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Abstract— Visualization of volumetric data faces the difficult task of finding effective parameters for the transfer functions. Those
parameters can determine the effectiveness and accuracy of the visualization. Frequently, volumetric data includes multiple structures
and features that need to be differentiated. However, if those features have the same intensity and gradient values, existing transfer
functions are limited at effectively illustrating those similar features with different rendering properties. We introduce texture-based
transfer functions for direct volume rendering. In our approach, the voxel’s resulting opacity and color are based on local textural
properties rather than individual intensity values. For example, if the intensity values of the vessels are similar to those on the
boundary of the lungs, our texture-based transfer function will analyze the textural properties in those regions and color them differently
even though they have the same intensity values in the volume. The use of texture-based transfer functions has several benefits.
First, structures and features with the same intensity and gradient values can be automatically visualized with different rendering
properties. Second, segmentation or prior knowledge of the specific features within the volume is not required for classifying these
features differently. Third, textural metrics can be combined and/or maximized to capture and better differentiate similar structures.
We demonstrate our texture-based transfer function for direct volume rendering with synthetic and real-world medical data to show
the strength of our technique.

Index Terms—visualization, statistical analysis, volume rendering, data variability, medical imaging

1 INTRODUCTION

Direct volume rendering provides a visual representation of three-
dimensional volumetric data based on functions that map densities to
specific colors and opacities. These transfer functions are crucial in the
understanding of the overall volumetric data and individual features
contained within the volume space. Specification of transfer functions
to disambiguate the various materials and structures is a tedious and
time-consuming task. In addition, accurately identifying and visually
distinguishing various objects in a volume is a challenging task.

Researchers have used first- and second-order derivative-based
functions to more accurately identify boundaries between different
materials [7, 8]. Kniss et al. [9] introduced dual domain interaction to
facilitate identification of boundaries in the three-dimensional domain
using a probe that facilitates manual segmentation of various materials.
However, most transfer functions are still attached to the voxel’s prop-
erties such as intensity, gradient, and curvature. This leads to problems
when the volumetric data under consideration contains multiple struc-
tures with similar intensity values and geometrical properties.

Like images, volumes commonly contain characteristic patterns and
textures that our visual system can clearly identify. In particular, vol-
umes frequently present very small structures – textons – which com-
bined create different structures and characteristic regions. Studies in
human perception and psychological research have shown that textures
and patterns play an important role in the overall interpretation and
understanding of the underlying structure. Motivated by those studies
and the need to better differentiate similar structures within volumetric
data, we have designed a texture-based transfer function which uses lo-
cal textural properties of the data in addition to the individual intensity
values.

We introduce texture-based transfer functions (TbTF) to enhance
the visualization of volumetric data by allowing similar structures to
be rendered differently. In our technique, a volume is first decom-
posed into overlapping or non-overlapping regions or subvolumes of
interest. For each subvolume, a multi-dimensional texture-based de-
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scriptor is computed which captures the local textural statistical prop-
erties. All the statistical descriptors are pre-computed and stored in
a vector image. During the raycasting integration process, the vec-
tor image is used to look up the voxel’s textural properties. Based
on those properties, different opacity and color are assigned to each
voxel, thus enhancing the visualization and illustration of regions with
similar density values.

Additionally, we evaluate our techniques by experimenting with
synthetic data as well as real-world medical data. Based on our ob-
servations, we provide guidelines regarding the texture sizes that more
effectively capture local structural details. We also demonstrate the
benefits of weighting and combining individual textural properties to
provide effective visualization of similar structures.

2 RELATED WORK

The design of effective transfer functions for direct volume rendering
has been a widely researched topic. Early work introduced the use
of gradients for improved classification in the raycasting process [11].
Accurately classifying materials has been a challenging task that was
approached using gradient-based multi-dimensional transfer functions
[7, 9]. These techniques were particularly useful in the medical do-
main where the boundaries of adjacent anatomical parts are not eas-
ily distinguishable using only the voxel intensity. Multi-dimensional
transfer functions were further extended to accentuate and highlight
regions of high curvature [8].

Transfer functions have also been used in the illustrative visualiza-
tion domain. Hauser et al. [4] were the first to propose a novel frame-
work to mix illustrative representations with standard volume render-
ing (direct, MIP, x-ray) to highlight features in the visualization while
providing context to the viewer at the same time. Style transfer func-
tions were introduced by Bruckner et al. [1] to give more control to the
visualization designer. These techniques have been mostly used with
segmented data.

There has been some work in the field of analyzing the spatial char-
acteristics around the voxel under consideration to apply some smart
classification techniques. Roettger et al. [18] used the voxel barycen-
ter and the region variance to assist manual specification of colors for
similar features in the process of volume rendering. Sato et al. [19]
characterized tissues of interest by explicitly defining rules and filters
such as edges, sheets, lines, and blobs for each local structure. The fil-
ter characteristics were analyzed using a Gaussian models. Two limi-
tations of this technique were that all tissue classification was reduced
to four simple structures and that the smoothing could cause loss of
important local structures and patterns. Their classification was fur-



ther improved with a multichannel approach but it required complex
user interaction for good classification results. Ljung et al. [12] de-
veloped a technique that analyzed the neighborhood using statistical
techniques such as range weight.

In addition, recent work has suggested the use of local texture anal-
ysis to better classify volume data. Tzeng et al. proposed a technique
to classify volume data through a supervised learning technique that
considers neighbors density and gradient values [21]. The technique
was limited by the amount of user iteration required to select regions
of interest and by the few neighboring metrics used. Lum et al. [13]
suggested the use of local textures, scale-based filtering, and parallel
coordinates to better classify volume data interactively. The effective-
ness of that approach was limited by how well different materials can
be distinguished and identified from the changes of the parallel coor-
dinates.

In our work, we use first-, second-, and high-order local statisti-
cal texture properties to effectively assign voxels to different opacities
and colors. Based on local statistical texture properties and the set
of statistical metrics we employ, our texture-based transfer functions
can accurately capture differences and similar local properties to better
differentiate individual structures. In contrast with most existing tech-
niques which are primarily attached to the voxel’s density values, our
technique automatically assigns voxels with similar intensity values
and different textural properties to individual transfer functions.

Some of the benefits of our texture-based transfer functions are that
different structures which have the same intensity values can be ren-
dered differently by the raycast function. Second, previous knowledge
of the specific structures or segmentation of the different structures is
not needed. In addition, textural properties and statistical metrics can
be combined in a manner that maximizes the differences in structures
that are similar in density and even some textural properties.

3 TEXTURE ANALYSIS

Texture analysis is a fundamental technique used in medical imag-
ing and computer vision to identify, characterize, and compare regions
with similar properties. Statistical textural analysis measures and cap-
tures local image properties which are not necessarily based on inten-
sity properties, they are rather a combination of intensity, local pat-
terns, and local image statistics. It has been demonstrated that the
generation of textural properties can be used to enhance classification
and characterization of individual image regions[15, 16].

Our TbTF uses local textural properties to map a given voxel to a
specific opacity and color. Instead of only considering the intensity
value of the voxel, the gradient information, or the interpolation be-
tween neighboring voxels, our TbTF maps textural properties to spe-
cific rendering attributes.

We use a combination of first-, second-, and high-order statistics to
capture textural properties. In particular, we use histogram statistics
in conjunction with co-occurrence and run-length matrices to capture
structural and geometrical properties.

First-order statistics are calculated from the probability of observ-
ing a particular pixel value at a randomly chosen location in the image.
First-order statistics are among the simplest textural measurements
that can be extracted from 2D/3D images, specially given that they are
obtained from a histogram. A histogram is a simple measurement that
maps intensity values into various disjoint bins. Let π(i)(i = 1,2, ...,n)
be the number of voxels whose intensity is i in a given subvolume vk

of size m3. The probability of intensity i being within the subvolume
vk is computed by

h(i) =
π(i)

m3
(1)

Using such probabilities and the image histogram it is possible to ex-
tract several local statistical properties including mean, variance, kur-
tosis, skewness, and deviations.

A number of local statistical properties cannot be captured by first-
order statistics, only with more advanced texture-analysis techniques
such as second- or high-order statistics. Second-order statistics mea-
sure the likelihood of observing an intensity value i and j at an average

distance ~d = (dx,dy) apart[5]. Frequently, second-order statistics are
computed using co-occurrence matrices as demonstrated by Haralick
et al.[3] Let δ = (r,φ) denote a vector in the polar coordinate of the
subvolume. We can compute the joint probability of the pairs of gray
levels that occur at pairs of points separated by δ . That joint probabil-
ity can be stored on a matrix P(i, j) which contains the probability of
observing the pair of gray levels (i, j) occurring at separation δ . In our
case, we estimate the co-occurrence matrices by computing different
matrices for the angles φ = {0◦,45◦,90◦,135◦} within each axis. To
guarantee rotation-invariant properties, we compute the average co-
occurrence matrix and then extract statistical properties including en-
ergy, contrast, correlation, inertia, entropy, and sum of entropies.

To better identify and characterize regions with similar properties,
we use run-length matrices of higher-order statistics to estimate the
number of graylevel runs within the volume[20]. The run-length
matrix Pθ (i,k)(i = 1, ..,m;k = 1, ..,n) represents the frequency that
k points with 32-bit quantized gray level i continue in the direction
θ ∈ 0◦,45◦,90◦,135◦. From a run-length matrix textural statistics
such as the amount of short (fine) runs, long (coarse) runs, and the
uniformity of such runs can be estimated.

1st Order 2nd Order Run Length

Statistics Statistics Matrices

Mean Energy Short Run (SRE)

Variance Inertia Long Run (LRE)

Skewness Inverse Diff Gray Level Nonuniform (GLNE)

Kurtosis Entropy Low Gray Run (LGRE)

Absolute Deviation Correlation High Gray Run (HGRE)

Standard Deviation Contrast Short Run Low Gray (SRLGE)

Sum Entropy Long Run Low Gray (LRLGE)

Table 1. Texture metrics used to create a multi-dimensional descriptor
for each voxel or region of interest.

In total, our TbTF uses 20 textural metrics within a multi-
dimensional descriptor to differentiate local textural properties. Table
1 lists all the metrics used by our system. For a mathematical descrip-
tion and formulas, please see [3, 20]. In our system, all the textural
metrics are pre-computed and stored in a vector image which the ray-
cast function uses during the rendering process to look-up the local
textural properties.

4 APPROACH

Our approach is based on our observation that volumetric data can
be described as a collection and specific arrangement of 3D textons.
By analyzing the specific textural pattern that each collection of 3D
textons creates, we can automatically enhance the visualization and
more effectively illustrate structures with similar intensity values.

Fig. 1. Two synthetic datasets used to evaluate our system. Most of
the structures within the volumes have the same intensity value limiting
how effectively existing rendering techniques can differentiate individual
structures. Note that the individual structures and different patterns can
be visually distinguished.

Figure 1 shows two synthetic volumes used to test our system. Both
3D datasets have different patterns and structures with the same inten-
sity values which existing transfer functions are unable to automat-
ically differentiate. We can see different structures and patterns by



looking at the images in Figure 1, however existing volume rendering
techniques have limitations and difficulties when it comes to effec-
tively differentiating structures that have the same density values and
similar gradients (as seen in Figure 2(left)).

Our texture-based transfer functions (TbTF) work as follows: Given
an input volume V , we first partition the 3D image into |P| overlapping
or non-overlapping regions. For each region or subvolume vi ∈ P, a set
of statistical texture properties are computed and stored in a vector im-
age V ′. Once the vector image has been generated, the pre-computed
statistical properties are used by the raycasting function to look up lo-
cal structural properties and assign different color and opacity to vox-
els with similar density but with distinct textural properties.

4.1 Volume Partitioning

The first step is to partition an input volume into meaningful regions
where individual statistical properties can be estimated more accu-
rately. Given an input image V , we first partition the volume into |P|
regions or subvolumes of interest. Each region is described by two pa-
rameters: (ρ,σ). The value ρ ≥ 1 denotes the region size and σ ≥ 0
denotes the overlap. For instance, to compute the per-voxel statisti-
cal properties of a given volume V using a neighboring window w,
the volume partition will be created with ρ = 1 and σ = w. The two
primary considerations for estimating the value of ρ and σ are that
the region or subvolume has to be large enough to capture statistical
textural properties, but it has to be small enough to capture only local
properties relevant to surrounding voxels.

4.2 Pre-computing Textural Properties

After determining the values ρ and σ and generating a specific parti-
tion, a multi-dimensional vector containing the structural texture prop-
erties is estimated for each region vi ∈ P. A combination of first- ,
second-, and high-order statistics are used to extract textural properties
from each subvolume of interest. Once all the 20 metrics are computed
and combined into a multi-dimensional vector they are normalized and
stored in a vector image V ′.

The volumetric partitioning and the statistical textural analysis are
pre-computed and used during the visualization step. Alternatively,
the partitioning and texture analysis can be done during the initializa-
tion step given that the process takes only a few seconds in cases with
relatively large partitions or subvolumes of interest. The performance
and timing results are further discussed in section 5.1.2.

4.3 Texture-based transfer function

After the vector image with all the textural properties has been gen-
erated, it is used to enhance volumetric visualization. In our system,
during the rendering process, a voxel is represented by its local textural
properties which enables the flexibility of enhancing and distinguish-
ing regions with similar density and gradient values, but with different
local textural properties.

We present four specific ways to use our TbTF to enhance visual-
ization and improve the differentiation of individual structures. First,
the user can specify a value k with the number of structures to dis-
criminate, then by using the multi-dimensional descriptors, vectors
can be automatically classified in k groups. Second, the user has the
flexibility of enhancing the visualization by manually or automatically
changing individual metrics. Third, the user can select a specific area
and based on similarity measurements, all equivalent structures can
be highlighted by the transfer function. Finally, we also present a
technique which provides the flexibility of selecting two regions and
computing individual weights for each metric, thus maximizing the
differences between those regions.

4.3.1 Automatic Classification

After generating or loading a pre-computed vector image V ′ contain-
ing all the textural statistical properties, automatic classification of the
data is possible. The user can specify a value k with the number of
structures to highlight or display with different rendering properties.

Fig. 2. (Left) 2D slices of our synthetic data. Since most of the struc-
tures have the same intensity value, existing transfer functions are lim-
ited in effectively differentiating them. (Right) Diagram of the modifica-
tion to the raycasting process to incorporate our TbTFs. As the ray tra-
verses through the volume, each voxel location is identified by the pre-
computed local textural properties. Thus, enabling effective enhance-
ment of structures with different textural properties.

Then, the entire collection of vectors or a set of non-neighboring vec-
tors vi ∈ V ′ can be used to classify the data. By using an inequality-
based fast k-means implementation[2], the data can be clustered within
seconds and rendered differently. Note that during the classifica-
tion process all selected metrics of each sub-volume vi are uniformly
weighted. In Section 4.3.4 we will show how to automatically assign
non-uniform weights to each metric.

Our technique of using unsupervised k-means to automatically clas-
sify the data can be seen as a type of segmentation. However, given the
flexibility the user has to change the value k during the visualization
process and/or selecting specific metrics to use during the unsuper-
vised classification step, we believe that automatic classification is an
important benefit our TbTF provides.

4.3.2 Individual Weighted Metrics

A second technique our system provides is to enhance the visualiza-
tion of structures with similar intensity values by selecting individual
metrics. The user can automatically select and change any of the 20 in-
dividual metrics to better discriminate the data. Since every region or
voxel is represented by a vector that captures the local textural proper-
ties, the user can select individual metrics or a combination of different
metrics to highlight specific structures. During the rendering process,
for every region or voxel under consideration, if the value of the spe-
cific metric(s) under consideration are above the user’s threshold, the
raycast function will assign the voxel a different opacity, color, and
rendering properties.

Given the large amount of metrics the user can change and the pos-
sible complexity of understanding individual metrics, weighted met-
rics can be difficult for data exploration. However, a quick review
of medical imaging and computer-aided diagnosis systems shows that
researchers have provided specific textural metrics that are important
to highlight particular diseases or anatomy[6, 10, 17]. TbTF provides
the flexibility of using such information to individually weight differ-
ent metrics and enable domain experts to better highlight important
anatomical structures or patterns.

4.3.3 Similarity Measurements

Another technique used to enhance the visualization of structures with
similar density and gradient values are similarity measurements. We
have seen that in high-dimensional volume rendering [9, 13] 3D wid-
gets have been accepted as techniques to select areas of interest. In our
system, the user can employ a 3D widget to select a specific region or
area of interest S. The combination and averaging of all the multi-
dimensional descriptors (vi ∈ S) contained within the selected region



result in a characteristic descriptor. That multi-dimensional descriptor
can then be used to highlight similar structures during the rendering
process.

During the raycasting and accumulation process, if the textural
properties of a specific voxel is within a certain distance from the char-
acteristic descriptor, then the region or voxel under consideration re-
ceives different opacity values and color properties. It is important to
note that this approach does not add any additional complexity to the
raycasting process given that it only adds a single lookup to determine
if the local statistical properties are within a given threshold. Figure
2(right) shows a diagram with our modification to the raycast process.

The raycasting process results in the creation of a visualization that
highlights different structures and displays features with similar den-
sity values and distinct textural patterns differently.

4.3.4 Non-uniform Weights

Another way to use our TbTF to enhance structures with similar in-
tensity and gradient values is to non-uniformly assign weights to each
textural metric. By using a 3D widget, the user can select two small
regions of the structures that need to be differentiated. Then, since
the vector image V ′ containing all the textural metrics is always kept
in memory, two sets – S1 and S2 – can be generating by grouping all
the multi-dimensional descriptors of the selected areas. The two sets
– S1 and S2 – represent two particular classes. All the textural met-
rics for each class are analyzed and based on their textural metrics,
differences are maximized. By using the mutual information between
the two classes, the textural metrics that are redundant between the two
classes and the features that are the most relevant for each independent
class can be identified[14]. From such results, individual weights can
be assigned to each group – thus maximizing their differences. Finally,
during the raycast function by comparing the non-uniformly weighted
descriptor, two similar structures can be automatically differentiated.

5 RESULTS

To test the strengths and limitation of our system, we have used syn-
thetic and real-world medical volumes. In addition, we have compared
different ρ and σ values to provide specific information regarding the
parameters which work more effectively.

5.1 Synthetic Data

Fig. 3. (Left) Synthetic data being visualized with standard transfer func-
tions. Since most of the areas have the same intensity value, existing
visualization techniques are limited in how effectively individual struc-
tures are rendered. (Right) The same synthetic dataset visualized using
our TbTF. The center of the volume (pointed by the arrow) can be auto-
matically highlighted by just analyzing local textural properties.

Figure 3(left) shows one of the synthetic volumes used to test our
technique. Given that most of the areas and structures have the same
intensity value, existing volume rendering techniques are limited in
how effectively different structures can be illustrated separately and
with individual rendering properties. We compared the results of using
1D and our texture-based transfer functions. Figure 3(right) shows
the results of using ρ = 4, σ = 0, and the automatic classification
with k = 3. Note that in our automatic classification the value k has
to be n + 1 where n is the number of structures to differentiate (ie.

n structures plus noise). From the images we can see that existing
transfer functions are limited in automatically differentiating regions
with distinct patterns and textural properties.

Fig. 4. (Top left) Results of a 1D transfer function. (Top right) Results of
our TbTF with ρ = 2, σ = 4, and k = 3. (Bottom left) Results of our TbTF
with ρ = 2, σ = 4, and k = 4. (Bottom right) Results of our TbTF with
ρ = 2, σ = 4, k = 4, noise, and structures in different intensity ranges
that do not have to be differentiated.

Figure 4 shows the results with our second synthetic volume which
has both fine structures as well as coarse regions. From the result, we
can see that a 1D transfer function is limited in separating structures.
In addition, we can see that our TbTF was able to find the structures
under different parameters, including the use of different values k to
automatically classify the data.

From our results, we can see that structures with linear patterns at
0◦, 45◦, and 135◦ were classified and colored together. This is the
result of using co-occurrence and run-length matrices which are in-
variant to rotation. Note that this property of rotationally invariance is
not required. However, given that in most real-world 3D images tex-
tures or characteristic patterns can be found within the entire volume
space and in very limited situations we can find patterns pointing in
the same direction, rotationally invariant features help texture-based
classification.

5.1.1 Texture Size

Using the same synthetic datasets, we tested our TbTFs with differ-
ent texture sizes ρ and different overlaps σ to find the specific size
which best captures structural pattens and textural properties. Figure 5
compares the results of generating a per-voxel multi-dimensional de-
scriptor using an overlap σ in the range of [1−6]. From the results of
both synthetic datasets that contain coarse and fine patterns, we found
that when σ = 4 the individual structures were better differentiated
and rendered more accurately.

Based on our experiments with synthetic data and different over-
laps, we can conclude that a region of 53 (ρ = 1, σ = 4) voxels is
large enough to capture local statistical textural properties, while at
the same time was small enough to accurately differentiate surround-
ing structures. Note that our results are not a definite solution for the
texture size, however we found that when the textural statistical prop-
erties are computed in regions between four (4) and six (6) voxels,
different patterns and structures can be accurately distinguished and
separated despite them containing fine or coarse textural patterns. In



Fig. 5. (Top row) Results of using ρ = 1, k = 3, and changing σ = 1,2,3,4,5,6. (Bottom row) Results of using ρ = 1, k = 3, and changing σ = 2,4,6. In
both experiments we found that when σ = 4 (i.e area of 53), the data was classified more accurately. Note that with both small and large σ values,
there is significant increase on the amount of error and misclassification.

Volume Size ρ = 4, σ = 2 ρ = 2,σ = 4 ρ = 1,σ = 2

64x64x32 0.15s 0.61s 4.09s
k = 3 0.01s 0.10s 0.74s
k = 4 0.02s 0.12s 0.82s

64x64x64 0.30s 1.21s 8.33s
k = 3 0.04s 0.18s 1.32s
k = 4 0.05s 0.20s 1.50s

128x128x64 0.86s 4.57s 32.43s
k = 3 0.08s 0.76s 6.25s
k = 4 0.11s 0.94s 6.02s

128x128x128 1.33s 8.80s 61.47s
k = 3 0.14s 1.46s 12.16s
k = 4 0.20s 1.54s 12.93s

256x256x128 5.25s 32.75s 233.88s
k = 3 0.62s 6.36s 25.02s
k = 4 0.76s 6.50s 27.12s

Table 2. Performance of our texture-based transfer functions. The first
row of each section shows the time required to pre-compute the textural
properties for different volume sizes, ρ and σ values. The other two
rows show the time required to automatically classify the pre-computed
vectors as explained in Section 4.3.1.

addition, from our experiments we found that there are not significant
and visible advantages of computing per-voxel textural metrics (ρ = 1)
versus using ρ = 2. This is, ρ = 2 can be used without any significant
reduction in accuracy.

5.1.2 Timing and Performance

The vector image containing all the local textural properties can be
either pre-computed or generated during the initialization. To demon-
strate the performance of our system and the time required to estimate
the statistical textural properties, we have experimented with differ-
ent volumes sizes and different ρ and σ values. In addition, to show
the minimum impact that the optional and automatic classification pre-
sented in Section 4.3.1 has on the rendering pipeline, we have classi-
fied each experiment with k = 3 and k = 4.

Table 2 summarizes the results. From the table we can see that
the processing time for computing the textural properties increases as
ρ decreases and the volume size enlarges given the large number of
multi-dimensional descriptors to compute. However, it is important to

note that for the suggested value of ρ = 2, σ = 4, and relatively large
volumes, the pre-processing time is about thirty seconds. In addition,
from Table 2 we can see that when automatic classification is used, the
overhead and time introduced to the rendering pipeline is minimum.
In particular, in the worst case scenario that all the multi-dimensional
vectors are used, only about five seconds are required to automatically
classify relatively large volumes.

5.2 Medical Volumetric Data

Fig. 6. Visualizations of the lung dataset using various transfer function-
based techniques. (Top left) Standard 1D transfer function using VTK.
(Top center) Volume rendered image with lighting and gradient-based
transfer function to accentuates the boundaries of the vessels.(Top right)
Image generated using Simian[9] and multi-dimensional transfer func-
tions to emphasize boundaries between adjacent features. (Bottom left)
Visualization generated using our TbTF with ρ = 2, σ = 4, and k = 3.
(Bottom right) Visualization generated using our TbTF with a slightly
modified opacity transfer function, ρ = 4, σ = 0, and k = 3.

In addition to synthetic datasets, we have tested our TbTFs with ac-
tual CT and MRI data. The experiments with real-world data helped us
refine our techniques and strengthen them to deal with the challenges
that synthetic data cannot provide.

We first applied our techniques to lung data. Figure 6 shows our



Fig. 7. Images showing a segment of the heart, aorta, and tissue around
the spine. (Left) Visualization using a 1D opacity-based transfer func-
tion. (Center) Resulting image after applying a multi-dimensional trans-
fer function and carefully picking the the specific materials and bound-
aries to enhance. (Right) Results of our TbTF with ρ = 2, σ = 4, and
k = 3 which highlighted individual structures based on their textural prop-
erties.

Fig. 8. Experiment of applying our TbTF to different intensity ranges si-
multaneously. (Left) Visualization obtained using standard transfer func-
tions. (Right) Image obtained using our TbTF to automatically highlight
structures with similar intensity values and different textural properties.
In this example, the heart is colored in red, adjacent vessels are colored
in green, and the tissues surrounding the spine are colored in bluish
purple.

results in comparison with other transfer function techniques. The top
row shows volume rendered images using a one-dimensional transfer
function. The top left image shows a simple transfer function where
all the voxels of the same intensity are colored in green. The density
based transfer function was not able to disambiguate features in the
data. The top center image highlights the boundaries by using light-
ing and gradient enhancement techniques. The top right image shows
the image obtained by using multi-dimensional transfer functions that
highlight surface boundaries and allow dual domain interaction. The
bottom images show the results of using our TbTF that leads to auto-
matic identification and assignment of colors to the vessels and sur-
rounding anatomy in the lung. Our results were obtained automati-
cally in contrast to the other three techniques which required signifi-
cant transfer function manipulation. Also it is important to notice that
even with relatively large ρ our technique was able to automatically
separate different structures.

We also tried our TbTFs on heart data as can be seen in Figures
7 and 8. The heart data was more challenging as visualizing spe-
cific anatomical features such as the aorta, the heart, and surround-
ings structures was extremely hard using standard transfer function or
dual-domain interaction.

Figure 7 shows a region of the heart and the aorta along with the
tissue around the vertebrae in the spine. The left image was gener-
ated using a one-dimensional transfer function. Opacity-based trans-
fer functions were unable to clearly separate the heart’s anatomy from
the tissue around the vertebrae due to their similar intensities. Using a
multi-dimensional transfer function we were able to separate and color
the tissue around the vertebrae separately. However, as can be seen the
intensity and gradient-based techniques end up picking some features

Fig. 9. (Top left) Image obtained by using a combination of opacity-
and gradient-based transfer functions. (Top right) By only selecting the
voxels with density 118 we can see that existing transfer functions are
limited in effectively differentiating individual structures. (Bottom) Lo-
cal textural properties can be used to improved the accuracy of existing
transfer functions. This image was obtained with our TbTF and param-
eters ρ = 2, σ = 4, and k = 3.

co-located with the heart causing a green boundary around the heart.
In addition, generating this particular visualization took a considerable
amount of time even using the advanced feature of dual-domain inter-
action, primarily because identifying the exact boundary of the heart
anatomy and the tissue was extremely hard. The right image was ob-
tained using our TbTF technique which automatically identified the
two anatomical structures separately and colored them differently.

We have also applied our TbTF techniques to more complex sce-
narios. By using our heart dataset, we experimented with automati-
cally highlighting individual structures from multiple intensity value
ranges. Previously, we saw that the tissues surrounding the spine have
the same intensity values as the aorta. In addition, the cardiac ves-
sels surrounding the heart have the same intensity values as the heart
anatomy. By applying a TbTF to individual intensity ranges we can
highlight and differentiate multiple structures at a time. Figure 8 shows
our results. From the images we can see that the heart was colored in
red, adjacent vessels in green, and the tissue surrounding the spine was
automatically colored in blue.

Opacity- and gradient-based transfer functions are limited in differ-
entiating structures when all the voxels have the same intensity and
similar gradient values. Figure 9(top left) shows a visualization ob-
tained by using intensity- and gradient-based transfer functions. If we
just focus on a particular intensity value of that visualization, we can
see the large amount of uncertainty and misclassification introduced
by standard transfer functions. Figure 9(top right) shows the set of
voxels with intensity value 118. We can see that always within a spe-
cific classification and visualization, there are voxels along a particular
density range misclassified. By using our TbTF with ρ = 2, σ = 4, and
k = 3 we were able to automatically highlight and render differently
each structures as shown in Figure 9(bottom).

5.3 Weighted Textures

Statistical textural properties have been proven to be strong approaches
to characterize similar 2D/3D structures[15]. However, there are situ-
ations where structures have the same intensity values and share mul-
tiple textural properties, thus reducing the benefits of local statistical
textural properties. We found such a limitation when applying our
TbTF to brain MRI images, particularly when trying to highlight the
part of the cerebellum.



Fig. 10. Images of the gray matter of the brain. It is possible to see
that the cerebellum has specific textural properties that can be use to
differentiate the gray matter from the cerebellum.

Figure 10 shows a 3D slice of the brain MRI dataset. From the
image it is possible to see that there are textural differences between
the gray matter and the cerebellum. However, by using a uniformly
weighted multi-dimensional descriptor such as the one found in our
vector image V ′, the structures cannot be highlighted correctly.

Fig. 11. Example of the process followed to maximized differences be-
tween two regions. The user selects two regions, a joint-histogram is
generated with the metrics of all the voxels or regions of interest, and in-
dividual weights for each textural metric are estimated to better highlight
different structures.

In such situations, it is possible to maximize the differences be-
tween the structures by assigning individual weights to each textu-
ral metric. We have extended our texture-based transfer functions to
incorporate weighted textural properties. Our approach works as fol-
lows: Given a set of structures that need to be highlighted by our trans-
fer function, small areas within each of them are selected. Then, by
combining the statistical textural properties of each of the structures
in a joint histogram, joint entropy and mutual information can be es-
timated. The mutual information measures the amount of information
that the structure X conveys about the structure Y .

Such information can then be used to find the textural metrics which
are redundant between the structures and most importantly, find the
specific metrics which characterize each individual area under con-
sideration. That information is used to estimate a weighting value
for each individual textural metric, thus allowing better differentiation
of similar structures. In our system, the technique used to generate
weights for each metric is based on mRMR[14]. Figure 11 shows the
general idea of our weighted texture-based transfer function. Different
areas of interest are selected, per-voxel metrics combined, the mutual
information computed, and individual weighting values estimated for
each textural metric.

In our experiments with MRI data we found that only second- and
high-order statistical properties of the data were among the primary
metrics to differentiate the gray matter from the cerebellum. In partic-
ular, we found that long-run low-gray, gray-level nonuniform, sum of

Fig. 12. Results of highlighting individual textural metrics. None of indi-
vidual textural metrics was able to accurate highlight different structures.
(Top left) Energy, (Top right) Sum Entropy, (Bottom left) Absolute Devia-
tion, (Bottom right) Standard Deviation.

entropy, and inertia were the most characteristic features with result-
ing weights of 0.31, 0.22, 0.21, and 0.17 respectively. However, it is
important to understand that none of these individual textural metrics
were able to accurately highlight the cerebellum, but only a combina-
tion and weighting of them resulted in effective visualization of the
center region of the cerebellum.

Figure 12 shows the results of partitioning the volumes with ρ = 2,
σ = 4 and highlighting individual textural metrics. None of the in-
dividual metrics was able to accurately highlight different structures.
Figure 13 compares different volume rendering techniques. The top-
left image shows how even multi-dimensional transfer functions are
limited in accurately enhancing the cerebellum from the gray mat-
ter. In addition, the top-right image shows how the equally weighted
TbTFs and automatic classification were not able to effectively illus-
trate the different structures. Only, the use of weighted texture-based
transfer functions were able to enhance and assign different rendering
properties of the gray matter and the cerebellum.

Our results with weighted textures should not be taken as a definite
solution to extract the cerebellum. In such situations, a segmentation
technique might be more suitable. However, when trying to enhance
a region of the cerebellum with high textural differences, local texture
analysis and weighted textures will work.

6 CONCLUSION

In this paper, we present a novel way to visualize different materials
in volumetric data by using texture-based transfer functions. The main
advantage of using TbTF is that the user can effectively visualize fea-
tures with similar voxel properties differently given that the technique
is not attached to a specific intensity value, but rather local properties.

The presented system has some limitations. First, the process of
estimating all the textural metrics for each voxel or region of inter-
est could be a time-consuming process for relatively large volumes.
That is the primary reason why we suggested that for small values ρ
and large volumes, the process of estimating and generating the vector
image V ′ should be an offline process. Second, our current imple-
mentation and graphical interface shown in Figure 14 does not use the
graphics hardware and texture memory to store the vector image V ′. In
the future, we plan to expand our system so the lookup for the textural
properties can be done within the graphics card.

We had considered multi-resolution texture analysis and multi-scale
pyramids to better enhance different structures. However, we found
that our current classification process does not benefit from such tech-
niques. First, in a pyramid, by reducing the size of the volume or
applying smoothing operation to the volume, small features charac-
teristic of particular patterns are lost, thus reducing the accuracy of



Fig. 13. (Top left) Visualization generated using the dual-domain interac-
tion in Simian. The cerebellum cannot be localized using this technique
since it shares intensity and gradient similarities with other regions in
the volume, even though it has a unique pattern. (Top right) Results
with our uniformly weighted TbTF with ρ = 2, σ = 4, and k = 3. (Bottom)
Weighted TbTF applied to the brain data. The cerebellum is clearly vi-
sualized in red while the rest of the brain structures are seen in green.

the classification process. Second, estimating textural properties in a
multi-resolution fashion can reduce the classification given that small
volume features might have a very similar descriptor to high-level fea-
tures. We believe that those two techniques can be used in the future
to better classify the data, but special consideration has to be taken.

In our system, we use a combination of first-, second- and high-
order statistics to characterize textural features. We found that the
enhancement of different features was best performed when metrics
were estimated in a 53 region. In particular, we found that for ρ = 2
and σ = 4 the computed textural properties led to more accurate fea-
ture identification. Our results regarding the textural parameters that
more effectively captures local statistics are based on visual estimates.
In the future, we plan to more accurate find the texture size and overlap
by using a supervised training and testing system.
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