Information Retrieval: A Survey

30 November 2000

by
Ed Greengrass

Abstract

Information Retrieval (IR) is the discipline that deals with retrieval of unstructured
data, especially textual documents, in response to a query or topic statement, which
may itself be unstructured, e.g., a sentence or even another document, or which may
be structured, e.g., a boolean expression. The need for effective methods of auto-
mated IR has grown in importance because of the tremendous explosion in the
amount of unstructured data, both internal, corporate document collections, and the
immense and growing number of document sources on the Internet. This report is a
tutorial and survey of the state of the art, both research and commercial, in this
dynamic field. The topics covered include: formulation of structured and unstruc-
tured queries and topic statements, indexing (including term weighting) of docu-
ment collections, methods for computing the similarity of queries and documents,
classification and routing of documents in an incoming stream to users on the basis
of topic or need statements, clustering of document collections on the basis of lan-
guage or topic, and statistical, probabilistic, and semantic methods of analyzing and
retrieving documents.

IR 11 Yo [T £ o P 5.

2. What is Information Retrieval (IR)?cccooei e 6
2.1 Definition and Terminology of Information Retrieval (IR).........cccooveiiiiiiiiiiiiiiiiiiiiiiins 6
2.1.1 Structured vs. Unstructured vs. Semi-Structured DOCUMENTSeuvvveiieieieeiiieennnn. 6
2.1.2 Unstructured Documents with Structured Headers.............ooooviiiiiiiiiiiiiiiiiiiiecceeeeen 7
2.1.3 Structure of a Document as @ DOCUMENTccouuiiiiiiiiiiiieee e 8
2.1.4 Goals of Information RetrieValuuuuiiiiiiiiiec e eeaaeees 8
2.1.5 Ad-HoC QUErYING VS. ROULINGceeiiiiiiiiiiiiiiiei e e e e e e e e e e et s e e e e e e e e e e e e aaeeeanannnes 9
2.1.6 Evaluation of IR PerformMancCeoiiiiiii i 9
3. ApProaches to IR - GENEIAcooiii i 12
4. Classical Boolean ApproaCh to IRooiiiiiiiiiicie e 13
4.1 Automatic Generation of Boolean QUENIES...........coiiviiiiiiii i 14
5. Extended B00lean APPIrOACKooiiiiiiiiiii ittt 15
ORI L=Tox (o] ST o F= oS3 Y o] o] o Y- T o [P 18
6.1 Building Term Vectors in DOCUMENt SPACEccevuiiiiiiiiiiiiiieee e 18
6.2 Normalization Of TerM VECIOISuuuiiiiei i e e e e e s 20
6.3 Classification of Term Vector Weighting Schemes..........ccccooveeiiiiiiiiiiiieceeceen, 25
6.4 Computation of Similarity between Document and QUErY..........ccooeevveiiiiiiieeeiiiiiineennn. 28
6.5 Latent Semantic Indexing (LSI) — An Alternative Vector Scheme...........ccccccevveeees 35
6.6 Vectors Based 0N N-gram TEIMMNS.ccciiiie i i e e e e e e e e e e e e e e as 41
7. ProbabiliStic APPIrOACK........i e a e 44
7.1 What Distinguishes a Probabilistic Approach?............eeeeii 44
7.2 Advantages and Disadvantages of Probabilistic Approach to IRcccooeeeeieeeinn. 45
7.3 LINKEA DEPENUEINCE ...ttt e e e ettt a s e e e e e e e e e aaeeeeeeeennnnne 46
7.4 Bayesian Probability MOAEISuuuiiiiiiiiiiiiiee et a7
7.4.1 Binary Independence MOUEL............uuuiiiiiiiiie e 48
7.4.2 Bayesian Inference Network Model ... 52
7.4.3 LOGICAI IMAGING ...ttt ettt e e e e e e e e e e e e e e e e e e bbb e e eeees 62
7.4.4 LOQIStIC REOIMESSION. . .uuiiii i i i e e e e e ettt e s e e e e e e e e e e e e et e e e e e e et s s e e e e e eeaaaeeeeeeeennnes 63
7.4.5 Okapi (Term Weighting Based on Two-Poisson Model) ..., 68
8. Routing/Classification APProaChEScooiiiiiiiiiii e 71
9. Natural Language Processing (NLP) APProaches..........ccccceeveeiiiieieiiiiiieeeeeceeee e 77
9.1 Phrase Identification and ANAlYSIS...........ooiiiiiiiiiiiii e 80
9.2 Sense Disambiguation of Terms and Noun Phrasesccccvvvvvvviiiiiiiiiiinieee e 84
9.3 Concept Identification and MatChing.............ccooiiiiiiiiii e, 87
9.3.1 FOIrMAl CONCEPLS ... ettt e e e e e e e e e e e e e e e e eeeeeaannnnnn e e as 91
9.3.2 Concepts and DiSCOUISE STTUCTUIEuuuurrieiiiiiiiieieeeee e e e e e a e e 94
9.3.3 Proper Nouns, Complex Nominals and Discourse Structure.............ccceevvvvvvvvvnnnnnnn. 97
9.3.4 Integrated SFC/PN/CN MatChingccooeeiiiiiiiiiiei e 99
9.3.5 Relations and Conceptual Graph MatChingcoooiiiiiiiiiiiiiee e 99
9.3.6 Recognition of Semantic Similarity in CN'S..........cooiiiiiiiiiiiiiiie e, 100
9.4 Proper Noun Recognition, Categorization, Normalization, and Matching................ 101
9.5 Semantic Descriptions Of COIECONSeveiiiiiiiiiiee e 106
9.6 INfOrmMAatioN EXIFACTIONuutiiiiiiiiiieiiiee e e e e e e e e e e e e e e e e s e e ennnnes 107
O O 1] (T T P 111.....

10.1 Hierarchical Cluster Generation (“Complete/Static” Methods)cccccvvvnneee. 114

10.2 Heuristic CIUSter MEtNOUSccooiiiieieeeeiecree et e e e e e e e eees 116
10.3 Incremental ClUSTEr GENEIALIONuuuuiiiiiiiiiiiiiieieee e e e e e e e e e e e e e e e e 120
10.4 Cluster Validationooiiiiiiiiiiii e e e e e e e e e e e e e e e b s 128
11 Query Expansion and RefiNEMENToooiiiiiiiiiiiii e 130
11.1 Query Expansion (Addition Of TEIMS)coovviiviiiiiiiiie e 130
11.2 Query Refinement (Term Re-Weighting)uuuvueiiiiiiiieeeei e 134
11.3 Expansion/Refinement of Boolean and Other Structured QUEries...........ccccccveeen... 138
11.4 RE-USE Of QUETIES.....covuii ittt ettt e e e et e e e e e e e e e e e e e eaba e e e eeesbaaeeeeeens 139
12 FUSION OF RESUILS ...t e e e e e e e e e e e eeeeeeeeennaaas 141
12.1 Fusion of Results from Multiple ColleCtioNS...........coooiiiiiiiiiiiiie e 141
12.2 Fusion of Results Obtained by Multiple Methods................iiiiiiiiiiiee, 151
12.3 Fusion of Results Obtained by Multiple Versions of the Same Method 160
IR L U LY g [=7 = T 1 [o U 64........ 1
13.1 Displaying and Searching Retrieved Document Setscocvvvvvviiiiiiiiiieeeeeeeeeee, 164
13.2 Browsing a Document COlECHIONuuuiiiiie e 168
13.3 Interactive Directed Searching of a Collection................ciiiiiiiiiie, 171
14. IR Standard - Z39.50.......cuuiiiiiiiiiei e 173
14.1 Searching Via Z39.50cooi ittt e e e e e e e e e e eaeraaraaaa 174
14.2 Retrieval Via Z39.50..........coiiiieieiiiiii e 175
14.3 Type 102 Ranked List Query (RLQ) - A Proposed Extension to Z39.50................ 175
15. A Brief Review Of SOME IR SYSIEMSuuuiiiiiiiiiee e 177
15,1 LEXISINEXIS ...ttt e e et e e e e e e e e e aeaaeaaaaaeaeeaaannnnns 177
LS T2 I 1 -1 T RPN 178....

15.3 DOW JONES NEWS/RETNEVALuuiiiiii e 179
SRR R o] o] o OO P PSPPI 179....

15.5 SIMART oottt ettt ataaaaaaaaas 81....... 1
15.6 INQUERY ...ttt et e e e e e e e e e e e e e s e e e sttt s e et e e e e eeeeaeaaaaeaaeaaeenaaans 182
16. WeD-BaSed IR SYSIEIMIS......cooiiiiiiiiiiiiii ittt e e e e e aeeeas 186
16.1 Web-Based Vs. Web-Accessible IR SYStEMS.......cccooiiieieiiiiiiiceeeiisse e 186
16.2 What a Web-Based IR ENQINe MUSE DOuuuuiiiiiiiiieeeeeeceeeeeeiii e 186
16.3 Web CharacteristicsS Relevant to IR ..o 187
16.4 Web SearCh ENQINESoovviiiiiiiiiiii e e e e e 190
16.4.1 Automated Indexing on the Weboii e 191
16.4.4 Meta-Querying onthe Web ... 202
16.4.5 Personal Assistants for Web BrowSing..........cccooeeeeiiiiiiiiiiiiiiiiiiicee e ee e 206

18.0 ACKNOWIEAGMENTS.uuiiiiiiiee e e e e e e ettt b e e e e e e e e e e e e eeeeeeennees 208

Page 5

1. Introduction

This report provides an overview of the state of the art in Information Retrieval (IR), both com-
mercial practice and research. More specifically, it deals with the retrieval of unstructured and
semi-structuredextdocuments or messages. It doesn't claim to be exhaustive. If it were exhaus-
tive today, it wouldn’t be exhaustive tomorrow given the dynamic nature of the field.

The report is divided into five broad areas. Area one (chapters one and two) discusses the basic
concepts and definitions, e.g., what IR means, what its goals are, what entities it attempts to
retrieve, the criteria by which IR systems are evaluated (and the limitations of those criteria), and
how IR differs from retrieval via a traditional DBMS.

Area two (chapters three to ten) discusses each of the major approaches to the generation of que-
ries and their interpretation, by Information Retrieval engines: classical boolean, extended bool-
ean, vector space, probabilistic, and semantic/natural language processing (NLP). It also
discusses IR “querying” from the perspective of routing and classification of an incoming stream
of documents (as distinct from their retrieval from fixed collections). (In the routing context, que-
ries are often calledopics or classificationg Finally, it discusses methods of clustering docu-
ments within a collection as a form of unsupervised classification, and as an aid to efficient
retrieval.

Area three (chapter eleven) discusses the automatic and interactive expansion and refinement of
user-generated queries, e.g., on the basis of user “relevance” feedback. Additionally, it discusses
the re-use of queries.

Area four (chapter twelve) discusses the “fusion” of streams of output documents resulting from
multiple, parallel retrievals into a single ranked stream that can be presented to the user. Two
kinds of fusion are discussed: (1) A given query may be issued to multiple document collections
using a common IR method. The documents retrieved from each of those collections must be
merged into a single stream, ideally the same stream that would have resulted if these separate
collections had been integrated into a single collection. (2) The same query may be executed by
multiple IR methods (or the same information need may be formulated as multiple queries). In
this way, a single query or information need may result in multiple retrievals being applied to the
same document collection, each retrieval returning a different set of documents or a different
ranking of the documents retrieved. Again, the results of these multiple retrievals must be merged
and ranked for presentation to the user.

Area five (chapter thirteen) discusses user interaction with IR systems, i.e., system aid in the for-
mulation and refinement of queries, system display of data and retrieved results in ways that aid
user understanding, user browsing of (and interaction with) displayed data and results, etc.

Area six (chapter fourteen) discusses the ANSI/NISO standard Z39.50, initially developed by the
library community for searching and retrieving bibliographic records, now emerging as a generic
standard for communicating with diverse IR engines. The discussion includes both the existing
1995 standard, and a proposed extension to the Z39.50 query capability, the type 102 query,

Page 6

which reflects enhancements in IR technology, especially the ability to retrieve documents ranked
by the likelihood that they satisfy the user’s information need.

Area seven (chapter fifteen) illustrates the state of the art by discussing briefly six actual IR sys-
tems — four commercial and two research.

Area eight (chapter sixteen) discusses Web information retrieval, including general concepts,
research approaches, and representative commercial Web IR engines.

2. What is Information Retrieval (IR)?

2.1 Definition and Terminology of Information Retrieval (IR)

The term “IR”, as used in this paper, refers to the retrievalredtructuredecords, that is, records
consisting primarily of free-form natural language text. Of course, other kinds of data can also be
unstructured, e.g., photographic images, audio, video, etc. However, IR research has focused on
retrieval of natural language text, a reasonable emphasis given the importance and immense vol-
ume of textual data, on the internet and in private archives.

Some points of terminology should be clarified here. The records that IR addresses are often
called “documents”. That term will be used here. IR often addresses the retrieval of documents
from an organized (and relatively static) repository, most commonly called a “collection”. That
term will also be used here. (The word “archive” is also used. So is the word “corpus”. The term
“digital library” is becoming very common. But the generic term “collection” is still the term
most commonly used in the research literature.) However, it should be understood that IR is not
restricted to static collections. The collection may be a stream of messages, e.g., E-mail messages,
faxes, news dispatches, flowing over the internet or some private network.

2.1.1 Structured vs. Unstructured vs. Semi-Structured Documents

Records may bstructured unstructuredsemi-structuredor a mixture of these types. A record is
structured if it consists of named components, organized according to some well-defined syntax.
Typically, a structured database will have multiple record types such that all records of a given
type have the same syntax, e.g., all rows in a table of a relational database will have the same col-
umns. [Date, 1981, Salton, 1983] Moreover, each component of a record will have a definite
“meaning” (“semantics”) and a given component of a given record type will have the same
semantics in every record of that type. The practical effect is that given the name of a component,
a search and retrieval engine (such as a DBMS) can use the syntax to find the given component in
a given record and retrieve its contents, its “value”. Similarly, given a component and a value, the
search engine can find records such that the given component contains (“has”) the given value.
For example, a relational DBMS can be asked to retrieve the contents of the “age” column of an
“Employee” table in a “Personnel” database. The DBMS knows how to find the “Employee” table
within the “Personnel” database, and how to find the “age” column within each record of the
“Employee” table. And every “age” column within the “Employee” table will have the same
semantics, i.e., the age of some employee. The column name “age” may not be sufficient to iden-

Page 7

tify the column; an “Equipment” table in the same or a different database may also have an “age”
column. Hence in general, it may be necessary to specify a path, e.g., database name, table name,
column name, to uniquely identify the syntactic component to the search engine. However, the
syntax of a well-structured database is such that it is always possible to specify a given syntactic
component uniquely and hence it is always possible for the search engine to find all occurrences
of a given component. If the given component has a definite semantics, then it is always possible
for the search engine to find data with that semantics, e.g., to find the ages of all employees.

By contrast, in a collection of unstructured natural language documents, there is no well-defined
syntactic position where a search engine could find data with a given semantics, e.g., the ages of
employees. In a random collection of documents, there is no guarantee that they are all about the
same topic, e.g., employees. Even if it is known that the docunaeatdl about employees, there

is no guarantee that they all specify the age of an employee (or that any do). Even if it is known
that some documents do specify the age of an employee, there is no simple well-defined way of
telling where the age occurs in a given document, e.g., in what sentence or even in what para-
graph. This is exactly what is meant by “unstructured;” there is no (externally) well-defined syn-
tax for a given document, let alone a syntax that all the documents share. To the extent that the
documents do share a syntax, there is no well-defined semantics associated with each syntactic
component.

In some cases, a collection of textual documents may share a common structure and semantics,
e.g., in a collection of documents containing facts about countries, each document may contain
data about a different country. [CIA Fact Book] The first paragraph may contain the name, loca-
tion and population of the country in sentences that follow a fairly consistent form. Similarly, the
2nd paragraph may list the principal industries and exports, again in sentences that follow a fairly
standard form. Such a collection is called “semi-structured.” Although the data about a country
does not occupy well-defined columns in a well-defined table, e.g., name, population, location,
etc., as they would do in a structured database, the data nevertheless occupies fairly standard posi-
tions in the text of each document with further clues, e.g., key words like “population”, that make

it fairly easy to write algorithms or at least heuristics for extracting the data and storing it in struc-
tured tables.

2.1.2 Unstructured Documents with Structured Headers

IR documents often are partly structured, e.g., they may have a structured header and an unstruc-
tured body. But this header typically contamgtadatai.e., dataaboutthe document, rather than

the information contentf the document. In a bibliographic document, e.g., a book, journal, or
paper, this metadata may include author, title, publisher, publication date, subject, abstract, vari-
ous catalogue numbers, etc. [239.50] In other words, the structured metadata is the data that
would be found in a traditional library catalogue entry and is now found in an on-line library cata-
logue. In an E-mail message, the structured header will include the “from” line (originator), “to”
line (addressee), subject line, copy line (copy recipients), classification, date, etc. In a fax of a
business letter, the structured data may include a corporate letterhead, date, salutation, signature,
etc. In all of these cases, the content or “body” of the document remains unstructured natural lan-
guage text. Hence, a search engine may easily find documents written by a given author or pub-

Page 8

lished after a given date. But finding documents that contain data on a particular topic is a much
harder task. This task is one of the principal problems addressed by IR research.

2.1.3 Structure of a Document as a Document

IR documents are often structured in another way: They have a strastdoeuments. For exam-

ple, a book may have a structure that consists of certain components by virtue of being a book,
e.g., it contains a title page, chapters, etc. The chapters are composed of paragraphs which are
composed of sentences, which are composed of words, etc. If the book is a textbook, it will typi-
cally have a richer structure including a table of contents, an introduction or preface, an index, a
bibliography, etc. The chapters may contain figures, graphs, photographs, tables, citations, etc.
This structure may be specified explicitly by a “markup” language such as SGML or HTML. Or
the structure may be implicit in the format and organization of the book. A software tool may be
able to recover much of this structure by using format clues such as indentation, key words (like
“Index” or “Figure”) etc., and mark up a document semi-automatically. But in all such cases, the
structure is still metadata in the sense that it characterizes the organization of the document, not its
semantic content. The search engine may be able to find chapter one, or section one, or figure one,
easily. But finding a section dealing with a given topic, e.g., “information retrieval,” or containing

the value of an attribute of some real-world entity, e.g., the date on which a given organization
was incorporated, is a much more difficult and far less well-defined problem.

2.1.4 Goals of Information Retrieval

IR focuses on retrieving documents based on the content of their unstructured components. An IR
request (typically called a “query”) may specify desired characteristics of both the structured and
unstructured components of the documents to be retrieved, e.g., “The documents should be about
‘Information retrieval’ and their author must be ‘Smith’.” In this example, the query asks for doc-
uments whose body (the unstructured part) is “about” a certain topic and whose author (a struc-
tured part) has a specified value.

IR typically seeks to find documents in a given collection that are “about” a given topic or that sat-
isfy a giveninformation needThe topic or information need is expressed by a query, generated by
the user. Documents that satisfy the given query in the judgment of the user are said to be “rele-
vant.” Documents that are not about the given topic are said to be “non-relevant.” An IR engine
may use the query to classify the documents in a collection (or in an incoming stream), returning
to the user a subset of documents that satisfy some classification criterion. Naturally, the higher
the proportion of documents returned to the user that she judges as relevant, the better the classifi-
cation criterion. Alternatively, an IR engine may “rank” the documents in a given collection. To
say that documeri2, is higher ranking with respect to a given qu€yythan documenD, may be
interpreted probabalistically as meaning tbgtis more likely to satisfyQ thanD,. Or it may be
interpreted as meaning thBy satisfiesQ more thanD,. The latter could mean th&, is more
precisely focused on the need expresse@ltlzganD,. Or it could mean that more @, satisfies

Q thanD,, e.g.,D; might be entirely devoted to the need expressed@wyhile D, might deal

with a number of topics so that only a single paragrapy,catisfiexQ.

Page 9

2.1.5 Ad-Hoc Querying vs. Routing

A distinction is often made betweeauting andad-hoc querying[TREC 3 Overview, Harman]

In the latter, the user formulates any number of arbitrary queries but applies them to a fixed collec-
tion. In routing, the queries are a fixed number of topics; each message in an incoming (and hence
constantly changing) stream of messages is classified according to which topic it fits most closely
and “routed” to the class corresponding to that topic. (In many routing experiments, there is just
one topic or query; hence, there are just two classes, relevant and non-relevant.)

2.1.6 Evaluation of IR Performance

At the heart of IR evaluation is the concept of “relevance”. Relevance is an inherently subjective
concept [Salton, 83, Pg 173] [Hersh, SIGIR ‘95] in the sense that satisfaction of human needs is
the ultimate goal, and hence the judgment of human users as to how well retrieved documents sat-
isfy their needs is the ultimate criterion of relevance. Moreover, human beings often disagree
about whether a given document is relevant to a given query. [Hersh, SIGIR ‘95] Disagreement
among human judges is even more likely when the question is not absolute relevance but degree
of relevance. There are other complications: Relevance depends not only on the query and the col-
lection but also on the context, e.g., the user’s personal needs, preferences, knowledge, expertise,
language, etc. [Hersh, SIGIR '95] {van Rijsbergen, SIGIR ‘89] Hence, a given document
retrieved by a given query for a given user may be relevant to that user on one day but not on
another. {Hersh, SIGIR *95] Or the given document may be relevant to one user but not to another
even though they both issued the same query. (This may be either because their needs are different
or because they “meant” different things by the nominally “same” query.) Or the document may
be relevant if retrieved from one collection but not if retrieved from another collection. Or rele-
vance of a document may depend on the order of retrieval, e.g., the second document retrieved is
less relevant to a given user if the first document retrieved satisfies the user’s need. In general,
there is a difference between relevance to the topic of a given query and usefulness to the user
who issued the given query. For this reason, some writers [Saracevic, 1997] [Korfhage, 1997]
[Salton, 1983] distinguish betwearlevanceto the user’s query, angdertinenceto the user’s

needs.

On the other hand, early experiments “that looked at differing relevance assessments, ... found
that for ‘comparative purposes’ (i.e., testing whether a certain technique is better than some other
technique) any ‘reasonable’ set of relevance assessments gave the same ordering of techniques
even though absolute performance scores differed.” [Voorhees, pc]

There is no way of escaping completely from the concept of relevance. IR is fundamentally con-
cerned with retrieving information (documents, abstracts, summaries, etc.) that match a user-spec-
ified need, i.e., that are relevant to the user. One approach to dealing with this subjectivity is to
provide or generate “user profiles,” i.e., knowledge about the user’s needs, preferences, etc. The
objective is to give the user not just what he asked for but what he “meant” by what he asked for.
Or the profile may be generated automatically, based on statistics derived from documents the
user has designated as relevant to his needs. [Yochum, TREC 4]

Page 10

Two measures of IR success, both based on the concept of relevance [to a given query or informa-
tion need], are widely used: “precision” and “recall.” Precision is defined as, “the ratio of relevant
items retrieved to all items retrieved, or the probability given that an item is retrieved [that] it will

be relevant.” [Saracevic, SIGIR ‘95] Recall is defined as, “the ratio of relevant items retrieved to
all relevant items in a file [i.e., collection], or the probability given that an item is relevant [that] it
will be retrieved.” [Saracevic, SIGIR ‘95] Other measures have been proposed, [Salton, ‘83, pps
172-186] [van Rijsbergen, 1979] but these are by far the most widely used. Note that there is an
obvious trade-off here. If one retrieves all of the documents in a collection, then one is sure of
retrieving all the relevant documents in the collection in which case the recall will be “perfect”,
i.e., one. On the other hand, in the common situation where only a small proportion of the docu-
ments in a collection are relevant to the given query, retrieving everything will give a very low
precision (close to zero). The usual plausible assumption is that the user wants the best achievable
combination of good precision and good recall, i.e., ideally he would like to retrieve all the rele-
vant documents and no non-relevant documents.

But this plausible assumption is open to some very serious objections. It is often the case that the
user only wants a small subset of a (possibly large) set of relevant documents. The relevant docu-
ments may contain a lot of redundancy; a few of them may be sufficient to tell the user everything
he wants to know {Hersh, SIGIR ‘95]. Or the user may be looking for evidence to support a
hypothesis or to reduce uncertainty about the hypothesis; a few documents may provide sufficient
evidence for that purpose. [Florance, SIGIR ‘95] Or the user may only want the most up-to-date
documents on a given topic, e.g., for a lawyer the latest legal opinion or statute may have super-
seded earlier precedents or statutes.[Turtle, SIGIR ‘94] In general, it is often the case that there
are multiple subsets of relevant documents such that any one of these subsets will satisfy the
user’s requirement, rather than a single unique sétefelevant documents. On the other hand,

two relevant documents may present contradictory views of some issue of concern to the user;
hence, the user may be seriously misled if he only sees some of the relevant documents.

In practice, some users attach greater importance to precision, i.e., they wanstorsgeelevant
documents without wading through a lot of junk. Others attach greater importance to recall, i.e.,
they want to see the highest possible proportion of relevant documents. Hence, van Rijsbergen
[1979] offers the E (for Effectiveness) measure, which allows one to specify the relative impor-
tance of precision and recall:

1

E=1- ” T
0
Ot (1-0a)=
ot (1=
whereP is precision R isrecall, anda is a parameter which varies from zero (user attaches no
importance to precision), through one half (user attaches equal importance to precision and
recall), to one (user attaches no importance to recall).

Measuring precision is (relatively) easy; if a set of competent users or judges agree on the rele-
vance or non-relevance of each of the retrieved documents, then calculating the precision is
straightforward. Of course, this assumes that the set of retrieved documents is of manageable size,
as it must be if it is to be of value to the user. If the retrieved documents are ranked, one can

Page 11

always reduce the size of the retrieved set by setting the threshold higher, e.g., only look at the top
100, or the top 20. Measuring recall is much more difficult because it depends on knowing the
number of relevant documents in the entire collection, which means that all the documents in the
entire collection must be assessed. [Saracevic, SIGIR ‘95] If the collection is large, this is not fea-
sible. (The Text REtrieval, i.e., TREC, Conferences attempt to circumvent the problem by pooling
samples, e.g., the top 100 documents, retrieved by each competing IR engine; the assumption is
made that every relevant document is being retrieved by at least one of the competitors. [Harman,
TREC 3 Overview, TREC 4] This works better for comparing engines than for computing an
absolute measure of recall.)

Most of the IR systems discussed in this report return an ordered list of document, i.e., the docu-
ments are ranked according to some measure, often statistical or probabilistic, of the likelihood
that they are relevant to the user’s request. The usual assumption is that the user will start with the
first document (or some surrogate like a title or summary), the document the system estimates as
“best,” and work her way down the list until her needs have been satisfied, or her patience
exhausted. (But see some alternatives discussed under User Interaction.) Hence, another measure
of system effectiveness is how many non-relevant documents the user has to examine before
reaching the number of relevant documents she needs or desires. If the system returns 20 docu-
ments, and only three are relevant, the precision is 3/20 or 0.15. However, as a practical matter, it
makes a considerable difference to the user whether the three relevant documents are the first
three in the ordered list (she doesn’t have to look at any non-relevant documents if those three sat-
isfy her need), or the last three (she has to look at 17 non-relevant documents before she reaches
the “good stuff.”) Typically, the situation will be intermediate, e.g., the three relevant documents
may appear at positions (ranks) four, seven, and 15. To complicate matters further, it is entirely
possible that several documents will be tied according to the given systems measure, e.g., relevant
document four and non-relevant documents five and six may receive the same probability of rele-
vance value; in that case, the order of those three documents is arbitrary, i.e., it is equally likely
that the relevant document will occupy positions four, five, or six. Hence, Cooper [JASIS, 1968]
has proposed the “Expected Search Length (ESL)” for a given qyexrymeasure of the number

of non-relevant documents the user will have to wade through to reach a specified number of rele-
vant documents; Cooper’s measure takes into account the uncertainty produced by ties.

A more common type of measure, widely used in the research community, e.g., in TREC reports,
is average precisionThis family of measures reflects the recognition that precision varies, gener-
ally falls, as recall increases. This variation can be (and frequently is) expressed directly as a
graph of precision vs. recaliverage precisiofis an attempt to summarize this kind of curve as a
single value, e.g., for the purpose of comparing different IR algorithms, or the same algorithm
across different document collectioridon-interpolated average precisibeorresponds to the

area under an ideal (non-interpolated) recall/precision curve.” [Harman, TREC-2] This is approx-
imated by “computing the precision after every retrieved relevant document and then averaging
these precisions over the total number of retrieved relevant documents” for a given query (or
“topic” in TREC terminology). There will be a different average precision, in general, for each
query. These averages can then be themselves averaged over all the queries employed by the
experimenter.

Page 12

Another common variation on average precision isdleyen-point average precisiohhe preci-
sion is calculated for recalls (in practice, estimated recalls) of zero, 0.1, 0.2,...,1.0. Then, these 11
precisions, computed for uniformly spaced values of recall, are averaged.

3. Approaches to IR - General

Broadly, there are two major categories of IR technology and research: semantic and statistical.
Semantic approaches attempt to implement some degree of syntactic and semantic analysis; in
other words, they try to reproduce to some (perhaps modest) degree the understanding of the nat-
ural language text that a human user would provide. In statistical approaches, the documents that
are retrieved or that are highly ranked are those that match the query most closely in terms of
some statistical measure. By far the greatest amount of work to date has been devoted to statistical
approaches so these will be discussed first. (Indeed, even semantic approaches almost always use,
or are used in conjunction with, statistical methods. This is discussed in detail later.)

Statistical approaches fall into a number of categories: boolean, extended boolean, vector space,
and probabilistic. Statistical approaches break documents and queriesrmgThese terms are

the population that is counted and measured statistically. Most commonly, the terms are words
that occur in a given query or collection of documents. The words often undergo pre-processing.
They are “stemmed” to extract the “root” of each word. [Porter, Program, 1980] [Porter, Read-
ings, 1997] The objective is to eliminate the variation that arises from the occurrence of different
grammatical forms of the same word, e.g., “retrieve,” “retrieved,” “retrieves,” and “retrieval”
should all be recognized as forms of the same word. Hence, it should not be necessary for the user
who formulates a query to specify every possible form of a word that he believes may occur in the
documents for which he is searching. Another common form of preprocessing is the elimination
of common words that have little power to discriminate relevant from non-relevant documents,
e.g., “the”, “a”, “it” and the like. Hence, IR engines are usually provided with a “stop list” of such
“noise” words. Note that both stemming and stop lists are language-dependent.

Some sophisticated engines also extract “phrases” as terms. A phrase is a combination of adjacent
words which may be recognized by frequency of co-occurrence in a given collection or by pres-
ence in a phrase dictionary.

At the other extreme, some engines break documents and queriesvgtarfis”, i.e., arbitrary
strings ofn consecutive characters. [Damashek, 1995] This my be done, e.g., by moving a “win-
dow” of n characters in length through a document or query one character at a time. In other
words, the firsn-gram will consist of the first n characters in the document, thergchm will

consist of the 2nd through th@«1)-th character, etc. (Early research used 2, n = 3; recent
applications have used valuesref5, andn=6 but the user is free to use the valuenghat works

best for his application.) The window can be moved through the entire document, completely
ignoring word, phrase, or punctuation boundaries. Alternatively, the window can be constrained
by word separators, or by other punctuation characters, e.g., the engine can gather n-gram statis-
tics separately for each word. [Zamora et al., IP&M, 1981] [Suen, IEEE Pattern, 1979] Thirdly,
n-grams can be gathered and counted without regard to word boundaries, but then words or
phrases can be evaluated in termsv@fram statistics. [Cohen, 1995] In any case, since a single
word or phrase can generate multiplgrams, statistical clustering using n-grams has proved to

Page 13

be language-independent, and has even been used to sort doclméariguage, or by topic
within language. For similar reasons;gram statistics appear to be relatively insensitive to
degraded text, e.g., spelling errors, typos, errors due to poor print quality in OCR transmission,
etc. [Pearce et al., 1996]

Numeric weights are commonly assigned to document and query terms. A weight is assigned to a
given term within a given document, i.e., the same term may have a different weight in each dis-
tinct document in which it occurs. The weight is usually a measure of how effective the given term
is likely to be in distinguishing the given document from other documents in the given collection.
The weight is often normalized to be a fraction between zero and one. Weights can also be
assigned to the terms in a query. The weight of a query term is usually a measure of how much
importance the term is to be assigned in computation of the similarity of documents to the given
guery. As with documents, a given term may have a different weight in one query than in another.
Query term weights are also usually normalized to be fractions between zero and one.

4. Classical Boolean Approach to IR

In the boolean case, the query is formulated as a boolean combination of terms. A conventional
boolean query uses the classical operators AND, OR, and NOT. The dué&MD t," is satisfied

by a given documenrd, if and only if D4 contains both termt andt,. Similarly, the query t;

ORty" is satisfied byD; if and only if it containg; ort, or both. The queryt; AND NOT t,” sat-

isfiesD, if and only if it containg; and doesiotcontaint,. More complex boolean queries can be

built up out of these operators and evaluated according to the classical rules of boolean algebra.
Such a classical boolean query is either true or false. Correspondingly, a document either satisfies
such a query (is “relevant”) or does not satisfy it (is non-relevant”). No ranking is possible, a sig-
nificant limitation. [Harman, JASIS, 1992] Note however that if stemming is employed, a query
condition specifying that a document must contain the word “retrieve” will be satisfied by a docu-
ment that contains any of the forms “retrieve”, “retrieves”, “retrieved”, “retrieval”, etc.

Several kinds of refinement of this classical boolean query are possible when it is applied to IR.
First, the query may be applied to a specified syntactic component of each document, e.g., the
boolean condition may be applied to the title or the abstract rather than to the document as a
whole.

Second, it may be specified that the condition must apply to a specified position within a syntactic
component, e.g., to the words at the beginning of the title rather than to any part of the title.

Third, an additional boolean operator may be added to the classical set:, a “proximity” operator.
[239.50-1995] A proximity operator specifies how close in the text two terms must be to satisfy
the query condition. In its general form, the proximity operator specifies a unit, e.g., word, sen-
tence, paragraph, etc., and an integer. For example, the proximity operator may be used to specify
that two terms must not only both occur in a given document but must be within n words of each
other; e.g., n = 0 may mean that the words must be adjacent. Similarly, the operator may specify
that two terms must be within n sentences of each other, etc. A proximity operator can be applied
to boolean conditions as well as to simple terms, e.g., it might specify that a sentence satisfying
one boolean condition must be adjacent to a sentence satisfying some other boolean condition. A

Page 14

proximity operator may specify order as well as proximity, e.g., not only how close two words
must be but in what order they must occur.

The classical boolean approach does not use term weights. Or, what comes to the same thing, it
uses only two weights, zero (a term is absent) and one (a term is present).

The classical boolean model can be viewed as a crude way of expressing phrase and thesaurus
relationships. For example, AND t, says that both termig andt, must be present, a condition

that is applicable if the two terms form a phrase. If a proximity operator is employed, the boolean
condition can be made to say thatmust immediately followt; in the text, which corresponds

still more closely (though still crudely) to the conventional meaning of a “phrase.” Simitarly,

ORt, says that eithet; or t, can serve as an index term to relevant documents, i.e., in some sense

t, andt, are “equivalent”. This is roughly speaking what we mean when we asg@mdt, to

the same class in a thesaurus. In fact, some systems use this viewpoint to generate expanded bool-
ean conditions automatically, e.g., given a set of query terms supplied by the user, “a boolean
expression is composed by ORing each ... query term with any stored synonyms and then AND-
ing these clusters together.” [Anick, SIGIR ‘94]

4.1 Automatic Generation of Boolean Queries

The logical structure of Boolean queries, which is their greatest virtue, is also one of their most
serious drawbacks. Non-mathematical or novice users often experience difficulty in formulating
Boolean queries.[Harman, JASIS, 1992] Indeed, they often misinterpret the meaning of the AND
and OR operators. (In particular, they often use “AND,” set intersection, when “OR,” set union, is
intended.) [Ogden & Kaplan, cited in Ogden & Bernick, 1997] This has led to schemes for auto-
matic generation of Boolean queries. [Anick, SIGIR’94] [Salton, IP&M, 1988]

In the Anick approach mentioned above, the query terms (presumably after stemming, removing
stop words, etc.) are Ored together. Each OR term is expanded with any synonyms from an on-
line thesaurus. The Salton approach, by contrast, imposes a Boolean structure on the terms sup-
plied by the user. No thesaurus is employed.

Salton starts with a natural language query. The usual stemming and removal of stop words gener-
ates a set of user terms, which are ORed together as in the Anick approach. However, Salton then
looks for pairs (and triples) of these user-supplied terms that co-occur in one or more documents.
Since two or three of these user terms might occur in the same document by chance, Salton then
uses a formula for pairwise correlation to determine if any given pair of co-occurring Teand

T; co-occur more frequently than would be expected by chance alone. A similar correlation for-
mula is used for co-occurring triples, i.e., three of the user-supplied words occurring in the same
document. Each pair or triple whose computed correlation exceeds a pre-determined threshold is
then grouped with a Boolean AND, e.g., if the piit; and the triplet;, t,, t, exceed the thresh-

old, then the automatically generated Boolean query (assuming t terms) becomes:

t; OR , OR ... OR § AND t;)) OR ¢ AND t, AND t,) ... ORt;

Page 15

It should be stressed again that the pairs are triples are drawn entirely from the terms originally
supplied by the user; no thesaurus-based expansion as with Anick, and no query expansion based
on relevance feedback (see below) is employed. However, combining these various techniques is
certainly feasible.

As a further refinement, Salton ranks the terms (single terms, pairs, and triples) in the automati-
cally generated Boolean expression in descending order by inverse document frequency. (See
below for a definition ofdf. High-idf terms tend to be better discriminators of relevance than low-

idf terms.) He can estimate the number of documents that a given term (or pair or triple) will be
responsible for retrieving from its frequency of occurrence in documents. If the total estimated
number of documents that will be retrieved by the Boolean query exceeds the number of docu-
ments that the user wants to see, he can reduce the estimated number by deleting OR terms from
the query starting with those that have the lowest idf ranking. This gives the user, not a true rele-
vance ranking of documents, but at least some control over the number retrieved, something that
ordinary Boolean retrieval does not provide.

5. Extended Boolean Approach

Even with the addition of a proximity operator, boolean conditions remain classical in the sense
that they are either true or false. Such an all-or-nothing condition tends to have the effect that
either an intimidatingly large number of documents or none at all are retrieved. [Harman, JASIS,
1992] Classical Boolean models also tend to produce counter-intuitive results because of this all-
or-nothing characteristic, e.g., in response to a multi-term OR, “a document containing all [or
many of] the query terms is not treated better than a document containing one term.” [Salton et al.,
IP&M, 1988] Similarly, in response to a multi-term AND, “[A] document containing all but one
guery term is treated just as badly as a document containing no query term at all.” [Salton et al.,
IP&M, 1988] A number of extended boolean models have been developed to provide ranked out-
put, i.e., provide output such that some documents satisfy the query condition more closely than
others. [Lee, SIGIR ‘94] These extended boolean models employ extended boolean operators
(also called “soft boolean” operators).

Extended boolean operators make use of the weights assigned to the terms in each document. A
classical boolean operator evaluates its arguments to return a value of either true or false. These
truth values are often represented numerically by zero (false — or in IR terms “doesn’t match
given document”) and one (true — or in IR terms “matches given document”). An extended bool-
ean operator evaluates its arguments to a number in the range zero to one, corresponding to the
estimated degree to which the given logical expression matches the given document. Lee [SIGIR
‘94] has examined a number of extended Boolean models [Paice, 1984] [Waller et al., 1979]
[Zimmerman, 1991] and proved that by certain significant (but not necessarigntiiesignifi-

cant) criteria, a model callegp*norm” [Salton et al., CACM 1983] has the most desirable proper-

ties. By “most desirable” is meant that thenorm model tends to evaluate the degree to which a
document matches (satisfies) a query more in accordance with a human user’s judgment than the
other models. For each of the other models examined, there are cases where the model’s evalua-
tion of the degree of query/document match is at variance with a human user’s intuition. In each
of those cases, tleenorm model’s evaluation of match agrees with a human user’s intuition.

Page 16

Given a query consisting of n query tertgsty, ..., {,, with corresponding weights, Wp, ..,

Wqny @and a documerid, with corresponding weightsy, Wyp, ..., W for the samen terms, thep-

norm model defines similarity functions for the extended boolean AND and extended boolean OR
of the n terms. The extended boolean AND function computes the similarity of the given docu-
ment with a query that ANDs the given terms together. Similarly, the extended boolean OR func-
tion computes the similarity of the given document with a query that ORs the given terms
together. Each similarity is computed as a number in the closed interval [0, 1]. More elaborate
boolean queries can obviously be composed from the AND and OR functions. The extended bool-
ean functions for thp-norm model are given by:

n 1
EZ (1 —wg)"e qup)%E
SIMano(d, (t,Wg1)AND ... AND f,Wqn) = 1—%=1 _ 0 (l<p<w)
0 > Wi’ 0
i=1
and
n 1
%Z (Wgi” * qup)Eﬁ
SIMor(d, (t;,Wg1)OR...OR twgy) = %:1 - E (1< p<)
0 SWa'
i=1

Thep-norm model has a parameter that can be used to “tune” the model; most of the other models
studied by Lee also have such a parameter, though the effect and interpretation of the parameter
varies with the model. The paramefein the p-norm model can vary from one to infinity and has

a very clear interpretation. Ad= infinity, the p-norm model is equivalent to the classical boolean
model; AND corresponds to strict phrase assignment (i.e., all the components of the phrase must
be present for the AND to evaluate to non-zero), OR to strict thesaurus class assignment (i.e.,
presence of any one member of the class is sufficient for the OR to evaluate to one; there is no
additional score if two or more are present.). At low to modepate.g., between 2 and 5, AND
corresponds to loose phrase assignment, i.e., “the presence of all phrase components is worth
more than the presence of only some of the components; terms are not compulsory.” That is, the
p-norm AND generalizes the strict boolean AND in the sense that a single low-weighted term
substantially lowers the total similarity score, even if all the other terms have high weights. On the
other hand, th@-norm AND differs from the strict boolean AND because a single zero weighted,
i.e., missing, term does not reduce the total similarity score to zero. Similarly, at low to moderate
p, OR corresponds to loose thesaurus class assignment, i.e., “the presence of several terms from a
class is worth more than the presence of only one term.” In other wordp;rtbem OR general-

izes the strict boolean OR in the sense that a single high-weighted term can produce a fairly high
total similarity score even if all the other terms are low-weighted or missing (zero weighted). On
the other hand, thp-norm OR differs from the strict boolean OR because a single high-weighted
term is not enough to maximize the similarity score; additional non-zero terms will increase the
total score to some degree. Bt 1, thep-norm model reduces to the pure “vector space” model
which is discussed in the next section, i.e., “terms are independent of each other; distinction
between phrase and thesaurus assignment disappears.” In fact, Bt AND and OR become
identical. [Salton, et al., CACM 1983] They both become identical to cosine similarity, discussed

in the next section.

Page 17

The classical boolean operators AND and OR are binary, i.e., they connect two terms. However,
they are also associative, i.8. AND (t, AND t3) is equivalent totg AND t;) AND ts. This is not

true for thep-norm model (and some of the other extended boolean models)p-fibem model

(and the other models with the same problem) circumvent this difficulty by defining the extended
boolean operators as n-ary, i.e., connecting n terms, rather than binary. So the above boolean
expression becomes ANDY(t,, t3). {Lee, SIGIR ‘94] This expression is true if and only if all

three terms are present.

The p-norm model supports assignment of weights to the query terms as well as the document
terms. Thg-norm formulas extend to this case in a quite straightforward manner. The weights are
relative rather than absolute, e.g., the queyyX) AND (t,, 1) with a weight of one assigned to

each term is exactly equivalent to the query Q.1) AND (t,, 0.1) with a weight of 0.1 assigned to

each term. This is so because fhheorm formulas normalize the query weights. Relative weights

are easier and more natural for the user to assign than absolute weights. It is easier for a user to
say thatt; is more important (or even twice as important) thathan to say exactliyrowimpor-

tant either term is. {Lee, SIGIR '94]

A further degree of flexibility can be achieved in tpenorm model by permitting the user to
assign a different value qf to each boolean operator in a given boolean expression. This allows
the user to say, e.g., that a strict phrase interpretation should be given to one AND in the given
expression, a looser interpretation to another AND in the same expression, etc. {Salton et al.,
CACM 1983]

What makes the p-norm model superior to the alternatives surveyed by Lee? Its primary advan-
tage is thait gives equal importance to all its operantdihis doesnot mean that it ignores docu-

ment and term weights. On the contrary, the document weights (assigned typically by the program
that indexes the document collection), and the query weights (assigned typically by the user who
formulates the query, although automatic modification of these weights is discussed in a later sec-
tion), are essential elements of thaorm functions as given above. What “equal importance”
means is that thp-norm functions evaluate all term weights in the same way; they do not give
special importance to certain terms on the basis of their ordinal positions, i.e., any permutation of
term order is equivalent to any other. Moreoenorm does not give special importance to the
terms with minimum or maximum weights, to the exclusion of other terms. For example, one or
two high-weighted query terms in a given document will yield a high (relatively close to 1) value
of ap-norm OR for the given document relative to the given query. It doesn’'t matter in the least
whichterms are highly weighted. Moreover, if other query terms are also present in the given doc-
ument, they will add to the value of the OR even if they have neither the maximum nor the mini-
mum weight in the set of query terms matching the given document (“match” terms).

A probabilistic form of extended boolean has been developed [Greiff, SIGIR ‘97] in which a
probabilistic OR is computed in terms of the probability of its component terms, and similarly for
AND. See section on “Bayesian Inference Network Model” for further detalils.

The commercial IR system, Topic, supports a form of extended boolean query called a “topic.”
These queries can combine strict and extended boolean operators. See discussion in section 6.4.

Page 18

Experiments have shown that the extended boolean model can achieve greater IR performance
than either the classical boolean or the vector space model. But there is a price. Formulating effec-
tive extended boolean queries obviously involves more thought and expertise in the query domain
than formulating either a classical boolean query, or a simple set of terms with or without weights
as in the vector space model.

6. Vector Space Approach
6.1 Building Term Vectors in Document Space

One common approach to document representation and indexing for statistical purposes is to rep-
resent each textual document as a set of terms. Most commonly, the terms are words extracted
automatically from the documents themselves, although they may also be phrases, n-grams, or,
manually assigned descriptor terms. (of course, any such term-based representation sacrifices
information about the order in which the terms occur in the document, syntactic information, etc.)
Often, if the terms are words extracted from the documents, “stop” words (i.e., “noise” words
with little discriminatory power) are eliminated, and the remaining words are stemmed so that
only one grammatical form (or the stem common to all the forms) of a given word or phrase
remains. (Stop lists and stemming can sometimes be avoided if the termgaes — see dis-
cussion below.) We can apply this process to each document in a given collection, generating a set
of terms that represents the given document. If we then take the union of all these sets of terms,
we obtain the set of terms that represents the entire collection. This set of terms defines a “space”
such that each distinct term represents one dimension in that space. Since we are representing
each document as a set of terms, we can view this space as a “document space”. [Salton, 1983]
[Salton, 1989]

We can then assign a numeric weight to each term in a given document, representing an estimate
(usually but not necessarily statistical) of the usefulness of the given term as a descriptor of the
given document, i.e., an estimate of its usefulness for distinguishing the given document from
other documents in the same collection. It should be stressed that a given term may receive a dif-
ferent weight in each document in which it occurs; a term may be a better descriptor of one docu-
ment than of another. A term that is not in a given document receives a weight of zero in that
document. The weights assigned to the terms in a given docuerdn then be interpreted as

the coordinates dD, in the document space; in other words, is represented as a point in docu-

ment space. Equivalently, we can interddgtas a vector from the origin of document space to the
point defined byD;’s coordinates.

In document space, each documéntis defined by the weights of the terms that represent it.
Sometimes, it is desirable to define a “term space” for a given collection. In term space, each doc-
ument is a dimension. Each point (or vector) in term space is a term in the given collection. The
coordinates of a given term are the weights assigned to the given term in each document in which
it occurs. As before, a term receives a weight of zero for a document in which it does not occur.

Page 19

We can combine the “document space” and “term space” perspectives by viewing the collection
as represented by a document-by-term matrix. Each row of this matrix is a document (in term
space). Each column of this matrix is a term (in document space). The elementiatotwwnnj,

is the weight of termpin document.

A query may be specified by the user as a set of terms with accompanying numeric weights. Or a
guery may be specified in natural language. In the latter case, the query can be processed exactly
like a document; indeed, the query midgiga document, e.g., a sample of the kind of document

the user wants to retrieve. A natural language query can receive the usual processing, i.e., removal
of “stop” words, stemming, etc., transforming it into a set of terms with accompanying weights.
(Again, stoplists and stemming are not applicable if the queries and terms are described using n-
gram terms.) Hence, the query can always be interpreted as another document in document space.
Note: if the query contains terms that are not in the collection, these represent additional dimen-
sions in document space.

An important question is how weights are assigned to terms either in documents or in queries. A
variety of weighting schemes have been used. Given a large collection, manual assignment of
weights is very expensive. The most successful and widely used scheme for automatic generation
of weights is the “term frequency * inverse document frequency” weighting scheme, commonly
abbreviated tf*idf”. The “term frequency”) is the frequency of occurrence of the given term
within the given document. Henc# is a document-specific statistic; it varies from one document

to another, attempting to measure the importance of the term within a given document. By con-
trast, inverse document frequenagf] is a “global” statisticjdf characterizes a given term within

an entire collection of documents. It is a measure of how widely the term is distributed over the
given collection, and hence of how likely the term is to occur within any given document by
chance. Thedf is defined aslh (N/n)” whereN is the number of documents in the collection and

nis the number of documents that contain the given term. Hence, the fewer the documents con-
taining the given term, the larger thdf. If every document in the collection contains the given
term, theidf is zero. This expresses the commonsense intuition that a term that occurs in every
document in a given collection is not likely to be useful for distinguishing relevant from non-rele-
vant documents. Or what is equivalent, a term that occurs in every document in a collection is not
likely to be useful for distinguishing documents about one topic from documents about another
topic. To cite a commonly-used example, in a collection of documents about computer science or
software, the term “computer” is likely to occur in all or most of the documents, so it won't be
very good at discriminating documents relevant to a given query from documents that are non-rel-
evant to the given query. (But the same term might be very good at discriminating a document
about computer science from documents that are not about computer science in another collection
where computer science documents are rare.)

Computing the weight of a given term in a given documertf’adf says that the best descriptors

of a given document will be terms that occur a good deal in the given document and very little in
other documents. Similarly, a term that occurs a moderate number of times in a moderate propor-
tion of the documents in the given collection will also be a good descriptor. Hence, the terms that
are the best document descriptors in a given collection will be terms that occur with moderate fre-
guency in that collection. The lowest weights will be assigned to terms that occur very infre-

Page 20

guently inany document (low-frequency documents), and terms that occur in most or all of the
documents (high frequency documents).

6.2 Normalization of Term Vectors

To allow for variation in document size, the weight is usually “normalized”. Two kinds of normal-
ization are often applied. [Lee, SIGIR *95] The first is normalization of the term frequetity, “
Thetf is divided by the “maximum term frequencyfy,ax The “maximum term frequency” is the
frequency of the term that occurs most frequently in the given document. So the effect of normal-
izing term frequency is to generate a factor that varies between zero and one. This kind of normal-
ization has been called “maximum normalization” for obvious reasons. A variation is the formula
0.5 + (0.5*¢f/tf,,59) Which causes the normalized tf to vary between 0.5 and 1. In this form, the
normalization has been called “augmented normalized term frequency”. The purpose and effect of
term frequency normalization (in either form) is that the weight (the “importance”) of a term in a
given document should depend on its frequency of occurrence relative to other terms in the same
document, not its absolute frequency of occurrence. Weighting a term by absolute frequency
would obviously tend to favor longer documents over shorter documents.

However, there is a potential flaw in “maximum normalization.” The normalization factor for a
given document dependsly on the frequency of the most frequent term(s) in the document.
Consider a documemm; in which most of the terms occur with frequencies in proportion to their
importance in discriminating the document’s primary topic. Now suppose that one term has a dis-
proportionately high frequency, e.g., important tetips,, andtz each occur twice i, but for

some stylistic reason equally important teipoccurs six times, the maximum for any termDg.

Then the frequency df, will drag down the weights of terms, t,, andt; by a factor of three in

D, relative to their weights in some other similar docum@gin whicht, t,, t3, andt, have equal
frequencies. (The same problem arises with the “augmented normalized term frequency” but to a
less extreme degree since the high frequency term will have a weight of one as with maximum
normalization but it cannot drag the weights of the other terms below 0.5.)

A commonly-used alternative to normalizing the term frequency is to take its natural log plus a
constant, e.g.,lbg (tf) + 1.” This technique, called “logarithmic term frequency,” doesn’t explic-
itly take document length or maximum term frequency into account but it does “reduce the impor-
tance of raw term frequency in those collections with widely varying document length.” It also
reduces the effect of a term with an unusually high term frequency within a given document. In
general, it reduces the effectal variation in term frequency, since for any two term frequencies,
tfl andtfz > 0 such thaﬂfz > tfl:

log(tf,) + 1<tf2

log(tf,)+1 tf,

The second kind of normalization is by vector length. After all of th&lf term weights for a
given document, i.e., all the components of the document vector, have been calculated, every

Page 21

component of the vector is divided by the Euclidean length of the vector. The Euclidean length of
the vector is the square root of the sum of the squares of all its components. Dividing each compo-
nent by the Euclidean length of the vector is called “cosine” normalization because the normal-
ized vector has unit length and its projection on any axis in document space is the cosine of the
angle between the vector and the given axis.

Augmented maximum (term frequency) normalization and cosine normalization can be used sep-
arately or together.

Cosine normalization reduces the problem (described above) of vector component weights for a
given document being distorted by a single term with unusually high frequency. (But see the dis-
cussion below of pivoted unique normalization which further addresses the problem.) The nor-
malization factor (vector length) is a functionalf the vector components so the effect of a single
term with a disproportionately high frequency is diluted by the weights of all the other terms. Fur-
thermore, the normalization factor is a function of e#eidf term weight, not just thé factor of

that weight. So, the weight of a high frequency term may also be lessened by its idf factor.

However, as Lee has pointed out, situations exist in which maximum normalization may actually
do better than cosine normalization. Consider a case where docpeetls with topicT, and
contains a set of terms relevantTg. Now consider documeri?, which deals withT, and also

deals with several other topidg, T¢, etc. Suppose th&l, contains all the terms th&; contains,

i.e., terms relevant td,, but also contains many other terms relevantgpTc, etc. Since cosine
normalization of a given document takes into account the weights of all its terms, the effect is that
the weights of the terms relevant T will be dragged down iD, (relative to the weights of the
same terms i) by the weights of the terms relevantTg, T, etc. As a result, a user trying to
retrieve documents relevant 1o, will be much more likely to retriev®, thanD, even if they

both coverT, to the same extent. Maximum normalization will do better in this case provided that
the maximum frequency term relevantfgin D, is about as frequent as the maximum frequency
term inD,, relevant to any of the other topics. In that case, none of the other topics will drag down
the weights ofTys terms inD,. Lee concludes that in some cases, better precision and recall can
be achieved by using each normalization scheme for retrieval separately and then merging the
results of the two retrieval runs. (Merging retrieval runs is discussed further below.)

Cosine normalization, as noted above by Lee, tends to favor short documents over long ones,
especially in the case where the short document is about a single topic relevant to a given query,
and the longer document is about multiple topics of which only one is relevant to the given query.
Singhal et al. [SIGIR ‘96] have investigated this problem, and produced a new weighting scheme
to correct the problem. They studied fifty queries applied to a large document collection (741,856
documents); queries and documents were taken from the TREC 3 competition. Their study com-
pared probability of retrieval to probability of relevance as functions of document length. The
study confirmed the expectation that short documents were more likely to be retrieved than their
probability of relevance warranted, while longer documents were less likely to be retrieved than
their probability of relevance warranted. This pattern was found to apply to query sets that
retrieved relevant documents from six diverse sub-collections of the TREC collection. A natural
consequence is that for any collection and query set to which the pattern applies, there will be a

Page 22

“crossover” document length for which the two probability curves intersect, i.e., a document
length for which the probability of relevance equals the probability of retrieval.

These observations led Singhal et al. to develop a “correction factor”, a function of document
length that maps a conventional “old” document length normalization function, e.g., cosine nor-
malization, into a “new” document normalization function. The correction factor rotates the old
normalization function clockwise around the crossover point so that normalization values corre-
sponding to document lengths below the crossover point are greater than before (so that the prob-
ability of retrieval for these documents is decreased), and normalization values corresponding to
document lengths above the crossover point are less than before (so that the probability of
retrieval for these documents is increased). (Remember that term weights for a given document
aredividedby the normalization factor.) The crossover point is called'thigot’ . Hence, the new
normalization function is called “pivoted normalization.”

Note that since the pivoted normalization method described below is based on correcting the doc-
ument normalization so that the distribution of probability of retrieval coincides more closely with
the probability of relevance (as a function of document length), this weighting method could legit-
imately be called “probabilistic’. However, it differs from the probabilistic methods discussed
below in section 7, because the probability distributions have been determined experimentally, by
observing actual TREC collections, rather than being derived from a theoretical model.

The pivoted normalization is easily derived. Before the normalization is corrected, i.e., pivoted,
the relation betweenew normalizatiorandold normalizationis:

new normalizatiorr old normalization

This is a straight line with slope one through the origin of a graph, witbwa normalizatiorver-

tical axis, and arold normalizationhorizontal axis. This line is rotated clockwise around the
pivot, i.e., around the normalization value corresponding to the crossover document length. Call
this value ‘pivot” After the rotation, the form of the new line (by elementary analytic geometry)

is:

new normalization= slope old normalizatierK

where the slope of the new line is less than one langd a constant. (Note that although tblel
normalizationfunction, e.g., cosine normalization, is not a linear function of term weights, the
new normalization is linear function of theold normalization) K is evaluated by recognizing
that since the line was rotated around the pivot paiaty normalizatiorequalsold normalization

at the pivot point. Hence, substitytevotfor bothnew normalizationandold normalizationn the

Page 23

above linear equation, solve for K and then substitute this value of K back into the equation. The
result (withnew normalizatiomow calledpivoted normalizatiohis:

pivoted normalization= slope old normalizatier{1.0—slope) ¢ pivot

whereslopeandpivotare constant parameters for a given collection and query set. Since the rank-
ing of documents in a given collection for a given query set is not affected if the normalization
factor for every document is multiplied (or divided) by the same constant, these two parameters
can be reduced to one by dividing the above normalization function by the cor{dté@nt
slope)*pivot Singhal et al. found that the optimum value of this parameter was surprisingly close
to constant across a variety of TREC sub-collections. Hence, an optimum parameter value learned
from training experiments on one collection could be used to compute normalization factors for
other collections.

Singhal et al. also examined closely the role of term frequencies and term frequency normaliza-
tion in term weighting schemes. First, they found (by studying the above experiments) that
though, as noted above, cosine normalization favors short documents over long ones, it also favors
extremely long documents. This phenomenon is magnified by pivoted normalization. Further,
they noted that term frequency is not an important factor in either cosine normalization or docu-
ment retrieval. This is because (1) the majority of terms in a document only occur once, and (2)
log(tf) + 1 is commonly used in place of raw term frequency, which has a “dampening effect” for

tf > 1. Hence, the cosine normalization factor for a given document will be approximately equal to
the square root of the number of unique terms in the given document, i.e., it increases less than
linearly with number of unique terms. But document retrieval is generally governed by the num-
ber of term matches between document and query, and hence making the usual simplifying
assumption that occurrence of a given term in a given document is independent of the occurrence
of any other term, the probability of a match between query and document varies linearly with the
number of unique terms. The purpose of the document normalization is to adjust the term weights
for each document so that the probability of retrieving a long document with a given query is the
same as the probability of retrieving a short document. The conclusion is that cosine normaliza-
tion reduces term weights by too little for very large documents. Singhal et al. propose to remedy
this situation by replacing the cosine normalization value, i.e.,oldenormalization by # of

unique termsin the pivoted normalization function.

Singhal et al. argue further that maximum normalization, iféf,,,,, is not the optimum method

of normalizing term frequency because what matters is the frequency of the term relative to the
frequencies of all the other descriptor terms, not just relative to the frequency of the most fre-
guently occurring term. Hence, they propose using the function:

1+ log(tf)
1+ log(average ff

Page 24

for normalized term frequency. This function has the property that its value is one for a term
whose frequency is average for the given document, greater than one for terms whose frequencies
are greater than average, and less than one for terms whose frequency is less than average.

Hence, Singhal et al. propose weighting each term in a document by the above term frequency
normalization function divided by the pivoted normalization, i.e.,

1 + log(tf)
1 + log(average tf
slopes # of unique termis(1.0—slope ¢ pivot

Note that thadf is absent from this weighting function. This is because, for reasons explained in
the next section, the idf is normally used as a factor in the weights of query terms rather than doc-
ument terms. That is, if a given term occurs in a query and also in some documents in the collec-
tion being queried, th&lf will be used as a factor in the weight of that term in the query vector
rather than in the corresponding document vectors.

Singhal et al. tested this improved term weighting function against a set of TREC sub-collections
and found that for optimum parameter values, it performed substantially better than the more
familiar product oftf/tf, 5 and1/cosine normalizatian

It should be noted that this improved weighting scheme compensates for both of the problems
noted by Lee. The effect of a term with a disproportionately high frequency in a given document
is greatly reduced by the new term frequency normalization function, partly because the fre-
guency of the given term is divided by the average term frequency rather than the maximum term
frequency, and partly because both the given term frequency and the average term frequency are
replaced by their logs. The advantage of a short document dealing entirely with a topic relevant to
a given query, over a longer document dealing with the relevant topic and several nonrelevant top-
ics, is compensated by pivoted normalization which reduces the probability of retrieval of short
documents and increases the probability of retrieval of long documents.

All of the normalization schemes discussed above (and in the following section) are based on one
underlying assumption: that document relevance is independent of document length. Relevance is
assumed to be wholly about how much a given documesthagita given topic. Variation of doc-

ument length is viewed as a complication in computing document relevance. Hence, all of the nor-
malization schemes are aimed at factoring out the effects of document length.

If documentD, is longer than documem,, relevance computation is assumed to be distorted in
one of two ways. D, is largely or entirely about the same tofficasD,, then relevance is dis-
torted by the fact that terms characteristic of the given topic will tend to occur with greater fre-
quency inD,. If D2 is about a number of different topics, Tj, Ty, etc., and only a small part of
D, is about the same topi asD,, then the material about the other topics dilutes the effect of
the relevant material, making, seem less relevant f§ thanD,, even though both documents
may contain the same information abdutNormalization is largely aimed at overcoming these
two kinds of distortion.

Page 25

Completely ignored is a third possibility: that the user actually prefers either short or long docu-
ments abouT;. If the user prefers the longer docume, e.g., she needs all the details it pro-
vides, therD, is more relevant td; relative the users needs. Or to use a term that may be more
appropriateP, may be moreertinentor moreusefulto the user in meeting her present informa-

tion need, as expressed By Of courseD; may be more useful; perhaps the user needs a concise
summary of the main facts or ideas abdytand has neither time nor need for a more detailed
exposition. In either case, document size is an important parameter in computing the documents
relevance for purposes of selection and ranking in the retrieval set returned to the user. This indi-
cates that either the document and topic vectors should not be normalized, or that the document
size should enter explicitly into the document topic similarity computation. This issue is discussed
further in section 6.4, which discusses document-topic similarity functions.

6.3 Classification of Term Vector Weighting Schemes

Since the various alternatives discussed above for computing and normalizing term weights can
be (and have been) used in a variety of combinations, a conventional code scheme (associated
with a popular IR research engine called the SMART system) has been defined and widely
adopted to classify the alternatives. [Salton, IP&M, 1988] [Lee, SIGIR ‘95] See Table 1.

The weight of a given term is specified as the product @ren frequencyactor, adocument fre-
guencyfactor, and alocument length normalizatidactor. For each of these three factors, two or
more alternatives are available. Each alternative for each factor is given a code. See table 1. The
codes for the term frequency factor arb® {term frequency is ignored; the term frequency factor

is one if the term is present in the given document, zero otherwig&)use theraw term fre-
guency the number of times the term occurs in the given documeat)(use the “augmented
normalized term frequency” as defined in the previous sectith(use the togarithmic term fre-
guency as defined in the previous section), ard (use “average term frequendyased normal-
ization” as defined in the previous section). (A code for the pure “maximum normalization” does
not appear to have been defined.) The codes for the document frequency factat ause*“1.0,
document frequency factor is ignored}; {use “idf” as the document frequency factor). The
codes for the normalization factor arer’“(use 1.0; no document length normalization is used),

“c” (use cosine normalization, i.e., Eigclidean vector lengdhand ‘U’ (use “pivoted unique nor-
malization” as discussed in the previous section). A weighting scheme is constructed in “Chinese
menu” form: one from column Atérm frequencyactor), one from column Bdocument fre-
guencyfactor), and one from column Ql¢cument normalizatio factor). For example,lfic”
means, “Compute the weight of each term in a given document as the productiegahnéhmic

term frequencyl) of the given term, 1.0 (ignore thdf of the term), and theosine normalization

factor () of the document vector for which the term’s weight is being computed.” (Multiplying by
the cosine normalization factor is equivalent to dividing by the Euclidean vector length as defined
in above.) As a further refinement, it is common to use a different weighting scheme for the query
than for the documents in the collection being queried. Therefore, the complete specification of
the weighting scheme involves two triples, elgg-ltc describes a scheme where the document
vectors are weighted as above, and the query vectors are weighted the same except that each query
term weight is also multiplied by the idf of the given term in the collection to which the query is
being applied. (Note that the query is weighted as a “document” so thégriindfrequencyactor

Page 26

Table 1: Components of schemes for weighting given term in given document

Term Frequency within Document (Unnormalized or Normalized)

Code

Formula for Component

Description of Component

b

1.0

Term frequency = 1 if term is in given document,

= 0 if term is not in given document.

tf

“Raw” term frequency, i.e., number of occ
rences of term in given document.

0.5+ 0.50—4
maxtf

“Augmented” term frequency. First, term fre-

quency of given term is normalized by frequency

of most frequent term in document (“maximum”
normalization) to allow for importance of termn
relative to other terms in document. Then, it|i
further normalized (“augmented”) so resulting

value is in range from 0.5 to 1.0.

Intf+1.0

Logarithmic term frequency. This reduces imp
tance of raw term frequency, e.g.,tif has twi
the frequency of, in given document, the ratio
the logs will be much smaller.

1+ log(tf)
1 + log(average tf

Average term frequency based normalization.
discussion in previous section.

Document Frequency (Number containing Term) within Collection

n

1.0

Number of documents containing given tern

ignored. Original term frequency is not modified.

SiZ

Original term frequency is multiplied by invers
document frequency (idf) where N is the to

number of documents in the collection, and n i

the number of documents containing the giy
term. Hence, term that occurs in many docume
counts for less than term that occurs in few
one).

al

en
nts
or

Page 27

Table 1: Components of schemes for weighting given term in given document (Continued)

Document Length Normalization Component

n 1.0 Variation in document length is ignored.

Weight of given term in given document is ngr-

Cc 1 malized by the length of the document’s term vec-
- tor, so that long documents are not favored over
> Wi short documents.
I
u Pivoted normalization. See previous section.
1

(slopee # of unique ternjs
+ (1-slope ¢ pivot

measures term frequency within the query, anddbeument lengtlfactor normalizes for query
length. Only thadf factor in the weight of a query term is a measure of the distribution in the col-
lection being queried, not in the query itself.) This scheme has exhibited high retrieval effective-
ness for the Text REtrieval Conference (TREC) query sets and collections. [Lee, SIGIR ‘95]
However, Lnu-ltc weighting exhibited even better effectiveness against TREC3 and TREC 4
guery sets and collections. [Singhal et al., SIGIR ‘96] [Buckley et al., TREC 4]

The weighting scheme classification described above is open-ended. Indeed, the SMART team,
originators of this classification, have only recently added.tlogtion to the term frequency fac-
tor, and thau option to the document length normalization factor.

Note that although thalf of a given term is a statistic that characterizes that term relative to a
given collection of documents, not relative to a query, it is common to uselthe weight the
occurrence of the given term in queries being applied to the collection, not to weight its occur-
rence in the document vectors that describe the collection itselflntHéc andLnu-Ltuweight-

ing schemes are examples. There are simple reasons for this. First, it is more efficient for purposes
of collection maintenance. Whenever new documents are added to the collection (or old docu-
ments are removed), the idf must be recomputed for each descriptor term in the affected docu-
ments. It would be inefficient to recompute the weight of such a term in every document in which
it occurs. Moreover, it is unnecessary for the purposes of a query/document similarity calculation,
since the document ranking produced for a given query will be exactly the same whether the idf’s
enter the computation as factors in the query term weights, or factors in the document term
weights, or both.

In a weighting scheme likdg*idf, the normalized term frequency of a given term in a given docu-
ment ismultiplied by its idf so that “good” descriptor terms (which characterize only a relatively
small number of documents in a given collection) are weighted more heavily than “bad” descrip-
tor terms (which are so common that they occur in a great many documents in the given collec-
tion, and hence are of little value in discriminating between relevant and non-relevant documents).

Page 28

An alternative approach is wubtractfrom the normalized term frequency of the given term the
“average” normalized frequency of the term averaged over all the documents in the given collec-
tion. Here, “average” may be “mean”, “median”, “or some other measure of commonality”.
[Damashek, Science, 1995] (This is equivalent to subtracting from each document vector a “cen-
troid” vector, i.e., a vector that is the average of all the document vectors in the collection.) Note
that a term that occurs in a large proportion of the documents in the given collection will have a
larger average term frequency than a term that occurs in only a few documents. Hence, the effect
of subtracting the average is to reduce the weight of commonly used terms by more than the
weight of rarer terms. The centroid is a measure of commonality, of terms that are too widely used
to be good document descriptors.

6.4 Computation of Similarity between Document and Query

Once vectors have been computed for the query and for each document in the given collection,
e.g., using a weighting scheme like those described above, the next step is to compute a numeric
“similarity” between the query and each document. The documents can then be ranked according
to how similar they are to the query, i.e., the highest ranking document is the document most sim-
ilar to the query, etc. While it would be too much to hope that ranking by similarity in document
vector space would correspond exactly with human judgment of degree of relevance to the given
guery, the hope (borne out to some degree in practice) is that the documents with high similarity
will include a high proportion of the relevant documents, and that the documents with very low
similarity will include very few relevant documents. (Of course, this assumes that the given col-
lection contains some relevant documents, an assumption that holds in TREC experiments but
which can’'t be guaranteed in all practical situations.) Ranking of course, allows the human user to
restrict his attention to a set of documents of manageable size, e.g., the top 20 documents, etc.

The usual similarity measure employed in document vector space is the “inner product” between
the query vector and a given document vector. [Salton, 1983] [Salton, 1989] The inner product
between a query vector and a document vector is computed by multiplying the query vector com-
ponent (i.e., weight)QT; for each termi, by the corresponding document vector component
weight,DT; for the same term and summing these products overiallence the inner product is
given by:

N

3y QT, (DT,

i=1
whereN is the number of descriptor terms common to the query and the given document. If both
vectors have been cosine normalized, then this inner product represents the cosine of the angle
between the two vectors; hence this similarity measure is often called “cosine similarity.” The
maximum similarity is one, corresponding to the query and document vectors being identical
(angle between them zero). The minimum similarity is zero corresponding to the two vectors hav-
ing no terms in common (angle between them is 90 degrees).

One problem with cosine similarity, noted by both Salton and Lee and discussed above, is that it
tends to produce relatively low similarity values for long documents, especially (as Lee points

Page 29

out) when the document is long because it deals with multiple topics. But Lee’s solution (men-
tioned above and discussed in more detail in section 6ri)ti use a more complicated similar-

ity measure in place of cosine similarity, but rather to merge the result of a retrieval using cosine
similarity with the result of a retrieval using term frequency normalization, e.g., maximum nor-
malization. In other words, Lee supplements cosine similarity rather than replaces it, thereby get-
ting the advantages of two relatively simple similarity measures. And the solution of Singhal et
al., discussed above in section 6.2, is to develop improved normalization factors for term weight-
ing, factors that do a better job of normalizing for document length and term frequency during a
singleretrieval run, thereby eliminating the need for fusion of separate runs.

In an earlier approach from the same research group, Salton and Buckley [TREC 2, 1994] dealt
with the problem of long documents by combining the usual cosine similarity of query and docu-
ment (“global” similarity) with similarity of the query to parts of the document (“local” similar-

ity). The parts they tried included sentences and paragraphs. In other words, if two docDments
andD, have comparable similarity to a given query, Bytalso contains a sentence or paragraph
that is particularly similar to the query, thény will be given a higher similarity value thab.,.

They have also tried combining multiple local similarity measures, e.g., sentence and paragraph
similarity, with the global similarity. However, the Singhal et al. enhanced term weightimg) (
method, by improving document length normalization, and term frequency normalization,
reduces the importance of such local similarity measures. Buckley et al. [TREC 4] report that
using Lnu weighting reduces the improvement gained by their local/global similarity measures
from 15% to 3%. They continue to experiment with sophisticated similarity measures that take
into account the actual location of every descriptor term. However, their motivation is now less to
correct for document length bias, and more to create a similarity measure to which non-statistical,
e.g., linguistic and certainty, factors at the term level can be added.

Another approach to the problem of large, or multi-topic, documents is to break each large docu-
ment into sections, commonly called “passages,” and treat each passage as a “document.” [Callan,
SIGIR ‘94] In other words, the system computes the similarity between each passage and the
user’s query. This enables the system to determine the “best” passage, i.e., the passage in a given
document most similar (and hence hopefully most relevant) to the query. This passage then comes
to represent the document in any further computations or retrievals involving the same query or
any similar information need. Passages have been calculated in a number ofseay@sas
determined by document markup [Wilkinson, SIGIR ‘94], passages as delimited by the author,
e.g., sections, paragraphs, sentences, etc. [Salton et al., SIGIR ‘93], clusters of paragraphs, fixed-
size passages, etc. A document may be partitioned into fixed size disjoint passages. Fixed length
passages may be a fixed number of terms, e.g., 50 words to 600 words each [Kaszkiel et al.,
SIGIR '97], with each passage beginning immediately after the preceding passage. Zobel et al.
[IP&M, 1995] employ passages of 1000 to 2000 words, which theypzaies the passages are
generated by accumulating paragraphs until the desired length is reached, so that the passages are
not exactly fixed length, but always end on a paragraph boundary. Alternatively, fixed-size pas-
sages may be overlapped, e.g., if the passages argdanhs long, each passage may spa?t

terms beyond the start of the preceding passage. [Callan, SIGIR ‘94] These fixed size, overlapping
passages have been callethdows because they can be viewed as obtained by sliding a window

p terms long over the text. “[E]xperiments have shown that fixed size passages are at least as
effective — and marginally more efficient — than their varying counterparts.” [Allan, SIGIR '95]

Page 30

(The superiority of fixed length, overlapping and non-overlapping, passages is also supported by
the experiments of Kaszkiel et al. [SIGIR ‘97] discussed below.) These passage approaches dif-
fers from the Salton and Buckley “global/local approach” in that only local similarities between a
guery and the passages of a document are computed. Documents are ranked according to the best
local similarity in the given document for the given query, i.e., the passage in a each document
that is most similar to the given query. Presumably, the benefit of this approach too is reduced by
incorporation of an improved document normalization scheme sutihhagHowever, Kaszkiel

et al. found that the pivoted document length normalization improved passage length retrieval for
all those cases where the passages varied substantially in length.)

Hearst et al. {SIGIR ‘93] approach global/local similarity in a novel way. First, they attempt to
break a given document intmotivatedsegments, i.e., variable length segments such that the
boundary between one segment and the next is the boundary between one subtopic and the next.
These segments, called “tiles,” may be multi-paragraph units.

The “tiling” method begins by partitioning the document into “blocks,” such that each bldck is
sentences long. As a heuristic, Hearst chobdesbe the average paragraph length in sentences.
Note that this means that the length of a block in sentences may vary somewhat from one docu-
ment to the next. Moreover, since the block size is a fixed number of sentences, blocks will vary
somewhat in size (measured in terms) even within a given document, although they will be
approximately equal.

The blocks are combined into topic-based segments, on the assumption that two consecutive
blocks are likely to be about the same topic if they are statistically similar, and likely to be about
different topics if they are not similar. Similarity is calculated for every pair of consecutive blocks

in a given document. The similarity measure employed is the standard cosine similarity, with
terms weighted according to the standdtalf formula. The novelty in employing this formula is

that the blocks are treated as the “documents,” while the document is treated as the document
“collection.” Hence, in computing the weight of tertnin block B; of documentD,, tf; is the
unnormalized frequency of tertnin B;, while idf; is theidf of t; in the collection of blocks com-
prisingDy, i.e., it will be zero if it is present in every block &f,, much higher if it is only present

in one or two blocks oby. The effect is that two consecutive blodgsandB;,; will be very sim-

ilar if they share a number of terms, the terms are relatively frequeBjtandB,;, and are found

in few other blocks oD,. By contrast, terms that are shared®jyandB;,, but are spread fairly
uniformly throughout the entire document, will contribute much less to the inter-block similarity.

These consecutive block similarities are then graphed against block position in the document. The
result is a function that peaks where consecutive blocks are very similar, and drops where they are
very dissimilar. After this function is smoothed to eliminate small local fluctuations, the result is a
function with peaks and valleys. The low points of the valleys are then taken to be the boundaries
of the tiles, segments that are each assumed to be about a single local subtopic.

These tiles can be used in a number of ways. Hearst et al. propose a two stage query, where the
user can request documents about tdpicmatchingT, against an entire document, and about
subtopicT,, matchingT, against each block in documeDyj that satisfieS;. Note that this is dif-

ferent than combining a local and global similarity into a single similarity measure as Salton and

Page 31

Buckley do. In the proposed Hearst approach, a document must separatelytsztishe global
similarity to T, andthe local similarity toT,. Neither topic will unduly dilute the calculation of
similarity for the other topic. As a further enhancement, terms associated with the global or
“pbackground” topicT, could be eliminated when searching tilesTer

Tiles have also been used by Hearst et al. in a single stage query mode. Here, the idea is that each
document in a collection is segmented into tiles, and each tile is then term indexed as a separate
“virtual” document. The index for a given tile also identifies the actual document from which it
came. Given a query, the best (most similai) tiles (N = 200 in the reported experiment) are
retrieved, and grouped by document of origin. Then, the similarity scores of the tiles in each
group, i.e., originating in the same document, are summed. The actual documents are then ranked
according to these sums. In the reported experiment using TREC data, retrieval using these tile
similarity sums produced substantially better precision than querying directly on indexes of the
full text (actual) documents. Apparently, the tile method favored those portions of a document that
were most relevant to a given query.

Kretser et al. [SIGIR '99] carry the concept of locality-based similarity even farther than Hearst
does with her tiles. They view a document collection as a sequence of words. They calculate a
“score” for each word position in the sequence. Hence, the position of a word is its position rela-
tive to the start of the collectiomot relative to the document in which it occurs. Given a query Q
defined as a set of terms (words)he Kretser system computes a scOgtx) for every positiorx

in the collection. The score for a given word positiodepends on whether a query terwccurs

at that position, and on whether query terms occur within a certain distance of that position. The
farther a query term occurs from the word positilobeing evaluated, the less its influence, the
smaller the “contribution” it makes t6q(x). The scoreCy(x) at word positiorx is the sum of the
contributionscy(x,l) wheret is any query terml, is any word position in the document collection at
which t occurs, and(x,l) is the contribution that query termat word positionl makes to the
score at word positior

Kretser et al. tried out four different shapes for the contribution funatjonl): triangle, cosine,
circle, and arc. However, in all four casegx,l) was a function of (1@ =[x-|, the maximum dis-
tance fronx at which a query term can make a contribution to the scoxe(@) h;, the “height” or

peak contribution, which is the contribution made by a query teatpositionx, and (3)s;, the
“spread” of the contribution function for query teripwhich determines the maximum distance,
dmax &t Whicht can contribute to the score at word positiorNote that the height and spread are
both functions ot itself. A scarce term t will have a greater spread; in other words, an occurrence
of tis able to influence the scorexaat a greater distance frorthan an occurrence of a common
term. Similarly, a scarce tertrcontributes more proportionately than a common term to the score
atx if it occurs atx, or if it occurs at any distance fromwithin its spread. It is noteworthy that
both the spread and the height are collection-baseitjocument-based functions. That is, “scar-
city” means scarcity within the collection, not scarcity within any given document. For example,
the “spread” is defined asf wheren is the number of unique words in the collection, dnd the
frequency oft, i.e., the number of times termoccurs in the collection. However, document
boundarieslo play one role in the computation of the score at word positiohhe spread is not
allowed to cross a document boundary. Hence, the score at a word position near the beginning or
end of a document can not be influenced by a query term in an adjacent document.

Page 32

The scheme described above generates a similarity score for every prsititthre document col-
lection relative to a given que®. The similarities must be computed at runtime, when the query

Q is supplied. However, as with conventional document-based systems, the collection is indexed
in advance as an inverted list, to facilitate the runtime similarity calculation. But Kretser’s index
must specifyword positiondor every term in the collection, not just document occurrences as for
conventional IR systems. Moreover, since it is intended that the query engine will return a ranked
list of documents, the document boundaries must also be stored in the index. Various strategies
are used to compress all of this information efficiently. The compression ratio varies with the col-
lection. For the four collections tested by Kretser et al., the ratio of index size to collection size
varied from 18.9% to 23.1%. This compares with 2.6% to 6.8% for the corresponding document
level indexes.

At runtime, given a quer(, the system computes the similarity score of every word position rel-
ative toQ. To rank documents, the system finds the highest scoring word position, and adds its
score to an (initially zero) accumulator for the document in which it occurs. Then, it repeats the
process for the next highest scoring word position. This 2nd word position may be in the same
document, in which case its score is added to the same accumulator. Or, it may occur in another
document, in which case, it is added to a new accumulator. The process continuegsoim#ero
accumulators have been generated, whésg¢he number of documents to be returned to the user.
The documents are presented to the user in the order of the scores in their accumulators.

Kaszkiel et al. [SIGIR ‘97] performed experiments to compare various approaches to passages,
including Hearst'diles, Zobel'spages Callan’s fixed-length overlappingindows non-overlap-

ping fixed length passages, Wilkinsorsections and paragraphs. Twelve different fixed length
passage sizes from 50 words to 600 words were tried. The results indicated that fixed length pas-
sages, both overlapping and non-overlapping, of 150 words or more were “simple; highly effec-
tive; robust” for document retrieval. They scored as well or better than both whole document
retrieval, and other passage methods, over the full range of experiments, e.g., for different data
sets, and different document normalization schemes. Several limitations of these experiments
should be noted, however. Kaszkiel et al. note a couple of limitations themselves: First, their
results do not rule out the possibility of further improvement through “combination of passage-
level and document-level evidence” Second, they did not exploit (as did some of the passage
methods they cite, e.g., tiling) the possibility of achieving better document ranking by combining
multiple passage similarities for each document. There are other limitations that they do not men-
tion. Their study focused on using passage similarities to rank the whole documents in which the
passages occur. They do not study passages as units of retrieval themselves; indeed, it would be
difficult for them to do so, since they employ TREC data for training and testing; TREC data only
provides relevance judgments for whole documents, not for passages (let alone the diverse kinds
of passages compared here). Similarly, they do not study the interactive uses of passages, e.g., the
presentation high-ranking passages to the use, as a basis for selecting either documents, or other
similar passages.

Most of the vector space similarity formulas discussed above assume that the vectors have been
normalized, with the intended effect that document length is factored out. In other words, the
intention is that a short document about topjc a long document containing a short passage

Page 33

aboutT; and a long document entirely aboltwill yield the same similarity to the topic state-
mentT; itself. But as was noted in section 6.2, often the user has a preference for either longer or
shorter documents about the topic of interest. This problem has not usually been addressed in IR
research, but a number of possibilities are available.

One alternative, mentioned back in 6.2, is not to normalize the vectors at all. The effect of taking
the inner product of unnormalized vectors (no term frequency normalizations, no vector length
normalization) is to generate similarity values that take into account both relevance and size. A
short documenb, relevant toT; will receive a larger similarity value than a documéxjtotally
non-relevant, a long documeBg containing a short passage relevanTitwill receive a similar-

ity value roughly equal to that received By, and a long documemm, largely or entirely abou;

will receive the largest similarity value of all. This works well if the user prefers longer, more
detailed documents likB,. But what if the user prefers shorter documents? Simple functions are
available for inverting the similarity function just described so that the similarity values of the
inverted function decrease as the similarity values of the original function increase. But this has
the perverse effect of giving the highest similarity values to documents that are non-relevant!

Another alternative is to make size a separate and distinct parameter. Size can be made a separate
component of both the topic description vector and each document vector. Hence, a match on size
category, e.g., small, medium, large, could increase the relevance by an amount that depended on
the term weights assigned to that component. Or size could be taken out of the vector space alto-
gether, e.g., the algorithm could test the user’s size preference first, and then perform a different
vector inner product computation based on the user’s preference. The vectors would be unnormal-
ized if the user preferred large documents, normalized (especially pivoted normalization) if the
user wanted equal preference to be given to documents about the given topic independently of
size. Cosine normalization or some other normalization scheme specifically designed to favor
short relevant documents over long relevant documents would be applied to the vectors if the user
preference were for “short and sweet.”

The inner product and its normalized form, cosine similarity, are not the only similarity functions
employed to compare a document vector with a topic vector (although they are by far the most
widely used). A variety of “distance” functions, and other term matching functions are available.
For example, a family of distance metrics [Korfhage, 1997] is given by:

1/p

LDy, Dy) = [z'dli_d2i|p]

These metrics compute the distance in vector space between vBgtargl D, in terms of the
componentsd,; of D;, the componentsl,; of D,, and a parametep that determines which
chooses a specific metric from the family.pl, the metric is the city block distance, i.e., dis-
tance measured as number of city blocks from one street intersection (corner) to another in a city
where the streets are laid out as a rectangular grpk2f the metric is the familiar Euclidean dis-
tance, i.e., the straight line distance in the vector space. (This is the same metric that is used for
computing the length of a vector for purposes of Euclidean normalization.)df gz metric is
themaximal direction distancél'hat is, as p tends to infinity, the largest differerdig-|d,;| tends

Page 34

to dominate all the others, and the function reduces to the absolute value of this maximum differ-
ence. Since each vector component corresponds to one dimension, one direction, in vector space,
each difference between a pair of corresponding components is the distance between the vectors
in a given direction. The maximal direction distance metric is the distance along the dimension
where the vectors are farthest apart.

Apart from such distance metrics, there are a host of similarity formulas that “normalize” by
avoiding term frequencies altogether, i.e., functions that only count the number of terms that
match and (sometimes) the number of terms that don’t match. One such popular function is Dice’s
coefficient [van Rijsbergen, 1979]:

2w

Dice =
Ice nl+n2

wherew is the number of terms common to vect@gandD,, n, is the number of non-zero terms
in D4, andn, is the number of non-zero terms Dy. Note that the denominator here performs a
kind of normalization, so that a short docum@&ntwill get a high score relative to a short topic
descriptionD, to which it is relevant. A long documeiiz relevant toD, will get a lower Dice
score provided that the additional textly contains terms that are not By and also not in the
topic description (greater;, samew). This could happen iD3 contains long sections not relevant
to D,, It could also happen D5 contains additional discussion of the topic describe®bybut
this additional discussion uses terms that were overlooked by the user who specifidaLtdpic
the other hand, iD5 andD4 contain most of the same topic-relevant terms fhatontains, but
D3 just uses them more frequently and uses few additional term®t{hddesn’'t use, the®; and
D, will receive similar Dice scores despite their difference in length.

Another common similarity function is Jaccard’s coefficient [van Rijsbergen, 1979]:

Jaccard D, D,) = N—Vz_z

where w (as before) is the number of terms common to ve@g@m@ndD,, N is the total number

of distinct terms (not term occurrences!) in the vector space (uniall dbcument and topic vec-

tors), andzis the number of distinct terms (not term occurrences!) that are neitigrmor in D..

In other wordsN-z is the total number of distinct terms that occuiDp or D, or both. Note that

the value of the Jaccard function is lower, the more distinct terms are eitigr it notD, or

vice versa. It doesn’t matter whether the mismatch is caused by non-relevance, or difference in
document length. On the other hand, it doesn’t matter how frequently a mismatching term (or a
matching term) occurs in eithBy or D,.

The above schemes for computing query/document similarity assume the existence of a (rela-
tively) static collection of documents to which each query formulated by a user is applied. At the
other extreme, we have the “routing” case in which documents arrive in a constantly changing
incoming stream, and each document must be “routed” to ohbmixes corresponding td pre-

Page 35

selected topics. In sharp contrast to the collection retrieval case, the “queries,” i.e., topics or infor-
mation needs, are fixed while the supply of documents is very dynamic. How can the vector space
approach (or any statistical approach) be applied to a situation in which there is no fixed docu-
ment collection for which collection-wide statistics suchidscan be computed? The usual
answer is to provide a “training set” of (one hopes) “typical” documents for which statistics can
be calculated. Obviously, the hope is that all the subsequent documents received by one’s system
will have the same statistical properties as the training set. (The alternative is to update the train-
ing set regularly, which of course requires retraining the system regularly too.)

6.5 Latent Semantic Indexing (LSI) — An Alternative Vector Scheme

In the traditional vector space approach to IR described above, a vector “space” is defined for a
collection of documents such that each dimension of the space is a term occurring in the collec-
tion, and each document is specified as a vector with a coordinate for each term occurring in the
given document. The value of each coordinate is a weight assigned to the corresponding term, a
weight intended to be a measure of how important the given term is in characterizing the given
document and distinguishing it from the other documents in the given collection. This approach is
an effective first approximation to the statistical properties of the collection, but it is nevertheless
an oversimplification. Its major limitation is that it assumes that the terms are independent,
orthogonal dimensions of the document space. Adding a new term to the space, e.g., a term that
was previously omitted because it wasn’t considered a good discriminator, has no effect whatever
on the existing terms defining the space. (Adding a deaumento the collection not only adds

new terms to the space but also does affect the weights of the existing terms because it affects
their idf's. But this is a term-document relationship, not a term-term relationship.) Hence, rela-
tionships among the terms, e.g., the fact that certain terms are likely to co-occur in documents
about a given topic because they all refer to aspects of that topic, are ignored. Similarly (and more
subtly), the traditional term vector approach ignores the fact that term A and term B may occur in
similar contexts in two distinct documents because they are synonyms.

The traditional vector space approach has another feature that can be a drawback in some applica-
tions: Since the number of terms that occur in a collection can be large (even after “noise” words
have been deleted with a stop list, and variant forms of the same word have been eliminated by
stemming), the traditional term-based document space has a large number of dimensions.

A new vector space approach called Latent Semantic Indexing (LSI) [Deerwester et al., JASIS,
1990] attempts to capture these term-term statistical relationships. In LSI, the document space in
which each dimension is an actual term occurring in the collection is replaced by (recalculated as)
a much lower dimensional document space called k-space (or LSI space) in which each dimen-
sion is a derived concept, a “conceptual index,” called an LSI “factor” or “feature.” These LSI fac-
tors are truly independent statistically, i.e., uncorrelated, in a way that terms are not. Hence, LSI
factors are “information rich” [SIGIR ‘94, Hull] in the sense that they capture the term-term rela-
tionships that ordinary term-based document space does not. Documents are represented by LSI
factor vectors in k-space just as they are represented by term vectors in traditional term-based
document space. Vector similarity can be calculated in the same way in k-space as in traditional
document space. However, documents and queries dealing with the same topic that would be far

Page 36

apart in traditional document space (e.g., because they use different but synonymous terms) may
be close together in k-space.

As Bartell, et al. [SIGIR ‘92] explain (they speak of “keywords” rather than “terms”):

[llndividual keywords are not adequate discriminators of semantic content. Rather
the indexing relationship between word and document is many-to-many: A num-
ber of concepts can be indexed by a single term [polysemy], and a number of terms
can index a single concept [synonymy] ... [Hence] some relevant documents are
missed (they are not indexed by the keywords used in the query, but by synonyms)
and some irrelevant documents are retrieved (they are indexed by unintended
senses of the keywords in the query). LSI aim[s] at addressing these limitations.
This technique maps each document from a vector space representation based on
keyword frequency to a vector in a lower dimensional space. Terms are also
mapped into vectors in the reduced space. The claim is that the similarity between
vectors in the reduced space ... may be a better retrieval indicator than similarity
measured in the original term space. This is primarily because, in the reduced
space, two related documents may be represented similarly even though they do
not share any keywords. This may occur, for example, if the keywords used in each
of the documents co-occur frequently in other documents.

In other words, if documerd, uses ternt, and documenb, uses equivalent teritg, LSI will
effectively recognize this equivalence statisticallygifandt, co-occur frequently in similar con-
texts in other documents. Berry et al. [SIAM Review, 1995] offer a good example:

Consider the wordsar, automobiledriver, andelephant.The termscar andauto-
mobileare synonymgjriver is a related concept aredlephants unrelated. In most
[e.g., traditional term vector] retrieval systems, the quemomobiless no more
likely to retrieve documents about cars than documents about elephants, if the pre-
cise termautomobilewas not used in the documents. It would be preferable if a
guery aboutiutomobilesalso retrieved articles aboaarsand even articles about
driversto a lesser extent. The derived [LS#dimensional feature space can repre-
sent these useful term relationships. Roughly speaking, the wardsmdautomo-
bile will occur with many of the same words [i.e., in the same “context”] (e.g.,
motor, model, vehiclechassis carmakerssedan engineetc.), and they will have
similar representations ik-space. The contexts falriver will overlap to a lesser
extent, and those f@lephantwill be quite dissimilar.

(To be fair about it, a good query submitted to a traditional term-based system would use more
terms than “automobile”, e.g., perhaps some of the other contextual words mentioned in the pas-
sage quoted above.)

In other words, the traditional term-based vector space model assumes term independence. “Since
there are strong associations between terms in language, this assumption is never satisfied [though
it may be] a reasonable first order approximation.” [SIGIR ‘94, Hull] LS| attempts to capture

Page 37

some of these semantic term dependencies using a purely statistical and automatic method, i.e.,
without syntactic or semantic natural language analysis and without manual human intervention.

LSI accomplishes this by using a method of matrix decomposition called Singular Value Decom-
position (SVD). LSI takes the original document-by-term matrix describing the traditional term-
based document space as input. It produces as output three new mairgesndD such that

their producfT*S*D captures this same statistical information in a new coordinate skapace,

where each of th& dimensions represents one of the derived LSI “features” or “concepts” or
“factors.” “[T]hese factors may be thought of as artificial concepts; they represent extracted com-
mon meaning components of many different words and documents.” [JASIS, 1990, Deerwester et
al.] D is a “document” matrix. Each column &f is one of thek derived concepts. Each row Df

is the vector for a given document, specified in terms oktbencepts. The matrix element for the

j-th concept in thé-th document represents the strength of association of copaggbtdocument

i. Hence,D specifies documents kspace. SimilarlyT is a term matrix. Each column as before

is one of thek derived concepts. But i, each row is a vector ik-space describing a term in the
original collection, a term in the original term-by-document matrix that characterized the collec-
tion. Hence, “[e]ach term [in this matrix] is then characterized by a vector of weights indicating
its strength of association with each of these underlying concepts.” {JASIS, 1990, Deerwester et
al.] In other words, each term vector (i.e., row)Tinis “a weighted average of the different mean-
ings of the term.” [SIGIR ‘94, Hull] The diagonal elements in the 2nd ma&&ssign weights
(called “singular values”) to thke LSI factors according to their significance. This allows the user

to have some control over how many dimensieepace is to have.

“[Some of] [tlhe power of this decomposition comes from the fact that the new factors are pre-
sented in order of their importance (as measured by the diago&pl Dierefore, the least impor-

tant factors can easily be removed by truncating the matfic8sandD, i.e., by deleting some of

the rightmost columns of these matrices. The remaikioglumns [are] called the LSI factors.”
SIGIR ‘94, Hull] Note thatk is a parameter under the user’s control. Redugirgn eliminate
“noise”, e.g., “rare and less important usages of certain terms.” However, if the number of dimen-
sions (LSI factors) is too low, important information may be lost. The optimum number of dimen-
sions obviously depends on the collection and the task. One report finds that improvement starts at
about 10 or 20 dimensions, peaks between 70 and 100, and then decreases. [SIAM Review, Berry
et al., 1995] As the number of LSI factors approaches the number of terms, performance necessar-
ily approaches that of standard vector methods. Another report says that the optimum number of
dimensions is usually between 100 and 200.

Projection of a set of documents into k space is optimal in the sense that the projection “is guaran-
teed to have, among all possible projections tedimensional space, the lowest possible least-
square distance to the original documents. In this sense, LSl finds an optimal solution to the prob-
lem of dimensionality reduction.” {Schutze et al., SIGIR ‘97]

What does it mean to say that tkéactors derived by the LSI procedure correspond to “artificial”
concepts? It means that no attempt is made to interpret these k concepts, e.g., to describe them in
simple English. Indeed, in many cases, it may not be possible to summarize these concepts, to
explain what each one “means.” What aren say is that a given document is heavily weighted

Page 38

with regard to concept 1, doesn't deal at all with concept 2, is lightly weighted with respect to con-
cept 3, etc.

What good does it do describe a document in terms of the relative importance to the document of
k concepts, if one doesn't know what theoncepts mean? For a single document, such a descrip-
tion may have no value at all. But if one has a 2nd document also described in terms of weights of
those same k concepts, then aaa say how similar the documents are kispace). And, if one

of those “documents” is a query (or a sample document used as a query, or the centroid of a set of
sample documents), then one can say how close the given document is to the given dkery, in
space of course. Following the usual vector space similarity methods, e.g., calculating the cosine
similarities, one can rank documents by how similar they are to the qudagpace. Similarity in
k-space is more statistically meaningful, and therefore, one hopes, more semantically meaningful,
than similarity in conventional term space, becauseitencepts reflect statistical correlations in

the document population, while the original terms do not.

Since one can compute query-document similarities usind-inedocument matrixD, alone,

what is the value of the term-bymatrix, T? One answer is that it allows you to compute term
similarities. Presumably, two terms are very similar if they co-occur, i.e., are strongly correlated,
with many of the same other terms. Hence, such a similarity can be used to suggest to a user who
enters a query, other terms, statistically similar to the terms he used, which could be added to his
guery. Or the similarities can be used to construct automatically a domain-dependent or collec-
tion-dependent thesaurus.

Notice, by the way, that although each row of mafriss called a “term vector,” the phrase is used
quite differently in LSI terminology than in conventional vector space terminology. In the conven-
tional vector space approach, a “term vector” is a vectoilocument spacgescribing alocument

in terms of weights assigned to each term for the given document. In LSI, both terms and docu-
ments are described in LSI factosspace. A term vector is a vector describing a gitesmin LSI
k-space in terms of the weights assigned to the LSI factors for the given term. A document is
described in LSI by @locumentwector specifying the weights assigned to the LSI factors for the
given document.

Hearst, et al. [Text Retrieval Conference, TREC 4] point out an additional advantage of LSI with
respect to the routing or classification of documents:

The routing task can be treated as a problem of machine learning or statistical clas-
sification. The training set of judged documents is used to construct a classification
rule which predicts the relevance of newly arriving documents. Traditional learn-
ing algorithms do not work effectively when applied to the full vector space repre-
sentation of the document collection due to the scale of the problem ... In the
vector space model, one dimension is reserved for each unique term in the collec-
tion. Standard classification techniques cannot operate in such a high dimensional
space, due to insufficient training data and computational restrictions. Therefore,
some form of dimensionality reduction must be considered ... [One approach is to]
apply Latent Semantic Indexing (LSI) to represent documents by a low-dimen-
sional linear combination of orthogonal indexing variables.

Page 39

Berry, et al. {SIAM Review, 1995] discuss another advantage of LSI. It is especially useful for
noisy input:

Because LSI does not depend on literal keyword [i.e., term] matching, it is espe-
cially useful when the input text is noisy, as in OCR (optical character recogni-
tion), open input, or spelling errors. If there are scanning errors, and a word [name
in this case] Pumaig is misspelled (a®uniais), many of the other words in the
document will be spelled correctly. If these correctly spelled context words also
occur in documents that contain a correctly spelled versioDwmais then
Dumaiswill probably be neabuniaisin thek-dimensional [LSI factor] space.

On the other hand, LSI has some serious drawbacks too. As Hull [SIGIR '94] points out:

While a reduced representation based on a small number of orthogonal variables
might appear to cut storage costs substantially [compared to the traditional term-

based vector space model], the opposite is actually true ... [The LSI representation
requires storage of a substantially larger set of values.] In addition the LSI values

are real numbers while the original term frequencies [weights] are integers, adding

to the storage costs. Using LSI vectors, we can no longer take advantage of the fact
that each term occurs in a limited number of documents, which accounts for the

sparse nature of the term by document matrix.

Another disadvantage is that “the LSI solution is also computationally expensive for large collec-
tions ... [However], it need only be constructed once for the entire collection [assuming a rela-
tively static collection so] performance at retrieval time is not affected.” [SIGIR ‘94, Hull]

In one respect, LS| degrades retrieval time performance too. In a conventional vector space search
using an inverted index, only documents that have some terms in common with the query must be
examined. If the query is well-formulated, i.e., is composed of terms that are not overly common
and serve to distinguish relevant from non-relevant documents, many documents will not contain
any terms in common with the query and hence will not need to be examined at all. “With LSI,
however, the query must be compared to every document in the collection.” [SIGIR ‘94, Hull] But
this is not as great a disadvantage for LSI as it may at first appear. If (as will commonly be the
case) the number of terms in a conventional query is greater than the number of factors in its LSI
representation, the vector similarity calculation for a given document in conventional term space
will take more time to compute than the corresponding calculation in LSI vector space. Moreover,
most conventional vector space approaches use some form of query expansion to modify and
expand the user’s original query. (This is discussed below in the section on Query Expansion and
Refinement.) LSI can be viewed as a special kind of query “expansion”. [SIGIR ‘94, Hull] Con-
ventional query expansion often results in a great increase in the number of terms in the query,
whereas LS| may actually reduce the number of terms.

Given that the original LSI solution is computationally expensive, the question arises whether this
expense must be incurred repeatedly each time new messages are added to the document collec-
tion. (This is an important consideration in any case where the document collection is not static,

Page 40

but it is especially important if the LSI technique is applied to a routing application; in such an
application, the document “collection” is an incoming stream that is continually changing - see
section 8.) Fortunately, it is not always necessary to do a complete re-computation every time a
new document arises. To begin with, the addition of one document to a large collection is not
likely to have a very significant effect on the LSI computation, so it may be possible to ignore the
effect. Secondly, there are two approaches to updating the LSI computation without re-doing the
entire computation. [Berry et al., 1995]

The first, called “folding in,” is the cheapest. Basically, you don't recomputé taetors at all.

Nor do you recompute the weights of tkéactors for existing documents or terms. Instead each
new document just becomes a new column in the document matrix, described in terms of the orig-
inal k factors. Similarly, if the new document contains some new terms, each new term becomes a
new row in the term matrix, again defined in terms of the origkfalctors. So the process is rela-
tively fast and cheap, but there is some degradation; not all the new correlations are being
absorbed. Hence, all the original documents and terms occupy the same posikeapaoe that

they did before the folding-in of new documents occurred.

There is a more sophisticated (and naturally more computationally expensive) technique called
“SVD updating.” It starts with the original LS| database, just like folding in, but the weights asso-
ciated with the k factors for each document and term are recomputed so that the addition of new
documents and terms affects the positions of the existing documents and terms in k-space. Hence,
the approximation is much better.

If these two updating procedures prove inadequate, the remaining alternative is to redo the LSI
computation from scratch

The fact that (as noted above) an LSI term vector is “a weighted average of the different meanings
of the term” can be either an advantage or a disadvantage. It is an advantage if the reduced repre-
sentation in LSI removes “some of the rare and less important usages” of the given term, i.e.,
usages that are not relevant to the topic of the query. On the other hand, if the “real meaning [as
used in the query and the relevant documents] differs from the average meaning [as captured by
the LSI term vector], LSI may actually reduce the quality of the search.” [Hull, SIGIR ‘94]

One more possible drawback of LSI is pointed out by Shutze et al. [SIGIR ‘95] LSI is not
required for, and may actually degrade retrieval of, documents that are well described by a few
terms. They give the example of a document about the Hubble Space Telescope, which can be
very well retrieved by the single word “Hubble.” LS| may actually obscure the key evidence, the
presence or absence of the term “Hubble,” in this case. On the other hand, LSI is much more
effective “if there is a great number of terms which all contribute a small amount of critical infor-
mation.” This is particularly true if each of the documents on the desired topic only contains a
subset of these terms. In such a case, LSI is more effective than a term-based classifier at combin-
ing evidence to identify documents about the given topic.

Similarity (between query and document) in LSI vector space is usually calculated by the inner
product similarity measure as in the traditional document vector space approach. The normalized
inner product, i.e., “cosine” similarity is generally used. However, Bartell et al. have shown that

Page 41

the “inner product similarities between documents in the original [term] space are optimally pre-

served by the inner products [not normalized inner products] between corresponding vectors in
the reduced space.” [Bartell, SIGIR ‘92] Hence, cosine normalization should be computed in the
original term space and the LSI calculation then applied to these normalized vectors.

In any case, the value of LSI lies in (1) the elimination of spurious similarities, i.e., due to the
same term being used in two different ways, and (2) the detection of similarities in LSI space that
are invisible in ordinary term space, i.e., due to different but synonymous terms being used in sim-
ilar contexts in different documents.

6.6 Vectors Based om-gram Terms

Then-gram approach is in some respects the ultimate in vector space (and more generally, in sta-
tistical) approaches to IR. In the traditional vector space approaches described above, the dimen-
sions of the document space for a given collection of documents are the words (or sometimes
phrases) that occur in the collection; more precisely, they are the terms that remain after stem-
ming, and removal of words that appear on a stoplist. By contrast, in-iram approach, the
dimensions of the document space igrams, strings ofi consecutive characters extracted from

the text without regard to word length, and often completely without regard to word boundaries.
Hence, then-gram method is a remarkably “pure” statistical approach, one that measures the sta-
tistical properties of strings of text in the given collection without regard to the vocabulary, lexi-
cal, or semantic properties of the natural language(s) in which the documents are written.

The n-gram length 1) and the method of extracting-grams from documents vary from one
author and application to another. “Zamora uses trignam 8] analysis for spelling error detec-

tion” [Pearce & Nicholas, JASIS, 1996]. Damashek usggsams of length 5 and 6 for clustering

of text by language and topic (see below). He uses for English andh = 6 for Japanese [Dam-
ashek, Science, 1995]. Pearce and Nicholas follow Damashek in using 5-grams to support a
dynamic hypertext system [JASIS, 1995]. Some authors [Zamora et al., IP&M, 1981]; [Suen,
IEEE Pattern, 1979] draw-grams from all the words in a document but use arlyrams wholly

within a single word. Others [Cavnar, TREC-2, 1993]; [Yannakoudakis et al., IP&M, 1982];
[Damashek, Science, 1995] also usgrams that cross word boundaries, i.e., that start within one
word, end in another word, and include the space characters that separate consecutive words
[Pearce & Nicholas, JASIS, 1996].

Damashek'sliding windowapproach [Science, 1995] is one of the most recent and inclusive, and
the first to offer “convincing evidence of the usefulness [of ikgram approach] for the purpose

of categorizing text in a completely unrestricted multilingual environment.” Minimal preprocess-
ing is required. Numbers and punctuation characters are usually removed. What remains is the
alphabet plus the space character (27 characters for English). (Sometimes, no preprocessing is
done at all.) Then-grams characterizing a document are then obtained by moving a window
characters in length through a document or query one character at a time. In other words, the first
n-gram will consist of the firsh characters in the document, the 2mgram will consist of the

2nd through ther(+1)-th character, etc. Hence, there will beragram starting with every charac-

ter in the document (after preprocessing) except for thentast characters. Each document can

Page 42

then be specified as a vectorrefjrams, one for each distinetgram in the document. Each com-
ponent can be weighted just as the components of a conventional term vector are weighted, e.g.,
Damashek uses normalizeegram frequency, the number of occurrences of the givgnam in

the given document divided by the total number of occurrences ofgdams in the document.
Similarly, Damashek computes the similarity between two documents using the familiar cosine
similarity measure, which is just as useful inrugram document space as in a term-based docu-
ment space.

Once the similarities among thregram-based document vectors have been computed, the docu-
ments can be clustered using a method such as those discussed in section 3.8. Damashek found
this approach to be extremely effective for classifying a mixed-language collection of text docu-
ments, generating a distinct cluster for each distinct language. Indeed, such methods have been
used to cluster documents hierarchically, i.e., by language group and by individual language
within group. The beauty of this method is that it amounts to “blind clustering,” i.e., the docu-
ments are classified without any prior linguistic knowledge. That is, there is no prior knowledge

of the individual languages, or even of how many languages or language groups are involved.

A document space af-gram-based vectors can be clustered by topic, as well as language (or by
topic within language). However, clustering by topic introduces a problem not usually present in
language clustering. When documents are blind-clustered by language, stoplists are not only not
available (since they are language-dependent); they are also inapplicable. The very words that are
typically placed on stoplists because they occur across most topics within the documents of a
given language are the words that best characterize the language statistically. Putting it another
way, words that have very little semantic content are good discriminators of a language since the
objective is to classify all documents written in the given language regardless of what topic they
discuss. Hence, Damashek employs a language-independent method of removing the “noise”, the
data that is common across topics. He translates the axes of the vector space so that the new origin
is at the mean (theentroid)of all the document vectors. In that way, the origin becomes “a loca-
tion that characterizes the information one wishes to ignore,” the information common to the col-
lection of documents. This location is equivalent to the “noise,” the data that does not serve to
distinguish one document from another. Translating the origin is equivalent to subtracting the cen-
troid from each document vector, subtracting the common information one wishes to ignore. The
document similarities can then be recalculated relative to this new origin.

But the technique of subtracting the centroid can be used to accomplish more than merely sup-
pressing noise. It can also be used to recognize that two clusters of documents with different pri-
mary topics share a secondary topic. (Damashek offers the example of one cluster dealing with
the primary topic of health care reform, and another cluster dealing with the primary topic of
communicable diseases; they may share a secondary topic of AIDS epidemiology.) If one sub-
tracts from each cluster its centroid (corresponding to its primary topic, the topic that all the docu-
ments share), the two clusters may become superimposed in document space, reflecting the
secondary topic that they share. In this kind of application, the common data that is removed is not
devoid of semantic content. It is merely common to a set of documents and hence not useful for
distinguishing them. Hence, it has been called the “context” or the “background” [Cohen, JASIS,
1995] rather than “noise.”

Page 43

A more sophisticated-gram weighting scheme based on @festatistic [Bishop et al., 1975] has

been used by Cohen [JASIS, 1995] to distinguish the background of a cluster of documents from
thehighlights i.e., the words in a document that distinguish the document from its neighbors and
hence can serve as an automatically-generated abstract that tells a user very rapidly what a given
document is “about.” Note that Cohen’s method, although it highlights words, identifies the words
to be highlighted by statistical characteristics of thgrams of which they are composed. More-

over, Damashek’s sliding window approach is employed, enabling phrase as well as word high-
lights to be identified. As before, the technique is language-independent.

Damashek’s use of cosine similarity illustrates a general point: almost any method for weighting
terms, normalizing terms, or normalizing term-based vectors is as applicable when the terms are
n-grams as when the terms are words. Similarly, query expansion based on relevance feedback,
discussed in section 3.6 below, is as applicable-¢pams as to words. (In practice, query expan-

sion has not usually been combined with Damashekjsam method, because emphasis has been
placed on its power for fast, inexpensive clustering, and interactive browsing.) The converse is
also true: A method like centroid subtraction, applied above-¢pam vectors, is applicable to
word-based term vectors as well. Language-dependent methods such as stoplist removal are not
directly applicable tax-gram vector representations, but as noted below, can be combined effec-
tively with n-gram analysis.

Because the sliding window used to obtakgrams allows the system to obtain many slices of a
given word, the performance of angram system is remarkably resistant to textual errors, e.g.,
spelling errors, typos, errors associated with optical character recognition, etc. Damashek [Sci-
ence, 1995] artificially corrupted his text (15% of the characters in error) and found that most of
the documents in an uncorrupted cluster were still identified as belonging to the cluster (17 of 20).
In a hypertext application [Pearce and Nicholas, JASIS, 1996], “the dynamic linkage mechanisms
... are tolerant of garbles in up to 30% of the characters in the body of the text.” Again, a major
virtue of the sliding windown-gram approach for tolerance of garbles is that it is language-inde-
pendent; it does not depend on prior linguistic knowledge.

A pure n-gram analysis does not use language-specific and semantic clues, i.e., stemming,
stoplists, syntactically-based phrase detection, thesaurus expansion, etc. This theoretically limits
its performance compared to methods that make effective use of language-specific as well as sta-
tistical clues. However, this limitation is currently more theoretical than actual, because most con-
temporary retrieval methods make only limited use of language-specific and semantic methods (a
situation that may change in the future). Moreover, as noted belgram analysis can be com-

bined with word-based, syntactic, and semantic methods in a variety of ways. Further, as dis-
cussed above, many methods, e.g., automatic query expansion based on relevance feedback, are as
applicable to n-gram analysis as to word-based analysis. On the other hand, precisely because
gram analysis is language-independent, it is especially well-suited (given an adequate training set)
to classification or clustering of documents by language. It should be noted here that the “lan-
guages” that this technology can classify are not restricted to natural languages, but can also
include programming languages, indeed any class of “language” or representation that has distin-
guishable statistical properties.

Page 44

The disadvantage afgram analysis with respect to language-specific processing is actually less
serious than it might seem. Algorithms that ursgram counts can be combined with identifica-

tion of word boundaries to recognize roots shared by different words, conferring some of the same
advantage as stemming algorithms, but with the further advantage of language independence. In
some respects, these algorithms are better than conventional stemmers that only remove suffixes,
e.g., they can recognize the resemblance of “quake” and “earthquake” {Cohen, JASIS, 1995]. (Of
course, they can be deceived by spurious resemblances too.) And centroid subtraction, discussed
below, provides some of the same benefits as stopword removal, but again in a language-indepen-
dent fashion. Indeed, it is not always necessary to choose betwg@m analysis, and language-
dependent methods. They can be combined. For example, language-dependent methods have been
used successfully in conjunction withgram analysis to improve performance, e.g., if the lan-
guage in which a collection of documents is written is known, words on a stoplist can be removed
from each document before n-gram analysis is applied. [Onyshkevych, PC] Similarly, conven-
tional stemming can be applied beforggram analysis. However, the future extension of textual
analysis to sophisticated semantic and knowledge-based methods will obviously have to be word-
based.

Apart from language independence, the greatest virturegghm analysis is that it is very simple

to implement, and can run very fast (although the redundancy associated with a sliding window
approach may make it expensive with respect to storage). Hence, another very effective way to
combinen-gram analysis with language-based methods is to perform a two-stage search process.
First, n-gram methods can be used to zero in rapidly, e.g., in an interactive browsing mode, on
document clusters in a domain of interest; then, more refined and expensive language-based meth-
ods can be used to refine the search and perform the final retrieval.

But perhaps the feature of timegram approach that most sets it apart from other statistical meth-
ods, is its ability to group documents without any prior knowledge about the documents being
grouped. Indeed, in this realm of “blind” clustering, it appears to have no serious competition.

7. Probabilistic Approach

There is no clear line separating probabilistic from statistical methods of IR. Indeed, there is a
very close connection since probabilities are often calculated on the basis of statistical evidence.
Most of the literature on probabilistic IR assumes that the evidence is so calculated. Of course,
given a formula based on a probabilistic model, any source of evidence can be used to compute
the probabilities to be plugged into the formula, but as a practical matter the evidence is usually
statistical; in fact, it is may sometimes be the very same evidencetfssgndidf’s, used in sta-
tistical, e.g., vector space, methods.

7.1 What Distinguishes a Probabilistic Approach?

Then what distinguishes a true probabilistic methodology from other statistical approaches?
According to Cooper et al. [SIGIR *92]:

Page 45

In a thoroughgoing probabilistic design methodology, serious use is made of for-
mal probability theory and statistics to arrive at the estimates of probability of rele-

vance by which the documents are ranked. Such a methodology is to be
distinguished from looser approaches -- for instance the “vector space” retrieval
model -- in which the retrieved items are ranked by a similarity measure (e.g., the
cosine function) whose values are not directly interpretable as probabilities.

7.2 Advantages and Disadvantages of Probabilistic Approach to IR

Cooper et al. [SIGIR '92] list foupotentialadvantages of a true probabilistic design methodol-
ogy:

1. “One has grounds for expecting retrieval effectiveness that is near-optimal relative to the evi-
dence used.”

2. There should be “less exclusive reliance on traditional trial-and-error retrieval experiments ...
to discover the parameter values that result in best performance.” (As examples of such trial and
error, consider the variety of term weighting schemes that have been tried in varied vector space
experiments or the trials required to determine optimum values for the paranfetBr&ndC in
the Rocchio relevance feedback formula, discussed in a later section.)

3. “[A]n array of more powerful statistical indicators of predictivity and goodness of fit [than
precision, recall, etc.] become available.”

4. “[E]lach document’s probability-of-relevance estimate can be reported to the user in ranked
output ... [I]t would presumably be easier for most users to understand and base their stopping
behavior [i.e., when they stop looking at lower ranking documents] upon ... a ‘probability of rele-
vance’ than [a cosine similarity value].” In general, actual estimates for each document of proba-
bility of relevance are more useful to a user than mere ranking of documents by probability of
relevance (let alone ranking by some other similarity function). {Turtle and Croft, ACM Trans IS,
1991]

Yet, probabilistic methods have not yet been as widely used as these advantages would suggest.
Moreover, where they have been used, they have achieved retrieval performance (measured by
precision and recall) comparable to, but not clearly superior to, non-probabilistic methods. {Coo-
per, SIGIR ‘94] Cooper identifies various reasons for these shortfalls:

1. “[A]dvocates of nonprobabilistic methods ... regard the formulation of exact statistical
assumptions as an unnecessary theoretical burden on the researcher. They maintain (with some
plausibility) that the time and effort spent on such analysis would be better spent on ad hoc exper-
imentation using formalisms looser and friendlier than probability theory.”

2. “The estimation procedures used in probabilistic IR are usually based on statistical simplify-
ing assumptions or ‘models’ of some sort. The retrieval clues that bear on a document’s probabil-
ity of usefulness must somehow be combined into a single relevance probability, and modeling

Page 46

assumptions are needed to accomplish the combining. Typically, the assumptions adopted for the
task are crude and at best only approximately true ... The introduction of simplifying assumptions
known to be less than universally valid surely compromises to some degree the accuracy of the
probability estimates that result.” (Of course, similar simplifying assumptions are tacitly used in
all other statistical approaches, e.g., the assumption of term independence in the vector space
model.)

3. The assumptions underlying some IR models, most notably the widely used (and misnamed)
“Binary Independence” IR model, can lead to logical inconsistencies.[Cooper, SIGIR ‘91, ACM
Trans IS, 1995] Successes that have been achieved in spite of the inconsistency of the theoretical
model are due to the fact that the actual assumptions used in practice are different than the
assumptions of the theoretical model, and stronger than they needed to be.

In a probabilistic method, one usually computes the “conditional” probalfiB|R)that a given
documenD is observed on a random basis given eRrthat d is relevant to a given query. [Sal-

ton, ATP, 89] [van Rijsbergen, 1979] If, as is typically the case, query and document are repre-
sented by sets of terms, thB(D|R)is calculated as a function of the probability of occurrence of
these terms in relevant vs. non-relevant documents. The term probabilities are analogous to the
term weights in the vector space model (and may be calculated using the same statistical mea-
sures). A probabilistic formula is used to calcul®@|R), in place of the vector similarity for-

mula, e.g., cosine similarity, used to calculate relevance ranking in the vector space model. The
probability formula depends on the specific model used, and also on the assumptions made about
the distribution of terms, e.g., how terms are distributed over documents in the set of relevant doc-
uments, and in the set of non-relevant documents.

More generallyP(D|R) may be computed based on any clues available about the document, e.g.,
manually assigned index terms (concepts with which the document deals, synonyms, etc.) as well
as terms extracted automatically from the actual text of the document. Hence, we want to calcu-
late P(D|A, B, C, ...)i.e., the probability that the given document,is relevant, given the clues

A, B, G etc. As a further complication, the clues themselves may be viewed as complex, e.g., if
the presence of terihis a clue to the relevance of documdhtt may be viewed as a cluster of
related clues, e.qg., its frequency in the query, its frequency in the documedt, #gnonyms, etc.

This has led to the idea of a “staged” computation, in which a probabilistic model is first applied

to each composite clue (stage one), and then applied to the combination of these composite clues
(stage two). [Cooper et al., SIGIR ‘92] This is discussed further below, in the section on Logistic
Regression. It has also led to the idea of an “inference net” [Turtle & Croft, ACMtranslS, 1991] in
which rules can be specified for combining different sources of evidence (automatically extracted
index terms, manually assigned index terms, synonyms, etc.) to compute a “belief” that an infor-
mation need has been satisfied by a given document. (See below, in the section on the Bayesian
Inference Network Model.)

7.3 Linked Dependence
As noted above, the first step in most of these probabilistic methods is to make some statistical

simplifying assumption. The objective is to replace joint probabilities (the probability of occur-
rence of two or more event8, B, etc.) by a separate probability for each event. The most widely

Page 47

used assumption is “Binary Independence” which Cooper [SIGIR ‘91, ACM Trans IS, ‘95] points
out should really be called “Linked Dependence” [Cooper et al., SIGIR ‘92]. The model has been
called “Binary Independence” because it has been assumed that to arrive at the model one must
make the simplifying assumption that the document properties that serve as clues to relevance are
independent of each other in both the set of relevant documents and the set of non-relevant docu-
ments, an “implausible presumption” [Cooper et al., SIGIR ‘92]. Cooper shows that it is sufficient

to make the weaker “Linked Dependence” assumption that these propertiest andependent

but that the same degree of dependence holds for both the relevant document set and the non-rele-
vant document set. In symbols (for two propertfeandB):

P(A B|R = K P(A/R [P(B|R

PA B-~RO= K [P(A]-R [P(B|-R

where =R means non-relevaftis a crude measure of the dependence (the “linkage”) of proper-
tiesAandB. If K =1, this reduces to the pure independence property; the joint probability equals
the product of the individual properties. Cooper points out that the weaker linked dependence
assumption is sufficient to satisfy the requirements of models that have hitherto used the binary
independence assumption. “This weaker assumption, though still debatable, has at least the virtue
of not denying the existence of dependencies.” Therefore, efforts to remedy the clearly erroneous
assumption of pure independence by providing empirical term co-occurrence information are less
theoretically important than previously thought; the actual error that needs to be remedied is the
assumption that dependencies are the same for relevant and non-relevant document sets. Of
course, the latter may still be a significant consideration.

7.4 Bayesian Probability Models

Conditional (“Bayesian”) probabilistic models relate fhér probability of document relevance,

i.e., the probability that a document selected at random will be relevant, pm#teriorprobabil-

ity of relevance, i.e., the probability that an observed document is relevant, given the observed (or
computed) features of the document. These features may include terms in the document, term sta-
tistics, manually assigned descriptors, phrase, etc., indeed all the clues employed in other statisti-
cal methods. Bayesian models vary primarily in how the “posterior” probabilities are calculated.
They may also vary in how multiple sources of probabilistic evidence are combined, and in how
probabilistic and non-probabilistic evidence are combined.

Page 48

An important feature of Bayesian models is that one starts with a set of prior probabilities that
must sum to 1, and one ends up with a set of posterior probabilities that must also sum to 1. [Win-
kler et al, Stat] (Some probabilistic methodologies may yield document retrieval status values
(RSVs) that are not true probabilities, but rather are montone to the corresponding true probabili-
ties. In that case, the RSVs can be used for document ranking but do not sum to one. However, in
a true probabilistic model, they can always be converted to true probabilities (normalized) which
do sum to one and which will be more meaningful to an end user.) One can view Bayesian proba-
bility as applied to IR as a process of “redistributing” probabilities of relevance from the prior
probability distribution over all the documents in a given collection to a posterior distribution e.g.,
over the set of retrieved documents. Crestani and van Rijsbergen {SIGIR ‘95] call this “probabil-
ity kinematics.” They view this kinematics as a flow of probabilities among the terms serving as
descriptors of a document collection. Initially, one has a prior distribution of the probabilities that
terms, e.g., are good document descriptors (perhaps basdtis)nGiven a particular document

D;, one has a “flow” of probabilities from terms not By to terms inD;, e.g., perhaps based on
simple term occurrence or term frequencies in the given document. These posterior probabilities
for the terms that descrild®; also sum to one. The probability of the given document being rele-
vant to a given query is then the sum of the posterior probabilities for the document terms that are
also in the query. More generally, this probability may also depend on, e.g., term frequencies or
other statistical characteristics of the query.

7.4.1 Binary Independence Model

“The simplest of these models is based on the presence or absence of independently distributed
terms in relevant and non-relevant documents,” [Shaw, IP&M, 1995] i.e., the distribution of any
given term over the collection of documentsassumedo be independent of the distribution of

any other term. Put another way, the probability of any given term occurring in a relevant docu-
ment is independent of the probability of any other term occurring in a relevant document (and
similarly for non-relevant documents). Hence, the model is referred to as the “binary indepen-
dent” [BI} model. We saw above, in the preceding section, that this model actually should be
called the “linked dependence” model because it actually depends on the weaker assumption that
these probabilities are not independent, but rather that the same degree of dependence holds
among relevant documents as holds among non-relevant documents, and that this degree of
dependence can be captured by a proportionality constant. [Robertson et al, JASIS, 1976] [van
Rijsbergen, 1979]. In this model, also known as the “relevance weighting theory” [Efthimiiadis,
IP&M, 1995], we start withp,, the probability that ternty, appears in a document given that the
document is relevant ang,, the probability that, appears in a document given that the document

is non-relevant. (As always, relevance is defined relative to a given query or “information need.”)
Using Bayes’ rule of inference and the Bl (more precisely, linked dependence) assumption, one
can derive a function for ranking documents by probability of relevance. [van Rijsbergen, 1979]

In this function, each termy receives a weigh, given by:

P« {1-uy)

W = 1000 F1 o0y

Page 49

The “odds” oft, appearing in a relevant documenpjg(1-p,). Similarly, the “odds” oft, appear-

ing in a non-relevant documentug/(1-u,). Hence w, measures the odds gfappearing in a rel-
evant document divided by the oddstpfappearing in a non-relevant document, i.e., tloels

ratio. Taking the log makes this function symmetng; = O if p, = uy, is positive ifp, > u,, and is
negative ifp,< u,. Hencew is a good measure of how well a term can distinguish relevant from
non-relevant documents. The functpis called the “term relevance” weight or “term relevance
function,” or “logodds,” i.e., the log of the odds ratio figr Plainly, w, will be a very large positive
number for a term that has a high probability of appearing in a relevant document and a very low
probability of appearing in a non-relevant document (and a very large negative number if the
probabilities are reversed). Moreover, if the set of index terms in a document collection satisfies
the BI or “linked dependence” condition, the odds ratio (odds of relevance divided by odds of
non-relevance) for a given documetis merely the product of the odds ratios of all the
appearing irD, i.e., the product of all the corresponding Hence, thdog of the odds ratio foD

can be computed as tlseamof thew,. In other words, the logodds of relevanceldfs computed

as the sum of they for index terms appearing .

The trick is to find a way of computing, andu,. If relevance data is available, e.g. from manually
evaluating a previous run with the same query against the same collection or against a training set,
thenp, andu, can be estimated from a 2x2 “contingency” table summarizing the relevance judg-
ments, as given below:

Table 2: Contingency Table of Relevance Judgments

No. of relevant No. of non-relevant Total
Documents Documents
No. of documents r n-r n
including termt
No. of documents R-r (N-R - (n-r) N-n
excluding ternt,
Total R N-R N

HereN is the total number of documents in the collectioms the total number of documents that
contain ternt,, Ris the total number of relevant documents retrieved,rasdhe total number of
relevant documents retrieved that contain tégnfrrom this table, we can estimgtgasr/R (the
proportion of relevant documents containiggandu, as @-r)/(N-R) (the proportion of non-rele-

Page 50

vant documents containirtg). Obviously, this assumes that “the term distribution in the relevant
items previously retrieved [or in the training set] is the same as the distribution for the complete
set of relevant items, and that all non-retrieved iteM<J can be treated as non-relevant.” [Sal-

ton et al, JASIS, 1990]. The latter assumption is necessary to allow us to assuriNeRI{ali
retrieved non-relevant documents plus all non-retrieved documents) equals the total number of
non-relevant documents. The former assumption allows us to treat the proportion of relevant doc-
uments containing in the retrieved sample as characteristic of the proportion in the complete
collection, for allt.

Equivalently, the odds dj appearing in a relevant document ifR)/((1-r/R) = r/(R-r), and the
odds oft, appearing in a non-relevant documer(nis)/(N-R)[1-(n-r)/(N-R] = (n-r)/(N-R-n+r).
Inserting these values into the formula gt we obtain:

rIN—R—n+r)
(R-1)(n-r)

W, =

This formula forw obviously breaks down if, equals oner(= R) or zero ¢ = 0). Similarly, w

breaks down ity equals oner(-r = N-R) or zero (=r). Statistical theory has been used to justify
modifying the formulas foip, anduy to avoid these singularities by adding a constatd the
numerator and one to the denominator, where0.5 orc = n/N. [Robertson et al., 1986] How-

ever, there are always cases where these constants dominate the computation and distort the
results. [Shaw, IP&M, 1995] Shaw proposes to avoid these problems by using the unmodified for-
mulas everywhere but at the singularities, and specifying alternative formulas at the singularities.

If the constant 0.5 is inserted in the formulavgy the result is:

_(r+05(N-=R-n+r+0.5)
~ (R=r+0.5)(n-r+0.5)

Wi

It should be noted that in the term relevance model described above, the probabilities of relevance
and non relevance, givep and the corresponding logodds functiwg are based entirely on the
presence or absence of each tegnm relevant and non-relevant documents. A tegns favored,

i.e., given a highw,, if it appears much more frequently in relevant documents than in non-rele-
vant documents. It receives no “extra credit” for appearing more frequently than anothériterm
relevant documents.

The simple term relevance weight given above is based on the contingency table, which is con-
structed on the basis of a training sample. Hence, the term relevance weight function is based
entirely on the assumption that the user possesses a training sample that is adequate in size and
representative of the collection(s) to which the function is to be applied. What if one has no train-
ing sample? Put another way, what should the “prior” term weight be, before any data from the

Page 51

collection is sampled? Robertson et al. [SIGIR *97], argue that this prior weight should reflect the
fact that terms occurring in a large proportion of documents have little value for predicting rele-
vance. Hence, they advocate using itileas the prior weight, or (equivalently) the weight to be
used in the absence of relevance information. On the other hand, if ample term relevance informa-
tion is available, the term relevance function above applies. Hence, they propose a term weight
function that varies smoothly fromdf (for zero relevance data) to the above term relevance func-
tion, wy, for ample relevance data.

Moreover, ample relevance data means not only an adequate sample of relevant documents, but an
adequate sample of non-relevant documents. Hence, Robertson et al. Siafieenumber of

known non-relevant documents (analogousktéor relevant documents), argl the number of

known non-relevant documents containing a given teégrfanalogous to) Note thatSis notthe

same a®N-R andsis notthe same as-r. Given these six variableR, r, S s, N,andn, Robertson

et al. define a function that varies from pudé (for R=0, S=0, i.e., no data available about rele-
vance and non-relevance) to the aboygerm relevance function for large andS They begin

by observing that the logodds formula above, the log of the ratio of the odds of relevance to the
odds of non-relevance, stated in termgodndu,, can be rewritten as:

P« Uy
—lo
T-p9 O(1-uy

w, = log

The first term above is the logodds of relevance given the presence ofitéffhve second term is
the logodds of non-relevance, given the presence of tgrRobertson et al. express each of these
terms as a linear sum of alf term and a term relevance term. The resulting weight function is:

)

+log N an JR | r+0.5

_SD(0
e+ R OIN-N e+ R CR-1+05

ks _og—N__ JS logS+0:5
ke+ /S N—n |+ /5 ~S—s+05

w

Hereky, ks, andkg are “tuning constants” that can be adjusted to tune the weighting function. The
function is based on the “assumption... that the effect should be linear in the square Rponof

the grounds that the standard error of an estimate based on a sample is proportional to the square
root of the sample size.” It can be readily seen that if there is no relevance datR, Se=, 0

(which impliesr, s = 0 too), the weighting function reduces to:

N

1 _ n
w~ =k, +lo —lo
« PO 9N Th

= kﬁlog%

Page 52

which is the traditionaldf function plus a tuning constant. R andS are large, the 2nd and 4th
terms (the two term relevance function terms) dominate, and the weight function reduces to a pure
“evidence-based,” or “training-set-based” weight function:

r+0.5 _log s+0.5

-r+0.5 S—-s+0.5

(r+0.5) {S—s+0.5)
(R-r+0.5) {s+0.5)

7.4.2 Bayesian Inference Network Model

(1) — [
w ogR

= log

An alternative approach to applying conditional (Bayesian) probability in IR, an approach that
“depends less upon Bayesian inversion,” is the inference network retrieval model. [Turtle & Croft,
ACM Trans IS, 1991] “Inference networks can be used to simulate both probabilistic and Boolean
gueries and can be used to combine results from multiple queries.” They can also be used to com-
bine multiple sources of evidence regarding the relevance of a document to a user query, e.g., a
document may be represented by both terms extracted automatically from the document itself,
and terms or concepts assigned manually as index terms. The inference network provides a natu-
ral way to combine these sources of evidence to determine the probability (in this context, often
called thebelief) that the given document satisfies a given user queinformation needThe
Bayesian inference network approach has been implemented in the INQUERY system. [Callan et
al., IP&M, 1995] [Callan et al., DB&ExSysApp, 1992] INQUERY also employs some semantic
features, e.g., concept recognizers, which are discussed in a later section. [Callan et al., DB &
ExSys, 1992]

An inference network is a probabilistic retrieval model, but it differs from typical retrieval models.
[Croft et al., SIGIR ‘91] A typical model computes’{Relevanc®ocument, Query)he proba-

bility that a user decides a document is relevant given a particular document and query.” The
inference net model computeP(1|Document) the probability that a user’s information need is
satisfied given a particular document.” This probability can be computed separately for each doc-
ument in a collection. The documents can then be ranked by probability, from highest probability
of satisfying the user’s need to lowest. The result is a ranked list of retrieved documents, as with
more traditional retrieval models. Moreover, the list of retrieved documents can be cut off at a
probability threshold, e.g., only retrieve documents with a probability greater than 70% of satisfy-
ing the user’s need. Such a probability threshold is likely to be more meaningful to the user than a
cosine similarity threshold drawn from the vector space model.

Pearl [Prob Reas, 1988] has an excellent discussion of inference networks in general, and Baye-
sian networks in particular. He points out that these networks solve an important problem with
probabilistic models (and more generally, with “extensional” models):

Interpreting rules as conditional probability statemeR{&|A) = p,
does not give us a license to do anything. Even if we are fortunate
enough to findA true in the database, we still cannot assert a thing
aboutB or P(B), because the meaning of the statement isA‘i6

true andA is theonly thing that you know, then you can attachBo

Page 53

a probabilityp.” As soon as other facts appear in the database, the
license to asseR(B) = p is automatically revoked, and we need to
look upP(BJA, K) instead.

The point is thaK may cause us to revise or retract concludtofhe ability to retract a previous
conclusion, called “non-monotonic” reasoning, is forbidden in classical logic but is essential to
the kind of plausible reasoning under uncertainty that human beings actually do, and which per-
vades information retrieval. The great virtue of inference nets is that they organize our knowledge
so that all the proposition®\, K, etc., on which a given conclusidd depends are immediately
accessible, i.e., they are the parents (directly or indirectlyB.d¥oreover, a rule for computing

the probability oB from the probabilities of its parents can be attached to the noBe for

The inference network is a graph and consists of nodes connected by directed line segments
(“edges”). The nodes are true/false propositions. An edge is drawn fromptmleodeq if p
“causes” or “implies”g. We can then calp a “parent” ofg. As the network is applied to IR, the

root nodes are documents, i.e., propositions of the form, “Docugist observed.” There is a
document node for eadD; in the given collection. These document nodes are parents of “text”
nodes. (See Figure 1.) Theh text node for documen; is a physical representation of the text

of Dj, i.e., the proposition that, “Text representatifip of documen; has been observed.” For

most purposes and in most IR systems, no distinction is drawn between the document and its text
representation. But drawing this distinction allows for the possibility that a text representation
might be shared by several documents, e.g., in a hypertext system several documents might have
links to the same shared text. It also allows for the possibility that the children of a document node
might include not only text nodes but also audio, video, figure, etc., nodes. (Here we are evidently
talking about both multiple representations of a document, and multiple components of a multi-
media document.) The distinction between document nodes and text nodes will be ignored in the
discussion that follows.

The text nodes in turn are parents of “content representation” nodes (“representation” nodes for
short). (See Figure 1.) These are the “descriptors” or “index terms.” As noted above, the text of a
document might be indexed both by terms automatically extracted from the document (as dis-
cussed in connection with vector space and Boolean models), and manually assigned descriptor
terms or concepts. (For example, as Turtle and Croft point out, there may be two representation
nodes associated with the phrase “information retrieval”, one corresponding to the actual occur-
rence of the phrase in one or more documents, the other corresponding to the manual assignment
of the concept expressed by the phrase to one or more documents, i.e., the human indexer’s judg-
ment that the given documents are “about” information retrieval.) Hence, there may be two or
more subsets of representation nodes, each corresponding to a different method of describing or
representing documents. A given representation node fortienmay correspond to the proposi-

tion, “t, is a good document descriptor.’[f; is a parent ofy, then the link fromD, to t, specifies

the probability or “belief” in the proposition that is a good descriptor of the document, given

that the document iB,. A term is a “good descriptor” of a document if its presence in the given
document serves to characterize the document and distinguish it, e.g., statistically, from other doc-
uments that are about other topics. Note (see Figure 1 below) thatifurs in both documei,

and documend;, then node®, andD; are both parents of nodg And if in addition, concept;

is assigned manually as a descriptobef thenD, is a parent of botty andc;, i.e., documenb,

Page 54

is described (with some probability or to some extent) by concephd contains tern with
some probability thaty is a good descriptor @,.

Given a documern,, one wishes to compute the probabilities of the propositions represented by
the child nodes ob4, the children ofthosenodes, and so on. Hence, an inference net must pro-
vide some method of specifying the conditional probability of the proposition at quagieen the
probabilities of the propositions at its parergsg,p,, etc. The mechanism chosen by Turtle et al. is
called a “link matrix.” Each node is assigned such a matrix. The link matrix for gactntains

two rows; the first row corresponds to propositpbeing false, the second row correspondg to
being true. The link matrix fog has a column for each logical combination of parent truth values.
For example, ifg has three parentpy, p,, andps, each of which can be either true or false, then
there are eight columns: a column for all three parents being false, a colupyifeing true and

p, andps being false, and so on, up to all three parents being true. Each of these eight combina-
tions is a proposition that may influence our belief tha true or false. Each entry in the matrix
contains a weight corresponding to how strongly we believe the truth or falsity of the correspond-
ing proposition should influence our belief in the truthgofFor example, the cell corresponding

to column (i.e., proposition)p; andp, true, p3 false,” and row ¢ true,” contains our estimate of

how much the truth of the given proposition should influence our belief in the trgth of

Given the link matrix for nodej, P(q) can be computed by summing all the possible prior proba-
bilities. Each prior probability is the probability of some combination of true and false for the par-
ent propositions. Hence, each prior probability corresponds to a column of the link matrix. For
example, consider the colump;‘andp, true, p; false,.” LetP,, P,, andP5 be the probabilities

that the propositionp;, p, andps are true. Then the prior probability of the given column (assum-
ing the three parent propositions are independent of each otigPRs*(1-P3). The prior proba-

bility is computed similarly for each of the eight columns, e.g., the prior probability for column
“p, false, p, false, ps true” is (1P1)*(1-P,)*P3, and so on. These eight prior probabilities are
summed to compute the total prior probability iprAs noted above, if some of the parents are
more important than others, a weight for each prior probability appears in the link matrix. Each
prior probability is multiplied by its weight from the link matrix before summing. Typically, the
weight for each prior probability is a function of the weights assigned to the true parents in the
given combination. For example, b, w,, andws be the weights assigned to parent propositions
P1, Po, andpg respectively. Then, each of the eight prior probabilities can be weighted by the nor-
malized sum of the weights for those propositions that are true. Hence, the prior probability for
column “p; and p, true, p3 false” would be multiplied by W;+ws)/(w;+w,+w3), yielding a
weighted prior probability oP,*P 5*(1-P3)*(w1+w,)/(w;+w,+w3). Then, the total prior probabil-

ity (sum of the prior probabilities for each column of the link matrix) is multiplied by the proba-
bility of g given the prior probabilitie®(q|p;, po, P3)-

Note that the link matrix is a conceptual representation. A pure link matrix contains a column for
each logical combination of parent nodes. Hence, if the number of parents is large, the number of
columns isvery large; the number of columns grows exponentially with the number of parents.
Specifically, if nodeq hasn parents, its link matrix must (in general) ha2e columns. Corre-
spondingly, an operator represented by such a matrix ru@$af) time; it “requiresO(2") float-

ing point operations.” Clearly, for large a more efficient implementation or an operator with a
simpler interpretation, must be employed. An example, discussed below in connection with

Page 55

extended boolean operators, is link matrices that satisfy the Parent Indifference Criterion, i.e.,
matrices in which the value of the child node is determined wholly by the number of parents that

are true, not at all by which ones are true. For such matrices, the number of columns clearly grows
linearly, not exponentially, with the number of parents. Such operators r@(rﬁ') time. In cer-

tain important cases (see below), the run in linear time.

Page 56

Text Content Query Information
Document git(ieéjr:esent- gtiegr:esem‘ Eogcept ‘I‘\IQeed’ i’;e.,
odes uer
Nodes Nodes Nodes y

Figure 1: Example of Document Inference Network.

Document Network Query Network

Page 57

As a further refinement of the inference network structure, term dependencies, e.g., the tendency
of two or more terms to co-occur, can be represented by links from one term to another. For exam-
ple, a link fromt, to t, may represent the probability that tetgwill occur in a given document,

given that term; occurs in the given document. However, the network specifier must be careful to
avoid cycles (see discussion below), e.g., a link figrto t,, a link fromt, to t3, and then a link

from t3 to t1, would be forbidden! Document dependencies can also be represented, e.g., a citation
in documenD; to documenD.. If clustering techniques (see below) are used to establish that a
set of document®4, D, ..., D, are more similar to each other than to any document not in the
cluster by some appropriate criterion, then this can be represented by a cluster node which “repre-
sents” the cluster. Cluster nodes can themselves have representation nodes. Thus if dogument
belongs to cluste€;, andC; has a representation notlethen the presence gfin the user’s query

will strengthen belief thab, satisfies the user’s information need evet) does not appear iy

itself.

Once the document network is built, capturing all the dependencies among documents and their
representations, we assign probabilities to the nodes. Each document node receives a “prior prob-
ability,” generally equal to /[collection size)This is the probability that a given document will be
observed, given that a document is selected at random. “Each representation node contains a spec-
ification of the conditional probabilities associated with the node given its set of parent text [doc-
ument] nodes.” For example, the conditional probability of term npdgven parentD; is the
probability thatt; is a good descriptor dp;, i.e., is effective for the purpose of characterizih

and distinguishindd; from other documents in the collection. This is specified symbolically as
P(tj|D;=true). Here, ;" is the proposition thatt] is a good descriptor of the observed document,”

and ‘Dj=true” is the proposition thatD; has been observed.” As described above, the probability

of the proposition associated with a given term or manually assigned descriptor, can be specified
by a link matrix or its equivalent. However, for the special case where the parent events are obser-
vations of documents, the general scheme described above for specifying and evaluating a link
matrix is modified in one essential respect: Although many documents may contain a given term,
tj, and hence may be parentstf representation node, each documpis observed separately

(the observed document is said to be “instantiated”), and hence its probability of satisfying the
user’s information need, is computed separately. The documents can then be ranked by the
probability that they satisfy. Hence, the link matrix of a representation nddeorresponds to
observation of a single document containtpgnd observation afio other documents. There are

no columns int’'s link matrix corresponding to several documents observed at the same time.
Hence, the link matrix fort; contains only two columns: “Documer; observed,” i.e,
P(4j|Di=true and all other parents falsg and “No document observed,” i.eR(tj|all parents =
falsg.For convenience, these conditional probabilities are usually expressed for short as:
P(tj|Di=true) and P(tj|D;=falsg. This two-column matrix can readily be represented in closed
form.

The conditional probability of the propositioty s a good descriptor” given the event “Document

D, is observed” can be based on any available evidence. However, as observed in the section on
Building Term Vectors, tf*idf” is a good statistical measure of the ability of a given term to dis-
tinguish a given document. Turtle et al. employ a variant of this measure. However, their variant,
0.4 + 0.61f*idf, departs from conventional vector term weighting schemes in one striking respect.
The probability (or “belief” as the inference net folks like to call it) is non-zero even when the

Page 58

term frequency for the given document is zero, i.e., even when the term doesn’t occur in the docu-
ment! The constant component, 0.4 in the above function, is called the “default probability.” It
corresponds to the view that a given term may have some probability of being a valid descriptor of
the document, even if it is not observed in the document. In other wB(tif);=falsg) = 0.4. For
example, the given term itself may not be present, but a synonym may occur in the document. Or,
terms that frequently co-occur with the given term may be present. Or observation may be
restricted to the title or abstract, or a summary of the document; the given term may be absent
from these surrogates, yet present in the full text of the document. The constant 0.4 was arrived at,
not by any deep theory, but purely by experiment. Turtle et al. tried a wide variety of linear func-
tions of the formA + B*tf + C*idf + D*tf*idf , wheretf was normalized by maximum within-docu-
ment term frequency, andf was normalized by collection size. They found that the variant above
gave the best results.

It might have been expected that the default probability would be dependedt, dut experi-

ment showed that a constant default performed as well. To complicate matters further, Greiff et al.
[SIGIR '97] developed a computationally tractable, probabalistically motivated soft [extended]
boolean operator based on a link matrix. (See below.) They found that to achieve performance
comparable to thp-norm model (see section on Extended Boolean Approach), they had to set the
default probability to zero!

So far, we have discussed that part of the inference network that describes a collection of docu-
ments. Not surprisingly, it is called the “document network’ and it is calculated once for a static
collection. Naturally, it is updated if the collection it describes is updated. The document nodes
are the top or “root” nodes of the document network; the representation nodes are the bottom or
“leaf” nodes. (The document network is not a tree since it has multiple roots and a text or repre-
sentation node can have multiple parents. But it is directed and acyclic, i.e., no “loops,” so it is
possible to use graph tree terminology and talk about root, parent, and leaf nodes. For short, a
directed acyclic graph is called a “DAG.”) Note: There is a very good reason why loops (cycles)
must be avoided in Bayesian inference networks. As Turtle and Croft point out, “evidence
attached to any node in the cycle would continually propagate through the network and repeatedly
reinforce the original node.”

The other part of the inference network is the “query network.” (See Figure 1.) It too is a DAG. Its
multiple roots are the concepts that express the user’s information need. These concept nodes may
be the parents of multiple intermediate “query” nodes. Each query node is a parent of the single
leaf node representing the user’s information need. The use of those intermediate query nodes
allows an information need to be expressed as multiple queries. Naturally, a separate query net-
work is constructed for each user information need. “The single leaf representing the information
need [of a given query network] corresponds to the event that an information need is met.”

To apply a given information need to a given document collection, the query network correspond-
ing to the given need must be attached to the document network corresponding to the given col-
lection. This is accomplished (see Figure 1) by specifying parent-child links from the content
representation nodes of the document network to the concept nodes of the query network, i.e., the
leaf nodes (or at least some of them) of the document network become parents of the root nodes
(at least some of them) of the query network. In the simplest case, a representation node from the

Page 59

document network and a concept node from the query network may be identical, e.g., the former
may be a term found in certain documents, and the latter may be a term specified in a user query.
(In Figure 1t,,is a term in documerid, and also a term in the quetySimilarly, termt, is a term

in both documenb, and documenb;, and also a term in the quely) The link from the one to

the other then expresses the relationship that the observation of the given term in a given docu-
ment contributes evidence to the belief that the document satisfies the given information need. In
a more complex case, multiple representation nodes may be parents of a single query concept
node which is not identical to any of its parents. This occurs for example, when documents are
represented in multiple ways, and queries use “concepts that do not explicitly appear in any docu-
ment representation.” For example in Figure 1, concgpd a (perhaps manually assigned) con-
cept descriptor of documem;, andt, is a term or phrase occurring ;. Both ¢, andt, are
parents of query concep{. Document descriptor concegt might be the concept “information
retrieval,” query concept, might be the concept “textual retrieval,” and document term descriptor

t, might be the phrase “information retrieval” actually occurringpiniand alsd,). So, the given
structure tells us that both the presence of the phrase “information retrieval” in a document (as a
string in its text representation) and the presence of the concept “information retrieval” (as a man-
ually assigned concept descriptor in its semantic representation), contribute to the belief that the
document is about textual retrieval, which contributes, in turn, to a belief that the user’s informa-
tion need is satisfied.

Once a query network for a given information needias been attached to a document network

for a given collectionC, it becomes possible to compute the “belief” (the probability) that the
information need has been satisfied by a given document or subset of documents. We must specify
an operator or estimation rule, e.g., using a link matrix or its equivalent, for every non-root node
of the total retrieval inference network, specifying how that node’s probabilities are to be esti-
mated given the probabilities of its parents. Thus we specify how the probabilitgeshg satis-

fied depends on its parent query nodes, how the probability of each query node being true depends
on the probabilities of its parent concept nodes, how the probability of each query concept node
being true depends on the probabilities of its parent document representation nodes, and so on. If
we select some particular documéht we setD;’s node to true and all other document nodes to
false. This “evidence” percolates down through the network as we calculate the probability of
each representation node given the evidence of its parent document nodes, the probability of each
guery concept node given the probabilities of its parent representation nodes, the probability of
each query node given the probabilities of its parent concept nodes, and finally the probability (the
“belief”) that the user’s information neet,is satisfied, given the probabilities of its parent query
nodes. Hence, by selecting some particular docurigntve can compute the probability (the
“pbelief”) that the user’s information need, |, is satisfiedby We can repeat this process for each
document in the collection, thus computing a probabilistic ranking for the documents.

Note that the component terms or concepts that comprise a query can be combined probabalisti-
cally, as described above. On the other hand, link matrices can also be used to specify non-proba-
bilistic, e.g., boolean, operators.

For example, a strict boolean AND means that the belief in the truth of gatpends on the
truth of all its parents. If, as abovg has three parentpy, p, andps, then the link matrix row for
g = true will have a zero for every column except the last one; the last colupyraridp, andps

Page 60

true” will contain a one. The row for AND false is, of course, the complement: a one in every col-
umn except the last. Hence, the meaning of the link matrix isgetrue if and only ifp;, p,, and

p3 are all true. Similarly, the) = true row of the link matrix for boolean OR will contain a one for
every column except the first colummy; p,, andps all false,” a zero in that first column. Note:

the presence of all ones and zeros in the link matrix for a strict logical OR or AND is a way of
saying that the parents are unweighted, i.e., each term in a strict boolean AND or OR is just as
important as any other.

Link matrices can even be specified efficiently émft (also calledextendeylboolean operators.

(See section on Extended Boolean Approach.) [Greiff et al., SIGIR *97] Instead of specifying a
column for each logical combination of parent truth values, Greiff et al. specify a column for each
numberof true parents, independently which parents are true. So, ¢ has four parents, there

will be five columns, corresponding to no parents true, one parent true, two parents true, three par-
ents true, and all four parents true. The weight intilue row for, e.g., three parents true, is an
estimate of the probability thagis true, given that exactly three of its parents are taug;three

of its parents. In other words, the weight for tihee row of columni is the conditional probability

of q giveni parents trueR(q| i parents trug Any link matrix of this type is said to satisfy thear-

ent Indifference Criterior{PIC). Understandably, the cases they explore are those in which the
conditional probability is non-decreasing as the number of true parents increases, since the more
parents are true, the more support there is for beligf iHence, the weights in theue row for g

either remain the same or increase as the number of parents increasesg.egntd row0 = true

in link matrix m, thenm(0, j) m(0, i). As before, the unconditioned probability @fP(g), is com-

puted by multiplying the prior probability of each logical combination of parents by its corre-
sponding weight from the link matrix, and summing these products. The difference is that for PIC
operators, there is a single weight (and hence a single column in the link matrix), for all logical
combinations in which the same number of parents are true. This fact not only reduces the matrix
to n+1 columns; it also makes possible a much more efficient algorithm for operator evaluation.
[Greiff, SIGIR '97] The curve ofP(q) = true vs. # of true parents can be linear or non-linear. Sep-
arate matrices must be specified for the soft boolean OR and the soft boolean AND respectively.
Commonly, but not necessarily, the parents are terms in the document being evaluated, that are
also in the query. The probabilities in the link matrix for the soft boolean OR operator are set so
that the curve rises rapidly for a small number of parents, and then increases more slowly; this
corresponds to the idea that for a generalization of OR, a small number of query terms present in
a given document count a lot toward the total probability that the document is relevant, but addi-
tional terms present add a little more. Similarly, for a soft boolean AND operator, the probabilities
in the link matrix are set so that the curve increases slowly until most of the parents are true, then
increases rapidly; this corresponds to the idea that for a generalization of AND, a small number of
guery terms present in a given document count a little, but presence of most or all of the query
terms add a lot more to the total probability that the document is relevant. If the parents are terms
in a given document, then truth of a parent is presence of the term in the given document. The par-
ents can be weighted as before, e.g., using some varidftidff. The childg can be the query
(Information Need in the Turtle et al. terminology), or a concept within the query (see below).

Greiff et al. show that PIC operators can be implemented to r®(is) time. Moreover, if the
probability vs. number of parents curve is piecewise linear, and “all but one of the pieces of the
function is of constant width,” the operator can be evaluated(im) time. (Note, by the way, that

Page 61

the strict boolean operators are also defined by PIC matrices. However, for the strict booleans, the
link matrix can be represented by a closed form operator, so the PIC algorithm is not necessary.)

The operator at any given non-root nod&, computes a belief (probability) il in terms of
operands which are the beliefshf's parent nodes. A set of operators have been implemented in
the INQUERY system that can be specified at the level of the query network, i.e., that are effec-
tively part of the INQUERY query language. They include strict boolean AND, OR, and NOT,
extended (soft) boolean operators such as those discussed above, weighted sum (similar to those
used for computing the cosine similarity of a document in document vector space), unweighted
sum (i.e., mean), and maximum (maximum of operand values). There are also proximity opera-
tors which return not a belief but “true” if the proximity condition is satisfied or “false” if it is not
satisfied. Proximity operators include unordered text window proximity operators (operands are
terms that must occur in any order in a text windowsizie< n), and ordered interword proximity
operators (operands are terms that must occur in a specified order with inteepamtion< n).

A proximity value can be converted into a belief value by an operator such as “PHRASE” (i.e., if
the operands satisfy the ordered proximity conditiorhwit= 3,calculate the unweighted sum of
their beliefs).[Turtle and Croft, ACM Trans IS, 1991] [Callan et al., IP&M, 1995] [Callan et al.,
DB & ExSys, 1992] The set of possible operators is clearly open-ended. However, every operator
evaluates the probability (the belief) of a given node in terms of the probabilities (beliefs) of its
parents. This is the basic “update procedure for Bayesian networks.”

For example, suppose that the user’s query includes an OR condition (strict or extended), e.g., she
is looking for documents that contaipor t, or t3. This is represented, in the query network, by a
nodeQ with three inputs, corresponding tg t,, and . Thet; input may represent the probabil-

ity thatt, is a good content descriptor, i.e., a good descriptor for purposes of distinguishing rele-
vance, given that some documdéhhas been observed in the current collection, and similarly for

t,, andts. These probabilities may be computed by a widely used ad hoc, statistical measure like
tf*idf (see section on Building Term Vectors in Document Space), or by a measure based on some
theoretical model, e.g., the Bl model (see section on Binary Independence Model). Then, the out-
put of the OR node will represent the joint probability thatOR t, OR t3 is a good content
descriptor, given the probabilities associated wjtt,, andt; separately. If the OR node is a con-

cept nodeg,, then its output is the probability that tiegis present, gived, i.e., thatD is “about”

c;. The separate boolean probabilities associated with the ANDs, ORs, NOTs, etc. of which the
guery is composed are then combined into one total probability for the user’s query, the probabil-
ity that the user’s information need, expressed as a logical combination of concepts, has been sat-
isfied by the observed documet This same process can be applied to each document in the
collection, thus generating a probabilistic ranking of the documents.

As a simple special case, the OR node or AND node of the preceding paragraph could be the
user’s actual query, i.e., there may be no intermediate concept layer. In that case, evaluation of the
boolean node, given documeni would give the probability thad was “about” the user’s query,

i.e., satisfied the user’s information need.

On the other hand, the user’s query could be a term vector (either supplied directly by the user) or
extracted from a free-text specification of the user’s need. If the vector consists of the three terms
t,, to, and g, then these three terms are parents of the user’s query node. The link matrix for the

Page 62

query,Q, would contain (as before) a column for each of the eight logical combinations of truth
value for the three parents. Note that “truth”tpgiven D doesnot mean that; is observed irD.

If t; is present inD, truth oft; is the proposition that; is a good descriptor dD (or in other
words, contributes evidence that D is relevant to queries contaipinghe value oft; is a mea-
sure of the probability that is indeed a good descriptor, i.e., some measure of its “goodness.”
The corresponding value of the proposition thais false is then B(t; = true|D). On the other
hand, ift; is not present irD at all, the value of the propositior;“is a good descriptor” is zero,
becaus® offers no support for the proposition. Correspondingly, the value of the proposition *
is not a good descriptor is 1-0 = 1. (But note that if the conceptdsgfault probability discussed
above, is employed, then the probability that a good descriptor, givemo document support, is

not zero; using Turtle’s function, given above, its value = 0.4.)

One essential virtue of the inference network approach is that it allows one to represent a complex
set of dependencies, dependencies in a document collection, dependencies in a complex informa-
tion need specification, and dependencies between the concepts that represent the document col-
lection and the concepts used to express the information need. The belief that a given information
need is satisfied by a given document or set of documents in the given collection can then be esti-
mated by evaluating the operator at each non-root node of the network. Different sources of evi-
dence (automatically extracted terms, phrases, paragraphs, and manually assigned descriptors),
can be combined. Different query types, e.g., natural language and Boolean, “can be combined in
a consistent probabilistic framework. This type of ‘data fusion’ has been known to be effective in
the information retrieval context for a number of years.” [Callan et al., IP&M, 1995] (Note: This
“data fusion” is fusion of document representations and evidence, and fusion of queries. The next
section deals with fusion of results, i.e., fusion of retrieved documents from different sources or
different queries.) Last but not least, inference net evaluation does not require a complex closed
form expression that captures all the dependencies. Instead, the logic of evaluation is spread over
the network. However, the one problem that neither inference networks nor any other probabilistic
representation can solve is the difficulty of ever knowing/estimating the dependencies and prior
probabilities in a complex relationship among documents and queries.

7.4.3 Logical Imaging

Another approach to computing posterior probabilities, based on “non-classical logics,” is
described by Crestani and van Rijsbergen [SIGIR ‘95]. Given a docubBetite key to “Logical
Imaging” is to determine for every tertpthat indexes the given document collection anddsin

D;, the term inD; that is “most similar” tot,. Then posterior term probabilities f@; are com-

puted by transferring the prior probability of each term nobDinto its most similar term irD;.

The transfer is additive, i.e., if terns t,, andt, are terms not iD;, and all three are “most simi-

lar” to D; termt;;, then we add the prior probabilities Bft,, andt, to the prior probability of;; to

obtain its posterior probability. Probability is neither “created” nor “destroyed” in this process,
merely transferred from non-document terms to document terms. Hence, if the prior probabilities
for the entire term space sum to one, the posterior probabilities for a given document must also
sum to one. The sum of posterior probabilities of document terms that are also in a given query
then becomes the probability of relevance for the given document relative to the given query.

Page 63

The obvious question is how to compute term “similarity” in order to compute for each jténe t
degree of similarity of every other term. (Given this ranking, it is then straightforward to deter-
mine for any termt, that is not in a given documefX, the term inD; that is “most similar” tat.)

The measure chosen by Crestani and van Rijsbergen is the “Expected Mutual Information Mea-
sure” (EMIM) between terms. As applied to IR, “[the EMIM between two terms is often inter-
preted as a measure of the statistical information contained in the first term about the other one (or
vice versa, being a symmetric measure.” [Crestani & van Rijsbergen, SIGIR *95]; beta vari-

able that takes on two valueg=1 means that terrfy occurs in a randomly chosen document and
T;=0 means that it does not. Similarly is a variable for the occurrence or non-occurrence of
another term;, P(T;) is the probability of event;, P(T;) is the probability of event; andP(T;, T))

is the joint probability of eventf and T. Then the EMIM is:

P(T . T)

I(ti! tJ) = TZI' P(T| , TJ) Dogmﬁ—)

where the summation is over the four possible value} ahdT; together, i.e.[T; occurs andr;

does not]T; occurs andl; does not, they both occur, or neither occurs, in a given document. Note
that if T; ande occur independently (T, Tj) = P(Ti)P(Tj) andI(T;, Tj) =0, so the EMIM is a mea-
sure of how much the two events, in this case co-occurrendgafdT; in a document, departs
from stochastic independence. [van Rijsbergen, 1979]

Crestani and van Rijsbergen also describe an extension of Logical Imaging called “General Logi-
cal Imaging.” The difference is that instead of identifying the té&rm D; most similar to a given
termt, not in D;, one identifies the set of terms, e.. t, t,, in D; most similar tot,. Then one
transfers the prior probability df, to the set, t,, t, according to a transfer function (called an
“opinionated probability function”) which prescribes how muchigs prior probability is trans-
ferred to the most similar terty) how much to the next most similar tertg, and so on.

7.4.4 Logistic Regression

Cooper et al. [TREC, 1994] [SIGIR ‘92], use “a probabilistic model ... to deduce the general
form that the document-ranking equation should take, after which regression analysis is applied to
obtain empirically-based values for the constants that appear in the equation ... The probabilistic
model is derived from a statistical assumption of ‘linked dependence.” (See discussion of Linked
Dependence in earlier section.) Logistic regression is the regression analysis method employed.
That is, the “probability of relevance vs. document evidence” curve is fitted to a logistic regres-
sion function. The values of the “empirically-based” constants are derived from a training set.

Cooper et al. explain the reasons why logistic regression is more appropriate than standard (non-
logistic) linear regression for predicting the probability of relevance. The most important reason is
that the probability of relevance to be modeled is two-valued, i.e., every document in the training
set is either known to be relevant (probability of relevance equals one), or known to be non-rele-
vant (probability of relevance equals zero). Hence, the desired probability curve must fit a set of

Page 64

data points all of which reside either on the horizorgaD line, or the horizontap=1 line.
Clearly, the sloping straight line generated by linear regression will fit these points very poorly for
any possible slope. On the other hand, logistic regression generat&shaped” curve. With
appropriate parameters, the lower arm of tI$# ¢an be made to approximag=0, while the
upper arm can be made to approxinyaté.

To obtain this “S-shaped” curve, we express the probability of relevance as a logistic regression
(“logit”) function, as follows:

Co+Ci X+ ... +CyXpy

P(Rl X11 reey XM) = Co+ Cy Xy + ... +CyXy
l+e

where theX; are individual facts about a given document. Cooper et al. group the facts (the “evi-
dence”) from a given query/document pair into “composite” cluigs(i = 1 to N), where each
composite clue is composed of a set of fait§ = 1 toM). For example, “if ...A; is a word stem,
thenX; might be (say) the relative frequency of the stem in the quérits relative frequency in

the document, ani its inverse document frequency in the collection.” Hence, in contrast to vec-
tor space methods, and most other probabilistic approaches (except inference networks), which
describe each document with a single level of features, a “feature vector,” Cooper et al. model
each document and query more accuratelinadevels of feature: At the outer level, each docu-
ment and query is described by a conventional feature vector of “composite” feagiur@sthe
second (inner) level, each composite feature is expanded into a set of elementary fé&@tures,
Each composite featursy, is related to its elementary features by logistic regression. The proba-
bility of relevance of the document as a whole is related to its composite featurey, thethe
traditional linked dependence assumption.

The calculation turns out to be easier in terms of the log of the “odds” of relevance. The “odds” of
relevance is defined as the ratio of the probability of relevance to the probability of non-relevance.
Hence, the odds that a document is relevant, given a single composite féataas be expressed

in terms of its corresponding elementary features, as:

ORI = ORI X o Xe) = Gt
P(R| Xy, -y Xw)

T IT-P(R X s Xu)

If one replaces the probability by the corresponding logistic regression function in the above iden-
tity, and takes the natural log of both sides, one obtains:

logO(R| A) = lIogO(R| X, ..., Xy) = Co+C Xy + ... +CuXy

Page 65

This equation gives the logodds of relevance given a single compositeA¢lde extend it to a

set ofN clues,A,..., Ay, one uses the linked dependence assumption, discussed above in an ear-
lier section. This assumption is that the same degree of dependence holds for both the relevant
document set and the non-relevant document set. This degree of dependence is expressed
(crudely) as a common proportionality constant. Hence in symbols, we have:

P(A B|R = K[P(A/R [P(B|R
and
PA B-RO= K [P(A|-R [P(B|-R

Note that linked dependence, like pure binary independence, breaks a complex joint probability
into a product of simpler separate probabilities for the individual “composite” clues. Cooper et al.
point out that since each clue, each piece of evidence, is a separate factor in the linked dependence
formulation, and hence makes a separate contribution to the total probability of relevance, the
effect is that the probability of relevance computed for high-ranking documents, documents con-
taining many clues matching the given query, will tend to be too high. They offer a couple of rela-
tively crude methods of compensating for this effect, discussed below.

Dividing the second linked dependence equation by the first (which causes the proportionality
constanK to cancel out), and using the identity,

P(AIR _ O(R A
PIA- R O(A)

we have:

ORI(A B) _ O(R A O(R B

OR O(A OB

or, generalizing toN composite clues, multiplying b@(R), and taking the log of both sides, we
have:

logO(R| A, Ay, ..., Ay) = logO(R) + _Z [logO(R|A) —logO(R)]

where theA; are the “composite features” to be used to characterize any randomly chosen query-
document pairQ(R|A) is the odds that the document is relevant to the query given the composite
featureA;, O(R)is the odds that the document is relevant to the query in the absence of any evi-
dence, an@®(R|A, Ay, ..., A) is the odds that a document is relevant given all the composite fea-
tures,Aq, Ay, ..., A The sum in the above equation is taken over all the clues, i.e.ifrdntioi =

N. Note that the composite features employed are those that match in at least one query-document
pair in the training set. This is the “fundamental equation” employed by Cooper et al. for docu-
ment ranking by logistic regression. Note that the regression is “logistic” in the sense that we

Page 66

express the probability of relevance as a logit function. The actual regression performed (see
below) is linear regression.

If all the composite featuregy;, for a query/document pair are of the same type, i.e., defined in
terms of the same independent variab)s then the set of composite features forms a matrix
with M + 1 columns. For any query-document pair in the training set, there will be a set of rows in
the matrix with one row for each composite feature, e.g., each word stem, that occurs in both
guery and document.(These are called “match terms.”) Hence, each row in the training set corre-
sponds to a query-document-term “triple.” The row for a given composite feature of a given
query-document pair will contain thiél values of the elementary feature§, comprising that
composite feature, e.g., the relative (normalized) frequency of the term in the given document, the
relative frequency of the term in the query, etc. The given row will also contain one additional
value: the logodds of relevance given the presenag,édg O(R/A). This value is computed from

the training set, by observing the proportion of documents relevant to the given query (as judged
by the humans who constructed the training set) that codaife proportion of documents not
relevant to the given query that conta) dividing the former by the latter, and taking the log of

this quotient. This value is thé/+1)th value in the row for the given query-document-composite
clue triple. The entire set of such rows in the training set forms a matrix. If this training set matrix,
or a matrix composed of a representative sample of rows drawn from the training set, is submitted
to a statistical program package capable of performing ordinary linear regression, the package
will compute values for the coefficientg, c4, ..., ¢y, Cooper et al. argue that the resulting linear
function of theX; with thec; computed by the regression program will be a better predicttugof
O(R/A) than direct computation from the training set. Note that each coeffiggns,the coeffi-

cient applied to any value of elementary clue tylg.e.g., if X, is relative frequency of a given
match term in a given document, thepis the coefficient applied to the relative frequency of any
term in any document for purposes of computing its logodds of relevance to any query containing
the same term.

At retrieval time, the system is given a new quéyagainst an operational document collection it

is hoped will have similar statistical properties to the training set. Given any docubngom

this operational collection, the retrieval system can estirfzaféO(R|A) of D for each of theA

using the coefficients computed from the training set (as described above), and the valué$ of the
obtained from the given document and query. Tdge O(R) can be estimated straightforwardly

from the proportion of relevant documents in the training set. Summinip¢h®(R|A)- log O(R)
contributions, the system obtains from the above equation an estimabg O(R|A, Ay, ..., Ay)

for the given document. These logodds estimates can be used to relevance rank the retrieved doc-
uments relative to the given query. Moreover, a logodds estimate can be converted into a probabil-
ity of relevance for the benefit of the end user.

In a subsequent TREC experiment [TREC-2], Cooper et al. employ a variant of the method
described above. They call the earlier method the “triples-then-pairs” approach. The term “tri-
ples” refers to the fact that coefficients are computed separately for each of the composite clues,
the A;; each of the rows in the training set used to compute the coefficients for aAiemre-

sponds to a query-document-composite clue triple, i.e., to the values of the elementary clues, the
X;, for a givenAy;, obtained from a given query and document. By contrast, Cooper et al. call their
TREC version the “pairs-only” approach. A single linear regression is applied to a set of rows

Page 67

derived from the entire training set. Each row corresponds to a single query-document pair; hence,
each row contains thil elementary cluesx, for each of theN composite cluesd;,. Therefore,

the elementary clues have a double ind¥y,, wheren indexes the composite clue, ana
indexes the elementary clues for a given composite clue.Hence, instead of obtaining coefficients
for computing the logodds of relevance given a singldas in the earlier “triples” approach),
Cooper et al. obtain at once the coefficients for computing the logodds of relevance of any given
document to any given query giveli the A;. In other words, they apply regression to obtain the
coefficients for:

N N

logO(R| A, Ay .. AV) = Co+ Cy > Xoat .o teud Xom

n=1 n=1

As noted earlier, the effect of the “linked dependence” assumption (or the even stronger binary
independence assumption) is to overstate the probability of relevandetlas number of com-

posite clues in the query that match the document being ranked, increases. In other words, the
effect is to overstate the probability of relevance for high-ranking documents. In their TREC-2
work, Cooper et al. compensate for this by multiplying each oi¢hg, terms by a “functiorf(N)

that drops gently with increasimy sayl/ (/N) of/(1+logN) ”

For the TREC2 experiment, three “composite” clues were employed: (1) normalized word stem
frequency in query, (2) normalized word stem frequency in document, and (3) normalized word
stem frequency in collection. Note that, whereas for the “triples-then-pairs” approach, each com-
posite clue might be, e.g., a stemmed match word, and the facts comprising the composite might
be its various (in this case, three) frequencies, in the “pairs-only” approach, each composite clue
is a type of frequency, and the facts comprising a given composite are the values of the given fre-
guency for each of th#1 match word stems. For word stem these were defined in TREC2 as
follows:

1. Xy 1= number of times thenth word stem occurs in query, divided by (total number of all
stem occurrences in query + 35);

2. Xin,2= number of times therth word stem occurs in the document, divided by (total number of
all stem occurrences in document + 80);

3. X 3= log(number of times thenth word stem occurs in the collection, divided by the total
number of all stem occurrences in the collection).

Note that Cooper et al. assume above (in both the “triples” and “pairs only” methods) that a train-
ing set is available for a sample of “typical” queries, but not for the actual future queries for which
retrieval is to be performed. Hence, regression coefficients;; digove, are computed for the ele-
mentary clues associated with each composite matchAgreng., each word stem that matches in

at least one query-document pair of the training set. When a docubnisrib be ranked against a

new queryQ, the A; employed are those which occur in b&andD, i.e., they are match terms

for the particular query-document pair being evaluated, not the complete set of match terms for
the training set as a whole. (On the other ha@dind D might contain a match term that never

Page 68

occurred in the training set. Such a match term could not be used in computing the logodds of rel-
evance oD to Q, because.the coefficientswould not be known for this “new?;.) That is, the
predictors whose values are used to compute the logodds of relevance of a dobutmenhew
queryQ include the elementary clues, tig ., for every term, e.g., every word stem, that occurs

in bothQ andD, and is also a match term of the training set. In the “triples” method, the value of
each of those elementary clues, e.g., the relative frequency of a given word siehiat also

occurs inQ), is multiplied by the coefficient for that type of elementary clue, as computed from
the training set. Then these products are summed to compute the logodds of relevance for the
givenA, e.g., the given word stem. These logodds values are then summed to compute the value
of the logodds of relevance @ to Q, given all the matching terms. In the “pairs only” method,

the values of all the elementary clues of a given type, e.g., the relative frequencies of all match
terms forQ andD are summed first, and then multiplied by the coefficient for that clue type.

By contrast, if training data is available for the actual queries to be evaluated operationally (which
is commonly the case in routing applications), then, given one of those actual q@r@soper

et al. [TREC-2] develop an equation that predicts the logodds of relevance of any given document
D to Q. This equation is derived, as before, from their “fundamental equation.” However now,
each of theA; corresponds to presence or absence of-theetrieval clue, e.g., thieth term ofQ,

in D. Note that the odds of relevance for each t&mm Q can now be estimated directly from the
training set. IfA; is in D, one computes the ratio of relevant to non-relevant documents containing
A;. Similarly, If A; is not inD, one computes the ratio of relevant to non-relevant docunmaits
containingA;. Hence, the composite clués need not be expressed in terms of the elementary
clues, as in the earlier cases. However, it may be that, in addition to the query-specific training set,
there is also a larger non-specific training set for “typical’ queries as before. In that case, the
logodds of relevance @ to D can be expressed as a linear combination of a query-specific func-
tion of all theA; in Q, and a non-specific predictive function of tAein Q that are also irD,
obtained by the earlier method where the queries to be evaluated operationally are not known. The
non-specific component will be expressed in terms of elementary clues, as before. How should the
guery-specific and non-specific components be weighted? According to Cooper et al. [TREC-2],
this remains a subject for research.

7.4.5 Okapi (Term Weighting Based on Two-Poisson Model)

Robertson et al. [SIGIR ‘94] has developed a term weighting scheme based on the Poisson distri-
bution. This scheme was fist presented in the City University of London Okapi system. As it has
proved to be one of the most successful weighting schemes in TREC competitions, it has been
adopted by other TREC participants, and is generally identified by the system in which it was
introduced, as Okapi weighting.

The Okapi approach starts with the view of a document as a random stream of term occurrences.
Each term occurrence is a binary event with respect to a giventtarhat is, there is a (typically

small) probabilityp that the event will be an occurrence tofand a probabilityg = 1-p that the

event isnot an occurrence of. Then, the probability of x occurrences (commonly called “suc-

Page 69

cesses”) ot in n terms is given by the binomial distribution. [Hoel, 1971] For very srpadind
very largen, the binomial distribution is well approximated by the Poisson distribution:

o

p(Y) = ek

wherep is the mean of the distribution. To incorporate within-document term frequgnpb-
ertson makes the fundamental assumption that the term frequency of a givenidaiso given

by a Poisson distribution, but that the mean of this distribution is different depending on whether
the document is “aboutt or not. It is assumed that each tetmepresents some “concept,” and
that any document in whichoccurs can be said to be either about or not about the given concept.
Documents that are aboutre said to be “elite” fot. Hence, Robertson assumes that there are
two Poisson distributions for a given tetmone for the set of documents that are elitetfadhe

other for documents that are not elite fo(This is why the Okapi weighting is said to be a 2-Pois-
son model.) The Poisson distribution for a given tebmcomes:

B . mtf
p(tf) = e !

wherem, the mean of the distribution, is eithgor A depending on whether the distribution is for
documents elite for (mean =), or documents that are not elite fofmean =A). Note that these

two Poisson distributions give the probability of a given term frequency for a giventtertarms

of document eliteness tonot in terms of relevance to a given quefyquery can contain multi-

ple terms. A document contains many terms, and may be about multiple concepts. The usual
assumptions about term independence, or Cooper’s “linked dependence,” are extended to elite-
ness; that is the eliteness properties of any teme assumed to be independent of those for any
other ternt;.

Robertson defines the weighitfor a given ternt in terms of a logodds function:

W = |Og ptf qO

Gkt Po

wherepy is the probability ot being present with frequendf/given that the document is relevant

to a given query, andy is the probability oft being present with frequendgiven that the docu-

ment is non-relevant to the given query. Tiigeandqg are the corresponding probabilities with
absent. Hence?y/P is not the odds of being present in a relevant document as before, but the
odds oft being present with a givethas compared to not being present in a relevant document at
all. (And similarly, forgy/qg with respect to non-relevant documents.) When the Poisson distribu-
tions of t relative to document eliteness/non-eliteness given above are incorporated into this
logodds function of relative to document relevance/non-relevance, the result is a rather complex
function in terms of four difficult-to-estimate variablgs; q’, i andA. Here,p’ is the probability

Page 70

that a given document is elite forgiven that it is relevant, i.eR(document elite fot|R). Simi-
larly, " = P(document elite fot| notR).

Robertson converts this difficult-to-compute term weight function into a more practical function
His basic strategy is to replace complex functions by much simpler functions of term frequency
that have approximately the same shape, e.g., the same behatfl, dhe same behavior &s
increases, and grows large, etc. His approximation starts with the traditional logodds function for
presence/absence tfas derived from the relevance/non-relevance contingency table in 7.4.1
(Binary independence). This is multiplied (in effect, “corrected” or “improved”) by a simple
approximation function for term weight in a document as a functioth, @ function that approxi-
mates the shape of the true 2-Poisson function. The approximation contains a “tuning constant,”
ks, in the denominator, whose value (determined by experimentation) influences the shape of the
curve. Then, the weight function is multiplied by a similar approximation function for the query,
i.e., a function of within-query term frequenaytf. This function also contains a tuning constant,

K.

To improve the approximation further, Robertson takes document length into account. He offers
two broad hypotheses to account for variation in document length: The “Verbosity hypothesis” is
the hypothesis that longer documents simply cover the same material as corresponding shorter
documents but with more words, or (more fairly) cover the same topic in more detail. (This is the
hypothesis that underlies most document vector normalization schemes discussed above.) The
“Scope hypothesis” is the hypothesis that longer documents deal with more topics than shorter
documents. (This is the hypothesis that underlies most work with document “passages.”) Obvi-
ously, each hypothesis can be correct in some cases, and indeed, in other cases, both hypotheses
may be correct, i.e., a document may be longer than another both because it uses more words to
discuss a given topic, and because it discusses a greater number of topics. Hence, Robertson
refines his approximation to allow the user to take either or both hypotheses into account, as
appropriate. First, on the basis of the Verbosity hypothesis, he wants the weight function to be
independent of document length. On the simple common assumption that term frequency is pro-
portional to document length, he multipligs by dl;, the length of the-th document, the docu-
mentD; under consideration, so that all terms will increase proportionally with document length,
and the weight function will remain unchanged. Then, on the assumption that the v&luleast

been chosen for the average document, he further normalizes/iding it by dl,,4 the average
document length for the collection under consideration. Then, he modifies this normalization fac-
tor with another tuning constart, into a composite constait = ki((1-b) + b(dl/dl,,g). The
constant,b, also determined by experiment, controls the extent to which Verbosity hypothesis
applies b=1) or does not apphb€0).

To compute document-query similarity for a given documextthe term weights determined by

the above approximation function are added together for all query terms that match tddms in
Finally, to this sum Robertson adds a “global correction term” that depends only on the terms in
the query, and not at all on whether they match ternis;irThis correction term reflects the influ-

ence of document length variation, departure from the average length, with respect to the weight
of each query term. The correction term contain yet another tuning cokgtant,

Page 71

The final result, first used in TREC3 [Robertson et al., 1995] and TREC4 [Robertson et al., 1996],
is called BM25; the BM stands for “Best Match” and the 25 is the version number, reflecting the
evolution of this term weighting scheme. The BM25 function for computing the similarity
between a quer§), and a documer; is:

_ (r+0.5/(R-r+0.5 r(ky + Dtf (ks + 1) qtf
QD tgﬁog(n—HO.S)/(N—n—RH+0.5)D K+tf ko +qtf
avdl—dl

k2|Qlavdl+ dl

where

Summation is over all termsn queryQ

r = number of documents relevantQacontaining ternt

R = number of documents relevantQo

n = number of documents containihg

N = number of documents in the given collection

tf = frequency (number of occurrences} of D;

gtf = frequency of in Q

avdl = average document length in the given collection

dl = length ofD;, e.g., the number of terms, or the number of indexed terrg, in
|Q|] = number of terms iQ

k1, ko, k3, andK are tuning constants as described above.

K = kq((1-b) +b(dl;/dl4,g)) where b is another tuning parameter.

Varieties of Okapi BM25 have continued to be used down through TREC-9, both by its origina-
tors [Robertson et al., 2000] and others, due to its effectiveness. According to Robertsorket al., *
andb default to 1.2 and 0.75 respectively, but smaller valudsare sometimes advantageous; in
long queriesks is often set to 7 or 1000 (effectively infinite), has often been set to 0, e.g., in
TREC-4 and TREC-9.

8. Routing/Classification Approaches

In theory, the “routing” or “classification” problem is identical to the information retrieval prob-
lem: to identify documents that match, i.e., are relevant to, a specified query or information need.
Hence, in principle the same methods are applicable to both problems. [Belkin & Croft, CACM,
1992] However, the practical differences between the two problems affect which methods are
practical for each.

In information retrieval, the user has at any given time one or more relatively static collections.
The collections may be updated, but not so rapidly as to change their basic, e.g., statistical or
semantic, properties overnight. New collections may come on-line, but they will have the same
relatively static characteristics as the existing collections. The user generates many queries against
these collections. In other words, the collections are relatively static; the queries are not.

Page 72

In the classification environment, there is no fixed collection. Instead, there is a steady (perhaps
high volume) stream of incoming documents. There is a well-defined set of topics of interest, or a
well-defined set of users, each with his own well-defined set of interests and concerns. The prob-
lem is to classify each document according to which topic(s) it is “about” or which user(s) the
document would interest, and then route the document to the appropriate “bin(s).” Documents that
are not about any topic of interest are thrown away. The set of documents to be classified and
routed is not static at all; rather it is constantly changing. Moreover, these documents are not
available initially for the purposes of studying their statistical or other properties. Rather, they will
arrive over a (perhaps long) period of time. On the other hand, the set of user needs are presumed
to be (relatively) stable [Belkin & Croft, CACM, 1992], although new needs and users will arrive
over time, and old needs will become obsolete. Hence, the queries/information needs are rela-
tively static; the document population is not.

The term “routing” is often applied to a classification system in which there is only a single topic
of interest. Hence, the objective is to distinguish and pass on all documents relevant to the given
topic, and discard all other documents. In that case, the router is often called a “filter”. Filtering
can be “negative” as well as positive, i.e., the purpose of a user’s “profile” may be to specify
“lunk” that he wants to throw away. [Belkin & Croft, CACM, 1992]

Of course, this distinction between routing and information retrieval is an idealization. In practice,
the distinction is not necessarily so clear-cut. The collections to which information retrieval is
applied may not be as static as one would wish. The information needs in the routing application
may also change rapidly. Routing and information retrieval may be viewed as opposite ends of a
spectrum with many actual applications in between.

In the routing application, one does not start with a large static collection of actual documents to
which classification and routing are to be applied. Hence, it is common to employ a “training set”
of documents which are (it is hoped) statistically typical of the documents to be encountered in
practice. The routing system is trained against these documents. Training a system against a
“training set” is analogous to expanding or refining a query with relevance feedback. In the latter
case, the retrieved documents judged relevant are, in effect, the “training set”. In the former case,
the user supplies relevance judgments for the documents in the training set, e.g., ddeyimsent
relevant to clas€,, documentD, is relevant to classeS,; andC,, D3 is non-relevant, etc. The
effect of training is to build a query or set of queries that classify the incoming documents cor-
rectly. Hence, the desired effect is that the query for classvill match or rank documents
according to their degree of relevance to class

The biggest practical difference between routing and information retrieval is that in routing, the
training, i.e., the query expansion and refinement, are performed in advance, i.e., before the sys-
tem goes “operational.” Hence, computationally expensive and time-consuming training methods
that would not be acceptable in real time become practical. (In short, routing permits preprocess-
ing, perhaps slow, of the relatively static queries. In contrast, ad hoc querying permits preprocess-
ing, perhaps slow, of the relatively static document collections.) The essential requirement is that
once the system has been trained, the amount of time required to perform the classification at run
time is moderate. Moreover, even at run time, the user is not sitting at his screen waiting for a
response to a query he has just issued. Hence, response time may not be as critical an issue as in

Page 73

information retrieval. However, the volume of documents that a routing application must classify
may be very large in some applications. In such cases, it may be impossible for the system to
“keep up” with the traffic volume unless the run-time classification algorithm is very fast.

Even during a pre-operational training phase, a very large “feature space” can present problems.
As noted above, classification or learning algorithms break down if the number of features
required for classification, the number of dimensions of the feature space, is very large. Hull
[SIGIR ‘94] notes that “[i]f there are too many predictor variables [i.e., features used to classify
the documents], the classifier will overfit the training data ... there must be significantly fewer
predictor variables than relevant documents before it is possible to obtain good estimates of the
parameters in the classification model.” Similarly, Schutze et al. [SIGIR '95] consider “classifica-
tion techniques which have decision rules that are derived via explicit error minimization ... Error
minimization is difficult in high-dimensional feature spaces because the convergence process is
slow and the models are prone to overfitting.” In particular, if the feature space consists of all sig-
nificant terms in a given collection, or even in the relevant documents of a collection, the number
of features will certainly be far too large. Hence, even though the training is performed “off-line,”
i.e., before classifying the actual traffic, methods to reduce the number of features are essential.
Note that overfitting is the same problem that Buckley and Salton [SIGIR ‘95] encountered when
they used relevance feedback to expand queries, thereby increasing greatly the number of query
terms, i.e., “features.” They developed their technique of Dynamic Feedback Optimization to
avoid that problem (see above).

Two methods [Schutze et al., SIGIR ‘95] have been used to reduce the dimensionality of the fea-
ture space: reparameterization (which replaces the original feature space by a lower dimension
feature space derived from the original features), and feature selection (which selects from the
complete set of features a small subset of the “best” features, i.e., the ones most likely to distin-
guish relevant from non-relevant documents). A popular method of reparameterization (LSI) is
discussed above. Methods of feature selection (more specifically, term selection but the methods
are generalizable to other statistical features) are discussed above in the section on query expan-
sion.

Another problem with large feature spaces or computationally expensive classification algorithms
is that the “real world” that generates the documents to be classified may change rapidly, resulting
in a document population with rapidly changing statistical characteristics. Hence, it may be neces-
sary to re-train the system frequently, which becomes unacceptably expensive if the training algo-
rithm is very slow or requires enormous computational resources. This issue seems to have been
largely ignored in the literature, which generally assumes that user needs and the statistical char-
acteristics of the document population to be classified are stable.

If the population of incoming documents is completely stable, then the training set (if it is a repre-
sentative sample of that future population) is sufficient to train the classifier. If the training set is
imperfect (or non-existent), relevance feedback can be applied to the accumulating collection of
documents. [Buckley et al., SIGIR ‘94] Documents that have satisfied a user can become, over
time, a very large and effective training set for that user or for a given topic. [Belkin & Croft,
CACM, 1992] “Over the life of the query [i.e., a long-standing information need], thousands of

Page 74

documents could conceivably be returned to the user for relevance judgments.” [Buckley et al.,
SIGIR ‘94]

On the other hand, Lewis [SIGIR ‘95] is one of the few to consider the case where “the classifier
is applied to time-varying data such as news feeds or electronic mail.” In such aelasance
feedback(i.e., query refinement and expansion based on user identification of those documents
retrieved by the original query which are relevant to her need - see below for a more detailed dis-
cussion) can be applied to the incoming documents to update the query, enabling it to track a pop-
ulation of incoming documents whose statistical characteristics are (slowly) changing. (Buckley
et al. consider the application of relevance feedback to a routing application, but tiney sjue-

cifically address the issue of changing statistical properties; they assume that the purpose of con-
tinuing feedback is to enable the classifier to approach more closely a fixed target.)do®sis
consider time-varying data but he explicitly doest consider relevance feedback. Instead, he
considers the case where the classifiers are “autonomous” systems, i.e., there is little feedback
from end users, and hence the systems must estimate their own effectiveness and re-optimize
themselves as the incoming data changes. He assumes probabilistic classifiers, i.e., classifiers that,
given a document, output both a classification and a probability that the document belongs in that
classification, given the set of features being used for classification. His method is to specify an
“effectiveness” measure for the classifier as a function of the classifications and associated proba-
bilities assigned td\ previous documents. The classifier then re-tunes itself to maximize the
effectiveness measure. Lewis studies three possible effectiveness measures.

Yu et al. [CIKM 98] address the issue of routing a stream of (possibly) time varying data, in an
interactive environment where each incoming document judged relevant by the system is pre-
sented to the user for a possible relevance judgment. Their “adaptive text filtering” algorithm
maintains a pool of term&oolg, that have occurred in documents judged relevant by the user, and
another pool of termg$ooly, that haveonly occurred in documents judged non-relevant. (In other
words, a term that has occurred in relevant documents will B@ok;, regardless of whether it

has also appeared in non-relevant documents. By contrast, a term willRo®lponly if it has
appeared in non-relevant documents, and has never appeared in relevant documents.) An incom-
ing document is retrieved and presented to the user as possibly relevant under two conditions: (1)
The document is retrieved if the sum of the weights of terms in the document thatsaria

Poolg exceeds a specified threshold. The weight of a term in this calculation is actually the sum of
two weights, itsfeatureweight, based on all the documents in which it has occurred so far that
have been presented to the user and judged relevant, atdcitsnentveight, its weight in the

current document computed by the traditiotigtf function. (2) The document is also retrieved if

the proportion ohewterms in its document vector plus the proportion of terms in the document
vector that are also iRoolg exceeds a specified thresholdndwterm is a term that is neither in

Poolg or Pooly. In other words, a document is presented to the user as a relevance candidate
according to the 2nd criterion if some proportion of its terms have already been seen in documents
he has judged relevarand a proportion have not been seen at all. A weighting factor is used to
determine the relative importance of presencePool; versus novelty.Pooly and Pooly.are
updated based on the user’s relevance judgment. The feature weights of terms in the document are
also updated based on the user’s relevance judgment. (Note that the presence of many novel terms
can cause a document to be presented to the user, but only his relevance judgment can cause the
feature weights and pool contents to be updated.) The weight of a given term is increased if the

Page 75

document was retrieved on the basis of the 2nd (novelty) criterion, and the user judges it relevant.
The weight of a term is decreased if the document was retrieved on the basis of the first (rele-
vance) criterion, and the user judges it non-relevant.

Leaving the realm of adaptive classification methods applied to time-varying data, let us consider

methods of classification where the training set is static. As noted above, the first consideration is

how to limit the feature space. Once the feature space has been reduced sufficiently, a variety of
classification training or learning methods are available. Let’s consider some of these methods
briefly.

Relevance feedback weighting (e.g., the Rocchio formula discussed in a later section), can be
applied to the training set. If nothing is known about the classification weights initially, then the
weight of the original “query” to be refined or expanded by feedback in the can be set to zero. In
other words, we are using relevance feedback hegeteratethe classification “query” rather

than torefineit as in an ad hoc query application. Schutze et al.[SIGIR ‘95] tried Linear Discrim-
inant Analysis (LDA), Logistic Regression, and Neural Networks. In contrast to Rocchio, all three
of these methods “have decision rules that are derived via explicit error minimization.” Note that
logistic regression and Rocchio formulas both have constant parameters that need to be deter-
mined but with logistic regression, the parameters are computed directly to optimize the formula
whereas in the Rocchio approach, the parameferB,(@ndC) can only be determined by system-

atic trial and error. LDA classifies the population into two (or more) distinct groups. The separa-
tion between the groups is maximized by maximizing an appropriate criterion, e.g., the
“separation of the vector means” of the groups. [Hull, SIGIR ‘94] For the present case, LDA com-
putes a linear functiom of the document descriptors that distinguishes the two groups of interest,
relevant documents and non-relevant documents, “as widely as possible relative to the variation of
values of z within [each of] the two groups.” [Hoel, 1971] Again, this is a direct rather than a trial
and error procedure. Schutze et al. found in their experiments that all three of these “classifiers
perform 10-15% better than relevance feedback via Rocchio expansion for the TREC-2 and
TREC-3 routing tasks.” Hull [SIGIR ‘94] also employed discriminant analysis. Hull applied this
technique to a feature space whose dimensionality was reduced using LSI. As a further refine-
ment, LSI was applied not to the entire collection used for training but to the set of relevant docu-
ments for a given query. Hence, LSI must be applied separately for each query but the document
term matrix to which it is applied in each case is much smaller than the matrix for the entire col-
lection.

Dumais et al. {CIKM ‘98] compared five classification methods that work by learning from a
training set: Rocchio relevance feedback, decision trees, Naive Bayes, Bayes Nets, and Support
Vector Machines (SVM). They trained on the “so-called Reuters-21578 collection,” a collection

of news stories. They “used 12,902 stories that had been classified into 118 categories (e.g., cor-
porate acquisitions, earnings, money market, grain, and interest).” (Note that news stories, though
an important, and widely used, type of text corpus, are in some respects particularly easy, because
of their relatively standard organization, conventions, and vocabulary.)

Dumais et al. represented the documents in the traditional way as vectors of words. Then, they
performed feature selection to reduce the dimension of the vectors. They used mutual informa-
tion, MI(x;, c) as the feature selection measure, wheiis thei-th feature, and is the category

Page 76

for which the various classifiers are being trained. (See the section on Logical Imaging for the def-
inition of “mutual information.”) They selected the 300 “best” features (highest Ml value) for
SVM and decision trees, and 50 features for the other three classification methods.

Since Rocchio’s method is here being used for classification rather than query refinement, there is
no “initial query” term, as noted above. Dumais et al. also elected to discard the negative exam-
ples, i.e., the documents that were not relevant to the given category for which the classifiers were
being trained. Since the training set starts with relevance judgments for each category, there are no
interactive relevance judgments. Hence, the Rocchio formula for a given category was reduced to
computing the centroid (the average) of the documents labeled relevant to the given category. At
test time, a new document was judged relevant to a given category if its similarity to the cate-
gory’s centroid (as measured by the Jaccard similarity measure) exceeded a specified threshold.

Lewis and Gale [SIGIR ‘94] use a variation on traditional relevance feedback which they call
“uncertainty sampling.” In any situation where the volume of training data is too large for the user

to rate all the documents, some sampling method is required. In traditional relevance feedback,
the sample the user is asked to classify consists of those documents that the current classifier con-
siders most relevant. Hence, Lewis and Gale call this approach “relevance sampling”. It has the
notable virtue, especially if the relevance feedback is taking place while the system is operational,
that the documents the user is asked to classify are the ones that (as far as the classifier can tell) he
wants to see anyway. However, if the training is taking place before the system is operational (or
in a very early stage of operation) and the primary objective is to perfect the classifier, then uncer-
tainty sampling (derived from “results in computational learning theory”) may work better. The
method assumes a “classifier that both predicts a class and provides a measurement of how certain
that prediction is. Probabilistic, fuzzy, nearest neighbor, and neural classifiers, along with many
others, satisfy this criterion or can be easily modified to do so.” The sample documents chosen for
the user to rate are those about which the classifier is most uncertain, e.g., most uncertain whether
to classify them as relevant or non-relevant. For a probabilistic classifier (such as the one they
actually describe and test in their paper), the most uncertain documents are those that are classi-
fied with a probability of correct classification close to 0.5. Lewis and Gale obtained substantially
better classification for a given sample size when the classifier was trained by uncertainty sam-
pling of the training set than when it was trained by relevance sampling (and far better than with
training on a random sample).

Yang [SIGIR '94] addresses the classification problem that there is often a wide gap between the
vocabulary used in documents to be classified and the terms used in the class or topic (here called
“category”) descriptions, i.e., the “queries.” The training set consists of documents to which users
have manually assigned category descriptions. (Yang is using a medical application so examples
of category descriptions are “acquired immunodeficiency syndrome” and “nervous system dis-
eases”.) A given category may be assigned to many documents. More surprisingly, the same doc-
ument, e.g., a common diagnosis, may occur multiple times in the training set. Even more
surprisingly, the same category may be assigned multiple times to the “same” document; the way
this comes about is that the category is assigned to two distinct documents which become identi-
cal as the result of aggressive application of a stoplist. The problem is to classify, i.e., assign
appropriate category descriptions to, a new document. Yang’s approach consists of two stages. In
the first stage, she computes the conventional cosine similarity between the new document to be

Page 77

classified and the documents in the training set, e.g., the simikirt{X,) between the new
documentX and a training documei;. In the second stage (the novel part of the method), she
estimates the conditional probabiliBr(c,D;) that a given categoryy is relevant to a training
documen®;. Pr(c,|D) is estimated as the “number of times categgris assigned to document
D;” (see above) divided by the “number of times documBpbccurs in the training sample”.
Thensim(X, §) is multiplied byPr(c,|D;) for eachD; and this product is summed over theop-
rankingDj's, i.e., the ones most similar & Experimentally, Yang found that the optimum value
of N for her collection wadN = 30. The result isel(c,|X), a relevance score fay.These scores are
not probabilities but they provide a ranking of categories for the given docu®ntilar to what
would be obtained with probabilities. This ranking can then be used to assign the highest ranking
categories to documekt

DR-LINK [Liddy et al., ACMIS, ‘94] deals with an issue that arises whenever a collection or
stream of documents must be categorized and routed according to multiple topics. The distribu-
tion of relevant documents with respect to computed topic similarity scores will tend to vary
widely from one topic to another. For example, suppose that a categorization engine ranks a docu-
ment population with respect to two topick, and T,, producing two separate document rank-
ings, one with respect td; and the other with respect ,. In the T, ranking, 95% of the
documents actually relevant to topi¢ (as judged by human users) may be found in the top-rank-
ing 5%. On the other hand, in tAg ranking, it may be necessary to traverse the top-ranking 35%

to find 95% of the documents actually relevant to topjcHence, quite different topic similarity
thresholds are required fay andT, respectively. DR-LINK deals with this problem by develop-

ing a multiple regression formula on document training sets for each of the topics to be catego-
rized. (Clearly, this approach only applies to an application such as routing, where a fixed number
of topics will be applied to a changing population of documents, and a training set of typical doc-
uments is available for each topic.) The regression formula for each topic has two independent
variables, (1) the desired recall level, e.g., 95% in the example above, and (2) the top-ranked doc-
ument’s similarity. The dependent variable returned by the regression formula is the estimated
topic-document similarity score threshold needed to achieve the desired level of recall. Hence, a
different threshold can be computed for each topic. In tests involving TREC-2 topics and data
(173,255 Wall Street Journal articles from 1986-1992), this formula proved quite effective at com-
puting a threshold appropriate for a given topic and desired recall level. Moreover, it was found
that because a few relevant documents (“stragglers”) tend to be low-ranking, the number of docu-
ments that need to be examined can be drastically reduced by lowering the recall level from an
unrealistic 100% to a more realistic 80%;

9. Natural Language Processing (NLP) Approaches

The phrase “Natural Language Processing” (NLP) approaches” to IR refers here to all methods
based on knowledge of the syntax and/or semantics of the natural language in which document
text is written, or knowledge of the world, e.g., the application domains, to which the documents
refer. Hence such approaches may also be broadly characterizethasticapproaches, in the

sense that they attempt to address the structure and meaning of textual documents directly, instead
of merely using statistical measures as surrogates. However, as discussed below, there are three
sources of terminological confusion. First, the term “semantic” is sometimes used to refer to one
particular level of NLP, although in reality it is applies to (at least) five different levels. Secondly,

Page 78

many NLP techniques, especially in the realm of “shallow” (and correspondingly, computation-

ally efficient) NLP methods employ statistical techniques, e.g., to determine the most likely sense
or part of speech of a given word in a given context. Third, NLP techniques are rarely used by
themselves in IR. More commonly, they are used to supplement statistical techniques.

Human beings find it amazingly easy to assess the relevance of a given document based on syntax
and semantics. They find statistical and probabilistic methods much more difficult, tedious and
error prone. For automated systems, the situation is the reverse. They can perform statistical cal-
culations easily. Developing automated systems that can understand documents in the syntactic/
semantic sense is much more difficult. As a result, most IR systems to date have been based on
statistical methods. Increasingly however, syntactic and semantic methods are being used to sup-
plement statistical methods. The reason is plain. Even the best statistical or probabilistic methods
will miss some relevant documents and retrieve some (often quite a bit of) junk. The hope is that
an appropriate combination of traditional statistical/probabilistic methods and syntactic/semantic
methods will perform better than the statistical methods alone. Ideally, the combination would
approach human performance. This ideal is a long way from realization. [Faloutsos & Oard,
UMd-CS, 1995].

Note, by the way, that a technique like Lat&emantidndexing (LSI) (discussed above) is not a
semantic method in the sense used here despite the presence of the word “semantic” in its name.
Rather, it is a statistical method for capturing term dependencies that it is hoped have semantic
significance.

Liddy [BASIS, ‘98] classifies NLP techniques according to the level of linguistic unit processed,
and (correspondingly) the level and complexity of the processing required. She identifies the fol-
lowing levels: phonological, morphological, lexical, syntactic, semantic, discourse, and prag-
matic. Thephonologicallevel is the level of interpreting speech sounds, e.g., phonemes. It is
mainly of interest in speech to text processing, rather than textual IR.

Several traditional IR techniques do use NLP techniques, almost entirely atdighological
andlexical levels. The morphological level is concerned with analysis of the variant forms of a
given word in terms of its components, e.g. prefixes, roots, and suffixes. Hence, traditional stem-
ming techniques that reduce variants of a word to a common root form for query-document term
matching, exemplify morphological IR processing. The lexical level is concerned with analysis of
structure and meaning at the purely word level. For example, traditional lexical IR processing
includes construction of stop lists of words believed to have low semantic content. [Faloutsos &
Oard, UMd-CS, 1995] (But see below!) Similarly, generation and use of thesauri for query expan-
sion, and of controlled vocabulary lists for indexing and query formulation, are other traditional
examples of lexical IR processing. Proper noun identification is another, somewhat newer, form of
IR lexical processing. Tagging words with their parts of speech is also a kind of lexical process-
ing, common and well-established in NLP, but rare in traditional IR.

Thesyntactidevel is the level at which the syntactic structure of sentences is determined, in terms

of the parts of speech of the individual words. In practice, a single sentence can have many possi-
ble structures. Determining the correct structure from these alternatives requires knowledge at the
higher levels (or statistics based on a training set). For this reason, and more generally because it

Page 79

is relatively expensive computationally, syntactic level processing has been little used in tradi-
tional IR. Some use of syntax has been made to identify units larger than single words, e.g.,
phrases, but even here, statistical co-occurrence and proximity rather than NLP, have been the pre-
ferred methods in IR.

Thesemantidevel is the level at which one tries to interpret meaning at the level of clauses, sen-
tences, rather than just individual words. Note that the disambiguation of words having multiple
senses is a semantic-level task, because a word can only be disambiguated in the context of the
phrase, sentence, or sometimes larger text unit in which it occurs (and also because disambigua-
tion may require real-world knowledge, generic, user-specific, or domain-specific). Because of
the difficulty and NLP sophistication required (and the need for the aid of the higher levels), tradi-
tional IR has avoided semantic-level processing in favor of statistical keyword matching, as dis-
cussed in earlier sections.

Thediscoursdevel is the level at which one tries to interpret the structure and meaning of larger
units, e.g., paragraphs, whole documents, etc., in terms of words, phrases, clauses, and sentences.

The pragmaticlevel is the level at which one applies external knowledge (that is, external to the
document and original query). The knowledge employed at this level may include general knowl-
edge of the world, knowledge specific to a given application domain, and knowledge about the
user’s needs, preferences, and goals in submitting a given query.

The most important source of semantic content in traditional IR is relevance feedback, the refine-
ment and expansion of a query based on human judgments of which of the documents retrieved by
the query are relevant to the given query. Naturally, these human judgments are based on the
user’s understanding of the semantic content (in the broadest sense) of the retrieved documents,
and her understanding of her actual needs. Hence, the feedback is implicitly at the higher NLP
levels. However in traditional IR, this feedback is typically used merely to improve statistically
the set of term descriptors and the weights assigned to those descriptors. Only the human user
“understands” or “processes” the documents at any semantic or natural language level. However,
the methods discussed below can be extended to relevance feedback in various ways, e.g., the
descriptors extracted from documents identified as relevant can be higher-level linguistic units
such as phrases, or even concepts that do not actually appear in the documents themselves.

This section discusses research into the application of the higher levels of NLP, i.e., syntactic,
semantic, discourse, and pragmatic, to the classic problems of IR. It also discusses advances at the
lexical levels, e.g., improved proper noun recognition and classification.

It should be stressed that, almost without exception, the NLP methods discussed below are used in
conjunction with, not in place of, traditional boolean, vector, and statistical term weighting tech-
niques for document-topic matching and document categorization. [Lewis et al, CACM] Semantic
methods can be used to extend the terms to which matching is applied from keywords to key
phrases. They can be used to disambiguate terms that have multiple meanings, or fit multiple parts
of speech. They can be used to map keywords, phrases and proper nouns into conceptual terms,
e.g., subject category terms, that express more naturally the user’s interests, but that will not nec-
essarily co-occur in both the user’s topic statement and the relevant documents. They can be used

Page 80

to supplement the terms in a user’s query with candidate synonyms. They can be used to identify
semantic relationships among the keywords or phrases occurring in a topic, or in a candidate doc-
ument. Hence, topics and documents can be matched not only on whether the specified keywords
occur in both, but on whether they occur in the same (or similar) relationship in both topic and
document. Semantic methods permit the identification of relationships other than the purely bool-
ean, e.g., given the keywords “company” and “investigation,” semantic methods can distinguish a
qguery about a company performing an investigation from a document about a company being
investigated. Note that statistical or user-specified weights can be applied to all of these semanti-
cally derived terms, i.e., to phrases, conceptual terms, synonyms, relationships, etc.

Semantic methods can significantly enhance term normalization techniques. Term normalization
reduces query and document descriptor terms to a common form for matching purposes. Stem-
ming is the most common type of normalization in traditional IR systems. Another traditional
technique is the manual assignment of index terms to documents from a controlled vocabulary.
Semantic methods permit more sophisticated forms of automated normalization. Varied syntactic
forms can be mapped to a standard syntax, e.g., “investigation by the company,” and “the com-
pany is investigating” can be mapped into the common noun phrase “company investigation.”
Related words, e.g., house, apartment, and hut, can be mapped into a common subject category,
“dwelling.” Varied forms of a proper noun can be mapped into a standard form. And so on.

9.1 Phrase Identification and Analysis

A common use of syntactic (and to some degree semantic) methods is phrase identification.
[Riloff, SIGIR ‘95] [Jacgemin & Royaute, SIGIR ‘94] [Kupiec, SIGIR ‘93] [Anick & Flynn,
SIGIR ‘93] [Strzalkowski & Carballo, TREC-2] [Evans & Lefferts, TREC-2] Phrases are typi-
cally identified in IR so that they can be used as descriptor terms, i.e., so the descriptors of a doc-
ument are not limited to single words. Traditional methods identify phrases by statistical co-
occurrence, e.g., co-occurrence of pairs of terms in documents at a rate greater than would be
expected by random chance. Co-occurrence can be combined with adjacency, e.g., if two (or
more) terms co-occur within a few words of each other at a rate greater than chance, the probabil-
ity that they are related semantically certainly increases. If the terms in question are also related
syntactically, the chance that they form a phrase is still greater. Syntactic analysis can identify
phrases even when the terms of which they are composed are not adjacent, or do not co-occur
with greater than chance frequency. However, extraction of phrases by purely syntactic means
alone is seldom effective since it is likely to extract many phrases of little value for characterizing
the topic(s) of a given document or query. [Croft et al., SIGIR ‘91] A combination of syntactic
and statistical methods is more effective. {Lewis, SIGIR ‘92] [Lewis et al., SIGIR 96] Lewis et al.
suggest that statistical weighting techniques should be applied to phrase descriptors, even if they
are generated by NLP or combined NLP/statistical techniques. However, they suggest that
“[w]eighting for phrases may differ from weighting for single-word terms to allow for their lower
frequency and different distribution characteristics.”

Lewis et al. urge that phrase descriptors should be “linguistically solid compounds,” e.g., noun
phrases, etc. However, they also stress that phrase matching should reflect the variety of forms a
phrase can assume, and the varying degrees of evidence provided by each form. For example, if
the noun phrase “prefabricated units” is extracted from a document, it is likely that it signifies the

Page 81

corresponding concept. The presence in a given document of the verb phrase “[they] prefabricated
units” would provide weaker evidence for the presence of the concept. The co-occurrence in a
given document of the two words “prefabricated” and “units” in close proximity, e.g., in the same
sentence or paragraph, but not in the same syntactic phrase, would provide still weaker (but not
non-zero) evidence that the concept was present. The co-occurrence of the two words in different
paragraphs of the given document would provide much weaker evidence still, and so on.

The above example also illustrates that NLP identification and extraction of phrases can have an
important effect on the traditional approach of word stemming. A stemmer would reduce “prefab-
ricated” and “prefabricate” to the root “prefabricat.” But, as we see above, the distinction between
“prefabricated” and “prefabricate” (or prefabricating, for that matter) may be the difference
between a noun phrase and a verb phrase, and hence a corresponding difference in the evidence
that the respective phrases contribute about the topic(s) discussed by a document that contains
them.

Lewis et al. also note that the degree of sophisticated NLP and statistical processing applied to
extraction of phrases and other compound terms might be considerably greater for user queries
than for documents. There are several reasons for this: First, the number of queries is normally
very much less than the number of documents, so that an IR system can afford to process the que-
ries more carefully. Second, it is very important to understand what the user’s requirements are;
this is complicated by the fact that queries are generally much shorter than documents, and often
more carelessly formulated by users who are not professional IR searchers. (For the same reasons,
it is very desirable to support interactive query refinement, using thesauruses, NLP analysis of
user queries, relevance feedback with regard to both good terms and good documents, as assessed
by the user, etc.) Third, any error in extracting phrases and compound terms from documents can
be corrected (or at least compensated for) during the query-document matching process, since the
matching process will take into account not merely a single phrase that may have been extracted
from a given document incorrectly, but the context of other words and phrases that have been
extracted from the same document.

The burden of applying expensive NLP to large document collections can be further eased by a
two-step process: First, coarse ranked retrieval of candidate documents using statistical and shal-
low NLP techniques. Second, more sophisticated NLP applied only to the much smaller list of
highly ranked documents retrieved by the first stage.

Shallow or coarse NLP refers to techniques for extraction, based on local contexts, of noun and
verb phrases, compound proper nouns (discussed later), simple basic propositions, e.g., pro-
duce(factory, house), complex nominals, e.g., “debt reduction,” “health hazards,” and simple con-
cept-relation-concept (CRC) structures, e.g., the sentence fragment “the company’s investigation
of the incident...” generates two CRC triples, each relating a noun to the verb: [investigate] ->
(AGENT) -> [company], and [investigate] -> (PATIENT) -> [incident], which convey the infor-
mation that the company acts in the investigation, and the incident is the object of the investiga-
tion. CRC triples and structures constructed from them are discussed further below. Here, it
should be stressed that shallow, localized extraction of such “solid” linguistic components is con-
trasted with complete parsing of sentences and paragraphs, a very much more difficult and expen-

Page 82

sive process, requiring the support of elaborate knowledge bases (KB’s) and typically generating
multiple legal parses.

Lewis et al. further argue that, although NLP may be used to supplement word descriptors with
phrase and compound term descriptors, these compound term descriptorsstbeldombined

into higher level structured descriptors, e.g., frames, templates. Note that they do not object to
such higher-level descriptors fémowledgerepresentation and retrieval. Rather, they object to
them as index descriptors for document retrieval. Their argument is that such higher-level struc-
tures are labor-intensive to produce, and that an exact query-document match at the level of such
elaborate structures is very unlikely. In subsequent sections, there is a discussion of certain
higher-level document structures. In particular, there is a discussion of exciting work in the area of
documentdiscourse structurgthe structure of clauses, sentences, and paragraphs that determines
the narrative or expository flow of a document. It is this discourse structure that enables a reader
to follow the flow of the writer's argument, and understand what the writer is saying. Some
research indicates that combining term descriptors with this discourse structure can enhance doc-
ument retrieval. It can also be used for forms of knowledge retrieval, e.g., document summariza-
tion. But note that the discourse structure is not a structure composed of conventional document
descriptors such as words and phrases. Rather, it is a wholly separate, higher-level structure of the
document as a whole. The words and phrases are related to the discourse structure either by being
locatedin identifiable components of the discourse structure, or by serving as linguistictolues
identifythe components of the discourse structure.

Strzalkowski and Carballo [TREC-2] extract phrases syntactically from a large collection, but
then apply a variety of statistical techniques to these phrases before formulating queries.

The extracted phrases are statistically analyzed in syntactic contexts
in order to discover a variety of similarity links between smaller
subphrases and words occurring in them. A further filtering process
maps these similarity links onto semantic relations (generalization,
specialization, synonymy, etc.) after which they are used to trans-
form a user’s request into a search query.

As an example of “statistical analyz[ing] in syntactic contexts,” they filter out poor terms with a
statistical measure called Global Specificity Measure (GTS) “similar to the standard inverted [sic]
document frequencyidf) measure except that term frequensymeasured over syntactic units
[e.g., phrases such as verb-object, noun-adjunct, etthgr than document size unitgitalics

mine). (See below for further discussion of GTS.) As an example of using a derived semantic rela-
tion “to transform a user’s request into a search query,” they offer the example of adding the com-
pound term “unlawful activity” to “a query ... containing the compound term ‘illegal activity’ via

a synonymy link between ‘illegal’ and ‘unlawful.”

Note that the above example illustrates another use of combining syntactic with statistical tech-
nigues: the automated creation of thesauri. Traditionally, thesauri have been constructed either
manually, e.g., WordNet, or statistically. (Because of the many semantic relations it supports,
WordNet, described below, is more properly described as a semantic network.) Stzalowski and
Carballo illustrate that thesaurus type information (not only synonymy but other semantic rela-

Page 83

tions like specialization and generalization) can be derived by applying statistical techniques, e.g.,
co-occurrence, similarity, etc.) to syntactic units derived by automated parsing (and not only to
the syntactic units themselves but to their internal structure). Note that even when the thesaurus
generation, e.g., determination of synonymy, is wholly statistical [Evans & Lefferts, TREC-2]
[Milic-Frayling et al. TREC-4], the extraction of candidate phrases syntactically allows these
phrases to be units to which the statistical methodology can be applied.

Phrases are commonly extracted to serve as document (query) descriptors, i.e., as index terms.
However, they are also used in a variety of other, related ways. For example, phrase extraction is
used as a key feature of a system, MURAX [Kupiec, SIGIR ‘93], that answers natural language
guestions that require a noun phrase as answer. The answers are obtained from a large, general
purpose, on-line encyclopedia. The method does not depend on domain-specific knowledge; the
guestions can be on any topic whatever, as long as they require noun phrase answers. But the
method does make use of other simple semantic and syntactic heuristics, e.g., the question can
begin with “who”, “what”, “where”, or “when” because such questions usually require persons,
things, places, or times (which can be expressed as noun phrases) as answers; questions beginning
with “why” or “how” (which usually require procedural answers) are forbidden. Phrases are
extracted from the question, and the question is reformulated as a structured boolean query with
proximity constraints. The query returns a number of encyclopedia articles (possibly none). The
number of hits (retrieved articles) can be increased by broadening the query, e.g., relaxing prox-
imity constraints, dropping phrases, or reducing a phrase to a sub-phrase. The number of hits can
be decreased by narrowing the query, e.g., adding a term such as the main verb. Retrieved articles
are ranked by number of matches with the query. Phrases or words that match phrases or words in
the query are then extracted from the retrieved articles. An answer to the original question may
require information from multiple retrieved articles. A variety of term matching rules are used; the
phrase that appears in an article need not have exactly the same form as the corresponding phrase
in the question, e.g., “was succeeded by” can match “who succeeded.” This system demonstrates
that “shallow syntactic analysis can be used to advantage in broad domains.”

Syntactic phrase extraction is performed and used somewhat differently by Riloff [SIGIR *95].
The goal is one of those specified for the Message Understanding Conference (MUC) series rather
than the Text REtrieval Conference (TREC) series. In this case, the goal is extraction of data about
a particular topic, e.g., terrorist events or joint ventures, from each relevant document, and the fill-
ing out of a topic-specific template for each such document. For example, given a document
reporting a terrorist event, the goal might be to extract such key elements as the name of the per-
petrator, the name of the victim, the location at which the event took place, etc. Since the objective
is not merely to identify relevant documents but to “understand” each document well enough to
extract key elements, Natural Language Processing (NLP) naturally assumes greater importance.
So does knowledge of the domain to which the extraction task applies, e.g., terrorism. Hence,
Riloff extracts instances of phrase patterns called “concept nodes.” A concept node is a specific
linguistic pattern containing a specific word. For example, each occurrence of the concept node
called “$murder-passive-victim$” is a string of the form “<X> was murdered” (or “<X> were
murdered” for multiple victims).

An important result demonstrated by Riloff (also noted by others) is that such common IR tech-
niques as stop-lists and stemming, which are intended only to remove noise words and noise vari-

Page 84

ation of a given term, can in fact remove clues crucial for judging the relevance of a document or
the semantics of its content. For example, the presence of the term “dead” in a document was not
a reliable guarantee that the document described a murder, but the phrase “was found dead”
proved to be an extremely reliable descriptor for that purpose. It evidently “has an implicit conno-
tation of foul play.” Similarly, the presence of the term “assassination” (singular) in a document
proved a much more reliable indicator that the document described a specific assassination event
than the presence of the term “assassinations” (plural). The plural often referred to assassinations
in general. Prepositions, passive vs. active verb form, positive vs. negative assertion, also proved
significant to determining the significance of a phrase as a descriptor, at least within a specific
domain. For example, the term “venture” by itself in a document was not a good indicator that a
document described a joint venture. But the phrases “venture with” and “venture by” proved very
good descriptors indeed, e.g., 95% precision for the test collection.

9.2 Sense Disambiguation of Terms and Noun Phrases

Another area (besides phrase extraction and phrase analysis) where researchers have tried to use
syntactic/semantic techniques to improve IR performance is “word sense disambiguation.”
[Chakravarthy & Haase, SIGIR ‘95] [Sanderson, SIGIR ‘95] [Voorhees, SIGIR ‘93] It is com-
monplace that natural language words have multiple meanings. More precisely, a string of charac-
ters representing a word (a “lexical token” in the jargon of the field) can represent multiple words,
each with a different meaning (a different “sense”). (The technical term for such a wooty/se-

mous.) Sometimes, the meanings are closely related meanings of what we tend to consider the
“same” word. Often, they are two (or more) completely different words that happen to be spelled
the same, e.g., “bank” can mean either a financial institution or the border of a river, “bat” can
mean either a flying mammal or a sporting implement, etc. It is plausible to suggest that if one can
use syntactic/semantic methods to determine which “sense” of a word is intended by each occur-
rence of the word in any given document or query, one will be better able to retrieve the docu-
ments relevant to a given query (better recall) and to reject non-relevant documents (better
precision). In particular, one would be able to avoid matching one sense of a word in a query with
a completely different sense of the word in a document.

One crucial issue that arises in sense disambiguation is how fine-grained the sense distinctions are
to be. This may depend on the resources available, e.g., an on-line Machine Readable Dictionary
(MRD) such as the Longman Dictionary of Contemporary English (LDOCE) [Procter, 1978] may
provide a relatively large number of senses relative to what may be generated by hand from a
training corpus. On the other hand, the number of senses to distinguish depends heavily on the
task for which the sense disambiguation is being performed. The number of senses that need to be
distinguished for IR, may be considerably less than the number that need to be distinguished, e.g.,
for polished machine translation.

One reason is that senses of a single word that are closely related in one language may (and often
will) correspond to different words in another language.

Moreover, for IR purposes, it may often be sufficient to distinguish fairly broad subject categories.
For example, the 1978 LDOCE distinguishes 13 senses of the bankl [Guthrie, 1993] Yet,
these thirteen senses may be grouped into several broader categories. One coarsédaakise of

Page 85

a repository to which one can make deposits and from which one can make withdrawals. At a
finer grain, one can distinguish a financial bank from a blood bank or a leave bank. Similarly,
another quite different coarse senséahkis a heap of material. At a finer grain, one can distin-
guish a snow bank, a sand bank, a cloud bank, and the bank of a river. For many IR purposes, it
may be sufficient to distinguish the senses of bank at the coarser level, or to distinguish a financial
bank from other repositories.

Guthrie et al. [1991] disambiguates words likank by using word co-occurrence statistics
derived from an electronic reference source, in this case the LDOCE MRD. The problem is to dis-
ambiguate polysemous words likank occurring in a test corpus. Given an occurrence in the test
corpus ofbank they extract the local context of the given occurrence. The context may be the sen-
tence in which the given word occurs, e.g., “We got a bank loan to buy a house,” or some specified
number of words on either side of the given word. This context is then matched against each
neighborhoof the given word, derived from the LDOCE.

The neighborhood of a given word is the set of words (excluding stop words) that co-occur in the
definition of one sense or group of related senses of the given word. The electronic version of
LDOCE specifies a set of relatively broad subject categories, each category designated by a Sub-
ject Field Code (SFC). (The use of SFC’s is discussed in greater detail below, in the section on
Concept Identification.) SFC’s are assigned to some of the sense definitions of a given word. For
example, the sense of bank as “a place in which money is kept and paid out on demand” is
assigned an SFC of “EC” which stands for the subject category “Economics.” (The verb sense of
bank “to put or keep (money) in a bank” is also assigned the code “EC.”) At the simplest level,
the neighborhood of the Economics sensbarikis the set of words (excluding stop words) in all

the definitions obankthat are assigned an SFC of “EC.” Since the definitions are relatively short,

a co-occurrence neighborhood is computed for each non-stop word in each ‘EC” definition of
bank In other words, since the word “money” occurs in one or more EC definitiors=iok a
neighborhood is computed fononey The union of these neighborhoods becorthesneighbor-

hood for the EC sense baaink Guthrie et al. then compute the overlap (number of words in com-
mon) of this neighborhood with the context of the occurrendeamikto be disambiguated. In the
same way, the overlap is computed between the context and the neighborhood of every other
sense (or subject category) lmhnk The sense of the neighborhood with the greatest amount of
overlap with the context is chosen to be the senbarfin the occurrence being disambiguated.

The Guthrie procedure is automatic, but the best success rate achieved in this and similar
approaches is only about 70% accuracy.

From the sentence used in the above example, i.e., “We got a bank loan to buy a house,” it is easy
to see why sense disambiguation using MRD definitions might be relatively ineffective. A key
word in the above sentence is “loan.” Although a great many loans involve money, it is entirely
possible that none of the definitions of money in the MRD involve the use of the word “loan.” The
word “loan” may co-occur with the word “money” with significant frequency in a news or busi-
ness corpus, yet not occur in definitions of “money.”

Voorhees [SIGIR ‘93] uses the large general purpose semantic network, WordNet [Miller, Jlex,
1990]. WordNet groups words into strict synonym sets called “synsets.” The synsets are divided
into four main categories: nouns, verbs, adjectives, and adverbs. Within each category, synsets are

Page 86

linked together by a variety of semantic relations appropriate to the category, e.g., for nouns the
relations include hypernymy/hyponymy (the “is-a” or class/subclass relation, e.g.issecsehi-

cle), antonymy (word A means the opposite of word B), and several “part-of” relations. Voorhees,

in the reported research, disambiguates nouns only. The approach is to group noun synsets in
WordNet so that the synsets in a given group all contain words with closely related senses. The
groups are called “hoods”. A hood is effectively similar to a class in Roget’s thesaurus. Given a
document, she can then count the number of nouns in the document that are found in a given
hood, i.e., the number of nouns that can have the sense (or related senses) of a given hood. Of
course, a given noun can belong to multiple hoods, corresponding to multiple senses. In such
cases, the noun is assumed to have the sense it possesses in the hood which contains the largest
number of words (or word occurrences) from the document. In other words, it is assumed that in a
given document, a given noun will tend to co-occur most with other nouns having related senses.
(The word “bat” is ambiguous, but if it co-occurs in a document with the also ambiguous words,
“base,” “glove,” and “hit,” it is very likely that the word is being used in its baseball sense.)

Leacock et al. [Corpus Proc, 1996] have investigated sense disambiguation of words in a large
text corpus by statistical classification based on term co-occurrence in the contexts in which the
given words occur. In this study, a context was defined to be a sentence in which a given word
occurred, and the preceding sentence. The preceding sentence was included in the context because
a given word is often used anaphorically. If the preceding sentence also contained the given word
in the same sense, then the sentence preceédaigentence was also included in the context. A
single polysemous word, “line,” was studied., A training set was constructed consisting of con-
texts for each of six different senses of “line.” These included: line of text (“a line from Hamlet”),

a formation (“a line at the box office”), an abstract division (“the narrow line between tact and
lying”), a telephone connection (“the line went dead”), a thin, flexible cord (“A fishing line”), and

a class of product (“a product line”). Elements varied included: type of classifier (Bayesian, vector
space, and neural network), number of senses (two, three and six), and number of contexts in
training set (50, 100, and 200). The machine classifiers were also compared to human classifiers.
All of the machine classifiers performed best with 200 contexts (71% to 76% correct answers).
Performance of the three classifiers tended to converge as the number of contexts went up. With
only two senses to distinguish (between product line and formation), the accuracy was over 90%.
However, with three senses (product line, line of text, formation), the classifiers did only a little
better than with six (mean accuracy of 76%). In general, some senses were harder than others for
all three classifiers to identify; the hardest were: line of text, formation, division, in that order. The
three easiest for all three classifiers were product, phone, and cord, although the order of ease for
these three varied with the classifier. Moreover, for any given sense, some contexts made sense
identification easier than others. Interestingly, the humans, when given the same information as
the machine classifiers, e.g., a vector of stemmed substantive words for the vector space classifier,
found the same senses (and context within a sense) easy to distinguish, and the same senses diffi-
cult. In general, the humans did better than the machine classifiers. The exception was the “easy”
contexts, chosen because the machine classifiers made no errors on them; the humans had a 15%
error rate on these contexts. Most significant, when the humans were given the original sentences
comprising each context, their performance was nearly perfect. On the other hand, when they
were given the same input as the Bayesian classifier, i.e., the complete set of words in the context,
with no stemming or stop-word removal, but with the words in reverse alphabetical order (because
none of the classifiers used word order), their performance was much the same as when stop-

Page 87

words (also calledunction words) were removed. The stop words were of no value to the human
classifiers except when they were presented in the proper syntactic order. Plainly, the machine
classifiers would do much better if they could make effective use of order and proximity as the
human classifiers do.

Evaluation of sense disambiguation can be very tedious since it is necessary not only to evaluate
the retrieved output for relevance, but to examine the retrieval process at the level of individual
words to determine how it was affected by the disambiguation. Moreover, it is sometimes difficult
to determine what the intended sense of a word, e.g., in a short query, acsu&@gnderson
[SIGIR '94] reports on a novel method of evaluation, attributed to Yarowsky [Hum Lang, 1993].
The approach is to create ambiguous pseudo-words artificially by replacing each occurrence of a
pair of distinct words in the document (any pair, not just adjacent words) by a pseudo-word
formed by concatenating the two actual words. The effect is to create a new document with half as
many word occurrences, each having a known-in-advance ambiguity. Still greater ambiguity can
be created by generating pseudo-words composed of N real words Wineag be, 3, 4, ..., 10,

etc. Of course, indexes and queries have to be modified correspondingly. “The disambiguator is
then applied to each occurrence of [each] new word. Evaluation of the disambiguator’s output is a
trivial matter as we know beforehand the correct sense of each occurrence of the word.”

The surprising result of such research into disambiguation is that it seems to improve IR perfor-
mance very little. Indeed, in most cases, it actually degrades performance. Sanderson found that
adding quite large amounts of controlled ambiguity, e.g., size ten pseudo-words, had little effect
on IR retrieval. Removing a controlled amount of ambiguity seemed to make IR performance
worse. Voorhees too found that in most cases, performance was degraded by disambiguation. The
following reasons were identified: If the number of terms in the query is not very small, the term
combination itself appears to have the effect of disambiguating documents and queries (e.g., as in
the “base, bat, glove, hit” example above). This phenomenon is also noted by Lewis et al. [CACM
‘96] On the other hand, if the query is very small, then it provides very little context for the disam-
biguator to use. Hence, the disambiguator is likely to introduce errors, resulting in missed query
document matches. According to Voorhees, “[tlhese results demonstrate that missing matches
between the documents and query degrades performance more than eliminating spurious matches
[by disambiguation] helps retrieval for small homogeneous collections.” Sanderson used a less
homogeneous collection with similar results. He found that the disambiguator had to be at least
90% accurate to avoid performance degradation. Supplying a domain-specific context for short
gueries (as humans do) and selecting the most frequent sense for an ambiguous term may alleviate
the problem. However, there are some queries for which Voorhees found that disambiguation was
very helpful.

9.3 Concept Identification and Matching

In all of the previous discussion of methods for matching documents against queries or topics, the
guery and document terms being matched are words or phrases extracted from the given queries
and documents, or (in the case of techniques like LSI) factors derived statistically from the words.
The words may be subject to pre-processing, e.g., stemming to reduce variants to a common form,
but in essence query words are being matched against document words. However, the words are
essentially being used as surrogates for the concepts they express. Boolean expressions, vectors,

Page 88

SVD factors and the like may be used to capture the intended concept more precisely, by specify-
ing the words that co-occur in a given semantic context. However, what the user really wants is to
retrieve documents that aadoutcertain concepts. Of course, in many cases the user is looking
for documents about a specific named entity, e.g., a given person, or a given book. Even then, cer-
tain concepts are usually implicit, e.g., if she is looking for documents about a person named
“Baker,” she wants to specify that the documents must be about a person named “Baker” and not
about the profession, “baker.” Moreover, she may want to see documents about an author named
“Baker,” or a CEO named “Baker,” or a Baker who participated in a certain criminal action, etc.

Liddy et al., [ACM Trans IS, 1994] have developed a technique for matching topics (or topic pro-
files) against documents at the concept or subject level. They have implemented a text categoriza-
tion module based on this technique; the module provides a front-end filtering function for the
larger Document Retrieval through LINguistic Knowledge (DR-LINK) text retrieval system,
although it can also serve as a stand-alone routing or categorization system and has been tested in
this mode, e.g., using TREC 2 data. The text categorizer described in TREC-2 used a machine-
readable dictionary (MRD), theLbngman’s Dictionary of Contemporary EnglisfLDOCE).

The second edition (1987) of LDOCE contains 35,899 “headwords”, i.e., words for which the
LDOCE contains an entry. Each headword may contain multiple definitions, corresponding to
multiple senses of the word. The LDOCE contains 53,838 senses of the 35,899 headwords. For
each word, the LDOCE specifies one or more “parts of speech.” For each part of speech associ-
ated with a given word, the LDOCE specifies all its senses, and assigns a “Subject Field Code”
(SFC) to each sense. For example, “earth” can be both a noun and a verb (the latter chiefly in Brit-
ish terminology). As a noun, it can refer to the planet on which we live (SFC = ASTRONOMY),

or to the soil in which we plant crops (SFC = AGRICULTURE), or to a class of chemicals (SFC =
SCIENCE), etc. In all, the LDOCE assigns six SFC's to “earth” as a noun. (Current versions of
DR-LINK use a proprietary MRD, containing a proprietary, and larger, set of SFC’s. [Liddy, PC]
Since this MRD is specifically designed to serve the needs of DR-LINK, it omits many features of
stand-alone, commercial MRD’s such as the LDOCE.)

The categorizer uses the SFC'’s to construct SFC vectors, instead of term vectors. First, it assigns
one or more parts of speech to each word in the document or topic statement, using a probabilistic
part-of-speech tagger, POST. (As in most vector space approaches, the topic or query is treated as
just another document; a vector is developed for the topic in exactly the same way as for the doc-
uments to be categorized.) Then, it looks up each part-of-speech tagged word in the LDOCE, and
attaches to the word all SFC’s associated with it. For example, if a particular occurrence of “earth”
in a given document is tagged as a noun, it would have six SFC’s attached to it, including
ASTRONOMY, AGRICULTURE, SCIENCE, etc. If the word is not found in the LDOCE, stem-
ming is applied, and a second LDOCE lookup is performed. Note that some words may not be
assigned any SFC at all, either because the word is not in the LDOCE, or because it does not
appear in the LDOCE as the part-of-speech with which it has been tagged. Some words may
require a larger, or a more specialized dictionary resource than the LDOCE.

Since a given word, even when tagged with a given part of speech, may still have multiple SFC’s
assigned to it (as in the example of “earth” above”), the word sense must be disambiguated. How-
ever, in contrast to the word sense disambiguation discussed in the preceding section, here disam-
biguation is conducted entirely at the SFC, i.e., concept, level. Disambiguation is first performed

Page 89

at the level of the local context, here interpreted as the sentence level. SFC frequencies are com-
puted for the given sentence. There are two reasons why a given SFC may be assigned more than
once in a given sentence. First, two or more words in the given sentence may each be assigned the
same SFC as one of their respective senses. Second, two or more senses of the same word occur-
rence, even tagged with the same part of speech, may be assigned the same SFC. Liddy et al. give
the example of the sentence, “State companies employ about one billion people.” The word
“state” is assigned the SFC “POLITICAL SCIENCE” four times, corresponding to four different
senses of the word, e.g., state” as nation, “state” as subdivision of a nation, “state” as in “separa-
tion of church and state,” state” as in “secretary of state,” etc. The word “people” is assigned the
SFC “POLITICAL SCIENCE” twice, e.g., “people” as in “the people of New York,” and “peo-

ple” as in “the people have chosen a president,” etc. Two important cases of SFC frequency are
identified for purposes of sense disambiguation: If a given word within the given sentence is only
assigned a single SFC, this is called a “unique SFC.” Obviously, for such a word, no sense disam-
biguation is required. On the other hand, an SFC is considered “highly frequent” if it is assigned
more than three times over all the words in the given sentence. If a word is assigned multiple
SFC'’s and one of these SFC’s is highly frequent, that SFC will be assigned to the given word. In
the illustrative sentence above, “Political Science” is a highly frequent SFC since it is assigned six
times (four for “state” and two for “people”). Hence, it will be assignedttas SFC for both

“state” and “people” in that sentence. Note that a word like “people” has other senses, e.g., the
LDOCE also assigns the SFC’s “SOCIOLOGY” and “"ANTHROPOLOGY” to the word “people.”

But in the given senten¢cePOLITICAL SCIENCE” is a much more frequent SFC than either
“*SOCIOLOGY” or “ANTHROPOLOGY,” so it is chosein that sentencas the preferred SFC to
disambiguate “state” and “people.”

If a word in the given sentence remains ambiguous, i.e., the word is assigned multiple SFC’s but
none of the SFC’s assigned to the given word is highly frequent, then an SFC correlation matrix is
used. This matrix is built from a training corpus; in the research described here, the corpus con-
sisted of 977 newspaper articles. The matrix is 124 X 124 because there were 124 SFC’s in the
LDOCE edition used in the research described here. The given word is disambiguated by choos-
ing that one of its assigned SFC’s that has the highest correlation (tendency to co-occur in the
same document) with the unique and highly frequent SFC’s in the same sentence. Note that the
correlation matrix measures correlations among SFC’s at the document level. Hence, at this stage,
document as well as sentence level knowledge is being used for disambiguation.

After every ambiguous word in every sentence in the given document has been disambiguated, a
document-level SFC vector is created by summing the single SFC’s assigned to each word. For
example, if the SFC “POLITICAL SCIENCE” is assigned as the SFC of one or more words in
one or more sentences of the given document, then it will become one of the terms of the SFC
vector for the given document, with a term weight determined by its normalized term frequency,
or some other appropriate term weighting formula. For example, the reported research uses
Sager’s term weighting formuld,/k,,, wheref;, is the SFC frequency of SHGn documenn and

ki, is the number of tokens (SFC occurrences) in document

Once an SFC vector has been created for every document in the collection being categorized, and
every topic for which documents are to be categorized, the similarity of each document to each
topic can be computed, and all documents above a specified threshold for a given topic can be

Page 90

assigned to its category. However, in DR-LINK, the SFC vectors are employed in a more sophisti-
cated manner, to take advantage of the discourse structure of the document. This is described in
the next section. Moreover, similarity at the SFC vector level, though it can be used in a stand-
alone mode, can also (and in DR-LINK is) combined with similarity at other levels, e.g., matching

at the level of proper nouns, relationships, etc. These issues are discussed in sections that follow.

The Liddy topic matching scheme described above is a novel form of “controlled vocabulary”
methodology. It is customary to distinguish IR systems as “controlled vocabulary” or “free text
vocabulary.” In the former, documents are indexed manually by their authors or by professional
indexers from a preset vocabulary of index terms. In the latter (as in most of the research
described in this report), the index terms for a given document are generated automatically from
the content of the document. The great advantage of the former is that expert human judgment is
applied to choose appropriate document descriptors. The great disadvantages are that it is
extremely labor-intensive, and that users must know and use the controlled vocabulary in formu-
lating their queries and topic profiles. The Liddy scheme offers “the best of both worlds.” On the
one hand, documents are indexed automatically, and the user can formulate queries and topics in
terms of her own vocabulary. On the other hand, document and topic terms are mapped from a
large dictionary lexicon into a controlled vocabulary of concept terms, the SFC's. This controlled
vocabulary has been developed and refined over a considerable period of time by professional lex-
icographers.The only drawback is that machine-readable resources such as the LDOCE need to be
extended (along with the set of SFC’s) to deal with documents in specialized domains.

Note thatrelevance feedbadlsee below) can readily be applied to these SFC vectors [Liddy et al,
Online, 1995]. The user’s original query is converted into an SFC vector and matched against SFC
vectors representing each document in the given collection, as described above. A list of docu-
ments, ranked by SFC vector similarity to the query and above a specified similarity threshold, is
returned to the user. The user then identifies those documents on the list (or paragraphs or sen-
tences within those documents) that she considers relevant to the given query. DR-LINK can gen-
erate a Relevance Feedback (RF) SFC vector from each of the user-selected documents, and
aggregate these vectors into one RF-SFC vector. Since the documents (or paragraphs or sen-
tences) selected by the user should be good examples of the kind of document for which she is
looking, the resulting RF-SFC vector should exemplify (better than the original query) the user’s
requirements at the conceptual (subject-category) level. Hence, the RF-SFC vector can be used in
place of the SFC vector generated from the original query, to calculate similarity at the conceptual
level, and return a new ranked list of documents. As with other forms of relevance feedback, this
process can be repeated to refine the query further, until no more improvement is observed. Of
course as with all relevance feedback, improvement depends upon the existence within the collec-
tion of documents that are truly relevant to the user’s requirements.

The advantages of an NLP-based, subject-based system such as DR-LINK, over the far more
common keyword-based systems is well-illustrated by the comparison of three IR systems
reported by Feldman. [ONLINE, 96] For example, she cites a common experience of IR search-
ers, expressed by the rule, “Search for wars, and you will also retrieve sports.” It is not hard to see
why keyword-based systems, whether boolean or vector space, are vulnerable to such errors. The
vocabularies of sports and war overlap to a significant degree, e.g., terms like “battle,” “conflict,”
“win,” “loss,” “victory,” “defeat,” and many more. If the user employs some of these terms in for-

Page 91

mulating her query, a keyword based system will have difficulty distinguishing sports stories from
war stories. Feldman encountered this difficulty when she asked for “information about African
countries which had civil wars, insurrections, coups, or rebellions.” She encountered this diffi-
culty with both the boolean DIALOG system, and the relevance ranking TARGET system. She
encountered this difficulty even though the terms she used (or stemmed), terms like “insurrec-
tions,” “coups,” “rebellions, “wars,” are not the most common terms to appear in sports stories.
Presumably, some of these terms, or synonyms for them, e.g., synonyms for “war,” do appear in
sports stories. The only way to exclude such stories from a boolean query without excluding legit-
imate stories too, would be to add “AND NOT....,” where the “NOT” is followed by a set of
sports-specific terms, e.g., “NOT rugby,” “NOT soccer,” etc. A relevance ranking system might be
expected to do somewhat better, if the specified terms occur more frequently in war stories than in
sports stories. However, TARGET dnmdt do better on this query than DIALOG in Feldman'’s test.
DR-LINK did much better on this query, retrieving 50 relevant war stories, and excluding the
“false drop” sports stories altogether.

It is easy to see why DR-LINK was much more successful on this query. The SFC vector
approach provides several advantages in such an example. For instance, a sports story would
almost always contain some sports-specific terms. Hence, the corresponding SFC vector for such
a sports story would contain sports-specific SFC’s. The presence of such SFC’s would help DR-
LINK to disambiguate terms that belong to both the sports and war domains correctly, choosing
the sports sense of such terms. On the other hand, the fact that all the terms in the user’s query had
a war sense and none had a pure sports sense would favor disambiguating the query terms as hav-
ing their war senses at the SFC level.

It should be noted that DR-LINK is not the only system that indexes a large document collection
automatically using a controlled vocabulary. For example, CONSTRUE-TIS [Hayes et al., 1990]
assigns subject category terms automatically from a controlled vocabulary to a large collection of
news stories maintained by Reuters. The subject categories include 135 economic categories, e.g.,
mergers and acquisitions, corporate earnings, interest rates, various currencies, etc. 539 proper
name categories (people, countries, companies, etc.) are also supported. Rapid automatic indexing
enables the system to keep up with the rapid addition of new stories. Indexing is based on shallow
knowledge base techniques. Each subject category is recognized by if-then rules. The “if” condi-
tions are specified in terms of “concepts.” The concepts, in turn, are defined in terms of a pattern
language. The pattern language specifies keyword patterns. The patterns may include such fea-
tures as keyword order, boolean combinations of keywords, gaps for a specified number of arbi-
trary words, etc. Hence, CONSTRUE-TIS conceptual indexing by subject category employs
much more than simple boolean conditions, but much less than true natural language processing.
However, the subject category terms that are assigned automatically to each story (the terms that
comprise the controlled vocabulary) are the same terms that users must employ to retrieve the
story. By contrast, the user of DR-LINK never sees or needs to know its controlled vocabulary.
Documents and natural language topic requests are both mapped automatically into the common,
controlled vocabulary of SFC’s.

9.3.1 Formal Concepts

Page 92

The preceding section dealt with concepts assigned to word senses by human beings, e.g., domain
experts or lexicographers. In this section, we describe how “formal concepts” can be defined for a
given domain, or a given body of text, using a mathematical method for knowledge representa-
tion, exploration, and processing called Formal Context Analysis (FCA).

FCA is an unsupervised learning technique that “allows implications between attributes to be
determined and visualized.” [Cole et al., Comp Int, 1999]

FCA models a domain as being composed of individual objects (ctdleaal object$ and their
attributes (calledormal attribute$. The set of objects and attributes chosen to model a domain is
called aformal contextFormal contexts relate objects to their attributes. A context may be repre-
sented as a matrix in which the rows are objects, the columns are attributes, and each cell specifies
whether a given object has (yes) or doesn’t have (no) a given attribute. If a formal context repre-
sents a textual document (or collection of documents), the objects may be the individuals men-
tioned in the text, e.g., specific persons, companies, locations, buildings, etc., whether named or
unnamed. Correspondingly, the attributes of a given individual object will be those mentioned
explicitly or implicitly in the text as characterizing the objects, e.g., a building may be small, tall,

or ornate, etc. The object type is also considered an attribute of the object, e.g., the attributes of
the Empire State Building include both the descriptive adjective “tall,” and the object type “build-
ing.”

Semantic relations can also be formalized by a context matrix. Each row of a relation matrix is an
ordered pair of objects (classes or instances) that the text specifies (explicitly or implicitly) as in
some relation to each other. The columns are the relations, and the attributes of the objects partic-
ipating in those relations. Note that a pair of objects may be in more than one relation to each
other. If rowi represents the ordered object padX, O3, and columnj represents the relatidR

then a “yes” in cell {, j} means thaOL1lis in the directed relatioR to O2.

The formal contexts of FCA can be translated into Sowa’s conceptual graphs (CG’s) [1984] and
vice versa.[Wille, 1997] Both CG’s and FCA have been used to represent and process knowledge.
Both are methods of formalizing logic, and relating logical concepts to real-world concepts. Since
CG’s were developed to represent the syntax and semantics of natural language, FCA can be used
for the same purpose. The objects of FCA map into Sowa’s concept nodes. The relations map into
the relations that connect Sowa’s concepts. These relations are generic rather than application-
domain-specific, e.g., Sowa defines such relations as “agent” (AGNT), “patient” (PTNT), “loca-
tion” (LOC), etc. Agents act upon objects, patients (not necessarily the medical kind!) are objects
that are acted upon, and so on. Hence, in the above example, if John sue®WMeoyld be John,

02 could be MaryO1 would be the AGNT with respect to suing, the one whdangthe suing,

and Mary would be the PTNT with respect to the suing, the one wheirsgsued. The context

would show “yes” for the cell {John, AGNT}; it would also show “yes” for the cell {Mary,
PTNT}. The context would also contain cells for attributes of John and Mary individually, e.g.,
John may be tall and antagonistic, Mary may be blonde, reasonable, etc.

An FCA formal concepts a pair A,B) whereA is a subset of the objects in a context, &3 a
corresponding subset of attributes applicable to all the objects icatheept Eklund et al. [pro-
posal, 1999] offer a very simple example of a context that describes the solar system. The objects,

Page 93

A, are the planets, the attributd,are size (small, medium, large), distance (near, far), and moon
(yes, no). One of the concepts that FCA can discover is {{Earth, Mars}, {small, near, yes}}. A
defining characteristic of the formal concept B) is that*A must be the largest set of objects for
which each object in the set possesses all the attributBsTfie reverse must be true alsokt
[Cole et al., 1999] In other words, the set of attribusnust be the largest set of attribute values
that characterize the set of objeds,

The relationships among concepts and individuals that are captured in a formal context or a con-
ceptual graph, can also be represented as a “concept lattice.” Each node of a concept lattice corre-
sponds to the maximum set of objects that possesses a given attribute. This set of objects is called
the extent; the number of objects comprising this extent may be attached to the node. (This set
may also be viewed as the maximal concept associated with the given attribute.) If a parent node
representing objects with attribute; branches to two child nodes representing objects with
attributesm, andmg respectively, then the extent of th@ node represents objects having both
attributem; and attributam,. Similarly, the extent of they node represents objects having both
attributem, and attributemg. Now, since a lattice is a more general graph than a tree, it is quite
permissible for two nodes, e.g., the andmg nodes of the above example, to meet in a common
node below. This common meet node represents the set of objects that possess atiyjbues

and (not or!) ms. If a node having attributen, is immediately below this meet node, various
implications involvingm,, mg andmy (givenm,) can be represented. If the extentofis greater

than or equal to the extent of the meetaf andm, this representsrty, andmg impliesm,” (in

other words, every object having both attribute and attributems is one of the objects having

my). Similarly, If the extent ofny is less than or equal to the extent of the meengindm, this
representsrh, impliesm, andmg” (in other words, every object having attributg is one of the
objects having both attribute, and attributemg). If the extent ofmy is exactly equal to the extent

of the meet ofn, andmg, then there is equivalence betwaepand the meet (intersection) ot

andm.

Partial implications (conditional probabilities) can also be represented. The probability of
givenmy, denoted Pr{y | my), is extent(n;)/extent(n). If the my node is the root of the lattice,
representing the entire population of objects under consideration, then the implications described
in the preceding paragraph are unconditional. However, one can still compute |R1o) as
extent(meetfy, and my))/extent (). That is, the probability of an object having attribute

given that it has attributey,, is computed as the quotient of the number of objects havingropth
andm, (objects havingn, given that they also have,) divided by the total number of objects
havingm.

Given that a rich context may involve a large number of objects and attributes, the user will nor-
mally want to focus on a more manageable subset. Cole et al. [Comp Int 1999] provide this capa-
bility. That is, the user can focus on certain specific objects and attributes of interest; the system
will generate the concept lattice for the selected entities. Cole calls this a “scale.” As a further
refinement, their system allows the user to generate a lattice involving one set of concepts within a
lattice involving another set of concepts, i.e., to nest one scale within the nodes of the lattice of
another scale.

For example, Cole et al. have applied FCA to the analysis of medical discharge summaries. In
both cases, the objectives are to represent the relationships and implications among the concepts.

Page 94

“The relationships will often be mundane, but occasionally surprising and new.” For example,
they generate a concept lattice exhibiting relationships among classes and subclasses of disease,
e.g., “respiratory tract diseases,” is a broad disease class, “asthma” is a disease subclass within
that broader class. Another broad class may contain such subclasses as “carcinoma.” The lattice
may indicate (via “meet” nodes) the co-occurrence of diseases, e.g., how many patients suffer
from both asthma and carcinoma. Within each node of this “disease” lattice, another lattice may
be nested, exhibiting, e.g., patient behaviors such as smoking, and drug therapies that have been
applied. For example, the “smoking” node of the behavior lattice can be found in each node, e.q.,
the “carcinoma” node, of the disease lattice. The extent of the “smoking” node within the “carci-
noma” node gives the number of patients diagnosed with carcinoma who smoke. By studying
these lattices, relationships among diseases, patient behaviors, and therapies may be displayed
and analyzed.

Recently, Cole et al. [KDD99] have focused on semi-structured text (XML-based and HTML-
based). The FCA objects studied are text documents, e.g., email messages. The attributes are key-
words and patterns found in the documents. The patterns are specified as regular expressions. For
example, email attributes may include the originator and addressees (from and to lines), and a date
condition, e.g., all dates in the range from September to November 1994. The attributes may also
include keywords, e.g., names, mentioned in the textual body of the email document. Analysis of
the conceptual lattice associated with an email collection leads to the discovery of patterns, e.g.,
that a high proportion of the emails addressed to a given addressee mention a given person or
combination of persons by name.

9.3.2 Concepts and Discourse Structure

Many researchers have recognized that a document, especially a large document, may not be the
ideal unit for matching against queries or topics. A document may deal with multiple topics. The
matters of concern to a given user, or the key words that identify her interests, may be localized to
a small portion of a document. Hence, a variety of research efforts, some of them described in this
report, attempt to break documents into segments, often called “passages.” Sometimes, the bound-
aries of these segments are determined orthographically, e.g., on the basis of paragraph or section
or sentence boundaries. In other cases, documents are segmented arbitrarily, e.g., by overlapping
windows N characters long. The former approach takes semantics into account, but only indi-
rectly, by assuming that sentence, paragraph, or section boundaries specified by the author accu-
rately reflect her intended semantic structure. The latter approach ignores semantics in favor of
locality. Of course, it is likely that the words or sentences that occupy a local passage have some
semantic relationship, but it is impossible to say a priori what that relationship will be.

Liddy et al. [Proc RIAO Conf., 1994] have taken a more principled approach by studying the dis-
course structure (based on “discourse linguistic theory”) of various types of documents, e.g.,
newspaper articles [TREC-2, 1994], or abstracts of empirical technical documents [Liddy, ASIS
‘87] Liddy, 1988]. A coherent, well-written document has a semantic structure that represents the
way the author has organized the ideas or story she wants to tell. Moreover, textual documents of
a particular type will have a predictable, standard structure. The elements of this structure are
called “discourse components.” Liddy has extended an earlier model due to van Dijk [Hillsdale,
1988] for the text type “newspaper article.” She has identified 38 discourse components in her

Page 95

extended model. Each clause or sentence in a given article can be tagged as one of these compo-
nents. These tags “instantiate” the model. Assigning a tag to a clause says that the given clause
belongs in the corresponding component of the model. Each component will contain certain kinds
of information relative to the story told by the entire article. Examples of component tags for the
newspaper article model are: MAIN EVENT, VERBAL REACTION, EVALUATION, FUTURE
CONSEQUENCE, and PREVIOUS EVENT. Components may be nested, corresponding to nest-
ing in the sentence structure. Linguistic clues are used to identify the components. For example,
Liddy [TREC-2] offers the following example of nested, tagged discourse components.

<LEAD-FUT> South Korea'’s trade surplus, <LEAD-HIST> which more than dou-
bled in 1987 to $6.55 billion, <LEAD-HIST> is expected to narrow this year to
above $4 billion, </LEAD-HIST> is expected to narrow this year to above $4 bil-
lion. </LEAD-FUT>

Plainly, this is a LEAD-FUTURE component about the expected future trade surplus of South
Korea, as indicated by linguistic clues such as the phrase “is expected to,” containing a nested
LEAD-HISTORY component about South Korea’s past trade surplus, as indicated by linguistic
clues such as the past tense “doubled” and the “1987” date.

Tagging the clauses and sentences of a document by discourse component allows Liddy to gener-
ate multiple SFC vectors, one for each component. This means that one can not only match the
subjects found in a topic against the subjects found in a document; one can also determine
whether they are in the correct discourse component. For example, if the topic required that a doc-
ument discuss future trade surpluses in South Korea, it would be important not only that the sub-
ject appear in a given document, but that it appear in a FUTURE EVENT or LEAD-FUTURE
discourse component. A document that has the right subject in the right discourse component
should receive a higher relevance ranking score than a document that has the right subject in the
wrong component. Liddy has identified 38 discourse components for the newspaper article text
type. However, she has found that topic requests usually do not have so fine a discourse grain.
Hence, she has improved the performance of DR-LINK by mapping the 38 components into seven
meta-components for the purpose of topic-document matching and ranking: LEAD-MAIN, HIS-
TORY, FUTURE, CONSEQUENCE, EVALUATION, ONGOING, and OTHERS. These seven
meta-components yield eight SFC vectors, one for each component and one for the combination
of all seven together. The resulting module that matches topics against documents using these
eight SFC vectors is called the “V-8 SFC Matcher.”

Mann et al. [Text, 1988] have developed an alternative method of discourse analysisRtadled
torical Structure TheorfRST) [Mann et al., Text]. RST can be used for the automated markup
and parsing of natural language texts [Marcu, AAAI, 96] [Marcu, PC, 1999]. Both Marcu and
Eklund et al. [proposal, 1999] are exploring possible applications of RST to automated textual
information extraction. Marcu is studying the application of RST to document summarization and
machine translation of natural languages. Eklund et al. have considered its application to text data
mining, knowledge base construction, and knowledge fusion across documents.

Mann et al. claim that RST “provides a general way to describe the relations [ch#éatical
relationg among clauses in a text, whether or not they are grammatically or lexically signalled.”

Page 96

Of course, automatic parsing as developed by Marcu, depends on recognizing just such grammat-
ical or lexical signals, and using them to drive the actions of the parser. Marcu has taken two
approaches to automated RST parsing. First, he has developed a set of manual rules. Second, he
has applied a machine learning tool to a large text corpus to “learn” a set of parsing rules. Clearly,
the success of such automated parsing depends on the text possessing a certain coherence and
clarity typical of news article text, and well-written scientific and legal papers. The techniques
might be much less successful if applied to informal text, e.g., e-mail; they have never been
applied to such informal texts. [Marcu, PC, 1999]

A rhetorical relation links two clauses (non-overlapping spans), calledubkusand thesatel-

lite. The significance of these terms is that most (though not all) of the relations are asymmetric.
One clause, the nucleus, is usually more essential than the other. The less essential clause, the sat-
ellite, is sometimes incomprehensible without the nucleus to which it is related. Even where the
satellite is comprehensible by itself, the nucleus is generally more essential for the writer’s pur-
poses. Marcu capitalizes on this fact to generate automatic document summaries. The nuclear
clauses, taken by themselves, form a coherent summary of the document’s essence. The satellites
do not. Another indication that the satellites are less essential is that they are often substitutable,
i.e., in a given relation one satellite can often be substituted for another while retaining the same
nucleus. Mann and Thompson define 24 rhetorical relations, but stress that the set is open-ended.
Marcu has discovered a considerably larger set of relations, but anticipates that other researchers
may discover yet more relations, as they explore other classes of text. [Marcu, PC, 1999]

Marcu is also considering the possible application of RST parsing to machine translation (MT).
One of the difficulties with existing MT is that even when words and phrases and even clauses are
properly translated, the overall translation of the text may be awkward or incorrect. This is
because the discourse structure in the RST sense may vary from one language to another, espe-
cially at the lower levels of the RST trees. Translating this structure may substantially improve the
quality of the translation.

The parsing of a text according to RST identifies and marks up all the rhetorical relations, and the
clauses participating in those relations. The rhetorical structure is defined recursively, i.e., one of
the spans participating in a rhetorical relation can itself be composed of rhetorical relations.
Hence, the rhetorical structure of a text is a tree. Only the nodes of the tree are necessarily “sim-
ple” clauses. A given text can be parsed in multiple ways. Hence, a given text may be represented
by multiple rhetorical parse trees. However, Marcu has defined principled rules for “legal” parse
trees. If one adheres to Marcu’s rules, one can still generate multiple trees for a given text docu-
ment, but it becomes possible to reject some candidate parses as ill-formed while accepting others
as well-formed.

The following passage illustrates two asymmetric rhetorical relations: “concession” and “elabora-
tion.”

Although discourse markers are ambigubus,
one can use them to build discourse trees for unrestricted texts;
this may lead to many new applications in text data mifing.

Page 97

A concessiomelation exists between the nucleus, either 2 or 3, and the satellite, 1. The nucleus is
asserted to be true despite the contradictory “concession” of the satellisdaBorationrelation

exists between the satellite 3 and the nucleus, either 1 or 2. The satellite elaborates on the asser-
tion made by the nucleus. Note that the same clause, e.g., 3, can be a nucleus in one instance of
one relation, and a satellite in one instance of another relation.

The word “although” is a lexical marker for tr@ncessiomelation in the example given above.
Similarly, the semicolon is a marker for tieéaborationrelation in this example. However, Mann

et al. stress that “the definitions [of the rhetorical relations] do not depend on morphological or
syntactic signals ... We have found no reliable, unambiguous signals for any of the relations.”
Marcu’s relative success indicates that for well-structured text, reliable markers can be found for a
fairly high proportion of instances of the relations. But Marcu’s studies have been limited to well-
structured text types, e.g., Scientific American articles. Mann et al., on the other hand, have stud-
ied a wide variety of types including “administrative memos, magazine articles, advertisements,
personal letters, political essays, scientific abstracts, and more.” They claim that an RST analysis
is possible for all of these diverse types. However, not surprisingly, they have found no simple lin-
guistic markers that work for recognizing or delimiting these relations across all of the diverse
text types. They also find that certain text typesndbhave RST analyses, including “laws, con-
tracts, reports ‘for the record’ and various kinds of language-as-art, including some poetry.”A
common characteristic of the text types studied with some success by Marcu is that they are types
of expositorywriting. Hence, Marcu’s approach might work well with legal (judicial) opinions
which are typically expository, although according to Mann et al. as quoted above, it would prob-
ably not work for laws and contracts, which are typicatiyexpository.

Marcu measured the success of his automated parsers in terms of the classical precision and recall
measures. Recall measured the proportion of the rhetorical relations in a text that were identified,
i.e., the “coverage.” Precision measured the proportion of identified relations that were identified
correctly. These values were computed by comparing the results of the automated parses against
parses performed manually by human judges. It was found that human judges could achieve a
high degree of agreement in their respective parses, thereby justifying the claims of RST for the
text types studied. However, it was also found that the human judges required a considerable
amount of training and practice before they could achieve this consistency. Parsing according to
the rules of RST is far from trivial.

Eklund et al. have proposed combining RST with FCA by generating formal contexts whose
objects are larger entities like clauses, sentences, and even documents. Correspondingly, the rela-
tions would be rhetorical relations. If a simple formal context based on RST is converted to a sim-
ple conceptual graph (CG), its nucleus (in the RST sense) would become the “head” of the CG.
Other text spans having RST relations to the nucleus could then be used to build more complete
CG’s. In this way, a CG knowledge base could be constructed, extending over whole documents
and fusing the knowledge of multiple documents.

9.3.3 Proper Nouns, Complex Nominals and Discourse Structure

It is not sufficient to match topics against documents at the level of subject categories, i.e., at the
level of SFC’s. Much of the essential content of a topic request and the corresponding content of

Page 98

documents, is found in proper names (PN’s), e.g., names of persons, countries, companies, gov-
ernment agencies, etc. Much of the remaining content is found in “complex nominals” (CN’S),
e.g., houn phrases formed by adjacent nouns, adjective-noun combinations, etc. In the passage
about South Korea quoted near the beginning of the preceding section, “South Korea” is an exam-
ple of an essential proper name (PN); “trade surplus” is an example of an essential complex nom-
inal (CN) noun phrase. Systems that recognize and extract CN’s and PN’s for use as document
and topic descriptors include DR-LINK [Liddy et al.,TREC-2], and Strzalkowsk's system
[TREC-3] developed at NYU. The latter system augments a traditional statistical backbone “with
various natural language processing components.”

Recognition and extraction of complex nominals (CN’s) involves several problems. [Strzalkowski
et al., TREC-3] First, it is necessary to recognize CN'’s in any of various syntactic structure, e.g.,
to recognize “information retrieval” in “information retrieval system,” “retrieval of information
from databases,” and “information that can be retrieved by...” It is necessary to distinguish cases
where two-word CN'’s are satisfactory, from cases where longer CN’s are necessary, e.g., in the
phrase “former Soviet president,” “former president” and “Soviet president” have quite different
meanings so the longer three-word phrase should be preserved. It is also important to resolve the
ambiguity in parsing CN'’s, e.g., to recognize that in the phrase “insider trading case,” the key
head word is “trading” and its modifier “insider.” Phrases like “insider case” and “trading case”
would be much less significant. Here, statistics must supplement pure syntactic analysis to ensure
that the extracted phrase is semantically significant as well as syntactically correct. A statistical
analysis of a corpus of business and economics stories will reveal that “insider trading” occurs far
more often than the other pairs.

DR-LINK extracts CN's with its “Complex Nominal Phraser.” Complex nominals are recognized
“as adjacent noun pairs or non-predicating adjective + noun pairs in the output of the part-of-
speech tagger.” DR-LINK’s PN recognition and categorization capability is described below in a
subsequent section.

The problems of recognizing, extracting, and categorizing proper nouns, and the approaches to
these problems taken by several research teams, is discussed in a later section.

DR-LINK not only extracts proper nouns (PN’s) and complex nominals (CN'’s) from the topic
statement, but also identifies the discourse component in which each should preferably be found.
A discourse component in a given document is weighted on the basis of how many complex
nouns and complex nominals from the topic statement it contains. This weight is then multiplied
by another weight factor that reduces the total weight if the discourse component is not the one
required by the topic statement, e.g., if the topic statement requires a noun phrase to be in a
FUTURE component, but the phrase only occurs in the LEAD-MAIN component of a given doc-
ument, the weight of that component will be reduced. If the FUTURE component also contains
the given noun phrase, the FUTURE component will receive a higher weight than the LEAD-
MAIN component. A CONSEQUENCE component that doesn’'t contain the desired noun phrase
at all will receive a lower weight than the LEAD-MAIN component. Hence, the PN/CN similarity
score depends not only on the presence of specified proper nouns and complex nominals in a
given document (conventional keyword matching), but also on the discourse components in which
they occur (discourse text structure matching). In fact, it is properly called a PN/CN/TS score

Page 99

where the third acronym stands for Text Structure. Hence, both the SFC similarity score and the
PN/CN/TS similarity score for a given document reflect the discourse structure of the document,
and the discourse requirements of the topic statement.

Observe too that proper nouns are assigned semantic categories in DR-LINK [Paik, ARPA Work-
shop]; this categorization is discussed below. Hence, the PN similarity score of a document rela-
tive to a given topic may depend on a category match as well as a match on the actual proper noun
itself.

9.3.4 Integrated SFC/PN/CN Matching

Plainly, a document that matches a topic statement not only at the level of subject categories
(SFC's) and the discourse components in which they occur, but also matches on proper nouns and
noun phrases, should be ranked higher relative to the given topic statement than a document that
matches only on the one or the other. DR-LINK’s “integrated matcher” combines these two kinds
of matching. It takes as input two similarity scores: one based on SFC vector similarity, and one
based on Proper Noun (PN), Complex Nominal (CN) similarity. An SFC cutoff or threshold score

is computed. Documents are then ranked by a combined similarity score, with documents having
a non-zero PN/CN similarity being ranked above those with a zero PN/CN score. Generally, doc-
uments below the SFC threshold are not returned, but a fraction of documents (depending on the
recall level) with high PN/CN scores and documents below the SFC threshold are inserted above
the zero PN/CN documents.

9.3.5 Relations and Conceptual Graph Matching

If a topic and a document match on the presence of two entities, there is a chance that the docu-
ment is about the specified topic. If the two entities occur in close proximity in the document, the
chance is better. If the topic requires that the entities occur in a certain discourse component, and
the entities occur in the required component within the document, the chance of document rele-
vance to the given topic is better still. But the assurance of relevance will be even stronger if the
entities are related in the same way in both topic and document. Hence, DR-LINK also has the
capability to identify relationships in a number of syntactic cases, e.g., noun phrases (NP’s), nom-
inalized verbs (NV'’s), prepositional phrases (PP’s), and the complex nominals (CN'’s) already
mentioned. In all cases where DR-LINK can identify a relation, it generates a concept-relation-
concept (CRC) triple. This process not only identifies relations. It also converts varied syntactic
forms into a single canonical form to simplify topic-document matching.

Once CRC triples have been generated, they are linked together to form larger units, e.g., clauses.
Linking can occur because the same proper noun, e.g., a company name, occurs in two CRC’s. Or
it can occur because of coreference resolution, e.g., a pronoun in one CRC is identified as refer-
ring to a given proper noun in another. The structures that DR-LINK forms by linking CRC’s are
conceptual graph§CG’s). CG’s [Sowa, 1984] are a graphical notation for representing the syntax
and semantics of natural language. CG’s are also available in a linear textual form. The graphical
nodes represent entities, and relationships among the entities. However, CG’s are more powerful
than simple entity-relationship diagrams. They can represent first-order predicate logic, e.g., they

Page 100

can express quantification. CG’s have been discussed earlier with respect to Wille’s work on their
equivalence to formal contexts, as defined in Formal Context Analysis

Liddy offers an example of converting an NV into canonical CRC’s: The phrase “the company’s
investigation of the incident” is converted into:

[investigate] -> (AGENT) -> [company]
[investigate] -> (PATIENT) -> [incident]

Note that the “nominalized” form “investigation” has been converted into the standard verb form
“investigate.” This simplifies matching with another phrase in which the verb form occurs. The
relations “AGENT” and “PATIENT” are standard CG relations. The AGENT is the entity (also
called the “actor’) who performs the action, in this case investigates. The PATIENT is the passive
entity that is the object of the action, in this case the entity that is being investigated.

Once CG’s have been generated, they are made more “conceptual,” by replacing entity nodes by
codes representing the concepts of which the entities are instances. In TREC-2, DR-LINK used
the Roget International Thesaurus (RIT) codes. (Current versions of DR-LINK, use WordNet
Synsets. [Liddy, PC]) Finally, CG’s in topics can be matched against CG’s in documents.
[Myaeng et al., JITAE, 1992]

9.3.6 Recognition of Semantic Similarity in CN’s

Strzalkowski [IP&M, 1994] [TREC-2] [TREC-3] uses statistics not only to choose semantically
significant head-modifier pairs from ambiguous CN’s. He also use it to identify clusters of words
that are semantically related, and hence are candidates for use in query expansion. Two terms are
candidates if they occur in the same contexts, e.g., as head nouns with a number of common mod-
ifiers, or as modifiers of a number of common head nouns. For example, “man” and “boy” are
modified by a number of the same modifiers (appear in a number of the same “contexts”) in the
corpus studied, including “bad,” “young,” and “older.” That is, the corpus contains a number of
references to “young men” and “young boys,” “older men” and “older boys,” etc. The same two
words, “man” and “boy,” also serve as modifiers of a number of the same head nouns, including
“age” (references to “man’s age” and “boy’s age), “mother” (references to “a man’s mother” and
“a boy’s mother”), and so on. Hence, “man” and “boy” appear in the same contexts both as head
nouns and as modifiers.

Several additional factors must be considered to identify two terms as semantically similar. First,
the terms should appear in few contexts other than the ones they share. Second, the shared con-
texts must not be too common, e.g., “natural” is too common a term to justify predicting similarity

of “logarithm” and “language” on the basis of the shared contexts, “natural language” and “natu-
ral logarithm.” Third, the number ddlistinct shared contexts must exceed some threshold; this
threshold depends on how narrow or broad the training corpus is, e.g., a Wall Street Journal cor-
pus is broader than a Communications of the ACM (CACM) corpus. Hence, “banana” and “Bal-
tic’ may share the context “republic” a number of times, but their similarity is rejected because
they share no other context. Similarly, “Dominican” and “banana” share two contexts, “republic”
and “plant,” but in a broad corpus, this is still not enough. A still more striking example is “phar-

Page 101

maceutical” and ““aerospace” which are not semantically similar despite being found to share
more than six common contexts: “firm,” “industry,” “sector,” “concern,” etc. Here the common-
ness, and hence relative unimportance, of the shared contexts must outweigh the mere number of
shared contexts. Strzalkowski et al. also observe that modifiers are more reliable contexts than
head terms; hence, in totalling the number of shared contexts for a term, they count a head context
as only 0.6 of a context.

A final problem with Strzalkowski’s statistical clustering of terms with shared contexts is that it
does not distinguish similarities that indicate synonyms (“merge,” “buyout,” and “acquisition”),
and specialization, which generate terms suitable for query expansion, from complements (“Aus-
tralian” and “Canadian”) and antonyms (“accept” and “reject”) which are genemnaliguitable

for query expansion. Strzalkowski addresses this by defining a “Global Term Specificity” (GTS)
measure. The GTS is roughly analogous toitlidut is measured over syntactic contexts rather
than documents. Moreover, it is only useful for comparing terms that are already known to be sim-
ilar in terms of context co-occurrence. For such contextually similar terpadw,, the assump-

tion is thatw, is more specific thaws if it occurs in fewer distinct contexts; /; andw, occur in

the same number of distinct contexts, tgtoccurs in many more instances of those contexts than
Wo, it may be more specific. GTS is given by:

dC (W) ICKW) if both exist

O

GTS=[ICrW) if only it exists
E IC (W) otherwise
where (withn,,, d,>0):
— nW ;
IC (w) = d i +d +1) head is context
Ny T
IC (W) = modifier is context

d,(n,+d,+1)

Here,d,, is the number of distinct contexts in whighoccurs (as a modifier fdC,, as a head for

ICR), andn,, is the number of actual occurrencesmwin these contexts. IBTS(w) is greater than

or equal by some appropriate factor th@mS(w), thenw, is assumed to be more specific than

ws. If GTS(w) is less than or equal t6TS(w) by some appropriate factor and vice versa, then

the terms are assumed to be synonymous. Hence, this process leads to clusters of terms that are
predicted to be either synonyms, or in the relation that one term is a specialization of the other.
These clusters can be used either for automatic query expansion or interactively, to suggest candi-
date expansion terms to a human user.

DR-LINK also uses statistical techniques to identify terms that are likely to be interchangeable in
certain CN contexts, specifically terms that are premodified by the same set of terms in a given
corpus. If two term& andb are premodified by the same set of terms, there is said to be a “second
order association” betweerandb. Hence, this process identifies phrases that are substitutable for
each other for purposes of document-topic matching.

Page 102

9.4 Proper Noun Recognition, Categorization, Normalization, and Matching

The presence of specified proper nouns is often a necessary, though not necessarily sufficient,
condition for a document to be relevant to a specified topic. If the topic is the Japanese stock mar-
ket, then some form of the proper noun “Japan” is clearly essential, although by itself hardly suf-
ficient, since documents might deal with many other aspects of Japan. Names of persons,
companies, government agencies, religions, chemicals, and many other entities may be essential
to the specification of a topic, and the recognition of documents relevant to the given topic.

Recognition, extraction, and matching of proper nouns is considerably more complex than it
might at first seem. A variety of factors complicate the process. Many proper nouns consist of
more than one noun, e.g., “Wall Street Journal.” Many proper nouns include a preposition, e.g.,
“Department of Defense,” or a conjunction, e.g., “John Wiley and Sons.” Many proper nouns can
be specified in multiple forms, e.g., “MCI Communications Corp.,” “MCI Communications,” and
“MCI.” Many proper nouns are group nouns, which may result in references either to the group as
a whole, or to the individual entities making up the group, e.g., “European Community,” “Latin
America.” Common nouns and noun phrases may also group individual entities that have proper
noun names, e.g., western nations, socialist countries, third world, agricultural chemicals.

Borgman et al. [JASIS] discuss at length the particularly difficult case of names of persons. Con-
ventions for assigning names vary with the culture and historical period. In ancient times, single
names were normal. The practice of assigning multiple names, e.g., first, middle, and last names,
iS more recent. Some cultures use compound surnames, but the conventions vary from one culture
to another, e.g., “[h]ispanic children receive a combination of their parents’ surnames, and wives
acquire a combination of their maiden surnames, and their husbands’ surnames.” Order of names
also varies with culture, e.g., “[a]sians traditionally place the surname first, although asians living
in Western nations often report their names with surnames last.” “Personal names may be trans-
lated from one language to another, retaining meaning,... or be transliterated from one alphabet or
character set to another.” Multiple transliteration schemes exist. People change their names over
their lifetime, as a result of marriage, divorce, adoption, or movement from one country to
another. People adopt or receive nicknames and diminutives, e.g., “Dick” for “Richard,” “Bob”
for “Robert.” A person may use one form of her name on a drivers license, but another form for
publication as an author. On top of all this, errors are common, not only typographical errors,
which affect any typed input, but phonetic errors, e.g., a person from one cultural or linguistic
background transcribing a spoken name from another cultural or linguistic background is espe-
cially likely to err.

Paik et al. [ARPA Workshop] [Corpus Proc] have developed a sophisticated series of procedures
for proper noun recognition and matching in their DR-LINK (Document Retrieval through LIN-
guistic Knowledge) and KNOW-IT (KNOWIledge base Information Tools) IR engines. The proper
noun recognition system described here was developed through corpus analysis of newspaper
texts. First they assign parts of speech to all the words in the document; then they execute a gen-
eral purpose noun phrase bracketter, and a special-purpose proper noun phrase boundary identi-
fier. Next the system categorizes all the proper nouns; this is consistent with the DR-LINK
emphasis on capturing the conceptual level of a document, as well as the actual keywords and
phrases. Topic requests may often be stated at the conceptual level. As Liddy et al. note, “queries

Page 103

about government regulations of use of agrochemicals on produce from abroad, require presence
of the following proper noun categories: government agency, chemical, and foreign country.”
Note that a document that contains proper nouns in those categories may not actually contain the
words “government,” “agrochemicals,” “produce,” or “abroad.” DR-LINK attempts to recognize
eight categories: Geographic Entity, Affiliation, Organization, Human, Document, Equipment,
Scientific, and Temporal; within each of these categories, DR-LINK recognizes two or more sub-
categories, for a total of 29 meaningful sub-categories. (A more recent version, embodied in both
DR-LINK and another commercial tool, KNOW-IT, recognizes over 60 sub-categories.) “Affilia-
tion” includes “religion” and “nationality.” “Human” includes “person” and “title.” “Scientific”
includes “disease,” “drug,” and “chemical.” And so on. DR-LINK performs this categorization
using such clues as known prefixes, infixes, and suffixes for each category, e.g., Dr., Mr., Ms.,and
Jr. for persons, Inc. and Ltd., for companies, etc. DR-LINK also uses a database of aliases for
alternate names of some proper nouns, and knowledge bases such as gazetteers, the CIA World
Factbase, etc. Contextual clues are also used, e.qg., if the pattern proper noun, comma, proper noun
is encountered, and the second noun has been identified as a state, the first noun (if not otherwise
categorized) will be categorized as a city.

Since a given proper noun may take multiple forms, DR-LINK standardizes proper nouns as they
are being categorized. That is, all forms of the same proper noun are mapped into a single stan-
dard form, to simplify subsequent matching. This is equivalent to stemming of ordinary words,
reducing all variants to a common form. However, whereas stemming (at least in English!) largely
involves processing of multiple suffixes, standardizing of proper nouns involves standardizing of
prefixes, infixes, suffixes, and variant forms of proper nouns, e.g., “Dick” to “Richard.” Note that
two variant forms of the same proper noun, referring to the same entity, may occur not only in two
different documents, or in a document and a topic request, but also within a single document. In
particular, an entity may be named in full on its first reference, and mentioned in a more abbrevi-
ated form on subsequent references. It is an important instance of reference resolution for a Natu-
ral Language Processing (NLP) based IR system to recognize that these are references to the same
entity.

DR-LINK also expands group proper and common nouns, so that a topic request can match a doc-
ument on either the group name or its constituents. For example [Feldman, ONLINE], a request
for documents about “African countries which have had civil wars, insurrections, coups, or rebel-
lions” will return not only documents that contain some form of the proper noun “Africa,” but also
documents containing references to countries within Africa. DR-LINK uses proper noun and
common noun expansion databases.

Note that, in a system like DR-LINK, proper nouns can provide several levels of evidence for
topic-document similarity computations. First, there is the obvious matching on the names them-
selves. Second (as noted earlier), there is matching on categories assigned to the names. This cat-
egory matching is similar to, but supplements, the matching on subject categories (SFC’s)
described in an earlier section. Third, expansion of group nouns can result in matching a docu-
ment on proper nouns not actually mentioned in the topic statement. This can work in the other
direction too, e.g., if a document mentions Montana or Atlanta, then these references may be used
to match the document against a topic that only speaks about “American” companies. Fourth,
proper nouns naming geographical entities can provide relationship information, e.g., they can

Page 104

“reveal the location of a company or the nationality of an individual.” Subject information can be
combined with proper noun category information for more refined topic-document matching. A
report of a merger should involve (at least) two proper nouns of category “company,” while a
report of an invasion is likely to specify two geographic entities, most likely at the level of country
or province.

A significantly different approach to proper noun recognition is taken by Mani et al. [Corpus
Proc, 1996] Their approach differs somewhat both in goals and methods. They focus on a much
smaller set of subject categories: people, products, organizations, and locations. Within large text
corpora, they seek (like Paik) to categorize previously unknown names automatically. However,
they attempt to go further than Paik, extracting from the text appropriate semantic attributes for
each named entity, e.g., the occupation and gender of a person. A given entity may be mentioned
more than once in a given document, and each mention may employ a different variation of the
entity’s name, e.g., “President Clinton,” “Bill Clinton,” “Clinton,” “the president,” etc. They seek

to “unify” these mentions, i.e., to recognize all mentions to the same entity, and to combine the
attributes associated with these varied mentions into one common schema describing the given
entity. This is called “coreference resolution” for proper nouns. When two mentions (and their
associated attributes) are successfully unified as referring to the same entity, they are said to be
“coanchored.” Note that this goes considerably beyond (although it includes) the normalization of
proper nouns performed by Paik.

Coreference resolution is closely tied to attribute extraction. On the one hand, attributes extracted
from one mention of a given entity can be combined with attributes extracted from another men-
tion, to fill out as many of the “slots” associated with the given type of entity as possible. For
example, one mention may indicate that Clinton’s occupation or title is “president.” Another men-
tion may indicate that his gender is “male.” On the other hand, extracted attributes can serve as
evidence to determine whether two mentions refer to the same entity, or to two distinct entities.
For example, if “President Clinton” has been associated with the gender attribute value “male,”
and “Hilary Clinton” has been associated with the gender attribute value “female,” this is evidence
that these mentions duot refer to the same entity. But, “President Clinton” and “Mr. Clinton”

will match on gender, and hence will be coreference candidates unless additional evidence indi-
cates a contradiction. Moreover, attributes may also serve to indicate whether two mentions refer
to distinct but related entities. For example, “Bill Clinton,” “Hilary Clinton,” and “the Clintons,”

are distinct, but related entities. As a further refinement, Mani distinguishes between “discourse
pegs,” i.e., entities that are distinct in a given discourse, and entities that are distinct in the real
world. For example, President Clinton, and ex-Governor Clinton may be two distinct discourse
pegs for purposes of analyzing a given document, although they refer to the same real-world
object in the world model or belief system of an external knowledge base.

As Mani encounters new proper noun mentions in the text of a given document, he naturally
wants to limit the number of earlier mentions that must be evaluated as possible candidates for
coreference. He does this by indexing each mentiomdaynalized naméa standardized form,
analogous to Paik), bgame elements its name (individual words within the name), and by its
abbreviations Only mentions that match on at least one of these indexes are coreference candi-
dates. Abbreviations are generated by rule, or retrieved from a lexicon; hence, a full name in one
mention can be matched against an abbreviated name in another.

Page 105

Another difference between the Mani and Paik approaches is that Mani makes greater use of the
context surrounding a proper noun, and of the discourse structure of successive mentions. In par-
ticular, Mani makes use of both honorifics and “appositive phrases,” phrases adjoining and identi-
fying a proper noun. It is a widely used convention, especially in news stories, to attach an
honorific or an appositive phrase to the first mention of a given name, e.g., “Anthony Lake, Clin-
ton’s national security advisor,” or “Osamu Nagayama, 33, senior vice president and chief finan-
cial officer of Chugai,” or “German Chancellor Gerhard Schroeder.” Such appositives and
honorifics are generally employed whenever the named entity is not a “household name,” and is
not sufficiently identified by title. It is applied to entities other than persons, especially organiza-
tions and locations, e.g., “X, a small Bay Area town.” (Paik indicates that one of their intended
research directions is the use of appositive phrases. However, in one knowledge base derived by
KNOW-IT from New York Times articles, Anthony Lake was erroneously categorized as a body

of water, presumably because the appositive phrase was ignored or misinterpreted.) Mani identi-
fies candidate appositive phrases by pattern matching based on left and right delimiters such as
commas and certain parts of speech. Syntactic analysis is then used to extract key elements, e.g., a
head or premodifier, from the given phrase. In the “Nagayama” example above, “senior vice pres-
ident” would be extracted, and looked up in a semantic lexicon ontology, which identifies the title
as a “corporate officer.” Plainly, the value of such appositive phrases for categorization depends
on the availability of lexicons that enable one to interpret their semantic content.

Another distinctive feature of the Mani methodology, closely related to the gathering of evidence
over multiple mentions of an entity, is the explicit handling of uncertainty. Evidence gathered in
one mention can reinforce or contradict evidence gathered in another mention. Mani employs a
variety of Knowledge Sources (KS's). KS’s are little rule-based programs that attempt to catego-
rize (“tag”) entities. Many of the rules employed by Mani’s KS’s are similar to the rules employed

by Paik’s system, e.g., one KS attempts to identify organizations by using suffixes such as “Inc.”
and “Ltd.” Another tries to identify persons by looking for titles and honorifics, e.g., “Mr.”, “Lt.
Col.”, “Ms.”, etc. Other KS’s use lexicons, e.g., organization lexicons, gazetteers as geographic
lexicons, etc. On the basis of the evidence it collects, a KS can generate multiple hypotheses with
different confidences.Mani offers the example that “General Electric Co.” may generate one
hypothesis that the entity named is a person, with “General” as a title, while other hypotheses may
be that it is an organization or a county, based on the abbreviated suffix “Co.”. On the other hand,
multiple KS’s may generate the same hypothesis based on different evidence, e.g., one KS may
hypothesize that the given mention is an organization based on the “Co.” suffix; another KS may
generate the same hypothesis based on the presence of the name in an organization lexicon. A
“Combine-Confidence” function computes the confidence of a given hypothesis about a given
mention as the weighted sum of the probabilities assigned to the hypothesis by each KS that con-
tributed to it, each probability weighted by the reliability of the KS that generated it.

The confidence values associated with hypotheses play an important role in mention unification.
If two person mentions have conflicting hypotheses about the occupation slot, but one hypothesis
has a much lower confidence than the other, unification may succeed. On the other hand, if two
mentions have conflicting gender hypotheses, and these hypotheses both have high confidence
values (e.g., based on the honorifics “Mr.” and “Mrs.” respectively), the unification will fail.

Page 106

9.5 Semantic Descriptions of Collections

In a later section, the fusion of IR results from multiple collections is discussed. However, all the
cases discussed there assume that the set of collections to be accessed is known, preferably in
advance. If the set of collections is very large, diverse, and dynamic, e.g., the Internet, this
assumption no longer holds in general. In such cases, IR becomes a two-stage process, i.e., first
find an appropriate set of collections, and then apply IR techniques such as those discussed in this
paper. The process of finding the “right” collections becomes more manageable (though far from
trivial) if each candidate collection includes, or is assigned, a formal machine-readable descrip-
tion of its contents. (The problem of searching and indexing the Internet - or a large Intranet - in
the normal case where such standardized formal descriptions are not available, is discussed in a
later section.) The first stage of the IR process then becomes the matching of a given query against
a “collection” consisting of these collection descriptions. Chakravarthy and Haase [SIGIR ‘95]
explore a case where structured collection descriptions (they call the collections “archives”) with
semantic content are created manually using WordNet, and then natural language queries are
translated automatically (using syntactic/semantic techniques, an on-line Webster’s dictionary,
and WordNet again) into a structured form that can be matched against the archive descriptions.
They report that their system, NetSerf, has a “database” that currently contains descriptions (they
call them “representations”) of “227 Internet archives. Most of these are from two sources, the
Whole Internet Catalog [Krol, 1992] and the Internet Services List [Yanoff, 1993].”

An archive description (“representation”) consists of <relation-type, relation-word> pairs. Rela-
tion types illustrated by the authors in their examples include: TOPIC, INFO-TYPE, OBJECT,
AUTHOR, PERTAINS-TO, IN, and HAS-OBJECT. “For each relation-word, NetSerf uses Word-
Net to identify all its synsets.” The relation word is disambiguated by the synsets containing the
word that arenot chosen. Chakravarthy and Haase offer the example of the World Factbook
archive, described in natural language as, “World facts listed by country.” The TOPIC is “coun-
try,” and the INFO-TYPE is “facts.” Three of WordNet'’s four synsets are assigned to the relation-
word, “country:”

SYNSET: {nation, nationality, land, country, a_people}
SYNSET: {state, nation, country, land, commonwealth, res_publica, body_politic}
SYNSET: {country, state, land, nation}

A fourth synset of “country,” [rural area, country] is omitted since it corresponds to a sense of the
word “country” that is obviously inapplicable here.

The authors plan to explore in the future the automatic construction of such descriptions from
sources such as home pages and README files.

Query processing in NetSerf starts with a natural language query. “The query processor makes the
assumption that the query, after preprocessing, consists of one or more topic words followed by
prepositional phrases and verb clauses that modify either the topic words or preceding modifiers.”
Manual rephrasing is sometimes necessary, e.g., where the original query takes the form of two

Page 107

sentences. The query is then “tagged,” i.e., a part of speech is assigned to each word or other lexi-
cal “token.” Common query introductions such as “What is” are deleted. Words or phrases identi-
fying the leading information type are extracted, e.g., given the query “satellite photographs of
hurricane’s progress,” the information type “satellite photographs” is extracted. Topic words and
modifiers are extracted and cast into <relation-type, relation-word> form. The relation type is
determined by the syntactic type of the modifier. A word sense disambiguator based on neighbor-
ing relation words in the original textual query, WordNet hypernyms, etc., is executed. Finally, the
main topic relation words are expanded “using semantic relations from the dictionary” that are
“extracted using a pattern definition language.” For example, given the topic relation-word “pub”
and its dictionary definition, the query processor generates the <relation-type, relation-word>
pair: <PERTAINS-TO, “alcoholic beverage™>.

NetSerf queries are matched to archive representations. Query relation-words are matched against
archive description relation-words. A “hit” occurs “if some valid synset of some relation word in

R [the archive representation] is a hypernym of some valid synset of some relation word in Q. [the
NetSerf query]” A positive weight is added for every hit where the relation types match. A nega-
tive weight is added for every hit where the relation types do not match.

Chakravarthy and Haase found that “structured representations [of archives, i.e., the archive
descriptions], and semantic knowledge-based matching lead to significant improvements.” On the
other hand, sense disambiguation led to a slight degradation of performance.

9.6 Information Extraction

One of the most important areas of IR where NLP plays a crucial ralgasmation extraction
(IE). IE is the extraction of information from a collection of documents in response to a query.

IE must be clearly distinguished frosocument retrieva(DR), anddocument summarization

(DS). DR, the focus of much of the research described in this report, is the retriel@wihents
relevant to a given query or topic. The document set retrieved may be relevance ranked or not.
Either way, what the user receives is a set of documents believed to be relevant to the user’s need.
DS is similar to DR except that the system generates a summary of each retrieved document. This
summary may be a few sentences or paragraphs (perhaps modified syntactically achieve greater
reading “smoothness” and “continuity”) believed to capture the essence of what the given docu-
ment is about, or a set of key words believed to suggest the document’s essence. In either case, the
retrieval is document-based. Indeed, the distinction between DR and DS systems is often not
clear-cut. A DR system seldom returns a list of documents directly. Rather, it typically returns a
list of document identifiers, perhaps accompanied by relevance scores. These identifiers may be
titles, subject lines, summaries, etc. The user can then request the actual text of a given document
by selecting its identifier. On the other hand, a DS system returns a list of summaries. The DS sys-
tem may allow the user to expand on the summary by requesting the document from which the
summary was extracted.

By contrast, an IE system returns to the usdéormation(nota document list) responding to the
user’s information request (query). The response may be generated from multiple documents, or
from a combination of a document and a database entry. Moreover, note that the itgomis-

Page 108

tion extraction, notextextraction. This implies that the “answer” generated by the IE system does
not necessarily consists of text literally extracted from the document, with only minor syntactic
tinkering if any. Instead, the answer may be (as with the systems participating in the Message
Understanding Conference - MUC [Darpa, 1992] competition) a template in which slots have
been filled in. The template is usually generated manually in advance of the IE competition, or
execution of an IE application. The names of the template fields do not necessarily appear in any
document from which relevant data is extracted. The IE system must “understand” (typically
using simple linguistic clues) that a term appearing in the text of a document, e.g., a human or cor-
porate name, is an appropriate value for a given field of the template, and “fill in” the value of the
field with the extracted value. Hence, the answer provided to the user is a mixture of manually
generated template names, and extracted text values. Moreover, if a person is identified from
information in a text document, the template may be filled in with a combination of information
about the given person extracted from the given document, and additional information extracted
from an entry about the person in a structured database.

Alternatively, the answer returned to the user may be textual, e.g., a sentence or paragraph. How-
ever, the sentence may be a combination of extracts from two sentences in the original document,
linked by co-reference resolution. For example, the first sentence may identify a person by name

and title. The second sentence may refer back to the individual by pronoun, e.g., “he announced

that” Hence, the textual answer generated and returned to the user never actually appears
explicitly in the text of the given document.

Note that, even in an IE system, e.g., KNOW-IT [Liddy, WP, 1999], the user may be given the
option of going back to the original document(s) from which the answer was extracted.

Ideally, an IE system would “understand” the documents it reads (just as a human library
researcher would), extract and condense all the information relevant to the user’s request, and
return a single, coherent, comprehensive answer. In actual fact, such a strategy is far beyond the
state of the art. The time required to compile the knowledge and logic required for such a level of
processing, even for a relatively narrow subject domain, would be prohibitive. Moreover, such a
level of logical analysis would be far too elaborate and slow for processing the huge document
collections available today in libraries and on the Internet.

Hence, many IE systems use statistical part-of-speech tagging followed by “shallow parsing,”
(also called “partial parsing”). [Cowie et al., 1996] The term “shallow parsing” refers to high-
speed parsing techniques in which only key fragments of a sentence are parsed. The phrase “shal-
low knowledge” refers to relatively simple ad hoc rules, often tailored to the needs and character-
istics of a given domain, and supplemented by large lexicons, machine readable dictionaries
(MRD’s) and other on-line reference sources.

Part-of-speech tagging is the process that assigns to each word in a sentence the grammatical role,
e.g., noun, verb, adjective, determiner, etc., that the given word plays in the given sentence. This
role is called its “part of speech.” “[M]Jost English words have only one possible part of speech
[but] many words have multiple possible parts of speech and it is the responsibility of a tagger to
choose the correct one for the sentence at hand.” {Charniak, 1997] For example, the word “can”
can be a modal verb, noun, or verb. Statistical parsers are typically trained on a tagged corpus. In

Page 109

the simplest form, the parser will simply know which part of speech is most common for the given
word in the training corpus. A more sophisticated statistical tagger uses context, e.g., knows
which part of speech is most probable for a given word when the word occurs following some
other part of speech. For example, taken by itself, the most probable part of speech for “can” is the
modal-verb. However, if the word “can” follows the determiner “the,” the part of speech “noun”
becomes far more probable.

Shallow parsing allows an IE system to “skim” over a sentence, only parsing the most critical
fragments, rather than generating a complete parse tree for the entire sentence. Parsers that
attempt to parse a sentence fully “typically operate in polynomial time and tend to get bogged
down with sentences containing more than 20 to 30 words.” [Cowie et al. 1996] Moreover, com-
plete parsers generate a great many legal parses for a single sentence of significant length. For
many IE tasks, the output of a partial parser is quite adequate, identifying critical subjects,
objects, proper noun categories, etc.

Shallow knowledge is domain-specific knowledge, typically consisting of ad hoc rules that work
in, but perhaps only in, the given domain. As an example of how narrowly tailored these IE rules
can be, consider these examples from the U.Mass/MUC-4 [MUC-4] [Cowie et al., 1996] system
for extracting events in the domain of Latin American terrorism (the rule numbering is arbitrary):

Rule 1: The direct object of “robbed” (active voice) is the victim of a robbery.
Rule 2: The subject of “disappeared” (active voice) is the victim of a kidnapping.
Rule 3: The object of “in” after traveling (active voice) is the target of an attack.
Rule 4: The subject of “hurled” passive voice is the instrument of an attack.
Rule 5: The subject of “placed” is the instrument of a bombing.

The rules were evidently derived from the text corpus. Rule 1 is fairly general, and might apply
outside of the target domain. On the other hand, the other rules would obviously break down
badly outside the intended domain. Consider the use of Rule 4 in a “baseball” domain! Rules 3
and 5 are even more specialized. Obviously, in most domains, traveling in a vehicle carries no
implication about an attack at all, let alone who the target of the attack is. Similarly, in most
domains, objects can be “placed” without any implication that they are bombing instruments. It is
clear that the use of such rules requires a two-step process. First, IR techniques must be employed
to locate the documents (or passages within documents) that are likely to be about terrorism. Only
when the corpus has been narrowed down in this way do rules such as those above stand any
chance of working. Yet within the intended domain, such naive rules have been found to work
fairly well.

Note that because ad hoc shallow knowledge is only useful in the specific domain for which it was
developed, it is usually the case that it cannot be re-used in another domain. Therefore, the devel-
opment of a shallow knowledge base makes sense only if it can be generated so rapidly and inex-
pensively that it can be treated as “a disposable artifact.” In other words, the assumption

Page 110

underlying the shallow knowledge approach is that it is easier and cheaper to create a shallow
knowledge base for each new domain that comes along, than to create a deep knowledge base that
can be re-used for many domains.

The opposite extreme is represented by the Cyc project [Lenat et al., 1989], the goal of which is to
create a huge KB of commonsense knowledge of the world, the kind of knowledge that is not
explicitly represented in encyclopedia and other reference books because it is knowledge that
“everybody knows,” knowledge that is taken for granted, but knowledge that expert systems and
IE systems tailored to a specific domain do not possess. Cyc research has demonstrated that build-
ing such a KB is a very long-term, expensive, difficult affair. It should be noted that the Cyc
approach has been to enter knowledge manually, although the hope has always been that Cyc
would reach a critical mass at which it could begin acquiring knowledge automatically from large
textual sources.

The KNOW-IT system represents an intermediate approach to IE. It is not tailored to any particu-
lar application or knowledge domain. Like its technical and commercial relation, DR-LINK, it
supports a broad hierarchy (60+) of proper noun categories, in a hierarchy eight levels deep. Sim-
ilarly, it supports generic semantic relationships, such as “affiliation, agent, duration, location, or
point in time,” as opposed to relations specific to a particular domain such as terrorism, e.g., rela-
tions “such as ‘weapons used’ or ‘victim'.” The KNOW-IT approach takes advantage of the
“‘common practice among writers of including predictable information-rich linguistic construc-
tions in close proximity to related proper names.” Hence, KNOW-IT identifies and categorizes
proper nouns, then identifies generic relationships among the concepts embodied by those proper
nouns, so-called Concept-Relation-Concept (CRC) triples. (In common with most other IE sys-
tems, KNOW-IT also performs part-of-speech tagging to all the words in the text, assigning one
of 48 possible grammatical tags, such preposition, determiner, or singular noun.) The user can dis-
play the concept structure graphically, penetrate from higher to lower levels of the concept hierar-
chy, until actual proper nouns are reached. She can also display the relationships in which
concepts or proper nouns participate, the documents in which those proper nouns and relation-
ships occur, the sentences in which they occur, and finally, the full text of the documents in which
the sentences occur. DR-LINK and KNOW-IT were originally developed for newswire text, but
KNOW-IT has been extended to document types as diverse as technical manuals and WWW
home pages.

The methods used by KNOW-IT for proper noun recognition and categorization are those devel-
oped by Paik [1993] for the DR-LINK project, as described earlier in the section on proper noun
techniques. The CRC triples are the same as those widely used in Conceptual Graph studies, as
developed by Sowa and others. CG's are discussed earlier in the section on formal concepts, and
again in the section on relations and conceptual graph mapping. The former discusses Wille’s
work on the equivalence of CG’s and formal contexts in Formal Context Analysis (FCA). The lat-

ter discusses the work on CRC triples and CG’s in the DR-LINK system, closely related to
KNOW-IT.

Although the basic KNOW-IT approach is domain-independent, it can and in some cases has,
been extended with knowledge of some specialized domain, e.g., international politics.

Page 111

10 Clustering

“Clustering” of documents is the grouping of documents into distinct classes according to their
intrinsic (usually statistical) properties. Clustering is a kind of classification but it differs from the
classification for routing purposes discussed in the section above on routing in one crucial respect:
In a routing application, the documents are classified in terms of their similarity or relevance to
external queries or topics or user profiles. In “clustering,” we seek features that will separate the
documents into natural groups based entirely on the internal properties of the collection. Ideally,
the groups will be completely separate and as far apart as possible in feature space. But some-
times, overlap of clusters is unavoidable. [van Rijsbergen, 1979] Since clustering depends on the
statistical properties of the collection being clustered rather than on matching the documents
against some external set of queries, it is normally (but not always - see below!) applied to a pre-
existing collection rather than an incoming stream of documents as in a routing application.

Why should documents be clustered? The basic reason is that clustering can reveal the intrinsic
structure of a collection, e.g., by topic, subtopic, etc., (assuming of course, thaistheswgnifi-

cant internal structure). If a language-independent statistical method suctgeatis” is used, a
collection may also be clustered by language or document type, by topic within language, etc.
(See section 3.3.6.) Moreover, by the “cluster hypothesis,” “closely associated documents tend to
be relevant to the same requests.” [van Rijsbergen, 1979] Document clustering of a large collec-
tion is particularly effective when it ifierarchical i.e., when the collection is partitioned into
(relatively) large, high-level clusters corresponding to broad categories, each high-level cluster in
turn clustered into smaller clusters corresponding to tighter, more cohesive categories, which in
turn are composed of still smaller, still more cohesive clusters, and so on. Ideally, the lowest level
clusters in such a hierarchy will consist of documents that are very similar, e.g., that are all rele-
vant to most of the same topics or queries. Hence, clustering, especially when combined with
modern graphical display techniques, can be an effective tool for browsing a large collection and
“zeroing in” on documents relevant to some given topic or other criterion. For similar reasons, it
can increase theffectivenessf document retrieval, i.e., of querying large collections. [Willetts,
IP&M, 1988]

Searching a hierarchically clustered collection can proceed eibpedownor bottom-up Top-
down searching proceeds as follows:

A top-down search of the cluster hierarchy is performed by compar-
ing (using a similarity measure) the query to cluster representatives
[e.g., centroids] of the top-level (largest) clusters, choosing the best
clusters, comparing the query with representatives of lower-level
clusters within these clusters, and so on until a ranked list of lowest-
level clusters is produced. The documents in the top-ranked [of
these lowest-level] clusters are then ranked individually for presen-
tation to the user. [Belkin & Croft, ARIST, 1987]

The biggest problem with a top-down search is that the highest-level clusters may be so large and
loosely coupled that a representative of such a cluster may bear little resemblance to most of the
documents in the cluster. Hence, choosing a cluster at the highest levels becomes almost arbitrary

Page 112

and the search procedure is likely to choose a search path that misses the relevant documents.
Hence, top-down searches work best when the clustering method and associated threshold ensure
that even the highest-level clusters are reasonably small and cohesive.

A bottom-up search is the inverse of a top-down search. If one starts at the bottom, the clusters
should be smaller and more cohesive than at the top. The problem is which one of those bottom-
level clusters to choose as a starting point. One approach is to do a conventional query search to
find one relevant document. Then one can start the cluster search with the cluster containing that
document. Or, one can do a conventional query search to match the query against the representa-
tives of all the bottom-level clusters. The cluster representative that is most similar to the given
guery then determines the starting cluster. Cluster searching then proceeds upward until a cluster
is reached containing the number of documents the user wants to retrieve. [Willett, IP&M, 1988]

Of course, there is no guarantee that the cluster hypothesis is widely satisfied. It can only be veri-
fied empirically in any given collection. (See section on cluster validation.) In general, it is possi-
ble that a given algorithm will not generate any clusters, or that the clusters will overlap too much

to be useful, or that the clusters which are formed will not correspond to meaningful topics of
interest to prospective users. In an earlier section on relevance feedback (see above), another pos-
sible complication was pointed out: the documents relating to a given topic may form not one, but
two or more separate clusters. However, it should be noted that all statistical IR techniques
assume that it is possible to separate a collection of documents into at least two classes with
respect to any given query, i.e., relevant and non-relevant documents.

Hierarchical clustering offers the potential for very fast retrieval search time since most of the
searching involves cluster representatives rather than all the documents in each cluster. However,
if documents are fully indexed, vector space or boolean retrieval without clustering may provide
retrieval time as fast or better since the only documents that need to be searched are those whose
terms match the terms in the given query. If the query is well-formulated, these documents may be
only a very small fraction of the collection.

The great virtue of most proposed clustering methods is that they are automatic. Of course, man-
ual assignment of useful categories to each document in a collection is more certain to be useful,
but it is very time-consuming and requires substantial manpower for large collections. Automatic
clustering offers the hope of eliminating much of this effort. In the preceding section, an interme-
diate approach was described: Subject categories were assigned manually to a training set; there-
after, categories were assigned to new documents automatically.

Clustering requires some measure of the similarity between documents in document space. The
widely used cosine similarity described earlier is an obvious choice. But other similarity measures
are available. [van Rijsbergen, 1979] [Salton & McGill, 1983] [Korfhage, 1997] (See the discus-
sion of document query similarity above.) Measures of dissimilarity can also be used, especially
since the objective is to maximize the distance between clusters, e.g., between their centroids, in
document space. A dissimilarity measure is, in essence, a distance measure, i.e., its value for any
two documentd, andD, is greater the farther apat; andD-, are in document space. (Cosine
similarity has the opposite property; it has its maximum value when two document vectors coin-

Page 113

cide, and has a value of zero when the document vectors are orthogonal. But 1 - cosine is a dis-
tance measure, increasing wathgular distance.)

Document clustering methods are generally distinguished from the descriptors used to character-
ize each document, and the similarity (or dissimilarity) function of those descriptors that is used
by the clustering method. In general, the choice of inter-document similarity measure is indepen-
dent of the choice of clustering method. And the choice of a similarity measure is (often) indepen-
dent of the choice of the document descriptors that serve as independent variables of the similarity
function. [Willett, IP&M, 1988] (But note that this isot true of the method of Zamir et al.,
described below.)

In general, research into clustering has focused on clustering methods, and algorithms for imple-
menting these methods efficiently with respect to space and time. Willett concedes that the “simi-
larity coefficient may affect the clustering that is obtained.” The method of Zamir et al. [SIGIR
98], described below, provides at least preliminary evidence that a novel document descriptor,
combined with novel inter-document and inter-cluster similarity functions, can produce dramatic
improvement in cluster quality.

Two main strategies have been used for clustering. Both require a document-to-document similar-
ity measure. The first strategy requires that the complete collection of documents to be clustered
be available at the start of the clustering process. Hence, one may call this the “complete” strategy.
(One might also call it the “static” strategy, since it assumes that the collection of documents is
not going to change, i.e., documents are not going to be added or deleted, during the clustering
process.) Most methods based on the complete/static strategy start by generating a list containing
the similarity of every document pair in the collection. Hence, if the collection conbthscu-

ments, the list will contairN(N-1)/2 similarities. Methods using this “complete” strategy are
expensive because of the large number of similarities involved, and the large number of compari-
sons that must be performed as documents are combined into clusters, and clusters are combined
into larger clusters. A straightforward implementation requires that the interdocument similarity
matrix, containing O(N2) elements, must be searched O(N) times, once for each “fusion” of two
clusters. Hence, the time requirement is O(N3) and the space requirement is O(N2). More sophis-
ticated implementations have reduced the time requirement to O(N2), but even this is prohibitive
for document collections of realistic size such as the larger TREC collections. On the other hand,
because these “complete” cluster methods take advantage of the full set of inter-document simi-
larities, they meet van Rijsbergen’s three criteria for theoretical soundness: [van Rijsbergen, 1979]
[Salton, 1989] (1) The clustering is unlikely to be altered drastically as new documents are added,
(2) Small errors in the description of documents lead to small errors in clustering, and (3) the
method is independent of the initial order of document reference, e.g., the order of document pair
similarities. Essentially, these methods “attempt to seek an underlying structure in the data [rather
than] impose a suitable structure on it.” [van Rijsbergen, 1979] Moreover, the expense is incurred
mainly (apart from updates for new documents) when the collection is indexed, not at document
retrieval time. However for realistically large valuesMyfthe execution time and storage require-
ments even for pre-processing is prohibitively large. [Willett, IP&M, 1988]

The second major approach is the “incremental” strategy. Incremental methods [Zamir et al.,
SIGIR 98] [Salton, 1989] assume that the document collection to be clustered is arriving in a

Page 114

stream as the clustering proceeds. Hence, as each document arrives it is added to some cluster, or
becomes the seed of a new cluster. When docuimaimives, the-1 documents that preceded it

are already clustered. Theh document may be added to one of those existing clusters.It may
become the seed of a new cluster. Or the existing clusters may be re-clustered in the process of
adding thei-th document. If reclustering is not allowed by the method, i.e., ifitledocument

must be added to one of the existing clusters, the method may be termed single-pass, not just
incremental.

10.1 Hierarchical Cluster Generation (“Complete/Static” Methods)

A completealgorithm may start by considering all the documents as a single cluster and then
breaking it down into smaller clusters (“divisive” clustering). Or, the algorithm can start with the
individual documents and group them together into progressively larger clusters (“agglomerative”
clustering). (Since agglomerative clustering produces a hierarchy of clusters grouped into larger
clusters, it is often called Agglomerative Hierarchical Clustering, or AHC for short.) In the latter
case, the similarities are sorted in descending order. Initially, each document is considered a sepa-
rate cluster. The general rule is that at each stage the two most similar clusters are combined. Ini-
tially, the most similar documents are combined into a cluster. At that stage, “most similar” means
having the highest similarity of any document pair. Thereafter, we need a criterion for deciding
what “most similar” means when some of the clusters are still single documents and some are
multi-document clusters that we have previously formed by agglomeration (or when all of the
clusters have become multi-document). The various agglomerative cluster methods are distin-
guished by the rule for determining inter-cluster similarity when one or both clusters being com-
pared are multi-document. [Willett, IP&M, 1988]

In “single-link” clustering (the most famous clustering method), the similarity between two clus-
ters is defined to be “the similarity between thest similarpair of items, one of which appears in

each cluster; thus each cluster member will be more similar to at least one member in that same
cluster than to any member of another cluster.” The algorithm is called “single-link” because two
clusters can be combined on the basis of one high similarity between a document in the one clus-
ter and a document in the other. It is also called “nearest neighbor” clustering because two clusters
are combined on the basis of the two documents, one from each cluster, that are nearest to each
other. Hence, each cluster is formed by a chain of nearest neighbor document-to-document single
links.

In “complete-link” clustering by contrast, the similarity between two clusters is defined to be “the
similarity between the least similar pair of items” one of which appears in each cluster. “[T]hus
each cluster member is more similar to the most dissimilar member of that cluster than to the most
dissimilar member of any other cluster.” [Salton, 1989] Hence, in the “complete-link” algorithm,
the similarity between two clusters (which determines whether they should be combined or not)
depends oall the similarities between documents in the one cluster and documents in the other.

For any clustering method a similarity threshold can be applied, i.e., two clusters will be com-
bined only if their inter-cluster similarity is greater than some threshiol@r the clustering pro-

cess can be terminated when some halting criterion is reached, e.g., a pre-specified number of
clusters. In the case of agglomerative clustering, the number of clusters is successively reduced

Page 115

until all clusters have been combined into a single cluster, the “root” of the hierarchy. If a halting
criterion is specified, the agglomeration may stop when the criterion is satisfied, e.g., when suc-
cessive levels of clustering have reduced the number of clusters to a specifieN@alugamir et

al. note that these AHC algorithms “are very sensitive to the halting criterion - when the algorithm
mistakenly merges multiple ‘good’ clusters, the resulting cluster could be meaningless to the
user.”

Note that by either criterion, it is quite possible for a document in clUS{¢o be more similar to
somedocuments in cluste€, than tosomeother documents i€;. Ideally, one would want to
impose the criterion that every documentpis closer to every other document@j than to any
document in any other clust€,. However, such strict criteria for “cohesion and isolation” of
clusters appear to be too strict; in experiments, “very few sets could be found to satisfy” such cri-
teria. [van Rijsbergen, 1979]

“Complete-link” clustering is considerably more computationally expensive (in either space or
time but not both — there is a trade-off) than “single-link” clustering, but it has the advantage that
one can generate clusters such that every pair of documents in a given cluster is above a specified
similarity threshold. A documerid; whose similarity to any other documely is lower than the
specified threshold will not be ianycluster. By contrast, in “single-link” clustering, the members

of a cluster are chained together by “single links” such that the similarity between any two docu-
ments connected by a link, i.e., any two documents that were nearest neighbors at some stage of
cluster combination, is guaranteed to be above the specified similarity threshold, but a pair of doc-
uments that are both in the same cluster but which were not directly chained together by the clus-
tering process areot guaranteed to be above the threshold. Hence, single-link clustering allows
document pairs with very low similarity to be in the same cluster. For that reason, complete-link
clustering is probably better suited to IR applications. [Salton, 1989] In particular, complete-link
clustering tends to produce small, tightly bound, cohesive clusters, whereas single-link clustering
tends to produce large, loosely-bound, “straggly” clusters. [Willets, IP&M, 1988]

A third agglomerative clustering method, “group-average” clustering, is intermediate between
single-link and complete-link in that each member of a cluster has a geeatsgesimilarity to
the remaining members of the that cluster than it does to all members of any other cluster.

A fourth agglomerative clustering method, Ward's method, “joins together those two clusters
whose fusion results in the least increase in the sum of the [Euclidean] distances from each docu-
ment [in the fused cluster] to the centroid” of the cluster. Evidently, this method is only defined
when Euclidean distance is used for computing interdocument similarity. The centroid of a cluster
is the average of the document vectors comprising the given cluster.

The defining characteristic of a clustaethods the rule that defines the clusters. For example, if
the method issingle link clusteringthen the defining cluster rule is the one stated above: Two
clusters are combined into a single cluster, if their closest members (according to the given inter-
document similarity measure) are closer (more similar) than either is to the closest member of any
other cluster.

Page 116

In general, each of these clusteethodsshould be distinguished from tragorithmsthat have

been developed to implement it since a given method often can be implemented by many different
algorithms, each algorithm having its own distinct performance characteristics regarding space
and time. [Willets, IP&M, 1988] For example, many algorithms are known that produce single-
link clusters. They are all the “same” from the outside, i.e., given the $hdweuments, they will
produce the same hierarchy of clusters. However, they may vary considerably in their space and
time requirements. The SLINK algorithm [Sibson, 1973] has been shown to achieve optimal per-
formance for single link clusteringd(N?) time complexity andD(N) space. Trade-offs are possi-

ble. The complete-link method has the same time comple@i(tMZ), as single-link, if it also has
access tdD(N°) space; however, if it only ha®(N) space, it require©(N°) time complexity.
[Voorhees, PC]

10.2 Heuristic Cluster Methods

The term “heuristic” has been used by authors such as van Rijsbergen [1979] (he also uses the
term “ad hoc”) to characterize methods that take shortcuts to achieve greater efficiency in terms of
space and time requirements. In particular, such terms refer to cluster methodsnbagdoer-

ate or do not access the fll(N?) set of interdocument similarities in a collection Kfdocu-

ments. Such methods effectively make fewer (sometimes far fewer) effective “passes” through the
interdocument similarity matrix or its equivalent. Heuristic methods tend to violate van Rijsber-
gen’s three criteria for theoretical soundness. In particular, it is characteristic of many such meth-
ods that the clusters for a given set Nfdocuments vary depending on the order in which
documents are initially referenced. In the case of the “Buckshot” method discussed below, the
method starts with a random sample of thhelocuments; hence, the clusters produced will vary
from one execution of the clustering method to another as the random sample varies.

In return for sacrificing theoretical soundness (and correspondingly, reducing one’s confidence
that the true underlying structure of the collection has been captured), these methods tend to exe-
cute inO(N) time. Actually, some of them execute @(kN)time (sometimes callecectangular

time bounds, see below), whelkés equal to the number of clusters desired, or proportional to the
number of clusters. Ik is a constant, especially a small constant, these are linear time methods.
However, if thek is proportional toN (as for some methods and purposes it may be), then the
method become®(N) after all.

The distinction betweeheuristicandnon-heuristicmethods cuts across another distinction: that
betweerincrementalndnon-incrementamethods. Briefly, incremental methods operate entirely

in “update” mode, generating and modifying clusters “on the fly” as each document is accessed.
Below, we discuss some non-incremental heuristic methods. In the next section, we discuss incre-
mental methods in some detail. Purely incremental methods tend also to be heuristic, e.g., single-
pass methods and the like. However, we discuss one novel incremental method, STC, that suc-
ceeds in being linear timend non-heuristic.

In one respect, the very term “heuristic” is misleading with respect to clustering methods. In con-
ventional usage, the concept of a “heuristic” algorithm or method of solving a problem implies
that there is a perfect solution to the given problem. Heuristic methods are, by definition, not guar-
anteed to find that perfect solution. One employs a heuristic method only if methods that are guar-

Page 117

anteed to find the perfect answer are either (a) unknown, or (b) computationally impractical, e.g.,
far too costly with respect to space or time, or not guaranteed to terminate at all. However, in the
realm of document clustering, a “perfect” result is not defined. In general, the “best” set of clus-
ters depends on the objective for which clustering is being performed, e.g., classification, infor-
mation retrieval, browsing, thesaurus generation, etc. Moreover, the best cluster method even for a
given objective may depend on the statistical characteristics of the collection. Hence, even the so-
called “complete” oO(NZ) methods are not guaranteed to produce the “best” result.

A heuristic algorithm, associated with Rocchio, [Rocchio, 1996] was developed on the SMART
project. It begins with applying a density test to each document that has not yet been clustered,
thereby identifying “cluster seeds,” documents “that lie in dense regions of the document space,
that is items surrounded by many other items in close proximity.” [Salton, 1989] For example,
density may be defined by requiring thgtdocuments have a similarity (Rocchio typically used
cosine similarity) of at leagt;, andn, documents have a correlation @f. All documents suffi-

ciently similar to a seed, i.e., having a similarity to the seed that exceeds a pre-specified threshold,
form a cluster. Clusters may overlap, i.e., a document may be assigned to more than one cluster.
[van Rijsbergen, 1979] In a second, iterative stage, the clusters formed in the first stage are
adjusted to conform to certain pre-specified parameters, e.g., minimum and maximum documents
per cluster, number of clusters desired, degree of overlap permitted, etc. Documents too far
removed from cluster seeds, or occupying regions insufficiently dense, remain unclustered, or
undergo a separate clustering process in a third stage.

Much more recently, Cutting et al. [SIGIR 1992] have developed two linear-time heuristic cluster-
ing methods, calleBuckshotandFractionation respectively. More precisely, they are rectangular
bound, i.e.O(kN), methods. These clustering methods have been developed for use in an interac-
tive browsing technique called “Scatter/Gather.” (See section on User Interaction below.) For this
applicationkis small and constant, e.g., eight in the examples given by the authors. IdgkbE,

is practical and effectively linear. Moreover, Cutting et al. [SIGIR 1993] have developed an
enhancement to Scatter/Gather that works even for very large corpora, e.g., gigabytes. Hence,
Buckshot and Fractionation continue to be useful even for TREC-sized corpora.

The essential “trick” of Buckshot and Fractionation is to use one of the “compBs?) cluster-

ing methods, but to apply it very incompletely to the original large corpus. The result is to gener-
ate rough clusters very rapidly. The centroids of these clusters then become “seeds” around which
the entire corpus can be clustered on the basis of simple document-centroid similarity.

For example, in Buckshot, clustering is applied initially to a random sampléof documents.
Hence, anO(N?) method applied to this sample clearly runskN) time. (Cutting et al. use

Group Average Agglomerative Hierarchical Clustering (AHC) as t@eéh:lz) method.) This AHC

method is used to obtakclusters from the random sample. The centers of these clusters are then
used as seeds around which the entire corpus is clustered. Hence, in Buckshot, a complete, hierar-
chical clustering method is used, but it is applied to a small sample of the corpus.

In Fractionation, the entire corpus is initially partitioned itNém buckets, each of fixed siza
documents, wherm > k. Each of the buckets is then clustered using an AHC method. The objec-
tive of the clustering is to reduce each bucket frerindividual documents tonr clusters, where

Page 118

ther is a pre-specified reduction factar< 1). Hence, after the first clustering stage, therenare
clusters in each of th original buckets. Each of theser clusters is then treated as an individual
“virtual document” of size X/ original documents. Since there awém buckets, there are now
mr(N/m) = Nr virtual documents. These virtual documents are now processed exactly like the
original documents, i.e., partitioned inty/m buckets, each of which is then clustered imtovir-

tual documents at the second stage. Hence, after stage two, thé@xe/argmr = Nr? virtual doc-
uments. This process continues until aftstages, there aldr’ < k virtual documents or clusters.

One final agglomerative stage produ&edusters, whose centers then become the seeds for clus-
tering the entire corpus on an individual document basis. Hence, in Fractionation (in contrast to
Buckshot), the complete hierarchical clustering method is applied to the entire corpus, but the
clustering performed is coarse, because the corpus is partitioned arbitrarily into buckets, and the
clustering is applied separately to each bucket rather than to the corpus as a whole.

Given thek seeds or cluster centers (produced by either Buckshot or Fractionation), how Bre the
documents clustered? As a simple approach (similar to Rocchio), each document can be assigned
to the center to which it is most similar. This process can be refined by iteration, i.e., after each
document in the corpus have been clustered around one of the seeds, the centers can be recom-
puted, and once again, each document can be assigned to the most similar center. Several other
refinements are employed by Cutting et al. First, they summarize each clustgraifiea The

profile of a cluster is a term vector equal to the sum of the term vectors representing the docu-
ments in the cluster. Hence, in successive iterations, instead of adding a document to the cluster
with the most similar center, one can add the document to the cluster with the most similar profile
vector. They also defingplit andjoin algorithms. The former ‘separates poorly defined clusters

into two well separated parts,” and the latter “merges clusters which are too similar.” In general,
the choice whether to use these refinements, and how many refinements and iterations to apply,
involves a trade-off between speed and accuracy. However, the entire method including refine-
ments, runs i©O(kN)time.

Buckshot and Fractionation partition the corpus, i.e., they do not support overlap (although they
can be modified to support overlap). [Zamir et al., SIGIR ‘98] Neither algorithm is incremental.
Moreover, Buckshot generates its initial cluster samples from a random sample of the initial cor-
pus. Hence, it is not deterministic, i.e., in successive runs, it may generate different clusters
“although [in the author’s experience] repeated trials generally produce qualitatively similar parti-
tions.” [Cutting et al., 1992] A further risk is that “when one is possibly interested in small clus-
ters,... they may not be represented in the [random] sample.” [Zamir et al., SIGIR 1998]

Buckshot and Fractionation (and the STC clustering method described in the next section) are all
motivated by the desire to allow the user to browse a large document collection interactively. Such
an application requires that the clustering be performed very rapidly, e.g., in seconds, even for
very large collections. If the collection is available in advance, e.g., hours before the user begins
browsing, then hybrid approaches to speed up the interactive clustering are possible. The essential
idea is that a fixed cluster hierarchy is generated off-line. The nodes of this hierarchy then become
“virtual documents” to be clustered on-line (as in Fractionation above).

Clearly, the “completeO(N?) methods described in the preceding section can be used to generate
this cluster hierarchy. However, for large collections, e.g., thousands of documents oom%e

Page 119

methods are far too slow even for off-line clustering. Hence, Cutting et al. [SIGIR ‘93] propose
using anO(kN) clustering method such as their own Buckshot or Fractionation, even in the off-
line stage. These algorithms only produce one level of cluster, i.e., they produce a “flat” partition
of the collection intdk clusters. However, the flat clustering method can be applied iteratively to
partition each of the origind clusters intdk sub-clusters, then to partition each of these sub-clus-
ters yet again, and so on. The partitioning stops only when individual documents are reached. This
iterative procedure generates the required cluster hierarchy. Since the clustering at each level runs
O(kN)time, the entire hierarchy can be generate®({kN log N)time. (In their reported experi-

ment, Cutting et al. generated a cluster hierarchy for a DARPA Tipster collection of 700,000 doc-
uments, occupying 2.1 gigabytes of text, and containing over a million unique words, in forty
hours on a Sun SPARCStation 10. While faster hardware would obviously do the job more
quickly, it is evident that the production of such cluster hierarchies remains an off-line task.)

Given this pre-computed cluster hierarchy, Cutting performs constant-time clustering interac-
tively, based on the assumption that a fixed number of virtual docuriventsk is to be clustered.

M is chosen such that the clustering can be performed in the desired constant time bound, regard-
less of the true number of actual documents in the collection. Cutting obtaihé iréual docu-

ments (also calledheta-documenfdy starting at the root of the cluster hierarchy, or at any node

in the hierarchy designated by the user. He replaces the initial node by its children. Each child
node is itself a virtual document. At each subsequent stage, he finds the child that has the most
leaves and replace that child kg children. He continues this process uMtithildren, i.e.M vir-

tual documents, have been accumulated. Then, he clusterdMhadseal documents intd clus-

ters. In his published experiment, he found that interactive clustering took approximately 20
seconds.

Note that most clustering methods (including those used by Cutting) involve computing inter-doc-
ument or document-centroid similarities. These similarities typically involve a similarity function
such as cosine similarity applied to documents represented as term vectors, where each term in a
vector is a word or phrase. When the documents being clusteradirtara documents, the term
vectors will be very long; the term vector for virtual docum¥will contain a non-zero value for

every term in any of its descendent leaves, i.e., for any of the actual documents of which it is com-
posed. In other words, the set of terms in a virtual document is the union of the terms in its com-
ponent actual documents. To keep the similarity computations from being very slow, Cutting
truncatesthe term vectors of every virtual document, retaining only the fifty highest weighted
terms. (This also reduces substantially the space required to store the cluster hierarchy.) Schutze
et al. [SIGIR ‘97] find that with such truncation, “the speed increase is significant while - surpris-
ingly - the quality of clustering is not adversely affected.”

The Cutting constant-time clustering method clusters virtual documents, where each virtual docu-
ment is essentially a node from some level in the pre-computed cluster hierarchy. The clusters
produced are always unions of these virtual documents. Of course, as the browsing user focuses
more narrowly, on lower levels of the cluster hierarchy, the virtual documents that get clustered
may be correspondingly narrow, i.e., may contain small numbers of actual documents. But to
some degree, the user is limited by the original pre-computed hierarchical structure. Silverstein et
al. [SIGIR '97] address this issue with their “almost-constant-time” cluster method.

Page 120

Like Cutting, Silverstein assumes a pre-computed cluster hierat;togvering a document cor-

pusC of sizeN. However, whereas Cutting only allows the user to designate a node (or perhaps
several nodes at some level)hhas the starting point for clustering, Silverstein assumes that the
user has obtained (and wishes to cluster for browsing) some ssibsattual documents froi@.

For example, the subs&might be obtained by executing a quepyagainstC using some IR
engine. Silverstein wishes to m&unto H in such a way that the clusters refl&ibut use the pre-
computedH to speed up the clustering. He acquikdsirtual document nodes froid for cluster-

ing as Cutting does. However, he departs from Cutting in two significant ways. First, in expanding
the set of virtual documents to reach his goaMyfhe uses a “goodness” test to weed out the
nodes that contain the smallest proportion of documents ffoi@pecifically, when a node is
replaced by its children, this goodness test is used to identifyvtiret child, the one with the
smallest proportion of documents frddnThis “bad seed” is replaced lspmeof its children. The
replacement process is also a weeding out process: Specifically, child nodes that contain no docu-
ments fromS are discarded. Each child node that contains only a single documentftantu-

ally less tharc documents frong, wherec is a small constant) is replaced by a “singleton” node

that contains only the document(s) frdén After M nodes have been accumulated, Silverstein
clusters thes#& nodes (actually the union of thd nodes and the “singleton” nodes) irka@lus-

ters, as Cutting does. Finally, he goes through the all the clustered nodes, removing actual docu-
ments that are not @&

The Cutting method is constant time (at user interaction time, not cluster hierarchy pre-computa-
tion time, of course) because it clusters a fixed nunMbef nodes, wherd/ is chosen so that the
clustering time is acceptable to an interactive user. The Silverstein metlaohastconstant-

time because it requires the generation of a function (implemented as a table) that identifies the
documents irSthat are contained in any given node n of H. The computation of this table takes
O(JS|log N)time. Hence, computation of this table is not constant, and cannot be pre-computed
because it depends @ which is specified by the interactive user. However, the time to compute
the table is “dwarfed, in practice by the contribution of the [constant] clustering step.”

It should be stressed that both the Cutting and Silverstein methods depend on the availability in
advance, i.e., off-line, of the collection to be clustered (or in the case of Silverstein, the collection
from which a subset is to be clustered). Moreover, this collection must be available well in
advance of user interaction, because the required pre-computation of a cluster hierarchy is a time-
consuming process. By contrast, the STC method, described in the next section, achieves compa-
rable or better run-time speed without any pre-computation. It is genincetynental

Heuristic algorithms fail van Rijsbergen’s three criteria for theoretical soundness, but have been
found “about as effective as those based on hierarchical agglomerative methodologies [e.g., sin-
gle-link and complete-link]” in “many retrieval settings.” [Salton, 1989]

10.3 Incremental Cluster Generation

Incremental methods also make use of a similarity measure but they don’t require that similarities
be pre-computed for all document pairs. Indeed, all document pairs are not available initially,
since by definition, incremental methods cluster a stream of incoming documents. The similarities
are computed “on the fly” as the documents stream past the incremental cluster system (or what

Page 121

comes to the same thing, as the incremental system makes a “pass” through the document collec-
tion). All incremental cluster methods may be said to make a single pass through the documents,
in the sense that as tlvth document is accessed and processed, the result is the best set of clus-
ters the method can produce witllocuments. By the time thid-th document, i.e., the “final”
document, is processed, the entire collection has been clustered and the method is “done.” Note
that it doesn’t make any difference to an incremental method whether the collectiddafu-

ments is available initially, or whether it is a streamNflocuments arriving in sequence, eN.,
documents that have been retrieved from the Web by an IR engine. In either case, an incremental
method processes tlth document as if it only has knowledge about the firdbcuments, and

hasn’t yet encountered documenii$ toN.

One can distinguish between methods that are purely incremental, and methods that can run in
either an incremental or non-incremental mode. For example, the single-link method discussed in
the preceding section is classically executed in a static mode, i.e., it start®\witituments.
Algorithms exist for clustering thBl documents according to the single-link method. Algorithms
also exist for adding an additionalN{1)th document, without starting over from scratch. Such
updateprocedures produce the same effastif one had started from scratch. One can see that
such algorithms must exist for the single-link method by considering the effect they must produce
in terms of the single-link clustering rule. Thkedocuments have been grouped into a hierarchy of
clusters according to the single-link rule. Documénf,; must be linked to the documemy

(i<N) with which it is most similar. The effect is to link it into every cluster in the hierarchy that
containsD;. If Dy44 is equally similar to several “closest” documems Dj, andD (which need

not be very similar to each other, and hence may be in different clusters up to a very high level in
the hierarchy), then the clusters to which they belong will be linked together into a single cluster
(if they were not already so linked). It is plain that the cluster hierarchy formed by adding docu-
mentDy;1 continues to obey the single-link clustering rule.

However, if an update procedure exists, then why not use it starting with docudgétite 2nd
document encountered), and throw away any non-incremental methods that work on tNe first
documents, wherl >> 2? If the non-incremental procedure is retained, then it must be because it
is more efficient (in documents clustered per unit of time) than the update procedure, or because it
produces a data structure better-suited to efficient document or cluster retrieval.

On the other hand, if the update procedure isahly procedure used in the clustering, then the
implementation is purely incremental. If the update procedure is the cluster-defining rule, then the
clustermethods incremental.

All incremental methods make a single pass through the documents. However, they are not all sin-
gle-pass methods. The essential distinction is whether the method, on encounteritigdbeu-

ment, revisits earlier documerjts i, or existing clusters, with a view to possible re-clustering. If

it does, it is not a “pure” single pass method, since it may visit documents more than once, in the
process of making its “single” pass. Actually, virtually all incremental methodsaihoerevisit-

ing, but a method that does no reclustering, and minimizes document revisiting is “more” single-
pass than a method that revisits and re-clusters extensively. In general, single-pass methods are
order-dependent, i.e., the clusters formed depend on the order in which documents are processed.
The reason is evident; there is no opportunity to revise clusters formed from early documents on

Page 122

the basis of information in documents that are processed later. This violates one of van Rijsber-
gen’s three criteria for theoretical soundness.

A nearly single-pass method works as follows: If a new document is similar enough (according to
some similarity measure and threshold) to one of the preceding documents, they are combined
into a cluster. Similarly, if a new document is similar enough to a cluster formed from two or more

of the preceding documents, it is added to that cluster. A document is added to all clusters to
which it is similar enough. (To simplify the process of computing the similarity of a document and

a cluster, a centroid is computed for each cluster. Each new document is then compared to the cen-
troid of each existing cluster. If a document is added to a cluster, its centroid is recomputed. Of
course, recomputation of the centroid of a cluster involves revisiting the documents that are mem-
bers of the given cluster, so even this simple algorithm invodegserevisiting.) When the single

pass is completed, a number of clusters have been formed. The results may depend on the order in
which the documents were examined. This process may result in very large clusters, or clusters
with a large amount of overlap. Hence, one usually specifies such parameters as minimum and
maximum cluster size, and maximum overlap, etc. The clusters formed in the original pass
through the data are then adjusted, e.g., by cluster splitting and merging, to conform to these
parameters.

Zamir et al. [SIGIR 98] have developed a novel incremental clustering method, called Suffix Tree
Clustering (STC). The STC method is motivated by a problem that arises frequently when query-
ing the Web with an IR engine: A huge ranked list of documents is retrieved, of which only a very
small number are relevant to the user’s query. To make matters worse, the relevant documents are
often far down the list of documents returned. In IR terminology, precision is often very low.
Zamir et al. propose to alleviate this problem by clustering the documents returned to the user, and
labeling each cluster with phrases that characterize (one hopes) its common topic(s). The user
then browses through the clusters, picking out and ranking the clusters that appear most relevant
to her query on the basis of their labels. She can then begin examining documents in the most rel-
evant cluster. If she needs or desires more information than she finds in the first cluster, she can go
on to the next most relevant cluster (as determined by its labels and the user’s judgment), and so
on. In this way, the number of documents that she must sift through to find relevant data can be
reduced by at least an order of magnitude. (See the section on User Interaction for further discus-
sion of browsing.)

Note that STC, although motivated by the difficulties of Web retrieval, is applicable in any case
where the number of documentsretrieved, is large, and the precision is low. It is particularly
applicable if the user is doing her retrieval interactively, and wants to see her output very quickly.

STC has a number of very noteworthy features. Some of these features are found in other cluster-
ing methods, but no other method (to the author’s knowledge) combines them all. (1) SI& is a

ear timemethod, i.e., the time required to clustédocuments rises only linearly with. This is

an essential requirement wheneders very large, as it is in many practical applications. (There

are constant-time and almost-constant-time clustering methods (see previous section), but they
depend on off-line pre-clustering.) (2) STCimeremental which means that it can begin cluster-

ing documents as soon as the first document arrives; it doesn’t have to wait until all the retrieved
documents have arrived before it begins clustering, as non-incremental methods do. (By contrast,

Page 123

the completeclustering methods discussed in an earlier section are non-incremental and non-lin-
ear time. Theheuristic clustering methods discussed in the preceding section are either linear
time, but non-incremental, or near constant time, but require substantial pre-processing, and hence
are also non-incremental.) (3) The STC methodas-heuristicin the sense that the clusters it
produces are independent of the order in which the documents it clusters are initially accessed. (4)
The STC method doesot require pre-specification of either the number of clusters to be gener-
ated, or the maximum or minimum size of the resulting clusters. Heuristic methods commonly
have such halting or clean-up criteria; even AHC algorithms are often used in conjunction with
such criteria. STC only requires pre-specification of two parameters, a cluster overlap measure
and the number of “best clusters” to be reclustered (see below). But Zamir et al. find that STC is
not very sensitive to the value of the overlap parameter. (5) The STC method permits a document
to be placed in more than one cluster (a characteristic that is tectastkr overlap. This is a

very important consideration when the objective is to cluster documents by topic, since a given
document may be about multiple topics.

(6) A feature that sets STC apart from practically all other clustering methods is that it uses
ordered strings of words, which it calls “phrases,” as its document descriptors. (Most other meth-
ods of text document clustering use unordered sets of words.) Moreover, STC uses the presence of
a phrase in two documents as its inter-document similarity measure for clustering purposes. The
presence of a shared phrase is also the STC primary (first stage) cluster method rule. (In sharp
contrast, all of the other clustering methods described above are totally indifferent to how similar-
ity of text documents is defined, or indeed even to the fact that the objects being clasteted
documents.) In other words, B, andD, share at least one common phrase (as defined below),
they are combined into a “base” cluster. Hence, instead dfamatrix of inter-document similar-

ities, STC employs a structure called a “suffix tree,” that indexes a document collection by the
phrases of which its documents are composed. The index itself grows linearly with the size of the
text, and can be updated and accessed in linear time. Experiments by Zamir et al. indicate that the
use of ordered strings as document descriptors is critical to the success of the STC method.

STC employs a second stage of clustering, using a different clustering rule. The second stage rule
combines the clusters produced by the first stage according to the proportion of documents that
they share (see below). In other words, cluster overlap is permitted, but if the percentage of over-
lap is very high (Zamir et al. use a parameter of 50%), the clusters are combined into a larger clus-
ter. Note that STC is not hierarchical; only two stages of clustering are performed. Hence, no root
cluster is generated, and no halting criterion is required. STC is also not iterative (like Rocchio’s
method). Rather, it is incremental. The two clustering stages are performed every time a new doc-
ument arrives or is accessed.

STC indexes the collection of documents as a “suffix tree,” hence the name of the method. In most
past applications, a body of text has been viewed as an ordered string of characters. The suffix tree
has been employed as an efficient representation of the string for such purposes as finding (in lin-
ear time): a given wordav in the text, the first occurrence of in the text, the number of occur-
rences ofvin the text, etc. [Crochemore et al., 1994] Each path in the tree from root to a leaf node
represents a “suffix” of the text. Each internal node of the tree represents a “prefix” shared by two
or more suffixes. In STC, the text is viewed as an ordered stringoodls The application is to

cluster documents that share one or more word strings. (Zamir et al. call these strings “phrases,”

Page 124

but no syntactic structure is implied.) A suffix tree is constructed to represent and index all the
sentences in a collection of documents. Each sent8ices treated as an ordered string rof
words,wig, Wip,..., Win. Every sub-stringy;;,.. wj, for 1 <=j <=n, is a suffix ofSE. In other words,

there aren suffixes for every sentence of lengthwords, the string beginning at word 1, the string
beginning at word 2, etc. (Technically, there arel suffixes, because the set includes the
“empty” suffix, located at the root of the tree.) A suffix tree is constructed for the first sentence of
document 1, updated with the suffixes of the second sentence, and so on. As each new document
arrives and is added to the growing collection, the suffix tree is updated to reflect all the new suf-
fixes in its sentences that were not encountered in any previous document, and all the re-occur-
rences of suffixes that were previously encountered in one or more earlier documents. As each
new sentenc&E of the current documertd; is processed, the suffix tree is updated to reflect all

the new suffixes irBE that were not encountered in any previous document or any previous sen-
tence ofD;, and all the re-occurrences of suffixes that were previously encountered in one or more
earlier documents. Each distinct suffix becomes the path, the series of edges, leading to a leaf
node of the suffix tree. Each leaf node is labeled with the suffix whose path leads to that node, and
is indexed by all the documents in which the given suffix appears. Similarly, the path to each inter-
nal (non-leaf) node representpeefix a string of words that begins two or more suffixes. The
internal node is labeled with its prefix, and indexed to identify all the documents in which its suf-
fixes occur.

For example, documeri?; may contain the suffix “The quick brown fox jumped over the lazy
dog.” Call this suffixS;. (Actually, there will ben suffixes for this sentence, corresponding to:
“dog,” “lazy dog,” “the lazy dog,” etc., up to and including the suffix representing the complete
sentence.) Each non-leaf (internal) node represents the{firgords, the prefix, of two or more
suffixes. There will ben-1 implicit prefixes for this sentence: “The,” “The quick,” “The quick
brown,” “The quick brown fox,” etc. However, these prefixes remain implicit, until one of them is
encountered in a subsequent sentende,adr a subsequent documedy, with a different contin-

uation. Each internal node must have at least two children, each child representing a different con-
tinuation of the parent. Documem, may contain a sentence with the suff, “The quick

brown fox leaped over the sleeping collie.” Whenis encountered, the implicit prefix node “The
quick brown fox” becomes an explicit nodRy. A third documenD3 may arrive containing a sen-

tence with the suffixS;, “The quick are livelier than the dead.” In that case, an internal explicit
node is created representing the preffix, “The quick.” This node will have two children, one the

leaf node forS;, the other the internal node for preff (a continuation oP}), branching in turn

to the two children representing the suffi@sandS,. In this way, all of the word sequences rep-
resenting (and characterizing) a collection of documents can be efficiently represented, and easily
updated as new documents arrive, containing new suffixes, and new instances of existing suffixes.
Each internal node of the suffix tree represents a prefix, and the set of one or more documents con-
taining that prefix, e.g., in the above example there is an internal node representing thé>grefix,
and the document®, D,, andDs, containing it. Each leaf node represents a suffix, and the set of
documents containing it, e.g., there is a leaf node represe8jjrand the documerid5 contain-

ing it. The set of documents associated with a node of the suffix tree is called a “base cluster,” and
the phrase that is common to those documents is its |BReD,, andD3; comprise a base cluster
whose label i$?,,. Note that a phrase can be either a prefix or a suffix, or even both, i.e., it can be a
suffix of a sentence in one document, and a prefix of a sentence in another document.

Page 125

Note that, for purposes of clustering, we are only interested in phrases (prefixes or suffixes) that
occur in two or more documents. However, we create a node for every suffix of a sentence in a
given documenD,, and for every prefix that occurs in two or more sentence®pfThat is
because we don’t know in advance whether a given prefix or suff,imvill be encountered

again in a later document. However, we only form base clusters for phrases that occur in at least
two documents.

Any sequence of words in a sentence of the collection is a phrase in STC. The sequence need not
be a phrase in any syntactic sense, though syntactic phrases will be included (provided they are
composed of contiguous words). Also observe that a given document may (and normally will)
contain multiple phrases, e.@4 containsP}, P,, andS;. Some of these phrases will be unique to

the given document, others will be shared with other documergbolld also be noted that two
documents may share more than one phrase,2,@ndD, share bothP, andP,. Hence, the base
cluster with labeP, and the base cluster with lalfej overlap, i.e., sharB; andD,. On the other

hand, the two base clusters dot coincide; the base cluster f&, also containd3, a document

that is not in the base cluster féy.

The construction of the suffix tree not only indexes the document collection, linking each phrase
(including suffixes) to the documents that contain it; it also performs the first stage of clustering,
the identification of the base clusters. The second stage of clustering combines base clusters that
are “similar.” Base cluster similarity is defined as having a high degree of document overlap. In
other words, base clust€y (defined by containing the phraBg) and base clustet, (defined by
containing the phrage,) are said to be similar if a high proportion of the documents in these two
clusters contaibvoth P, and P,. Specifically,

|C1n Cy/|Cy >0.5
|C,n Cy/|Cy >0.5
where 0.5 is the overlap threshold chosen by Zamir et al.

The clusterC,, formed by combiningC; andC, contains the union of the documentsGy and

C, (and is labeled with botF; andP5). Similarly, C, may be combined witlC; into C,5 on the

basis that a high proportion of the documents in these clusters contairfPpatid P5. C;, and

C,3 are then combined int€;,5 on the basis of the common linking clus®@s. The result is a

form of single-link clustering witlC, linked to C, which is linked toCs. However, the undesir-

able chaining effect in which the end points of the chain are quite dissimilar is much less pro-
nounced in the STC case because the chaining is taking place at the level of base clusters rather
than individual documents. The composite clusters that emerge from stage two are labeled with
the set of phrases that label their component base clusters.

Each new document that arrives causes the suffix tree to be updated. If doddncentains a

suffix § that did not occur in any of the preceding documédigo D;_4, then a new leaf node is
added to the suffix tree with valu® (and maybe a new internal node as well, if the new suffix is a
new continuation of an existing prefi, 4 that was previously only the beginning of one suffix or
suffixes in only one documenBy,, h< i, but is now the prefix of suffixes in two documents and
hence rates its own internal node.) Corresponding to the new leaf node, a new base cluster is cre-
ated, containing initially just the one documét and labeled with the new suffiiﬁ. (If a new

Page 126

internal node is created too, a new base cluster will be definethénode, containind; and

Dy, and labeled with the shared pref,4.) If D;j contains a phrasey (prefix or suffix) that is
already in the suffix tree, i.e., that occurs as the value of a node in one or more of thé fict-
uments, theiD; must be added to the base cluster with l&®gNote that this may have the effect

of either increasing or decreasing the similarity of base cluSt¢o other base clusters. If; also
contains the phrag®,, it increases the overlap @ with C; (or creates such an overlap if it did
not exist previously). ID; does not contain phra$, it decreases the overlap (if any). Henbe,
may push the overlap betwe€j andC, over the user-defined threshold, causing clustgrand

Cy to be combined if they were not combined previously. Similalymay push the overlap
betweenC; and C, below the threshold, causing combined clusigg to be split apart into its
component base cluste@; andCy. Hence, each new document may cause re-clustering of exist-
ing clusters. (STC is an incremental clustering method, but definitely not a pure one-pass method,
as that term has been defined here.)

The potential re-clustering when a new documBparrives requires that inter-cluster similarity

be recomputed for all affected base clusters, and for all clusters composed of affected base clus-
ters. The number of such clusters goes up as each new document arrives. Hence, the number of
required similarity computations can rise dramatically as the population of documents grows.
Since the objective is to support real-time clustering (remember that the original motivation was
to support browsing of documents retrieved by an interactive user from the Web!), the number of
similarity computations is held constant by only comparing updated base clusters with the
“best” base clusters, whetgs a parameteig=500 in the research reported here. The term “best”
doesnotrefer to relevance to the user’s query; that is determined interactively by the user after all
the retrieved documents have been clustered. Instead, it refers to a measure of a clustea®s merit

a cluster.

Base clusters are ranked by sceg(f8) computed as:

s(B) = Bl Of(|P)
where B| is the number of documents in base clug&gP| is the effective length of phrage and
f(P) is a non-linear function of phrase length. The functi@®) “penalizes single word phrases, is
linear for phrases that are two to six words long, and becomes constant for longer phrases.” (Note
that, strictly speaking, the “break points,” two and six,f@) are also parameters of the STC
method. Clearly, other values could be chosen, e.g., the phrase length score could be allowed to
increase linearly up to a length of eight. Zamir et al. do not discuss how they arrived at these val-
ues, or any study of the effect of altering these values.) The length of a phrase is the total number
of words, excluding stop words; for Web applications, the usual stoplist is expanded to include
common Internet words like “java” and “mail.” Hence, a phrase consisting of a single stoplist
word has a length of zero. The valuef@@) is zero, so base clusters defined by sharing a single
stopword are discarded. Note that although stop words do not contribute to the length of phrases
in which they occur, and hence do not contribute to the ranking of the corresponding base cluster
scores, theganserve to distinguish phrases. In the above example, if docuDyeatrives ending
with the suffix, “The slow brown fox can’t jump over anything,” the phrase “The quick” becomes
two distinct phrases, “The quick” and “quick,” because the phrase, “The,” now becomes a sepa-
rate node with two distinct children, “quick” and one beginning with “slow.” The base cluster cor-
responding to “The” is discarded because its score is zero.

Page 127

After the N-th (final) retrieved document has been processed\ albcuments have been clus-

tered; the STC clustering process is completed. The user can then browse these clusters, judging
on the basis of their labels which are most likely to contain relevant documents. (Zamir hypothe-
sizes that the phrases that label a cluster will prove effective descriptors of that cluster’s content
for effective human browsing, but this belief had not yet been tested in the reported research.)
When she finds the most promising cluster, the user can “drill down” and look at titles or whatever
other “snippets” the Web engine has returned. When she finds an interesting “snippet,” she can
drill further to look at the full text of the corresponding page. Zamir assumes that even at the clus-
ter level, the number of entities generated by STC will be greater than the user can comfortably
browse. So, he ranks the final set of clusters, assigning each cluster a score “based on the scores of
its base clusters, and their overlap.” Hence, the user only has to (is allowed to?) browdette
clusters. Again, “best” is a measure of cluster quality, e.g., number, size and overlap of its compo-
nent base clusters (and hence of its coherence), length of the phrases that label it (longer phrases
are likely to be more descriptive), etc. Cluster relevance is determined interactively by the brows-
ing human user. The human browser sees the number of documents in each cluster, and the
phrases of its base clusters.

The STC method appears to achieve the quality of a “complete,’O(edz,) method (see discus-

sion of Cluster Validation below), while running in linear time, i.©(N). The “secret” is the

nature of the “similarity” measure STC uses, and the efficient data structure and algorithm STC
uses to index the documents and compute the similarity. Practically all other cluster methods use a
measure such that if documedy is similar to documenb,, and documenD,, is similar toDg,

one cannot assume thaj is similar toD3. In a word, these measures, e.g., cosine similarity, are
non-transitive. As a result, every pair of interdocument similarities needs to be computed and
accessed for “completeness.” By contrast, STC forms its base clusters on the basis of shared
phrases. ID; andD, share a phrase, amdl, andD3 share the same phrase, tHepandD5 cer-

tainly share that phrase too! Hence, STC can perform complete clustering at the base cluster level
without incurring theO(N?) penalty. STC achieve®(N) time and space by employing a suffix

tree to index the document collection, and an efficient algorithm due to Ukkonen [Algorith, 1995]
[Nelson, 1996] to build and update the suffix tree. The second-stage clustering of base clusters is
not transitive, but involves clustering of base clusters, not documents. Moreover (and this is the
most “heuristic” element of the method), during the incremental re-clustering of base clusters,
only theq “best” existing clusters are revisited, as noted above. This keeps the time (actually the
maximum time) required for stage two constant as the number of documents grows.

Finally, it should be noted that because it is incremental, the performance of STC in the applica-
tion domain for which it was developed, e.g., clustering of documents retrieved from the Web,
may be much better than linear. STC can cluster the documents as they are arriving. Hence, by the
time the last Nth) document arrives, STC’s clustering may be nearly completed. In a reported
experiment, cluster results are returned “to the user a mere 0.01 seconds after the last document is
received by” the Web retrieval engine. However, it should be noted that clustering in this case was
performed on the “snippets” extracted from Web pages by the IR engine, not the full text of the
actual pages. This is compared by Zamir to the truncation of document vectors by Cutting et al.
{SIGIR ‘93] and Schutze et al. [SIGIR ‘97] described earlier

Page 128

10.4 Cluster Validation

Since even randomly generated data can be clustered, it is important to determine whether the
clusters produced when a given clustering method is applied to a given collection, are meaningful.
It is even more important to determine whether the clusters produced contrileftedtiveinfor-

mation retrieval. In other words, are the clusters produced likely to satisfy the cluster hypothesis?.
If a query or browsing method locates and retrieves a cluster of appropriate size, is it likely that
many or most of the documents in that cluster will be relevant to the query, or of interest to the
browsing user? If the user relaxes the cluster threshold, retrieving documents that were close to
the boundary of the original cluster, are these new documents likely to be at least partially relevant
to the user's need?

Several approaches to cluster evaluation with specific applicability to document retrieval have
been tried. These approaches try to determine whether a given collection is a good candidate for
clustering, i.e., whether clustering will promote retrieval effectiveness. One approach, due to van
Rijsbergen and his associates [van Rijsbergen et al., 1973] is to compare the average interdocu-
ment similarity among relevant documents to the average similarity among relevant-nonrelevant
document pairs. This average can be computed for a given query or over a set of queries. If the
cluster hypothesis holds, the average similarity among relevant documents should be substantially
larger than the average over relevant-nonrelevant pairs. A second approach, due to Voorhees, is to
determine for each document relevant to a given query how many of its nearest neighbors are also
relevant to the query. In her experiments, Voorhees [TR 85-658] considered the five nearest neigh-
bors to each relevant document. These two methods both require that a query or set of queries be
applied to the collection and that relevance judgments be applied to the documents retrieved by
these queries. The assumption is made that the results for the given queries characterize the given
collection in the sense that other queries applied to the collection will give similar results. A third
approach, due to EI-Hamdouchi and Willett [JIS, 1987] depends entirely on properties of the col-
lection itself, or more precisely on the terms that index the documents in the collection. They cal-
culate alerm densitydefined as the number of occurrences of all index terms in the collection (the
number ofposting$ divided by the product of the number of documents in the collection and the
number of unique index terms. This density is a measure of how densely populated the term-doc-
ument matrix is. The theory is that the greater the term density, the more frequently documents
will share terms, and hence the better a clustering can represent degrees of similarity between
documents. In a reported comparison of these methods, the term density measure correlated best
with effectiveness of cluster searching. [Willetts, IP&M, 1988]

As the size of distributed collections and the corresponding size of retrieval sets grow, the applica-
tion of clustering to user interactive browsing also grows in importance. A number of the cluster-
ing methods described above, are specifically aimed at this application domain. Hence, some
evaluations of effective clustering have also been aimed at this application. Browsing experiments
have been conducted to evaluate the effectiveness of clustering for this purpose. These experi-
ments are discussed further in the section below on User Interaction. However, one test of
retrieval effectiveness [Zamir et al., SIGIR ‘98] that simulates browsing will be discussed here.
This test compared the STC clustering method (described in the preceding section) against several
heuristic clustering methods (described in the section on Heuristic Method€)@&f)i methods
(discussed in the section on Complete Methods). Specifically, it compared STC against four lin-

Page 129

ear-time heuristic methods: Single-Pass, K-means (this is the Rocchio method), Buckshot, and
Fractionation), and on®(N?) method: Group-Average Hierarchical Clustering (GAHC).

The strategy adopted by Zamir et al. is based on results reported by researchers who conducted
actual browsing experiments. These experiments indicate that a user is usually (about 80% of the
time) able to select the cluster containing the highest proportion documents relevant to her need,
on the basis of the cluster labels or summaries provided to her. Hence, Zamir generated 10 que-
ries, retrieved documents from the Web for each of those queries, and then manually generated
human relevance judgments for each of the 10 retrieval sets, relative to the query for which it was
retrieved. Then, they clustered each of the retrieval sets using each of the cluster methods, setting
parameters as appropriate so that 10 clusters were generated for each retrieval set/cluster method
pair. Then, for each retrieval set and cluster method, they automatically selected the “best” cluster,
i.e., the cluster containing the highest proportion of relevant documents, then the next best, and so
on, until they had selected clusters containing 10% of the documents in the “collection,” i.e., in
the given retrieval set. This was based on the assumption, noted above and borne out to some
extent in practice, that users can select the best clusters on the basis of their labels or summaries.
In all cases, the cutoff was 10% of the documents in the given set; this meant that the cutoff might
occur in the middle of a cluster, even in the middle of the first cluster, if that cluster was large for

a given cluster method. The resulting 10% documents were then ranked, and the average precision
computed, averaged over all 10 collections. (Since STC supports document overlap, a given docu-
ment might appear in two or more selected clusters. For purposes of ranking, such duplicates were
discarded.) Equalizing the number of clusters generated, and the number of documents ranked,
across methods and collections, allowed for a fair comparison of cluster methods. Note that Zamir
ranked documents by cluster, i.e., the documents in the best cluster were ranked higher than the
documents in the next best cluster, and so on. Zamir et al. do not specify how they ranked docu-
ments within a given cluster. However, Hearst et al. rank documents within a cluster using two
different criteria: closeness to the cluster centroid, and similarity to the original query.

The results reported by Zamir et al. show that STC out-performed the other methods, even the
GAHC method, by a significant margin. GAHC out-performed the other methods, which is not
surprising considering that it is @(N°) method (and consequently far too slow for interactive

use, and even for off-line use of large collections). It is striking that STQ@) and incremental
method, out-performed GAHC, which is neither! Zamir et al. concede that their results are pre-
liminary; indeed, the title of their paper refers to the reported study as a “feasibility demonstra-
tion.” The results are preliminary for (at least) four reasons. First, the results were obtained from
non-standard, e.g., non-TREC, collections, retrieved from the Web by 10 arbitrary queries. (This
was deliberate, since Web retrieval is the intended application of STC.) Second, the resulting col-
lections were (relatively) small, e.g., 200 documents each. (On average, there were about forty
relevant documents for each query.) Third, the relevance judgments were generated by the
researchers rather than by independent judges, as in TREC. Fourth, the study did not use actual
human users, performing actual interactive browsing. However, their system, MetaCrawler STC,
has been fielded on the Web, so that statistics can be gathered from actual users. The data set
employed is also being published on the Web, so that other researchers can replicate and validate
these experiments.

Page 130

11 Query Expansion and Refinement

A query or information need submitted by an end-user is ordinarily a short statement or an even
shorter list of terms. This is only to be expected. The normal user is not necessarily an expert on
all the term usages in a large collection of documents he wishes to query. Nor does he want to
spend his time consulting thesauri and other reference works in an attempt to generate an ideal
guery. A sophisticated user may in fact do some of these things. But the approach taken in both
some commercial IR engines and much IR research is to refine and expand the original query
automatically based on the documents retrieved by the original query. {Salton et al., JASIS, 1990]
Query refinement and expansion may involve adding additional terms, removing “poor” terms,
and refining the weights assigned to the query terms. It is possible to recompute the weights with-
out expanding the query, or to expand the query without recomputing the weights, but experiment
indicates that both expansion and re-weighting improve retrieval performance. [Harman, SIGIR
‘92] The process of query expansion and re-weighting can be applied to either vector space que-
ries or extended boolean queries. [Salton, ATP, 1989] [Salton, IP&M, 1988] The process may be
wholly automatic or may involve a combination of automatic processes and user interaction.

11.1 Query Expansion (Addition of Terms)

A number of approaches to automatic query expansion have been tried. A common approach is to
expand the query with terms drawn from the most relevant documents, i.e., the documents that
the user judges relevant among those that were retrieved when her original query was applied to
the collection. This process is called “relevance feedback.” [Salton et al., JASIS, 1990], [Harman,
SIGIR '92] The process is interactive to the extent that the user must look at the documents most
highly ranked by the retrieval system and tell the system which ones are relevant. Note that since
modern IR systems typically rank all the documents in the collection, the user must decide how
far down the ranking she wants to go, e.g., she must decide to read the highest dadkiog-

ments wheré& is a parameter of the retrieval procedure. In effect, she makes the working assump-
tion that the firsiX documents are likely to be relevant and hence are worth examining initially to
judge their relevance. (But see below for further refinements.) However, the system can “take it
from there,” extracting terms from the relevant documents and adding them to the original query.
The system can also reweight terms in the original query, e.g., increasing the weights of terms that
appear in the documents judged relevant, and reducing the weights of terms that do not appear in
the relevant documents. If there is a training set of documents such that human judges have
already identified relevant and non-relevant documents for this set (relative to the given query or
topic), then terms occurring in the relevant documents of this training set can be added to the ini-
tial query. (Training sets are normal for routing or classification applications.) The process of rel-
evance feedback is iterative. Each time the query is expanded and re-weighted, this “improved”
guery, also called the “feedback query” [Buckley et al., SIGIR ‘94], is executed. The user then
makes relevance judgments of the tépocuments retrieved by the feedback query. “The process
can continue to iterate until the user’s information need is satisfied.” Harman [SIGIR ‘92] recom-
mends repeating the process as long as each iteration retrieves relevant documents not retrieved in
the previous iteration. (Note: In the “residual collection” method of evaluation of relevance feed-
back [Salton and Buckley, JASIS, 1990] [Haines and Croft, SIGIR ‘93] [Chang et al., SMART,
1971], all documents previously seen and judged by the user are factored out of evaluation of the

Page 131

next iteration so that each iteration is only “credited” with additional relevant documents not pre-
viously retrieved.)

A refinement of the above procedure is to let the IR systissumehat the topX documents as

ranked by the IR system are relevant. The system automatically expands the query usixg these
documents, runs the expanded query and returns the ranking produced by this second-stage query
as the first result actually seen by the user. Note that for the purposes of automatic query expan-
sion (the first stage of this two-stage process), precision is more important than recall, i.e., it is
essential that as many of the high-rankidocuments as possible are relevant even if some rele-
vant documents are overlooked. Hence, similarity measures may be employed in this automatic
first stage that emphasize precision and sacrifice some recall. [Cornell, TREC 5]

When terms from relevant documents are to be added to the query, two questions are important:
(1) How many documents should the user judge for relevance, e.g., the top 10 (a screenful), the
top 30, the top 2007 Or should the threshold be determined by similarity or probability value, e.g.,
all documents above a given similarity value? In any case, once a threshold is set, all documents
above that threshold become the “retrieval set.” The user judges each document in the retrieval set
as relevant or non-relevant. (2) What should be the measure of whether a term that occurs in doc-
uments judged relevant is “important enough” to be added to the query? A common answer to the
latter question is to add the term vectors of all documents judged relevant to the query. In other
words, all terms in the relevant documents (after stop-word removal and stemming) are added to
the query. However, if a relevant document is very large, adding all the terms in its term vector to
the original query can produce a very large expanded query. This can degrade response time
because “efficient large-scale retrieval systems have response times that are heavily dependent on
the number of query terms rather than the size of the collection.” [Harman, SIGIR ‘92]

A refinement to the term selection procedure is to take all the terms from the term vectors of the
relevant retrieved documents, sort them according to some criterion of importance, and then add
the topN terms from this sorted list to the query. An effective key for sorting in one experiment
[Harman, SIGIR ‘92] was found to benbise*frequencywherenoiseis a global distribution term

similar toidf, andfrequencyis the log of the total number of occurrences of the given term within

the set of relevant retrieved documents. In other words, preference is given to terms that occur fre-
guently in the documents judged relevant but that do not occur frequently in the collection as a
whole. The same experiment found that adding the top 20 terms produced better retrieval perfor-
mance (measured as average precision) than adding a much larger number of terms, e.g., all of the
non-stop words in the retrieved relevant documents. Adding all the terms dilutes “the effect of the
‘important’ terms ... causing many non-relevant documents to move up in rank.” (Of course, if a
given query goes through repeated iterations, 20 terms will be added at each iteration.) This
experiment simulated an interactive, ad hoc query environment in which the user issues a query,
judges the to]N (N = 10) documents for relevance, and the system then automatically expands the
guery using the “best” terms taken from the relevant retrieved documents. The user repeats this
relevance feedback process with each iteration using the query expansion produced by the previ-
ous iteration.

Buckley et al.[TREC 2] [TREC 3] achieved substantial improvement in a routing environment
by massive query expansion, e.g., each query was expanded by 200-300 terms before retrieval

Page 132

improvement reached a point of diminishing returns. Subsequently [SIGIR ‘94], they reported
improved performance for expansion up to 500 terms. However, Singhal et al. [TREC 4] found
that with their improved term weighting schemen(i — see section 3.3.2), the maximum
improvement occurs at 80-100 added terms. (Traditional term weighting favors shorter docu-
ments. Massive query expansion compensates for this bias by favoring longer documents. The
new weighting scheme, by eliminating the document length bias, reduces the need for the com-
pensating bias of massive expansion.)

The above approaches distinguish “important” terms, i.e., terms that are effective at discriminat-
ing documents about a given topic, from terms that are poor at such discrimination. However, as
noted earlier, a large document may deal with a number of topics. Hence, it is quite possible that
inappropriate terms will be added to the query, drawn from non-relevant sections of relevant doc-
uments. These terms may be good topic discriminators but they may discriminate the wrong topic.
One approach to this problem, discussed earlier (see section on query-document similarity), is to
break each large document into sections, commonly called “passages,” and treat each passage as a
“*document.” {Allan, SIGIR ‘95] In other words, the system computes the similarity between each
passage and the user’s query. This enables the system to determine the “best” passage, i.e., the
passage in a given document most similar (and hence one hopes most relevant) to the query. The
guery is then expanded only with terms taken from the “best” passage of each relevant document.

An alternative method of query expansion (mentioned earlier) is to expand each term in the origi-
nal query with synonyms or related terms drawn from a generic on-line thesaurus, e.g., Prince-
ton’s public domain WordNet [Miller, IJL, 1990] or a thesaurus developed for a particular
application domain. [van Rijsbergen, 1979] A thesaurus may be an independently generated refer-
ence work, e.g., WordNet, or it may be generated from the target collection based on term co-
occurrence or adjacency, e.g., INQUERY’s PhraseFinder. [Callan et al, IP&M, 1995] A term can
be expanded with synonyms or replaced by a more general word representing the class to which
the original term belongs. [van Rijsbergen, 1979] The use of a thesaurus to expand a set of terms
automatically into a boolean expression was discussed briefly in the section above on boolean
gueries. Query expansion by thesaurus may be truly automatic since unlike expansion based on
relevance feedback, no feedback from the user is required. On the other hand, a user may expand
a query manually using a thesaurus. Of course, expansion by thesaurus, and expansion with terms
drawn from the relevant document set of the original query, are not mutually exclusive.

In a third approach to query expansion, interactive query expansion, the user is supplied with a list

of candidate expansion terms derived from the relevant documents and ordered by some criterion
of importance such as the “noise*frequency” discussed above. The user then chooses terms from
this list to add to the query. [Efthimiadis, IP&M, 1995].

Whether terms for query expansion are selected interactively or automatically, a term ordering
(also called “ranking” or “selection”) method is required. Efthimiadis, Harman [SIGIR ‘92], and
Haines and Croft [SIGIR ‘93], have all studied term ordering methods. In general, the experi-
ments conducted by these authors found that multiple ordering methods had comparable perfor-
mance. They also found that the results depended on the collection to which it was applied, e.qg.,
Haines and Croft found that relevance feedback worked much better on a collection of abstracts
than on a collection of full-text documents. They found that a good term ordering method was

Page 133

rdf*idf whererdf is the number of documents judged relevant by the user that contain the given
term. Harman and Efthimiadis both found that a probabilistic ordering method comparable to (in
Harman, slightly better than) “noise*frequency” was the Bl weighting formula (see section above
on probability):

P {1-uy)

Wi = log U (1 —uy)

wherepy is the probability that the terry appears in a document given that the document is rele-
vant, anduy is the probability that, appears in a document given that the document is non-rele-
vant. Harman and Efthimiadis both got good results wigfp - u,). Efthimiadis got comparable
results with his “r-lohi” method which consists of ranking termgthy{the number of occurrences

of the given term in relevant documents) and breaking ties according to their term frequency (over
all documents) from low frequency to high frequency. Buckley et al. [SIGIR ‘94]rdEéoreak-

ing ties by choosing the term with the highest average weight in the set of relevant documents.

Local Context Analysis (LCA) [Xu et al., SIGIR ‘96] employs a more elaborate scheme for auto-
matic choosing, ranking, and weighting of query expansion terms. LCA “combines global analy-
sis and local feedback.” It is based on fixed length passages (300 words in the reported
experiments). It is also based on “concepts” where a concept is a noun group (phrase), defined as
“either a single noun, two adjacent nouns, or three adjacent nouns.” Given a@ueistandard

IR system (INQUERY in the reported experiments) retrieves the top n passages in the collection
being queried, i.e., the passages in the entire collection that mafrmost closely. Concepts in

the top n passages are ranked according to the formula:

be(Q 9 = [(5+log(af(c t))idf /log(n))""

wherec is the concept being ranked relative to quéryandbel (which stands for “belief”) is the
ranking function. The heart of this ranking function is:

j=1

j=

which multiplies the frequency of occurrence of query teym passageg (ft;) by the frequency

of occurrence of conceptin passagg (fc;), and then sums this product over all théop pas-

sages. Hence, this factor measures the co-occurrence of a given quetyuetimthe concept c

being ranked, over all of the tappassages. The greater the amount of co-occurrence (co-occur-
rence in more passages, greater frequency of co-occurring query term and concept within a given
passage), the greater the ranking.of his ranking factor is modified (multiplied) byf., a varia-

tion on the familiar globaldf statistic which penalizes concepts occurring frequently in the col-
lection. This product is normalized by the log of the number of top ranked passages. A small term,
0, Is added to prevent any concept from getting a score of zero. The resulting sum is raised to the

Page 134

poweridf; to emphasize infrequent query terms. The result is a scorerédative to query termg.
Finally, the scores foc relative to each of the query termjsare multiplied together to obtain the
final ranking score for concept Note that “[m]ultiplication is used to emphasize co-occurrence
with all query terms.” In other words, if even one of the query terms has a very low co-occurrence
score with a concepgt that concept will receive a low ranking.

Once the concepts in the tappassages have been ranked, rihnighest ranking concepts are
used to form an auxiliary query, which combined with the original qgnsing a weighted sum
operator. In the reported experiments, m was set to 70. Thegxpansion concepts were
weighted (within the auxiliary query) according to a linear weighting function such that the high-
est ranking concept;; received a weight close to 1, and the lowest rankingth{) concept
received a weight of 0.1. The expanded query was then applied to TREC3 and TREC4 data. All
runs produced improvement (measured in average precision), but the amount of improvement
depended on the number of passages. The best run on TREC3 (200 passages) produced an
improvement of 24.4%. The best run on TREC4 (100 passages) produced an improvement of
23.5%. Currently, no method of choosing the optimum number of passages is known, but fortu-
nately, performance is relatively flat for a wide range (30 to 300 passages), at least for the TREC
data. If the number of passages is below or above this optimum range, the level of improvement
declines.

Note the mixture of global and local analysis in LCA. Thepassages that best matGhare
selected globally from the entire collection. Likewise, the tdfcstatisticsjdf, andidf;, are calcu-

lated globally over all the passages in the collection. On the other hand, query term/concept co-
occurrence is computed “locally,” i.e., it is computed only for thodeest passages retrieved for

Q. Note that term occurrence statistics and idf statistics can be computed ahead of time for all the
passages in a given collection. At run time, i.e., when a qQag/being executed, the only global
activity required is retrieval of the best passages. Co-occurrence statistics and the concept rank-
ing can then be computed locally. Hence, retrieval time is very fast.

LSI has been used as a form of query “expansion” in conjunction with (or in place of) relevance
feedback. In “[m]ost of the tests ... the initial query is replaced with the vector sum of the docu-
ments the users have selected as relevant.” [Berry et al., SIAM, 1995] The effect is equivalent to
incorporating terms from the relevant documents into the query, yet the resulting query vector
using LSI factors is much lower-dimensional than if the terms themselves were actually added
(which means that the query will execute much faster). [Harman, SIGIR ‘92] [Hull, SIGIR ‘94]
Dramatic improvements were achieved when even the first relevant document or the average of
the first three relevant documents were used.

11.2 Query Refinement (Term Re-Weighting)

Once the query has been expanded, the weights of query terms must be recalculated. A widely
used method of re-calculating the term weights given relevance feedback is the Rocchio formula.
[Buckley et al., SIGIR ‘94] The Rocchio formula calculates new term weights from the old term
weights and the relevance judgments as foIIows.Cpié'fj be the existing weight of thieth term,

e.g., computed using a scheme like the popula’” (see section above on term weights) for a
term in the original (non-expanded) query. Of course, if tgrisian expansion term, then there is

Page 135

noQ%4 i.e., %= 0in the equation below. L&;"*"be the new weight of query ternafter re-
evaluation. Letrgl docg be the number of retrieved documents judged relevantnbet¢l-docé

be the number of retrieved documents judged non-relevantwt.ehe weight of ternt; in any
given relevant or non-relevant document. BeB, andC be three constants to be adjusted experi-
mentally. Then the Rocchio formula [Buckley et al., SIGIR ‘94] [Salton and Buckley, JASIS,
1990] is:

1 1
ew _ p old B 0 t — O t.
Q R B e doc g™~ Hriomrel dock oo

Note that theB term in the Rocchio formula averages the weights of query teower the rele-

vant documents. (Remember that a given term can have a different weight in each relevant docu-
ment in which it occurs.) Th€ term averages the weights of query tetraver the non-relevant
documents. Hence, the ratios &f B, andC determine the relative importance of the old query
(i.e., the previous version of the query), the relevant documents, and the non-relevant documents
in modifying term weights in the query. It should be stressed that the query expansion terms are
drawn entirely from the documents judged relevant. However, some of these expansion terms may
also occur in non-relevant documents. Hence Ghgortion of the Rocchio formula does not add

any terms to the query; its only effect is to reduce the weights of some expansion query terms (or
on a first iteration, original query terms) because of their occurrence in non-relevant documents.
The effect of theC portion of Rocchio may be to make the weight of some terms negative. Terms
with negative weights may be dropped. [Buckley et al., SIGIR ‘94]

This is the “original” Rocchio formula. A modified version of the formula [Buckley, SIGIR ‘94]
re-interprets honrel docs to include not just the retrieved documents that the user has explicitly
judged non-relevant but all documents in the collection that have not been explicitly judged rele-
vant by the user. The assumption of the “modified” formula is that most of the documents the user
never sees, the non-retrieved or lower-ranking documents, will in fact be non-relevant.

Buckley et al. point out a significant virtue of the modified Rocchio formula. By pure chance, a
low frequency term may easily happen to occur more frequently in relevant than in non-relevant
documents within a given collection. Rocchio averages such a term over all the relevant docu-
ments, and all the non-relevant documents, in the collection, not merely the relevant and non-rele-
vant documents in which the term happens to occur. Hence, both relevant and non-relevant
documents will make a small contribution to the weight of a low-frequency term. Rocchio weights
an expansion term by the difference between these contributions, which will therefore also be
small. This is contrasted with the probabilistic Bl term weighting formula discussed in section
7.3.1. This formula computes the term weight as the log of a ratio involving the probabilities of
occurrence of the given term in relevant and non-relevant documents. For example, if 1/10 of the
relevant documents contain the given tep{p, = 0.1), and 1/100 of the non-relevant documents
containty (u, = 0.01), thert,’'s weight,w (by the Bl formula) is log (11). If, is much lower fre-
quency, e.g.px = 0.01 andy, = 0.001), therw is approximately equal to log (10.1). The weight

of a low frequency term can be approximately the same as the weight of a high frequency term, as

Page 136

long as the ratio of their occurrence in relevant and non-relevant terms, is the same. Harman
[SIGIR '92] notes the same problem with probabilistic term weighting.

In general, the SMART system weighting scheme described above allows one weighting scheme
to be applied to query terms and another weighting scheme to be applied to document terms.
However, as Buckley et al. [SIGIR ‘94] point out, the Rocchio formula involves adding query
weights to document weights so the same weighting scheme Jte,gnust be applied to both
guery and document terms if Rocchio is to be used for relevance feedback. (This is in contrast to
the usual scheme, e.dne-Itc as described in section 6.3, in which tidéis a factor in the query

term weight, but not in the document term weights.)

The effect of Rocchio re-weighting is to increase the weights of terms that occur in relevant docu-
ments and to reduce the weights of terms that occur in non-relevant documents. This works well if
all the relevant documents are clustered near each other in document space.[Salton, ATP 1979] In
that case, relevance re-weighting using the Rocchio formula will move the query vector toward
the centroid of the cluster of relevant documents and away from the centroid of the non-relevant
documents. However, if the relevant documents are not tightly clustered, the “optimum” query
may not be effective at retrieval. Even worse, repeated re-weighting may cause the query to wan-
der around the document space, never settling down, because one set of relevant documents may
pull the query this way, another set may pull it that way. One possible solution is to use a tech-
nique like LSI that captures term dependencies; relevant documents may be far more tightly clus-
tered in a document space whose dimensions are LSI factors than in a conventional document
space whose dimensions are actual terms occurring in the documents. Another possibility is to
modify the document vectors by adding terms drawn from the user’s query or application domain
to the indexes of documents judged relevant. The effect is to move relevant documents closer
together in document space, and move non-relevant documents farther away. [Salton, ATP, 1979]
Of course, this approach won't improve performance for the original query, but it will help if the
user submits similar queries in the future. A third approach is to cluster the retrieved relevant doc-
uments (see section on clustering). If two or more well-defined clusters are detected, one can split
the original query into multiple queries, one for each identified cluster, and then proceed with nor-
mal relevance feedback.[Salton, ATP, 1989]

Other re-weighting formulas can be effective. In general, term ordering formulas are potentially
term re-weighting formulas. The Bl probabilistic formula can be applied to relevance feedback
data as described above in the section on probabilistic approaches. This formula can be used as
both a term ordering formula to select good terms for query expansion, and as a formula for re-
weighting query terms after each query iteration. [Sparck Jones, JDoc, 1979] According to Har-
man [SIGIR ‘92], the effectiveness of “query expansion using the probabilistic model seems to be
heavily dependent on the test collection being used ... Collections with short documents ... gen-
erally perform poorly, probably because there are not enough terms to make expansion effective.”
Salton and Buckley [JASIS, 1990] note that probabilistic re-weighting does not make use of such
useful information as the weights of terms assigned to retrieved documents. “Furthermore, the set
of relevant retrieved items [documents] is not used directly for query adjustment ... Instead the
term distribution in the relevant retrieved items [documents] is used indirectly to determine a
probabilistic term weight.” They claim that probabilistic relevance feedback is less effective than
vector, e.g., Rocchio, relevance feedback, perhaps for these reasons.

Page 137

Haines and Croft [SIGIR ‘93] usedf*idf to weight query expansion terms, whetkis the fre-
guency, i.e., total number of occurrences, of the given term in relevant documentgf*itties

similar to Harman'’s hoise*frequency Note that they could not have used either Bl or Rocchio

for re-weighting because they were running their queries against an inference network retrieval
engine. For an inference network, “the weight associated with a query term is used to estimate the
probability that an information need is satisfied given that a document is represented by that
term.” Hence, relevance feedback involves re-estimatidhatfprobability rather than estimation

of the probability that a document described by a given term is relevant to the given query (as in
the BI formula). Moreover, non-relevant documents are not considered at all in their inference
network. [Haines and Croft, SIGIR ‘93] Instead, “relevance feedback using the inference network
model adds new terms as parents of the query node ... and re-estimates the relative weights of the
parents’ contributions to [a] weighted sum” representing the belief that the information need
expressed by that query is satisfied by a given document.

Buckley et al. [TREC 5} have tried to improve re-weighting by applying relevance feedback not

to the entire collection, but to documents in a vector sub-space around the query, cplleq a

zone This is a loose region around the query, such that documents in the region are not necessar-
ily relevant to the query, but are (it is hoped) related to the query, e.g., they may be about the
application domain to which the query belongs. For example, a document about computer moni-
tors is not relevant to a query such as, “Which disk drive should | get for my Mac?” but query and
document both belong to the domain of computer hardware, and hence may be in the same query
zone. Use of query zone may improve re-weighting in two ways: First, a term like “computer”
that is very common in the query zone, but much less common in the larger collection will be sub-
stantially downweighted, reflecting the fact that the term is good for distinguishing the domain,
but not good for distinguishing relevant from non-relevant documents within the domain. Second,
a term may be common in the collection as a whole (hence, not good for distinguishing the
domain), but very good for distinguishing the relevant from non-relevant documents within the
domain. They offer the example tife for the queryrecycling of tires Such a term will have its
weight substantially increased by the query zone approach. Clearly, the choice of a good similar-
ity measure for inclusion in the zone is the key to success with this approach.

Buckley and Salton [SIGIR ‘94] point out that:

[tihe same relevance feedback techniques can be used in the routing environment,
in which a user may have a long-lived information need and is interested in any
new documents that match the need. In this case, the user’s query [initially
weighted by the training set] can be constantly updated by the system as it receives
relevance information about new documents seen by the user. Over the life of the
guery, thousands of documents could conceivably be returned to the user for rele-
vance judgments.

In a document routing or classification environment, relevance feedback is often provided by a
(relatively large) “training set” or “learning set” of documents whose relevance or non-relevance
has been judged before the actual routing begins. In a test and evaluation environment such as the
TREC conferences, it is common to break a document collection in half, with one half serving as

Page 138

the “training set” and the other half serving as the “test set” on which the routing abilities of a
trained system (or an enhanced, refined query) are to be tested. The crucial point is that the system
is trained (at least initially) on a different set of documents than the ones on which it will be
required to perform. Hence, there is a danger that the system will be so perfectly “overfitted” to
the training set that it will perform very poorly against the “real” documents. Buckley and Salton
[SIGIR ‘95] point to an extreme example of overfitting: an information need expressed as a bool-
ean expression in which each known relevant document in the training set is represented by the
AND of all its index terms, and these ANDs are then ORed together. Such a query is guaranteed
to retrieve all of the relevant documents in the training set, but it has been so specialized that it
will do very poorly against new, incoming documents.

Buckley and Salton [SIGIR *95] try to avoid the danger of overfitting by what they call Dynamic
Feedback Optimization (DFO). They generate an initial feedback query by expanding the initial
guery using the\ best terms from the known relevant documents in the training set. (Their order-
ing criterion for “best” terms is number of occurrences of the given term in the relevant docu-
ments, i.e.rtf.) They weight the terms using the Rocchio approach. Then (this is where DFO
comes in) they refine the query weights by a process that miataésvolve adding any additional

terms. Instead, they run a series of passes on the existing set of query terms and weights. On each
pass they try the effect of increasing each term weight by a factor which is fixed for each pass but
may change (be reduced) from one pass to the next. They test each term weight increase by run-
ning the query with just that change against the training set. At the end of a pass, they preserve the
term weight increases that improved performance against the training set as measured by average
recall-precision on the tog documents (200 in their experiments). Number of passes, percentage
weight increase per pass, Rocchio coefficieAtsE, O etc., are parameters that can be varied.
Interestingly, Buckley and Salton note that the run in which the weights were increased most on
each pass produced the best “retrospective” performance on the training set, but the worst perfor-
mance on the test set, a classic example of overfitting! They conclude that limiting the weight
increase on each pass is an essential element of DFO.

11.3 Expansion/Refinement of Boolean and Other Structured Queries

The previous section discussed the expansion and re-weighting of vector space, e.g., term-based
gueries. Similar techniques, e.g., relevance feedback, can be used to expand and re-weight struc-
tured queries, e.g. boolean [Salton, ATP, 1989] [Salton, IP&M, 1988], and phrase-structured que-
ries. [Haines and Croft, SIGIR ‘93]

Salton expands a boolean query by extracting terms from retrieved documents judged relevant as
in the vector case. However, instead of merely ranking the terms as candidates for expansion as in
the vector case, he uses the term “postings”, i.e., the number of relevant documents indexed by the
given term (df), to estimate the number of relevant documents likely to be retrieved by various
boolean combinations, e.g., for three terting, andt,, the combinationst{AND t), (i AND t,),

(t; AND t), and ¢ AND t; AND t,) are applicable. The combinations that are estimated to retrieve
the most additional relevant documents are then ORed to the original query. Obviously, the num-
ber of additional terms must be limited to prevent a combinatorial explosion of boolean AND
terms. Also, it is clear that boolean expansions generated in this way do not reflect the full seman-

Page 139

tics that might be derived from a natural language statement of the information need using the
same terms.

Strict boolean expressions do not have weights. However, extended booleans do, p-gqrthe
model discussed earlier. The components pf@rm extended boolean query can be weighted by
assigning different values of the paramgido different clauses. A higher value (Salton suggests

p = 2.5) can be assigned to more important clauses, “implying a stricter interpretation of the bool-
ean operators;” less important clauses can be assigned apgosxatre, e.g.p = 1.5, meaning that

their boolean operators will be interpreted more loosely (closer to a vector space interpretation).

Haines and Croft [SIGIR ‘93] ran some relevance feedback tests on structured queries in which
the structure consisted of phrase or proximity operators rather than the standard boolean opera-
tors. In other words, the query was a term vector in which some of the terms were phrases or sin-
gle terms in proximity. The tests were run on an inference network search engine (see section on
inference networks). They used the classic query expansion and re-weighting technique except
that the “terms” added were not single words but phrases or groups of words in proximity. A
phrase is a statistical or syntactic co-occurrence of words. The words in a phrase may but need not
satisfy a proximity relationship. [Croft et al., SIGIR ‘91] Croft et al. found that relevance feed-
back improved the performance of such structured queries but not as much as for queries com-
posed of single words.

11.4 Re-Use of Queries

A lot of effort goes into refining, expanding, and optimizing a query using the methods described

above, particularly the methods that require user relevance judgments. Yet once the optimized
guery is executed to the user’s satisfaction it is typically thrown away. (The one notable exception
to this is the routing or classification case where a query or topic specification is used on an ongo-
ing basis to identify relevant incoming documents and direct them to the appropriate user.)

Raghavan and Sever [SIGIR ‘95] suggest that these “past optimal queries” should be saved for
Information Retrieval (IR) applications too. Their reasonable assumption is that user information
needs will recur. They call queries that satisfy such recurrent needs “persistent” queries. They pro-
pose storing optimal persistent queries in a query data base which they call a “query base;” each
persistent query in the query base would be associated with the documents that it had previously
retrieved. (Obviously, it would not be necessary to store the actual retrieved documents for a given
persistent query in the query base, only logical pointers to these documents.)

Raghavan and Sever identify two ways in which this query base could be used in conjunction with

a new user query: (1) “If there exists a persistent query with which [the] user query has sufficient
similarity, then the retrieval output that is associated with the persistent query is presented to the
user.” (2) If there is no persistent query in the query base close enough to the user query to provide
candidate output as in case 1, the system can find the persistent query that is closest to the user
guery, and use this persistent query as the starting point of a search through query space for an
optimal query via a “steepest descent” search method. Note: The search througlsppesig

not a search through the quebase if the optimal query for which we were searching was
already in the query base, this would be case 1. The search method is described briefly below.

Page 140

What does it mean for two queries to exhibit “sufficient similarity?” Raghavan and Sever don't
specify a similarity threshold; indeed, the threshold might depend on the application domain.
However, they do make a valuable point: Most of the IR literature, especially the literature
devoted to vector space methods, assumes that a query can be viewed as “just another document;”
in other words, queries and documents are viewed as occupying the same space, and the same
similarity measures, e.g., cosine similarity, are applied whether two documents are being com-
pared or whether a document is being compared to a query. However, the IR literature seldom
addresses the issue of computing similarity between two queries. Raghavan and Sever argue that a
different kind of similarity measure is required for comparing queries, and they propose such a
measure. Then, the threshold for “sufficient similarity” in a given application domain can be
expressed in terms of their proposed similarity measure.

Their argument is based on another valuable idea: the concept of a “solution region”. Briefly, the
search for an optimal query to satisfy the user’'s need will yield not a single optimal query but a
region of query space containing optimal queries. This region is called the “solution region”. An
important property of a solution regidis that if two query vector® andQ’ are both members

of S thenkQ (k> 0) andQ+Q’ are members o5too. On the other hand, cosine similarity is not
preserved by such a transformations. Hence, cosine similarity can lead to various anomalies when
gueries are compared with reference to a solution region. For example, two different “optimal”
gueries will not be computed as exactly similar (identical) according to cosine similarity even
though they are both in the solution region. Moreover, given an “optimal” qQggyin the solu-

tion region, and two querie®; andQ, outside the region, cosine similarity may say tlatis

closer (more similar) t@,n0 than Q, even thoughQ is closer to the solution region thay.

Their proposed query similarity measure overcomes these difficulties.

The essential idea is to compute a normalized “distance” between two qQgreslQ, based on
comparingnot the queries themselves but their respective retrieval sets. The retrieval sets can be
compared either on the basis of their IR engine rankings, on the basis of the user’s relevance judg-
ments, or on the basis of some combination of the two measures. For example, they propose a nor-
malized distance measure based on ranking such that the distance b€yveed Q, will be
minimum (zero) if they produce identical rankings of common retrieved documents, and maxi-
mum (one) if they are in complete disagreement in their rankings. They propose a normalized dis-
tance measure based on relevance judgments such that distance will be minimum (zero) if the set
of documents judged relevant in the retrieval set@giis identical to the set of documents judged
relevant in the retrieval set f@,; the distance for the relevance measure will be maximum (one)

if there is no document judged relevant that is common to the retrieval s€s ahdQ,. In a
combined measure, IR engine rankings for documents retrievegh land Q, are compared as
before, but only for document pairs such that the first is drawn from the set of relevant retrieved
documents, and the 2nd from the set of non-relevant retrieved documents. In all three cases, the
similarity of Q; andQ, is simply 1—distance

How do they propose to search through query space for an optimal query? Their method assumes
that the user supplies more relevance information than is usual in relevance feedback methods. As
in other relevance feedback methods, the initial user query goes through a series of refinements.
As in other feedback methods, each refinement of the query is applied to the document collection

Page 141

to obtain a set of retrieved documents. And as in other feedback methods, the user provides rele-
vance judgments for each successive retrieval set. However, the user supplies not just a judgment
as to whether each document in the retrieval output is relevant or non-relevant, but pairwise pref-
erences: given any pair of documetgandD, in the retrieval set, the user specifies eitbgr>

D, (meaningD, is either preferable t®, or equally good) oD, > D;. If D; > D, andD, is not>

D,, thenD; > D, (D, is preferable td,). Transitivity is assumed to hold, i.e.,if; > D, andD,

> D3, thenD, > D3, so the number of preferences the user needs to specify does not explode com-
binatorially. (Also, note that this reduces to the conventional case if the user divides the retrieval
set into a relevant set and a non-relevant set such that each document in the relevant set is prefera-
ble to every document in the non-relevant set.) The query optimization process starts by choosing
as the initial query, not the query specified by the uQgke, but the query from the query base

that has the maximum similarity @5, Call thisQg. Then thekth iteration k=0, 1, 2, etc., con-

sists of looking for document paif3,, D, in the retrieval set foQ, such thaD, > D, but the IR
retrieval engine rankB, above (more relevant tQ, than)D,. For each such pair, the difference
vectorD;—D,, is added tdQy. (So, if a given ternt, has a higher weighti;1 in D4 than its weight

Woo in Dy, thenwy—w,o will be added to the weight df, in Q. Similarly, if for some other term

tp, Wh1 < Wy, then the weight ofy in Q, will be reduced byw,,—wy;. In other words, the query
weights for the next iteratiok+1 are moved in the direction of each “preferable” docunign)

This iterative process continues until it reaché3.avhose retrieval set is such that whenelgr

> D,, D, is ranked by the IR engine aboiz. In other words, we have reached a query for which

the user’s subjective relevance judgments agree with the IR engine’s rankingQ,lisisonsid-

ered the optimal querQ,;.

12 Fusion of Results

Considerable research has been devoted in IR to the problem of “fusion” of results. The term
“fusion” has been applied in IR to two different problems: the fusion of results retrieved from
multiple collections, and the fusion of results retrieved from the same collection by multiple
methods.

12.1 Fusion of Results from Multiple Collections

“The need to search multiple collections in distributed environments is becoming important as the
sizes of individual collections grow and network information services proliferate.” [Callan, SIGIR
‘95] A given query may be submitted to multiple collections. A list of documents, typically
ranked, will be retrieved from each collection. The fusion problem is then how to merge these
ranked collections for presentation to the user. “[T]he goal ... is to combine the retrieval results
from multiple, independent collections into a single result such that the effectiveness of the com-
bination approximates the effectiveness of searching the entire set of documents as a single col-
lection.” [Voorhees, SIGIR ‘95] Given that the user wants to see a totiN dbcuments, the
problem is to determine how many of those documents to obtain from eaCleaifections,C,

C,, ...,Ce.

Note that collections may have different specialties. Hence, the number of documents relevant to a
given queryQ; may vary widely from one collection to another. For this reason, it is generally

Page 142

unsatisfactory to merge documents by taking equal numig€3) from each collection. Also

note that, in general, each collection may be indexed differently, and may be served by a different
information server, using a different IR algorithm or combination of algorithms. Hence, even the
same set of documents may be relevance-ranked differently with respect to the sam@guery

two different information servers. We cannot, in general, assume that the similarities computed by
the various information servers are comparable. Hence, in general, we cannot simply tike the
documents having the highest similarity scores relati@,to

Voorhees et al. propose two schemes for determining how many docubDints retrieve from

the i-th collection such thddR; + DR, + ... + DR: = N. The schemes differ in how tHaR; cut-

offs are to be computed. However, the merging of documents given that the cutoffs have been
computed is the same in both cases. The merging scheme is to keep track of how many documents
remain to be merged from each collectionto satisfy its cutoff requiremem@R;. Let DN; be the

number of documents not yet selected from collec@pto reach its cutoff. (InitiallyDN; = DR;.)

At each step, &-faced die C = the number of collections) is (conceptually) thrown. The die is
biased in proportion to thBN; so that the probability of selecting the next document fiGnms

DN;/N. Whichever face of the die “comes up”, the next document in rank order from the corre-
sponding collection is selected and added to the growing merge stream. The biases of the faces of
the die are recomputed, the die is thrown again, and another selection made.

For example, suppose thdt= 10,C = 3, and the cutoffs al®R; = 5,DR, = 3,DR3 = 2. Then, the
merging would proceed as follows (whég is the document of rarjketrieved from collection

i): The first document selected would be eifbef (with a probability of 1/2), oD,4 (with a

probability of 3/10), oDz, (with a probability of 1/5). Assuming for concreteness hgtwas

selected, the biases would be recomputed so that the next document selected woulddg either
(with a probability of 4/9) D,4 (with a probability of 1/3), oD34 (with a probability of 2/9). This

process would continue until ten documents had been selected. Note that the order of documents
from a given collectiorC; in the merged retrieval set reflects the document rankings returned from

C;, and the number of documents from each collection in the merged retrieval set equals its cutoff
value. SinceC, has a cutoff of 3, the merged retrieval set will contain the three top ranking docu-
ments fromC,, i.e.,D,4, Dyo, andDo3in that order, but their actual ranks in the merged list will

be determined probabalistically by the throws of the die. It should also be noted that this merge
method is completely independent of how the cutoff values are computed or estimated; it merely
assumes that the user has obtained cutoff values for each collection in the set whose retrieval out-
puts are to be fused. The cutoff values might even be obtained after retrieval from each of the indi-
vidual collections has occurred. That might be necessary, for example, in a dynamic, distributed
environment where the collections to be accessed is not known in advance.

Now, how can the cutoff values be computed? Both methods proposed by Voorhees et al. are
based on the existence of a static set of collections known in advance, a training set of queries, and
the corresponding training set of retrieved documents from each collection for each query in the
training set. Each document in the training retrieval set for a given training query is assumed to
have been judged relevant or non-relevant to the given query. (That, of course, is what makes it a
training set!) As with all methods dependent on a training set, the assumption is that the results
obtained with the training queries are predictive of the results that will be obtained with new que-
ries, i.e., that there will be training queries “similar enough” to the new queries with respect to the

Page 143

given collections. The first method is called the “relevant document distribution” (RDD) method.
Given a proposed que,, thek most similar training queries (the “nearest neighborsQtan

guery space) are computed using some similarity measure. (Moorhees uses cosine similarity.) The
value ofk is a parameter of the method. The retrieval sets for tke@sest similar queries are then

used to compute a “relevant document distribution” as follows: For each colleCtialetermine

the average number of relevant documents at rank one fderikarest neighbor training queries.
Then, determine the average number of relevant documents at ranks one plus two for the same
queries, etc. For example, suppose that there are three colle@ig1®, andC;. Further assume

thatk = 3, i.e., there are three nearest neighbor training queri€g:t@T,, QT,, andQTs. Then

our training data includes nine retrieval sets, e.g., the retrieval s€Tpapplied to collectiorC,

is Ry, The retrieval set®&; 5, Ry,, andRgs; tell us how documents i€, were ranked by T;, QTo,
andQTj, respectively. If the rank one documentRy, is relevant, but the rank one documents in

Ry, and Rg, respectively are non-relevant, then an “average” of 0.333 relevant documents (one
relevant document divided by three training queries) is retrieved @gm@t rank one by the set of
nearest neighbor training queries. Similarly, if the rank two documeriRgdandRs, are relevant

but the rank two document iRy, is non-relevant, then after two documents have been retrieved
from C, by each of the three training queries, an average of one relevant document has been
retrieved (three relevant documents divided by three training queries). We repeat this process for
ranks three tdN, generating a cumulative average distribution of relevant documents by rank (the
RDD) for C,. Similar distributions are calculated f@; andCs. By examining these distributions,

one can determine the optimum cutoff value for each of the collec@@nS,, andCs. The essen-

tial point is that the optimum set of cutoffs for a set of collections depends not only on how many
relevant documents are retrieved in the dplocuments for each collection. It also depends on
how these relevant documents are ranked in each collection. For example, suppose that on the
average (across a setlofraining queries for the given quefy,), three relevant documents are
retrieved in the top ten for each of two collectid@gandC,. But suppose that the relevant docu-
ments have higher rankings on averag€jrthan inC,, e.g., ranks 1, 2, and 4 @, vs. ranks 3, 7

and 8 inC,. The RDD forC,is {1, 2, 2, 3, 4, 4, 4, 4, 4, 4}; the RDD fo€,is {0, 0, 1, 1, 1, 1, 2,

3, 3, 3}. Then forN = 10 (the merged stream returned to the user will contain ten documents), the
optimum cutoffs are plainpR; = 2, DR, = 8 for which the RDD’s predict that the user will
retrieve five (2 + 3) relevant documents.

The 2nd proposed method of computing cutoffs from a set of training queries is computationally
cheaper but does not take rankings into account.

For each collection, the set of training queries is clustered using the number of

documents retrieved in common between two queries as a similarity measure. The
assumption is that if two queries retrieve many documents in common, they are

about the same topic ... The centroid of a query cluster is created by averaging the
vectors of the queries contained within the cluster. This centroid is the system’s

representation of the topic covered by that query cluster.

For each query cluster in the training set and each collection, a weight is assigned equal to the
average number of relevant documents retrieved by queries in the cluster from the given collection
among the first. documents (wheré is a method parameter). Hence given a query cluster, we
have a set of weights, one for each collection.

Page 144

Given a quenyQ, the query cluster method associa@@swith the cluster whose centroid vector

is most similar taQ, (presumably using cosine similarity or the like again). A cutoff is assigned to
each collection as in the RDD method. As in RDD, the cutoffs must suN) but this time they

are proportional to the collection weights for the given cluster. Hence, the number of documents
DR, taken from a given collectio@; in response t®)), is proportional to the average number of
relevant documents retrieved fradpby training queries in the cluster that is most simila€Xp It

is not at all dependent on how the documents retrieved f@rby the training queries were
ranked (except that they must have been rahkadbetter, of course).

Initial experiments using a subset of the TREC topics showed that the relevant document distribu-
tion method performed better than the query clustering method, but at a cost in greater processing
time and larger data structures. Both methods performed less well than the ideal, i.e., the results
that would have been obtained if all the documents were in a single collection. But the decrease in
guality was small enough that it appears that these fusion methods are feasible given the assump-
tions on which they are based: static collections, training queries, etc.

Note that regardless of the method used to compute the cubd¥fsit is quite possible that some

of theDR; will be equal to zero, reflecting the fact that some collections may have few if any doc-
uments relevant to the given query. This is especially likely if some of the collections are special-
ized to particular topics.

Also note, as pointed out by Voorhees et al., that these fusion methods make no allowance for the
possibility that the same relevant document may be retrieved from two or more collections, a pos-
sibility that is particularly likely if two or more collections deal with the same specialized topic.

What if the collections are widely distributed and dynamic? Callan et al. [SIGIR ‘95] have pro-
posed an alternative fusion approach, an extension to the inference network method, a probabilis-
tic approach to IR (see preceding section) that has been applied in the INQUERY system. The
inference network approach has previously been applied to retrieval of documents in a collection.
In the paper discussed here, it has been extended to apply to fusion of outputs from collections by
re-interpreting some of the basic statistical measures at the collection level. Hence, two levels of
index are created: First, there is the traditional document level where documents are indexed by
the terms they contain, their frequencies within each document, and the distributions of these
terms over the entire collection. Then, there is a new collection level of index where collections
are in effect treated as very large “virtual documents” indexed by terms in ways analogous to the
document level indexes. It would appear that the same kind of extension could be applied to any
method based on term indexing of documents. The inference network defined by this collection
level index is called a Collection Retrieval Inference Network, or CORI net for short.

For example, term frequenctf meaning “number of occurrences of a given term within a given
document” is replaced by document frequendfy (neaning “the number of documents within a
given collection containing occurrences of a given term.” Similarly, the number of documents in a
collection, D, is replaced by the number of collections to be acces€ed;he document fre-
guency, in turn, is replaced by collection frequencl) (heaning “the number of collections (out

of the totalC to be accessed) containing a given term.” And, inverse document frequefgy (

Page 145

defined for a given term in a given collection as Bg{f), is replaced by inverse collection fre-
guency (cf), defined for a given term in a given set of collections as Ogf). Theidf is a mea-

sure of how few documents in a given collection use a given term, i.e., it is zero if the term is used
by every document in the given collection and is maximized if only one document in the given
collection uses the term (which may indicate that it is a good descriptor of the topic with which
the given document deals). Similarly, tioé is a measure of how few collections (out of tGeo

be accessed) use a given term. Note: Actually, Callan et al. use a slightly more complex formula
for icf:

C+0.5

log

jcf = ___¢f
log(C +1.0)

In the usual application of inference networks to document retrieval from a single collection, the

presence of a given term in a given document may provide evidence to increase the probability
that the given document satisfies the user’s information need. In the extension to multiple collec-
tions, a given term may also provide evidence about the probability that a given collection con-

tains documents satisfying the user’s information need.

Hence, retrieval of documents for a given qu&yfrom a distributed collection of documents
becomes a two-stage process: First the collection level index is used to rank the collections rela-
tive to Q. Then, if the number of collections is large, document retrieval is applied only to the
higher ranking collections, the ones most likely to contain documents relevant to Q. If the number
of collections is small, all the collections (or all with score above some threshold) may be
accessed, but greater weight may be given to documents retrieved from higher ranking collec-
tions.

Oneveryimportant limitation of a collection level index should be noted here. In an ordinary doc-
ument level index, each term (and associated term frequency) is associated with the documents in
which it occurs. Hence, if two terntd andt2 appear in the index, one can determine whether they
co-occur in the same document(s). (However, if they co-occur in docubienbne can't tell
whether they occur in close proximity, unless term position within the document is retained in the
index, which would greatly increase the index size, or the actual document itself is retrieved and
examined.) If two termsl andt2 appear in a collection level index, one can tell whether they co-
occur in the same collection, i.e., the same “virtual document,” but we can’t tell whether they co-
occur in the same document within that collection, let alone whether they occur in close proximity
within a given document. This means that the problem of determining whether two co-occurring
terms are semantically related, difficult enough when the terms are known to co-occur in a given
document, becomes much more severe when the terms are only known to co-occur in a given col-
lection, perhaps in entirely different documents. Methods of compensating for these limitations
are discussed later.

The extension of the method from the document level to the collection level introduces a problem
relating to large collections analogous to the problem identified by Lee (discussed earlier) for
large documents. Lee pointed out that a large document is apt to deal with multiple topics. Obvi-

Page 146

ously, this is even more likely with respect to a large collection! In the case of a large document,
Lee points out that “maximum normalization,” i.e., normalization of term weights for a given doc-
ument by maximum term frequency in the given document, is liable to drag down the weights of
terms relating to a relevant topic; specifically, if the highest frequency term in large dochment
deals with sub-topi@\, it will drag down the weights of terms iB; dealing with relevant sub-
topic B. Callan et al. point out the same difficulty for large collections. At the collection level,
maximum term frequencytf,,,) is replaced by maximum document frequengdf4g,), the num-

ber of documents containing the most frequent term in the given collection. (Here, “most frequent
term” means the term that occurs in the most documents of any term in the collection.) Normaliz-
ing document frequencydf) by df,,,« for a large collection can produce a similar effect to that
noted by Lee for large documents. If the large collection contains a significant subset of docu-
ments relevant to an information ne€d, maximum normalization may obscure the presence of
this subset if other larger subsets deal with other topics, and particularly, if the most frequently
occurring term is associated with one of these other topics.

Callan et al. propose to deal with this maximum normalization problem for collections by using a
different kind of normalization for df:, scaling yf + K whereK is a large constant, rather than
scaling bydf,.x They suggesK should be a function of the number of documents in the collec-
tion. (They have tried a similar approach at the document level; in that case, the scaling ftctor is
+ K andK is a smaller constant, a function of document length.)

The CORI net approach allows the system to rank collections by the probability that they will sat-
isfy the user’s information need, just as the document level inference network allows the system to
rank documents within a given collection relative to the user’s information need. One virtue of
this approach is that the same system can perform the ranking at both levels; indeed, the same
algorithm can be applied to both the document level inference network and the collection level
CORI net, since the indexes have the same structure and analogous semantics. Another virtue is
that the collections, like the documents within a collection, receive scores, not just rankings; the
score for a given collection reflects the probability that it will contain documents that satisfy the
user’s information need.

Once each collection has been searched, we must address the same problem as with the “relevant
document distribution” and “query clustering” methods discussed above: how to merge the ranked
(and scored) outputs from each of the searched collections into a single merged, ranked output to
present to the user. Because the CORI net approach generates a score for each collection, it is pos-
sible to compute a weight for each collection without using or requiring a query training set as in
the query clustering method. An example of a formula for calculating collection weights from
their CORI net is:

w = 1+CR=2
S

wherew; is the weight assigned to collecti@, C is the number of collections searched,the
CORI net score of collectio@;, and s is the mean of all the collection scores. Bear in mind that

Page 147

these collection weights (and the scores from which they are derived) are relative to a given user
guery or information need. Given a different query, different weights would be computed for the
collections searched.

Once a weight has been computed for each collection, how should one use them to merge the
retrieved (and ranked and scored) document outputs of these collections into a single stream? One
could clearly use the same approach as in the query clustering method: convert the weights into
proportional cutoffs summing to some desired tddahnd then merge the retrieval sets using the
merge algorithm described above. However, both the query clustering and relevant document dis-
tribution methods assume that the retrieval sets are ranked, but make no assumption about the
documents in each set being scored. The inference net approach produces a score for each docu-
ment as well as for each collection. If one can assume that the scores assigned to retrieved docu-
ments from one collection are strictly comparable to the scores of documents retrieved from
another collection, then one can of course merge the documents into a linear order by score alone.
However, experience shows that even when the same method, e.g., the inference net method, and
the same indexing, is applied to different collections, the scores for a given query may not be
comparable due to large variations in the statistical properties of the collections. Hence, the CORI
net approach to merging is to compute a global score for each document as the product of the
weight of the collection from which it was retrieved, and its “local” score within that collection.
Documents are then merged by ranking them according to these global scores. The effect is to
favor documents from highly weighted collections (equivalent to favoring documents from collec-
tions with high cutoffs in the cutoff-merge method); however, documents with very high scores
from lower weighted collections are also favored (equivalent to choosing a very highly ranked
document from a collection with a low cutoff in the cutoff-merge method).

Why should it be the case that scores from documents retrieved from two different collections are
not necessarily comparable even when the documents are represented and described in the same
way in both collections, and the same retrieval algorithm is used to compute document scores (rel-
ative to a given query) for both collections? Consider two collections, one containing legal opin-
ions, the other containing papers relating to computers and computer science. Now consider a
queryQ, containing the word “tort.” Many documents in the legal collection will probably con-
tain the word “tort.” The computer science collection may contain a few documents relating to lia-
bility of software engineers in which the word “tort” appearsidifis used in the term weighting
scheme, a document in the computer science collection dealing with liability will receive a much
higher score relative tQ, than a comparable document (even the same document!) in the law col-
lection. Viewing each collection separately, this is quite appropriate; “tort” is a much more signif-
icant descriptor in the computer science collection because of its rarity, than it is in the law
collection. But the scores cannot be compared directly Wpgis used to search the two collec-
tions, and the resulting retrieval sets are to be merged. This problem can be remedied by comput-
ing normalized global statistics, e.g., a normalizdfithat reflects the number of documents
containing the term “tort” in the law and computer collections combined; this normalized idf has
to be computed from the statistics of all the collections to be searched, it has to be computed
before any of the searches are executed, and it has to be used by all the information servers in
place of the local idf’s available to those servers. The effect in the computer-law example is that
the scores of documents in the law collection@rthat contain “tort” become higher (because of

all the documents in the computer collection that don’t contain “tort”) and the scores of the few

Page 148

documents in the computer collection that contain “tort” become lower (because of all the docu-
ments in the law collection thato contain “tort”). Now the scores are comparable; in effect, the
two collections are being treated as if they were one. However, this is an expensive procedure, in
computation and communication, especially if the collections are widely distributed. Experiments
indicate that ranking based on the product of collection weight and document score is about as
effective, and considerably cheaper.

The CORI net method of fusion (or any similar approach using term-based indexing on the collec-
tion level) is obviously better suited than the relevant document distribution or query clustering
methods to a dynamic environment where the collections are widely distributed, the number and
identity of the collections to be searched changes rapidly from one query to another, and the con-
tents of the individual collections themselves change rapidly as new documents are added. This is
because it does not require the existence of a query training set of documents which must neces-
sarily have been prepared by applying some fixed set of training queries to a fixed set of collec-
tions. Adding additional collections to be searched does not require the major effort of updating a
training set to include these new collections. It only requires that each collection be comparably
indexedandthat global statistics for the set of collections to be searchedj&f,de updated. The

latter, of course may involve some significant run-time expense, but a lot less expense than updat-
ing a training set. Rapid updating of individual collections requires (at least) periodic updating of
their indexes, and correspondingly, updating of global statisticsdfkehen a set of collections is
searched. But again, this is less expensive than regular updating of a training set.

Xu and Callan [SIGIR ‘98] carry the CORI net research further, increasing the number of collec-
tions substantially (from 17 to 107), and improving the retrieval process. (They also, it appears,
abandon the acronym CORI net, which is a good idea since the essence of the reported research
does not depend on the use of an INQUERY inference network, and could be carried out with
some other effective IR engine.)

The first important (but not surprising) result they report is that the effectiveness of straightfor-
ward word-based retrieval is considerably poorer for 107 collections than for 17 collections. In
particular, average precision for a distributed set of collections becomes considerably worse as the
number of collections goes up, relative to the precision achieved when the same data is effectively
treated as a single integrated, centralized database, e.g., with population wide statisticsdfuch as
computed and maintained for the entire set of collections rather than for each collection sepa-
rately. Note that going from 17 to 107 collections did not involve increasing the amount of data.
The same TREC data was used in both cases. The number of collections was increased in the lat-
ter case by subdividing the same total set of documents more finely, into a much larger number of
subsets. Rather, the important difference was that statistics were computed and maintained in a
separate index for each collection, as would be the case in a realistic situation, e.g., a large set of
collections on the Internet. Yet with 17 collections (17 indexes) and the CORI net approach
described above, average precision was almost as good as for a single, centralized collection with
a single centralized index. With 107 collections (107 indexes), the average precision declines by
23% to 32.7%, depending on the cutoff (number of documents retrieved).

To compensate for the loss of precision resulting from distributing the index information over 107
separate indexes, they adopt two strategies: use of syntactically determined phrases as well as

Page 149

individual words as index terms, and query expansion using the Local Context Analysis (LCA)
method described above in the section on query expansion. The value of the former is obvious: If
the common words “high,” “blood,” and “pressure” co-occur in a collection, they may occur in
entirely different documents. However, if the phrase “blood pressure” occurs as an index term to a
given collection, the likelihood that one or more documents in the collection actually deal with the
subject of “high blood pressure” is obviously much greater.

The value of query expansion by LCA arises from the fact that terms are added to the original
query that co-occur in actual documents. Such co-occurrence may be a significant indicator that
the collection contains documents relevant to the topic of the original query. Especially important
is the addition of “topic” words, i.e., words that by themselves are strong indicators of the topic
under discussion in any document in which they appear. For example, given the topic “high blood
pressure,” the expansion may generate words like “hypertension” and “cholesterol” whose pres-
ence greatly increases the likelihood that a given collection contains documents about the desired
topic, and greatly increases the likelihood that documents retrieved from the given collection will
actually be relevant to the given topic.

Note that, as explained earlier, LCA works by retrieving the best passages relative to the given
guery using a conventional IR engine, and then ranking candidate concepts for expansion on the
basis of co-occurrence in the retrieved passages with all the query terms. Hence, LCA requires
document indexes at the passage level, i.e., the “documents” are passages (fixed length text win-
dows) within the documents. However, these passage-level indexes are maintained separately for
each collection. The only global index is the collection-level index, which only contains term sta-
tistics by “virtual document,” i.e., by collection. Hence, the global index can be quite small rela-
tive to the large set of collections being indexed. Xu and Callan point out that if document
boundary information, i.e., which documents a given term is in, were maintained in the collection
level index, the index would be about as large as the set of collections being indexed!

In the reported experiments using TREC3 and TREC4 data, LCA proved quite effective. The
average precision using the expanded queries was only slightly less (an average drop of only 2.6%
for TRECA4) than querying the same data as a single centralized database. Use of phrase descrip-
tors also improved performance substantially for distributed collections, but not as much as LCA.
The combination of LCA and phrase descriptors was best of all, but LCA alone accounted for
most of the improvement.

Viles and French [SIGIR ‘95] deal with a closely related problem: How often must global statis-
tics be updated as individual collections receive new documents? The situation they consider is
not quite the one we have been considering above: a set of independent collections at (perhaps)
widely distributed sites. Instead, they consider a single collection (they call it an “archive”) dis-
tributed over multiple sites. Each site has a different subset of the total set of documents in the col-
lection, and its own server which maintains indexes for its site and cooperates with servers at
other sites. How does this differ from the case of multiple “independent” collections which we
have been considering up to now? The primary difference is that each server maintains copies of
global statistics such adf. In other words, all sites possess the same global valuéf dbr a

given term, a value that applies to the total collection, i.e., the total of all the subsets from all the
sites. This globaldf is essentially the normalized idf discussed above for the computer collection/

Page 150

law collection example. A given site must maintain such a gladliator every term used as an

index at the given site. Given that a new document is added to the subset at one of the sites, ideally
the update should be disseminated immediately to all the other sites so that they can update all
theiridf’s. This is quite expensive if there are many sites, they are widely distributed, and updates
are frequent. Moreover, the addition of a single document at one site is not likely to have a large
effect on all the globaidf’s (or on any of them). Nor is it essential that sites receive update infor-
mation in exactly the same order that the updates occurred. As Viles and French note, “The goals
of an IR system generally do not include serializability of updates ondftieThe question Viles

and French pose and attempt to answer is this: How often must each site notify other sites about
updates it has received so that retrieval performance is not significantly degraded? (They call less-
than-immediate dissemination of updates “lazy dissemination.”)

To discuss this problem, Viles and French define a dissemination parachesed an affinity
probability,a. Thei-th site,s;, knows about all its own documents, i.e., the documents physically
stored at;. The site also “knows about” the firdith fraction of the documents stored at any other
site, 5;; here, “knows about” means that global statistics suchdfihave been updated gtto

reflect that fraction of the documents at any other sjtdjenced varies continuously between 0

and 1. Wherd = 0, no dissemination occurs. When= 1, each site has “complete” (statistical)
knowledge about the documents at every other site. Wherd®>1, s’s global knowledge is
derived partly from its own physical holdings, and partly from disseminated knowledge of docu-
ments held elsewhere. Henckis a parameter for experimenting with the percentage of a site’s
holdings for which knowledge is disseminated to other sites. The affinity probahijlity,a tool

for experimenting with different strategies for allocating new documents among the sitesawhen

= 0, documents are randomly allocated among the sites. “Vélreh, documents relevant to the

same query are co-located, mapping to the case where content has a large influence on document
location.” (The assumption that documents relevant to the same query are relevant to each other is
a simple scheme employed by Viles and French to experiment with content-based allocation of
documents; it is not intended “as a recommendation for document clustering.”)

Viles and French experimented using SMART v11.0 software and four well-known document col-
lections. Perhaps the most important result was that for all valuestbé greatest increase in IR
effectiveness occurred dsvas increased from 0.0 (no dissemination) to 0.2.&00.0, (random

rather than content-based allocation of documents to sites), boaistiogh 0.0 to 0.2 was suffi-

cient to achieve precision levels for all levels of recall that were “essentially indistinguishable
from [a] central archive”. At high levels of affinitya(= 1.0) corresponding to content-based allo-
cation of documents, higher levels of dissemination were required to achieve precision equivalent
to that of a centralized archive. The required dissemination varied from 0.4 to 0.8 depending on
the document collection used for the experiment. However, even in these cases, the largest part of
the improvement occurred in going frod= 0.0 tod = 0.2. “Successive jumps in dissemination

past thed = 0.2 mark yield relatively lower effectiveness gains.” Hence, it appears that effective

IR can occur in a distributed archive, even when each site has considerably less than complete
knowledge of the other sites. However, “[tlhere appears to be some minimal sample of documents
that a site needs to know about to achieve search effectiveness comparable to a central archive. It
remains to be seen whether this sample is a fraction of the whole, or if some minimal number of
documents is needed.”

Page 151

12.2 Fusion of Results Obtained by Multiple Methods

A number of researchers have observed that different retrieval methods applied to the same col-
lection to satisfy the same information need can result in retrieving quite different document sets,
i.e., there was surprisingly little document overlap across sets, either in relevant documents
retrieved, or in non-relevant documents retrieved. [Belkin et al, SIGIR ‘93] [McGill et al., Syr U,
1979] Moreover, the performance of these different methods tended to be comparable, i.e., the
proportion of relevant documents retrieved did not vary as much as one would have expected from
one method to another given the small amount of overlap in their respective retrieval sets. [Katzer
et al., 1982] These plausible findings would lead one to expect that combining results of multiple
methods would lead to improved retrieval, because more relevant documents would be retrieved
(or would receive high rankings) from the combination of methods than from any one method
alone. Such a result would be plausible, because one would expect that different methods would
have different strong points and weak points. This has been called the “skimming effect” [Vogt et
al., SIGIR ‘98] because the user is “skimming” the best documents retrieved by each method.

In contrast, Lee [SIGIR ‘97] and Vogt et al. [SIGIR ‘98] find (in more recent research) that differ-
ent retrieval methods tend to retrieve Sa@merelevant documents, bdtfferentnon-relevant doc-
uments. This has been called the “chorus effect,” [Vogt et al., SIGIR ‘98] because it means that the
more methods retrieve a document (in other words, the louder the “chorus” acclaiming the docu-
ment), the more likely it is to be relevant.

The phrase “different retrieval methods” can mean quite different things:

1. Different users using the same query formalism, e.g., all the users formulate boolean queries in
response to the same information requirement, but each user formulates her query independently
of the others. [Belkin et al, SIGIR ‘93] [Saracevic et al., JASIS, 1988] [McGill et al., Syr U, 1979]

2. The same or different users employing different query formalisms, e.g., natural language vs.
Boolean vs. Probabilistic, to satisfy the same information need. [Turtle et al., ACM Trans IS,
1991] [Belkin et al, SIGIR ‘93]

3. The same or different users employing different vocabularies, e.g., controlled vs. free-text, to
satisfy the same information need.[McGill et al., Syr U, 1979]

4. Different document representations, e.g., title vs. abstract, or automatically generated index
terms vs. manually assigned terms, or LSI vs. keywords. [Katzer et al., IT, R&D, 1982] [Turtle et
al., ACM Trans IS, 1991] [Foltz et al., CACM, 1992]

5. Different weights applied to the query terms and document terms within a single query repre-
sentation and a single document representation. [Lee, SIGIR ‘95]

6. Different retrieval (document classification, filtering, query-document similarity) strategies,
e.g., vector space cosine similarity with query expansion vs. logistic regression, vs. neural net-
works vs. linear discriminant analysis (LDA), or linear and logistic regression vs. neural networks
vs. pattern recognition techniques. [Schutze et al., SIGIR *95] [Chen, CIKM ‘98]

Page 152

As noted above, some of this research has also indicated that combining retrieval or classification
results from two or more methods (fusion of results) can produce better retrieval performance
than any one of the methods by itself. Typically, results are combined by applying each method
separately to a given document, and taking the sum (or equivalently, the mean) of the scores. [Fox,
etal., TREC-2] [Lee, SIGIR ‘95] [Hull et al., SIGIR ‘96] Note that there are two cases here: In the

ad hoc query case, a query is executed against a given collection by each of several methods, e.g.,
several IR engines each employing a different method of computing document-query similarity.

In that case, each individual run returns a ranked list of documents, with each retrieved document
in the ranked list assigned a similarity or probability score. Then, for each document retrieved by

at least one run, the scores assigned to the given document by each run are summed (or averaged);
of course, if a given document is not retrieved at all by a given run, its score for that run is usually
considered zero. On the other hand, in the routing (or filtering) case, a single stream of documents
is classified. Each document is classified by each of the classification methods. Each classifier
assigns a score to the given document with respect to each query. The scores assigned to the given
document for a given query are then summed (or averaged) as in the ad hoc case.

Variations on this simple combination scheme are possible. A weighted sum may be employed if
there is reason to believe that one method is more reliable than another. If the scores are probabil-
ities, it “may make more sense” to average logodds ratios. [Hull et al., SIGIR ‘96]. If it is desired

to give particular favor to documents retrieved by multiple methods, even more favor than does a
simple sum of the scores, then one can employ Fox and Shaw’'s [TREC-2] CombMNZ function,
defined as the sum of the similaritigsiesthe number of non-zero similarities. Lee’s [SIGIR ‘95]
findings with this function are discussed below.

In some of the cases listed above, the “multiple methods” are multiple query formulations, rather
than distinct IR engines or classifiers. In case one, multiple users employ the same formalism.
Hence, multiple individual runs correspond to multiple users, each formulating a query using the
same formalism, in response to the same information need, and executing their queries against the
same collection via the same IR engine. Hence, the individual runs can be combined exactly as
above, but instead of trying to balance the strengths and weaknesses of different retrieval or clas-
sification methods, we are trying to balance the strengths and weaknesses and backgrounds of dif-
ferent users. The second “multiple method” case also involves multiple queries applied to the
same information need, but in this case each query (whether generated by the same or a different
user) employs a different formalism. So, once again, individual runs can be combined using the
above methods, but now it is the strengths and weaknesses of different formalisms (assuming the
users have comparable experience and ability, of course) that are being balanced. It should also be
noted that, using a system like INQUERY, it is possible to combine separately formulated queries
into one “super” query which is then executed normally by the INQUERY retrieval engine; in that
situation (not discussed here), it is the queries (not the results) that are fused together, and only
one output retrieval set is produced. [Belkin et al, SIGIR ‘93]

To complicate matters further, two distinct query formalismay indicate two distinct retrieval
methods, e.g., a term query may be treated as a term vector and evaluated by cosine similarity,
while a boolean query is presumably being executed by boolean logic evaluation. However, a term
guery and a natural language query may both be evaluated as term vectors, i.e., in some cases, key

Page 153

terms are extracted from a natural language query exactly as from a document to form a term vec-
tor.

Why should fusion of results produce better performance, e.g., better precision for a given level of
recall? Belkin et al. [SIGIR ‘93] suggest two general reasons: First (and most obvious), if there is
relatively little overlap between the document sets retrieved by two methods, and the methods
(taken separately) exhibit comparable performance, the implication is that each method only
retrieves a different fraction of the relevant documents. Hence, merging the best documents
retrieved by each method should result in a set containing a higher percentage of relevant docu-
ments than any single method alone. Presumably, each query formulation or term weighting
method or retrieval strategy has its own strengths and weaknesses.

Second, if there is some non-zero probabitityhat a methoan, will retrieve a relevant document

Drel, then the probability that at least one of several such distinct methgds),, andm, will
retrieveD,q is surely greater. Hence, a document retrieved by several different methods is more
likely to be relevant than a document retrieved by one method alone. If a document is retrieved (or
classified) as relevant to a given query by more than one method, i.e., more than one method
assigns it a score above a specified threshold, the probability that it will “make the cut” when the
outputs are combined is greater than if only one method retrieves the document. This probability
is greater still if the rank of a document is raised in proportion to the number of methods that
retrieve it. Saracevic and Kantor [JASIS, 1988] didn’t actually return the intersection, but they
found that “the odds of a document being judged relevant increased monotonically according to
the number of retrieved sets that it appeared in.” [Belkin et al., SIGIR ‘93]

It should be noted that all of the fusion results discussed in this section represent averages over a
set of queries. If one looks closely at the results for individual queries, one finds that some meth-
ods work very well on some queries, other methods work very well on other queries. Hence, if
one knew in advance which method was best for each query, applying that method would produce
better results than fusion. But since, in the current state of the art, one generally does not know
which method is best for a given query, fusion of the results of multiple methods represents the
best compromise.

Let's consider several of the above examples briefly. Lee [SIGIR ‘95] combines the results of
pairs of retrieval methods. All of the retrieval methods use the term-based vector space method
(with the SMART system as a testbed). Each method differs from the others in the weighting
scheme used. A weighting scheme (see section on “Classification of Term Vector Weighting
Schemes”) is characterized by two three-character codes, one three character code specifying the
weighting scheme applied to the documents in the target collection, the other the weighting
scheme applied to the query. Lee argues theoretically and demonstrated experimentally that “dif-
ferent classes of weighting schemes may retrieve different types of documents - different sets of
document (both relevant and nonrelevant).” Specifically, weighting schemes that employ cosine
normalization of documents (he calls this cl&jsare better at retrieving single topic documents

of widely varying length. On the other hand, weighting schemes (called Maghat employ
maximum normalizationf documents, i.e., normalization of term frequency by maximum term
frequency within a given document, but that do not employ cosine normalization, are better at
retrieving those multi-topic documents in which only one of the topics is relevant to the given

Page 154

guery. Hence (as one would expect), combining the results of a Class with the results of a
classM run produced significant improvement over the results of either run alone. However, it is
evident that the extent of improvement (if any) is dependent on the characteristics of the collec-
tion and the query.

However, Lee defines a third class of weighting schemesponsisting of schemes that use nei-
ther cosine nor maximum normalization. Such schemes tend to favor long documents over short
documents. Surprisingly, combiningGrun with anN run also produced improvement. As Lee
summarizes, “we can get significant improvements by combining two runs in which one performs
cosine normalization and the other does not if the two runs provide similar levels of retrieval
effectiveness.” Lee notes that “the combinations between €aswd the other classes have less
common documents than those between classasdN, which means that cosine normalization

is a more important factor than maximum normalization in retrieving different sets of documents.”

It should be noted that, as discussed above in the section on normalization of term vectors, the
pivoted unique normalizatiorLiu) scheme developed by Singhal et al. appears to achieve the
same kind of improvement with a single retrieval run that Lee achieves by fusion of output from
multiple runs, each run using a different, older weighting scheme. In other wordsippears to
achieve (and perhaps improve on) the combined benefits of several older weighting schemes.

Finally, Lee combined an extended booleganfrm) run with a vector run, and achieved
improvement both by combiningrnorm with aC class and by combining-norm with anM class
vector weighting scheme.

In all of the above cases, each individual run produces a list of documents ranked by similarity. In
each combined run, the results of the participating individual runs are combined so that each
retrieved document receives a combined similarity score, and the documents are ranked by these
combined scores. In all cases, Lee chooses the top-rahkilagumentsN = 200), i.e., the docu-

ments with the topN similarity scores. The problem is how to compute the combined similarity

for a given document. The vector space runs generate document rankings based on cosine similar-
ity values (similarity of each document to the given query). The extended boolean runs generate a
similarity score based on thenorm model. The range gdossiblesimilarity values for cosine
similarity or p-norm is always zero to one. However, the range of actual similarity values for the
same query applied to the same document collection will be different for each model and weight-
ing scheme. Hence, the similarity values must be normalized to make them comparable. The for-
mula:

old_sim— minimum_sim
maximum_sSim minimum_sim

Normalized_Similarity=

converts each similarityld_sim calculated for a given query in a given individual retrieval run,
to a value in the common range zero to one, i.e., the largest similarity valamum_simwill
be mapped into one, the smallest similarity valm&imum_simwill be mapped into zero, and all

Page 155

intermediate similarity values will be mapped into values between zero and one. (Lee also notes
that if one knew in advance which retrieval runs were likely to perform better, it would make
sense to weight the similarity values of those runs more heavily; however, in general, for ad-hoc
gueries and arbitrary collections, one doesn’t have that kind of information.) Once all the similar-
ity values have been calculated for the runs to be combined, the retrievabséd$e merged in
straightforward numeric order by (normalized) similarity value, andNh@éocuments with the
highest similarity returned.

However, straightforward numeric merging by normalized similarity value has the drawback that
it does not take into account the number of retrieval sets in which a given document occurs. As
noted above, the more retrieval sets in which docurigmiccurs, the more likely it is to be rele-

vant to the given query. Hence, Lee, following Fox & Shaw [TREC-2, 1994], computes a com-
bined similarity value for each document equal to the sum of its similarity values in each retrieval
set in which it occurs. (Naturally, the similarity of a given document is zero in a retrieval set in
which it does not occur.) Documents are then ranked by these combined similarity values, and the
top N selected as before. Note that ranking each document by the sum of its similarity values is
equivalent to ranking the given document by the mean of its similarity values.

Fox and Shaw [TREC-2, 1994] combined the results of extended boqgbeaorih) query runs

with the results of “natural language vector query” runs, i.e., vector queries obtained by extracting
and stemming terms in the usual way from natural language topic statements. As noted above,
they merged the results of multiple retrieval runs for a given query by computing a combined sim-
ilarity value for each document retrieved in at least one run. In addition to the sum (or equiva-
lently mean) of the similarity values (which they call “CombSUM”), they also tried two other
methods of combining similarities: In their “CombANZ” method, they divide the CombSUM
value by the number of retrieval runs in which the document received a non-zero similarity; the
effect is to compute a mean that ignores retrieval runs in which the given document is not
retrieved. In their “CombMNZ” method, they multiply the CombSUM value by the number of
non-zero similarities the given document received; the effect is to enhance the importance of
retrieval of a given document by multiple runs.

Fox and Shaw ran five individual retrieval runs. Three of these runs psedm extended bool-

ean queries, each with a different valuepof1.0, 1.5, and 2.0). The other two runs used vector
gueries. The vectors were generated from TREC-2 natural language topic descriptions. The “short
vector” run took its query terms from the Title, Description, Concepts, and Definitions sections of
the standard TREC-2 topic format. The “long vector” run took its query terms from all of those
sections plus the Narrative section as well. In contrast to Lee, who only combined pairs of
retrieval runs, Fox and Shaw combined all five of their individual retrieval runs as well as combin-
ing two or three individual runs. This led them to the following interesting observation: “While
combining all five runs produced an overall improvement in retrieval effectiveness over each of
the [individual] runs, the same does not always hold true when combining only two or three runs.”
Thus, the effectiveness of combining runs can depend not only on the query and the collection,
but also on how many runs are combined and which ones.

In later research, Lee [SIGIR *97] builds on the work of Fox and Shaw. He studies combinations
of up to six individual retrieval runs, using results derived from TREC-3. In his own previous

Page 156

work [SIGIR ‘95], described above, he showed theoretically, and demonstrated experimentally,
that two different term weighting schemes, appropriately chosen, could result in retrieving differ-
ent relevant documents from the same collections, even when the weights are applied to term vec-
tors in both cases, and cosine similarity is the method used to compute the individual query-
document similarity in all cases. Improvement resulted in his experiments provided the two meth-
ods contrasted appropriately, and were equally effective. Even in that work, he also allowed for
the effect of multiple runs retrieving the same document by using one of Fox and Shaw’s combi-
nation functions, CombSUM, to compute the combined similarity of a document that was
retrieved by both runs. In the SIGIR’97 work, he finds that the improvement that results from
combining multiple TREC runs derives primarily from the fact that the runs tend to retrieve the
samerelevant documents (which pushes up the combined similarity of each document retrieved
by more than one run), bdiifferentnon-relevant documents (which pushes down their combined
similarity scores). He went beyond Fox and shaw by (1) normalizing the similarities, using his
SIGIR ‘95 formula given above, so that the similarity scores combined would be more compara-
ble, (2) by showing that CombMNZ (defined above), which emphasizes the importance of being
retrieved by multiple runs, gives even better results than CombSUM, and (3) by computing the
actual amount of overlap across individual runs, for relevant and non-relevant documents. Lee
computes the overlap on a scale running from zero (no overlap) to one (total overlap), using the
fur]CtiOﬂSonverlap = (Rcommon>< 2)/(R1 + RZ) ar]dNoverIap = (Ncommon>< 2)/(N1+ NZ) . He finds
values ofRyyeriapin the range 0.75 to 0.82, valuesMfyei5pin the range of 0.30 to 0.40. Plainly,

the proportion of overlap among retrieved relevant documents is much higher than the proportion
of retrieved non-relevant documents.

Turtle and Croft [ACM Trans IS, 1991] used the inference network approach (see section 7.3.2) to
combine Boolean and term-based (they call the latter “probabilistic”) queries for the same infor-
mation need. Both query formulations were based on an initial natural language statement of the
problem. The queries were combined using a weighted sum. They found that the combination
produced better results (better precision at most recall levels) than either type of query formula-
tion by itself. However, they found that the improvement was due to the fact that the boolean
query formulators used the boolean structure to capture information present in the natural lan-
guage statement of the information need that was lacking in the term-based query. Hence, the
boolean query retrieved a subset of the documents retrieved by the term-based query. Adding the
boolean query to the term-based query produced not additional documents but a better ranking of
the documents retrieved by the term-based query, resulting in better precision at a given recall
level. They conjecture that if the boolean formulators had been asked to produce high-recall bool-
ean queries, they would have added additional terms, and retrieved additional documents not
retrieved by the term-based queries. It should be stressed that Turtle and Croft were combining
two query formulations to produce a single query, and then running this single combined query
against their retrieval engine. They werat combining the retrieval sets returned by the two que-

ries run separately.

Belkin et al. [SIGIR ‘93] generated extended boolean queries which were executed using the
INQUERY system’s extended boolean operators which are similar to, but not identical to, the
operators of the P-norm model. They “recruited experienced on-line searchers to generate search
statements for the same search topics.” The recruits were told to generate boolean queries using
AND, OR, NOT, any degree of nesting desired, and operators (at the word level only) for adja-

Page 157

cency, i.e., two terms next to each other, proximity, i.e., terms within a given distance of each
other, and order, i.e., terms in proximity to each other and occurring in a specified order. They
were not told the system (INQUERY) to which the queries were to be submitted or that the que-
ries were to be executed as extended booleans. The queries were executed separately, and then in
combination. However, in contrast to Lee, and Fox and Shaw, as described above, Belkin et al. did
not combine the results (retrieval sets) of the individual query runs; instead, they used
INQUERY'’s ability to combine the queries themselves. The queries were combined using the
INQUERY *“unweighted sum” operator. (Actually, the experiment was more complex. They
started with five query “groups”, each group consisting of a query for each of ten TREC-2 topics.)
The queries were combined cumulatively, e.g., first a single query group, then two of the query
groups (for the same set of search topics) combined, then three, then four, and then all five query
groups for the given search topic combined. Results were reported for group 1, then group 1 plus
group 2, etc. Unweighted sums were used to combine queries across groups. Combination within
a group is not discussed. Then the combination of all five boolean queries was further combined
with a natural language query based on the corresponding TREC-2 natural language topic
description. This natural language query provides a powerful baseline because it takes advantage
of a “version of INQUERY [that] performs a sophisticated analysis of the TREC topics ... includ-

ing recognition of country names and automatic syntactic phrase generation ...” Combination of
Boolean queries (translated into INQUERY) and the corresponding natural language baseline
INQUERY queries (designated “INQC” by Belkin et al.) was done with various weighted sums.

The results obtained by Belkin et al. indicated that combining Boolean queries (actually query
groups - see above) improved performance. An interesting point they note is that in some cases
adding a group that performed poorly on its own to a group that performed well on its own
resulted in better performance than the good group by itself. Hence, one cannot always judge the
performance of a combination of methods solely by evaluating the methods separately. However,
combining the Boolean queries with the INQC queries reduced performance when the boolean
and the INQC queries were given equal weight. Significantly improved performance was obtained
only when the INQC query was given a weight four times that of the combined boolean query. By
contrast, Fox and Shaw obtained significant improvement (see above) when natural language que-
ries were combined with extended boolean queries. However, as Fox and Shaw note, the methods
of combination are not strictly comparable because Belkin et al. combine queries while Fox and
Shaw combine output retrieval sets.

Foltz and Dumais [CACM, 1992] combine two vector space methods: key-word, i.e., terms are
words, and LS, i.e., terms are LSI factors. Their application is a routing/filtering rather than an IR
application. The task they address is to assign abstracts of incoming technical reports to users
based oruser profiles anddocument profilesA user profile is a list of words and phrases pro-
vided by the user to characterize her technical interests. The document profile for a given user is
the set of abstracts that the given user has previously rated as highly relevant to her interests.
Hence, the query or information need for a given user is the user’s profile or her document profile.
The document “collection” is the stream of incoming technical reports. Hence, there are four IR
methods:

1. Vector space retrieval by calculating the similarity of an incoming abstract and a given user pro-
file,

Page 158

2. Vector space retrieval by calculating the similarity of an incoming abstract to abstracts previ-
ously rated highly relevant by a given user,

3. Same as (1) but with similarity calculated in the reduced dimension LSI space.
4. Same as (2) but with similarity calculated in the reduced dimension LSI space.

Methods were combined by sending each user monthly the top seven abstracts selected by each of
the four methods. This meant that each user could receive up to 28 abstracts per month. But since
a given abstract could be selected by more than one method, the users actually received an aver-
age of 17 abstracts per month. Foltz and Dumais found that as the number of methods that
retrieved a given abstract increased, the “mean relevance rating” increased too. (Each user was
asked to rate the abstracts she received each month for relevance on a scale from one for non-rele-
vant to seven for very relevant.) The rating went up from about three for an abstract selected by
one or more methods to five for an abstract selected by all four methods. But of course, the num-
ber of abstracts selected by all four methods was much less (about 5%) than the number of
abstracts returned to all users. However, ratings also improved if one was more selective for a
given method, e.g., only selecting abstracts above a given similarity threshold. So the mean rating
for abstracts selected by all four methods was compared to the mean rating for the top 5% of
abstracts selected by each method separately. The mean rating for documents selected by all four
methods together still came out on top, though not by as much, e.g., a mean of 4.54 for abstracts
selected by a single method vs. 5.04 for abstracts selected by all four methods.

All of the above cases involve combination of IR algorithms or query formalisms, e.g., boolean
and vector space, vector space with two different weightings, etc. However, if a training set of
documents with relevance judgments is available (as is often the case in routing and filtering
applications), one can make use of general methods of machine learning, methods not specific to
IR. Each method can be trained to classify documents using the training set. The result is a set of
predictive models, one for each learning technique. These predictive models can be combined just
as traditional IR methods are.

For example, Hull et al. {SIGIR ‘96] study the combination of four methods: Only the first, Roc-
chio query expansion based on relevance feedback, derives from the IR field. The other three are
general purpose “learning” methods, employed to generate a predictive model for document clas-
sification. They are: “Nearest Neighbors,” Linear Discriminant Analysis (LDA),” and a “Neural
Network” fitting a logistic model. Hull et al. study a filtering application. Hence, each predictive
model must classify each incoming document as either relevant (accept the document), or non-rel-
evant (discard the document. Each of the four resulting models, given a document to classify, gen-
erates a probability-of-relevance score. Hull et al. try several approaches to combining the scores
for a given document. (1) Most simply, they compute a straight average of the scores. (2) Next,
“given that they are working in a probabilistic domain,” they average the logodds ratios, and then
reconvert this average back to a probability. (Given a score interpreted as a probppitiy,
logodds ratio is defined as Iqg(1-p)). See the section on the Probabilistic Approach.) They point
out that probabilities derived by straight averaging will tend to have much less variability than
probabilities derived from averaging of logodds ratios, In particular, if one of the classifiers is

Page 159

very certain of the relevance (or non-relevance) of a given document, the probability derived from
logodds ratio averaging will be very close to one (or zero). In general, tmetithe case with
straight probability averaging. Hence, logodds ratio averaging will reflect the certainty of an indi-
vidual classifier more clearly and directly than straight probability averaging. Both straight proba-
bility averaging and logodds ratio averaging were found to outperform the individual classifiers
for ranking documents, but for a filtering application, where the important criterion is accurate
calculation of relevance probability (or other similarity score) relative to a filtering threshold, the
neural network classifier outperformed both classifiers. (3) Hence, to improve calculation of aver-
age probabilities, Hull et al. “renormalized the probability estimates via logistic regression using
the relevance judgments from the training set.” They found that “after normalization, the probabil-
ity estimates [were] much more accurate, scoring significantly better than the neural network”
except at very low thresholds.

All of the above examples of fusing different IR methods involve fusion of a small number of
manually selected methods. Bartell et al. [SIGIR ‘94] have developed a method for automatically
combining “experts,” i.e., modules executing different IR methods. The method involves a heuris-
tic gradient-based search over the space of possible combinations and can be applied to a large
number of experts (although the two tests of the method discussed in their paper involve two
experts and three experts respectively). The method is independent of how each expert performs
its IR task; the only requirement, satisfied by an increasing number of IR systems, is that the
experts must all returrankedoutput, i.e., each system must return a numerical estimate of the
degree of relevance of each retrieved document to the given query. A notable feature of this fusion
method is that it optimizes theombinedoutput of all the participating experts, rather than evalu-
ating the performance of each expert separately. This is significant in light of the finding of Belkin

et al. (noted above) that one cannot always judge whether a given IR method will make a positive
contribution to combined performance based solely on evaluating the given method separately.

In the Bartell model, each experteturns a numeric estimakg(Q, D) of the degree of relevance

of documenD to queryQ. They combine these estimates into a single overall estirR&i&), D)

of the degree of relevance Bfto Q. In this paper, they use a linear combination of the estimates,
e.g., for three experts, they have:

R{LQ D = O,+ E((Q, D) +0,+ ExQ, D) + O3 E4Q, D)

Their goal is then to find values of the paramet®s'so that the overall estimates result in the

best ranking of documents possible.” Optimization is based on a training set, i.e., a training set of
documents, a set of training queries, and a relevance judgment for every document retrieved by a
given training query. The relevance judgment is expressed as a preference relation, i.e., user pre-
fersD; to D, for any pair of documents retrieved by a qu€y(This is the same kind of prefer-

ence relation used by Rhagavan and Sever [SIGIR ‘95] as discussed above in regard to reuse of

Page 160

optimal queries.) If only the usual two-valued judgment, relevant or non-relevant, is available,
then the preference relation reduces to preferring the relevant to the non-relevant document. “The
goal of the optimization is to find parameter values such that the [combined] system ranks docu-
mentD; higher than documer?, wheneveiD, is preferred by the user ©,.” A gradient-based
numerical optimization technique is used. (Note that this is very similar to Rhagavan and Sever’s
use of the preference relation in a “steepest descent” search for an optimum query in query space.)

Most of the examples above combined two or more document classifiers and studied the perfor-
mance of the combination relative to that of the individual classifiers. Lee also identified certain
cases where combination would be effective, and factors contributing to the success of actual
experimental combinations. However, Vogt et al. [SIGIR ‘98] studied more comprehensively the
factors contributing to effective combination. They limited their study to linear combinations, and
also limited themselves to combinations of two classifiers. The combinations they studied were
derived from TREC5 ad hoc query data. Since there were 61entries in the ad hoc competition,
Vogt et al. were able to form (61*6))/2 = 1830 pairs for each query. They studied 20 queries for a
grand total of 1830*20 = 36,600 “IR system (method) combinations.” Although they drew their
data from the ad hoc query competition, the fact that they combined systems on a per-query basis
means that the results are more applicable to the routing application.

Their theoretical approach was to identify a set of method performance features. Some of the fea-
tures were measures of the performance of an individual system (method), e.g., average precision.
Others were pairwise measures. For example, Guttman’s Point Alienation (GPA) is a measure of
how similar two document rankings are to each other. Another pairwise measure employed was
the intersection i.e., the number of documents retrieved by both methods. Following Lee, they
also computedRyyeriap aNdNoyeriap (S€€ above). The former measures the proportion of relevant
documents retrieved by both systems; the latter measures the proportion of non-relevant docu-
ments retrieved by both systems. They then performed a multiple linear regression, using the
actual TRECS data as the training set, the method performance features computed from this set
(for all system pairs and a given query) as the independent, i.e., predictor, variables of the linear
regression equation, and the average precision of the optimal combination (for the given query) as
the dependent variable of the equation, the variable to be predicted. The regression then computes
coefficients for the predictor variables in this equation. These coefficients can be interpreted as
indicating how much each predictor contributes to the overall estimate of the dependent variable.

The results they obtained indicate that the best time to combine two systems (methods) linearly is
when (1) at least one system exhibits good performance, (2) both systems return similar sets of
relevant documents, and (3) both systems return dissimilar sets of non-relevant documents.

12.3 Fusion of Results Obtained by Multiple Versions of the Same Method

In the previous section, we discussed techniques for combining multiple classification methods,
where the training set used to set the parameters of each method was the same, but the IR or
machine learning algorithm was different for each classifier. In this section, we discuss
approaches where the training set, the machine learning (ML) method, and the underlying IR
method are the same, yet multiple classifiers are obtained. This is accomplished, e.g., by taking
multiple samples from the training set (“resampling”) with replacement and using each sample as

Page 161

a new training set @fagging), or by weighting the training documents differently in each training
session (boosting). Note that since reweighting the training set is equivalent to changing the
number of occurrences of each document in the training set, boosting can also be viewed as a
“resampling” method. A number of variants of these approaches are known, mostly derived from
the machine learning community. Breiman [TR, 1996] characterizes this entire family as Perturb
and Combine (P&C) methods, i.@erturb the training set a number of times to create a number

of new training sets, generate a classifier for each training set created by perturbation, and then
combinethese classifiers.

In bagging [Breiman, ML, 1996] one selects documents at random from the training set “with
replacement,” wher&l is the size of the training set. The phrase “with replacement” means that
after each document is taken, it is (in effect) put back, so that all the documents of the training set
are available the next time a document is selected. In other words, each document is taken from
the full, original training set. Sinc& documents are selected, the “new” training set will be
exactly the same size as the original training set. However, since eachMtibeuments is cho-

sen at random from the original set, some documents may be chosen more than once, while others
may not be chosen at all. Hence, the new training set will be different from the original. This pro-
cedure can be repeated as many times as desired, to produce a set of training sets, eabh of size
Each training set is chosen independently of the others, so that the order in which the training sets
are chosen, or used for training, is immaterial. Each training set is then used to train a classifier,
using the same IR or ML method. Hence, a set of classifiers (commonly callezhaarfibléin

this context) is generated. Each classifier is then executed against any new document, and their
results are combined. A common method of combination is “voting,” i.e., if the classifiers have
been trained to determine whether a new docurdé@longs to clas€ or not, the choice is “yes”

if more classifiers chooge than choose “noC.” Another common method is to average the clas-
sification scores produced by all the classifiers in the ensemble. (Of cQumsay be relevance to

a given topicT. On the other hand, the classifiers may be trained to select among multiple classes,
Cl’ Cz, etC.)

Breiman [TR, 1996] argues that the main effect of bagging is to reduce classification error due to
variance This is the degree to which the classification estimate varies with the data the classifier
is being asked to classify. [Witten et al., DM] [Opitz et al., 1999] [Friedman, DM&KD] In other
words, it is a measure of how dependent the classifier is on the particular training set chosen,
which may be unrepresentative of the larger population the classifier may be required to
judge.(This overdependence on the training set is called “overfitting.”) Opitz et al. [1999] follow-
ing Bauer and Kohavi [1999], argue that bagging also redb@eserror, theaveragedifference
between the output of the classifier and the output of the “target” function the classifier is trying to
learn.

Boosting in contrast to bagging, generatesexiesof classifiers, ordered in the sense that each
classifier is generated based on the performance of earlier classifiers in the series. [Opitz et al.,
1999] In a powerful version of boosting called Ada-Boosting [Schapire et al., 1998], each classi-
fier is trained on the same training set, using the same IR algorithm. However, the documents in
the training set are weighted, and the weights assigned to the training set for generating classifier
CL; are based on the performance of the previous classitiey. Specifically, after each classi-

fier, CLi.1, is executed, the documents in the training set are reweighted so that the weights of the

Page 162

documents that it misclassified are increased, and the weights of the documents it classified cor-
rectly are decreased. This new weight vector and the associated training set are the input for train-
ing CL;. Hence, it is hopedCL; will be better at classifying the documents that were previously
misclassified. This process is repeatedTaterations, resulting i classifiersCL, to CLt. (T is

chosen by an ad hoc rule.) A weighitis assigned to each classiftek;. The final “boosted” clas-

sifier for classifying new documents is a weighteate of theseT classifiers. That is, for a given

new documentl, each classifieCL; votes +1 if it classifiesl as relevant, -1 if it classified as
non-relevant. The vote of each classifél; is multiplied by its weightw;. TheseT weighted

votes are then summed. The classificatiod &frelevant if the sum is positive, non-relevant if the

sum is negative. Note that if the weights are all equal (which they usually are not), this is equiva-
lent to classification by majority vote.

The underlying IR algorithm, which may be any simple algorithm chosen by the developer, is
called a “weak learner.” The goal of boosting is to combine a set of weak learners into a single
“strong learner.” (The terms “weak learner” and “strong learner” have technical definitions.
[Breiman, TR, 1996]) The weak learner that Schapire et al. use is the presence or absence of a
term in a given document. If the term is present, the document is assumed to be relevant, i.e.,
belongs to the class for which the classifier is being developed. If the term is absent, the document
is assumed to be non-relevant. The algorithm “learns” from the training set ati stpgdoosing

the termt that minimizes the misclassification errery;(t). The errorerr;(t) is defined as the sum

of the weights of documents in the training set that either contain thettbutare non-relevant,

or do not contairt but are relevant. Schapire et al. define a “term” to be either a single word, or a
bigram, i.e., two consecutive words. Actually, the learner doesn’t always choosé¢htitemini-
mizeserr;(t). Rather, it chooses the optimum tetat, that minimizes eitheerr;(t) or 1-erri(t),
because a term with a vehigh misclassification error is distinguishing relevant from non-rele-
vant documents just as well as a term with a very low error; it is just getting its classification deci-
sions reversed, consistently calling relevant documents non-relevant, and non-relevant documents
relevant. (By contrast, a term with a misclassification error close to 1/2 is very poor at distinguish-
ing relevant from non-relevant documents.) Hence, classtfigrfollows the simple rule that a

new document is relevant if it contaitys; and non-relevant if it does not conté&ip;.

The document weights are maintained as a probability distribution over the training set, i.e., the
sum of the weights always equals one. (Hence, the misclassification error may be interpreted as a
probability of misclassification.) So initially, each document in the training set is given a weight

of 1/N whereN is the number of documents in the training set. Thereafter, each time the docu-
ments are reweighted, the weights are also normalized so that their sum remains equal to one. The
documents are reweighted at stageased on whether they were correctly classified or misclassi-
fied by thei-th classifierCL;, which learned using thieth set of weights. Each document that was
correctly classified bCL; has its weight multiplied bg?, and each document that wassclas-

sified byCL; is multiplied bye®, whereai is defined as (1/2)In((&)/e). The effect is that if the

errore is minimized, the smaller it is the largar is, and correspondingly, the more drastically
document weights are modified, the weights of correctly classified documents going down, and
the weights of misclassified documents going up. Hence, the next classifier gen€tatedwill

be tend to be better at classifying the documents that were misclassifi€d,; b®n the other

hand, if 1-g is minimized,g is maximized. Ifg is > 1/2, ai will be negative. The closeyis to

one, the more negative ai will be, and correspondingly, the more drastically document weights

Page 163

will be modified in the opposite direction, weights of correctly classified documents going up, and
weights of misclassified documents going down. (In other words, if the term is present in a docu-
ment, its weight will go down if the document is, in fact, non-relevant.)

A explained above, after iterations, the resulting classifiers,CL, to CLy are combined by
weighted voting. Each classifi@L; is multiplied by a weight wi. This weight; = ai as defined in

the previous paragraph. Since ai is a very large positive number for very low classification errors,
i.e., for very good classifiers, a very large negative number for classification errors close to one,
i.e., for classifiers that misclassify consistently, and close to zero for classifiers that don’t do any-
thing consistently, the effect is to weight classifiers by their effectiveness.

How many iterationd, i.e., how many classifiers, does boosting require? Schapire et al. have no
theoretical basis for choosing the valueTpko they use a simple empirical rule: Iterate until the
training error reaches a minimum (which may be zero). Call this number of iteralign$hen

run another 10%, i.e., run (1.Ty iterations, generating (1.Ty classifiers. Note that since each
classifier distinguishes relevance from non-relevance on the basis of a single term, the effect of
generating (1.1]), classifiers is to create a final weighted vote classifier based onTgtérms,
(1.1,)Todocument features. In general, the harder the classification “problem,” i.e., the harder it is
to learn to recognize the target class, the greater TO will be, and hence the greater the number of
features in the final classifier.

The boosting scheme described above makes use of document weights, and (at the final stage)
classifier weights, but it does not make use of term weights, as most traditional IR algorithms do.
Schapire et al. say that they are studying ways of incorporating term weights into their boosting
algorithm.

One easily remedied problem with boosting as described above is that it gives equal credit to clas-
sifying relevant and non-relevant documents correctly. In practice, it is often more important to
recognize relevant documents. For example, if there are very few relevant documents, a “dumb”
classifier that classifies every document as non-relevant will exhibit a very low classification error,
although it will certainly not be very useful' Hence, it is desirable to tell the boosting algorithm
that correct classification of relevant documents is more useful than correct classification of non-
relevant documents. Schapire et al. accomplish this very simply by modifying the initial distribu-
tion of weights. Specifically, instead of giving each document an initial weightifdadch rele-

vant document is given a weight ofi§;+-Uel.)/Zg, @and each non-relevant document is given a
weight of Unrel-Unrei+)/Zo, Whereu,g; is the utility of classifying a relevant document correctly,
andu,. is the utility (in this case, the harm) of misclassifying a relevant document. Similarly,
Unrel- IS the utility of correctly classifying a non-relevant document, apd, is the utility (i.e.,

harm) of misclassifying a non-relevant documefgtis a normalization factor, set so that the sum

of all the initial weights is one as usual. By adjusting these four initial weights, the relative utility
of correctly classifying relevant and non-relevant documents can be set as desired.

Breiman [TR, 1996] characterizes the family of boosting algorithms, including Ada-Boosting, as
Adaptive Resampling and Combiningancing algorithms. It has already been observed that both
boosting and bagging involvesampling(to provide multiple training sets from the original set)
andcombiningof the classifiers generated from these multiple sets, e.g., by averaging or weighted

Page 164

voting. The term “adaptive” refers to the fact that in boosting algorithms, each classifier learns
from the performance of previous classifiers. Breiman hypothesized that the effectiveness of arc-
ing came from use of adaptive sampling, andt from the particular reweighting function
employed. To demonstrate this, he experimented with other reweighting approaches. He found
that a reweighting method which he dubbed arc-x4 worked as well as Ada-boosting (which he
dubbed arc-fs (in honor of the original developer, Freund and Schapire).

In arc-x4, the reweighting of a given documehtat thei-th stage (to generate the weights that
will be used for training classifie€L;.1) depends on the number of timéshas been misclassi-
fied byall thei classifiers generated up to that point. Specifically, the weight of docudyéort
equivalently the probability; thatd; will be selected for the training set of classifiet;,) is
given by:

1+m’

N

> (1+ mc")
k=1
wheremy is the number of timed; has been misclassified by all of the previoetassifiers, andl
is the number of documents in the training set. Affeiterations, the resulting classifiers are
combined byunweightedsoting.

p; =

13. User Interaction

Users interact with IR engines in many ways. They formulate queries or routing requests. They
review the results (if any) returned by the engines. They refine their original requests. They gener-
ate “profiles” reflecting their interests and preferences. They build training sets, and train IR
engines to classify documents. They set parameters to guide the engines, e.g., retrieval thresholds,
cluster sizes or numbers.

Much of this material is covered elsewhere in this report, e.g., relevance feedback for query
refinement, high-speed clustering methods for interactive clustering, the variety of query capabili-
ties provided by Web IR and research engines, etc. But much of this discussion is conducted from
the perspective of the IR engine, and its developer. Here, we will consider user interaction from
the point of view of the user, and the researchers who are trying to make the user’s interactions
more convenient and effective.

13.1 Displaying and Searching Retrieved Document Sets

Most IR engines return retrieved data in the form of a list of documents, ranked according to sim-
ilarity to the topic or query for which they were retrieved, or the probability of relevance to the
given topic/query. To make it easier for the user to scan this list, it is normally presented as a list
of document surrogates, i.e., each document is represented by its title, or a short summary, each
perhaps associated with its computed similarity or probability of relevance.

Page 165

However, the number of retrieved documents may be very large, especially when the document
collection is the huge number of pages comprising the Web, and all the databases to which Web
pages act as gateways. Moreover, in many cases, the precision is low, due to the limitations of the
existing technology on which IR engines are based, and the inexperience of human users. Hence,
the relevant documents retrieved (if any) may be far down on the list returned to the user. Some
systems may give the user the ability to limit the number of documents returned, either by setting
a similarity/probability threshold, or by specifying the maximum number of documents to be
returned. However, limiting the number of documents returned won’t improve the precision; if the
precision is low, an arbitrary cutoff point may simply prevent the system from returning the rele-
vant documents the user wants to see.

Another problem with a simple ranked list is that it gives few clues to which documents are
closely related. These relationships depend, in general, on many attributes, e.g., many document
terms, as well as external attributes such as author, date of publication, etc. In other words, a
ranked list only represents one dimension. The user would like to see documents positioned
according to many dimensions. (Of course, this applies equally to the original collection against
which the query was executed.)

An alternative is to organize the retrieved document set so that the user gets the “big picture”
quickly and visually, and can zero in rapidly on the desired documents, regardless of how far
down the ranked list they are. The big picture also enables the user to see which documents are
closely related.

Veerasamy et al. [SIGIR ‘96] [SIGIR ‘97] display the retrieval set as a matrix. The rows corre-
spond to key words from the query. The columns correspond to retrieved documents, ordered by
rank, i.e., the leftmost column corresponds to the highest ranking document, the 2nd column cor-
responds to the document in rank 2, etc. The elements of the matrix are small vertical bars; the
height of the bar for query word (row)and retrieved document (rank) j, is the weight of woirl
document j. The effect is that “one gets an immediate idea of how the different query words influ-
ence the document ranking.” One can see immediately which query terms are well-represented in
high-ranking documents, and which are not. This may lead the user to modify the query by adding
new words, dropping ineffective words, re-weighting query terms, etc. If two terms are closely
related to each other and to the intended topic in the user’s mind, but exhibit low and dissimilar
distributions in the retrieval set, this becomes immediately obvious to the user; she may be able to
improve retrieval and ranking, by modifying the query to specify the words as a phrase, or speci-
fying that they must satisfy a proximity condition. In this way, documents in which the key words
co-occur in close proximity are favored, and receive higher ranking.

In their SIGIR ‘97 paper, Veerasamy et al. describe a carefully controlled experiment to measure
the effectiveness of their retrieval set visualization technique. The nature of the experiment, and
the measures defined for interactive measurement are as interesting and significant as the results
themselves. And the experimental results tell us as much about the human task of making rele-
vance judgments as about the value of the visualization tool. They used a portion of the TREC
data, and ten TREC information topics (queries). Veerasamy et al. used the INQUERY 2.1p3
engine as the common IR engine. They controlled for precision, on the assumption that the task of
recognizing a relevant document is significantly different (and harder!) than the task of recogniz-

Page 166

ing a non-relevant document. Hence, each user was given, for each topic, a high-precision and a
low precision document set. (The high precision set was the first 60 documents retrieved by
INQUERY. The low precision set consisted of the documents ranked 90 to 150 by INQUERY.) To
control for the effect of the visualization display, the high precision set was further divided into an
even-ranked set (ranks, 2, 4, etc.) of 30 documents, presented to the user with the visualization
tool available, and an odd ranked set (ranks 1,3, etc.) of documents, presented to the user without
the visualization tool. A similar division was made in the low precision set. For a given topic, each
user was tasked to judge the relevance of the documents in each of four sets: high-precision even
rank, high-precision odd rank, low-precision even rank, and low-precision odd rank. They were
told that they were testing the effectiveness of the visualization tool. They natteld that all

four sets came from the same collection, anud told that some were high precision, some low
precision. Finally, they were given a monetary incentive to judge relevant accurately, and to judge
quickly; the users who ranked best in a score that measured both accuracy and speed in complet-
ing a task received a sum of money.

Veerasamy et al. defined several measures of human interactive effectivanesstive preci-

sionis defined as the proportion of documents judged relevant by the user that were also judged
relevant by the TREC judgebiteractive recallis defined as the ratio of documents judged rele-
vant by the user to documents judged relevant by the TREC judgesiracyis defined as the
number of correct relevance judgments minus the number of incorrect judgments. Correctness
means agreement with the judgment of the TREC judges, both with regard to relevance and non-
relevance. Hence, in all cases the judgment of the TREC judges was treated as absolute “truth.”
So, the difference between interactive precision and recall, and their more traditional counterparts
is that the interactive versions measurasar'srelevance judgments rather than an IR system’s
judgments.

The Veerasamy experiment showed that users can “identify document relemare@ccurately

with the visualization tool than without.” The effect of the visualization toobgouracyis about

the same for high precision and low precision document sets. The visualization tool also improves
the time required to judge relevance (about 20% improvement), but this effect is much more pro-
nounced for low precision sets than for high precision sets. Finally, the experiment showed that
the visualization tool produced a significant improvemenniaractive recall(and in the speed of
identifying relevant documents as welhut only a minimal improvement imteractive precision
However, users achieve a much higher absauotiracyfor low precision document sets than for
high precision document sets independently of whether they use the visualization tool, showing
that their ability “to identify non-relevant documents as non-relevant is much higher than their
ability to identify relevant documents as relevant.” In other words, non-relevant documents are
easy to recognize, while it takes extra effort to identify a document as relevant. This effect is much
stronger than the influence of the visualization tool.

Note by the way, the interplay dhteractive recal) interactive precisionandaccuracy The
improvement ininteractive recallmeans that the visualization tool is helping users to correctly
recognize a higher proportion of the actual relevant documents. The corresponding minimal
improvement irinteractive precisiormeans that the improvement increase in relevant documents
identified is counterbalanced by a proportionate increase in non-relevant documents falsely identi-
fied as relevant. Hence, the concurrent improvemeatguracymust mean that the visualization

Page 167

tool substantially helps the users in correctly classifying documents as non-relevant, classifying
more non-relevant documents correctly as non-relevant, and fewer relevant documents incorrectly
as non-relevant.

Hearst'sTileBar display paradigm [ACM SIGCHI, 1995] may be compared and contrasted with

the Veerasamy approach. In Hearst’s display, each row corresponds to a retrieved document. Each
document is represented as a series of adjacent non-overlapping segmentsiesllElde order

in which tiles are displayed in a row is the order in which they occur in a document. As explained

in the section on query-document similarity, tiles are multi-paragraph segments such that each tile
is about some sub-topic of the document, and the boundary between successive tiles represents a
change in topic, as measured by tffédf similarity measure. In the tilebar display, each tile is
represented as a small rectangle. Its shading on a grey scale from white to black represents the
sum of the frequencies of all the query terms, white representing the complete absence of the
guery terms, and black representing a heavy concentration of the query terms. Hence, the user can
see at a glance whether a given document is largely about the given query (much black throughout
the row), whether it has passages relevant to the given topic (isolated black sections separated by
much white), whether it has passages that may be about the given topic (grey sections), and so on.
The user can see not only how much of the document is relevant, but also where the relevant pas-
sages are, e.g., at the beginning of the document, in the middle, etc. Similarly, the user can see at a
glance which of the set of documents displayed are most likely to contain relevant passages, or to
be largely about the given query.

As a further refinement, the user can see the document set displayed relative to several sets of
qguery terms. For example (the example is Hearst’s), the user may be interested in “computer-
aided medical diagnosis.” She may supply three sets of query terms, one set relating to medicine
and patients, a second related to tests and diagnoses, and a third related to computer software. The
TileBarsdisplay for a given document will show three rectangles for each tile, arranged vertically
one above another. The degrees of shading of the rectangles for a given tile immediately tell us
how much the tile is about each of the sub-queries. If all three rectangles for a given tile are black
or dark grey, there is a good chance that the corresponding passage is about all three of the speci-
fied sub-topics. On the other hand, if the dark rectangles for one sub-topic are in completely dif-
ferent tiles from the dark rectangles for another sub-topic, then the document is less likely to be
relevant to the user’s topic, although it might score high on a conventional document similarity
ranking. For example, the document might discuss both software and medical diagnosis, but the
references to software might have nothing to do with its application to medical diagnosis.

Note that the Hearst display, unlike the Veerasamy displaywis term-by-document matrix, or

even a tile-by-document matrix. Indeed, a tile “column” would be meaningless, since each docu-
ment is composed of its own unique set of tiles. But documents, i.e. rows, can be compared with
respect to the distribution and shading of their respective tiles. Moreover, the display of each doc-
ument in Hearst's display represents not merely term occurrence as with Veerasamy, but local
term co-occurrence within the document’s tiles.

Both Veerasamy and Hearst give the user a visual display of each of a set of individual docu-
ments. The user can study the properties of an individual document, or compare documents within
a set. By contrast, another way to give the user an overview of the retrieval setlisterthe

Page 168

documents. Instead of seeing a (perhaps very long) list high-ranking documents, the user sees a
modest number of documeséts each set clustered by some measure of content similarity that
one hopes corresponds to topic similarity. Each group is identified by key-words, phrases, or other
labels, that (again, one hopes) tell the user what topic(s) each cluster is about.

Clustering a very large retrieval set retrieved from an even larger set such as the Web imposes cer-
tain requirements. First, pre-processing (which can serve to speed up clustering - see the section
on clustering above) is impossible. The original collection, e.g., the internet, is far too large (and
dynamic) to pre-cluster. The retrieval set itself also cannot be pre-processed because its content is
not known until the IR engine executes a user query. Second, the clustering must be fast; specifi-
cally, it must not add substantially to the time required for retrieval by the IR engine, which for
Web retrievals is typically a matter of seconds.If clustering adds minutes or hours, the additional
time would usually far outweigh the benefit of clustering. Third, the cluster labels should enable
the user to pick out the best cluster(s) very rapidly. Finally, selecting the best cluster(s) should
substantially improve the precision of the user’s search, i.e., the effective precision if the user
examines the documents in the best cluster(s) first, should be much better than if the user merely
searched down the ranked list returned by the IR engine.

STC clustering, described above in the section on clustering, has been developed with just those
requirements in mind. It is linear-time, not as good as the constant-time and almost-constant-time
methods described in the section on clustering, but probably as good as can be achieved without
pre-processing. Moreover, it incremental which means that clustering can proceed while the

data is being retrieved and documents are being returned to the user. By the time the last docu-
ment in the retrieval set arrives, the clustering can therefore be nearly done. (This assumes of
course, that the documents can be clustered as fast as they arrive at the user’s site, which is in fact
the case, in the Web retrieval test reported by the STC developers, Zamir et al. [SIGIR ‘98] No
actual test with real users was conducted in the reported research, so it remains to be determined
how effective the cluster labels (strings of consecutive words shared by the documents in a clus-
ter) prove to be identifying cluster topics and topic relevance to a real user. However, intuitively,
strings of words should prove more informative than individual key words, and could always be
supplemented with titles (where applicable) and statistically derived terms. In any case, the STC
study made use of the experience of other researchers, who did provide document clusters to real
hunan users. These experiences indicated that a user could select the “best” cluster first about 80%
of the time. Hence, the STC researchers calculated precision on the assumption that the user was
able to rank the topic clusters by number of relevant documents. On this assumption, they com-
pared STC with several other linear time clustering methods, and one cﬂ)s(&ﬁ):method. STC

was the clear winner. However, it should be stressed that this was a comparison of cluster quality,
i.e., the best STC clusters contained more relevant documents than the best clusters produced by
the other methodsiota comparison of the user ability to select the best clusters. It should also be
noted that the queries employed by the researchers were generated by the researchers themselves,
the queries were executed via real Web engines against the actual Web, and relevance judgments
were assigned to the retrieved data by the researchers. Thus, the queries and test data were not a
very large standardized test set such as the TREC data so widely employed in IR research,

13.2 Browsing a Document Collection

Page 169

The term “browsing” implies that the user starts searching the data without a clear-cut end goal in
mind, without clear-cut knowledge of what data is available, and very likely, without clear-cut
knowledge of how the data is organized. She may have a rough goal in mind or perhaps no goal at
all, or many possible goals. If she has a rough goal at all, it isn’t clearly defined enough to be for-
mulated as a query. She searches the data as fancy takes her, formulating and modifying goals, as
she encounters data or categories of interest.

The browsing method depends, in the first place, on whether or not the collection to be browsed
has been manually indexed, i.e., whether or not human indexers have assigned subject categories
to each document. A very popular example of manual indexing is the Web service, Yahoo (dis-
cussed below in the section on Web IR engines). However, much IR research has been devoted to
accessing collections that have not been manually indexed. Let us consider first some browsing
techniques that can be applied to collections that are only indexed by IR engines.

Theinformation spacdrowsing paradigm allows the user to visualize a vector space (such as the
spaces discussed in an earlier section), and move around freely in that space (or what comes to the
same thing, to manipulate the space itself). The human user is accustomed to moving around in a
three-dimensional space in the real world. She is also accustomed to moving a cursor around in
the two-dimensional space of computer monitor screen, using a device such as a mouse. However,
to apply the “movement in space” metaphor to IR browsing, several problems must be sur-
mounted.

The most obvious difficulty is that the number of dimensions in a typical IR vector space is much
greater than two or three. Even with dimension reduction techniques such as LSI, the number of
dimensions may be 50 to 200, far more than a human can readily visualize. Hence, a number of
key dimensions, e.g., especially important query or document terms must be selected. If more
than three dimensions are selected, the additional dimensions must be mapped into visual charac-
teristics other than spatial coordinates. Each document is located in space by its spatial coordi-
nates, and represented by a visual object, often caltgyd or icon. The additional dimensions

can be represented by such visual characteristics as color, shape, texture, degree of opacity, etc.
[Ebert, CIKM’95] Note that while each of these characteristics can vary according to a linear
scale, opacity can effectively act as a filter. That is, on an opacity scale, a glyph varies from
opaque to transparent. But a transparent (or near transparent) object disappears from the screen;
hence, it will be effectively filtered out.

Viewing a glyph-based information space, and browsing in such a space, is significantly enhanced
by the Stereoscopic Field Analyzer (SFA) [Ebert et al., IEEE Graph, 1997]. It is trivial to repre-
sent two spatial dimensions on a two-dimensional computer monitor screen. Three dimensions
can be represented by the use of perspective, and manipulated, e.g., rotated and translated, via
mouse control. SFA improves on these techniques in three ways. First, it provides a true 3-D ste-
reo effect, by rendering the information space twice, once for each eye, and viewing the space
through Liquid Crystal Shutter Glasses. Second, the user is given a tracking control, equipped
with buttons. By moving this control with her hand in actual physical space as she sits in front of
the monitor, and pressing the buttons to grip and release the information space, the user can
manipulate the entire 3-D space, both rotating it in 3 dimensions so that the space may be effec-
tively viewed from any direction, and translating it, i.e., moving the entire space up, down, left,

Page 170

right, away from the user, and toward the user (the latter two movements corresponding to zoom-
ing out and zooming in). Third, the user is given another hand control to be manipulated with her
other hand. This control can be used for finer manipulation, such as sweeping out a section of the
space for closer examination, or pointing at a particular glyph (which may represent a single doc-
ument or a cluster of documents).

One inherent limitation of the SFA/Information Space approach is that only three dimensions can
be manipulated and browsed directly with the two manual controls. This is not merely a limitation

of SFA. It is also a limitation of the human perceptual capability. We live and perceive in a three-
dimensional world. However, SFA provides flexibility by permitting the user to specify which of

the document attributes are to be mapped into each of the three spatial dimensions. The user can
also specify what range of attribute values is to be mapped into the corresponding axis of the
information space display. This capability can be used for such purposes as filtering out uninter-
esting ranges, e.g., a large cluster of documents near the origin of coordinates. Other attributes
can, of course, be mapped into other visual cues as noted above: color, shape, texture, etc. These
dimensions can not be manipulated with the 3-D tracker, but could be controlled separately, e.g.,
by graphical sliders.

A completely different approach to browsing, the “scatter/gather” method [Cutting et al., SIGIR
‘92], is based on a different metaphor, that of alternating between consulting the table of contents
of a book (to get an overview of what is available), and consulting its index (to find the page or
section dealing with a specific, narrow topic). The “table of contents” is generated (conceptually)
by clustering the document collection. The labels or summaries that identify each cluster form the
table of contents. The hope is that the documents that cluster together will be about a common
topic, and that the label will identify that topic (or topics) to the user. This is called the “scatter”
phase, because the documents, initially comprising a single collectioscatterednto multiple
clusters. Then, the user scans the cluster labels (the “table of contents”) and selects the cluster(s)
that interest her most. This selection process is the “gather” phase, because theyagesriag

the selected clusters together into one document collection, a subset of the original collection.
Next, the system clusters (scatters) again, but this time the clustering is applied to the subset col-
lection. Hence, the clustering will be finer-grain, identifying sub-topics within (and perhaps
across) the topics selected by the user. Hence, a new finer-grain table of contents is produced.
Once again, the user selects (gathers) clusters (topics) of particular interest. The user repeats this
scatter/gather process until she has narrowed her focus down to one or more specific topics for
which she wants to read or scan the actual documents. Or perhaps, summaries, or abstracts, or the
cluster labels themselves, at a fine level of detail, are sufficient to tell her what she wants to know.
At any stage in thiscatter/gathersequence, the user can employ an alternative focused search
strategy, e.g., a key-word or boolean query to select particular documents from a cluster represent-
ing a topic of interest to the user. This corresponds to looking up a specific term or narrow topic in
an index, the second part of the metaphor of alternating table of contents overview and index
lookup.

At any level of detail, the user can back up to a higher level, and select different topics to pursue,
initiating a new gather/scatter/gather sequence.

Page 171

Various techniques can be used to generate labels for a cluster. Cutting et atlusteradigest

The digest of a given clust€ consists of then most central documents @, and thew most cen-

tral words inC. The most central documents are those most similar to the cluster centroid (which
they call the clusteprofile). The highest weighted terms can be selected either from the cluster
profile, or from the profile of its most central documents. The centroid (or profile) of the cluster is
the normalized sum of the term vectors describing the documents of which the cluster is com-
posed. Cosine similarity is used to compute the similarity of a document in the cluster to its pro-
file. Term weight for a given term in a given document is computed as the square root of the term
frequency.

Sincescatter/gatherequires “on the fly” re-clustering (scattering) of clusters selected (gathered)
interactively, a rapid clustering method and algorithm is essential. Cutting et dduakshotand
fractionation two linear time clustering methods described above, in the section on heuristic clus-
tering. These algorithms are used to find cluster centers rapidly. Each document is assigned to the
closest center. Then, various refinement techniques are applied, e.g., once each document has
been assigned to a center, the centers can be re-computed, and then each document can once again
be assigned to the closest center. This process can be repeated indefinitely. Other refinements
include splitting clusters that fail some simple coherency criterion, and joining clusters that have a
sufficient number ofopic (highly weighted) words in common. Finally, since even a linear time
clustering method can be too slow for interactive clustering if the collection to be clustered is
large, they use computationally expensive pre-processing, specifically the computation in advance
of a cluster hierarchy before runtime, to achieve constant-time clustering [Cutting et al., SIGIR
‘93] during an interactive scatter/gather session. This constant-time method is discussed in the
section on heuristic clustering above.

13.3 Interactive Directed Searching of a Collection

In contrast tdorowsing “directed” searching means that the user has a specific information need.
(This is the usual assumption of both ad hoc querying and routing.) “Interactive” directed search-
ing means, of course, that instead of merely formulating and kicking off a single query and exam-
ining the results returned by the IR engine, the user engages in an interactive process, either to
formulate the original query, or to refine the query on the basis of the initial results returned.

Relevance feedback, discussed above in the sections on Query Expansion and Query Refinement,
is the classic method of improving a query interactively. Here, a variation of relevance feedback,
and the use of clustering for query refinement are discussed.

Aalbersberg [SIGIR ‘92] proposes a simplified form of interactive relevance feedback that he
calls “incremental relevance feedback.” Most IR systems that support relevance feedback perform
the reformulation of the query automatically, concealing the mechanics and often the reformu-
lated query from the user. However, in conventional systems, each time the user executes the
(original or reformulated) query, she sees a séll oétrieved documents, typically 10 to 20, from

which she must select those she judges relevant. After she has judgddidmeiments for rele-

vance, she requests an automatic reformulation of the query, and execution of the reformulated
qguery. In Aalbersberg’s system, the user is not aware of her query being reformulated at all. The
user sees one document at a time. She designates that document as relevant or not. If it is relevant,

Page 172

its title is added to a “Results” window of relevant documents. She then sees another document,
and again judges its relevance, and so on. After the user has viewed andNidgedments, the

titles of that fractiorNg that have been judged relevant are in Resultsvindow. Hence, she has

the sense that she is merely judging a series of documents that the system believes may be rele-
vant to her original query (or the information need that query is intended to represent). However
in actual fact, the first document she sees is the highest ranking document in the list returned after
executing the original query. Thereafter, each time the she judges the relevance of the current
“best” document, this judgment is immediately used to reformulate the current query. This refor-
mulated query is immediately executed, invisibly to the user. The next document submitted to the
user for relevance judgment is the highest ranking document returned for the reformulated query.

Aalbersberg uses the Rocchio formula for query reformulation. However, this formula takes on a

very simple form in Aalbersberg’s system, since each stage involves modifying the query vector

by either adding a single document vector (if the current document is judged relevant), or sub-

tracting a single document vector (if the current document is judged non-relevant). In either case,
the document vector represents the single document the user has just judged, multiplied by the
appropriate constanB(or C) from the Rocchio formula.

Above, the use of clustering for browsing a document collection, the so-csdiatier/gather
method, was discussed. Earlier, in the section on clustering, the use of hierarchical clustering for a
directed search was discussed. By drilling down through the hierarchy, the user can focus on the
small number of documents, in a cluster at the lowest level of the hierarchy, about the topic that
concerns him. Roussinov et al. [SIGIR ‘99] suggest another interactive use of clustering: to help
the user refine and reformulate his query.

The scheme is to submit a simple natural language query to a Web IR engine (Roussinov et al. use
Alta Vista). Their system fetches the 200 highest ranking documents from the list returned by the
IR engine. These documents are automatically clustered, using an unsupervised clustering tech-
nique. (Roussinov et al. use the self-organizing map technique. Another, possibly better technique
would be the STC clustering method discussed earlier in the section on Incremental Clustering.
The essential characteristics of the clustering method is that it must be unsupervised, and that it
must generate labels for each cluster that can aid the user in rapidly identifying the content of a
given cluster. Speed is another important characteristic of a clustering method for on-line cluster-
ing of retrieved results. However, Roussinov et al. are only clustering the top 200 documents, so
they don't need as fast a method as Zamir et al. who use STC to cluster a much larger retrieval
set.) The system then displays for the user the cluster labels and “representative terms associated
with each cluster.” The user selects from this display those labels and terms that seem relevant to
his original query (or to the current information need the query was intended to express). The
selected terms and labels may also suggest additional terms that belong in the query. He types
these additional words or phrases. The system then uses the selected and typed terms and labels to
create a set of new or reformulated queries, which it then submits to the IR engine. Multiple itera-
tions of this process are supported.

Page 173

14. IR Standard - Z39.50

Z39.50 is a national (ANSI/NISO) standard for information retrieval. Its two primary functions
are search and retrieval. These functions are initiated by an entity called the Origin, which is con-
tained in an application called the Client, residing on the Client system. The Origin communicates
with the Target, which is contained in an application called the Server, residing on the Server sys-
tem. The Server is the database provider. [ANSI/NISO Z39.50, 1995] “Unlike other Internet pro-
tocols such as HTTP or WAIS, Z39.50 is a session-oriented protocol. That means that a
connection to a Z39.50 server [from a Z39.50 client] is made and a persistent session is started.
The connection with the server is not closed until the session is completed.” [LeVan, OCLC]

Searching is the selection of database records, based on origin-
specified criteria, and the creation by the target of a result-set repre-
senting the selected records. Retrieval, idiomatically speaking, is
the transfer of result set records from the target to the origin [but see
below]. [ANSI/NISO Z39.50, 1995].

Z39.50 started life as a standard of the library community, specifying a protocol for “search[ing]
and retriev[ing] USMARC-formatted bibliographic records ... However, the standard has grown
considerably ... Today, there are organizations using Z39.50 to deliver full-text documents based
on natural language queries.” [LeVan, OCLC]. Today, Z39.50 is evolving to meet the complex
requirements of the IR community. To the extent that it satisfies these needs, and is supported by a
wide variety of commercial and governmental IR providers, it will become (and appears on the
way to becoming) the standard language for accessing IR engines. As such, it may play a role in
the IR community analogous to the role of SQL in the structured DBMS community.

In comparing Z39.50 to SQL, one essential caveat is in order. As the preceding sections of this
paper make abundantly clear, there is an uncertainty in Information Retrieval which is not present
in retrieval from a DBMS. This is reflected in a basic difference between SQL and Z39.50. The
SQL standard defines, at least in principle, the semantics as well as the syntax of the “black box”
retrieval that is to be performed by a conforming DBMS in response to an SQL query. What does
that mean? Suppose that the same data, i.e., the same tables (or “relations”), are loaded into three
distinct DBMSs, implemented by three distinct DBMS vendors, but all conforming to the same
level or version of SQL. Suppose further that an SQL query is formulated against this data (and
data structure) and executed by each of the three DBMSs. Then as long as the query conforms to
the level of SQL supported by the three vendors, and doesn’t use any non-standard vendor-spe-
cific featuresexactly the same data should be returned by each DBMWS internal details of

how the query is executed may vary considerably from one DBMS to another, depending on how
its optimizer works, how the tables are indexed, and so on; correspondingly, the response time
may vary substantially from one DBMS to another. But exactly the same data should ultimately
be returned.

Plainly, this is not (and cannot possibly be) the case with Z39.50 (and will be even less the case as
Z39.50 evolves to support more powerful and diverse IR engines and queries). The behavior of IR
engines varies far too widely. A term vector submitted to a term-based vector space IR engine will
produce a different result than the same vector submitted to an LSI-based vector space engine.

Page 174

The result will be different again, if the IR engine is based on a probabilistic model, and will vary
from one probabilistic model to another. An extended boolean query will produce different results
depending on which boolean model it employs. (And different results than a strict boolean engine
which must ignore clause weights!) Even two IR engines that use the same term-based vector
space approach may differ if they employ different index weighting schemes, employ different
stop lists, employ different query expansion schemes, employ different query/document similarity
measures, etc.

So, it should be understood that what Z39.50 provides is a consistent way of talking to diverse IR
engines. The results returned may vary widely depending on all of the factors mentioned above,
and more.

14.1 Searching via Z39.50

The Z239.50 search process starts (as noted above) with the specification by the origin of search
criteria. These criteria are specified by a Z39.50 query. The queries currently supported by 239.50
are called Type-1 and Type-101. The functionality of a Type-1 query is described briefly in this
section. (Type-101 is functionally identical to Type-1. The only difference is that the definition of
Type-101 is independent of the version of Z39.50, i.e., it works with both Z39.50-1992 and
Z39.50, 1995, known as version 2 and version 3 respectively.) Z39.50 also supports some other
qguery types with grammars that are severely limited in extensibility, are not widely used, and are
not mandatory in the standard; these other query types should probably not be used and are not
discussed further here. [LeVan, 1995]

Z39.50 allows the sender to specify strict term-based boolean queries using the operators AND,
OR, AND-NOQOT, and Prox. The latter is a proximity operator that tests whether two terms are (or
are not) within a specified distance of each other, where the distance is measured in units and the
possible choices for the unit include: Character, Word, Sentence, Paragraph, Section, Chapter,
Document, Element, Subelement, ElementType, Byte or privately defined unit. The order of the
terms may be specified. [ANSI/NISO Z39.50, 1995]

Each operand of the boolean query may consist of a term and a list of attributes that qualify the
term. Attributes specify something about the semantics of the given term. The attributes are drawn
from an “attribute set.” An attribute set specifies a “list of the types of things that can be searched
for.” [LeVan, OCLC] A number of attribute sets have been defined, and other sets can be defined
in the future. A query can draw attributes from more than one set. The core attribute set, reflecting
the origins of Z39.50 in the library community, is called “bib-1.” The bib-1 attribute set has six
types: Use, Relation, Position, Structure, Truncation, and Completeness. “The “Use” attribute
allows the client to specify how the term would have been used in the records to be retrieved.” For
example, the term might be used as a Title, as (the name of an) Author, etc. At present (in the
1995 version of the standard), 99 values of Use are defined. Most of them are clearly related to
bibliographic reference, e.g., Dewey and other classification numbers, Date of Publication, etc.
Some have more general applicability, e.g., Personal Name, Corporate Name, Conference Name.
Name Geographic, etc.

Page 175

The Structure attribute specifies the structure, e.g., WORD, PHRASE, DATE, NUMERIC
STRING, FREE-FORM-TEXT, etc. The POSITION attribute specifies the position of the term in
the structure, e.g., FIRST IN FIELD. (These attributes are actually represented in Z39.50 by
numeric codes.) [ANSI/NISO Z39.50, 1995]

The end result of the Z39.50 search process is “the creation by the target of a result-set represent-
ing the selected records.” These result set records are then transferred by the target to the source
during the retrieval process.

Note that Z39.50 Type-1 queries are always structured, term-based queries. Z39.50 does not sup-
port unstructured queries, e.g., documents as queries. (But see the relevance feedback feature of
the proposed Type 102 query discussed below.)

14.2 Retrieval via Z239.50

[T]he “transfer of a result set record” more accurately means: the
transfer of some subset of the information in a database record (rep-
resented by that result set entry) according to some specified format
[called a retrieval record].

Z39.50 retrieval supports the following basic capabilities:

* The origin may request specific logical information elements
from a record (via an element specification ...).

* The origin and target may share a name space for tagging ele-
ments ... so that elements will be properly identified ...

* The origin may request an individual element according to a spe-
cific representation or format ...

* The origin may specify how the elements, collectively, are to be
packaged into a retrieval record ... [ANSI/NISO Z39.50, app. 14]

The structure of a retrieval record may be hierarchical, e.g., may include sub-fields, sub-sub-
fields, etc. “An origin might request, for example, ‘the fourth paragraph of section 3 of chapter 2
of book1.” Or the retrieved data might be more conventional structured data, e.g., a product avail-
ability field may contain a “distributor” sub-field, which may, in turn, contain the sub-sub-fields
for the name, organization, address, and phone number of the distributor.

14.3 Type 102 Ranked List Query (RLQ) - A Proposed Extension to Z39.50

A number of IR features discussed extensively in this paper are notably lacking from the Z239.50
guery capability discussed above: extended boolean queries, weighting of terms or clauses, rank-

Page 176

ing of the retrieved results, relevance feedback, etc. These “ranked searching technologies [are]
used by the majority of large-scale commercial information providers and information industry
software vendors. This includes 80-90% of the mainstream commercial ranked searching technol-
ogies ...” The proposed type 102 Ranked List Query (RLQ) has been designed to meet these
requirements. [Type 102, 1995] This query has been developed by the Z39.50 Implementor’s
Group (ZIG), which includes such organizations as Chemical Abstracts Service, Clearinghouse
for Networked Information Discovery & Retrieval (CNIDR), Excalibur Technologies Corp.,
Knight-Ridder Information Services, LEXIS-NEXIS, National Institute of Health (National
Library of Medicine), and West Publishing Company.

A weight may be attached to each operand in a Type 102 query. A Type 102 query “is a recur-
sively defined structure of operators and weighted operands.” Since the query is recursively
defined, a clause, e.g., an operator and its associated operands, can itself be an operand, and hence
can itself be weighted. The weight attached to an operand “specifies the value to be placed on the
operand with respect to its importance in selecting records from the designated collection(s).”
[Type 102, 1995]

Type 102 supports operators that may take more than two operands (as required by some extended
boolean models).

Type 102 supports extended, i.e., relevance ranked, boolean operators (called “relevancy-based”
operators in the type 102 spec). For example, instead of a strict boolean AND operator, there is an
operator called “rqAND.” Each operator and its associated operands comprise a clause. A number
may be attached to each clause. These numbers determine the degree to which the clause is to be
given a strict or extended boolean interpretation. Note that some servers may ignore these num-
bers. These numbers should not be confused with term weights.

Type 102 supports the retrieval of ranked output, i.e., each result record is associated with a
Retrieval Status ValueRSV which is a measure of its degree of relevance to the given query.
Moreover, the type 102 query allows the user to limit the number of records retrieved, either by
specifying the number of records to be returned, e.g., the top-raxkedords, or by threshold
value, e.g., all records witRSVabove threshold valuBTHR Note that the interpretation of the
RSVis server-dependent, e.g., it might be a cosine similarity in one system and a probability of
relevance in another. Also note that while the result set will normally be order&Slyyother
orderings, e.g., by date, can be requested.

A Type 102 query can be applied to one or more record collections. (The Type 102 spec uses the
term “record” instead of “document.”) The query can restrict the collections to which the given
guery is to be applied, or specify particular collections to which itasto be applied. (The Type

102 spec uses the terms “collection” and “database,” apparently interchangeably.)

A Type 102 query can specify the degree to which recall is to be emphasized (at the possible price
of loss of precision).

A Type 102 query may specify whether the original query may be reformulated, e.g., expanded,
by the retrieval engine. Moreover, the query may specify that only the reformulated query is to be

Page 177

returned. Alternatively, the query may specify that only the retrieved records are to be returned.
Or, both the retrieved records and the reformulated query may be requested.

A Type 102 query allows the user to specify relevance feedback info, either within the original
guery or within a resubmission of a reformulated query. The feedback info takes the form of a list
of records with a relevance measure (in the range from -1 to +1) attached to each record. Notice
that the negative numbers allow the user to specify the degree to which given records are undesir-
able.

The Type 102 query can request the return of demographic data pertaining to the collection being
gueried, or to the result set, or to the retrieved record, etc. The collection-level metadata that can
be returned includes: number of records, number of unique terms (either including or excluding

stopwords), total number of term occurrences, total number of records in which each term occurs,
and total number of occurrences of each query term in the collection.

Type 102 supports proximity as does Type 101. However, in Type 102, there is no boolean prox-
imity operator. Instead, a proximity condition (called a “qualifier”) is attached to a boolean clause
to indicate that all operands within that clause (structured operand) must be satisfied within the
same proximity unit.

15. A Brief Review of some IR Systems

This section is a brief review of some of the leading commercial and research IR engines. The
engines reviewed here are chosen to be representative, not exhaustive.

15.1 LEXIS/NEXIS

LEXIS/NEXIS is a commercial system for retrieving legal (LEXIS) or newspaper (NEXIS) docu-
ments.

LEXIS/NEXIS [grel] supports traditional “strict” boolean queries, i.e., booleans that return exact
matches only. Specifically, it supports queries formulated with the boolean operators (called “con-
nectors” in LEXIS/NEXIS) OR, AND, and W/n. The latter is a proximity operator, éagmeless

WI/5 shelteispecifies thahomelesaindsheltermust occur within five words of each other. It also
supports two “wild card” characters (called “universal” characters in LEXIS/NEXIS): The char-
acter ! specifies any suffix that can be added to the root word, ¢&rgnsport! finds transporta-

tion, transporting, transportedetc.” The character * specifies any single character. It “must be
filled in if its in the middle of a word, but not if it's at the end. (EXAMPLEom*nfindswoman,
women; transport**findstransport, transports, transportefiut nottransportation,etc.)”

More recently, LEXIS/NEXIS has followed the trend toward natural language queries (called
“FREESTYLE™ search descriptions” in LEXIS/NEXIS); these queries do not require (or permit)
boolean connectors. This is, in essence, the vector space approach described earlier in this paper.
It “identifies significant terms and phrases from your search description, removes irrelevant words
from your search description [e.g., applies stoplists, etc.], applies a formula that weighs the statis-

Page 178

tical importance of the significant terms and phrases from your search description and compares
them to the documents in the library and file(s) in which you are searching [e.g., weights the sig-
nificant terms and computes the similarity of query to documents in the target collection] — the
more uncommon or unique the word, the greater the statistical weight [e.gifudegeighting

or the like].

LEXIS/NEXIS provides a number of ways of qualifying or enhancing a natural language query.
The user can tell LEXIS/NEXIS to treat two or more consecutive words as a phrase by bracketing
them with quotation marks. In addition, LEXIS/NEXIS itself will recognize certain word combi-
nations as phrases, and put quotation marks around these combinations automatically; the user
can override this feature by editing out the quotation marks. The user can specify that certain
words or phrases are mandatory, i.e., they must appear in any retrieved document. (Note that such
a feature is meaningless in a strict boolean query, since the boolean operators themselves deter-
mine whether a given term is mandatory, and under what conditions it is mandatory.) The user can
specify “restrictions,” i.e., constraints (other than mandatory words) that must be satisfied by
retrieved documents; for example, a legal document may be constrained by date or court. The
legal user may invoke an online thesaurus of legal terms. “A list of the terms in your search
description for which synonyms [or alternative forms] are available will appear.” The user has the
option of displaying the synonyms and alternative forms for a given word, and adding any of these
additional terms that she chooses. Hence, query expansion via thesaurus is manual, with the the-
saurus providing online guidance, but the user deciding which terms (if any) to add. Finally, the
user may specify how many documents to retrieve. (Again, note that this feature would be mean-
ingless for a strict boolean query, since a strict boolean determines a set of documents that exactly
satisfy the query; there is no notion of degree of relevance in a strict boolean retrieval.)

LEXIS/NEXIS provides some result display options that are only available (indeed, only applica-
ble), to a natural language, i.e., vector space, query. For example, the user can display “the most
heavily weighted block of text — the portion that most closely matches [her] search description.”
More interesting is the “WHY” option. This option “shows how your search was interpreted
...,displaying the order in which your terms were ranked, the total number of retrieved documents
with each of your terms, ... and the importance assigned to each term.” Note that this is closely
related to the Z39.50/type 102 query features that allow you to look at the system expansion of
your query, and the demographics of its terms.

15.2 Dialog

DIALOG [QT] is a commercial system for retrieving documents from databases in such topic
areas as: Business, Intellectual property/Law/Government, Medicine and Pharmaceuticals, News,
People, Sciences, Social Sciences & Reference, and Technologies.

The user selects a topic. Then she selects a database (or group of databases) within the topic. The
search options vary with the database. For example, options for a newspaper database include:
Subject (keyword), Title/Lead Paragraph, Author, Journal Name, Section/Subject Heading, and
Limit options.

Page 179

DIALOG supports a strict boolean query capability very similar to that of LEXIS/NEXIS, e.qg.,
AND, OR, and w (proximity) operators. Like LEXIS/NEXIS, DIALOG supports a wild card
character (?) that can only be used to specify any suffix to a common root, e.g., “smok?” will find
smoke, smoker, smokers, smoking, etc. There is no thesaurus; it is up to the user to think of appro-
priate synonyms.

In “menu” mode, the user enters a term and any synonyms connected by “OR”. Then she can
modify the query by eithebroadeningit, i.e., adding additional terms implicitly connected by
“OR”, or narrowingit, i.e., adding additional terms implicitly connected by “AND.”

In “command” mode, the user can generate nested boolean expressions. To make the expressions
simpler to read and generate, the user generates terms, e.g., “smoking OR tobacco,” “heart disease
OR heart attack”. Each term is assigned an id by DIALOG, e.qg., the first term may be assigned the
identifier “S1,” and the second term may be assigned the identifier “S2.” The user can then gener-
ate compound boolean expressions using these identifiers, e.g., “SELECT S1 AND S2.” DIALOG
will now assign an identifier, e.g., S3, to the compound expression “S1 AND S2.” At each stage,
DIALOG tells the user how many documents are retrieved, e.g., how many are retrieved by the
term “smoking” by itself, how many are retrieved by “smok? OR tobacco,” how many are
retrieved by “S1 and S2,” etc. In this way, the user can decide when he has limited his retrieval set
sufficiently. At all stages, retrieval involves a strict boolean match.

DIALOG allows the user to save a query. Thereafter, if the query matches a new document that
has been added to the given database, the user is alerted. The set of saved queries for a given user
is called an “alert profile.”

15.3 Dow Jones News/Retrieval

Dow Jones News Retrieval [Dow QR] is a commercial system that can search up to 1900 news
sources, e.g., newspapers, newsletters, news magazines, etc., general interest and specialized. As
with the other commercial engines described here, it supports strict boolean queries with a some-
what broader set of operators, e.g., AND, OR, NOT, SAME, NEAR, etc. A query can be further
restricted by specifying a date, categories and subjects, document sections, and specific sources,
e.g., specific publications. The system displays a set of available subject and category codes; not
all codes work in all publications. Similarly, not all document section types are available in all
publications.

Retrieved documents can be sorted, highlighted, etc. One can retrieve a hit paragraph rather than
an entire document. One can retrieve the headline and lead paragraph, or the full text of an article.

15.4 Topic

Topic [Topic Intro] is a commercial IR engine, marketed by Verity, Inc. In contrast to the three
commercial IR services described above, Topic is not an IR service maintaining indexed docu-
ment collections, but a stand-alone IR tool that can be used by any purchaser to provide IR ser-

Page 180

vices. Verity also markets an application program interface to Topic, the Topic Development Kit
(TDK). This allows Topic to be incorporated into application systems, and other vendor products.

Before a collection of documents can be searched by Topic, it must be loaded “into” Topic, a pro-
cess that involves sophisticated indexing. In this respect, of course, it resembles most other IR
search engines, whether commercial or research, as well as the information services described
above.

The basic text search condition or query in Topic is called a “topic” (formerly called a “concept
tree”). Topics are hierarchically structured. Each topic has a name which is the root of its “tree”.
Below the root are any number of child sub-topics, also named. A sub-topic may itself have any
number of named sub-topics. Hence, there may be any number of levels of sub-topic. At the low-
est level (the leaves of the tree) are “evidence topics” which specify the actual words or phrases
for which Topic is to search each document in a given Topic collection. For example, the terms
ballet, drama, dance, opera, and symphangy be evidence topics for a sub-topic nanpea-
forming-arts “[T]he sub-topicsgperforming-arts, film, visual-arfsandvideo[may be] children of

the art topic. Theart [sub-]topic itself [may be] a child of théberal-arts [sub-]topic.” Thelib-
eral-arts topic might be the root topic. Alternatively, “[t]hi&eral-arts topic could in turn be a

child of successively higher parent topics within the [topic] structure.” [Topic Intro]

Topic performs relevance ranking as described below. When a topic is executed against a given
collection, it is evaluated against each document, and the document is assigned a score in the
range 0.01 to 1.0. The higher the score, the better the document matches the topic (according to
Topic’s matching formula, of course). Documents are returned to the user in descending order of

score.

An operator may be associated with each topic or sub-topic node. There are three classes of oper-
ator. The evidence operators specify the string or set of strings for which each document is to be
searched. Hence, they only appear at the lowest level, i.e., below any of the other operators. For
example, “WORD” specifies a word, actually a string of up to 128 alphanumeric characters, but
usually an ordinary word or number, e.g., “microchip” or “80386.” The STEM operator specifies
the usual stemming, e.g., to stem “transport” is to search for “transports,” “transported,” “trans-
porting,” etc. (Note that stemming must be specified explicitly for each evidence word which
means that the user can avoid stemming of a given word if he wishes. In contrast, some of the
other systems discussed above and below performed stemming automatically.) The WILDCARD
operator allows specifying of search patterns. It uses a richer set of wild-card characters than the
commercial services described above, perhaps because the creator of a topic is assumed to be
more sophisticated than the typical user of those IR services. Wildcard characters may occur any-
where in a search pattern, not just at the end, and support single characters (?), zero or more char-
acters (*), any one of a specified set of characters, any character in a range (e.g., [A-F]), etc. The
NOT operator may be used to exclude documents that contain a specified word or phrase.

Above the evidence operators in precedence are the proximity operators: PARAGRAPH, SEN-
TENCE, PHRASE, NEAR and NEAR/N. Each of these operators specify two or more words that
must satisfy the given proximity constraint. A proximity operator may be assigned to any sub-
topic above the evidence level. PARAGRAPH and SENTENCE are self-explanatory. PHRASE

Page 181

specifies a string of consecutive words, e.g., “arts and crafts”. NEAR/N specifies that the specified
words must not be separated by more than N words. NEAR differs from NEAR/N in that “[d]ocu-
ment scores are calculated based on the proportion of instances found in relation to the size of the
region containing the words ... Thus, the document with the smallest region containing all search
terms always receives the highest score.” An ORDER operator can be used with SENTENCE,
PARAGRAPH, and NEAR/N to specify that the search terms must occur in a specified order.

Above the proximity operators in precedence are the “concept” operators, which are the boolean
operators: AND, OR, and ACCRUE. The AND operator is a strict boolean, i.e., it only selects
documents that contain all its children (operands). In other words, it contributes a score of zero for
each document that does not contain all its children. However, if all its chilahepresent, the

score returned by AND is not simply 1.0 (as it would be for a conventional strict boolean) but will

be the minimum of the scores of its children. OR is also a (kind of) strict boolean in the sense that
it returns a score of zero only if all its children have scores of zero, e.g., if its children are words
and phrases, at least one must be present in the document if the OR is to contribute a non-zero
score to that document’s total score. Moreover, the score it contributes to a given document if any
of its children are present doastdepend on how many of the children are present. However, it is

not 1.0 either; instead, it is the maximum score of any of its children. ACCRUE is a (kind of)
extended boolean OR, i.e., the more of its children are present in a document, the higher the score
that it contributes to that document. However, the score it returns is the maximum of its children’s
scores (like an OR) plus a little extra for each child that is present.

A further degree of ranking can be specified by using the MANY operator in conjunction with an
evidence or proximity operator to rank “documents based on the density of the search terms they
use.” In other words, MANY normalizes term frequency by document length so that “a longer
document that contains more occurrences of a word may score lower than a shorter document that
contains fewer occurrences.”

Finally, the user may assign weights in the range of 0.01 to 1.0 to operators. Specifically each
child of a logical operator (AND, OR, and ACCRUE) may be assigned a weight. Since a logical
operator may be a child of another logical operator, the logical operators themselves may be
assigned weights. Similarly, evidence operators (WORD, STEM, etc.,) may be assigned a weight.
Proximity operators may not be assigned a weight. Weights determine the relative importance of
search terms or higher level children. For example, the score for a given document contributed by
a given AND operator is not merely the minimum score of any of its children but rather the prod-
uct of that score and the weight assigned to the child having that minimum score.

Finally, there are a number of operators that only apply to structured fields of a document, e.g.,
title, subject, author, etc. These operators do not rank documents but filter them, e.g., one can
specify only documents by a given author or only documents whose titles contain a given
sequence of words.

15.5 SMART

The SMART system [Salton & McGill,1983], developed at Cornell, is the “granddaddy” of IR
systems that (1) use fully automatic term indexing, (2) perform automatic hierarchical clustering
of documents and calculation of cluster centroids, (3) perform query/document similarity calcula-

Page 182

tions and rank documents by degree of similarity to the query, (4) represent documents and que-
ries as weighted term vectors in a term-based vector space, (5) support automatic procedures for
guery enhancement based on relevance feedback. SMART has been widely used as a testbed for
research into, e.g., improved methods of weighting and relevance feedback, and as a baseline for
comparison with other IR methods.

Note that extended boolean retrieval, i.e., fagorm method, was developed in the SMART
“shop”, although it does not appear to be formally incorporated into the SMART testbed.

All of the above topics have been discussed extensively above; the discussion need not be
repeated here.

15.6 INQUERY

INQUERY [Callan et al., DB&EXSysApp, 1992] is a probabilistic IR research system, developed
at the University of Massachusetts, and “designed for experiments with large [text] databases.”
INQUERY is based on the inference network model, which is discussed in an earlier section of
this paper. Here, a brief overview of the INQUERY system will be given.

[The inference net model] implemented in the INQUERY system
emphasizes retrieval based on combination of evidence. Different
text representations (such as words, phrases, paragraphs, or manu-
ally assigned keywords) and different versions of the query (such as
natural language and Boolean) can be combined in a consistent
probabilistic framework. [Callan et al., IP&M, 1995]

The INQUERY document parser analyzes the overall structure of the document, converts it to a
canonical format, and identifies those sections to be indexed. Then, it performs lexical analysis to
extract words, fields, etc., “recognizes stop-words, stems the words, and indexes the words for
retrieval.” Stop-words are not indexed but they are retained in the text so that subsequent textual
analysis (syntactic analysis, feature recognition [see below]) may make use of them.” [Callan et
al., IP&M, 1995] (See discussion above of Riloff's work on the use of stop-words in semantic
analysis.)

INQUERY feature recognizers (earlier called “concept recognizers”) “search text for words that
correspond to simple semantic components,” e.g., numbers, dates, person names, company names,
country names, U.S. cities, etc. The set of feature recognizers is open-ended. The number recog-
nizer maps multiple forms of a number, e.g., 1 million, or 1000000, or 1,000,000, into a common,
canonical format. The company name recognizer “looks for strings of capitalized words that end
with one of the legal identifiers that often accompany company names (e.g., “Co,” “Inc,” “Ltd,”

...)." [Callan et al., DB&ExSysApp, 1992] In addition to such heuristics, databases, e.g., of
known person or city names, are used.

“Queries can be made to INQUERY using either natural language, or a structured query lan-
guage.” Query pre-processing includes stop-phrase removal, stop-word removal, stemming, and

Page 183

“conversion of hyphenated words and sequences of capitalized words into proximity constraints”.
[Callan et al, IP&M, 1995] (The latter corresponds to the fact that, e.g., hyphenated words, are
indexed as separate words but with their textual positions retained.)

Queries are expanded using an INQUERY tool called PhraseFinder, which builds a database of
“pseudo-documents” based on a given collection of actual documents.

Each pseudo-document representsoacept in this case a noun
sequence, that occurs in the document collection. The “text” of the
pseudo-document consists of words that occur near the concept in
the document collection. For example, a PhraseFinder document for
a Wall Street Journalcollection contains armamnesty program
pseudo-document indexed 986, act, control, immigrant, law ...

A query is expanded by evaluating it against a PhraseFinder data-
base, selecting the top ranked concepts, weighting them and adding
them to the query. [Callan et al, IP&M, 1995]

Concepts are ranked by performing a conventional match between the given query and the collec-
tion of pseudo-documents. The concepts associated with the highest ranking pseudo-documents
are added to the query. The assumption is that concepts, e.g., noun sequences, co-occurring with
some of the same terms in both a query and a document context, e.g., a pseudo-document, may be
related semantically. Hence, if “amnesty program” co-occurs with “immigrant” and “law” in both

a query and a document, it probably refers to the same entity in both places. Evidently,
PhraseFinder performance is sensitive to how near to a concept a term must be to be included in
its “pseudo-document.”

INQUERY 3.0 [INQ 3.0, ACSIOM, 1995] supports a number of structured operators. Operators
can be nested within operators. Each of these operators returns a belief value, e.g., a score or
weight, or a proximity list that can be converted into a belief list. The beliefs returned by the
clauses of a structured query contribute to the belief that the given document satisfies the informa-
tion need expressed by the total query in which these clauses occur. The primary boolean opera-
tors, #and and #or, are extended booleans. (By convention, all the INQUERY operators start with
#.) For example, the interpretation of #and is that “[the more terms contained in the AND opera-
tor which are found in a document, the higher the belief value of that document.” Plainly,
extended booleans are more in tune than strict booleans with the probabilistic nature of
INQUERY, since they return a degree of satisfaction of the boolean condition rather than an all-
or-nothing true or false. There are also some strict boolean operators: #band, and #bandnot. (The
latter is satisfied if the first term is in a given document and the second term is not.) There is also a
#not command which awards higher belief to a document that does not contain its operand terms.

There are several proximity operators: The Unordered Window operator #uwN requires that its
operand terms co-occur in the document in any order but within a windolW wbrds. The
Ordered Distance operator, #odN, is similar except that in addition to co-occurring within a win-
dow of N words, the terms must occur in the specified order within that window. The #phrase
operator evaluates terms to determine if they occur together frequently in the collection. If they do
[i.e., if the phrase occurs frequently in the collectasa phrase], then they are required to occur

Page 184

in the specified order within a three word window, i.e., #phrase is evaluated as #0d3. Otherwise,
#phrase reduces to #sum (see below); the more operand terms a given document contains, regard-
less of their proximity, the higher belief (rank) the document receives. The #passage operator is
similar to #uwN except that instead of looking for Blaword window in which all the specified

terms occur, it looks for the “best” passage, i.e.,Naeord window that most nearly satisfies the
specified operands; “the document is rated based on the score of its best passage.”

A synonym operator, #syn, allows the user to specify that its operands are to be treated as synony-
mous terms.

There are two sum operators: Sum (#sum) and Weighted Sum (#wsum). The former sums the
beliefs of its operands. The latter takes a set of weight/operand pairs and computes the weighted
sum, i.e. W*T 1 + Wo*T, +... +W,;*T|,. (One can also specify a scaling factor, an overall weight,

for the entire weighted sum.) A weighted sum allows the user to say that some operands, e.g.,
terms, are more important than others, e.g., contribute more by their presence in a document to the
belief that the document satisfies the information need expressed by the query. The beliefs com-
puted by these sum operators are normalized, e.g., the weighted sum is divided by the sum of the
specified weights.

Note that, in general, an operator such as a weighted sum can be attached to any node of the infer-
ence network. If it is attached to a node of the query network, it is a component of the query, and
the operands are the parents of the given node, which may be lower level (more nested) query
components, or term representation nodes for the document under consideration. If a given docu-
ment is instantiated, each term is assigned a belief, e.,g., it mayfhidfaweight or a one (for

strict boolean evaluation). The evaluation of the query will then evaluate the specified weighted
sum which will then sum the beliefs of each query term in the document, weighting them by both
the belief in the term, and the weight assigned by the user to the given term in the query. The
result may be equivalent to a cosine similarity calculation, or a strict boolean evaluation, or an
extended boolean evaluation, or something more complex, depending on the operator and weights
assigned to each node.

Table 3 below summarizes some of the important characteristics of the IR systems described in
this section, as determined by their documentation.

Page 185

Table 3: Characteristics of IR Systems

Automatic stemming
May be subject to semantic analysis, thesaurus expansion, or merely reduced to a term vector.

kl‘:('z Dialog Dow Jones| Topic SMART | INQUERY

Strict Y Y Y Y N Y
Boolear?
Extended N N N Y N Y
Boolear?
Proximity Y Y Y Y N Y
Operator
Terms/ N N N y d Y ve
Keywords$
Wild Card Y Y N Y N N
Termd
Stemming N N N Y9 yh Y
Phrase Y Y Y Y Y Y
User-
assigned N N N Y Y Y
Weights
Ranked Y N N Y Y Y
Output
Probabilis- N N/A N/A N N Y
tic
Document
ranking by| Y N/A N/A Y Y Y
Similarity

a. Exact Match (does not produce ranked output).

b. Does not require exact match (produces ranked output).

c. Roughly equivalent to a strict boolean with all terms connected by OR'’s.

d. ACCRUE operator is roughly equivalent to a keyword vector but uses a similarity function different from

cosine similarity.

e. Unweighted sum operator (#sum) roughly equivalent to term vector

f. Wildcard terms can be used as an alternative to stemming, or in addition to stemming.

g. Stemming can be requested explicitly for any given word.

h. Automatic stemming

i.

j-

Page 186

k. Ranked output may be produced by evaluating extended boolean, query/document similarity, or probabil-
ity that document satisfies query.

16. Web-Based IR Systems

16.1 Web-Based Vs. Web-Accessible IR Systems

Commercial services such as DIALOG and LEXIS/NEXIS provide retrieval of documents (or
abstracts) from a repository owned by the company providing the service. The repository may be
specialized by subject, e.g., LEXIS provides access to legal reference material such as judicial
opinions. The repository may, like NEXIS or Dow Jones News/Retrieval, provide access to arti-
cles appearing in any of a specified set of publications. Or like DIALOG, it may provide access to
any of a broad but predetermined set of subject categories, and then within each category, to a
predetermined set of publications. In all of these cases, the service preselects the subject catego-
ries, the publications, and the documents or articles from each publication to be made available to
the user. These services are available via the Internet, but the user of such a service is restricted to
the documents available in the repository maintained by the given service. In return for a fee, the
user receives the benefit of the of the editorial judgment of the service, i.e., in selecting appropri-
ate publications, selecting appropriate documents from each publication, indexing documents
appropriately, etc. In this section, we consider a different class of retrieval services, those services
(usually free) that provide access, at least in principle, to everything publicly available on the
Internet, more specifically, on that very large portion of the Internet known as the World Wide
Web (WWW), or more simply, the Web.

16.2 What a Web-Based IR Engine Must Do

Web retrieval engines do not maintain their own document repositories; the Web itself is their
repository. They do build and maintain indexes to the Web. Since the Web is very large, very dis-
tributed, and grows and changes rapidly, one of the great challenges faced by these engines is to
generate and maintain indexes that are sufficiently exhaustive (ideally, that cover the entire Web),
sufficiently up-to-date, and sufficiently accurate. Since these search engines are available to, and
widely used by, anyone with internet access, from a casual “surfer” of the Web, to a layman
searching for information on a particular topic, to professional researchers and librarians, these
general-purpose Web IR engines face a second great challenge: to provide interfaces simple
enough for the layman but powerful enough for the professional. Since they cater to any user of
the Web (rather than a more specialized class such as lawyers, medical researchers or journalists)
and since the number and kind of topics, documents, and document collections on the Web is vir-
tually unlimited, they face a third great challenge: they must be able to retrieve documents on any
topic whatever. The first of these challenges is unique to IR engines that search a very large web,
eitherthe Web, i.e., the Internet Web, or a large corporaieanet web. The second and third
challenges are exactly those addressed by most of the IR research described in this report.

Page 187

16.3 Web Characteristics Relevant to IR

The Web consists of a very large and growing set of information units called “pages.” A Web
page is a computer file; it may be the same size as an ordinary book page, but it may also be very
much larger, and may even contain many book pages. These Web pages are woven together by
(1) a common scheme for addressing pages, Universal Resource Locators (URLS), (2) a common
protocol, Hypertext Transfer Protocol (HTTP) that allows a web client program on the user’s
computer to request a page P1 by URL, and a web server on the computer where P1 is located to
respond to the request by sending a copy of P1 to the user’'s computer, and (3) a common standard
for specifying the structure of a page, Hypertext Markup Language (HTML). HTML is a
“markup” language, which means that each component of a page, e.g., its title, its author, abstract,
figures, etc., is explicitly identified within the text of the page itself. A component is identified
and delimited by tags preceding and following the given component. (This tagging process is
called “markup.”) For the present discussion, only a few essential features of Web pages should
be noted.

First, the components that occur and are tagged within an HTML page may be URLs of other
pages. Since a given page may contain many URLs of other pages, and since many pages may
contain the URL of a common, popular page, the pages comprising the Web are linked together in
an elaborate structure of arbitrary complexity. This complexity explains the use of the term
“Web.” But in fact, the structure of the Web is far more complex, far less orderly, than any actual
spider web in nature.

Second, the presence in a given pdgg,of a URL pointing to a second page?, implies some
association between the two pages. But there are no general uniform rules, let alone enforcement
mechanisms, for ensuring that there is some reasonable connection, e.g., by author or topic,
between any two pages linked by URL. Virtually any individual or organization can create a
“home page,” a page expressing the interests or concerns of the given individual or organization.
Any author of a page can link her page to any other, e.g., an individual may choose to link her
page to other pages on diverse topics that she personally “liR@sfay have been created by the
author ofP1, or by another individual working for the same organization, and may be on the same
computer a$1 (in which case they are said to be part of the same web site). But P2 may just as
easily be a page created by a completely different author, and be located on a computer located in
a different part of the world. A sentencef1 containing a tagged URL tB2 may, but need not,
explain the reason for the reference. Even if such an explanation is present, it will probably be in
natural language, not readily interpretable by any search engine. The URL itself is a string of text,
consisting of a number of standardized components in a standardized order. The most common
URL format specifies the official registered internet name (variously called host name or server
name or domain name) of the computer that provides access to the page being addressed, and the
pathname (within the file structure of the given host) of the file where the page actually resides.
The host name is itself a string of component names, ideally chosen to identify and give some
clue(s) to the organization maintaining the host, e.g., “www.microsoft.com” is a computer serving
as a gateway to all the computers within the commercial organization “Microsoft,” and
“www.cs.umbc.edu ”is a Web page for the Computer Science department of the University of
Maryland at Baltimore County, an educational institution. Similarly, the file path name is a series
of directory and sub-directory names, ideally chosen to give some clues to the subject or author or

Page 188

purpose of the given page, e.g., “galaxy/Arts-and-Humanities//Performing-Arts/Drama-and-The-
ater.html” specifies a directory named “galaxy,” a sub-directory within “galaxy” named “Arts-
and-Humanities,” a sub-directory within “Arts-and-Humanities” named “Performing-Arts,” and a

file within the “Performing-Arts” directory named “Drama-and-Theater.htm!” containing URL's

to numerous drama and theater resources. (Of course, to access this file, you need the other essen-
tial component of the URL, the host name, which happens to be “galaxy.einet.net.”) If these
names are well chosen, their components can serve as keywords for an IR engine (or a human
searcher). But again, there are no universal standards or enforcement mechanisms to ensure that
the names of which a URL is composed are well-chosen or informative. In particular, these names
are not chosen from any kind of controlled vocabulary.

Third, although the Web does not enforce any uniform or consistent semantic structure, its com-
plexity makes possible the linking or grouping together of pages along multiple dimensions, e.g.,
a given page may be grouped with other pages by the same author (because the author's home
page contains URLSs to all his publications), and also grouped together by topic (because a page
devoted to the given topic contains the URLs of other pages devoted to the same topic). A page
P1 may refer by URL to pag®2 becausd2 deals with a topic mentioned or discussedPih
SimultaneouslyP1 may contain a URL reference to paB& becausd®3 deals with a different

topic mentioned or discussed H1. P3, in turn, may contain a URL reference gl which deals

with another related topic, or a special aspect, a sub-topic, of the main tdp&: lof this way, the

URLs may specify a very elaborate network of citations by subject, author, etc. A user can trace
such a citation path exactly as she would in a traditional library, but much more quickly and eas-
ily, e.g., by a succession of mouse clicks on highlighted URLs as they appear on her screen. On
the other hand, the citations in a given page are only as valuable as the judgment of the author of
the page, who (in the decentralized, anarchic world of the Web) is not subject to review by profes-
sional publishers or reviewers.

Fourth, a URL may point to a file that isot a Web page. This may mean that a Web server is
available on the host, but the page is not in HTML format, and hence does not contain as much
“metadata” as a document that has been properly “marked up.” In that case, the page can be
retrieved by a client that supports HTTP (a Web “browser”), but it may require some additional
program to display the file, e.g., an ordinary text editor for an ASCII text file, an image viewer for

a file in some standard image format, etc. Or, it may mean that the file cannot be retrieved via the
HTTP protocol because its host does not contain a Web (HTTP) server. In that case, some other
kind of server must be used to retrieve the given file. The two most common non-Web servers are
FTP and Gopher. An immense number of files, both textual and binary files, are available for
transfer free of charge to the local host of any Internet user via an FTP server. (FTP stands for File
Transfer Protocol).Textual files may contain any conceivable kind of textual or numeric data,
including documents on any conceivable subject and program source code for distribution. Binary
files may contain images, video, audio, executable programs, etc. The files at an FTP site may be
arranged in a structure, typically hierarchical, that can be browsed by the Internet user. Any file
that the user encounters in her browsing that “looks” interesting (perhaps on the basis of its path-
name), can be retrieved using the FTP serverraatly looked at. However, these FTP files are

not Web pages, and hence wilht contain URL links to files (whether Web pages or FTP files) at
other sites. The only browsing that can be done at an FTP site is up or down the local hierarchy of
FTP files.

Page 189

Gopher servers provide a hierarchy of menus. When the user selects an item from a given menu,
e.g., with a mouse click, she gets either another menu or a data file. The data file may be any of
the types that can be accessed via FTP. However, the file selected by a menu selection may be on
a different host than the one where the menu was located. Hence, Gopher supports a form of
“hyperlink” equivalent to a URL link between Web pages. In fact, the Gopher servers, menus,
files, and links to files at other Gopher servers formed (and still form) an early form of hyper-
space, called gopherspace, still quite useful and widespread, although it has been superseded as
the hyperspace by the Web.

Finally, a Web page may be a gateway to a set of structured databases, textual databases, or other
services outside of the Web itself. In other words, once such a page is reached, further access to a
database or service may involve servers other than web servers, and local links other than URLSs.
Moreover, further access may depend upon payment of a fee, e.g., as in the case of the commer-
cial databases described above. For example, you can reach the DIALOG home page free of
charge. From there, you can jump freely to other pages that advertise the products and services
that the DIALOG company provides commercially. The user can log on to these services from a
DIALOG Web page. However, logging on requires a password and hence an account with DIA-
LOG,; this, in turn, requires payment of a fee. Hence, DIALOG databases and services can be
accessed from the Web, but it is a commercial service and its databases are not a part of the Web.

An example of an intermediate form of commercial information source on the Web is the on-line
bookseller, “amazon.com.” From this company’s web site, the user can freely browse through a
very extensive book catalog, searching for books by title, author, or subject. When the user finds a
book of interest, she may find not only the normal bibliographic data, but links to such additional
information as reviews by customers, an interview with the author, etc. The user only incurs a
charge when she orders a book.

By contrast, there is an extensive non-commercial on-line source of books (and magazines, jour-
nals, manuals, catalogs, etc.) called the Online Book Initiative (OBI), at the Gopher site
“gopher.std.com.” This resource is wholly free, and volunteer-run. Its advantages and disadvan-
tages follow from this fact. The primary advantage is that the Gopher menus will lead you not to
bibliographic data but to the actual text of an item of interest (which can be as short as a poem, or
as long as a full-length novel). This text can be downloaded to the user's own computer, and either
read right on her monitor screen or printed for more convenient reading later and elsewhere. On
the other hand, the OBI is by necessity limited (except by accident) to material in the public
domain, which is, of course, still an immense resource. Moreover, the material is archived in
whatever format it is received from volunteer contributors, which means that it is in diverse for-
mats, e.g., plain ASCII text, compressed text, HTML documents, sets of files archived together
with the tar utility and then compressed, etc. The selection, though extensive, is necessarily hap-
hazard, dependent on what has been submitted by volunteer contributors who may have scanned
the text into electronic form on their own time, at their own expense. So, there is no rational or
consistent basis for determining why this author or subject is represented, and that author or sub-
ject is not. Finally, there is no extensive or consistent indexing. The top-level menu mixes together
authors and subjects in simple alphabetical order.

Page 190

16.4 Web Search Engines

A good many free IR search engines are available on the Web. These engines allow a user to sub-
mit queries and retrieve a (usually ordered) list of Web pages that are (one hopes) relevant to the

query.

Virtually all IR engines, commercial, free, or the research engines described in most of this report,
work by indexing the document collection(s) to which retrieval is to be applied. With a relatively
small collection, it may be possible to generate the index terms for a given document, its descrip-
tors, dynamically, as the collection is being searched. (In a routing application, where the docu-
ments to be routed or classified or filtered are not available when the query is generated, there is
no other choice.) But for a very large collection, indexing in advance is essential. For a huge set of
collections such as the information sources available through the Web, no other course is possible.
Hence, all of the prominent Web IR engines generate indexes; moreover, given the dynamic
nature of the Web, they must constantly be updating their indexes, as new web sites are created,
new information sources are created at existing web sites, information sources are updated, Web
pages are created, updated, or deleted, etc.

There are two basic alternatives for creating an index:

(1) The index can be handcrafted by professional indexers as librarians have been doing for many
years. This has the obvious advantage that human judgment is employed in deciding what a given
document or resource is “about,” i.e., what descriptors are appropriate for the given document.
Moreover the index can be orderly, arranged by topic in a systematic and hierarchical fashion. The
indexers can also exercise some editorial judgment with regard to what documents are worth
indexing. (This can be either an advantage or a disadvantage, depending on whether the user
wants expert judgment interposed between herself and the Web.)

(2) The index can be generated automatically, e.g., using techniques such as those discussed in
this report. The big advantage of this approach is that it permits (relatively) more complete cover-
age. The Web is so immense and dynamic that it is virtually impossible for human indexers, work-
ing at human speeds, and taking time to exercise human judgment, to cover the Web completely.

Both approaches are in use on the Web today.

Another issue is whether the resource to be indexed is the Web as a whole, or some more special-
ized resource, available through the Web. If the resource is more specialized (and perhaps
intended primarily for use by professionals), manual indexing is both more practical (because the
resource though large, is still much smaller than the entire Web, and the topic area is likewise
limited), and more worthwhile (because of the importance of the resource). An example of a free
specialized resource for a field of great importance (medicine) is MEDLINE, “one of the world’s
largest biomedical databases with over 8,000,000 references to journal articles in all fields of
medicine and related disciplines.” MEDLINE is produced by the National Library of Medicine.
Free advertiser-supported Web access is available through a commercial company. On the other
hand, Lexis provides Web access (but not free access) to a major information resource in another
major discipline, law.

Page 191

The discussion that follows focuses on free, general-purpose Web IR engines, i.e., engines that
attempt to index and access the entire Web.

16.4.1 Automated Indexing on the Web

There are two steps to automated indexing on the Web. First, the documents to be indexed must be
found. Second, index terms must be generated for each document. Step two involves the kind of
statistical and NLP techniques discussed earlier in this report. Step one is unique to a large hyper-
space such as the Web, gopherspace, or a large corporate intranet. The documents, in this case
Web pages, are not conveniently aggregated into one or a few collections, relatively static (docu-
ments added or deleted slowly), and stored at a few predefined sites. Instead, they are distributed
over an immense and rapidly changing set of sites, linked together in complex structures by
URLs. New web sites are frequently created, old sites are deleted or moved, new pages are fre-
guently created, updated, or deleted at a given site. Hence algorithms must be developed for tra-
versing the web structure at frequent intervals to find currently existing pages, so that step two,
indexing can be performed on these pages. To carry the “web” metaphor a bit farther, the pro-
grams that execute these traversal algorithms are often called “spiders.” Other names for them are
“robots,” “agents,” “crawlers,” “worms,” etc. (Note that whether the Web is being traversed by a
human user or by a robot, “traversal” from pag&to pageP2 doesnot mean that the human or

robot is physically moving from the site &fl1 to the site ofP2. Instead, it means that a web client

or robot extracts the URL d?P2 from P1, issues a request fé12 using this URL, and receives a

copy of P2 from the web server at the host computer whepas located. Mobile agents capable

of physically traveling from one network host to another actually do exist; however, they are not
normally employed for Web indexing.) A robot that explores the Web to accumulate URLs is
sometimes called a “discovery” robot.

A discovery robot begins its search with one or more popular known pages. These may be hand-
selected by a human guide. Common starting points are Netscape’s What's New or What's Cool
pages, because these pages are obviously not subject-specific, and normally point to a wide vari-
ety of unrelated pages. Thereafter, the robot “automatically traverses the Web’s hypertext struc-
ture by retrieving a document and recursively retrieving all documents that are referenced [by
URL in the retrieved document].” However, in practice, the strategy is not quite so simple.

The Web structure is both complex and non-uniform. That is, different sites or regions of the Web
may be structured according to different organizing principles. Hence, there is no one “best” way
for a robot to traverse the Web. Moreover, some sites may have a “deep” structure, i.e., a structure
with many levels of URL link. A site may also have many links to related pages, or pure digres-
sions. Hence, a robot that attempts to traverse every path at a given site, or every path emanating
from a given site, may devote an inordinate amount of time to the given site, at the cost of not get-
ting around to many other sites. If the given site is organized around a given topic, this means that
the robot will be devoting too much time to one topic at the expense of many others. Moreover,
the site may have been created by an individual or organization with extensive expertise in the
given topic, or by one eccentric individual with a quirky personal view of the topic. They are all
the same to the Internet.

Page 192

Furthermore, the robot should not request too many pages from a given site in rapid succession,
lest it overburden (and perhaps even crash) the web server. Besides, the computer at that site may
have other work to perform. So a robot may issue requests only at carefully calculated intervals,
e.g., one request a minute, set a limit to the number of requests to a given site on one “visit,” or
request only a sample of pages at one visit to the site. Remember that a robot will usually be
returning many times to a given site to keep its index updated, so on each visit it will be able to
request some pages it didn’t request on its previous visit.

In general, the robot may employ either a breadth-first or a depth-first strategy. The former (aimed
at the broadest though perhaps shallowest coverage of the Web) means going only one level deep
from a given page, before going back to the given page and looking for another link. The latter
(aimed at deeper coverage of individual topics) means going up to N levels deep. N may be con-
siderably greater than one, but some depth limit must be imposed for the practical reasons men-
tioned above. In either case, when a new page is retrieved, the robot extracts all URLs in the new
page and adds them to its growing URL database. Of course, by limiting N to a value not too
much greater than one, by limiting the maximum number of retrievals from a given site, and by
judicious sampling of a the URLs in a given page, the robot may employ a strategy intermediate
between pure breadth-first and pure depth-first.

Once the robot has explored all the links in a given page to whatever depth and proportion its
strategy dictates, the next question is what page to explore next. In a breadth-first strategy, the
robot will give preference to URLS that point to hosts the robot has not visited before, or hosts it
has not visited recently, e.g., hosts it has not visited on the current update pass, or the last few
passes. Given a choice among many URLSs on the same host, the breadth-first robot will choose
the ones with the shortest pathnames. This is based on the theory, often justified for well-designed
sites but by no means guaranteed, that the pages at a given site are organized in a traditional sub-
ject-hierarchy. Hence, if two pathnames are of the same length, differing only at the name of the
last (lowest) sub-directory, they are assumed to point to pages differing in subject at that level. On
the other hand, if two pathnames differ in length with the longer name being an extension (more
sub-directories) of the shorter name, then the longer name is assumed to point to a page dealing
with a sub-topic of the subject dealt with by the page to which the shorter name points. Hence,
given the assumption that different hosts deal with different subjects, and the assumption that
pages at a given host are organized hierarchically by subject, a breadth-first strategy will maxi-
mize subject coverage. In any case, it will maximize web site coverage.

On the other hand, depth-first strategy can maximize coverage of “important” sites, by whatever
criterion of importance is used to select the original pages. In particular, if the starting pages are
selected by subject, then the depth-first approach can maximize coverage of the selected subjects.

An IR engine can speed up its rate of URL accumulation, and hence its coverage of the Web and
its ability to update its index frequently and stay up-to-date, by running multiple robots in parallel,
each robot traversing a different part of the Web. The speed can be further increased by running its
robots on different computers. For example, “Open Text uses 14 64-bit servers ‘working in tan-
dem’ to create and store its index.”

Page 193

A discovery robot need not save all the URLSs it discovers. It may use characteristics of the URL
or of the page itself to determine that the page is not “worth” indexing, and hence choose to dis-
card its URL. The criteria used to determine whether a page is worth indexing are generally not
documented. Some URLs will be discarded because the are “dead,” i.e., they point to pages that
no longer exist.

Given the complex structure of the Web, in which many pages may point to the same popular
page, a robot will often discover the same URL more than once. Hence, an important feature of
building the URL database is sorting the URLs and removing duplicates. A further complication
is that, in many cases, the same page may be replicated at multiple sites, or at the same site with
multiple URLs (aliases). Hence, it is not enough to eliminate duplicate URLSs; it is becoming
increasingly important to recognize two pages reached by different URLs as being identical,
either because they are literally the same page reached via two different URLS, or because one
page is an identical copy of another. (The practice of copying popular pages is common.) To make
matters still more difficult, one page may be a copy or near-copy of another, yet not an identical
copy. For example, copies may differ in format, e.g., one copy may be in HTML and another copy
in Postscript. Or one copy may be a slightly older version of another. Hence, algorithms for
detecting near-duplicates have been developed. [Shivakumar et al., WebDB98] [Shivakumar et al.,
1995] These algorithms are generally based on computing “fingerprints” for documents, either at
the whole-document level, or at finer levels of granularity, e.g., paragraphs, lines of text, words,
etc. Whatever the chosen level of granularity, documents are divided into “chunks” at that level.
Each chunk is replaced by some compact representation, its “fingerprint.” Documents, e.g., Web
pages, are compared according to a similarity function based on the number of chunks they share.
Algorithms vary according to the level of chunk, the method of representing the chunks, and the
similarity function. The lower the level of the chunks, the greater the ability to detect partial over-
laps, but the greater the chance of detecting “false positives,” documents that are falsely said to be
similar. Note that the chunk level, the similarity function, and the similarity threshold above
which two documents are said to be similar, will vary with the user’s purpose. The threshold for
discarding duplicate or near-duplicate Web pages may be quite different from the threshold for
detecting possible plagiarism.

Once a database of URLs has been accumulated, the discovery robot (or another robot) can “har-
vest” the URLS, i.e., retrieve each page by URL and index it, using techniques such as those dis-
cussed elsewhere in this report. IR engines can vary, not only in the order in which they find and
save URLSs, but also in how they order the URLSs in their database, and hence the order in which
they retrieve the pages to which these URLSs point for harvesting. They can also vary in how they
intertwine URL accumulation and harvesting. Since a URL database will contain both URLs of
pages that have never been visited and harvested, and pages that have already been harvested at
least once but must be revisited to update their index entries, harvesters may also vary in the prior-
ity they give to unvisited pages and the frequency with which they revisit pages. For example, a
harvester may start with the oldest URL not yet visited (retrieved). It may retrieve and index that
page, and then go back to its URL database to retrieve the next oldest unvisited URL. It may con-
tinue in this way until there are no more unvisited pages, and then go on to revisit pages, starting
with the page that has gone the longest time without a revisit. On the other hand, since the discov-
ery robot is continuing to update the URL database with new URLSs, the harvester may need to
balance visiting “new” pages, with revisiting “old,” already visited, pages.

Page 194

Or (as a narrower, more focused strategy to fill in subject gaps in its index), the harvester may start
with a page judged relevant to a given topic (perhaps on the basis of its URL or its existing index
entry), and accumulate and harvest all the pages linked to the given starting page. In this strategy,
harvesting and accumulating new URLSs are intertwined.

Since Web pages are HTML tagged, the harvester can use these tags as guides (an option not
available to IR research engines such as those discussed elsewhere in this report, that index arbi-
trary collections of text). For example, since URLs are always tagged, the harvester can apply its
indexing techniques to the text of each URL that occnra given page, to generate index terms

for the given page. (Of course, it can also index the text of the URLpbiatsto the given page.)

It may generate index terms from other components of the page itself, e.g., a component tagged
“title,” or a component labeled “description.” It may index the text of “hyperlinks” (also called
simply “links”); a hyperlink is the highlighted or underlined text that a user sees, and on which
she clicks to invoke the underlying URL and retrieve the page to which the URL points. It may
also generate index terms from the full text of each page; remember that a page may be a lengthy
file. The harvester may also take HTML tags into account in weighting index terms, e.g., by giv-
ing a higher weight to a key word in a component with the tag “title.”

Web IR engines vary considerably in what they index. For example, some engines do not index
URLs, so that a query on a term that appears only in a page’s URL, but not in the page itself, will
fail to retrieve the given page with such an engine. Other engines may index a “description” or
“body” component, but limit themselves to some maximum number of words within the given
component. On the other hand, some IR engines, e.g., WebCrawler, AltaVista, Infoseek, do full-
text indexing of the pages they index. Some IR engines, e.g., AltaVista, index word position as
well as content, permitting support of proximity conditions in queries; others do not. Some IR
engines use HTML tags, either to determine what text to index, or to determine what weight to
give to a given index term; other IR engines ignore HTML tags.

Robot-based Web IR engines also vary in what kind of pages they will index. The robot can only
index pages it can reach, i.e., pages that have URLs that are referenced in Web pages. As noted
earlier, not all the pages to which URLs points are themselves Web pages, formatted in HTML.
Some engines only index true HTML-formatted Web pages. Some will also index Gopher pages,
FTP pages, or simple text (ASCII) pages. However, even if a robot indexes Gopher or FTP pages,
it cannot automatically traverse a Gopher or FTP site. Hence, it will only index those Gopher or
FTP or simple ASCII pages that it can reach directly by URL.

Some primarily robotic Web IR engines, e.g., WebCrawler, Infoseek, Excite, also allow the author
of a Web page to submit its URL. Hence, these engines may index pages that their normal robot
searches would not have discovered, or would have discovered much later. However, such human
submissions represents only a small part of the index of such an engine.

What algorithms do the robot-based Web IR engines use to harvest summaries and index terms
from the pages whose URLs they accumulate? Detailed information on this subject is generally
not available. Some engines use conventional stop lists, e.g., Excite, HotBot, Lycos, WebCrawler,
to eliminate common words of little value as page descriptors. Some engines, e.g., InfoSeek, use

Page 195

statistical or NLP techniques to weight common stopwords lower than more significant words or
to weight words that are rare on the Web higher. Some use conventional stemming techniques to
normalize index terms. A number of engines, e.g., Lycos, AltaVista, use term frequencies within
the page being indexed. Since Lycos also collects the total number of words in a page, it may be
presumed that it normalizes term frequencies. Some engines limit the number of words or lines of
text they index. For example, Lycos indexes the “first 20 lines,” but doesn’t specify unambigu-
ously what it means by that phrase. Most engines build a summary or surrogate record. This
record almost always contains the title. It often contains a fixed amount of text from the beginning
of the document, e.g., the first 50 words. Alternatively, it may contain the most “weighty” words,
according to some algorithm based on statistical frequency, position, or both. Position may refer
to relative position in the page, e.g., words near the beginning of the document count for more; or,
position may refer to the HTML-tagged components in which it appears. In particular, some
engines look for a component (if any) tagged “description” by the page’s author, and use its con-
tents (if it exists) as a page summary instead of generating a summary automatically, e.g., InfoS-
eek accepts a description of up to 200 words. An engine may use HTML tags in various other
ways, e.g., AltaVista effectively indexes terms by both relative position in the document, and by
the HTML-tagged component(s) in which it appears; this enables AltaVista to support both prox-
imity searches (term A must be near term B) and queries specifying that a given term must occur
in a given tagged component. On the other hand, other engines treat meta-tags as just ordinary text
for indexing or summary purposes.

Despite the variety of criteria used by the various robot-based engines to harvest pages and build
their indexes, most of them have one thing in common: The descriptors by which they index pages
are primarily words or phrases actually contained in the pages being harvested. (Of course, they
may also use other descriptors, e.g., the date a page was created or discovered or harvested, or
words in the URLof the given page.) Excite differs from most other engines in that it uses LSI
(see section on LSI) to build its index. This means that it creates an index of “concepts,” derived
statistically by co-occurrence from the actual words. Hence, two pages may be indexed by the
same concepts even though they differ substantially in the keywords they contain, provided that
their keywords co-occur with many of the same words in other pages.

One problem for the user seeking to understand IR engine behavior is that most of the popular
general-purpose IR engines, though free, are nonetheless proprietary. Hence, the source code is
usually not available, and the documentation with respect to strategies for gathering URLs and
indexing pages is frequently incomplete or inaccurate, and sometimes non-existent. These “free”
engines are usually commercial enterprises, supporting themselves either by advertising or by
selling their software to private organizations for use on corporate intranets. So, they have an
incentive to attract users more successfully than competitors. Their documentation is, at least
partly, a form of advertising.

Moreover, the fact that these free, commercial IR engines are advertising-supported has another,
curious consequence. The company operating the engine is providing a service, which, to the
extent that it works well, will provide links to other Web pages. Yet, the effectiveness of advertis-
ing and the number of advertisements the company can display to the user (not to mention the
possibility that the user will follow a link provided by one of the advertisers) depends on keeping
the user at the web site of the IR engine itself as long as possible. Hence, the web sites of these IR

Page 196

engines tend to grow, adding information and entertainment resources locally, so that the user will
have more reason to remain at the given web site, instead of using the IR engine!

Finally, it is noteworthy that general web IR engines do not (and have found that they cannot)
charge fees for their service (because users will not pay them), while commercial database ser-
vices can and do charge fees. Clearly, customers are willing to pay for effective human indexing
of a large, well-chosen, set of databases. Just as clearly, customers are not willing to pay for IR
search engines to the Web. Although it is potentially an enormous information resource, the Web
is currently too broad, shallow, chaotic, and unfocused. And, search engines based on robotic
indexing are currently too unreliable, returning too many references, or too few, or the wrong ref-
erences, or references poorly ranked.

16.4.2 Manual Indexing on the Web

The preceding section discussed free, general purpose Web IR engines that generate their huge
indexes primarily by executing robots: discovery robots that traverse the Web looking for URLsS
and build a URL database, and harvester robots that retrieve the pages to which the collected
URLSs point, and index each page using the kind of techniques discussed elsewhere in this report.
However, there are also free general purpose Web IR engines that employ a staff of professional
indexers to specify a hierarchy of subject categories similar to that found in a traditional library,
e.g., the famous Dewey Decimal System, and index Web pages in terms of these subject catego-
ries. In other words, human beings determine the subject categories which serve as index terms
and the words used to name the categories, so the pages are indexed by a controlled predeter-
mined vocabulary. (By contrast, the robot-based engines generate index descriptors from the con-
tent of the pages themselves, using statistical and positional clues.) Similarly, human beings
organize the index terms into major categories, sub-categories of the major categories, sub-sub-
categories, etc., for as many levels as seems appropriate. Hence, a human user can search down
the subject hierarchy to find the narrow, specific subject category in which she is interested. (By
contrast, the robot based engines do not determine any logical structure among the index terms
they generate. It may happen that an index term generated for one page may be a sub-category of
an index term generated for another page, but the robot(s) that generate the terms won’t know that
or hence can't tell the user.) Finally, human beings determine what subject categories should
index a given page. Since human knowledge and judgment is involved, a page may be indexed to
a subject category, even though no name of that category appears in the given page or its URL.(By
contrast, most robot-based IR engines will only index a page to terms that actually occur in the
page or its URL. One robot-based engine, Excite, claims to be using the statistical technique, LSI.
As discussed earlier in section 6.5, such co-occurrence techniques can sometimes recognize the
similarity of a query to a document even though the document contains no words that are in the
query. But this is a long way from true human understanding.)

The best known, most widely used web IR engine that employs manual (human) indexing is
Yahoo! (the exclamation point is part of the name). Since Yahoo! is not robot-based, it depends on
voluntary human submission to obtain the URLSs it indexes. (Actually, just as some of the robot-
based engines also accept manual submissions, so Yahoo! also operates a robot. However, just as
the manual submissions represent a small part of the harvest for robot-based engines, so robot-
retrieved pages represent a very small part of Yahoo'’s index.) The human author or publisher of a

Page 197

Web page can submit its URL to Yahoo! using an automated procedure available at the Yahoo!
site. She browses the Yahoo! subject hierarchy looking for an appropriate subject category or sub-
category, one that correctly describes the page she is submitting. When she reaches the page cor-
responding to the category she considers most descriptive of her page, she clicks on a “suggest
URL” button (which is available at the bottom of every page). This causes her to enter the “add
URL” procedure with the current category as the “preferred” category. She can suggest additional
categories that also describe her page. She can provide a title, and a short textual description of the
page. And of course, she specifies the URL of the page she is submitting.

A number of characteristics of Yahoo! should be noted:

First, each subject category is itself a Web page. The category structure is created by linking the
page for each category to the pages for all its sub-categories through the usual URL/HTTP mech-
anism. Of course, the page for a given category is also linked to any external Web pages that the
given subject category indexes. Hence, when a Yahoo! user clicks on an entry in a subject cate-
gory page, she is requesting the page whose URL is associated with that entry, and making the
usual “hyperlink” jump typical of the Web.

Second, a submitted Web page can be linked to a category at any level, e.g., it can be linked to the
main category, “Social Science,” or the sub-category, “Anthropology and_Archaeology,” or the
sub-sub-category, “Archaeology,” or the still lower sub-category, “Marine Archaeology.”

Third, a page may be linked to several categories or sub-categories. In that case, it will be reach-
able from each of those categories.

Fourth, the Yahoo! indexers (called “surfers by the company) will review each submitted page,
and may override the authors own choices for preferred or additional subject categories, changing,
adding, or deleting categories from the set chosen by the submitter.

Fifth, if the submitter can’t find any category appropriate to describe her page in the existing
Yahoo! subject category structure (or thinks some new category is needed as an additional
descriptor), she can suggest one or more new categories, and indicate where these suggested new
categories should be inserted within the existing structure. The Yahoo! staff may accept, reject, or
modify these suggestions.

Sixth, sub-categories as well as external Web pages can be referenced from multiple higher-level
category or sub-category pages; in other words, a given subject category can be a sub-category of
more than one higher-level category. For example, the category “Aphasia” can be found as a sub-
category of “Linguistics_and_Human_Languages,” which is a sub-category of the main category,
“Social_Science.” However, it can also be found as a sub-category of “Diseases_and_Conditions,”
which is a sub-category of the main category, “Health.” When a sub-category appears in more
than one place in the subject category hierarchy, one of those references is the “primary” refer-
ence; clicking on any other occurrence of the sub-category will get the user to the same page as
clicking on the primary reference. In the above example, clicking on “Aphasia” under
“Linguistics_and_Human_Languages” will cause a hyperlink jump to the same “Aphasia” Web
page as clicking on “Aphasia” under “Diseases_and_Conditions.” However, the actual position of

Page 198

the “Aphasia” Web page in the Yahoo! directory structure, as determined by the pathname compo-
nent of its URL, is under the “Diseases_and_Conditions” directory.

Seventh, each external web page is represented in the Yahoo directory by a surrogate page con-
taining the title, description (if any), and the URL. Clicking on the URL in this surrogate page will
cause a normal hyperlink jump to the actual, external Web page selected by the user. Some surro-
gate pages may contain URLs of multiple external Web pages. Such a surrogate page may viewed
as a lowest level subject category page, i.e., a page that contains references only to external pages
and none to other subject categories. For example, the “Aphasia” page contained references (at the
time of writing) to four external Web pages dealing (at least partly) with the subject of aphasia.
One of these references is to the home page of an organization devoted to the treatment of the dis-
ease. Another is to a National Institutes of Health (NIH) paper on aphasia. And so on. This set of
references could be updated at any time, new references added, obsolete references deleted. Natu-
rally, new references to aphasia will only be added if someone submits (“suggests” is the term
currently used by Yahoo!) a new Web page dealing (at least partly) with aphasia.

The Yahoo! approach has inevitable drawbacks as well as advantages. Since Yahoo! is primarily
dependent on voluntary submissions, its coverage of the Web is inevitably very incomplete and
uneven. If the user wants to issue a query on a subject that does not fit any of Yahoo's existing cat-
egories, or is an unanticipated hybrid of those categories, she may be out of luck. On the other
hand, if the user’s query leads her to one of Yahoo's sub-categories, it is likely that a high propor-
tion of the pages returned will be relevant to the query. Moreover, a relevant page indexed by
Yahoo! may often have links to other relevant pages, not indexed directly by Yahoo! So, Yahoo! is
often a good place to start a search. Pages on a given topic retrieved via Yahoo! may not only be
linked to other pages. Their content may suggest good search terms to use in a query via one of
the robot-based engines.

Finally, it should be stressed that Yahoo!, despite the “value added” by extensive human indexing,
and development of a subject category hierarchy, is nevertheless a “free” service, supported by
advertising rather than user fees. Evidently, customers will not pay fees unless the service sup-
plies human-generated or selected databases as well as human indexing.

16.4.3 Querying on the Web

IR engines on the Web don’t break any new ground relative to the research engines discussed else-
where in this report.

Many IR engines provide two levels of query formulation, a “basic” level, and an “advanced”
level (which may enjoy a fancier name like “power” level). The basic level is typically a set of
keywords, combined logically by a default boolean “OR.” In other words, they are effectively
term vectors. The query terms are normally words; some engines, e.g., WebCrawler, InfoSeek,
AltaVista, also support phrases, typically by enclosing a sequence of words in quotation marks.
Some engines allow the user to precede a term by a plus (“+”) or a minus (“-”). The plus may be a
weak form of AND, i.e., the designated term must be present in the page. The minus may be

equivalent to NOT, i.e., the designated term must not be in the page. (Lycos uses the minus a little

Page 199

differently; putting a minus in front of a keyword “a” means, not that pages containing the term
“a” are excluded, but that they will be ranked lower on the list of pages returned to the user.)

The advanced level usually offers some form of boolean query, with the operators AND, OR, and
NOT. Some engines also support parentheses to control the order of evaluation of operators.
Often, proximity operators are offered too. For example, WebCrawler offers both a NEAR and an
ADJ (for adjacent) operator. The condition “a NEAR/N b” says that terms a and b must occur
within N words of each other; the condition “a ADJ b” says that a must immediately follows b, in
that order. By contrast, AltaVista’'s NEAR operator does not allow the user to specify the degree
of proximity; it is always a separation of O to 10 intervening words. Open Text’s “a FOLLOWED
BY b” requires that a and b occur in the specified order, but they need not be adjacent, only within
a certain degree of proximity; as with AltaVista, the user cannot specify this degree. Lycos offers
an interesting enhancement to the traditional boolean AND (or looking at it from a different per-
spective, an enhanced degree of control of a “soft” boolean); the user can specify how many of the
search terms (from 2 to 7) must be present in a given page.

Some engines support stoplists, although their documentation usually doesn't tell you what words
are on the list. Other engines effectively generate their stop lists statistically, ignoring words
found to be too common on the Web. And some engines provide no stoplist at all. Similarly, some
engines, e.g., InfoSeek, provide stemming, but their stemming algorithms are not publicly docu-
mented; others do not provide automatic stemming at all. Some engines provide a wildcard char-
acter to allow the user to some (limited) stemming on her own. For example, AltaVista supports
an asterisk (“*”) either at the end of a word, or in the middle (but it must be preceded by at least
three characters). So “run*” can find “run,” “runs,” “running,” etc., while “labo*r” finds both
“labor” and “labour.” On the other hand, Lycos provides only truncation at the end of a word, e.g.,
“run$.” However, truncation is the default in Lycos; a period must be specified to inhibit trunca-
tion.

The nature of the Web allows IR engines to support certain more specialized query conditions. For
example, HotBot supports querying by Internet domain; the “domain” is the final component of
the host name in a URL, e.g., “edu” is the domain of educational institutions such as universities,
“com” is the domain of commercial organizations, “mil” is the domain of military organizations.
(Note that the entire Internet address of a host computer is also called a “domain” name; hence,
the components are sometimes called “sub-domains,” and the righthand component is then called
the “top-level” sub-domain.) These “old” domain names were developed when the Internet was
largely restricted to the U.S. As the Internet has grown and become international, a “new” set of
two-character domain codes based on country has been developed, e.g., “uk” is the United King-
dom, “ca” is Canada, “jp” is Japan, etc. HotBot allows the user to restrict its search to (1) a given
organizational domain, e.g., “edu” restricts the search to hosts belonging to educational institu-
tions, (2) a given country, e.g., “jp” restricts the search to Japanese hosts, or (3) a given geograph-
ical region, e.g., “Europe” would restrict the search to domain codes corresponding to countries in
Europe. HotBot also supports a query condition restricting the search to pages containing URLs
pointing to files of a givermedia type By convention, the media type of a file is specified by a
suffix called an “extension.” For example, the filename of an HTML formatted page will end with
the extension “.html!” or “.htm.” The name of an image file in Graphics Interchange Format will
end with the extension “.gif,” etc. Hence, a HotBot user can restrict her search so that e.g., only

Page 200

pages containing URLs ending with “.gif” will be returned. (Remember that a URL address con-
sists of a hostname followed by a pathname, and that the pathname consists of a series of directory
and sub-directory names terminating in the actual filename; hence, the extension will be a suffix
of this filename.)

AltaVista takes advantage of the HTML format of a conventional Web page to support query con-
ditions based on field. For example, the user can specify that search of a a page for a given word,
phrase, or boolean combination, should be restricted to the title, the body of text that the user sees,
the URL of the given page, a URL within the given page, the host name in the URL of the given
page, or a link within the given page pointing to a specified kind of file such as a Java applet or an
image file., etc. Similarly, InfoSeek allows the user to restrict the term search of a given page to
the title, or the URLSs of links within the body of the page. An infoSeek URL search returns all
pages whose URLSs contain the specified term. The InfoSeek user can also specify a “site” search,
which means that the search retrieves only those pages that contain the given term in the hostname
of their respective URLs. This feature can be used to retrieve all pages at a given “site,” i.e., all
pages available at a given host. But it can also be used to retrieve all pages at a number of hosts
having the specified component(s) in common. And, Open Text supports searches on title, URL
(similar to the InfoSeek URL search), and “First Heading.” The latter restricts the search to the
first HTML component tagged “<HEADING>."

Since Yahoo! indexes pages by an elaborate hierarchy of human-generated subject categories, the
natural way for a user to generate a query to Yahoo! is to traverse this subject category index from
general to more specific category until she finds the narrow category that best categorizes the sub-
ject in which she is interested. However, the user may want to go straight to a desired category,
without browsing through the subject hierarchy. Also, she may want a category that doesn't
exactly fit any of the predefined categories. Hence, Yahoo! also provides a keyword and boolean
search capability similar to those provided by the robot-based search engines. This search is ini-
tially applied to Yahoo's own index, i.e., to the names of categories in the subject hierarchy, and to
the words that appear in the surrogate records generated at the lowest level of the Yahoo! index.
However, if the search is not satisfied by the Yahoo! index, Yahoo! passes the search to AltaVista,
which searches its own, very large, robot-generated index. (Naturally, going to AltaVista increases
the likelihood that the user will get a “hit,” but decreases the chance that the higher-ranked hits
will actually be about the subject that interests the user, since the AltaVista’s indexing is auto-
mated rather than human-generated.)

On the other hand, some robot-based engines, e.g., InfoSeek, Lycos, and WebCrawler, also pro-
vide a limited human-generated hierarchical subject category index. In the case of Lycos, the
index is limited to the most “popular” sites, where popularity is measured by the number of links
from other sites exceeding a given threshold. WebCrawler’s index provides reviews of sites that its
human operators have somehow judged “best of the net.” In general, a user who wants to browse
by subject category will do better to use Yahoo's far more extensive and well-organized subject
index.

How do these Web IR engines compute the score, i.e., similarity, of each indexed Web pages rela-
tive to a given query? As with indexing, the Web engines usually don’t document their similarity/
ranking algorithms. The one clear (and desirable) point is that all of the major erdpmask

Page 201

their results. Given the large number of results they may return, ranking is a necessity. As with the
research systems described elsewhere in this report, the ranking is usually far from perfect.

Generally speaking, the engines rank pages (as one would expect) according to the number of
“hits,” e.g., on a simple OR of a set of keywords, the highest ranking pages will tend be those that
contain the largest number of specified terms, or the largest number of occurrences of the search
terms. More generally, the highest ranking pages will tend to be those that satisfy the most of the
specified search conditions. Some engines, e.g., WebCrawler, InfoSeek, give higher weight to
terms that are less common on the Web. Some weight query terms, i.e., search terms, more highly
if they are in a “significant” position in a given page, e.g., Lycos and InfoSeek weight terms more
highly if they appear in the title, AltaVista and InfoSeek weight terms more heavily if they occur
near the beginning of the page, HotBot gives higher weights to terms in <title> and <Meta> com-
ponents, etc. Lycos weighs search terms more heavily if they are in close proximity. Some
engines, e.g., InfoSeek, AltaVista, Hotbot, weight terms more heavily based on frequency of
occurrence. Hotbot bases its weighting on normalized term frequency, i.e., a given term frequency
will count more in a short page than in a long page. Some engines allow the user to weight a query
term explicitly, e.g., Excite allows the user to attach a weight to a query term either by specifying
the weight as a number: “Gates”3,” or by repeating the term: Gates Gates Gates.” InfoSeek
weights more heavily those terms that appear earlier in a given query, so the user can weight query
terms implicitly, but can’t assign relative numeric weights.

Excite claims to use LSI. Therefore, its query-similarity algorithm must differ in at least one
essential respect from that of the other engines. It must compute a concept similarity rather than a
word or phrase similarity. In other words, pages must be ranked according to the degree of simi-
larity between the (statistically derived) concepts by which they are indexed, and the (statistically
derived) concepts computed from the user’s query. Ordinary term weights still remain significant,
but their significance is the effect they have on the statistical derivation of the concepts.

A number of engines assign a relevance score as well as a ranking. As noted earlier, relevance
scores generally have no absolute, independent meaning to the user unless they are probabilities
of relevance; none of these Web engines claim to be computing such a probability. Typically,
engines assign scores in the range 0 to 100. However, InfoSeek appears to claim that all its rele-
vance scores are computed against an objective standard. This means that the relevance score of
the highest ranking page in one search can be compared against the corresponding score in
another search. If the highest score in search one is 42, and the highest score in search two is 77,
then the highest ranking page in the second search is a lot more likely to be relevant than the high-
est ranking page in the first search. Moreover, the best score, e.g., in search one, may be far below
100. Hence, InfoSeek can tell the user that the even the best score is not too likely to be relevant to
her query. By contrast, many other engines will compute scores that only compare pages retrieved
in a given search for pages matching a given query. Hence, the highest score will be at or close to
the maximum, e.g., 99 or 100, no matter how poor the query-page match.

Finally, it should be noted that some engines provide a limited form of relevance feedback. The
user can designate one of the pages retrieved by a previous search as satisfying her needs espe-
cially well, and ask for more pages like the designated one. The engine then retrieves pages as
similar as possible to the “good” one. Excite calls this feature ‘Query by Example.” Open Text

Page 202

call its corresponding feature ‘Find Similar Pages.” However, these two engines compute page-
page similarity (and query-page similarity) differently. Open Text identifies the most frequently
occurring words in the designated page, and looks via its index for other pages containing those
words, especially pages that contain those in the <TITLE> or first <HEADING> components.
EXCITE uses LSI to map the designated page into LS| concepts, and then searches its index for
other pages associated with the same concepts. As noted earlier, two pages may be about the same
concepts even though they differ in the words they contain, provided that they both contain words
associated statistically with those shared concepts.

16.4.4 Meta-Querying on the Web

As the previous sections illustrated, Web IR engines vary enormously in how they traverse the
Web to discover URLSs, how frequently they update their list of discovered URLS, how they index
the pages to which those URLSs point, how often they harvest the discovered pages to update their
index, what kinds of queries they allow the user to formulate, how they interpret the user’s que-
ries, how they compute the similarity between a user’s query and the pages they have indexed, and
how they order, i.e., rank, the pages they retrieve for presentation to the user. Moreover, the Web
itself changes and grows very rapidly. Hence, no one engine can possibly index the Web com-
pletely. Moreover, engines vary enormously in what parts or proportion of the Web they cover,
how deeply they cover a given part of the Web, how well (or easily) they will permit the user to
formulate a query that expresses her needs, how well they will do at retrieving relevant pages, or
ranking the pages by degree of relevance, etc. Hence, it is clear that for many kinds of query, the
user will do best by searching with more than one engine.

But precisely because of all this variation, it can be a tedious chore to execute multiple engines
and collate the results returned by these engines. One response to this problem is to provide a
meta-engine that allows the user to generate a single query from a single interface. MetaCrawler
{Selberg & Etzioni, WWW Journal, 1995] [Etzioni, AAAI-96, 1996] is an example of such a
meta-engine. It accepts a single query from the user, translates it into queries for multiple IR
engines, and issues these queries to their respective engines, which then execute the queries in
parallel. Typically, each engine returns a ranked list of URLs from its index. MetaCrawler collates
these URL lists, cleans up the result, and presents a single result list to the user. Etzioni [ibid] uses
the metaphor of a “food chain.” The Web IR engines are herbivores, presumably because they
“graze” directly on the information in the Web itself. A meta-engine like WebCrawler is a carni-
vore, “feeding” off the herbivores. (Happily, it does not consume the herbivores in the process!
The metaphor breaks down at that point.) Applications that invoke WebCrawler or some other
general-purpose meta-engine, are still higher up the food chain.

The MetaCrawler query interface is similar to the interfaces of the Web IR engines it drives. Its
basic level supports “any” (boolean keyword “OR”), “all” (boolean keyword “AND”), and
“phrase” (exact match on series of words). It also offers a pull-down menu choice between search-
ing the Web and various more specialized searches. e.g., stock market quotes. The “power” search
allows the user to restrict the search to a high-level domain, either a geographic domain by conti-
nent, or one of the three traditional domains: com, edu, and gov. This domain restriction is similar
to that provided by HotBot but the set of choices is more limited. The more “refined” search uses
conventional punctuation: phrases are enclosed in quategprefixing a word or phrase means

Page 203

the term must be in each page returned, a - prefixing a word or phrase means that the term must
not be in each page returned. A number of the IR engines discussed above support similar rules
involving +, -, and quotes.

What “value added” does MetaCrawler offer?

1. The user sees only a single interface, and only has to learn a single query syntax. MetaCrawler
translates the user’s query into the diverse syntaxes of the various engines it knows. This raises an
obvious question. What if MetaCrawler’'s own query interface offers a feature not supported by
some of the engines it drives? For example, MetaCrawler supports phrase searches; some of the
engines described above do not. What should MetaCrawler do? There are several possibilities:
MetaCrawler can approximate the phrase, e.g., with a boolean “AND” of the terms comprising the
phrase. Then, MetaCrawler can either (a) return all retrieved pages, with those that satisfied a
mere “AND” ranked lower than those that satisfied a strict phrase query, or (b) test retrieved pages
for a strict phrase condition itself, during post-retrieval processing. The phrase test would only
have to be applied to pages retrieved by engines that do not support exact phrase queries them-
selves. A third possibility (c) is to restrict the scope of exact phrase queries to those engines that
do support them. Alternative (b) is more expensive in post-processing time; on the other hand,
alternative (c) reduces MetaCrawler’s coverage, one of its most attractive features. At the time of
writing, commercial MetaCrawler said that it would like to avoid (c), but it was “under consider-
ation.”

2. Web coverage is broader than that which can be provided by any single IR engine. There are
three reasons. First, as noted earlier, no engine can hope to cover the entire Web; it is simply too
large and grows too fast. Moreover, different engines have different algorithms for traversing the
Web, and discovering URLs. They vary too in the number of robots they employ, the degree of
parallelism of these robots, the frequency with which the Web is traversed for update purposes,
etc. It follows that there will be substantial variation in which URLs each engine has discovered
and indexed, and how up-to-date the URL discovery and harvesting is. Second, IR engines vary
substantially in how they harvest the pages whose URLSs they have discovered, what descriptors
they extract from a given page and put in their respective indexes. Third, they vary substantially in
how they compute query-page similarity (relevance), and how they rank references to the
retrieved pages for presentation to the user. The first reason means that two different engines may
be applying a given query to sets of URLSs that only partially overlap; many URLs may be unique
to the index of one engine or the other. The second and third reasons mean that even if a given
URL is present in the indexes of two different engines, a given query may retrieve it from one
index but not the other; another query may have the reverse effect, retrieving the URL from the
second index, but not the first. In other words, different engines have different strong points and
weak points with regard to Web coverage, indexing, query evaluation and ranking. A meta-engine,
by collating the retrieval results of many engines can achieve greater coverage than any one IR
engine alone.

3. WebCrawler is lightweight. It employs no robots, does no discovery or harvesting, and does not
build or maintain a huge Web index. It leaves all of that hard work, and the corresponding
required storage capacity and processing power to the IR engines it invokes, engines such as those
discussed in previous sections. This means that it would be quite possible for copies of Web-

Page 204

Crawler, called WebCrawler “clients” by the creators of this meta-engine, to reside on user PCs.
(In actual fact, MetaCrawler has followed the path taken by many IR engines, evolving from a
University research project to a commercial engine. Copies of MetaCrawler are not for sale,
although instructions are available in the MetaCrawler Frequently Asked Questions (FAQ) on
how to make MetaCrawler the default search engine in MS Internet explorer, Netscape Navigator/
Communicator, etc. But such defaults only determine which search engine will be invoked prefer-
entially. It doesn't put the meta-engine on the user’'s own system.) Because WebCrawler doesn’t
do all the work of a conventional IR engine, it can devote its resources to intelligent post-process-
ing of the retrieved URLSs.

4. The standard post-processing of a query that commercial WebCrawler performs includes collat-
ing, i.e., merging, the URL streams it receives from the various engines it invokes, removing
duplicates, anderifyingthe URLSs. Individual engines attempt to remove duplicate URLs from
their indexes. However, the inevitable overlap of the indexes of different IR engines means that
there will be considerable duplication when result sets from multiple engines are merged. Web-
Crawler removes these duplicates, but it also combines and normalizes (into a single number from
1 to 1000) the confidence/relevance scores assigned by the various engines that returned a given
URL, and lists each of the engines that returned the given reference. The combination/normaliza-
tion algorithm is not documented. Verifying a URL means reading the page to which it points, and
determining that the page still exists. Given the dynamic nature of the Web, and the inevitable
period between successive visits by a given engine to a given site, it is inevitable that each
engine’s index will contain some proportiona@¢adlinks, URLS pointing to pages that have been
deleted or moved since they were last visited. WebCrawler can delete such dead links.

5. [Selberg & Etzioni, WWW Journal, 1995] suggest a variety of other kinds of post-processing
that a MetaCrawler, especially a copy residing on a user’s PC, could do. These include “res-
cor[ing] the page using supplementary syntax supplied by the user,” clustering the results,
“engag(ing] in secondary search[es] by following references to related pages,” customized filter-
ing, e.g., of X-rated pages, etc. At the organizational level, WebCrawler could cache retrieved
pages, either those that were highly ranked, or those that one or more users designated as relevant,
for sharing by members of the organization. This could facilitate collaboration or information
exchange. Or, it could simply reflect a presumption that people within the same organization, will
have shared professional interests, and hence will want to see many of the same pages. A client
WebCrawler could also support scheduled, or data driven queries, e.g., “Retrieve reports daily on
the XYZ company.” Another possibility [Etzioni, AAAI-96, 1996] is that the client could engage

in a dialog with the user to enable her to better focus her query. The existing commercial Web-
Crawler supports a limited form of customization, but since the meta-engine itself resides at a
centralized web site, the customization consists entirely of placing a WebCrawler form on the
user’s system, and specializing the existing generic query capability.

In fairness, it should be noted that Maze et al. [1997] in their survey of Web IR engines advise
againstusing meta-tools. Their argument is that since Web IR engines are so diverse in the query
capabilities they offer, and in the way they interpret queries, e.g., one engine may recognize
“AND” as a boolean operator while another does not, the user may be better off generating sepa-
rate queries to each of two or three engines than issuing one query to a meta-engine. Of course,

Page 205

that means investing the extra effort to learn the syntax of each engine. Only experience will tell.a
given user which approach works better for her.

Applications that invoke MetaCrawler (or any comparable meta-engine) are on a still higher level
of the food chain, analogous presumably to carnivores that feed off other lower-level carnivores.
An example {Etzioni, ibid] is Ahoy!, a “softbot” (short for “software robot”) that finds the home
pages of individuals, given their name and affiliation. In effect, it is a “White Page” service.
Ahoy! uses specialized knowledge about the “geography” and nomenclature conventions of the
Web, e.g., that the host name of a corporate home page will usually end with “hame.com,” where
“name” is the name or acronym of the institution; hence, it may try “www.go2net.com” as the
home page of a company named “go2net.” Similarly, given the name “Smith” at UMBC’s Com-
puter Science department, it may try “http://www.umbc.edu/smith.” It may learn by relevance
feedback that the computer science department uses the prefix “cs” in its host names; thereatfter, it
will try “Nicholas” in the Computer Science department successfully as “http:/
www.cs.umbc.edu/~nicholas/.” Subsequently, it may learn by similar feedback that all home
pages at the University of Washington are in a “homes” directory. Thereafter, given “etzioni” in
the Computer Science department at the University of Washington, it will successfully try “http://
www.cs.washington.edu/homes/etzioni.” Ahoy! also makes use of its knowledge of home page
format, e.g., the knowledge that a home page title for an individual is likely to contain the individ-
ual’s last name. Plainly, Ahoy! could run on top of any individual Web IR engine, e.g., InfoSeek,
but by “feeding” on WebCrawler, it increases its Web coverage, and hence its chances of finding
the desired home page.

Moukas and Maes [AAMAS, 1998] provide an alternative approach to meta-retrieval on the Web,
Amalthaea. Like MetaCrawler, Amalthaea feeds off existing Web IR engines rather than indexing
the Web itself. However, it differs from MetaCrawler in several important ways:

1. A single Metacrawler engine provides mappings to a variety of Web IR engines. The commer-
cial MetaCrawler is centralized,; its creators envision a situation where each user could have her
own copy of MetaCrawler, but even in that view, each copy of WebCrawler maps from a single
guery interface presented to the user into parallel queries issued to the selected Web IR engines.
By contrast, Amalthaea is a community of agents, serving a given user. There are two classes of
agents: Information Filtering Agents (IFAs) and Information Discovery Agents (IDAs). Each
selected Web IR agent has one or more IDAs assigned to it. Each user has one or more IFAs
assigned to her.

2. The Amalthaea user does not formulate queries as the MetaCrawler does. Essentially, all
Amalthaea queries are “by example.” The pages exemplifying the user’s interests can be specified
explicitly by the user, e.g., she can point Amalthaea to a page while browsing, or submit a list of
favorite URLs (bookmarks in Web browser parlance), etc. If the browser maintains a history file

of pages the user has visited, Amalthaea can check this file to determine patterns of interest, e.g.,
sites or pages frequently visited. From these examples, Amalthaea generates a profile, represent-
ing the given user’s interests. Currently, the profile is a set of weighted keyword vectors, each vec-
tor representing one of the interests. (The weights are based on the familiar tf*idf formula.)
Amalthaea generates an initial IFA representing each interest, containing the corresponding key-
word vector. IFAs issue keyword vector requests based on the interests they represent. IDAs

Page 206

accept requests from IFAs, and translate them into queries for “their” respective Web IR engines.
Each IDA knows how to issue queries to “its” assigned Web IR engine. An IDA returns retrieved
pages to the IFA that issued the corresponding request. The IFA filters retrieved pages by comput-
ing the cosine similarity between its vector, and the vector of each retrieved page. If a page passes
the IFAs filter, the IFA presents the user with a “digest” of the page, accompanied by a confidence
factor (based on the similarity computation) indicating how confident the IFA is that the user will
like the given page.

3. The biggest difference between Amalthaea and MetaCrawler is that Amalthaea is based on an
artificial life/evolutionary paradigm. The population of IFAs and IDAs evolves, driven partly by
random changes (mutation, crossover), and partly by the user’s judgment of how well the pages
she receives match her current interests. Pages are rated on a scale from one to seven. If a page is
highly rated, the IFA that chose to pass it to the user, and the IDA that retrieved it and passed it to
the IDA, receive “credit.” The amount of credit an agent receives for a given document is propor-
tional to its confidence that the user will like the document. If the user rejects the document, the
agents get negative credit, again proportional to the confidence level. High-ranking agents (in evo-
lutionary terms, agents possessing high “fithess”) get to reproduce. Low-ranking agents are
purged. Mutation and crossover ensure that there will always be some “new” agents. This
increases the system’s ability to explore parts of the Web that may have been previously
neglected, and to track changes in the user’s interests. An agent may be new either by having new
keywords in its vector (its genotype, in evolutionary terms), or new weights on existing keywords.

16.4.5 Personal Assistants for Web Browsing

The Web IR engines and meta-engines described in preceding sections index each page discov-
ered as a separate entity. The indexes they generate (or in the case of the meta-engines, feed off)
reflect only to a very limited degree the hyperlink structure of the Web. Of course, the robot index-
ers necessarily traverse as much of the Web as they can. But the index descriptors generated for a
given page do not reflect the Web structure in which the page is embedded, except to the limited
degree that descriptors may be extracted from hyperlink references and URLs within the given
page, and the URL of the given page. Nor do they reflect the experience of the many users who
may have browsed a given area of the Web (except that some engines may provide lists, or even
human reviews, of popular sites, i.e., sites that have been visited frequently).

A different class of engine, exemplified by WebWatcher [Armstrong et al., AAAI, 1995], attempts
to guide the user as she browses the Web, suggesting at each page she reaches, where she ought to
go next given her stated interests and the experience of other previous users.

WebWatcher monitors the user as she browses. It does this by modifying each URL in each page
the user reaches, so that selecting a reference causes a jump to the WebWatcher server rather than
to the selected reference. WebWatcher then records the reference before completing the hyper-
jump the user requested. WebWatcher also modifies the page as seen by the user. In particular, the
page is modified to highlight existing references that WebWatcher thinks will be particularly
interesting to the user given her stated goals, adds additional “suggested references” that Web-
Watcher thinks will be of interest to the user either because of her stated interests or because of
their similarity to the current page, and adds a menu that allows the user to specify that the page is

Page 207

interesting, that the user has reached her goal (that is, found the information for which she is look-
ing), that she would like to see similar pages, or that she gives up.

The essential feature of WebWatcher that enables it to act as a “tour guide” is its ability to learn
what pages would be good references for a given user, with stated goals, when she reaches a given
page. WebWatcher learns by recording the choices of previous users when they reached the same
page with similar goals. This set of previous choices becomes the “learning set.” Effectively, Web-
Watcher asks the question, “What hyperlink selection would best satisfy the user’'s goal now that
she has reached the current page?” or replaces it by the question, “What hyperlink is the user most
likely to select, given her present goal, when she reaches the current page?” The latter question is
one for which WebWatcher can be trained, given the previous experience (monitored by Web-
Watcher) of other users, including of course the current user if she has come this way before.

Over the course of WebWatcher research history, the researchers have tried a number of predictive
algorithms. One algorithm is based on the idea that two pBdesdP2 are likely to be closely

related if the pages that contain referenceR1are likely to contain references R2 as well. A

mutual information measure was used to measure the similarity between refereRtestbref-
erences t&2. Computing such a measure assumes that the topology of the Web with regard to the
given pages is known, at least with regard to some well-explored or well-known area of the Web,
e.g., a University web site.

Another approach used in WebWatcher is to represent each possible user choice as a traditional IR
term vector. The terms for a given hyperlink in a given page and a given user goal are selected
from (a) words contained in or describing the hyperlink (note that this includes not only the
underlined words that the user sees, it also includes words in the goals of previous users who
selected the given hyperlink), (b) words entered by the user to describe her goal at the start of a
session, and (c) words contained in the given page. (In one reported example, the page words are
obtained from the sentence (if any) containing the hyperlink, and words in headings (if any)
enclosing the hyperlink.) The term vector for each hyperlink can be reduced to a number in vari-
ous ways. One reported way is to assign a weight to each term in a given vector based on the
familiar tf*idf weighting scheme. In this way, a term vector can be generated for each instance
where a user reaches the given page and selects a hyperlink, either selecting or not selecting the
given link. Two prototype vectors can be generated, a positive prototype by adding up all the vec-
tors corresponding to cases where the user selected the given link, a negative prototype by adding
up all the vectors corresponding to cases where the user did not select the given link. Each
instance of user selection or non-selection is then evaluated by taking the cosine similarity of the
instance vector and the positive prototype vector, the cosine similarity of the instance vector and
the negative prototype vector, and then taking the difference of the two cosine values. The result is
a numeric value for each hyperlink in the given page, and the given user goal. The hyperlinks can
then be ranked by these numeric values, and the highest ranking hyperlink(s) suggested to the
user. (Other methods of evaluating the instance vector for each page/hyperlink/goal combination
have been tried. For example, the conditional probability that a link will be followed given that a
certain word occurs in the instance vector can be estimated as the ratio of the number of occur-
rences of the word when the given hyperlink is selected divided by the total number of occur-
rences of the word. If these single-word probability estimates are assumed to be independent, then

Page 208

they can easily be combined to compute the probability that the given link will be followed.
Again, the highest probability link(s) can be suggested to the user.)

A third approach tried by the WebWatcher researchers is Reinforcement Learning (RL). Instead
of learning the value of a hyperlink from th#idf values of keywords describing the goals of pre-
vious users who selected it (as in the previous approach), the RL method computes its value in
terms of thef*idf values of goal keywords encountered in pages reached, directly or indirectly, by
selecting the given hyperlink, and the number of hyperlink jumps required to reach them. In other
words, WebWatcher learns the value of a hyperlink from the successes or failures of users who
selected it. However, success or failure is computed, not by user feedback, but automatically in
terms of thetf*idf values of the goal words encountered as a result of selecting the given hyper-
link, and the number of pages (i.e., hyperlink jumps) traversed to reach a page containing (some
of) the goal keywords. A hyperlink that will get the user to a very good page (as measured in
terms of thetf*idf values of the goal keywords it contains) in five jumps may be valued lower than
another hyperlink that gets the user to a pretty good page in two jumps. Moreover, the value of
each keyword that can be reached from the given hyperlink is measured separately. So, if the
given hyperlinkH1 in pageP1 (pointing to pagd”2) can reach keyword 1 via the patR2, P3},
keyword 2 via path P2, P4}, and keyword 3 via pathR2, P5}, H1 may rate higher than another
hyperlink H2 in P1 that reaches a single pa§® containing all three keywords with the same
tf*idf values as ifP3, P4, andP5 respectively, but via five hyperlink jumps. Or putting it another
way, if a third hyperlinkH3 can reachP6 in two jumps {P7, P6}, H3 may not be ranked any
higher thanH1. In other words, WebWatcher’'s RL algorithm does not appear to value higher a
page containingl keywords thamN pages, reachable via the same number of jumps, each contain-
ing one of theN keywords (assuming that thef*df” values are the same). This seems to run
counter to the usual practice in information retrieval, but of course could easily be changed. (The
value of a hyperlinks increased if the goal keywords are in the hyperlink itself.)

WebWatcher learns relative hyperlink values for a given Web locale. For example, since it was
developed at CMU, it has learned the CMU locale. On the other hand, a “personal WebWatcher”
has also been developed that learns the preferences of a given an individual.

The existing WebWatcher only asks the user for her goals at the beginning of a session. As Web-
Watcher researchers point out, a more sophisticated version could engage in an ongoing dialogue
with the user as she browses.

18.0 Acknowledgments

The author wishes to thank Claudia Pearce, Jonathan Cohen, and Ellen Voorhees for their encour-
agement, meticulous review, and many helpful comments, suggestions, and corrections which
greatly improved the quality of this paper. The author also wishes to thank Charles Nicholas for
his encouragement, and for recommending this paper for publication. Most important of all, he
wishes to thank his wife, Galil, for the gift of her love, devotion, and encouragement.

Page 209

Bibliography

Aalbersberg, 1.J. Incremental Relevance Feediiadceedings of the 15th Annual International
ACM SIGIR Conference on Research and Development in Information Retppvall-22, 1992.

Anick, P.J. Adapting a full-text information retrieval system to the computer troubleshooting
domain,Proceedings of the 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrievalp. 349-358, 1994,

Allan, J. Relevance feedback with too much dBtaceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in Information Repj@\VaB7-343,
1995.

ANSI/NISO Z39.50-1995Information Retrieval (Z39.50): Application Service Definition and
Protocol Specificationjuly 1995.

Armstrong, R., Freitag, D. Joachins, T., Mitchell, T. WebWatcher: A Learning Apprentice for the
World Wide Web,1995 AAAI Spring Symposium on Information Gathering from Heterogeneous,
Distributed EnvironmenisStanford, March 1995.

Bartell, B.T., Cottrell, G.W., Belew, R.K. Latent Semantic Indexing is an optimal special case of
Multidimensional Scalingiroceedings of the 15th Annual International ACM SIGIR Conference
on Research and Development in Information Retrjeyal 161-167, 1992.

Bartell, B.T., Cottrell, G.W., Belew, R.K. Automatic combination of multiple ranked retrieval sys-
tems,Proceedings of the 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieyglp. 173-181, 1994.

Bauer, E., Kohavi, R. An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants, Machine Learning, 36, pp. 105-139, 1999.

Belkin, N.J., Cool, C., Croft, W.B., Callan, J.P. The effect of multiple query representations on
information retrieval system performan&rpceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in Information Retpp\&89-346, 1993.

Belkin, N.J., Croft, W.B. Retrieval Techniquésinual Review of Information Science and Tech-
nology (ARIST)Volume 22, Elsevier Science Publishers B.V., 1987.

Bishop, Y. M. M., Fienberg, S.E., Holland, P.W. Discrete multivariate analysis: Theory and prac-
tice, MIT Press, Cambridge, MA, 1975.

Belkin, N.J., Croft, W.B. Information filtering and information retrieval: Two sides of the same
coin?,Communications of the ACMoI35, No. 12, December 1992.

Berry, M.W., Dumais, S.T., O’brien, G.W. Using linear algebra for intelligent information
retrieval, SIAM ReviewMol. 37, No. 4, pp. 573-595, December 1995.

Page 210

Borgman, C.L., Siegfried, S.L. Getty’s Synoname and its Cousins: A survey of Applications of
Personal Name-Matching Algorithmijurnal of the American Society for Information Science
43(7), pp. 459-476, 1992.

Breiman, L. Bagging Predictorslachine Learning26, No.2, pp. 123-140, 1996.

Breiman, L Bias, variance and arcing classifiers, Technical Report 460, UC-Berkeley, at Berkeley,
CA., 1996.

Buckley, C., Allan, J., Salton, G. Automatic routing and ad-hoc retrieval using SMART: TREC 2,
The Second Text REtrieval Conference (TREQIET Special Publication 500-215, National
Institute of Standards and Technology, Gaithersburg, MD, pp. 45-55, March 1994.

Buckley, C., Salton, G. Optimization of relevance feedback weiBhiseedings of the 18th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval,pp. 351-357, 1995.

Buckley, C., Salton, G., Allan, J. The effect of adding relevance information in a relevance feed-
back environmen®roceedings of the 17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrigwal,292-300, 1994.

Buckley, C., Singhal, A., Mitra, M. New retrieval approaches using SMART: TRHEX4,
REtrieval Conference-4;aithersburg, MD, National Institute of Standards and Technology,
November 1-3, 1995.

Buckley, C., Singhal, A., Mitra, M. Using Query Zoning and Correlation within SMART: TREC
5, Text REtrieval Conference-&aithersburg, MD, National Institute of Standards and Technol-
ogy, November 20-22, 1996.

Callan, J.P. Passage-level evidence in document retriesadeedings of the 17th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Repe\va02-
310, 1994.

Callan, J.P., Croft, W.B., Broglio, J. TREC and TIPSTER experiments with INQUERYma-
tion Processing & Managementol. 31, No. 3, pp. 327-343, 1995.

Callan, J.P., Croft, W.B., Harding, S.M. The INQUERY retrieval systenQatabase and Expert
Systems Applications: Proceedings of the International Conferdatencia Spain, pp. 78-83,
1992.

Callan, J.P., Lu, Z., Croft, W.B. Searching distributed collections with inference netwasks,
ceedings of the 18th Annual International ACM SIGIR Conference on Research and Development
in Information Retrievalpp. 21-28, 1995.

Chang, Y.K., Cirillo, C., Razon, J. Evaluation of feedback retrieval using modified freezing, resid-

Page 211

ual collection, and test and control groups, chapter 17, pp. 355-3M% iBMART Retrieval Sys-
tem: Experiments in Automatic Document Procesgtngntice Hall, Inc., 1971.

Chakravarthy, A.S., Haase, K.B. NetSerf: Using semantic knowledge to find internet archives,
Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrievapp. 4-11, 1995.

Charniak, EStatistical Techniques for Natural Language Parsit@Q7.

Chen, A. A comparison of Regression, Neural Net, and Pattern Recognition Approaches to IR,
Seventh International Conference on Information and Knowledge Management, pp. 140-147,
1998.

Cohen, J. Highlights: Language- and Domain-Independent Automatic Indexing Terms for
Abstracting Journal of the American Society for Information Sciedé&£3), pp. 162-174, 1995.

Cole, R., EKlund, P. Analyzing an Email Collection Using Formal Concept Anabydiguro-
pean Conference on Principles and Practice of Knowledge Discovery in Datah888s

Cole, R., EKlund, P.W. Scalability in Formal Concept AnalyS@nputational Intelligence/ol-
ume 15, Number 1, pp.11-27, Blackwell Publishers, Oxford, 1999.

Cole, R., EKlund, P.W. Analyzing an Email Collection using Formal Concept Andtysised-
ings of the Knowledge and Data Discovery Conf. (KDD 18éustry Track Paper, 1999.

Cooper, W.S. Expected search length: A single measure of retrieval effectiveness based on weak
ordering action of retrieval systemi&urnal of the American Society for Information Scierk®
pp. 30-41, 1968.

Cooper, W.S. Inconsistencies and misnomers in probabilistiertReedings of the 14th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 57-61, 1991.

Cooper, W.S. The formalism of probability theory in IR: A foundation or an encumbrdiroe?,
ceedings of the 17th Annual International ACM SIGIR Conference on Research and Development
in Information Retrievalpp. 242-247, 1994.

Cooper, W.S. Some inconsistencies and misidentified modeling assumptions in probabilistic
information retrieval ACM Transactions on Information Systeivsl. 13, No. 1, pp. 100-111,
January 1995.

Cooper, W.S., Chen, Aitao, Gey, F.C Full text retrieval based on probabilistic equations with coef-
ficients fitted by logistic regressiofhe Second Text REtrieval Conference (TREQIEST Spe-

cial Publication 500-215, National Institute of Standards and Technology, Gaithersburg, MD, pp.
57-66, March 1994.

Page 212

Cooper, W.S., Gey, F.C., Dabney, D.P. Probabilistic retrieval based on staged logistic regression,
Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrievahp.198-210, 1992.

Cowie, J., Lehnert, W. Information Extractiddpmmunications of the ACMol. 39, No. 1, pp.
80-91, January 1996

Crestani, F., van Rijsbergen, C.J. Probability kinemafesceedings of the 18th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Reppe\29,1-
299, 1995.

Crochemore, M., Rytter, Wext Algorithmspp.73-104, Oxford University Press, 1994.

Croft, W.B., Turtle, H.R., Lewis, D.D. The uses of phrases and structured queries in information
retrieval,Proceedings of the 14th Annual International ACM SIGIR Conference on Research and
Development in Information Retrievalp. 32-45, 1991.

Cutting, D.R., Karger, D.R., Pederson, J.O., Tukey, J.W. Scatter/Gather: A Cluster-based
Approach to Browsing Large Document CollectidAmceedings of the 15th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Repje2aB-
329, 1992.

Cutting, D.R., Karger, D.R., Pederson, J.O. Constant Interaction-Time Scatter/Gather Browsing
of Very Large Document CollectionBroceedings of the 16th Annual International ACM SIGIR
Conference on Research and Development in Information RetngvaR6-134 1993

Damashek, M. Gauging similarity with n-grams: Language-independent categorization of text,
ScienceVolume 267, pp. 843-848, February 1995.

Date, C.JAn introduction to database systemsidison-Wesley, Reading, Mass, 1981.

DARPA. Proceedings of the 4th Message Understanding Conference (MW&iéan, Va., Mor-
gan Kaufmann, 1992.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R. Indexing by latent semantic
analysisJournal of the American Society for Information Sciedd€6), pp. 391-407, 1990.

DIALOG, A Quick Tour.

Dumais, S., Platt, J., Heckerman, D., Sahami, M. Inductive Learning Algorithms and Representa-
tions for Text Categorizatioroceedings of the Seventh International Conference on Informa-
tion and Knowledge Management (ACM CIKMp. 148-155, 1998.

Ebert, D. Realistic Interactive Visualization and Perceptual Cues for Information Visualization,
Workshop on New Paradigms in Information Visualization and Manipulatroconjunction with
The Fourth International Conference on Information and Knowledge Management (CIKM’95),

Page 213

Baltimore, MD., December 2, 1995.

Ebert, D.S., Shaw, C.S., Zwa, A., Miller, E.L., Roberts, D.A. Two-Handed Volumetric Document
Corpus ManagementzEE Computer Graphics and Applicatiodsily 1997.

Eklund, P., Wille, R. Text Data Mining and Discourse AnalySimall ARC Proposall999.

Efthimiadis, E.N. User Choices: A new yardstick for the evaluation of ranking algorithms for
interactive query expansiomformation Processing & Managemeipl. 31, No. 4, pp. 605-620,
1995.

El-Handouchi, A., Willett, P. Techniques for the measurement of clustering tendency in document
retrieval systems]ournal of Information Scienc¢é3, pp 361-365, 1987.

Etzioni, O. Moving Up the Information Food Chain: Deploying Softbots on the World Wide Web,
Proceedings of the Thirteenth National Conference on Atrtificial Intelligence and the Eighth Inno-
vative Applications of Artificial Intelligence Conferenpe. 1322-1326, AAAI Press, Menlo

Park, Calif., MIT Press, Cambridge, Mass., 1996.

Evans, D.A., Lefferts, R.G. Design and evaluation of the CLARIT-TREC-2 sy3teenSecond
Text REtrieval Conference (TREC-R)NST Special Publication 500-215, National Institute of
Standards and Technology, Gaithersburg, MD, pp. 137-150, March 1994

Faloutsos, C., Oard, D.W. A survey of information retrieval and filtering methods, Technical
Report CS-TR-3514, University of Maryland, College Park, MD, August 1995.

Feldman, S. Comparing DIALOG, TARGET, and DR-LINBNLINE, November 1996.

Florance, V. Information processing in the context of medical Paoegedings of the 18th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval,pp. 158-163, 1995.

Foltz, P.W., Dumais, S.T. Personalized information delivery: An analysis of information filtering
methodsCommunications of the AGMol. 35, No. 12, pp. 51-60, December 1992.

Fox, E.A., Shaw, J.A. Combination of multiple sourddss Second Text REtrieval Conference
(TREC-2) NIST Special Publication 500-215, National Institute of Standards and Technology,
Gaithersburg, MD, pp. 243-252, March 1994.

Friedman, J.H.On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality, Data Mining and
Knowledge Discovery, Volume 1, Number 1, pp. 55-77, 1996.

Greiff, W.R., Croft, W.B., Turtle, H. Computationally Tractable Probabilistic Modeling of Bool-
ean Operatorgroceedings of the 20th Annual International ACM SIGIR Conference on
Research and Development in Information Retrigwal,119-128, 1997.

Page 214

Guthrie, J., Guthrie, L., Wilks, Y., Aidinejad, H. Subject-Dependent Co-Occurrence and Word
Sense DisambiguatioRroceedings of the 29th Annual Meeting of the Adjl. 146-152, Berk-
ley, California, USA, 1991.

Guthrie, L. A Note on Lexical Disambiguation. @orpus-Based Computational Linguisti&di-
tors Clive Souter and Eric Atwell, pp. 227-238, Published by Rodopi, B.V., Amsterdam, 1993.

Hahn, H.The Internet Complete Reference, 2nd Bsdborne Mcgraw-Hill, Berkeley, 1996.

Haines, D., Croft, W.B. Relevance Feedback and Inference Netvivdcgedings of the 16th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval,pp. 2-11, 1993.

Harman, D. User-friendly systems instead of user-friendly front-&odsnhal of the American
Society for Information Sciencé3(2), pp 164-174, 1992.

Harman, D. Relevance feedback revisiteahceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in Information Retpp:atl 0, 1992.

Harman, D. Overview of the Second Text REtrieval Conference (TREI&#&)REtrieval Con-
ference-2Gaithersburg, MD, National Institute of Standards and Technology Special Publication
500-215, March, 1994.

Harman, D. Overview of the Third Text REtrieval Conference (TREJ&X, REtrieval Confer-
ence-4Gaithersburg, MD, National Institute of Standards and Technology Special Publication
500-225, April, 1995.

Hayes, P.J., Weinstein, S.P. Construe-TIS: A System for Content-Based Indexing of a Database of
News Stories, 2nd Annual Conference on Innovative Applications of Atrtificial Intelligence, pp.
48-64, AAAI Press, Menlo Park, Calif., 1990.

Hearst, M.A. Tilebars: Visualization of term distribution info in full text info accesBrag.
ACM SIGCHI Conf. on Human factors in computing syst@m$9-66,1995.

Hearst, M., Pedersen, J., Pirolli, P. Schutze, H. Xerox TREC4 Site R&pdrREtrieval Confer-
ence-4 Gaithersburg, MD, National Institute of Standards and Technology, November 1-3, 1995.

Hearst, M.A., Plaunt, C. Subtopic Structuring for Full-Length Document AcBessgedings of
the 16th Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval pp.59-68, 1993.

Hersch, W.R., Elliot, D.L., Hickam, D.H., Wolf, S.L., Molnar, A., Lechtenstien, C. Towards new
measures of information retrieval evaluatiBnpceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in Information Retppvab4-170, 1995.

Hoel, P.G.Introduction to Mathematical Statisticdth ed, John Wiley and Sons, New York, 1971.

Page 215

Hull, D. Improving text retrieval for the routing problem using Latent Semantic IndeXiog,
ceedings of the 17th Annual International ACM SIGIR Conference on Research and Development
in Information Retrievalpp.282-291, 1994.

Hull, D.A., Pedersen, J.0O., Schutze, H. Method Combination for Document Filterowged-
ings of the 19th Annual International ACM SIGIR Conference on Research and Development in
Information Retrievalpp.279-287, 1996.

INQUERY 3.0,Applied Computing Systems Institute of Massachusetts, Inc. (ACSIOM), Center
for Intelligent Information Retrieval, University of Massachusetts Computer Science Department
Amherst, Massachusetts, 1995.

Jacgemin, C., Royaute, J. Retrieving terms and their variants in a lexicalized unification-based
framework,Proceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrievap. 132-141, 1994.

Joachims, T., Mitchell, T., Freitag, D., Armstrong, R. WebWatcher: Machine Learning and Hyper-
text, inGl Fachgruppentreffen Maschinelles Lernen, K. Morik, J.Herrmann, &stmund, Ger-
many, August 1995.

Joachims, T. Freitag, D., Mitchell, T. A Tour Guide for the World Wide Webtceedings of
IJCAI97, August 1997.

Katzer, J., McGill, M.J., Tessier, J.A., Frakes, W. Dasgupta, P. A study of the overlap among doc-
ument representationisformation Technology: Research and Developmepp. 261-274,
1982.

Korfhage, R.RInformation Storage and Retvial, John Wiley and Sons, New York, 1997.

Kretser, O.d., Moffat, A. Effective Document Presentation with a Locality-Based Similarity Heu-
ristic, Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrievalp. 113-120, 1999.

Kroll, E. The Whole Internet: User’'s Guide and Catalog@Reilly and Associates, Sebastopol,
CA, 1992.

Kupiek, J. MURAX: A robust linguistic approach for question answering using an on-line ency-
clopedia,Proceedings of the 16th Annual International ACM SIGIR Conference on Research and
Development in Information Retrievalp. 181-190, 1993.

Leacock, C., Towell, G., Voorhees, E.M. Toward Building Contextual Representations of Word
Senses Using Statistical Mode@prpus Processing for Lexical Acquisitigrp. 97-113, The MIT
Press, Cambridge, Massachusetts, 1996.

Lee, J.H. Properties of extended boolean models in information retriencadeedings of the 17th
Annual International ACM SIGIR Conference on Research and Development in Information

Page 216

Retrieval,pp. 182-190, 1994.

Lee, J.H. Combining multiple evidence from different properties of weighting schBroesgd-
ings of the 18th Annual International ACM SIGIR Conference on Research and Development in
Information Retrievalpp. 180-188, 1995.

Lee, J.H, Analyses of Multiple Evidence CombinatiBrgceedings of the 20th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Repje\2h,7-
276, 1997.

Lenat, D.B., Guha, R.\Building Large Knowledge-Based Systems: Representations and Infer-
ence in the Cyc ProjecAddison-Wesley, Reading, Mass., 1989.

LeVan, R. Building a Z39.50 client, 1995.

Lewis, D.D. An evaluation of phrasal and clustered representations on a text categorization task,
Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrievapp. 37-50, 1992.

Lewis, D.D. Evaluating and optimizing autonomous text classification syskeateedings of
the 18th Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval pp. 246-254, 1995.

Lewis, D.D., Spark-Jones, Karen. Natural Language Processing for Information Re@cawal,
munications of the ACM/l. 39, No. 1, pp. 92-101, January 1996.

LEXIS/NEXIS Quick Reference.

Liddy, E.D. Discourse Level Structure of Abstra@syceedings of the 50th ASIS Annual Meet-
ing, pp. 138-147, Learned Information, Inc., Medford, NJ, 1987.

Liddy, E.D. Structure of Information in Full-Text Abstracts, Proceedings of RIAO Conference,
1988.

Liddy, E.D. Enhanced Text Retrieval Using Natural Language Proce8sihgtin of the Ameri-
can Society for Information Sciendél. 24, No. 4, 1998.

Liddy, E.D. Personal Communication, 1999.

Liddy, E. D., Myaeng, S.H. DR-LINK: A System Update for TRECThe Second Text REtrieval
Conference (TREC-2NIST Special Publication 500-215, National Institute of Standards and
Technology, Gaithersburg, MD, pp. 45-55, March 1994.

Liddy, E.D., Paik, W., Yu, E.S. Text Categorization for Multiple Users Based on Semantic Fea-
tures from a Machine-Readable Dictionary, ACM Transactions on Information Systems, Vol. 12,
No. 3, pp.278-295, July 1994.

Page 217

Liddy, E.D., Paik, W., McKenna, M.,Yu, E.S. A Natural Language Text Retrieval System with
Relevance FeedbacdRroceedings of the 16th National Online Meetihg95.

Liddy, E.D., Paik, W., Yu, E.S., McKenna, M. Document Retrieval Using Linguistic Knowledge,
Proceedings of RIAO Conference, Rockefeller University, NY, 1994.

Liddy, E.D. Textwise - KNOW-IT, White Paper, 1999.

Mann, W.C., Thompson, S.A. Rhetorical Structure Theory: Toward a functional theory of text
organization;Text 8(3), pp. 243-281, 1988.

Marcu, D. Building up Rhetorical Structure TreBspceedings of the Thirteenth National Con-
ference on Atrtificial Intelligence AAAdp 1069-1074, 1996.

Marcu, D. Personal Communication, 1999.

Mahesh, K. HyperText Summary Extraction for Fast Document Brow8iWg) Spring Sympo-
sium on Natural Language Processing for the World Wide, ®&mford University, pp95-103,
1997.

Martin, P., Eklund, P. Embedding Knowledge in Web Documértig, Eighth International World
Wide Web Conferenciay 1999.

Maze, S., Moxley, D., Smith, D.Authoritative Guide to Web Search Enginésal-Schuman
Publishers, Inc., New York, 1997.

McGill, M., Koll, M., Norreault, T. An evaluation of factors affecting document ranking by infor-
mation retrieval systemSyracuse, Syracuse University School of Information Stuth&s,

Miller, G.A. WordNet: An on-line lexical databadaternational Journal of Lexicograph®(4),
1990.

Milic-Frayling, N., Lefferts, R., Evans, D.A. CLARIT TREC-4 report on ad-hoc experiments,
Text REtrieval Conference-&aithersburg, MD, National Institute of Standards and Technology,
November 1-3, 1995.

Mooers, C.N. Zatocoding applied to mechanical organization of knowl@dgerican Documen-
tation, 2, pp. 20-32, 1951.

Moukas, A., Maes, P. Amalthaea: An evolving Multi-Agent Information Filtering and Discovery
System for the WWWAutonomous Agents and Multi-Agent Systeimpp. 59-88, 1998.

Mann, W.C., Thompson, S.A. Rhetorical Structure Theory: Toward a Functional Theory of Text
Organization;Text 8(3), pp. 243-281, 1988.

Page 218

Marcu, D. Building Up Rhetorical Structure TreesPioceedings of the Thirteenth National
Conference on Artificial Intelligence AAAdp. 1069-1074, 1996.

Myaeng, S.H., Lopez-Lopez, A. Conceptual Graph Matching: A flexible algorithm and experi-
ments,Journal of Experimental and Theoretical Artificial Intelligenwel. 4, pp. 107-126, 1992.

Nelson, M.R. Fast String Searching With Suffix TréasDobb’s Journal pp. 115-119, August
1996.

Ogden, W. C., Bernick, P. Using Natural Language Interfatasgdbook of Human-Computer
Interaction, Second completely revised editiGh,7, pp. 137-161, Elsevier Science B.V., 1997.

Onyshkevych, B. Personal communication.

Opitz, D., Maclin, R. Popular Ensemble Methods: An Empirical Stuynal of Artificial Intel-
ligence Researchl, pp. 169-198.

Paice, C.P. Soft Evaluation of boolean search queries in information retrieval systems-
tion Technology: Research and Developma(i), pp. 33-42, 1984.

Paik, W., Liddy, E.D. Interpretation of Proper Nouns for Information Retrievateedings of
the ARPA Workshop on Human Language Technpoppgy3809-313, Princeton, N.J., 1993.

Paik, W., Liddy, E. D., Yu, E., McKenna, M. Categorizing and Standardizing Proper Nouns for
Efficient Information RetrievalCorpus Processing for Lexical Acquisitigop. 62-73, MIT Press,
Cambridge, Mass., 1996.

Pearce, C., Nicholas, C. TELLTALE: Experiments in a dynamic hypertext environment for
degraded and multilingual datiurnal of the American Society for Information Sciedd€4),

pp. 263-275, 1996.

Pearl, JProbabilistic Reasoning in Intelligent Systems: Networks of Plausible Inferéfamgan
Kaufmann, San Mateo, CA, 1988.

Porter, M. An Algorithm for Suffix Strippindg?rogram 14(3), pp. 130-137, 1980.

Porter, M. An Algorithm for Suffix Stripping, ilReadings in Information Retrievebparck Jones
and Willett, eds., pp. 313-316, 1997.

Procter, P. (ed.). Longman Dictionary of Contemporary English, Harlow:Longman, 1978.
Quick Reference News/Retrieval for Windows
Raghavan, V.V., Sever, H. On the reuse of past optimal quBreedings of the 18th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 344-350, 1995.

Page 219

Riloff, E. Little words can make a big difference for text classificaftyoceedings of the 18th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval,pp. 130-136, 1995.

Robertson, S.E., Sparck Jones, K. Relevance weighting of searchdeunms|| of the American
Society for Information Sciencg7, pp. 129-146, 1976.

Robertson, S.E., Walker, S. Some Simple Effective Approximations to the 2-Poisson Model for
Probabilistic Weighted Retrieval, Proceedings of the 17th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 222-241, 1994.

Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M. Okapi at TREC-3,
Overview of the Third Text REtrieval Conference (TREQNBT Special Publication 500-225,
National Institute of Standards and Technology, Gaithersburg, MD, pp. 109-126, April 1995.

Robertson, S.E., Walker, S., Beaulieu, M.M., Gatford, M., Payne, A. Okapi at TRE®&4,
Fourth Text REtrieval Conference (TREG-M)ST Special Publication 500-236, National Insti-
tute of Standards and Technology, Gaithersburg, MD, pp. 73-86, October 1996.

Robertson, S.E., Walker, S. On Relevance Weights with Little Relevance InfornRatoaed-
ings of the 20th Annual International ACM SIGIR Conference on Research and Development in
Information Retrievalpp. 16-24, 1997

Robertson, S.E., Walker, S. Microsoft Cambridge at TREC-9: Filtering tfdekNinth Text
REtrieval Conference (TREC;Qational Institute of Standards and Technology, Gaithersburg,
MD, pp. 73-86, November 13-16, 2000.

Robot FAQ. http://info.webcrawler.com/mak/projects/robots/fag.html#what

Rocchio, J.JDocument Retrieval Systems - Optimization and Evaluathi) thesis, Harvard,
1966.

Roussinoy, D., Tolle, K., Ramsey, M., Hsinchun, C. Interactive Internet Search through Automatic
Clustering: an Empirical Studroceedings of the 22nd Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrgva289,290, 1999.

Salton, G. A simple blueprint for automatic boolean query proceshkifgmation Processing &
Managementyol. 24, No. 3, pp. 269-280, 1988.

Salton, G Automatic text processing: The transformation, analysis, and retrieval of information
by computerAddison-Wesley, Reading, MA, 1989.

Salton, G., Allan, J., Buckley, C. Approaches to Passage Retrieval in Full Text Information Sys-
tems,Proceedings of the 16th Annual International ACM SIGIR Conference on Research and
Development in Information Retrievalp. 49-58, 1993.

Page 220

Salton, G., Buckley, C. Term-weighting approaches in automatic text rettigeaimation Pro-
cessing & Managemer24(5), pp. 513-523, 1988.

Salton, G., Buckley, C. Improving retrieval performance by relevance feedlvarkal of the
American Society for Information Sciendé(4), pp. 288-297, 1990.

Salton, G., Fox, E.A., Wu H. Extended boolean information retri@ahmunications of the
ACM, 26(11), pp. 1022-1036, 1983.

Salton, G., McGill, M.JIntroduction to Modern Information RetrievalicGraw Hill Publishing
Company, New York, 1983.

Saracevic, T. Evaluation of Evaluation in Information RetrieRedceedings of the 18th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 137-146, 1995.

Saracevic, T. RELEVANCE: A Review of and a Framework for the Thinking on the Notion in
Information ScienceReadings in Information Retriev@parck Jones, K., Willett, P. Eds., Mor-
gan Kaufmann Publishers, Inc., pp. 143-165, 1997.

Saracevic, T., Kantor, P. A study of information seeking and retrieving. Ill Searchers, searches
and overlapJournal of the American Society for Information Scie®& 3, pp. 197-216, 1988.

Sanderson, M. Word sense disambiguation and information retfseakedings of the 17th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval,pp. 142-151, 1994.

Schapire, R.E., Singer, Y., Singhal, A. Boosting and Rocchio Applied to Text FiltBrogged-
ings of the 21st Annual International ACM SIGIR Conference on Research and Development in
Information Retrievalpp. 215-223, 1998.

Schutze, H., Hull, D.A., Pederson, J.O. A comparison of classifiers and document representations
for the routing problemProceedings of the 18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrigyal229-237, 1995.

Schutze, H., Silverstein, C. A Comparison of Projections for Efficient Document Clusinong,
ceedings of the 20th Annual International ACM SIGIR Conference on Research and Development
in Information Retrievalpp. 74-81, 1997.

Selberg, E., Etzioni, O. Multi-Engine Search and Comparison Using the MetaCrawler, Proceed-
ings of the Fourth International Conference on the World Wide Web, pp. 195-208, 1995.

Shaw, W.M. Term-relevance computations and perfect retrieval performaforeration Pro-
cessing & Managementpl. 31, No. 4, pp. 491-498, 1995.

Page 221

Shivakumar, N., Garcia-Molina, H. Finding Near-Replicas of Documents on thePvéeleed-
ings of Workshop on Web Databases (WebDB’98) held in conjunction with EDBIaééh
1998.

Shivakumar, N., Garcia-Molina, H. SCAM: A Copy Detection Mechanism for Digital Docu-
ments,Proceedings of 2nd International Conference in Theory and Practice of Digital Libraries
(DL'95), Austin, Texas, June 1995.

Sibson, R. SLINK: an optimally efficient algorithm for the single link cluster me@odputer
Journal 16, pp 30-34, 1973.

Silverstein, C., Pederson, J.O. Almost-Constant-Time Clustering of Arbitrary Corpus Subsets,
Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrievahp.60-66, 1997.

Singhal, A., Buckley, C., Mandar, M. Pivoted Document Language NormalizRtiocgeedings
of the 19th Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrievalpp.21-29, 1996.

Singhal, A., Salton, G., Mitra, M., Buckley, C. Document length normalizafieshnical Report
TR95-1529Cornell University, 1995.

Sowa, J.F. Conceptual Structures: Information Processing in Mind and Machine, Addison-Wesley,
Reading, MA, 1984.

Sparck Jones, K. Search term relevance weighting given little relevance information, Journal of
Documentation, 35(1), pp. 30-48, 1979.

Strzalkowski, T. Natural Language Information Retrielrd@iprmation Processing and Manage-
ment1994.

Strzalkowski, T., Carballo, J.P. Recent developments in natural language text réthevagc-
ond Text REtrieval Conference (TRECGHR)ST Special Publication 500-215, National Institute
of Standards and Technology, Gaithersburg, MD, pp. 123-136, March 1994.

Strzalkowski, T., Carballo, J.P., Marinescu, M. Natural Language Information Retrieval: TREC-3
Report,Overview of the Third Text REtrieval Conference (TREONBJT Special Publication
500-225, National Institute of Standards and Technology, Gaithersburg, MD, pp. 39-53, April
1995.

Suen, C.Y. N-gram statistics for natural language understanding and text procHsBEBEJ,rans-
actions on Pattern Analysis and Machine Intelligence, PANB}Lpp. 164-172, 1979.

Topic, An Introduction to Topics V 1.0, Verity, 1995.

Type 102 Ranked List Query Preliminary Specification, October 27, 1995.

Page 222

Turtle, H. Natural language vs. boolean query evaluation: A comparison of retrieval performance,
Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrievghp.212-220, 1994,

Turtle, H., Croft, W.B. Evaluation of an inference network-based retrieval n®a@#l, Transac-
tions on Information System#l. 9, No. 3, July 1991.

Ukkonen, E. On-line Construction of Suffix Trees, Algorithmica, pp. 249-260, September 1995.
van Dijk, T.A. News as Discourse, Hillsdale Lawrence Erlbaum Associates, 1988.
van Rijsbergen, C.Information Retrieval (2nd ed.Butterworths, London, 1979.

van Rijsbergen, C.J. Towards an information loBimmceedings of the 12th Annual International
ACM SIGIR Conference on Research and Development in Information Repjgval;86, 1989.

van Rijsbergen, C.J., Sparck Jones, K. A test for the separation of relevant and non-relevant docu-
ments experimental retrieval collectiodsurnal of DocumentatiqrR9, pp 251-257, 1973.

Veerasamy, A., Belkin, N.J. Evaluation of a Tool for Visualization of Information Retrieval
ResultsProceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrievalp. 85-92, 1996.

Veerasamy, A., Heikes, R. Effectiveness of a graphical display of retrieval ré2idtsedings of
the 20th Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval pp. 236-245, 1997.

Viles, C.L., French, J.C. Dissemination of collection wide information in a distributed informa-
tion retrieval systenfProceedings of the 18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrigwal, 12-20, 1995.

Vogt, C.C., Cottrell, G.W. Predicting the Performance of Linearly Combined IR Sy$temrs,
ceedings of the 21st Annual International ACM SIGIR Conference on Research and Development
in Information Retrievalpp. 190-196, 1998.

Voorhees, E. M. The Cluster Hypothesis Revisited. Technical RERB6-658 Cornell Univer-
sity, Ithaca, NY, 1985.

Voorhees, E.M. Using WordNet to disambiguate word senses for text retfreakedings of the
16th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval,pp. 171-180, 1993.

Voorhees, E.M. Personal communication, January 1997.

Voorhees, E.M., Gupta, N.K., Johnson-Laird, B. Learning collection fusion strategiesgd-

Page 223

ings of the 18th Annual International ACM SIGIR Conference on Research and Development in
Information Retrievalpp. 172-179, 1995.

Waller, W.G., Kraft, D.H. A mathematical model of a weighted boolean retrieval sy$téonma-
tion Processing and Managemehb, pp.235-245, 1979.

Wilkinson, R. Effective Retrieval of Structured Documergyceedings of the 18th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Refeval
311-317, 1994.

Wille, R. Conceptual Graphs and Formal Concept Analg@sceptual Structures: Theory,
Tools, and Applicatiosy pp. 104-208, Springer Verlag, 1996.

Willett, P. Recent trends in hierarchic document clustering: A critical relidovymation Pro-
cessing & Managementpl. 24, No. 5, pp. 577-597, 1988.

Winkler, R.L., Hays, W.L Statistic®?robability, Inference, and Decision, 2nd.eHolt, Rinehart,
and Winston, New York, 1975.

Witten, I.H., Eibe, FData Mining: Practical Machine Learning Tools and Techniques with Java
ImplementationsMorgan Kaufman Publishers, San Francisco, Ca., 1999.

Xu, J., Callan, J. Effective Retrieval with Distributed CollectioRsyceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval
pp. 112-120, 1998.

Xu, J., Croft, W.B. Query Expansion Using Local and Global Document Analysixeedings of

the 19th Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval pp.4-11, 1996.

Yang, Y. Expert Network: Effective and efficient learning from human decisions in text categori-
zation and retrievaRroceedings of the 17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrigmal 13-22, 1994.

Yannakoudakis, E.J., Goyal, P., Huggil, J.A. The generation and use of text fragments for data
compressioninformation Processing and Managemei®, pp. 15-21, 1982.

Yanoff, S.Internet Services Listnternet Manuscript, ‘finger yanoff@csd4.csd.uwm.edu’, 1993.

Yarowsky, D. One sense per collocation, Proceedings of the Human Language Technology Work-
shop, 1993.

Yochum, J. Research in passage level routing with LMDExt REtrieval Conference-&aithers-
burg, MD, National Institute of Standards and Technology, November 1-3, 1995.

Yu, K.L., Lam, W. A New On-Line Learning Algorithm For Adaptive Text Filteririgroceedings

Page 224

of the Seventh International Conference on Information and Knowledge Management (ACM
CIKM), pp. 156-160, 1998.

Zamora, E.M., Pollock, J.J., Zamora, A. The use of trigram analysis for spelling error detection,
Information Processing and Managemghi, pp. 305-316, 1981.

Zamir, O., Etzioni, O. Web Document Clustering: A Feasibility Demonstra@imteedings of
the 21st Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval pp. 46-54, 1998.

Zimmerman, H.JFuzzy Set Theory and its Applicatio@end edition, Kluwer Academic Publish-
ers, 1991.

	1. Introduction
	2. What is Information Retrieval (IR)?
	2.1 Definition and Terminology of Information Retrieval (IR)
	2.1.1 Structured vs. Unstructured vs. Semi-Structured Documents
	2.1.2 Unstructured Documents with Structured Headers
	2.1.3 Structure of a Document as a Document
	2.1.4 Goals of Information Retrieval
	2.1.5 Ad-Hoc Querying vs. Routing
	2.1.6 Evaluation of IR Performance
	3. Approaches to IR - General
	4. Classical Boolean Approach to IR
	4.1 Automatic Generation of Boolean Queries
	5. Extended Boolean Approach
	6. Vector Space Approach
	6.1 Building Term Vectors in Document Space
	6.2 Normalization of Term Vectors
	6.3 Classification of Term Vector Weighting Schemes
	Table 1: Components of schemes for weighting given term in given document (Continued)

	6.4 Computation of Similarity between Document and Query
	6.5 Latent Semantic Indexing (LSI) — An Alternative Vector Scheme
	6.6 Vectors Based on n-gram Terms
	7. Probabilistic Approach
	7.1 What Distinguishes a Probabilistic Approach?
	7.2 Advantages and Disadvantages of Probabilistic Approach to IR
	7.3 Linked Dependence
	7.4 Bayesian Probability Models
	7.4.1 Binary Independence Model
	Table 2: Contingency Table of Relevance Judgments

	7.4.2 Bayesian Inference Network Model
	7.4.3 Logical Imaging
	7.4.4 Logistic Regression
	7.4.5 Okapi (Term Weighting Based on Two-Poisson Model)
	8. Routing/Classification Approaches
	9. Natural Language Processing (NLP) Approaches
	9.1 Phrase Identification and Analysis
	9.2 Sense Disambiguation of Terms and Noun Phrases
	9.3 Concept Identification and Matching
	9.3.1 Formal Concepts
	9.3.2 Concepts and Discourse Structure
	9.3.3 Proper Nouns, Complex Nominals and Discourse Structure
	9.3.4 Integrated SFC/PN/CN Matching
	9.3.5 Relations and Conceptual Graph Matching
	9.3.6 Recognition of Semantic Similarity in CN’s
	9.4 Proper Noun Recognition, Categorization, Normalization, and Matching
	9.5 Semantic Descriptions of Collections
	9.6 Information Extraction
	10 Clustering
	10.1 Hierarchical Cluster Generation (“Complete/Static” Methods)
	10.2 Heuristic Cluster Methods
	10.3 Incremental Cluster Generation
	10.4 Cluster Validation
	11 Query Expansion and Refinement
	11.1 Query Expansion (Addition of Terms)
	11.2 Query Refinement (Term Re-Weighting)
	11.3 Expansion/Refinement of Boolean and Other Structured Queries
	11.4 Re-Use of Queries
	12 Fusion of Results
	12.1 Fusion of Results from Multiple Collections
	12.2 Fusion of Results Obtained by Multiple Methods
	12.3 Fusion of Results Obtained by Multiple Versions of the Same Method
	13. User Interaction
	13.1 Displaying and Searching Retrieved Document Sets
	13.2 Browsing a Document Collection
	13.3 Interactive Directed Searching of a Collection
	14. IR Standard - Z39.50
	14.1 Searching via Z39.50
	14.2 Retrieval via Z39.50
	14.3 Type 102 Ranked List Query (RLQ) - A Proposed Extension to Z39.50
	15. A Brief Review of some IR Systems
	15.1 LEXIS/NEXIS
	15.2 Dialog
	15.3 Dow Jones News/Retrieval
	15.4 Topic
	15.5 SMART
	15.6 INQUERY
	Table 3: Characteristics of IR Systems

	16. Web-Based IR Systems
	16.1 Web-Based Vs. Web-Accessible IR Systems
	16.2 What a Web-Based IR Engine Must Do
	16.3 Web Characteristics Relevant to IR
	16.4 Web Search Engines
	16.4.1 Automated Indexing on the Web
	16.4.4 Meta-Querying on the Web
	16.4.5 Personal Assistants for Web Browsing
	18.0 Acknowledgments
	The author wishes to thank Claudia Pearce, Jonathan Cohen, and Ellen Voorhees for their encourage...

