the rea-
son that PFSATIE — pFSATIE® 1] — p — NP is due
to enumerability or the hardness of SAT. In particu-
lar, the enumerability argument described above can
be used to show that for any oracle X (even nonrecur-
sive ones), xgﬁfl € PFXIF — p = NP.

In this paper, we revisit the issue of parallel versus
serial queries by considering functions that have a lim-
ited number of output bits. Let PFTSAT[k] denote the

ploits the fact that some possible values of x



class of functions computable by PFSATIF machines

that output at most r bits and let PFTSAT”W be the
analogous class for parallel queries. Since PFlS AT and

PF1S ATI hachines are essentially language recogniz-
ers, by (1):
k
PFlsAT[k] _ PFISAT||[2 -1

Also, since x3£T, has 2¥ — 1 bits of output, by (2):

PESM — pESAIE -1 — p — Np.

(k]

~U for values

k
So, what about PFjSAT versus PFJ.SAT”[2

of j greater than 1 and less than 2 — 1? Can the two
classes be equal? Would equality imply that P = NP?
The main result in this paper shows that,

PFEAT@] _ PFgATH[?)] — PHC xF.

In contrast, for machines limited to 1 bit of output

we already know that PFlS AT PFlS ATII3] [5] and

for machines limited to 3 bits of output PF?)SAT[Q] =

PESATIE] — p = NP [7).

The main result is interesting for two reasons. First
of all, a PFgATm machine can enumerate all 4 possi-
ble outputs of a two bit function (namely, 00, 01, 10
and 11). Thus, we cannot directly use any of the proof
techniques based upon enumerability [1, 2, 5, 7, 11].
In particular, there does exist an oracle X such that
PFSAT”B] C PF2X . Recall that for functions with un-
limited output bits, PFSATIBI ¢ ppXE for any oracle
X would imply that P = NP. Secondly, the function

Q39, which we use to spite PFgATm

known to be complete for PFEAT”B]

machines, is not

. In fact, we would

conjecture that Q3o is not complete for PFgATH[?’]. Fur-
machines not by giving it

thermore, we spite PFS’AT[Q]
hard instances of Q2. Instead, we use instances of Qsa
for which a PFEAT[Q] machine can produce the correct
answer. By forcing the machine to behave properly on
these easy instances, we gain enough leverage on the
machine’s behavior on harder instances and thus are
able to show that PH collapses if Q30 € PFEAT[Q].

Our proof techniques can be generalized to show
that for all j, k and £ such that 1 < j <k < £ <2F -1,
if 28 — (0 +1) <2/ —2and 28 — (¢ +1) < £ —1, then

pEATIN € ppPATH — ph C 5F.

In the general case, we consider PFjSATW] - PF]-SATM
rather than PFJ-SAT”[Z] = PFJ-SAT[H because for ¢ <
SAT[k] SAT||[¢]

ok _ 1, it is already known that PFj C PFJ-
implies a collapse of the Boolean Hierarchy which in
turn collapses PH.

2. Preliminaries

In this section we discuss the definitions and notation
used in this paper as well as prior results needed to
prove the main theorem. We assume the reader is fa-
miliar with the standard definitions in computational
complexity theory (q.v. [3, 4, 13]). We begin with the
notation for various bounded query classes.

Definition 1

e Let PA denote the class of languages recognized by
polynomial-time oracle Turing machines which ask
at most k serial queries to the oracle A.

e Let PAI* denote the class of languages recognized
by polynomial-time oracle Turing machines which
ask at most k parallel queries to the oracle A.

e Let PFAM denote the class of functions computed
by polynomial-time oracle Turing machines which
ask at most k serial queries to the oracle A.

e Let PFAIF denote the class of functions computed
by polynomial-time oracle Turing machines which
ask at most k parallel queries to the oracle A.

o Let PFJA[k] be the subset of PFAK! consisting of
those functions that output at most j bits.

e Let PFjA”[k] be the subset of PFAI] consisting of
those functions that output at most j bits.

Figure 1 shows the possible computation paths of a
PFEAT[Q] machine M on input x. This diagram is called
the oracle query tree for the computation of M (x). We
establish the convention that the computation path in
an oracle query tree proceeds to the left when the or-
acle replies no. This allows us to define the sequence
of possible outputs for a PFALK] computation M (z) to
be the left-to-right ordering of the outputs at each leaf
of the oracle query tree. We will also use OuT(M, z)
to denote this sequence of possible outputs. We define
the true path in an oracle query tree to be the path
taken using the correct replies from the oracle. Given
a specific path in the oracle query tree, we say that a
query string g; is a positive query relative to the path
if the path assumes that ¢; € SAT — i.e., the path
proceeds to the right after the query node ¢;. When
the number of serial queries is bounded by O(logn) we
can compute the sequence of possible outputs in poly-
nomial time using no oracle queries simply by trying
all possible replies from the oracle.



Figure 1: The oracle query tree of a PFEAT[Q]

defined as (00,01, 11, 10).
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computation. The sequence of possible outputs, OUT(M, z), is

Definition 2 For constant k, we define the languages
BLg, coBL; and ODD%AT as follows:

BL; = SAT

BLQ}C = { <$C1, . .,,’Egk> |
<CL'1, .. .,:E%_1> € BLor_1 and x9p € SAT }

BLogi1 = { (@1, .., @2p41) |
<CL'1, .. .,,’Egk> € BLgj or Tog+1 € SAT }

coBLy, = { (1, .. ,x) & BLy }

Sy | (@,

ODD%AT = { <:C17 s ,$k>
i | (1 <i < k) A (2, € SAT)} is odd }

Definition 3 We say that a sequence of Boolean for-
mulas (Fy, ..., Fy) is nested if for all 4, 2 <14 <k,

F; € SAT — F;_, € SAT.

The language BLy, is <P -complete for the kth level
of the Boolean Hierarchy [8, 9]. In our proof of the main
theorem, we will work with BL3 and coBL3 which can
also be defined directly as:

BL3s = (SAT A SAT) v SAT =
{<F17F27F3> | (Fl € SAT A Fs € SAT) VvV F5 € SAT}

coBLs = (SAT v SAT) A SAT —
{<F1,F2,F3> | (F1 € SATV F, € SAT) N F3 € SAT}

Note that (Fy, ..., Fy) € BLy if and only if the largest
i such that F; € SAT is odd. Thus, if a sequence
(Fy, ..., Fy) is nested,

(Fy,...,F},) € By < (Fy,...,F,) € ODD*T.

Given any sequence of formulas (Fi,..., Fg), we can
construct a nested sequence (F7, ..., F}) in polynomial
time such that

(Fy,...,Fy) € BLy < (F|,...,F]) € BLy.

Simply let Fj = Fj V ---V Fj. For the rest of the
paper, we use the convention that (FY,...,F}) de-
notes the nested version of (F1,..., Fg). Thus, for all
(F1,...,Fy) (even non-nested sequences),

(Fi,...,F) € Bl < (F{,...,F}) € ODD"T.

Definition 4 The function Q3o takes as input three
Boolean formulas (Fy, F», F3) and produces two bits
of output ab. The first bit a is 1 if and only if
(F1, Fy, F3) € BL3. The second bit b is 1 if and only if
(Fy, Fy, F3) € ODDSAT,

We will use the function Qs to spite PFSAT[Q]

machines. Note that Qzo is easily computable by a
PFEATH[?’] machine. We simply ask the SAT oracle
in parallel if each of Fy, Fy and F3 is a member of
SAT and determine whether (Fy, F», F3) € BLj3 and
(Fy, Fy, F3) € ODDS”T using the reply from the ora-
cle. On the other hand, there is no obvious way for
a PF?AT[Q] machine to compute Qszz. A PF?ATP] ma-
chine can compute each bit of Qss, but there is no ob-
vious way to compute both bits using 2 serial queries
to SAT. One difference between Qso(Fi, Fo, F5) and
SAT(Fy, Fy, F3) is that both bits of Qzo depend on
all three formulas whereas the ith bit of x54T depends
only on F;. We will show in the next section that the
assumption that Qzo € PFEATM is enough to collapse
the Polynomial Hierarchy (PH).

Suppose that (Fy, Fy, F3) is a nested sequence. Then
the output of Qs5(F}, Fa, F3) can only be 00 or 11. This
is due to the observation we made above that for nested
sequences:

(Fy,Fy, F3) € BLy <= (Fy, F», F3) € ODD$AT.

Thus, a PFEAT[Q] machine can compute the value of

Qs0(F1, Fo, F3) when (Fy, Fy, F3) is nested, since the



g2 € SAT?
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Figure 2: A PFATP
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computation with possible output sequence OUT(M, (F1, F3, F3)) = (0,1,1,0).

first and second bits are equal. One would think that
a proof that Qs € PFEATM —> PH collapses should
avoid nested sequence entirely. However, the proof of
our main theorem does the exact opposite, as we shall
see in the next section.

To prove our main theorem, we will also need the

following lemmas:

Lemma 5 If BLy <h/”*Y coBL3, then PH C X%.

Proof Sketch: We can use any of several proofs that a
collapse of the Boolean Hierarchy implies the collapse
of PH [6, 10, 12, 15]. Using any of these proofs, we
would get

BL3 <P coBL3 = SAT € NP /poly.

In our application, the reduction from BLj3 to coBLj
is by a polynomial-time function which has polynomial
advice. Since the advice for the reduction can also be
given to the NP machine computing SAT. We still get

BL; <5/P°Y coBLs = SAT € NP/poly.

Then, PH collapses to ¥¥ by Yap’s theorem [17]. O

Lemma 6 Let M be a PFlS AT 1achine. Suppose
that for some (F, Fy, F3) we know that

M(Fl,FQ,Fg) =1 <— <F1,F2,F3> S BL3
Furthermore, suppose that the sequence of possible
outputs, OuT(M, (Fy, Fs, F3)), is not {(0,1,0,1). Then,
we can construct (G, Ga, G3) in time polynomial in the

running time of M (Fy, F», F3) such that

<F1,F2,F3> € BL;y «— <G1,G2,G3> € coBLs.

Proof Sketch: The proof of this lemma is implicit
in the original work of Wagner and Wechsung on the
Boolean Hierarchy [16]. From their results, one can
show that any PFlS AT(2] computation can be reduced
to one of BLy, coBL;, BLsy, coBLs, BL3 and coBLj3
depending on the number and type of mind changes
made in the sequence of possible outputs of the ora-
cle query tree. The only sequence that corresponds
to BL3 is (0,1,0,1). In the remaining cases when the
possible output sequence is not (0,1, 0, 1), the compu-
tation of M (F1, F, F3) can be reduced to coBLs, since
BL1, coBLq, BLs, coBLs all reduce to coBL3. We pro-
vide the proof of one of these cases and leave the rest
to the reader.

Consider the PFlS ATE2] computation in Figure 2. Us-
ing the queries ¢q1, g2 and g3 in the oracle query tree,
we define the following sequence of Boolean formulas:

Po = TRUE,
b2 =41,

P1=4Qq2
P3 =q1 N gs.

The general pattern here is that p; is the conjunction
of the positive queries relative to path ¢ in the oracle
query tree, where the paths are numbered from left
to right. In general, path ¢ is the true path if and
only if p; is satisfiable and for all j > ¢, p; is unsat-
isfiable. Next we turn (pg, p1,p2,p3) into a nested se-

quence (pp, Py, Ph, P3):

py = TRUE, Pi=q@VaViaAg)
Py =q V(q Ag3), D3 =q1 A gs.

By hypothesis, (F1, Fs, F5) € BLs if and only if
M (Fy, Fy, F3) = 1. Since M (Fy, F», F3) outputs 1 only
on path 1 and path 2, (Fy, Fy, F5) € BL3 if and only if
the index of the true path is in the half-open interval
[1,3). This happens exactly when p] € SAT and p} €
SAT. Thus, the computation of M (F, Fy, F3) reduces



to BLa. More explicitly, we can define (G1,Ga,G3)
by Gi = TRUE, G2 = p), and G3 = pj. Then,
<F1, Fs, F3> € BL3 if and only if <G1, GQ, G3> € coBLs3.

O

3. Main Theorem

Theorem 7 (Main Theorem)

Py = prSATIE) — Pl C B
Proof: Since PFSAT[Q] C PFgAT”[B] trivially and since

Q30 € PFgAT”[B], it suffices to show that Qsz, €
PFSATE implies PH € SF. Let M be a PF3
machine that computes Qszs. Our goal is to con-
struct a P/poly reduction h from BL3 to coBL3. Then
by Lemma 5, PH collapses to X as desired. Let
(Fy, Fy, F3) be an instance of the input to h. Our
first step is construct the nested version of (Fy, Fy, F3),

namely:
Fll =N VEVE;, FQI = F,V F;, and Fé = Fj.
Recall that
(F1, Iy, F3) € BL3
< (F|,F}, F}) € BLs
— (F|,F}, F}) € ODD$AT.

Now consider OuT(M, (Fy, F}, F3)) the sequence of
possible outputs. Since M is a PF?AT[Q] machine
and (Fy, F}, F}) is nested, M can compute the value
of Qso(F{, Fy, F}) which is either 00 or 11. The
most obvious way of doing so is to ask the SAT or-
acle whether F} is satisfiable. If so, check Fj; oth-
erwise, F]. The obvious algorithm for computing
Qso(Fy, Fy, F}) gives us an oracle query tree with
possible output sequence (00,11,00,11). Since we
have no control over M’s strategy, it is possible that
Out(M, (Fy{,F5, F})) # (00,11,00,11). However, in
that case, the sequence of either the first or the second
bits of OUuT(M,(FY, F5, F3)) is not (0,1,0,1). Then by
Lemma 6, we can immediately construct (G1, G2, G3)
such that

<F1,F2,F3> € BL; <— <G1,G2,G3> < COBLg7

and we would be done. Thus, we can assume that
Out(M, (Fy{, F5, F})) = (00,11,00,11) — that is, M
must behave nicely on the easy instances of Qzo. For
the harder instances, we need the help of an advice
function to construct (G, Ga, G3).

Before we define the advice function, let us first see
how the advice might help us. Suppose that we are
given, among other things, a formula H by the advice

function and are also told whether H € SAT. Now,
consider the behavior of M on input (F] A H, F}, F3).
There are three possible cases to consider.

Case 1: If H € SAT, then (F] A H, F}, F}) is still a
nested sequence. In fact, we have

<F1,F2,F3> S BL3
< (F{ NH,F;,F;) € BLs
— (F| \NH,F},F}) e ODD$AT.

Thus, Out(M, F] A H, F}, F}) would still have to be
(00,11,00,11) or we win by Lemma 6 as before.

Case 2: Now, suppose that H ¢ SAT and that
OUT(M, (F! A H,F}, F})) does equal (00,11,00,11).
Then we can construct (Gq,Ge,G3) as follows. Sup-
pose that F3 € SAT, then Qsqo(F{ A H, Fj, F}) = 10
since F{ A H ¢ SAT, F; € SAT and Fj € SAT. Since
10 is not in OuT(M, (F{ A H, F}, F3)) and M computes
Qso, it follows that F3 ¢ SAT. Thus,

<F1,F2,F3> € BL; <— F; € SAT and Iy gSAT
Therefore, we can define (G1, G2, G3) as
Gl = TRUE, GQ = Fl, and Gg = F2

and be guaranteed that (F1, Fy, F3) € BL3 if and only
if <G1, Gg, G3> € coBL3.

Case 3: It remains possible that for H € SAT,
Out(M, (F| ANH, F}, F})) = (00,11,00,11) and for
H ¢ SAT, Out(M, (F]{ N H, F}, F})) # (00,11, 00, 11).
However, if this happens for every H, then we would

have a polynomial time algorithm that determines
whether H € SAT since

H € SAT «—
Out(M, (F] A H, F}, F})) = (00,11,00, 11).

Having a polynomial time algorithm for SAT would
certainly help us reduce BL3 to coBLg3. In fact, we can
relax this requirement to the probabilistic case. We
can get a BPP algorithm for SAT as long as for most
<£L'1,£L‘2, $3>, ()UT(]\47 <1‘1 N H, xo, $3>) = <00, 11,00, 11>
if and only if H € SAT.

We are now ready to construct the advice function.
For those who are familiar with the proof techniques
in bounded query complexity, we will use the “advisees
trick” from Amir, Beigel and Gasarch [1, 2]. We will
essentially show that one of the three cases described
above must always happen.

Fix a length n. We will consider only those triples
(x1,x9,23) such that n = |z1]| = |x2| = |zs|. Let
H be a Boolean formula of length n. We say that
(x1,22,23) is an advisee of H if either H € SAT



and OuT(M, (z) A H,zh, z5)) # (00,11,00,11) or H ¢
SAT and OuT(M, (zy A H,zh,z5)) = (00,11,00,11).
As usual, (zf,z},x%) denotes the nested version of
(x1,2,23). In the construction of the first part of the
advice string for length n, we add to the advice string
the H’s that have the most number of advisees.

ADVICE CONSTRUCTION, FIRST PART

1. advice := ¢

2. §:={Z| &= (x1,x2,23), |21| = |22| = |23] = Nn}
3. T :={¢ | ¢ is a Boolean formula of length n}

4. while S has at least 16 elements, repeat Steps 4a
through 4f

a. For each ¢ € T, let A(¢) be the set of & € S such
that & = (x1, z2,x3) is an advisee of ¢.

b. Let H be a Boolean formula of length n such that
|A(H)| is largest.

If |[A(H)| < $|8], halt construction (abnormally).
S§:=8—- A(H).

T:=T—-{H}.

If H € SAT, add (H,0) to the advice.
Otherwise, add (H, 1) to the advice.

® /& 0

=

END OF CONSTRUCTION

The while loop in this construction can iterate at
most O(n) times since each time through the loop we
remove at least one quarter of the elements from S.
The construction of the first part of the advice string
can terminate in two ways. When the while loops ter-
minates normally, S contains fewer than 16 triples.
Then, we simply add each triple to the advice string
along with 1 bit indicating whether the triple is in BLg.
We call this the second part of the advice string. We
also add one more bit to the advice string indicating
that the while loop terminated normally.

On the other hand, if the while loop halted abnor-
mally, then VH € 7 and V& € S, let E(Z) denote the
event that Out(M, (z} A H, x4, 25)) = (00,11, 00, 11),
where & = (1, 22, x3).

H € SAT = Probfes[ E(f) ] > 3/4 (3)
H ¢ SAT = Probzes| ~E(Z) | > 3/4. (4)

If this were not the case, then for some H € T,
|A(H)| would be at least £|S| and we would not have
halted the loop abnormally. Thus, we almost have a
BPP algorithm for SAT for instances in 7. (Note that
the only H’s of length n that are not in 7 have already

been added to the advice string.) The difficulty in con-
verting the implications in (3) and (4) into a BPP algo-
rithm is that the set S might be difficult to compute.
Hence it is not clear how one can effectively choose
an & randomly from S. However, this difficulty does
not prevent us from amplifying the probabilities by re-
peated trials and siding with the majority. Then, using
Schéning’s proof that BPP C P/poly [14], we obtain a
polynomially long sequence of triples 1, ..., T, such
that VH € 7, H € SAT if and only if for a majority of
the fl = <$i1; XTi2, Ii3>, OUT(M, <I;1 A H, CC/Z-Q, I;3>) =
(00,11,00,11). (A complete proof for the process of
extracting &1,...,ZT, is given by Amir, Beigel and
Gasarch [2, Theorem 10.6].) Thus, when the while loop
in the construction of the first part of the advice string
halts abnormally, we add the sequence Z1,...,Z,, to
the advice string. As before, we call this the second
part of the advice string. This ends the construction
of the advice string.

Finally, we recap how the P/poly reduction h uses
the advice function to reduce BL3 to coBLs.

1. Input <F1,F2,F3>, where |F1| = |F2| = |F3| =n.
2. Let (FY, Fj, F}) be the nested version of (Fy, Iy, F3).

3. If OuT(M, (F!, F3, F1)) # (00,11,00,11), then use
Lemma 6 to construct (G1, G2, G3).

4. Examine the advice string for length n and deter-
mine whether the while loop terminated normally
during the construction of the first part of the ad-
vice string.

5. If the while loop terminated normally:

a. Check whether (F, Fy, F3) is one of the < 16
triples remaining in S when the loop terminated.
If so, the second part of the advice string states
whether (Fy, F», F3) € BLs. Then output a triv-
ial (G1,G2,G3) that is or is not a member of
coBL3 as appropriate.

b. Look for an H € SAT in the first part of the
advice string such that
Out(M, (F{ N H, F3, F3)) # (00,11, 00, 11).
If such an H € SAT is found, use Lemma 6 to
construct (G1, Gz, G3).

c. If Steps Ha and 5b failed, then by construction,
there must be an H ¢ SAT in the first part of the
advice string such that

OuT(M, (F A H, F}, F1)) = (00,11, 00, 11).

In this case, the fact that 10 is not in the possible
output sequence guarantees that F3 ¢ SAT. We
construct (G1, Gz, G3) as discussed previously.



6. If the while loop terminated abnormally:

a. For each F; € {F,F,, F3}, check whether Fj
is equal to some H in the first part of the ad-
vice string. If so, the advice string also indicated
whether F; € SAT.

b. If the membership of F; in SAT was not de-
termined in the previous step, then F; € T
when the while loop terminated. Then, for each
Z; € {Z,...,Zm} from the second part of the
advice string, let @; = (41, T2, 2;3) and compute
OuT(M, (z}; N Fj, 2}y, xl5)), the possible output
sequence. As argued above, F; € SAT if and only
if for a majority of the Z;’s, the possible output
sequence is (00,11,00, 11).

c. Since we have determined the membership of Fj,
F> and F3 in SAT, we can determine whether
(F1, F», F3) € BL3. Hence, we can output a triv-
ial (G1,G2,G3) that is or is not a member of
coBL3 as appropriate. O

4. Extensions

The proof of the main theorem can be extended in sev-
eral ways. We omit the full proofs in this version of the
paper. In the first extension, we consider the case of k
serial queries for functions with 2 bits of output.

Theorem 8 For all k£ > 2,
pESATIM — ppSATIE =1 _, ppy c »P,

Proof Sketch: The proof proceeds in the same fash-
ion as the proof for Theorem 7. We do need to
prove an analog of Lemma 6 for BLyx_; and PFlsAT[k]
machines whose sequence of possible outputs is not
(0,1,0,1,...,0,1). Also, instead of Q3o we will use
a function @ which on input (Fy,..., Fyr_;) outputs

the 2-bit value ab, where a =1 <= (Fy,..., For_q) €
BLot_; and b =1 <= (Fi,...,Fy_;) € ODDSAT,.
O

Corollary 9 For all j > 2 and k > 2,

pESATH — ppSATIR™= — p C 3P
j J =3
Proof: The corollary follows immediately from Theo-
rem 8 and the observation that for all j > 2,

PF_SATH [2F—1] c PF_SAT[k]

SAT||[2% -1]

— PFS SATI[k]

C PF, . 0

In the next extension, we compare PFEATW to

PF?ATW] where ¢ < 2F—1. We encounter some compli-
cations when we generalize the proof of the main the-
orem. Consider a PFEATB] machine M that computes
Qga, the concatenation of BLg and ODD%AT. The pos-
sible output sequence of M contains 8 strings. We can
generalize Lemma 6 to show that given a nested input
F = (Fy,...,Fs), Out(M, F) must contain as a sub-
sequence (00,11,00,11,00,11,00) (in this case we say
that M (F) makes 6 mind changes), otherwise we can
construct G such that F € Bl <«— G e coBLg.
However, M (ﬁ ) has 8 computation paths in its oracle
query tree, so it can make 6 mind changes and output
another value on its 1 remaining computation path.
Nevertheless, if the machine makes 6 mind changes, it
must still be missing either 01 or 10 in its possible out-
put sequence. This is enough for us to extend the proof

of the main theorem and show that
pry IO € pR3ATE] — pH C P

In general, we can show that for j > 2 and k > 3,
pEPATIE =2 ¢ ppSATIH — py ¢ xF,

Note that we already know from bounded query lan-
guage classes (i.e., the 1-bit functions) that

PFjsAT[k] c PFJ_SATII[2’€,2] — PHC 257
because
PFJ-SAT[k] C PFJ-SAT”[2)€72]

— PSAT||[2’&1] C PSATH[Q’uz]

which collapses the Boolean Hierarchy and which in
turn collapses PH.
On the other hand, our techniques fail to show

any consequences to the assumption that PFSATHW -

PFEATB}, because a PFEAT[B] machine can make 5 mind
changes and include all four strings 00, 01, 10 and 11
in its possible output sequence. To compare 3 serial
queries to 5 parallel queries, we need to consider func-
tions with 3 bits of output. Thus, we need to con-
struct a 3-bit function Qsz that is easily computable
by a PF?)S ATIE) machine, but is difficult for Png AT(3]
machines. Here, we point out that the only property
of ODD5”T we needed in the proof of the main theo-
rem is that it agreed with BL3 on nested inputs. In
fact, we could have used an artificially constructed
set that agrees with BL3 on nested inputs and tai-
lor the membership of non-nested inputs according to
the needs of the proof. Since a PF3S ATBI hachine that
makes 5 mind changes must include as a subsequence



(000,111,000, 111,000, 111), it can include at most 4 of
the 8 strings in {0,1}? in its possible output sequence.
Again, this is enough for us to show that

PF3SAT[3] _ PFgATI\[5] — PHC xF.

In general, we can show that for j > 3 and k > 3,
PESATIE — ppSATIE =3 _ pyy  yp
J J = 3"

When we continue to generalize the proof along
these lines and compare PFTSATW to PFTSATW], we
reach a limiting case because we do not necessarily
win when a PF,_SAT[H machine fails to include all 2"
strings from {0,1}" in its possible output sequence.
We only win when this allows us to eliminate a pos-
sible value for x?AT(F{,...,F}). In general, we can
create at most ¢ — 1 such situations using our current
techniques. Thus, our most general theorem is:

Theorem 10 For all j, k and ¢ such that
l<j<k<t<2t_1,
if2F — (¢ +1) <2/ —2and 2¥ — (£ +1) < £ — 1, then

PFjSATH[Z] c PFJ_SATU@] — PHC XF.

5. Conclusion

We have shown that except for the case of functions
with 1-bit output (which are essentially languages),
2k 1 parallel queries to SAT are indeed more powerful
than k serial queries to SAT for functions with limited
output bits unless the Polynomial Hierarchy collapses.
These results clarify some of the issues remaining from
previous work on bounded query functions with unlim-
ited output bits [1, 2, 7, 11].

There are still many open questions about parallel
versus serial queries to SAT for functions with limited
output. For example, our techniques do not show any
drastic consequences to the assumption that

pESATI) ¢ ppSATE).

Although we would conjecture that some two-bit func-

tion computable by PFSAT”W

a PFEAT[B] machine. Similarly we do not know how to
handle the case where

cannot be computed by

SAT||[4]

PES SATI[3]

C PF; .

New proof techniques are needed. In particular, we
need techniques that avoid the use of the enumerabil-
ity argument even more than we have managed in this

paper.
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