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Abstract

Information Retrieval (IR) is the discipline that deals with retrieval of unstructu
data, especially textual documents, in response to a query or topic statement,
may itself be unstructured, e.g., a sentence or even another document, or whic
be structured, e.g., a boolean expression. The need for effective methods of
mated IR has grown in importance because of the tremendous explosion i
amount of unstructured data, both internal, corporate document collections, an
immense and growing number of document sources on the Internet. This repo
tutorial and survey of the state of the art, both research and commercial, in
dynamic field. The topics covered include: formulation of structured and unst
tured queries and topic statements, indexing (including term weighting) of d
ment collections, methods for computing the similarity of queries and docume
classification and routing of documents in an incoming stream to users on the
of topic or need statements, clustering of document collections on the basis o
guage or topic, and statistical, probabilistic, and semantic methods of analyzin
retrieving documents.
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1. Introduction

This report provides an overview of the state of the art in Information Retrieval (IR), both c
mercial practice and research. More specifically, it deals with the retrieval of unstructured
semi-structuredtextdocuments or messages. It doesn’t claim to be exhaustive. If it were exh
tive today, it wouldn’t be exhaustive tomorrow given the dynamic nature of the field.

The report is divided into five broad areas. Area one (chapters one and two) discusses th
concepts and definitions, e.g., what IR means, what its goals are, what entities it attem
retrieve, the criteria by which IR systems are evaluated (and the limitations of those criteria
how IR differs from retrieval via a traditional DBMS.

Area two (chapters three to ten) discusses each of the major approaches to the generation
ries and their interpretation, by Information Retrieval engines: classical boolean, extended
ean, vector space, probabilistic, and semantic/natural language processing (NLP). I
discusses IR “querying” from the perspective of routing and classification of an incoming st
of documents (as distinct from their retrieval from fixed collections). (In the routing context, q
ries are often calledtopicsor classifications.) Finally, it discusses methods of clustering doc
ments within a collection as a form of unsupervised classification, and as an aid to effi
retrieval.

Area three (chapter eleven) discusses the automatic and interactive expansion and refine
user-generated queries, e.g., on the basis of user “relevance” feedback. Additionally, it dis
the re-use of queries.

Area four (chapter twelve) discusses the “fusion” of streams of output documents resulting
multiple, parallel retrievals into a single ranked stream that can be presented to the use
kinds of fusion are discussed: (1) A given query may be issued to multiple document collec
using a common IR method. The documents retrieved from each of those collections mu
merged into a single stream, ideally the same stream that would have resulted if these se
collections had been integrated into a single collection. (2) The same query may be execu
multiple IR methods (or the same information need may be formulated as multiple querie
this way, a single query or information need may result in multiple retrievals being applied t
same document collection, each retrieval returning a different set of documents or a dif
ranking of the documents retrieved. Again, the results of these multiple retrievals must be m
and ranked for presentation to the user.

Area five (chapter thirteen) discusses user interaction with IR systems, i.e., system aid in th
mulation and refinement of queries, system display of data and retrieved results in ways th
user understanding, user browsing of (and interaction with) displayed data and results, etc

Area six (chapter fourteen) discusses the ANSI/NISO standard Z39.50, initially developed b
library community for searching and retrieving bibliographic records, now emerging as a ge
standard for communicating with diverse IR engines. The discussion includes both the ex
1995 standard, and a proposed extension to the Z39.50 query capability, the type 102
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which reflects enhancements in IR technology, especially the ability to retrieve documents r
by the likelihood that they satisfy the user’s information need.

Area seven (chapter fifteen) illustrates the state of the art by discussing briefly six actual IR
tems — four commercial and two research.

Area eight (chapter sixteen) discusses Web information retrieval, including general con
research approaches, and representative commercial Web IR engines.

2. What is Information Retrieval (IR)?

2.1 Definition and Terminology of Information Retrieval (IR)

The term “IR”, as used in this paper, refers to the retrieval ofunstructuredrecords, that is, records
consisting primarily of free-form natural language text. Of course, other kinds of data can al
unstructured, e.g., photographic images, audio, video, etc. However, IR research has focu
retrieval of natural language text, a reasonable emphasis given the importance and immen
ume of textual data, on the internet and in private archives.

Some points of terminology should be clarified here. The records that IR addresses are
called “documents”. That term will be used here. IR often addresses the retrieval of docum
from an organized (and relatively static) repository, most commonly called a “collection”. T
term will also be used here. (The word “archive” is also used. So is the word “corpus”. The
“digital library” is becoming very common. But the generic term “collection” is still the ter
most commonly used in the research literature.) However, it should be understood that IR
restricted to static collections. The collection may be a stream of messages, e.g., E-mail me
faxes, news dispatches, flowing over the internet or some private network.

2.1.1 Structured vs. Unstructured vs. Semi-Structured Documents

Records may bestructured, unstructured, semi-structured, or a mixture of these types. A record i
structured if it consists of named components, organized according to some well-defined s
Typically, a structured database will have multiple record types such that all records of a
type have the same syntax, e.g., all rows in a table of a relational database will have the sam
umns. [Date, 1981, Salton, 1983] Moreover, each component of a record will have a de
“meaning” (“semantics”) and a given component of a given record type will have the s
semantics in every record of that type. The practical effect is that given the name of a comp
a search and retrieval engine (such as a DBMS) can use the syntax to find the given compo
a given record and retrieve its contents, its “value”. Similarly, given a component and a valu
search engine can find records such that the given component contains (“has”) the given
For example, a relational DBMS can be asked to retrieve the contents of the “age” column
“Employee” table in a “Personnel” database. The DBMS knows how to find the “Employee” t
within the “Personnel” database, and how to find the “age” column within each record o
“Employee” table. And every “age” column within the “Employee” table will have the sa
semantics, i.e., the age of some employee. The column name “age” may not be sufficient to
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tify the column; an “Equipment” table in the same or a different database may also have an
column. Hence in general, it may be necessary to specify a path, e.g., database name, tabl
column name, to uniquely identify the syntactic component to the search engine. Howeve
syntax of a well-structured database is such that it is always possible to specify a given syn
component uniquely and hence it is always possible for the search engine to find all occur
of a given component. If the given component has a definite semantics, then it is always po
for the search engine to find data with that semantics, e.g., to find the ages of all employee

By contrast, in a collection of unstructured natural language documents, there is no well-de
syntactic position where a search engine could find data with a given semantics, e.g., the a
employees. In a random collection of documents, there is no guarantee that they are all ab
same topic, e.g., employees. Even if it is known that the documentsareall about employees, there
is no guarantee that they all specify the age of an employee (or that any do). Even if it is k
that some documents do specify the age of an employee, there is no simple well-defined w
telling where the age occurs in a given document, e.g., in what sentence or even in what
graph. This is exactly what is meant by “unstructured;” there is no (externally) well-defined
tax for a given document, let alone a syntax that all the documents share. To the extent th
documents do share a syntax, there is no well-defined semantics associated with each s
component.

In some cases, a collection of textual documents may share a common structure and sem
e.g., in a collection of documents containing facts about countries, each document may c
data about a different country. [CIA Fact Book] The first paragraph may contain the name,
tion and population of the country in sentences that follow a fairly consistent form. Similarly
2nd paragraph may list the principal industries and exports, again in sentences that follow a
standard form. Such a collection is called “semi-structured.” Although the data about a co
does not occupy well-defined columns in a well-defined table, e.g., name, population, loc
etc., as they would do in a structured database, the data nevertheless occupies fairly standa
tions in the text of each document with further clues, e.g., key words like “population”, that m
it fairly easy to write algorithms or at least heuristics for extracting the data and storing it in s
tured tables.

2.1.2 Unstructured Documents with Structured Headers

IR documents often are partly structured, e.g., they may have a structured header and an u
tured body. But this header typically containsmetadata, i.e., dataaboutthe document, rather than
the information contentof the document. In a bibliographic document, e.g., a book, journal
paper, this metadata may include author, title, publisher, publication date, subject, abstrac
ous catalogue numbers, etc. [Z39.50] In other words, the structured metadata is the da
would be found in a traditional library catalogue entry and is now found in an on-line library c
logue. In an E-mail message, the structured header will include the “from” line (originator),
line (addressee), subject line, copy line (copy recipients), classification, date, etc. In a fa
business letter, the structured data may include a corporate letterhead, date, salutation, sig
etc. In all of these cases, the content or “body” of the document remains unstructured natur
guage text. Hence, a search engine may easily find documents written by a given author o
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lished after a given date. But finding documents that contain data on a particular topic is a
harder task. This task is one of the principal problems addressed by IR research.

2.1.3 Structure of a Document as a Document

IR documents are often structured in another way: They have a structureasdocuments. For exam-
ple, a book may have a structure that consists of certain components by virtue of being a
e.g., it contains a title page, chapters, etc. The chapters are composed of paragraphs wh
composed of sentences, which are composed of words, etc. If the book is a textbook, it wil
cally have a richer structure including a table of contents, an introduction or preface, an ind
bibliography, etc. The chapters may contain figures, graphs, photographs, tables, citation
This structure may be specified explicitly by a “markup” language such as SGML or HTML
the structure may be implicit in the format and organization of the book. A software tool ma
able to recover much of this structure by using format clues such as indentation, key words
“Index” or “Figure”) etc., and mark up a document semi-automatically. But in all such cases
structure is still metadata in the sense that it characterizes the organization of the document
semantic content. The search engine may be able to find chapter one, or section one, or figu
easily. But finding a section dealing with a given topic, e.g., “information retrieval,” or contain
the value of an attribute of some real-world entity, e.g., the date on which a given organiz
was incorporated, is a much more difficult and far less well-defined problem.

2.1.4 Goals of Information Retrieval

IR focuses on retrieving documents based on the content of their unstructured components.
request (typically called a “query”) may specify desired characteristics of both the structure
unstructured components of the documents to be retrieved, e.g., “The documents should b
‘Information retrieval’ and their author must be ‘Smith’.” In this example, the query asks for d
uments whose body (the unstructured part) is “about” a certain topic and whose author (a
tured part) has a specified value.

IR typically seeks to find documents in a given collection that are “about” a given topic or tha
isfy a giveninformation need. The topic or information need is expressed by a query, generate
the user. Documents that satisfy the given query in the judgment of the user are said to be
vant.” Documents that are not about the given topic are said to be “non-relevant.” An IR en
may use the query to classify the documents in a collection (or in an incoming stream), retu
to the user a subset of documents that satisfy some classification criterion. Naturally, the
the proportion of documents returned to the user that she judges as relevant, the better the
cation criterion. Alternatively, an IR engine may “rank” the documents in a given collection
say that documentD1 is higher ranking with respect to a given queryQ, than documentD2 may be
interpreted probabalistically as meaning thatD1 is more likely to satisfyQ thanD2. Or it may be
interpreted as meaning thatD1 satisfiesQ more thanD2. The latter could mean thatD1 is more
precisely focused on the need expressed byQ thanD2. Or it could mean that more ofD1 satisfies
Q thanD2, e.g.,D1 might be entirely devoted to the need expressed byQ while D2 might deal
with a number of topics so that only a single paragraph ofD2 satisfiesQ.
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2.1.5 Ad-Hoc Querying vs. Routing

A distinction is often made betweenrouting andad-hoc querying. [TREC 3 Overview, Harman]
In the latter, the user formulates any number of arbitrary queries but applies them to a fixed c
tion. In routing, the queries are a fixed number of topics; each message in an incoming (and
constantly changing) stream of messages is classified according to which topic it fits most c
and “routed” to the class corresponding to that topic. (In many routing experiments, there i
one topic or query; hence, there are just two classes, relevant and non-relevant.)

2.1.6 Evaluation of IR Performance

At the heart of IR evaluation is the concept of “relevance”. Relevance is an inherently subje
concept [Salton, 83, Pg 173] [Hersh, SIGIR ‘95] in the sense that satisfaction of human ne
the ultimate goal, and hence the judgment of human users as to how well retrieved documen
isfy their needs is the ultimate criterion of relevance. Moreover, human beings often dis
about whether a given document is relevant to a given query. [Hersh, SIGIR ‘95] Disagree
among human judges is even more likely when the question is not absolute relevance but
of relevance. There are other complications: Relevance depends not only on the query and t
lection but also on the context, e.g., the user’s personal needs, preferences, knowledge, ex
language, etc. [Hersh, SIGIR ‘95] {van Rijsbergen, SIGIR ‘89] Hence, a given docum
retrieved by a given query for a given user may be relevant to that user on one day but n
another. {Hersh, SIGIR ‘95] Or the given document may be relevant to one user but not to an
even though they both issued the same query. (This may be either because their needs are d
or because they “meant” different things by the nominally “same” query.) Or the document
be relevant if retrieved from one collection but not if retrieved from another collection. Or r
vance of a document may depend on the order of retrieval, e.g., the second document retri
less relevant to a given user if the first document retrieved satisfies the user’s need. In ge
there is a difference between relevance to the topic of a given query and usefulness to th
who issued the given query. For this reason, some writers [Saracevic, 1997] [Korfhage,
[Salton, 1983] distinguish betweenrelevanceto the user’s query, andpertinenceto the user’s
needs.

On the other hand, early experiments “that looked at differing relevance assessments, …
that for ‘comparative purposes’ (i.e., testing whether a certain technique is better than some
technique) any ‘reasonable’ set of relevance assessments gave the same ordering of tec
even though absolute performance scores differed.” [Voorhees, pc]

There is no way of escaping completely from the concept of relevance. IR is fundamentally
cerned with retrieving information (documents, abstracts, summaries, etc.) that match a use
ified need, i.e., that are relevant to the user. One approach to dealing with this subjectivity
provide or generate “user profiles,” i.e., knowledge about the user’s needs, preferences, e
objective is to give the user not just what he asked for but what he “meant” by what he aske
Or the profile may be generated automatically, based on statistics derived from documen
user has designated as relevant to his needs. [Yochum, TREC 4]
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Two measures of IR success, both based on the concept of relevance [to a given query or in
tion need], are widely used: “precision” and “recall.” Precision is defined as, “the ratio of rele
items retrieved to all items retrieved, or the probability given that an item is retrieved [that] it
be relevant.” [Saracevic, SIGIR ‘95] Recall is defined as, “the ratio of relevant items retrieve
all relevant items in a file [i.e., collection], or the probability given that an item is relevant [tha
will be retrieved.” [Saracevic, SIGIR ‘95] Other measures have been proposed, [Salton, ‘83
172-186] [van Rijsbergen, 1979] but these are by far the most widely used. Note that there
obvious trade-off here. If one retrieves all of the documents in a collection, then one is su
retrieving all the relevant documents in the collection in which case the recall will be “perfe
i.e., one. On the other hand, in the common situation where only a small proportion of the
ments in a collection are relevant to the given query, retrieving everything will give a very
precision (close to zero). The usual plausible assumption is that the user wants the best ach
combination of good precision and good recall, i.e., ideally he would like to retrieve all the
vant documents and no non-relevant documents.

But this plausible assumption is open to some very serious objections. It is often the case th
user only wants a small subset of a (possibly large) set of relevant documents. The relevan
ments may contain a lot of redundancy; a few of them may be sufficient to tell the user every
he wants to know {Hersh, SIGIR ‘95]. Or the user may be looking for evidence to suppo
hypothesis or to reduce uncertainty about the hypothesis; a few documents may provide su
evidence for that purpose. [Florance, SIGIR ‘95] Or the user may only want the most up-to
documents on a given topic, e.g., for a lawyer the latest legal opinion or statute may have
seded earlier precedents or statutes.[Turtle, SIGIR ‘94] In general, it is often the case tha
are multiple subsets of relevant documents such that any one of these subsets will satis
user’s requirement, rather than a single unique set ofthe relevant documents. On the other han
two relevant documents may present contradictory views of some issue of concern to the
hence, the user may be seriously misled if he only sees some of the relevant documents.

In practice, some users attach greater importance to precision, i.e., they want to seesomerelevant
documents without wading through a lot of junk. Others attach greater importance to recal
they want to see the highest possible proportion of relevant documents. Hence, van Rijsb
[1979] offers the E (for Effectiveness) measure, which allows one to specify the relative im
tance of precision and recall:

whereP is precision, R is recall, andα is a parameter which varies from zero (user attaches
importance to precision), through one half (user attaches equal importance to precisio
recall), to one (user attaches no importance to recall).

Measuring precision is (relatively) easy; if a set of competent users or judges agree on th
vance or non-relevance of each of the retrieved documents, then calculating the precis
straightforward. Of course, this assumes that the set of retrieved documents is of manageab
as it must be if it is to be of value to the user. If the retrieved documents are ranked, on

E 1 1

α 1
P
--- 

  1 α–( ) 1
R
---+

-----------------------------------------–≈
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always reduce the size of the retrieved set by setting the threshold higher, e.g., only look at t
100, or the top 20. Measuring recall is much more difficult because it depends on knowin
number of relevant documents in the entire collection, which means that all the documents
entire collection must be assessed. [Saracevic, SIGIR ‘95] If the collection is large, this is no
sible. (The Text REtrieval, i.e., TREC, Conferences attempt to circumvent the problem by po
samples, e.g., the top 100 documents, retrieved by each competing IR engine; the assum
made that every relevant document is being retrieved by at least one of the competitors. [Ha
TREC 3 Overview, TREC 4] This works better for comparing engines than for computing
absolute measure of recall.)

Most of the IR systems discussed in this report return an ordered list of document, i.e., the
ments are ranked according to some measure, often statistical or probabilistic, of the likel
that they are relevant to the user’s request. The usual assumption is that the user will start w
first document (or some surrogate like a title or summary), the document the system estima
“best,” and work her way down the list until her needs have been satisfied, or her pat
exhausted. (But see some alternatives discussed under User Interaction.) Hence, another
of system effectiveness is how many non-relevant documents the user has to examine
reaching the number of relevant documents she needs or desires. If the system returns 2
ments, and only three are relevant, the precision is 3/20 or 0.15. However, as a practical ma
makes a considerable difference to the user whether the three relevant documents are t
three in the ordered list (she doesn’t have to look at any non-relevant documents if those thr
isfy her need), or the last three (she has to look at 17 non-relevant documents before she r
the “good stuff.”) Typically, the situation will be intermediate, e.g., the three relevant docum
may appear at positions (ranks) four, seven, and 15. To complicate matters further, it is en
possible that several documents will be tied according to the given systems measure, e.g., r
document four and non-relevant documents five and six may receive the same probability o
vance value; in that case, the order of those three documents is arbitrary, i.e., it is equally
that the relevant document will occupy positions four, five, or six. Hence, Cooper [JASIS, 1
has proposed the “Expected Search Length (ESL)” for a given queryq, a measure of the numbe
of non-relevant documents the user will have to wade through to reach a specified number o
vant documents; Cooper’s measure takes into account the uncertainty produced by ties.

A more common type of measure, widely used in the research community, e.g., in TREC re
is average precision. This family of measures reflects the recognition that precision varies, ge
ally falls, as recall increases. This variation can be (and frequently is) expressed directly
graph of precision vs. recall.Average precisionis an attempt to summarize this kind of curve as
single value, e.g., for the purpose of comparing different IR algorithms, or the same algo
across different document collections.Non-interpolated average precision” corresponds to the
area under an ideal (non-interpolated) recall/precision curve.” [Harman, TREC-2] This is ap
imated by “computing the precision after every retrieved relevant document and then aver
these precisions over the total number of retrieved relevant documents” for a given que
“topic” in TREC terminology). There will be a different average precision, in general, for e
query. These averages can then be themselves averaged over all the queries employed
experimenter.
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Another common variation on average precision is theeleven-point average precision. The preci-
sion is calculated for recalls (in practice, estimated recalls) of zero, 0.1, 0.2,...,1.0. Then, the
precisions, computed for uniformly spaced values of recall, are averaged.

3. Approaches to IR - General

Broadly, there are two major categories of IR technology and research: semantic and statis
Semantic approaches attempt to implement some degree of syntactic and semantic anal
other words, they try to reproduce to some (perhaps modest) degree the understanding of t
ural language text that a human user would provide. In statistical approaches, the documen
are retrieved or that are highly ranked are those that match the query most closely in ter
some statistical measure. By far the greatest amount of work to date has been devoted to st
approaches so these will be discussed first. (Indeed, even semantic approaches almost alw
or are used in conjunction with, statistical methods. This is discussed in detail later.)

Statistical approaches fall into a number of categories: boolean, extended boolean, vector
and probabilistic. Statistical approaches break documents and queries intoterms. These terms are
the population that is counted and measured statistically. Most commonly, the terms are
that occur in a given query or collection of documents. The words often undergo pre-proce
They are “stemmed” to extract the “root” of each word. [Porter, Program, 1980] [Porter, R
ings, 1997] The objective is to eliminate the variation that arises from the occurrence of diff
grammatical forms of the same word, e.g., “retrieve,” “retrieved,” “retrieves,” and “retriev
should all be recognized as forms of the same word. Hence, it should not be necessary for th
who formulates a query to specify every possible form of a word that he believes may occur
documents for which he is searching. Another common form of preprocessing is the elimin
of common words that have little power to discriminate relevant from non-relevant docum
e.g., “the”, “a”, “it” and the like. Hence, IR engines are usually provided with a “stop list” of su
“noise” words. Note that both stemming and stop lists are language-dependent.

Some sophisticated engines also extract “phrases” as terms. A phrase is a combination of a
words which may be recognized by frequency of co-occurrence in a given collection or by
ence in a phrase dictionary.

At the other extreme, some engines break documents and queries into “n-grams”, i.e., arbitrary
strings ofn consecutive characters. [Damashek, 1995] This my be done, e.g., by moving a
dow” of n characters in length through a document or query one character at a time. In
words, the firstn-gram will consist of the first n characters in the document, the 2ndn-gram will
consist of the 2nd through the (n+1)-th character, etc. (Early research usedn = 2, n = 3; recent
applications have used values ofn=5, andn=6 but the user is free to use the value ofn that works
best for his application.) The window can be moved through the entire document, comp
ignoring word, phrase, or punctuation boundaries. Alternatively, the window can be constr
by word separators, or by other punctuation characters, e.g., the engine can gather n-gram
tics separately for each word. [Zamora et al., IP&M, 1981] [Suen, IEEE Pattern, 1979] Thi
n-grams can be gathered and counted without regard to word boundaries, but then wo
phrases can be evaluated in terms ofn-gram statistics. [Cohen, 1995] In any case, since a sin
word or phrase can generate multiplen-grams, statistical clustering using n-grams has proved
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be language-independent, and has even been used to sort documentsby language, or by topic
within language. For similar reasons,n-gram statistics appear to be relatively insensitive
degraded text, e.g., spelling errors, typos, errors due to poor print quality in OCR transmi
etc. [Pearce et al., 1996]

Numeric weights are commonly assigned to document and query terms. A weight is assigne
given term within a given document, i.e., the same term may have a different weight in eac
tinct document in which it occurs. The weight is usually a measure of how effective the given
is likely to be in distinguishing the given document from other documents in the given collec
The weight is often normalized to be a fraction between zero and one. Weights can al
assigned to the terms in a query. The weight of a query term is usually a measure of how
importance the term is to be assigned in computation of the similarity of documents to the
query. As with documents, a given term may have a different weight in one query than in an
Query term weights are also usually normalized to be fractions between zero and one.

4. Classical Boolean Approach to IR

In the boolean case, the query is formulated as a boolean combination of terms. A conven
boolean query uses the classical operators AND, OR, and NOT. The query “t1 AND t2” is satisfied
by a given documentD1 if and only if D1 contains both termst1 andt2. Similarly, the query “t1
OR t2” is satisfied byD1 if and only if it containst1 or t2 or both. The query “t1 AND NOT t2” sat-
isfiesD1 if and only if it containst1 and doesnotcontaint2. More complex boolean queries can b
built up out of these operators and evaluated according to the classical rules of boolean a
Such a classical boolean query is either true or false. Correspondingly, a document either s
such a query (is “relevant”) or does not satisfy it (is non-relevant”). No ranking is possible, a
nificant limitation. [Harman, JASIS, 1992] Note however that if stemming is employed, a q
condition specifying that a document must contain the word “retrieve” will be satisfied by a d
ment that contains any of the forms “retrieve”, “retrieves”, “retrieved”, “retrieval”, etc.

Several kinds of refinement of this classical boolean query are possible when it is applied
First, the query may be applied to a specified syntactic component of each document, e.
boolean condition may be applied to the title or the abstract rather than to the documen
whole.

Second, it may be specified that the condition must apply to a specified position within a syn
component, e.g., to the words at the beginning of the title rather than to any part of the title

Third, an additional boolean operator may be added to the classical set:, a “proximity” ope
[Z39.50-1995] A proximity operator specifies how close in the text two terms must be to sa
the query condition. In its general form, the proximity operator specifies a unit, e.g., word,
tence, paragraph, etc., and an integer. For example, the proximity operator may be used to
that two terms must not only both occur in a given document but must be within n words of
other; e.g., n = 0 may mean that the words must be adjacent. Similarly, the operator may s
that two terms must be within n sentences of each other, etc. A proximity operator can be a
to boolean conditions as well as to simple terms, e.g., it might specify that a sentence sati
one boolean condition must be adjacent to a sentence satisfying some other boolean cond
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proximity operator may specify order as well as proximity, e.g., not only how close two wo
must be but in what order they must occur.

The classical boolean approach does not use term weights. Or, what comes to the same t
uses only two weights, zero (a term is absent) and one (a term is present).

The classical boolean model can be viewed as a crude way of expressing phrase and th
relationships. For example,t1 AND t2 says that both termst1 andt2 must be present, a condition
that is applicable if the two terms form a phrase. If a proximity operator is employed, the boo
condition can be made to say thatt2 must immediately followt1 in the text, which corresponds
still more closely (though still crudely) to the conventional meaning of a “phrase.” Similarlyt1
OR t2 says that eithert1 or t2 can serve as an index term to relevant documents, i.e., in some s
t1 andt2 are “equivalent”. This is roughly speaking what we mean when we assignt1 andt2 to
the same class in a thesaurus. In fact, some systems use this viewpoint to generate expand
ean conditions automatically, e.g., given a set of query terms supplied by the user, “a bo
expression is composed by ORing each … query term with any stored synonyms and then
ing these clusters together.” [Anick, SIGIR ‘94]

4.1 Automatic Generation of Boolean Queries

The logical structure of Boolean queries, which is their greatest virtue, is also one of their
serious drawbacks. Non-mathematical or novice users often experience difficulty in formu
Boolean queries.[Harman, JASIS, 1992] Indeed, they often misinterpret the meaning of the
and OR operators. (In particular, they often use “AND,” set intersection, when “OR,” set unio
intended.) [Ogden & Kaplan, cited in Ogden & Bernick, 1997] This has led to schemes for a
matic generation of Boolean queries. [Anick, SIGIR’94] [Salton, IP&M, 1988]

In the Anick approach mentioned above, the query terms (presumably after stemming, rem
stop words, etc.) are Ored together. Each OR term is expanded with any synonyms from
line thesaurus. The Salton approach, by contrast, imposes a Boolean structure on the term
plied by the user. No thesaurus is employed.

Salton starts with a natural language query. The usual stemming and removal of stop words
ates a set of user terms, which are ORed together as in the Anick approach. However, Salto
looks for pairs (and triples) of these user-supplied terms that co-occur in one or more docum
Since two or three of these user terms might occur in the same document by chance, Salto
uses a formula for pairwise correlation to determine if any given pair of co-occurring termsTi and
Tj co-occur more frequently than would be expected by chance alone. A similar correlation
mula is used for co-occurring triples, i.e., three of the user-supplied words occurring in the
document. Each pair or triple whose computed correlation exceeds a pre-determined thres
then grouped with a Boolean AND, e.g., if the pairti, tj and the tripletl, tm, tn exceed the thresh-
old, then the automatically generated Boolean query (assuming t terms) becomes:

t1 OR t2 OR … OR (ti AND tj) OR (tl AND tm AND tn) … ORtt
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It should be stressed again that the pairs are triples are drawn entirely from the terms orig
supplied by the user; no thesaurus-based expansion as with Anick, and no query expansion
on relevance feedback (see below) is employed. However, combining these various techniq
certainly feasible.

As a further refinement, Salton ranks the terms (single terms, pairs, and triples) in the auto
cally generated Boolean expression in descending order by inverse document frequenc
below for a definition ofidf. High-idf terms tend to be better discriminators of relevance than lo
idf terms.) He can estimate the number of documents that a given term (or pair or triple) w
responsible for retrieving from its frequency of occurrence in documents. If the total estim
number of documents that will be retrieved by the Boolean query exceeds the number of
ments that the user wants to see, he can reduce the estimated number by deleting OR term
the query starting with those that have the lowest idf ranking. This gives the user, not a true
vance ranking of documents, but at least some control over the number retrieved, somethin
ordinary Boolean retrieval does not provide.

5. Extended Boolean Approach

Even with the addition of a proximity operator, boolean conditions remain classical in the s
that they are either true or false. Such an all-or-nothing condition tends to have the effec
either an intimidatingly large number of documents or none at all are retrieved. [Harman, JA
1992] Classical Boolean models also tend to produce counter-intuitive results because of th
or-nothing characteristic, e.g., in response to a multi-term OR, “a document containing a
many of] the query terms is not treated better than a document containing one term.” [Salton
IP&M, 1988] Similarly, in response to a multi-term AND, “[A] document containing all but o
query term is treated just as badly as a document containing no query term at all.” [Salton
IP&M, 1988] A number of extended boolean models have been developed to provide ranke
put, i.e., provide output such that some documents satisfy the query condition more closel
others. [Lee, SIGIR ‘94] These extended boolean models employ extended boolean ope
(also called “soft boolean” operators).

Extended boolean operators make use of the weights assigned to the terms in each docum
classical boolean operator evaluates its arguments to return a value of either true or false.
truth values are often represented numerically by zero (false — or in IR terms “doesn’t m
given document”) and one (true — or in IR terms “matches given document”). An extended
ean operator evaluates its arguments to a number in the range zero to one, correspondin
estimated degree to which the given logical expression matches the given document. Lee [
‘94] has examined a number of extended Boolean models [Paice, 1984] [Waller et al., 1
[Zimmerman, 1991] and proved that by certain significant (but not necessarily theonly signifi-
cant) criteria, a model called “p-norm” [Salton et al., CACM 1983] has the most desirable prop
ties. By “most desirable” is meant that thep-norm model tends to evaluate the degree to which
document matches (satisfies) a query more in accordance with a human user’s judgment th
other models. For each of the other models examined, there are cases where the model’s
tion of the degree of query/document match is at variance with a human user’s intuition. In
of those cases, thep-norm model’s evaluation of match agrees with a human user’s intuition.
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Given a query consisting of n query termst1, t2, …, tn, with corresponding weightswq1, wq2, …,
wqn, and a documentD, with corresponding weightswd1, wd2, …, wdn for the samen terms, thep-
norm model defines similarity functions for the extended boolean AND and extended boolea
of the n terms. The extended boolean AND function computes the similarity of the given d
ment with a query that ANDs the given terms together. Similarly, the extended boolean OR
tion computes the similarity of the given document with a query that ORs the given te
together. Each similarity is computed as a number in the closed interval [0, 1]. More elab
boolean queries can obviously be composed from the AND and OR functions. The extended
ean functions for thep-norm model are given by:

and

Thep-norm model has a parameter that can be used to “tune” the model; most of the other m
studied by Lee also have such a parameter, though the effect and interpretation of the par
varies with the model. The parameterp in thep-norm model can vary from one to infinity and ha
a very clear interpretation. Atp= infinity, thep-norm model is equivalent to the classical boolea
model; AND corresponds to strict phrase assignment (i.e., all the components of the phras
be present for the AND to evaluate to non-zero), OR to strict thesaurus class assignmen
presence of any one member of the class is sufficient for the OR to evaluate to one; there
additional score if two or more are present.). At low to moderatep, e.g., between 2 and 5, AND
corresponds to loose phrase assignment, i.e., “the presence of all phrase components i
more than the presence of only some of the components; terms are not compulsory.” That
p-norm AND generalizes the strict boolean AND in the sense that a single low-weighted
substantially lowers the total similarity score, even if all the other terms have high weights. O
other hand, thep-norm AND differs from the strict boolean AND because a single zero weigh
i.e., missing, term does not reduce the total similarity score to zero. Similarly, at low to mod
p, OR corresponds to loose thesaurus class assignment, i.e., “the presence of several term
class is worth more than the presence of only one term.” In other words, thep-norm OR general-
izes the strict boolean OR in the sense that a single high-weighted term can produce a fairl
total similarity score even if all the other terms are low-weighted or missing (zero weighted)
the other hand, thep-norm OR differs from the strict boolean OR because a single high-weigh
term is not enough to maximize the similarity score; additional non-zero terms will increas
total score to some degree. Atp = 1, thep-norm model reduces to the pure “vector space” mod
which is discussed in the next section, i.e., “terms are independent of each other; distin
between phrase and thesaurus assignment disappears.” In fact, atp = 1, AND and OR become
identical. [Salton, et al., CACM 1983] They both become identical to cosine similarity, discu
in the next section.
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The classical boolean operators AND and OR are binary, i.e., they connect two terms. How
they are also associative, i.e.,t1 AND (t2 AND t3) is equivalent to (t1 AND t2) AND t3. This is not
true for thep-norm model (and some of the other extended boolean models). Thep-norm model
(and the other models with the same problem) circumvent this difficulty by defining the exte
boolean operators as n-ary, i.e., connecting n terms, rather than binary. So the above b
expression becomes AND (t1, t2, t3). {Lee, SIGIR ‘94] This expression is true if and only if al
three terms are present.

The p-norm model supports assignment of weights to the query terms as well as the docu
terms. Thep-norm formulas extend to this case in a quite straightforward manner. The weight
relative rather than absolute, e.g., the query (t1, 1) AND (t2, 1) with a weight of one assigned to
each term is exactly equivalent to the query (t1, 0.1) AND (t2, 0.1) with a weight of 0.1 assigned to
each term. This is so because thep-norm formulas normalize the query weights. Relative weigh
are easier and more natural for the user to assign than absolute weights. It is easier for a
say thatt1 is more important (or even twice as important) thant2 than to say exactlyhow impor-
tant either term is. {Lee, SIGIR ‘94]

A further degree of flexibility can be achieved in thep-norm model by permitting the user to
assign a different value ofp to each boolean operator in a given boolean expression. This all
the user to say, e.g., that a strict phrase interpretation should be given to one AND in the
expression, a looser interpretation to another AND in the same expression, etc. {Salton
CACM 1983]

What makes the p-norm model superior to the alternatives surveyed by Lee? Its primary a
tage is thatit gives equal importance to all its operands.This doesnot mean that it ignores docu-
ment and term weights. On the contrary, the document weights (assigned typically by the pro
that indexes the document collection), and the query weights (assigned typically by the use
formulates the query, although automatic modification of these weights is discussed in a late
tion), are essential elements of thep-norm functions as given above. What “equal importanc
means is that thep-norm functions evaluate all term weights in the same way; they do not g
special importance to certain terms on the basis of their ordinal positions, i.e., any permutat
term order is equivalent to any other. Moreover,p-norm does not give special importance to th
terms with minimum or maximum weights, to the exclusion of other terms. For example, on
two high-weighted query terms in a given document will yield a high (relatively close to 1) va
of a p-norm OR for the given document relative to the given query. It doesn’t matter in the
whichterms are highly weighted. Moreover, if other query terms are also present in the given
ument, they will add to the value of the OR even if they have neither the maximum nor the m
mum weight in the set of query terms matching the given document (“match” terms).

A probabilistic form of extended boolean has been developed [Greiff, SIGIR ‘97] in whic
probabilistic OR is computed in terms of the probability of its component terms, and similarly
AND. See section on “Bayesian Inference Network Model” for further details.

The commercial IR system, Topic, supports a form of extended boolean query called a “to
These queries can combine strict and extended boolean operators. See discussion in sect
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Experiments have shown that the extended boolean model can achieve greater IR perfo
than either the classical boolean or the vector space model. But there is a price. Formulating
tive extended boolean queries obviously involves more thought and expertise in the query d
than formulating either a classical boolean query, or a simple set of terms with or without we
as in the vector space model.

6. Vector Space Approach

6.1 Building Term Vectors in Document Space

One common approach to document representation and indexing for statistical purposes is
resent each textual document as a set of terms. Most commonly, the terms are words ex
automatically from the documents themselves, although they may also be phrases, n-gra
manually assigned descriptor terms. (of course, any such term-based representation sa
information about the order in which the terms occur in the document, syntactic information,
Often, if the terms are words extracted from the documents, “stop” words (i.e., “noise” w
with little discriminatory power) are eliminated, and the remaining words are stemmed so
only one grammatical form (or the stem common to all the forms) of a given word or ph
remains. (Stop lists and stemming can sometimes be avoided if the terms aren-grams — see dis-
cussion below.) We can apply this process to each document in a given collection, generatin
of terms that represents the given document. If we then take the union of all these sets of
we obtain the set of terms that represents the entire collection. This set of terms defines a “
such that each distinct term represents one dimension in that space. Since we are repre
each document as a set of terms, we can view this space as a “document space”. [Salton
[Salton, 1989]

We can then assign a numeric weight to each term in a given document, representing an e
(usually but not necessarily statistical) of the usefulness of the given term as a descriptor
given document, i.e., an estimate of its usefulness for distinguishing the given document
other documents in the same collection. It should be stressed that a given term may receive
ferent weight in each document in which it occurs; a term may be a better descriptor of one
ment than of another. A term that is not in a given document receives a weight of zero in
document. The weights assigned to the terms in a given documentD1 can then be interpreted a
the coordinates ofD1 in the document space; in other words,D1 is represented as a point in docu
ment space. Equivalently, we can interpretD1 as a vector from the origin of document space to t
point defined byD1’s coordinates.

In document space, each documentD1 is defined by the weights of the terms that represent
Sometimes, it is desirable to define a “term space” for a given collection. In term space, eac
ument is a dimension. Each point (or vector) in term space is a term in the given collection
coordinates of a given term are the weights assigned to the given term in each document in
it occurs. As before, a term receives a weight of zero for a document in which it does not o
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We can combine the “document space” and “term space” perspectives by viewing the colle
as represented by a document-by-term matrix. Each row of this matrix is a document (in
space). Each column of this matrix is a term (in document space). The element at rowi, columnj,
is the weight of termj in documenti.

A query may be specified by the user as a set of terms with accompanying numeric weights
query may be specified in natural language. In the latter case, the query can be processed
like a document; indeed, the query mightbea document, e.g., a sample of the kind of docume
the user wants to retrieve. A natural language query can receive the usual processing, i.e., r
of “stop” words, stemming, etc., transforming it into a set of terms with accompanying weig
(Again, stoplists and stemming are not applicable if the queries and terms are described u
gram terms.) Hence, the query can always be interpreted as another document in documen
Note: if the query contains terms that are not in the collection, these represent additional d
sions in document space.

An important question is how weights are assigned to terms either in documents or in quer
variety of weighting schemes have been used. Given a large collection, manual assignm
weights is very expensive. The most successful and widely used scheme for automatic gen
of weights is the “term frequency * inverse document frequency” weighting scheme, comm
abbreviated “tf*idf ”. The “term frequency” (tf) is the frequency of occurrence of the given ter
within the given document. Hence,tf is a document-specific statistic; it varies from one docume
to another, attempting to measure the importance of the term within a given document. By
trast, inverse document frequency (idf) is a “global” statistic;idf characterizes a given term within
an entire collection of documents. It is a measure of how widely the term is distributed ove
given collection, and hence of how likely the term is to occur within any given documen
chance. Theidf is defined as “ln (N/n)” whereN is the number of documents in the collection an
n is the number of documents that contain the given term. Hence, the fewer the document
taining the given term, the larger theidf. If every document in the collection contains the give
term, theidf is zero. This expresses the commonsense intuition that a term that occurs in
document in a given collection is not likely to be useful for distinguishing relevant from non-r
vant documents. Or what is equivalent, a term that occurs in every document in a collection
likely to be useful for distinguishing documents about one topic from documents about an
topic. To cite a commonly-used example, in a collection of documents about computer scie
software, the term “computer” is likely to occur in all or most of the documents, so it won’
very good at discriminating documents relevant to a given query from documents that are no
evant to the given query. (But the same term might be very good at discriminating a docu
about computer science from documents that are not about computer science in another co
where computer science documents are rare.)

Computing the weight of a given term in a given document astf*idf says that the best descriptor
of a given document will be terms that occur a good deal in the given document and very lit
other documents. Similarly, a term that occurs a moderate number of times in a moderate p
tion of the documents in the given collection will also be a good descriptor. Hence, the term
are the best document descriptors in a given collection will be terms that occur with modera
quency in that collection. The lowest weights will be assigned to terms that occur very i
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quently inany document (low-frequency documents), and terms that occur in most or all o
documents (high frequency documents).

6.2 Normalization of Term Vectors

To allow for variation in document size, the weight is usually “normalized”. Two kinds of norm
ization are often applied. [Lee, SIGIR ‘95] The first is normalization of the term frequency,tf”.
The tf is divided by the “maximum term frequency,”tfmax. The “maximum term frequency” is the
frequency of the term that occurs most frequently in the given document. So the effect of no
izing term frequency is to generate a factor that varies between zero and one. This kind of no
ization has been called “maximum normalization” for obvious reasons. A variation is the form
0.5 + (0.5*(tf/tfmax)) which causes the normalized tf to vary between 0.5 and 1. In this form,
normalization has been called “augmented normalized term frequency”. The purpose and ef
term frequency normalization (in either form) is that the weight (the “importance”) of a term
given document should depend on its frequency of occurrence relative to other terms in the
document, not its absolute frequency of occurrence. Weighting a term by absolute freq
would obviously tend to favor longer documents over shorter documents.

However, there is a potential flaw in “maximum normalization.” The normalization factor fo
given document dependsonly on the frequency of the most frequent term(s) in the docume
Consider a documentD1 in which most of the terms occur with frequencies in proportion to th
importance in discriminating the document’s primary topic. Now suppose that one term has
proportionately high frequency, e.g., important termst1, t2, andt3 each occur twice inD1 but for
some stylistic reason equally important termt4 occurs six times, the maximum for any term inD1.
Then the frequency oft4 will drag down the weights of termst1, t2, andt3 by a factor of three in
D1 relative to their weights in some other similar documentD2 in which t1, t2, t3, andt4 have equal
frequencies. (The same problem arises with the “augmented normalized term frequency” b
less extreme degree since the high frequency term will have a weight of one as with max
normalization but it cannot drag the weights of the other terms below 0.5.)

A commonly-used alternative to normalizing the term frequency is to take its natural log p
constant, e.g., “log (tf) + 1.” This technique, called “logarithmic term frequency,” doesn’t expli
itly take document length or maximum term frequency into account but it does “reduce the im
tance of raw term frequency in those collections with widely varying document length.” It
reduces the effect of a term with an unusually high term frequency within a given docume
general, it reduces the effect ofall variation in term frequency, since for any two term frequencie
tf1 andtf2 > 0 such thattf2 > tf1:

The second kind of normalization is by vector length. After all of thetf*idf term weights for a
given document, i.e., all the components of the document vector, have been calculated,

tf 2( )log 1+
tf 1( )log 1+

-----------------------------
tf 2

tf 1

------<
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component of the vector is divided by the Euclidean length of the vector. The Euclidean leng
the vector is the square root of the sum of the squares of all its components. Dividing each c
nent by the Euclidean length of the vector is called “cosine” normalization because the no
ized vector has unit length and its projection on any axis in document space is the cosine
angle between the vector and the given axis.

Augmented maximum (term frequency) normalization and cosine normalization can be use
arately or together.

Cosine normalization reduces the problem (described above) of vector component weight
given document being distorted by a single term with unusually high frequency. (But see th
cussion below of pivoted unique normalization which further addresses the problem.) The
malization factor (vector length) is a function ofall the vector components so the effect of a sing
term with a disproportionately high frequency is diluted by the weights of all the other terms.
thermore, the normalization factor is a function of eachtf*idf term weight, not just thetf factor of
that weight. So, the weight of a high frequency term may also be lessened by its idf factor.

However, as Lee has pointed out, situations exist in which maximum normalization may ac
do better than cosine normalization. Consider a case where documentD1 deals with topicTA and
contains a set of terms relevant toTA. Now consider documentD2 which deals withTA and also
deals with several other topicsTB, TC, etc. Suppose thatD2 contains all the terms thatD1 contains,
i.e., terms relevant toTA, but also contains many other terms relevant toTB, TC, etc. Since cosine
normalization of a given document takes into account the weights of all its terms, the effect i
the weights of the terms relevant toTA will be dragged down inD2 (relative to the weights of the
same terms inD1) by the weights of the terms relevant toTB, TC, etc. As a result, a user trying to
retrieve documents relevant toTA will be much more likely to retrieveD1 thanD2 even if they
both coverTA to the same extent. Maximum normalization will do better in this case provided
the maximum frequency term relevant toTA in D2 is about as frequent as the maximum frequen
term inD2 relevant to any of the other topics. In that case, none of the other topics will drag d
the weights ofTA’s terms inD2. Lee concludes that in some cases, better precision and recal
be achieved by using each normalization scheme for retrieval separately and then mergi
results of the two retrieval runs. (Merging retrieval runs is discussed further below.)

Cosine normalization, as noted above by Lee, tends to favor short documents over long
especially in the case where the short document is about a single topic relevant to a given
and the longer document is about multiple topics of which only one is relevant to the given q
Singhal et al. [SIGIR ‘96] have investigated this problem, and produced a new weighting sc
to correct the problem. They studied fifty queries applied to a large document collection (74
documents); queries and documents were taken from the TREC 3 competition. Their study
pared probability of retrieval to probability of relevance as functions of document length.
study confirmed the expectation that short documents were more likely to be retrieved than
probability of relevance warranted, while longer documents were less likely to be retrieved
their probability of relevance warranted. This pattern was found to apply to query sets
retrieved relevant documents from six diverse sub-collections of the TREC collection. A na
consequence is that for any collection and query set to which the pattern applies, there wi
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“crossover” document length for which the two probability curves intersect, i.e., a docum
length for which the probability of relevance equals the probability of retrieval.

These observations led Singhal et al. to develop a “correction factor”, a function of docu
length that maps a conventional “old” document length normalization function, e.g., cosine
malization, into a “new” document normalization function. The correction factor rotates the
normalization function clockwise around the crossover point so that normalization values c
sponding to document lengths below the crossover point are greater than before (so that th
ability of retrieval for these documents is decreased), and normalization values correspond
document lengths above the crossover point are less than before (so that the probab
retrieval for these documents is increased). (Remember that term weights for a given doc
aredividedby the normalization factor.) The crossover point is called the“ pivot” . Hence, the new
normalization function is called “pivoted normalization.”

Note that since the pivoted normalization method described below is based on correcting th
ument normalization so that the distribution of probability of retrieval coincides more closely
the probability of relevance (as a function of document length), this weighting method could
imately be called “probabilistic”. However, it differs from the probabilistic methods discus
below in section 7, because the probability distributions have been determined experimenta
observing actual TREC collections, rather than being derived from a theoretical model.

The pivoted normalization is easily derived. Before the normalization is corrected, i.e., piv
the relation betweennew normalization andold normalization is:

new normalization = old normalization

This is a straight line with slope one through the origin of a graph, with anew normalizationver-
tical axis, and anold normalizationhorizontal axis. This line is rotated clockwise around th
pivot, i.e., around the normalization value corresponding to the crossover document length
this value “pivot.” After the rotation, the form of the new line (by elementary analytic geomet
is:

where the slope of the new line is less than one andK is a constant. (Note that although theold
normalizationfunction, e.g., cosine normalization, is not a linear function of term weights,
new normalization isa linear function of theold normalization.) K is evaluated by recognizing
that since the line was rotated around the pivot point,new normalizationequalsold normalization
at the pivot point. Hence, substitutepivot for bothnew normalizationandold normalizationin the

new normalization slope old normalization• K+=
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above linear equation, solve for K and then substitute this value of K back into the equation
result (withnew normalization now calledpivoted normalization) is:

whereslopeandpivotare constant parameters for a given collection and query set. Since the
ing of documents in a given collection for a given query set is not affected if the normaliza
factor for every document is multiplied (or divided) by the same constant, these two param
can be reduced to one by dividing the above normalization function by the constant(1.0-
slope)*pivot. Singhal et al. found that the optimum value of this parameter was surprisingly c
to constant across a variety of TREC sub-collections. Hence, an optimum parameter value l
from training experiments on one collection could be used to compute normalization facto
other collections.

Singhal et al. also examined closely the role of term frequencies and term frequency norm
tion in term weighting schemes. First, they found (by studying the above experiments)
though, as noted above, cosine normalization favors short documents over long ones, it also
extremely long documents. This phenomenon is magnified by pivoted normalization. Fu
they noted that term frequency is not an important factor in either cosine normalization or d
ment retrieval. This is because (1) the majority of terms in a document only occur once, an
log(tf) + 1 is commonly used in place of raw term frequency, which has a “dampening effect
tf > 1. Hence, the cosine normalization factor for a given document will be approximately equ
the square root of the number of unique terms in the given document, i.e., it increases les
linearly with number of unique terms. But document retrieval is generally governed by the n
ber of term matches between document and query, and hence making the usual simp
assumption that occurrence of a given term in a given document is independent of the occu
of any other term, the probability of a match between query and document varies linearly wi
number of unique terms. The purpose of the document normalization is to adjust the term w
for each document so that the probability of retrieving a long document with a given query i
same as the probability of retrieving a short document. The conclusion is that cosine norm
tion reduces term weights by too little for very large documents. Singhal et al. propose to re
this situation by replacing the cosine normalization value, i.e., theold normalization, by # of
unique terms, in the pivoted normalization function.

Singhal et al. argue further that maximum normalization, i.e.,tf/tfmax, is not the optimum method
of normalizing term frequency because what matters is the frequency of the term relative
frequencies of all the other descriptor terms, not just relative to the frequency of the mos
quently occurring term. Hence, they propose using the function:

pivoted normalization slope old normalization• 1.0 slope–( ) pivot•+=

1 tf( )log+
1 average tf( )log+
----------------------------------------------
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for normalized term frequency. This function has the property that its value is one for a
whose frequency is average for the given document, greater than one for terms whose frequ
are greater than average, and less than one for terms whose frequency is less than averag

Hence, Singhal et al. propose weighting each term in a document by the above term freq
normalization function divided by the pivoted normalization, i.e.,

Note that theidf is absent from this weighting function. This is because, for reasons explaine
the next section, the idf is normally used as a factor in the weights of query terms rather than
ument terms. That is, if a given term occurs in a query and also in some documents in the c
tion being queried, theidf will be used as a factor in the weight of that term in the query vec
rather than in the corresponding document vectors.

Singhal et al. tested this improved term weighting function against a set of TREC sub-collec
and found that for optimum parameter values, it performed substantially better than the
familiar product oftf/tfmax and1/cosine normalization.

It should be noted that this improved weighting scheme compensates for both of the pro
noted by Lee. The effect of a term with a disproportionately high frequency in a given docu
is greatly reduced by the new term frequency normalization function, partly because th
quency of the given term is divided by the average term frequency rather than the maximum
frequency, and partly because both the given term frequency and the average term freque
replaced by their logs. The advantage of a short document dealing entirely with a topic relev
a given query, over a longer document dealing with the relevant topic and several nonreleva
ics, is compensated by pivoted normalization which reduces the probability of retrieval of
documents and increases the probability of retrieval of long documents.

All of the normalization schemes discussed above (and in the following section) are based o
underlying assumption: that document relevance is independent of document length. Relev
assumed to be wholly about how much a given document isabouta given topic. Variation of doc-
ument length is viewed as a complication in computing document relevance. Hence, all of th
malization schemes are aimed at factoring out the effects of document length.

If documentD2 is longer than documentD1, relevance computation is assumed to be distorted
one of two ways. IfD2 is largely or entirely about the same topicTi asD1, then relevance is dis-
torted by the fact that terms characteristic of the given topic will tend to occur with greater
quency inD2. If D2 is about a number of different topics,Ti, Tj, Tk, etc., and only a small part of
D2 is about the same topicTi asD1, then the material about the other topics dilutes the effect
the relevant material, makingD2 seem less relevant toTI thanD1, even though both document
may contain the same information aboutTi. Normalization is largely aimed at overcoming thes
two kinds of distortion.

1 tf( )log+
1 average tf( )log+
----------------------------------------------

slope # of unique terms• 1.0 slope–( ) pivot•+
-------------------------------------------------------------------------------------------------------------------
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Completely ignored is a third possibility: that the user actually prefers either short or long d
ments aboutTi. If the user prefers the longer document,D2, e.g., she needs all the details it pro
vides, thenD2 is more relevant toTi relative the users needs. Or to use a term that may be m
appropriate,D2 may be morepertinentor moreusefulto the user in meeting her present informa
tion need, as expressed byTi. Of course,D1 may be more useful; perhaps the user needs a con
summary of the main facts or ideas aboutTi, and has neither time nor need for a more detail
exposition. In either case, document size is an important parameter in computing the docu
relevance for purposes of selection and ranking in the retrieval set returned to the user. Thi
cates that either the document and topic vectors should not be normalized, or that the doc
size should enter explicitly into the document topic similarity computation. This issue is discu
further in section 6.4, which discusses document-topic similarity functions.

6.3 Classification of Term Vector Weighting Schemes

Since the various alternatives discussed above for computing and normalizing term weigh
be (and have been) used in a variety of combinations, a conventional code scheme (ass
with a popular IR research engine called the SMART system) has been defined and w
adopted to classify the alternatives. [Salton, IP&M, 1988] [Lee, SIGIR ‘95] See Table 1.

The weight of a given term is specified as the product of aterm frequencyfactor, adocument fre-
quencyfactor, and adocument length normalizationfactor. For each of these three factors, two
more alternatives are available. Each alternative for each factor is given a code. See table
codes for the term frequency factor are: “b” (term frequency is ignored; the term frequency fact
is one if the term is present in the given document, zero otherwise), “n” (use theraw term fre-
quency, the number of times the term occurs in the given document), “a” (use the “augmented
normalized term frequency” as defined in the previous section), “l” (use the “logarithmic term fre-
quency” as defined in the previous section), and “L” (use “average term frequencybased normal-
ization” as defined in the previous section). (A code for the pure “maximum normalization” d
not appear to have been defined.) The codes for the document frequency factor are; “n” (use 1.0,
document frequency factor is ignored), “t” (use “idf” as the document frequency factor). Th
codes for the normalization factor are: “n” (use 1.0; no document length normalization is used
“c” (use cosine normalization, i.e., 1/(Euclidean vector length), and “u” (use “pivoted unique nor-
malization” as discussed in the previous section). A weighting scheme is constructed in “Ch
menu” form: one from column A (term frequencyfactor), one from column B (document fre-
quencyfactor), and one from column C (document normalization factor). For example, “lnc”
means, “Compute the weight of each term in a given document as the product of thelogarithmic
term frequency(l) of the given term, 1.0 (ignore theidf of the term), and thecosine normalization
factor (c) of the document vector for which the term’s weight is being computed.” (Multiplying
the cosine normalization factor is equivalent to dividing by the Euclidean vector length as de
in above.) As a further refinement, it is common to use a different weighting scheme for the q
than for the documents in the collection being queried. Therefore, the complete specificat
the weighting scheme involves two triples, e.g.,lnc-ltc describes a scheme where the docume
vectors are weighted as above, and the query vectors are weighted the same except that ea
term weight is also multiplied by the idf of the given term in the collection to which the quer
being applied. (Note that the query is weighted as a “document” so that theterm frequencyfactor
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Table 1: Components of schemes for weighting given term in given document

Term Frequency within Document (Unnormalized or Normalized)

 Code  Formula for Component                   Description of Component

b                1.0 Term frequency = 1 if term is in given document,
= 0 if term is not in given document.

n                tf “Raw” term frequency, i.e., number of occur-
rences of term in given document.

a “Augmented” term frequency. First, term fre-
quency of given term is normalized by frequency
of most frequent term in document (“maximum”
normalization) to allow for importance of term
relative to other terms in document. Then, it is
further normalized (“augmented”) so resulting
value is in range from 0.5 to 1.0.

l
Logarithmic term frequency. This reduces impor-
tance of raw term frequency, e.g., if has twice
the frequency of in given document, the ratio of
the logs will be much smaller.

L

Average term frequency based normalization. See
discussion in previous section.

Document Frequency (Number containing Term) within Collection

n              1.0 Number of documents containing given term is
ignored. Original term frequency is not modified.

t

Original term frequency is multiplied by inverse
document frequency (idf) where N is the total
number of documents in the collection, and n is
the number of documents containing the given
term. Hence, term that occurs in many documents
counts for less than term that occurs in few (or
one).

0.5 0.5
tf

maxtf
---------------⋅+

ln tf 1.0+ t2

t1

1 tf( )log+
1 average tf( )log+
----------------------------------------------

N
n
----ln
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measures term frequency within the query, and thedocument lengthfactor normalizes for query
length. Only theidf factor in the weight of a query term is a measure of the distribution in the c
lection being queried, not in the query itself.) This scheme has exhibited high retrieval effec
ness for the Text REtrieval Conference (TREC) query sets and collections. [Lee, SIGIR
However,Lnu-ltc weighting exhibited even better effectiveness against TREC3 and TRE
query sets and collections. [Singhal et al., SIGIR ‘96] [Buckley et al., TREC 4]

The weighting scheme classification described above is open-ended. Indeed, the SMART
originators of this classification, have only recently added theL option to the term frequency fac-
tor, and theu option to the document length normalization factor.

Note that although theidf of a given term is a statistic that characterizes that term relative
given collection of documents, not relative to a query, it is common to use theidf to weight the
occurrence of the given term in queries being applied to the collection, not to weight its o
rence in the document vectors that describe the collection itself. Thelnc-ltc andLnu-Ltuweight-
ing schemes are examples. There are simple reasons for this. First, it is more efficient for pu
of collection maintenance. Whenever new documents are added to the collection (or old
ments are removed), the idf must be recomputed for each descriptor term in the affected
ments. It would be inefficient to recompute the weight of such a term in every document in w
it occurs. Moreover, it is unnecessary for the purposes of a query/document similarity calcul
since the document ranking produced for a given query will be exactly the same whether the
enter the computation as factors in the query term weights, or factors in the document
weights, or both.

In a weighting scheme liketf*idf , the normalized term frequency of a given term in a given doc
ment ismultipliedby its idf so that “good” descriptor terms (which characterize only a relativ
small number of documents in a given collection) are weighted more heavily than “bad” des
tor terms (which are so common that they occur in a great many documents in the given c
tion, and hence are of little value in discriminating between relevant and non-relevant docum

Document Length Normalization Component

n               1.0 Variation in document length is ignored.

c
Weight of given term in given document is nor-
malized by the length of the document’s term vec-
tor, so that long documents are not favored over
short documents.

u

+

Pivoted normalization. See previous section.

Table 1: Components of schemes for weighting given term in given document (Continued

1

wi
2

i
∑

----------------

1
slope # of  unique terms•( )

--------------------------------------------------------------------

1 slope–( ) pivot•
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An alternative approach is tosubtractfrom the normalized term frequency of the given term th
“average” normalized frequency of the term averaged over all the documents in the given c
tion. Here, “average” may be “mean”, “median”, “or some other measure of commonal
[Damashek, Science, 1995] (This is equivalent to subtracting from each document vector a
troid” vector, i.e., a vector that is the average of all the document vectors in the collection.)
that a term that occurs in a large proportion of the documents in the given collection will ha
larger average term frequency than a term that occurs in only a few documents. Hence, the
of subtracting the average is to reduce the weight of commonly used terms by more tha
weight of rarer terms. The centroid is a measure of commonality, of terms that are too widely
to be good document descriptors.

6.4 Computation of Similarity between Document and Query

Once vectors have been computed for the query and for each document in the given colle
e.g., using a weighting scheme like those described above, the next step is to compute a n
“similarity” between the query and each document. The documents can then be ranked acc
to how similar they are to the query, i.e., the highest ranking document is the document mos
ilar to the query, etc. While it would be too much to hope that ranking by similarity in docum
vector space would correspond exactly with human judgment of degree of relevance to the
query, the hope (borne out to some degree in practice) is that the documents with high sim
will include a high proportion of the relevant documents, and that the documents with very
similarity will include very few relevant documents. (Of course, this assumes that the given
lection contains some relevant documents, an assumption that holds in TREC experimen
which can’t be guaranteed in all practical situations.) Ranking of course, allows the human u
restrict his attention to a set of documents of manageable size, e.g., the top 20 documents

The usual similarity measure employed in document vector space is the “inner product” be
the query vector and a given document vector. [Salton, 1983] [Salton, 1989] The inner pr
between a query vector and a document vector is computed by multiplying the query vector
ponent (i.e., weight),QTi for each termi, by the corresponding document vector compone
weight,DTi for the same termi, and summing these products over alli. Hence the inner product is
given by:

whereN is the number of descriptor terms common to the query and the given document. If
vectors have been cosine normalized, then this inner product represents the cosine of th
between the two vectors; hence this similarity measure is often called “cosine similarity.”
maximum similarity is one, corresponding to the query and document vectors being ide
(angle between them zero). The minimum similarity is zero corresponding to the two vectors
ing no terms in common (angle between them is 90 degrees).

One problem with cosine similarity, noted by both Salton and Lee and discussed above, is
tends to produce relatively low similarity values for long documents, especially (as Lee p

QTi DTi⋅
i=1

N

∑
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out) when the document is long because it deals with multiple topics. But Lee’s solution (
tioned above and discussed in more detail in section 6.2) isnot to use a more complicated similar
ity measure in place of cosine similarity, but rather to merge the result of a retrieval using c
similarity with the result of a retrieval using term frequency normalization, e.g., maximum
malization. In other words, Lee supplements cosine similarity rather than replaces it, thereb
ting the advantages of two relatively simple similarity measures. And the solution of Singh
al., discussed above in section 6.2, is to develop improved normalization factors for term w
ing, factors that do a better job of normalizing for document length and term frequency dur
single retrieval run, thereby eliminating the need for fusion of separate runs.

In an earlier approach from the same research group, Salton and Buckley [TREC 2, 1994
with the problem of long documents by combining the usual cosine similarity of query and d
ment (“global” similarity) with similarity of the query to parts of the document (“local” simila
ity). The parts they tried included sentences and paragraphs. In other words, if two documeD1
andD2 have comparable similarity to a given query, butD1 also contains a sentence or paragra
that is particularly similar to the query, thenD1 will be given a higher similarity value thanD2.
They have also tried combining multiple local similarity measures, e.g., sentence and para
similarity, with the global similarity. However, the Singhal et al. enhanced term weighting (Lnu)
method, by improving document length normalization, and term frequency normaliza
reduces the importance of such local similarity measures. Buckley et al. [TREC 4] repor
usingLnu weighting reduces the improvement gained by their local/global similarity meas
from 15% to 3%. They continue to experiment with sophisticated similarity measures that
into account the actual location of every descriptor term. However, their motivation is now le
correct for document length bias, and more to create a similarity measure to which non-stati
e.g., linguistic and certainty, factors at the term level can be added.

Another approach to the problem of large, or multi-topic, documents is to break each large
ment into sections, commonly called “passages,” and treat each passage as a “document.” [
SIGIR ‘94] In other words, the system computes the similarity between each passage a
user’s query. This enables the system to determine the “best” passage, i.e., the passage in
document most similar (and hence hopefully most relevant) to the query. This passage then
to represent the document in any further computations or retrievals involving the same qu
any similar information need. Passages have been calculated in a number of ways:sectionsas
determined by document markup [Wilkinson, SIGIR ‘94], passages as delimited by the au
e.g., sections, paragraphs, sentences, etc. [Salton et al., SIGIR ‘93], clusters of paragraphs
size passages, etc. A document may be partitioned into fixed size disjoint passages. Fixed
passages may be a fixed number of terms, e.g., 50 words to 600 words each [Kaszkiel
SIGIR ‘97], with each passage beginning immediately after the preceding passage. Zobe
[IP&M, 1995] employ passages of 1000 to 2000 words, which they callpages; the passages are
generated by accumulating paragraphs until the desired length is reached, so that the pass
not exactly fixed length, but always end on a paragraph boundary. Alternatively, fixed-size
sages may be overlapped, e.g., if the passages are eachp terms long, each passage may startp/2
terms beyond the start of the preceding passage. [Callan, SIGIR ‘94] These fixed size, overla
passages have been calledwindows, because they can be viewed as obtained by sliding a wind
p terms long over the text. “[E]xperiments have shown that fixed size passages are at le
effective — and marginally more efficient — than their varying counterparts.” [Allan, SIGIR ‘9
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(The superiority of fixed length, overlapping and non-overlapping, passages is also suppor
the experiments of Kaszkiel et al. [SIGIR ‘97] discussed below.) These passage approach
fers from the Salton and Buckley “global/local approach” in that only local similarities betwe
query and the passages of a document are computed. Documents are ranked according to
local similarity in the given document for the given query, i.e., the passage in a each docu
that is most similar to the given query. Presumably, the benefit of this approach too is reduc
incorporation of an improved document normalization scheme such asLnu. (However, Kaszkiel
et al. found that the pivoted document length normalization improved passage length retriev
all those cases where the passages varied substantially in length.)

Hearst et al. {SIGIR ‘93] approach global/local similarity in a novel way. First, they attemp
break a given document intomotivatedsegments, i.e., variable length segments such that
boundary between one segment and the next is the boundary between one subtopic and t
These segments, called “tiles,” may be multi-paragraph units.

The “tiling” method begins by partitioning the document into “blocks,” such that each blockk
sentences long. As a heuristic, Hearst choosesk to be the average paragraph length in sentenc
Note that this means that the length of a block in sentences may vary somewhat from one
ment to the next. Moreover, since the block size is a fixed number of sentences, blocks wil
somewhat in size (measured in terms) even within a given document, although they w
approximately equal.

The blocks are combined into topic-based segments, on the assumption that two cons
blocks are likely to be about the same topic if they are statistically similar, and likely to be a
different topics if they are not similar. Similarity is calculated for every pair of consecutive blo
in a given document. The similarity measure employed is the standard cosine similarity,
terms weighted according to the standardtf*idf formula. The novelty in employing this formula is
that the blocks are treated as the “documents,” while the document is treated as the doc
“collection.” Hence, in computing the weight of termti in block Bj of documentDk, tfi is the
unnormalized frequency of termti in Bj, while idfi is theidf of ti in the collection of blocks com-
prisingDk, i.e., it will be zero if it is present in every block ofDk, much higher if it is only present
in one or two blocks ofDk. The effect is that two consecutive blocksBj andBj+1 will be very sim-
ilar if they share a number of terms, the terms are relatively frequent inBj andBj+1, and are found
in few other blocks ofDk. By contrast, terms that are shared byBj andBj+1 but are spread fairly
uniformly throughout the entire document, will contribute much less to the inter-block simila

These consecutive block similarities are then graphed against block position in the documen
result is a function that peaks where consecutive blocks are very similar, and drops where th
very dissimilar. After this function is smoothed to eliminate small local fluctuations, the resul
function with peaks and valleys. The low points of the valleys are then taken to be the boun
of the tiles, segments that are each assumed to be about a single local subtopic.

These tiles can be used in a number of ways. Hearst et al. propose a two stage query, wh
user can request documents about topicT1, matchingT1 against an entire document, and abo
subtopicT2, matchingT2 against each block in documentDk that satisfiesT1. Note that this is dif-
ferent than combining a local and global similarity into a single similarity measure as Salton
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Buckley do. In the proposed Hearst approach, a document must separately satisfyboth the global
similarity to T1 and the local similarity toT2. Neither topic will unduly dilute the calculation of
similarity for the other topic. As a further enhancement, terms associated with the glob
“background” topicT1 could be eliminated when searching tiles forT2.

Tiles have also been used by Hearst et al. in a single stage query mode. Here, the idea is th
document in a collection is segmented into tiles, and each tile is then term indexed as a se
“virtual” document. The index for a given tile also identifies the actual document from whic
came. Given a query,Q, the best (most similar)N tiles (N = 200 in the reported experiment) ar
retrieved, and grouped by document of origin. Then, the similarity scores of the tiles in
group, i.e., originating in the same document, are summed. The actual documents are then
according to these sums. In the reported experiment using TREC data, retrieval using the
similarity sums produced substantially better precision than querying directly on indexes o
full text (actual) documents. Apparently, the tile method favored those portions of a documen
were most relevant to a given query.

Kretser et al. [SIGIR ‘99] carry the concept of locality-based similarity even farther than He
does with her tiles. They view a document collection as a sequence of words. They calcu
“score” for each word position in the sequence. Hence, the position of a word is its position
tive to the start of the collection,not relative to the document in which it occurs. Given a query
defined as a set of terms (words)t, the Kretser system computes a scoreCQ(x) for every positionx
in the collection. The score for a given word positionx depends on whether a query termt occurs
at that position, and on whether query terms occur within a certain distance of that position
farther a query term occurs from the word positionx being evaluated, the less its influence, th
smaller the “contribution” it makes toCQ(x). The scoreCQ(x) at word positionx is the sum of the
contributionsct(x,l) wheret is any query term,l is any word position in the document collection a
which t occurs, andct(x,l) is the contribution that query termt at word positionl makes to the
score at word positionx.

Kretser et al. tried out four different shapes for the contribution functionct(x,l): triangle, cosine,
circle, and arc. However, in all four cases,ct(x,l) was a function of (1)d =|x-l|, the maximum dis-
tance fromx at which a query term can make a contribution to the score atx, (2) ht, the “height” or
peak contribution, which is the contribution made by a query termt at positionx, and (3)st, the
“spread” of the contribution function for query termt, which determines the maximum distanc
dmax, at whicht can contribute to the score at word positionx. Note that the height and spread a
both functions oft itself. A scarce term t will have a greater spread; in other words, an occurre
of t is able to influence the score atx at a greater distance fromx than an occurrence of a commo
term. Similarly, a scarce termt contributes more proportionately than a common term to the sc
at x if it occurs atx, or if it occurs at any distance fromx within its spread. It is noteworthy tha
both the spread and the height are collection-based,not document-based functions. That is, “sca
city” means scarcity within the collection, not scarcity within any given document. For exam
the “spread” is defined asn/ft wheren is the number of unique words in the collection, andft is the
frequency oft, i.e., the number of times termt occurs in the collection. However, documen
boundariesdo play one role in the computation of the score at word positionx. The spread is not
allowed to cross a document boundary. Hence, the score at a word position near the begin
end of a document can not be influenced by a query term in an adjacent document.
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The scheme described above generates a similarity score for every positionx in the document col-
lection relative to a given queryQ. The similarities must be computed at runtime, when the qu
Q is supplied. However, as with conventional document-based systems, the collection is in
in advance as an inverted list, to facilitate the runtime similarity calculation. But Kretser’s in
must specifyword positionsfor every term in the collection, not just document occurrences as
conventional IR systems. Moreover, since it is intended that the query engine will return a ra
list of documents, the document boundaries must also be stored in the index. Various stra
are used to compress all of this information efficiently. The compression ratio varies with the
lection. For the four collections tested by Kretser et al., the ratio of index size to collection
varied from 18.9% to 23.1%. This compares with 2.6% to 6.8% for the corresponding docu
level indexes.

At runtime, given a queryQ, the system computes the similarity score of every word position
ative toQ. To rank documents, the system finds the highest scoring word position, and ad
score to an (initially zero) accumulator for the document in which it occurs. Then, it repeat
process for the next highest scoring word position. This 2nd word position may be in the
document, in which case its score is added to the same accumulator. Or, it may occur in a
document, in which case, it is added to a new accumulator. The process continues untilr non-zero
accumulators have been generated, wherer is the number of documents to be returned to the us
The documents are presented to the user in the order of the scores in their accumulators.

Kaszkiel et al. [SIGIR ‘97] performed experiments to compare various approaches to pas
including Hearst’stiles, Zobel’spages, Callan’s fixed-length overlappingwindows, non-overlap-
ping fixed length passages, Wilkinson’ssections, and paragraphs. Twelve different fixed leng
passage sizes from 50 words to 600 words were tried. The results indicated that fixed leng
sages, both overlapping and non-overlapping, of 150 words or more were “simple; highly e
tive; robust” for document retrieval. They scored as well or better than both whole docu
retrieval, and other passage methods, over the full range of experiments, e.g., for differen
sets, and different document normalization schemes. Several limitations of these exper
should be noted, however. Kaszkiel et al. note a couple of limitations themselves: First,
results do not rule out the possibility of further improvement through “combination of pass
level and document-level evidence” Second, they did not exploit (as did some of the pa
methods they cite, e.g., tiling) the possibility of achieving better document ranking by comb
multiple passage similarities for each document. There are other limitations that they do not
tion. Their study focused on using passage similarities to rank the whole documents in whic
passages occur. They do not study passages as units of retrieval themselves; indeed, it w
difficult for them to do so, since they employ TREC data for training and testing; TREC data
provides relevance judgments for whole documents, not for passages (let alone the divers
of passages compared here). Similarly, they do not study the interactive uses of passages,
presentation high-ranking passages to the use, as a basis for selecting either documents,
similar passages.

Most of the vector space similarity formulas discussed above assume that the vectors hav
normalized, with the intended effect that document length is factored out. In other words
intention is that a short document about topicTi, a long document containing a short passa
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aboutTi, and a long document entirely aboutTi will yield the same similarity to the topic state
mentTi itself. But as was noted in section 6.2, often the user has a preference for either lon
shorter documents about the topic of interest. This problem has not usually been addresse
research, but a number of possibilities are available.

One alternative, mentioned back in 6.2, is not to normalize the vectors at all. The effect of t
the inner product of unnormalized vectors (no term frequency normalizations, no vector le
normalization) is to generate similarity values that take into account both relevance and s
short documentD1 relevant toTi will receive a larger similarity value than a documentD0 totally
non-relevant, a long documentD3 containing a short passage relevant toTi will receive a similar-
ity value roughly equal to that received byD2, and a long documentD4 largely or entirely aboutTi
will receive the largest similarity value of all. This works well if the user prefers longer, m
detailed documents likeD4. But what if the user prefers shorter documents? Simple functions
available for inverting the similarity function just described so that the similarity values of
inverted function decrease as the similarity values of the original function increase. But thi
the perverse effect of giving the highest similarity values to documents that are non-relevan

Another alternative is to make size a separate and distinct parameter. Size can be made a s
component of both the topic description vector and each document vector. Hence, a match
category, e.g., small, medium, large, could increase the relevance by an amount that depen
the term weights assigned to that component. Or size could be taken out of the vector spac
gether, e.g., the algorithm could test the user’s size preference first, and then perform a di
vector inner product computation based on the user’s preference. The vectors would be unn
ized if the user preferred large documents, normalized (especially pivoted normalization)
user wanted equal preference to be given to documents about the given topic independe
size. Cosine normalization or some other normalization scheme specifically designed to
short relevant documents over long relevant documents would be applied to the vectors if th
preference were for “short and sweet.”

The inner product and its normalized form, cosine similarity, are not the only similarity funct
employed to compare a document vector with a topic vector (although they are by far the
widely used). A variety of “distance” functions, and other term matching functions are availa
For example, a family of distance metrics [Korfhage, 1997] is given by:

These metrics compute the distance in vector space between vectorsD1 andD2 in terms of the
componentsd1i of D1, the componentsd2i of D2, and a parameterp that determines which
chooses a specific metric from the family. Ifp=1, the metric is the city block distance, i.e., dis
tance measured as number of city blocks from one street intersection (corner) to another in
where the streets are laid out as a rectangular grid. Ifp=2, the metric is the familiar Euclidean dis
tance, i.e., the straight line distance in the vector space. (This is the same metric that is us
computing the length of a vector for purposes of Euclidean normalization.) If p=∞, the metric is
themaximal direction distance. That is, as p tends to infinity, the largest difference |d1i - d2i| tends

Lp D1 D2,( ) d1i d2i– p

i
∑[ ]1 p⁄

=
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to dominate all the others, and the function reduces to the absolute value of this maximum
ence. Since each vector component corresponds to one dimension, one direction, in vector
each difference between a pair of corresponding components is the distance between the
in a given direction. The maximal direction distance metric is the distance along the dime
where the vectors are farthest apart.

Apart from such distance metrics, there are a host of similarity formulas that “normalize
avoiding term frequencies altogether, i.e., functions that only count the number of terms
match and (sometimes) the number of terms that don’t match. One such popular function is
coefficient [van Rijsbergen, 1979]:

wherew is the number of terms common to vectorsD1 andD2, n1 is the number of non-zero terms
in D1, andn2 is the number of non-zero terms inD2. Note that the denominator here performs
kind of normalization, so that a short documentD1 will get a high score relative to a short topi
descriptionD2 to which it is relevant. A long documentD3 relevant toD2 will get a lower Dice
score provided that the additional text inD3 contains terms that are not inD1 and also not in the
topic description (greatern1, samew). This could happen ifD3 contains long sections not relevan
to D2, It could also happen ifD3 contains additional discussion of the topic described byD2, but
this additional discussion uses terms that were overlooked by the user who specified topicD2. On
the other hand, ifD3 andD1 contain most of the same topic-relevant terms thatD2 contains, but
D3 just uses them more frequently and uses few additional terms thatD1 doesn’t use, thenD3 and
D1 will receive similar Dice scores despite their difference in length.

Another common similarity function is Jaccard’s coefficient [van Rijsbergen, 1979]:

where w (as before) is the number of terms common to vectorsD1 andD2, N is the total number
of distinct terms (not term occurrences!) in the vector space (union ofall document and topic vec-
tors), andz is the number of distinct terms (not term occurrences!) that are neither inD1 nor inD2.
In other words,N-z is the total number of distinct terms that occur inD1 or D2 or both. Note that
the value of the Jaccard function is lower, the more distinct terms are either inD1 but notD2 or
vice versa. It doesn’t matter whether the mismatch is caused by non-relevance, or differe
document length. On the other hand, it doesn’t matter how frequently a mismatching term
matching term) occurs in eitherD1 or D2.

The above schemes for computing query/document similarity assume the existence of a
tively) static collection of documents to which each query formulated by a user is applied. A
other extreme, we have the “routing” case in which documents arrive in a constantly cha
incoming stream, and each document must be “routed” to one ofN boxes corresponding toN pre-

Dice
2w

n1 n2+
-------------------=

Jaccard D1 D2,( ) w
N z–
------------=
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selected topics. In sharp contrast to the collection retrieval case, the “queries,” i.e., topics or
mation needs, are fixed while the supply of documents is very dynamic. How can the vector
approach (or any statistical approach) be applied to a situation in which there is no fixed
ment collection for which collection-wide statistics such asidf can be computed? The usua
answer is to provide a “training set” of (one hopes) “typical” documents for which statistics
be calculated. Obviously, the hope is that all the subsequent documents received by one’s
will have the same statistical properties as the training set. (The alternative is to update the
ing set regularly, which of course requires retraining the system regularly too.)

6.5 Latent Semantic Indexing (LSI) — An Alternative Vector Scheme

In the traditional vector space approach to IR described above, a vector “space” is defined
collection of documents such that each dimension of the space is a term occurring in the c
tion, and each document is specified as a vector with a coordinate for each term occurring
given document. The value of each coordinate is a weight assigned to the corresponding t
weight intended to be a measure of how important the given term is in characterizing the
document and distinguishing it from the other documents in the given collection. This approa
an effective first approximation to the statistical properties of the collection, but it is neverth
an oversimplification. Its major limitation is that it assumes that the terms are indepen
orthogonal dimensions of the document space. Adding a new term to the space, e.g., a te
was previously omitted because it wasn’t considered a good discriminator, has no effect wh
on the existing terms defining the space. (Adding a newdocumentto the collection not only adds
new terms to the space but also does affect the weights of the existing terms because it
their idf’s. But this is a term-document relationship, not a term-term relationship.) Hence,
tionships among the terms, e.g., the fact that certain terms are likely to co-occur in docu
about a given topic because they all refer to aspects of that topic, are ignored. Similarly (and
subtly), the traditional term vector approach ignores the fact that term A and term B may occ
similar contexts in two distinct documents because they are synonyms.

The traditional vector space approach has another feature that can be a drawback in some
tions: Since the number of terms that occur in a collection can be large (even after “noise” w
have been deleted with a stop list, and variant forms of the same word have been elimina
stemming), the traditional term-based document space has a large number of dimensions.

A new vector space approach called Latent Semantic Indexing (LSI) [Deerwester et al., J
1990] attempts to capture these term-term statistical relationships. In LSI, the document sp
which each dimension is an actual term occurring in the collection is replaced by (recalculat
a much lower dimensional document space called k-space (or LSI space) in which each d
sion is a derived concept, a “conceptual index,” called an LSI “factor” or “feature.” These LSI
tors are truly independent statistically, i.e., uncorrelated, in a way that terms are not. Henc
factors are “information rich” [SIGIR ‘94, Hull] in the sense that they capture the term-term r
tionships that ordinary term-based document space does not. Documents are represented
factor vectors in k-space just as they are represented by term vectors in traditional term-
document space. Vector similarity can be calculated in the same way in k-space as in trad
document space. However, documents and queries dealing with the same topic that would
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As Bartell, et al. [SIGIR ‘92] explain (they speak of “keywords” rather than “terms”):

[I]ndividual keywords are not adequate discriminators of semantic content. Rather
the indexing relationship between word and document is many-to-many: A num-
ber of concepts can be indexed by a single term [polysemy], and a number of terms
can index a single concept [synonymy] … [Hence] some relevant documents are
missed (they are not indexed by the keywords used in the query, but by synonyms)
and some irrelevant documents are retrieved (they are indexed by unintended
senses of the keywords in the query). LSI aim[s] at addressing these limitations.
This technique maps each document from a vector space representation based on
keyword frequency to a vector in a lower dimensional space. Terms are also
mapped into vectors in the reduced space. The claim is that the similarity between
vectors in the reduced space … may be a better retrieval indicator than similarity
measured in the original term space. This is primarily because, in the reduced
space, two related documents may be represented similarly even though they do
not share any keywords. This may occur, for example, if the keywords used in each
of the documents co-occur frequently in other documents.

In other words, if documentD1 uses termtA and documentD2 uses equivalent termtB, LSI will
effectively recognize this equivalence statistically iftB andtA co-occur frequently in similar con-
texts in other documents. Berry et al. [SIAM Review, 1995] offer a good example:

Consider the wordscar, automobile, driver, andelephant.The termscar andauto-
mobileare synonyms,driver is a related concept andelephantis unrelated. In most
[e.g., traditional term vector] retrieval systems, the queryautomobilesis no more
likely to retrieve documents about cars than documents about elephants, if the pre-
cise termautomobilewas not used in the documents. It would be preferable if a
query aboutautomobilesalso retrieved articles aboutcarsand even articles about
driversto a lesser extent. The derived [LSI}k-dimensional feature space can repre-
sent these useful term relationships. Roughly speaking, the wordscar andautomo-
bile will occur with many of the same words [i.e., in the same “context”] (e.g.,
motor, model, vehicle, chassis, carmakers, sedan engine, etc.), and they will have
similar representations ink-space. The contexts fordriver will overlap to a lesser
extent, and those forelephant will be quite dissimilar.

(To be fair about it, a good query submitted to a traditional term-based system would use
terms than “automobile”, e.g., perhaps some of the other contextual words mentioned in th
sage quoted above.)

In other words, the traditional term-based vector space model assumes term independence
there are strong associations between terms in language, this assumption is never satisfied
it may be] a reasonable first order approximation.” [SIGIR ‘94, Hull] LSI attempts to cap
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some of these semantic term dependencies using a purely statistical and automatic meth
without syntactic or semantic natural language analysis and without manual human interve

LSI accomplishes this by using a method of matrix decomposition called Singular Value De
position (SVD). LSI takes the original document-by-term matrix describing the traditional te
based document space as input. It produces as output three new matrices:T, S, andD such that
their productT*S*D captures this same statistical information in a new coordinate space,k-space,
where each of thek dimensions represents one of the derived LSI “features” or “concepts
“factors.” “[T]hese factors may be thought of as artificial concepts; they represent extracted
mon meaning components of many different words and documents.” [JASIS, 1990, Deerwe
al.] D is a “document” matrix. Each column ofD is one of thek derived concepts. Each row ofD
is the vector for a given document, specified in terms of thek concepts. The matrix element for th
j-th concept in thei-th document represents the strength of association of conceptj with document
i. Hence,D specifies documents ink-space. Similarly,T is a term matrix. Each column as befor
is one of thek derived concepts. But inT, each row is a vector ink-space describing a term in the
original collection, a term in the original term-by-document matrix that characterized the co
tion. Hence, “[e]ach term [in this matrix] is then characterized by a vector of weights indica
its strength of association with each of these underlying concepts.” {JASIS, 1990, Deerwes
al.] In other words, each term vector (i.e., row) inT is “a weighted average of the different mean
ings of the term.” [SIGIR ‘94, Hull] The diagonal elements in the 2nd matrixS assign weights
(called “singular values”) to thek LSI factors according to their significance. This allows the us
to have some control over how many dimensionsk-space is to have.

“[Some of] [t]he power of this decomposition comes from the fact that the new factors are
sented in order of their importance (as measured by the diagonal ofS). Therefore, the least impor-
tant factors can easily be removed by truncating the matricesT, S, andD, i.e., by deleting some of
the rightmost columns of these matrices. The remainingk columns [are] called the LSI factors.”
SIGIR ‘94, Hull] Note thatk is a parameter under the user’s control. Reducingk can eliminate
“noise”, e.g., “rare and less important usages of certain terms.” However, if the number of di
sions (LSI factors) is too low, important information may be lost. The optimum number of dim
sions obviously depends on the collection and the task. One report finds that improvement s
about 10 or 20 dimensions, peaks between 70 and 100, and then decreases. [SIAM Review
et al., 1995] As the number of LSI factors approaches the number of terms, performance nec
ily approaches that of standard vector methods. Another report says that the optimum num
dimensions is usually between 100 and 200.

Projection of a set of documents into k space is optimal in the sense that the projection “is gu
teed to have, among all possible projections to ak-dimensional space, the lowest possible lea
square distance to the original documents. In this sense, LSI finds an optimal solution to the
lem of dimensionality reduction.” {Schutze et al., SIGIR ‘97]

What does it mean to say that thek factors derived by the LSI procedure correspond to “artificia
concepts? It means that no attempt is made to interpret these k concepts, e.g., to describe
simple English. Indeed, in many cases, it may not be possible to summarize these conce
explain what each one “means.” What onecansay is that a given document is heavily weighte
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What good does it do describe a document in terms of the relative importance to the docum
k concepts, if one doesn't know what thek concepts mean? For a single document, such a desc
tion may have no value at all. But if one has a 2nd document also described in terms of weig
those same k concepts, then onecansay how similar the documents are (ink-space). And, if one
of those “documents” is a query (or a sample document used as a query, or the centroid of a
sample documents), then one can say how close the given document is to the given querk-
space of course. Following the usual vector space similarity methods, e.g., calculating the
similarities, one can rank documents by how similar they are to the query, ink-space. Similarity in
k-space is more statistically meaningful, and therefore, one hopes, more semantically mean
than similarity in conventional term space, because thek concepts reflect statistical correlations i
the document population, while the original terms do not.

Since one can compute query-document similarities using thek-by-document matrix,D, alone,
what is the value of the term-by-k matrix, T? One answer is that it allows you to compute ter
similarities. Presumably, two terms are very similar if they co-occur, i.e., are strongly correl
with many of the same other terms. Hence, such a similarity can be used to suggest to a us
enters a query, other terms, statistically similar to the terms he used, which could be added
query. Or the similarities can be used to construct automatically a domain-dependent or c
tion-dependent thesaurus.

Notice, by the way, that although each row of matrixT is called a “term vector,” the phrase is use
quite differently in LSI terminology than in conventional vector space terminology. In the con
tional vector space approach, a “term vector” is a vector indocument spacedescribing adocument
in terms of weights assigned to each term for the given document. In LSI, both terms and
ments are described in LSI factork-space. A term vector is a vector describing a giventermin LSI
k-space in terms of the weights assigned to the LSI factors for the given term. A docume
described in LSI by adocumentvector specifying the weights assigned to the LSI factors for
given document.

Hearst, et al. [Text Retrieval Conference, TREC 4] point out an additional advantage of LSI
respect to the routing or classification of documents:

The routing task can be treated as a problem of machine learning or statistical clas-
sification. The training set of judged documents is used to construct a classification
rule which predicts the relevance of newly arriving documents. Traditional learn-
ing algorithms do not work effectively when applied to the full vector space repre-
sentation of the document collection due to the scale of the problem … In the
vector space model, one dimension is reserved for each unique term in the collec-
tion. Standard classification techniques cannot operate in such a high dimensional
space, due to insufficient training data and computational restrictions. Therefore,
some form of dimensionality reduction must be considered … [One approach is to]
apply Latent Semantic Indexing (LSI) to represent documents by a low-dimen-
sional linear combination of orthogonal indexing variables.
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Berry, et al. {SIAM Review, 1995] discuss another advantage of LSI. It is especially usefu
noisy input:

Because LSI does not depend on literal keyword [i.e., term] matching, it is espe-
cially useful when the input text is noisy, as in OCR (optical character recogni-
tion), open input, or spelling errors. If there are scanning errors, and a word [name
in this case] (Dumais) is misspelled (asDuniais), many of the other words in the
document will be spelled correctly. If these correctly spelled context words also
occur in documents that contain a correctly spelled version ofDumais, then
Dumaiswill probably be nearDuniais in thek-dimensional [LSI factor] space.

On the other hand, LSI has some serious drawbacks too. As Hull [SIGIR ‘94] points out:

While a reduced representation based on a small number of orthogonal variables
might appear to cut storage costs substantially [compared to the traditional term-
based vector space model], the opposite is actually true … [The LSI representation
requires storage of a substantially larger set of values.] In addition the LSI values
are real numbers while the original term frequencies [weights] are integers, adding
to the storage costs. Using LSI vectors, we can no longer take advantage of the fact
that each term occurs in a limited number of documents, which accounts for the
sparse nature of the term by document matrix.

Another disadvantage is that “the LSI solution is also computationally expensive for large co
tions … [However], it need only be constructed once for the entire collection [assuming a
tively static collection so] performance at retrieval time is not affected.” [SIGIR ‘94, Hull]

In one respect, LSI degrades retrieval time performance too. In a conventional vector space
using an inverted index, only documents that have some terms in common with the query m
examined. If the query is well-formulated, i.e., is composed of terms that are not overly com
and serve to distinguish relevant from non-relevant documents, many documents will not co
any terms in common with the query and hence will not need to be examined at all. “With
however, the query must be compared to every document in the collection.” [SIGIR ‘94, Hull]
this is not as great a disadvantage for LSI as it may at first appear. If (as will commonly b
case) the number of terms in a conventional query is greater than the number of factors in i
representation, the vector similarity calculation for a given document in conventional term s
will take more time to compute than the corresponding calculation in LSI vector space. More
most conventional vector space approaches use some form of query expansion to modi
expand the user’s original query. (This is discussed below in the section on Query Expansio
Refinement.) LSI can be viewed as a special kind of query “expansion”. [SIGIR ‘94, Hull] C
ventional query expansion often results in a great increase in the number of terms in the
whereas LSI may actually reduce the number of terms.

Given that the original LSI solution is computationally expensive, the question arises whethe
expense must be incurred repeatedly each time new messages are added to the documen
tion. (This is an important consideration in any case where the document collection is not s
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but it is especially important if the LSI technique is applied to a routing application; in suc
application, the document “collection” is an incoming stream that is continually changing -
section 8.) Fortunately, it is not always necessary to do a complete re-computation every
new document arises. To begin with, the addition of one document to a large collection i
likely to have a very significant effect on the LSI computation, so it may be possible to ignor
effect. Secondly, there are two approaches to updating the LSI computation without re-doin
entire computation. [Berry et al., 1995]

The first, called “folding in,” is the cheapest. Basically, you don't recompute thek factors at all.
Nor do you recompute the weights of thek factors for existing documents or terms. Instead ea
new document just becomes a new column in the document matrix, described in terms of th
inal k factors. Similarly, if the new document contains some new terms, each new term beco
new row in the term matrix, again defined in terms of the originalk factors. So the process is rela
tively fast and cheap, but there is some degradation; not all the new correlations are
absorbed. Hence, all the original documents and terms occupy the same positions ink-space that
they did before the folding-in of new documents occurred.

There is a more sophisticated (and naturally more computationally expensive) technique
“SVD updating.” It starts with the original LSI database, just like folding in, but the weights as
ciated with the k factors for each document and term are recomputed so that the addition o
documents and terms affects the positions of the existing documents and terms in k-space.
the approximation is much better.

If these two updating procedures prove inadequate, the remaining alternative is to redo the
computation from scratch

The fact that (as noted above) an LSI term vector is “a weighted average of the different mea
of the term” can be either an advantage or a disadvantage. It is an advantage if the reduced
sentation in LSI removes “some of the rare and less important usages” of the given term
usages that are not relevant to the topic of the query. On the other hand, if the “real meani
used in the query and the relevant documents] differs from the average meaning [as captu
the LSI term vector], LSI may actually reduce the quality of the search.” [Hull, SIGIR ‘94]

One more possible drawback of LSI is pointed out by Shutze et al. [SIGIR ‘95] LSI is
required for, and may actually degrade retrieval of, documents that are well described by
terms. They give the example of a document about the Hubble Space Telescope, which
very well retrieved by the single word “Hubble.” LSI may actually obscure the key evidence
presence or absence of the term “Hubble,” in this case. On the other hand, LSI is much
effective “if there is a great number of terms which all contribute a small amount of critical in
mation.” This is particularly true if each of the documents on the desired topic only conta
subset of these terms. In such a case, LSI is more effective than a term-based classifier at c
ing evidence to identify documents about the given topic.

Similarity (between query and document) in LSI vector space is usually calculated by the
product similarity measure as in the traditional document vector space approach. The norm
inner product, i.e., “cosine” similarity is generally used. However, Bartell et al. have shown
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the “inner product similarities between documents in the original [term] space are optimally
served by the inner products [not normalized inner products] between corresponding vect
the reduced space.” [Bartell, SIGIR ‘92] Hence, cosine normalization should be computed
original term space and the LSI calculation then applied to these normalized vectors.

In any case, the value of LSI lies in (1) the elimination of spurious similarities, i.e., due to
same term being used in two different ways, and (2) the detection of similarities in LSI spac
are invisible in ordinary term space, i.e., due to different but synonymous terms being used in
ilar contexts in different documents.

6.6 Vectors Based onn-gram Terms

Then-gram approach is in some respects the ultimate in vector space (and more generally,
tistical) approaches to IR. In the traditional vector space approaches described above, the
sions of the document space for a given collection of documents are the words (or some
phrases) that occur in the collection; more precisely, they are the terms that remain after
ming, and removal of words that appear on a stoplist. By contrast, in then-gram approach, the
dimensions of the document space aren-grams, strings ofn consecutive characters extracted fro
the text without regard to word length, and often completely without regard to word bounda
Hence, then-gram method is a remarkably “pure” statistical approach, one that measures th
tistical properties of strings of text in the given collection without regard to the vocabulary,
cal, or semantic properties of the natural language(s) in which the documents are written.

The n-gram length (n) and the method of extractingn-grams from documents vary from on
author and application to another. “Zamora uses trigram [n = 3] analysis for spelling error detec
tion” [Pearce & Nicholas, JASIS, 1996]. Damashek usesn-grams of length 5 and 6 for clustering
of text by language and topic (see below). He usesn = 5 for English andn = 6 for Japanese [Dam-
ashek, Science, 1995]. Pearce and Nicholas follow Damashek in using 5-grams to sup
dynamic hypertext system [JASIS, 1995]. Some authors [Zamora et al., IP&M, 1981]; [S
IEEE Pattern, 1979] drawn-grams from all the words in a document but use onlyn-grams wholly
within a single word. Others [Cavnar, TREC-2, 1993]; [Yannakoudakis et al., IP&M, 198
[Damashek, Science, 1995] also usen-grams that cross word boundaries, i.e., that start within o
word, end in another word, and include the space characters that separate consecutive
[Pearce & Nicholas, JASIS, 1996].

Damashek’ssliding windowapproach [Science, 1995] is one of the most recent and inclusive,
the first to offer “convincing evidence of the usefulness [of then-gram approach] for the purpose
of categorizing text in a completely unrestricted multilingual environment.” Minimal preproc
ing is required. Numbers and punctuation characters are usually removed. What remains
alphabet plus the space character (27 characters for English). (Sometimes, no preproce
done at all.) Then-grams characterizing a document are then obtained by moving a windon
characters in length through a document or query one character at a time. In other words, t
n-gram will consist of the firstn characters in the document, the 2ndn-gram will consist of the
2nd through the (n+1)-th character, etc. Hence, there will be ann-gram starting with every charac
ter in the document (after preprocessing) except for the lastn—1 characters. Each document ca
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then be specified as a vector ofn-grams, one for each distinctn-gram in the document. Each com
ponent can be weighted just as the components of a conventional term vector are weighte
Damashek uses normalizedn-gram frequency, the number of occurrences of the givenn-gram in
the given document divided by the total number of occurrences of alln-grams in the document.
Similarly, Damashek computes the similarity between two documents using the familiar c
similarity measure, which is just as useful in ann-gram document space as in a term-based do
ment space.

Once the similarities among then-gram-based document vectors have been computed, the d
ments can be clustered using a method such as those discussed in section 3.8. Damashe
this approach to be extremely effective for classifying a mixed-language collection of text d
ments, generating a distinct cluster for each distinct language. Indeed, such methods hav
used to cluster documents hierarchically, i.e., by language group and by individual lang
within group. The beauty of this method is that it amounts to “blind clustering,” i.e., the do
ments are classified without any prior linguistic knowledge. That is, there is no prior knowle
of the individual languages, or even of how many languages or language groups are involv

A document space ofn-gram-based vectors can be clustered by topic, as well as language (
topic within language). However, clustering by topic introduces a problem not usually prese
language clustering. When documents are blind-clustered by language, stoplists are not o
available (since they are language-dependent); they are also inapplicable. The very words t
typically placed on stoplists because they occur across most topics within the document
given language are the words that best characterize the language statistically. Putting it a
way, words that have very little semantic content are good discriminators of a language sin
objective is to classify all documents written in the given language regardless of what topic
discuss. Hence, Damashek employs a language-independent method of removing the “nois
data that is common across topics. He translates the axes of the vector space so that the ne
is at the mean (thecentroid)of all the document vectors. In that way, the origin becomes “a lo
tion that characterizes the information one wishes to ignore,” the information common to the
lection of documents. This location is equivalent to the “noise,” the data that does not ser
distinguish one document from another. Translating the origin is equivalent to subtracting the
troid from each document vector, subtracting the common information one wishes to ignore
document similarities can then be recalculated relative to this new origin.

But the technique of subtracting the centroid can be used to accomplish more than merel
pressing noise. It can also be used to recognize that two clusters of documents with differe
mary topics share a secondary topic. (Damashek offers the example of one cluster dealin
the primary topic of health care reform, and another cluster dealing with the primary top
communicable diseases; they may share a secondary topic of AIDS epidemiology.) If one
tracts from each cluster its centroid (corresponding to its primary topic, the topic that all the d
ments share), the two clusters may become superimposed in document space, reflect
secondary topic that they share. In this kind of application, the common data that is removed
devoid of semantic content. It is merely common to a set of documents and hence not use
distinguishing them. Hence, it has been called the “context” or the “background” [Cohen, JA
1995] rather than “noise.”
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A more sophisticatedn-gram weighting scheme based on theG2 statistic [Bishop et al., 1975] has
been used by Cohen [JASIS, 1995] to distinguish the background of a cluster of documents
thehighlights, i.e., the words in a document that distinguish the document from its neighbors
hence can serve as an automatically-generated abstract that tells a user very rapidly what
document is “about.” Note that Cohen’s method, although it highlights words, identifies the w
to be highlighted by statistical characteristics of then-grams of which they are composed. More
over, Damashek’s sliding window approach is employed, enabling phrase as well as word
lights to be identified. As before, the technique is language-independent.

Damashek’s use of cosine similarity illustrates a general point: almost any method for weig
terms, normalizing terms, or normalizing term-based vectors is as applicable when the term
n-grams as when the terms are words. Similarly, query expansion based on relevance fee
discussed in section 3.6 below, is as applicable ton-grams as to words. (In practice, query expa
sion has not usually been combined with Damashek’sn-gram method, because emphasis has be
placed on its power for fast, inexpensive clustering, and interactive browsing.) The conve
also true: A method like centroid subtraction, applied above ton-gram vectors, is applicable to
word-based term vectors as well. Language-dependent methods such as stoplist removal
directly applicable ton-gram vector representations, but as noted below, can be combined e
tively with n-gram analysis.

Because the sliding window used to obtainn-grams allows the system to obtain many slices o
given word, the performance of ann-gram system is remarkably resistant to textual errors, e
spelling errors, typos, errors associated with optical character recognition, etc. Damashek
ence, 1995] artificially corrupted his text (15% of the characters in error) and found that mo
the documents in an uncorrupted cluster were still identified as belonging to the cluster (17 o
In a hypertext application [Pearce and Nicholas, JASIS, 1996], “the dynamic linkage mecha
… are tolerant of garbles in up to 30% of the characters in the body of the text.” Again, a m
virtue of the sliding windown-gram approach for tolerance of garbles is that it is language-in
pendent; it does not depend on prior linguistic knowledge.

A pure n-gram analysis does not use language-specific and semantic clues, i.e., stem
stoplists, syntactically-based phrase detection, thesaurus expansion, etc. This theoretically
its performance compared to methods that make effective use of language-specific as well
tistical clues. However, this limitation is currently more theoretical than actual, because mos
temporary retrieval methods make only limited use of language-specific and semantic meth
situation that may change in the future). Moreover, as noted below,n-gram analysis can be com
bined with word-based, syntactic, and semantic methods in a variety of ways. Further, a
cussed above, many methods, e.g., automatic query expansion based on relevance feedbac
applicable to n-gram analysis as to word-based analysis. On the other hand, precisely becn-
gram analysis is language-independent, it is especially well-suited (given an adequate traini
to classification or clustering of documents by language. It should be noted here that the
guages” that this technology can classify are not restricted to natural languages, but ca
include programming languages, indeed any class of “language” or representation that has
guishable statistical properties.
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The disadvantage ofn-gram analysis with respect to language-specific processing is actually
serious than it might seem. Algorithms that usen-gram counts can be combined with identifica
tion of word boundaries to recognize roots shared by different words, conferring some of the
advantage as stemming algorithms, but with the further advantage of language independe
some respects, these algorithms are better than conventional stemmers that only remove s
e.g., they can recognize the resemblance of “quake” and “earthquake” {Cohen, JASIS, 1995
course, they can be deceived by spurious resemblances too.) And centroid subtraction, dis
below, provides some of the same benefits as stopword removal, but again in a language-in
dent fashion. Indeed, it is not always necessary to choose betweenn-gram analysis, and language
dependent methods. They can be combined. For example, language-dependent methods h
used successfully in conjunction withn-gram analysis to improve performance, e.g., if the la
guage in which a collection of documents is written is known, words on a stoplist can be rem
from each document before n-gram analysis is applied. [Onyshkevych, PC] Similarly, con
tional stemming can be applied beforen-gram analysis. However, the future extension of textu
analysis to sophisticated semantic and knowledge-based methods will obviously have to be
based.

Apart from language independence, the greatest virtue ofn-gram analysis is that it is very simple
to implement, and can run very fast (although the redundancy associated with a sliding wi
approach may make it expensive with respect to storage). Hence, another very effective w
combinen-gram analysis with language-based methods is to perform a two-stage search pr
First, n-gram methods can be used to zero in rapidly, e.g., in an interactive browsing mod
document clusters in a domain of interest; then, more refined and expensive language-base
ods can be used to refine the search and perform the final retrieval.

But perhaps the feature of then-gram approach that most sets it apart from other statistical m
ods, is its ability to group documents without any prior knowledge about the documents b
grouped. Indeed, in this realm of “blind” clustering, it appears to have no serious competitio

7. Probabilistic Approach

There is no clear line separating probabilistic from statistical methods of IR. Indeed, there
very close connection since probabilities are often calculated on the basis of statistical evid
Most of the literature on probabilistic IR assumes that the evidence is so calculated. Of co
given a formula based on a probabilistic model, any source of evidence can be used to co
the probabilities to be plugged into the formula, but as a practical matter the evidence is u
statistical; in fact, it is may sometimes be the very same evidence, e.g.,tf’s andidf’s, used in sta-
tistical, e.g., vector space, methods.

7.1 What Distinguishes a Probabilistic Approach?

Then what distinguishes a true probabilistic methodology from other statistical approac
According to Cooper et al. [SIGIR ‘92]:
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In a thoroughgoing probabilistic design methodology, serious use is made of for-
mal probability theory and statistics to arrive at the estimates of probability of rele-
vance by which the documents are ranked. Such a methodology is to be
distinguished from looser approaches -- for instance the “vector space” retrieval
model -- in which the retrieved items are ranked by a similarity measure (e.g., the
cosine function) whose values are not directly interpretable as probabilities.

7.2 Advantages and Disadvantages of Probabilistic Approach to IR

Cooper et al. [SIGIR ‘92] list fourpotentialadvantages of a true probabilistic design method
ogy:

1. “One has grounds for expecting retrieval effectiveness that is near-optimal relative to th
dence used.”

2. There should be “less exclusive reliance on traditional trial-and-error retrieval experimen
to discover the parameter values that result in best performance.” (As examples of such tri
error, consider the variety of term weighting schemes that have been tried in varied vector
experiments or the trials required to determine optimum values for the parameters,A, B, andC in
the Rocchio relevance feedback formula, discussed in a later section.)

3. “[A]n array of more powerful statistical indicators of predictivity and goodness of fit [th
precision, recall, etc.] become available.”

4. “[E]ach document’s probability-of-relevance estimate can be reported to the user in ra
output … [I]t would presumably be easier for most users to understand and base their sto
behavior [i.e., when they stop looking at lower ranking documents] upon … a ‘probability of r
vance’ than [a cosine similarity value].” In general, actual estimates for each document of p
bility of relevance are more useful to a user than mere ranking of documents by probabil
relevance (let alone ranking by some other similarity function). {Turtle and Croft, ACM Trans
1991]

Yet, probabilistic methods have not yet been as widely used as these advantages would s
Moreover, where they have been used, they have achieved retrieval performance (measu
precision and recall) comparable to, but not clearly superior to, non-probabilistic methods. {
per, SIGIR ‘94] Cooper identifies various reasons for these shortfalls:

1. “[A]dvocates of nonprobabilistic methods … regard the formulation of exact statis
assumptions as an unnecessary theoretical burden on the researcher. They maintain (wit
plausibility) that the time and effort spent on such analysis would be better spent on ad hoc
imentation using formalisms looser and friendlier than probability theory.”

2. “The estimation procedures used in probabilistic IR are usually based on statistical sim
ing assumptions or ‘models’ of some sort. The retrieval clues that bear on a document’s pro
ity of usefulness must somehow be combined into a single relevance probability, and mod
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assumptions are needed to accomplish the combining. Typically, the assumptions adopted
task are crude and at best only approximately true … The introduction of simplifying assump
known to be less than universally valid surely compromises to some degree the accuracy
probability estimates that result.” (Of course, similar simplifying assumptions are tacitly use
all other statistical approaches, e.g., the assumption of term independence in the vector
model.)

3. The assumptions underlying some IR models, most notably the widely used (and misn
“Binary Independence” IR model, can lead to logical inconsistencies.[Cooper, SIGIR ‘91, A
Trans IS, 1995] Successes that have been achieved in spite of the inconsistency of the the
model are due to the fact that the actual assumptions used in practice are different th
assumptions of the theoretical model, and stronger than they needed to be.

In a probabilistic method, one usually computes the “conditional” probabilityP(D|R) that a given
documentD is observed on a random basis given eventR, that d is relevant to a given query. [Sa
ton, ATP, 89] [van Rijsbergen, 1979] If, as is typically the case, query and document are r
sented by sets of terms, thenP(D|R) is calculated as a function of the probability of occurrence
these terms in relevant vs. non-relevant documents. The term probabilities are analogous
term weights in the vector space model (and may be calculated using the same statistica
sures). A probabilistic formula is used to calculateP(D|R), in place of the vector similarity for-
mula, e.g., cosine similarity, used to calculate relevance ranking in the vector space mode
probability formula depends on the specific model used, and also on the assumptions made
the distribution of terms, e.g., how terms are distributed over documents in the set of relevan
uments, and in the set of non-relevant documents.

More generally,P(D|R)may be computed based on any clues available about the document
manually assigned index terms (concepts with which the document deals, synonyms, etc.) a
as terms extracted automatically from the actual text of the document. Hence, we want to
lateP(D|A, B, C, …), i.e., the probability that the given document,D, is relevant, given the clues
A, B, C, etc. As a further complication, the clues themselves may be viewed as complex, e
the presence of termt is a clue to the relevance of documentD, t may be viewed as a cluster o
related clues, e.g., its frequency in the query, its frequency in the document, itsidf, synonyms, etc.
This has led to the idea of a “staged” computation, in which a probabilistic model is first ap
to each composite clue (stage one), and then applied to the combination of these composit
(stage two). [Cooper et al., SIGIR ‘92] This is discussed further below, in the section on Log
Regression. It has also led to the idea of an “inference net” [Turtle & Croft, ACMtransIS, 199
which rules can be specified for combining different sources of evidence (automatically extr
index terms, manually assigned index terms, synonyms, etc.) to compute a “belief” that an
mation need has been satisfied by a given document. (See below, in the section on the Ba
Inference Network Model.)

7.3 Linked Dependence

As noted above, the first step in most of these probabilistic methods is to make some sta
simplifying assumption. The objective is to replace joint probabilities (the probability of oc
rence of two or more events,A, B, etc.) by a separate probability for each event. The most wid
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used assumption is “Binary Independence” which Cooper [SIGIR ‘91, ACM Trans IS, ‘95] po
out should really be called “Linked Dependence” [Cooper et al., SIGIR ‘92]. The model has
called “Binary Independence” because it has been assumed that to arrive at the model on
make the simplifying assumption that the document properties that serve as clues to releva
independent of each other in both the set of relevant documents and the set of non-relevan
ments, an “implausible presumption” [Cooper et al., SIGIR ‘92]. Cooper shows that it is suffic
to make the weaker “Linked Dependence” assumption that these properties arenot independent
but that the same degree of dependence holds for both the relevant document set and the n
vant document set. In symbols (for two properties,A andB):

where ¬R means non-relevant.K is a crude measure of the dependence (the “linkage”) of prop
tiesA andB. If K = 1, this reduces to the pure independence property; the joint probability eq
the product of the individual properties. Cooper points out that the weaker linked depend
assumption is sufficient to satisfy the requirements of models that have hitherto used the
independence assumption. “This weaker assumption, though still debatable, has at least th
of not denying the existence of dependencies.” Therefore, efforts to remedy the clearly erro
assumption of pure independence by providing empirical term co-occurrence information ar
theoretically important than previously thought; the actual error that needs to be remedied
assumption that dependencies are the same for relevant and non-relevant document s
course, the latter may still be a significant consideration.

7.4 Bayesian Probability Models

Conditional (“Bayesian”) probabilistic models relate theprior probability of document relevance
i.e., the probability that a document selected at random will be relevant, to theposteriorprobabil-
ity of relevance, i.e., the probability that an observed document is relevant, given the observ
computed) features of the document. These features may include terms in the document, te
tistics, manually assigned descriptors, phrase, etc., indeed all the clues employed in other s
cal methods. Bayesian models vary primarily in how the “posterior” probabilities are calcula
They may also vary in how multiple sources of probabilistic evidence are combined, and in
probabilistic and non-probabilistic evidence are combined.

P A B R,( ) K P A R( ) P B R( )⋅ ⋅=

P A B, R¬〈 | 〉 K P A R¬( ) P B R¬( )⋅ ⋅=
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An important feature of Bayesian models is that one starts with a set of prior probabilities
must sum to 1, and one ends up with a set of posterior probabilities that must also sum to 1.
kler et al, Stat] (Some probabilistic methodologies may yield document retrieval status v
(RSVs) that are not true probabilities, but rather are montone to the corresponding true pro
ties. In that case, the RSVs can be used for document ranking but do not sum to one. Howe
a true probabilistic model, they can always be converted to true probabilities (normalized) w
do sum to one and which will be more meaningful to an end user.) One can view Bayesian p
bility as applied to IR as a process of “redistributing” probabilities of relevance from the p
probability distribution over all the documents in a given collection to a posterior distribution
over the set of retrieved documents. Crestani and van Rijsbergen {SIGIR ‘95] call this “prob
ity kinematics.” They view this kinematics as a flow of probabilities among the terms servin
descriptors of a document collection. Initially, one has a prior distribution of the probabilities
terms, e.g., are good document descriptors (perhaps based onidf’s). Given a particular documen
Di, one has a “flow” of probabilities from terms not inDi to terms inDi, e.g., perhaps based o
simple term occurrence or term frequencies in the given document. These posterior proba
for the terms that describeDi also sum to one. The probability of the given document being re
vant to a given query is then the sum of the posterior probabilities for the document terms th
also in the query. More generally, this probability may also depend on, e.g., term frequenc
other statistical characteristics of the query.

7.4.1 Binary Independence Model

“The simplest of these models is based on the presence or absence of independently dis
terms in relevant and non-relevant documents,” [Shaw, IP&M, 1995] i.e., the distribution of
given term over the collection of documents isassumedto be independent of the distribution o
any other term. Put another way, the probability of any given term occurring in a relevant d
ment is independent of the probability of any other term occurring in a relevant document
similarly for non-relevant documents). Hence, the model is referred to as the “binary inde
dent” [BI} model. We saw above, in the preceding section, that this model actually shoul
called the “linked dependence” model because it actually depends on the weaker assumpti
these probabilities are not independent, but rather that the same degree of dependenc
among relevant documents as holds among non-relevant documents, and that this de
dependence can be captured by a proportionality constant. [Robertson et al, JASIS, 1976
Rijsbergen, 1979]. In this model, also known as the “relevance weighting theory” [Efthimiia
IP&M, 1995], we start withpk, the probability that termtk appears in a document given that th
document is relevant anduk, the probability thattk appears in a document given that the docume
is non-relevant. (As always, relevance is defined relative to a given query or “information ne
Using Bayes’ rule of inference and the BI (more precisely, linked dependence) assumption
can derive a function for ranking documents by probability of relevance. [van Rijsbergen, 1
In this function, each termtk receives a weightwk given by:

wk
pk 1 uk–( )⋅
uk 1 pk–( )⋅
----------------------------log=
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The “odds” oftk appearing in a relevant document ispk/(1-pk). Similarly, the “odds” oftk appear-
ing in a non-relevant document isuk/(1-uk). Hence,wk measures the odds oftk appearing in a rel-
evant document divided by the odds oftk appearing in a non-relevant document, i.e., theodds
ratio. Taking the log makes this function symmetric:wk = 0 if pk = uk, is positive ifpk > uk, and is
negative ifpk< uk. Hence,wk is a good measure of how well a term can distinguish relevant fr
non-relevant documents. The functionwk is called the “term relevance” weight or “term relevanc
function,” or “logodds,” i.e., the log of the odds ratio fortk. Plainly,wk will be a very large positive
number for a term that has a high probability of appearing in a relevant document and a ver
probability of appearing in a non-relevant document (and a very large negative number
probabilities are reversed). Moreover, if the set of index terms in a document collection sa
the BI or “linked dependence” condition, the odds ratio (odds of relevance divided by odd
non-relevance) for a given documentD is merely the product of the odds ratios of all thetk
appearing inD, i.e., the product of all the correspondingwk. Hence, thelog of the odds ratio forD
can be computed as thesumof thewk. In other words, the logodds of relevance ofD is computed
as the sum of thewk for index terms appearing inD.

The trick is to find a way of computingpk anduk. If relevance data is available, e.g. from manual
evaluating a previous run with the same query against the same collection or against a traini
thenpk anduk can be estimated from a 2x2 “contingency” table summarizing the relevance j
ments, as given below:

HereN is the total number of documents in the collection,n is the total number of documents tha
contain termtk, R is the total number of relevant documents retrieved, andr is the total number of
relevant documents retrieved that contain termtk. From this table, we can estimatepk asr/R (the
proportion of relevant documents containingtk),anduk as (n-r)/(N-R) (the proportion of non-rele-

Table 2:  Contingency Table of Relevance Judgments

 No. of relevant
    Documents

No. of non-relevant
     Documents

        Total

No. of documents
including termtk

r n-r n

No. of documents
excluding termtk

R-r (N-R) - (n-r) N-n

Total R N-R N
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vant documents containingtk). Obviously, this assumes that “the term distribution in the relev
items previously retrieved [or in the training set] is the same as the distribution for the com
set of relevant items, and that all non-retrieved items [N-R] can be treated as non-relevant.” [Sa
ton et al, JASIS, 1990]. The latter assumption is necessary to allow us to assume thatN-R (all
retrieved non-relevant documents plus all non-retrieved documents) equals the total num
non-relevant documents. The former assumption allows us to treat the proportion of relevan
uments containingtk in the retrieved sample as characteristic of the proportion in the comp
collection, for alltk.

Equivalently, the odds oftk appearing in a relevant document is (r/R)/((1-r/R) = r/(R-r), and the
odds oftk appearing in a non-relevant document is(n-r)/(N-R)/[1-(n-r)/(N-R)] = (n-r)/(N-R-n+r).
Inserting these values into the formula forwk, we obtain:

This formula forwk obviously breaks down ifpk equals one (r = R) or zero (r = 0). Similarly,wk
breaks down ifuk equals one (n-r = N-R) or zero (n = r). Statistical theory has been used to justi
modifying the formulas forpk anduk to avoid these singularities by adding a constantc to the
numerator and one to the denominator, wherec = 0.5 orc = n/N. [Robertson et al., 1986] How-
ever, there are always cases where these constants dominate the computation and dis
results. [Shaw, IP&M, 1995] Shaw proposes to avoid these problems by using the unmodifie
mulas everywhere but at the singularities, and specifying alternative formulas at the singula

If the constant 0.5 is inserted in the formula forwk, the result is:

It should be noted that in the term relevance model described above, the probabilities of rele
and non relevance, giventk, and the corresponding logodds functionwk, are based entirely on the
presence or absence of each termtk in relevant and non-relevant documents. A termtk is favored,
i.e., given a highwk, if it appears much more frequently in relevant documents than in non-r
vant documents. It receives no “extra credit” for appearing more frequently than another termtj in
relevant documents.

The simple term relevance weight given above is based on the contingency table, which i
structed on the basis of a training sample. Hence, the term relevance weight function is
entirely on the assumption that the user possesses a training sample that is adequate in s
representative of the collection(s) to which the function is to be applied. What if one has no
ing sample? Put another way, what should the “prior” term weight be, before any data from

wk
r N R– n r+–( )

R r–( ) n r–( )
---------------------------------------=

wk
r 0.5+( ) N R– n r 0.5+ +–( )

R r 0.5+–( ) n r 0.5+–( )
------------------------------------------------------------------------=
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collection is sampled? Robertson et al. [SIGIR ‘97], argue that this prior weight should reflec
fact that terms occurring in a large proportion of documents have little value for predicting
vance. Hence, they advocate using theidf as the prior weight, or (equivalently) the weight to b
used in the absence of relevance information. On the other hand, if ample term relevance in
tion is available, the term relevance function above applies. Hence, they propose a term w
function that varies smoothly fromidf (for zero relevance data) to the above term relevance fu
tion, wk, for ample relevance data.

Moreover, ample relevance data means not only an adequate sample of relevant documents
adequate sample of non-relevant documents. Hence, Robertson et al. defineS, the number of
known non-relevant documents (analogous toR for relevant documents), ands, the number of
known non-relevant documents containing a given term,tk (analogous tor) Note thatS is not the
same asN-R, ands is not the same asn-r. Given these six variables,R, r, S, s, N,andn, Robertson
et al. define a function that varies from pureidf (for R=0, S=0, i.e., no data available about rele
vance and non-relevance) to the abovewk term relevance function for largeR andS. They begin
by observing that the logodds formula above, the log of the ratio of the odds of relevance
odds of non-relevance, stated in terms ofpk anduk, can be rewritten as:

The first term above is the logodds of relevance given the presence of termtk. The second term is
the logodds of non-relevance, given the presence of termtk. Robertson et al. express each of the
terms as a linear sum of anidf term and a term relevance term. The resulting weight function 
:

Herek4, k5, andk6 are “tuning constants” that can be adjusted to tune the weighting function.
function is based on the “assumption... that the effect should be linear in the square root ofR, on
the grounds that the standard error of an estimate based on a sample is proportional to the
root of the sample size.” It can be readily seen that if there is no relevance data, i.e.,R, S = 0
(which impliesr, s = 0 too), the weighting function reduces to:

wk
pk

1 pk–( )
-------------------log

uk

1 uk–( )
------------------log–=

w 1( ) k5

k5 R+
------------------- k4

N
N n–
-------------log+〈 〉 R

k5 R+
------------------- r 0.5+

R r 0.5+–
--------------------------log+=

k6

k6 S+
------------------ n

N n–
-------------

S

k6 S+
------------------ s 0.5+

S s 0.5+–
-------------------------log–log–

w 1( ) k4
N

N n–
-------------log n

N n–
-------------log–+=

k4
N
n
----log+=
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which is the traditionalidf function plus a tuning constant. IfR andSare large, the 2nd and 4th
terms (the two term relevance function terms) dominate, and the weight function reduces to
“evidence-based,” or “training-set-based” weight function:

7.4.2 Bayesian Inference Network Model

An alternative approach to applying conditional (Bayesian) probability in IR, an approach
“depends less upon Bayesian inversion,” is the inference network retrieval model. [Turtle & C
ACM Trans IS, 1991] “Inference networks can be used to simulate both probabilistic and Bo
queries and can be used to combine results from multiple queries.” They can also be used t
bine multiple sources of evidence regarding the relevance of a document to a user query,
document may be represented by both terms extracted automatically from the document
and terms or concepts assigned manually as index terms. The inference network provides
ral way to combine these sources of evidence to determine the probability (in this context,
called thebelief) that the given document satisfies a given user query orinformation need. The
Bayesian inference network approach has been implemented in the INQUERY system. [Ca
al., IP&M, 1995] [Callan et al., DB&ExSysApp, 1992] INQUERY also employs some sema
features, e.g., concept recognizers, which are discussed in a later section. [Callan et al.,
ExSys, 1992]

An inference network is a probabilistic retrieval model, but it differs from typical retrieval mod
[Croft et al., SIGIR ‘91] A typical model computes “P(Relevance|Document, Query),the proba-
bility that a user decides a document is relevant given a particular document and query.
inference net model computes “P(I|Document), the probability that a user’s information need
satisfied given a particular document.” This probability can be computed separately for each
ument in a collection. The documents can then be ranked by probability, from highest proba
of satisfying the user’s need to lowest. The result is a ranked list of retrieved documents, a
more traditional retrieval models. Moreover, the list of retrieved documents can be cut off
probability threshold, e.g., only retrieve documents with a probability greater than 70% of sa
ing the user’s need. Such a probability threshold is likely to be more meaningful to the user t
cosine similarity threshold drawn from the vector space model.

Pearl [Prob Reas, 1988] has an excellent discussion of inference networks in general, and
sian networks in particular. He points out that these networks solve an important problem
probabilistic models (and more generally, with “extensional” models):

Interpreting rules as conditional probability statements,P(B|A) = p,
does not give us a license to do anything. Even if we are fortunate
enough to findA true in the database, we still cannot assert a thing
aboutB or P(B), because the meaning of the statement is “IfA is
true andA is theonly thing that you know, then you can attach toB

w 1( ) r 0.5+
R r 0.5+–
--------------------------log s 0.5+

S s 0.5+–
-------------------------log–=

r 0.5+( ) S s 0.5+–( )⋅
R r 0.5+–( ) s 0.5+( )⋅

--------------------------------------------------------log=
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a probabilityp.” As soon as other factsK appear in the database, the
license to assertP(B) = p is automatically revoked, and we need to
look upP(B|A, K) instead.

The point is thatK may cause us to revise or retract conclusionB. The ability to retract a previous
conclusion, called “non-monotonic” reasoning, is forbidden in classical logic but is essent
the kind of plausible reasoning under uncertainty that human beings actually do, and whic
vades information retrieval. The great virtue of inference nets is that they organize our know
so that all the propositions, A, K, etc., on which a given conclusionB depends are immediately
accessible, i.e., they are the parents (directly or indirectly) ofB. Moreover, a rule for computing
the probability ofB from the probabilities of its parents can be attached to the node forB.

The inference network is a graph and consists of nodes connected by directed line seg
(“edges”). The nodes are true/false propositions. An edge is drawn from nodep to nodeq if p
“causes” or “implies”q. We can then callp a “parent” ofq. As the network is applied to IR, the
root nodes are documents, i.e., propositions of the form, “DocumentDi is observed.” There is a
document node for eachDi in the given collection. These document nodes are parents of “te
nodes. (See Figure 1.) Thej-th text node for documentDi is a physical representation of the tex
of Di, i.e., the proposition that, “Text representationTi,j of documentDi has been observed.” Fo
most purposes and in most IR systems, no distinction is drawn between the document and
representation. But drawing this distinction allows for the possibility that a text represent
might be shared by several documents, e.g., in a hypertext system several documents mig
links to the same shared text. It also allows for the possibility that the children of a document
might include not only text nodes but also audio, video, figure, etc., nodes. (Here we are evid
talking about both multiple representations of a document, and multiple components of a m
media document.) The distinction between document nodes and text nodes will be ignored
discussion that follows.

The text nodes in turn are parents of “content representation” nodes (“representation” nod
short). (See Figure 1.) These are the “descriptors” or “index terms.” As noted above, the tex
document might be indexed both by terms automatically extracted from the document (a
cussed in connection with vector space and Boolean models), and manually assigned des
terms or concepts. (For example, as Turtle and Croft point out, there may be two represen
nodes associated with the phrase “information retrieval”, one corresponding to the actual o
rence of the phrase in one or more documents, the other corresponding to the manual assi
of the concept expressed by the phrase to one or more documents, i.e., the human indexer
ment that the given documents are “about” information retrieval.) Hence, there may be tw
more subsets of representation nodes, each corresponding to a different method of descri
representing documents. A given representation node for termtk may correspond to the proposi
tion, “tk is a good document descriptor.” IfD1 is a parent oftk, then the link fromD1 to tk specifies
the probability or “belief” in the proposition thattk is a good descriptor of the document, give
that the document isD1. A term is a “good descriptor” of a document if its presence in the giv
document serves to characterize the document and distinguish it, e.g., statistically, from othe
uments that are about other topics. Note (see Figure 1 below) that iftk occurs in both documentD2
and documentDi, then nodesD2 andDi are both parents of nodetk. And if in addition, conceptcj
is assigned manually as a descriptor ofD2, thenD2 is a parent of bothtk andcj, i.e., documentD2
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is described (with some probability or to some extent) by conceptcj and contains termtk with
some probability thattk is a good descriptor ofD2.

Given a documentD1, one wishes to compute the probabilities of the propositions represente
the child nodes ofD1, the children ofthosenodes, and so on. Hence, an inference net must p
vide some method of specifying the conditional probability of the proposition at nodeq, given the
probabilities of the propositions at its parents,p1, p2, etc. The mechanism chosen by Turtle et al.
called a “link matrix.” Each node is assigned such a matrix. The link matrix for nodeq contains
two rows; the first row corresponds to propositionq being false, the second row corresponds toq
being true. The link matrix forq has a column for each logical combination of parent truth valu
For example, ifq has three parents,p1, p2, andp3, each of which can be either true or false, the
there are eight columns: a column for all three parents being false, a column forp1 being true and
p2 andp3 being false, and so on, up to all three parents being true. Each of these eight com
tions is a proposition that may influence our belief thatq is true or false. Each entry in the matri
contains a weight corresponding to how strongly we believe the truth or falsity of the corresp
ing proposition should influence our belief in the truth ofq. For example, the cell correspondin
to column (i.e., proposition) “p1 andp2 true,p3 false,” and row “q true,” contains our estimate o
how much the truth of the given proposition should influence our belief in the truth ofq.

Given the link matrix for nodeq, P(q) can be computed by summing all the possible prior prob
bilities. Each prior probability is the probability of some combination of true and false for the
ent propositions. Hence, each prior probability corresponds to a column of the link matrix
example, consider the column “p1 andp2 true,p3 false,.” LetP1, P2, andP3 be the probabilities
that the propositionsp1, p2 andp3 are true. Then the prior probability of the given column (assu
ing the three parent propositions are independent of each other) isP1*P2*(1-P3). The prior proba-
bility is computed similarly for each of the eight columns, e.g., the prior probability for colu
“p1 false,p2 false,p3 true” is (1-P1)*(1-P2)*P3, and so on. These eight prior probabilities a
summed to compute the total prior probability forq. As noted above, if some of the parents a
more important than others, a weight for each prior probability appears in the link matrix. E
prior probability is multiplied by its weight from the link matrix before summing. Typically, th
weight for each prior probability is a function of the weights assigned to the true parents i
given combination. For example, letw1, w2, andw3 be the weights assigned to parent propositio
p1, p2, andp3 respectively. Then, each of the eight prior probabilities can be weighted by the
malized sum of the weights for those propositions that are true. Hence, the prior probabili
column “p1 and p2 true, p3 false” would be multiplied by (w1+w2)/(w1+w2+w3), yielding a
weighted prior probability ofP1*P2*(1-P3)*(w1+w2)/(w1+w2+w3). Then, the total prior probabil-
ity (sum of the prior probabilities for each column of the link matrix) is multiplied by the prob
bility of q given the prior probabilities,P(q|p1, p2, p3).

Note that the link matrix is a conceptual representation. A pure link matrix contains a colum
each logical combination of parent nodes. Hence, if the number of parents is large, the num
columns isvery large; the number of columns grows exponentially with the number of pare
Specifically, if nodeq hasn parents, its link matrix must (in general) have2n columns. Corre-
spondingly, an operator represented by such a matrix runs inO(2n) time; it “requiresO(2n) float-
ing point operations.” Clearly, for largen, a more efficient implementation or an operator with
simpler interpretation, must be employed. An example, discussed below in connection
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extended boolean operators, is link matrices that satisfy the Parent Indifference Criterion
matrices in which the value of the child node is determined wholly by the number of parents
are true, not at all by which ones are true. For such matrices, the number of columns clearly
linearly, not exponentially, with the number of parents. Such operators run inO(n2) time. In cer-
tain important cases (see below), the run in linear time.
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As a further refinement of the inference network structure, term dependencies, e.g., the ten
of two or more terms to co-occur, can be represented by links from one term to another. For
ple, a link fromt1 to t2 may represent the probability that termt2 will occur in a given document,
given that termt1 occurs in the given document. However, the network specifier must be caref
avoid cycles (see discussion below), e.g., a link fromt1 to t2, a link from t2 to t3, and then a link
from t3 to t1, would be forbidden! Document dependencies can also be represented, e.g., a c
in documentD1 to documentD2. If clustering techniques (see below) are used to establish th
set of documentsD1, D2, …, Dc are more similar to each other than to any document not in
cluster by some appropriate criterion, then this can be represented by a cluster node which
sents” the cluster. Cluster nodes can themselves have representation nodes. Thus if documDk
belongs to clusterCi, andCi has a representation nodetj, then the presence oftj in the user’s query
will strengthen belief thatDk satisfies the user’s information need even iftj does not appear inDk
itself.

Once the document network is built, capturing all the dependencies among documents an
representations, we assign probabilities to the nodes. Each document node receives a “prio
ability,” generally equal to 1/(collection size). This is the probability that a given document will b
observed, given that a document is selected at random. “Each representation node contains
ification of the conditional probabilities associated with the node given its set of parent text
ument] nodes.” For example, the conditional probability of term nodeti given parentDj is the
probability thatti is a good descriptor ofDj, i.e., is effective for the purpose of characterizingDj,
and distinguishingDj from other documents in the collection. This is specified symbolically
P(tj|Dj=true). Here,” tj” is the proposition that “tj is a good descriptor of the observed documen
and “Dj=true” is the proposition that “Dj has been observed.” As described above, the probab
of the proposition associated with a given term or manually assigned descriptor, can be sp
by a link matrix or its equivalent. However, for the special case where the parent events are
vations of documents, the general scheme described above for specifying and evaluating
matrix is modified in one essential respect: Although many documents may contain a given
tj, and hence may be parents oftj’s representation node, each documentDi is observed separately
(the observed document is said to be “instantiated”), and hence its probability of satisfyin
user’s information need,I, is computed separately. The documents can then be ranked by
probability that they satisfyI. Hence, the link matrix of a representation nodetj corresponds to
observation of a single document containingti and observation ofno other documents. There ar
no columns intj’s link matrix corresponding to several documents observed at the same
Hence, the link matrix fortj contains only two columns: “DocumentDi observed,” i.e,
P(tj|Di=true and all other parents =false) and “No document observed,” i.e.,P(tj|all parents =
false).For convenience, these conditional probabilities are usually expressed for sho
P(tj|Di=true) and P(tj|Di=false). This two-column matrix can readily be represented in clos
form.

The conditional probability of the proposition “tj is a good descriptor” given the event “Documen
Di is observed” can be based on any available evidence. However, as observed in the sec
Building Term Vectors, “tf* idf” is a good statistical measure of the ability of a given term to d
tinguish a given document. Turtle et al. employ a variant of this measure. However, their va
0.4 + 0.6*tf* idf, departs from conventional vector term weighting schemes in one striking res
The probability (or “belief” as the inference net folks like to call it) is non-zero even when
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term frequency for the given document is zero, i.e., even when the term doesn’t occur in the
ment! The constant component, 0.4 in the above function, is called the “default probabilit
corresponds to the view that a given term may have some probability of being a valid descrip
the document, even if it is not observed in the document. In other words,P(tj|Di=false) = 0.4. For
example, the given term itself may not be present, but a synonym may occur in the docume
terms that frequently co-occur with the given term may be present. Or observation ma
restricted to the title or abstract, or a summary of the document; the given term may be a
from these surrogates, yet present in the full text of the document. The constant 0.4 was arri
not by any deep theory, but purely by experiment. Turtle et al. tried a wide variety of linear f
tions of the formA + B*tf + C*idf + D*tf*idf , wheretf was normalized by maximum within-docu
ment term frequency, andidf was normalized by collection size. They found that the variant ab
gave the best results.

It might have been expected that the default probability would be dependent onidf, but experi-
ment showed that a constant default performed as well. To complicate matters further, Greif
[SIGIR ‘97] developed a computationally tractable, probabalistically motivated soft [exten
boolean operator based on a link matrix. (See below.) They found that to achieve perform
comparable to thep-norm model (see section on Extended Boolean Approach), they had to se
default probability to zero!

So far, we have discussed that part of the inference network that describes a collection of
ments. Not surprisingly, it is called the “document network’ and it is calculated once for a s
collection. Naturally, it is updated if the collection it describes is updated. The document n
are the top or “root” nodes of the document network; the representation nodes are the bot
“leaf” nodes. (The document network is not a tree since it has multiple roots and a text or r
sentation node can have multiple parents. But it is directed and acyclic, i.e., no “loops,” so
possible to use graph tree terminology and talk about root, parent, and leaf nodes. For s
directed acyclic graph is called a “DAG.”) Note: There is a very good reason why loops (cy
must be avoided in Bayesian inference networks. As Turtle and Croft point out, “evid
attached to any node in the cycle would continually propagate through the network and repe
reinforce the original node.”

The other part of the inference network is the “query network.” (See Figure 1.) It too is a DAG
multiple roots are the concepts that express the user’s information need. These concept nod
be the parents of multiple intermediate “query” nodes. Each query node is a parent of the
leaf node representing the user’s information need. The use of those intermediate query
allows an information need to be expressed as multiple queries. Naturally, a separate que
work is constructed for each user information need. “The single leaf representing the inform
need [of a given query network] corresponds to the event that an information need is met.”

To apply a given information need to a given document collection, the query network corresp
ing to the given need must be attached to the document network corresponding to the give
lection. This is accomplished (see Figure 1) by specifying parent-child links from the con
representation nodes of the document network to the concept nodes of the query network,
leaf nodes (or at least some of them) of the document network become parents of the root
(at least some of them) of the query network. In the simplest case, a representation node fr
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document network and a concept node from the query network may be identical, e.g., the f
may be a term found in certain documents, and the latter may be a term specified in a user
(In Figure 1,tm is a term in documentD1 and also a term in the queryI. Similarly, termtk is a term
in both documentD2 and documentDi, and also a term in the queryI.) The link from the one to
the other then expresses the relationship that the observation of the given term in a given
ment contributes evidence to the belief that the document satisfies the given information ne
a more complex case, multiple representation nodes may be parents of a single query c
node which is not identical to any of its parents. This occurs for example, when documen
represented in multiple ways, and queries use “concepts that do not explicitly appear in any
ment representation.” For example in Figure 1, conceptcn is a (perhaps manually assigned) co
cept descriptor of documentDi, and tk is a term or phrase occurring inDi. Both cn and tk are
parents of query conceptcv. Document descriptor conceptcn might be the concept “information
retrieval,” query conceptcv might be the concept “textual retrieval,” and document term descrip
tk might be the phrase “information retrieval” actually occurring inDi (and alsoD2). So, the given
structure tells us that both the presence of the phrase “information retrieval” in a document
string in its text representation) and the presence of the concept “information retrieval” (as a
ually assigned concept descriptor in its semantic representation), contribute to the belief th
document is about textual retrieval, which contributes, in turn, to a belief that the user’s info
tion needI is satisfied.

Once a query network for a given information need,I, has been attached to a document netwo
for a given collectionC, it becomes possible to compute the “belief” (the probability) that t
information need has been satisfied by a given document or subset of documents. We must
an operator or estimation rule, e.g., using a link matrix or its equivalent, for every non-root
of the total retrieval inference network, specifying how that node’s probabilities are to be
mated given the probabilities of its parents. Thus we specify how the probability ofI being satis-
fied depends on its parent query nodes, how the probability of each query node being true d
on the probabilities of its parent concept nodes, how the probability of each query concept
being true depends on the probabilities of its parent document representation nodes, and s
we select some particular documentDi, we setDi’s node to true and all other document nodes
false. This “evidence” percolates down through the network as we calculate the probabil
each representation node given the evidence of its parent document nodes, the probability
query concept node given the probabilities of its parent representation nodes, the probab
each query node given the probabilities of its parent concept nodes, and finally the probabilit
“belief”) that the user’s information need,I, is satisfied, given the probabilities of its parent que
nodes. Hence, by selecting some particular documentDi, we can compute the probability (the
“belief”) that the user’s information need, I, is satisfied byDi. We can repeat this process for eac
document in the collection, thus computing a probabilistic ranking for the documents.

Note that the component terms or concepts that comprise a query can be combined proba
cally, as described above. On the other hand, link matrices can also be used to specify non
bilistic, e.g., boolean, operators.

For example, a strict boolean AND means that the belief in the truth of nodeq depends on the
truth of all its parents. If, as above,q has three parents,p1, p2 andp3, then the link matrix row for
q = true will have a zero for every column except the last one; the last column, “p1 andp2 andp3
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true” will contain a one. The row for AND false is, of course, the complement: a one in every
umn except the last. Hence, the meaning of the link matrix is thatq is true if and only ifp1, p2, and
p3 are all true. Similarly, theq = true row of the link matrix for boolean OR will contain a one fo
every column except the first column, “p1, p2, andp3 all false,” a zero in that first column. Note
the presence of all ones and zeros in the link matrix for a strict logical OR or AND is a wa
saying that the parents are unweighted, i.e., each term in a strict boolean AND or OR is j
important as any other.

Link matrices can even be specified efficiently forsoft (also calledextended) boolean operators.
(See section on Extended Boolean Approach.) [Greiff et al., SIGIR ‘97] Instead of specifyi
column for each logical combination of parent truth values, Greiff et al. specify a column for
numberof true parents, independently ofwhich parents are true. So, ifq has four parents, there
will be five columns, corresponding to no parents true, one parent true, two parents true, thre
ents true, and all four parents true. The weight in thetrue row for, e.g., three parents true, is a
estimate of the probability thatq is true, given that exactly three of its parents are true,any three
of its parents. In other words, the weight for thetrue row of columni is the conditional probability
of q giveni parents true,P(q| i parents true). Any link matrix of this type is said to satisfy thePar-
ent Indifference Criterion(PIC). Understandably, the cases they explore are those in which
conditional probability is non-decreasing as the number of true parents increases, since th
parents are true, the more support there is for belief inq. Hence, the weights in thetrue row for q
either remain the same or increase as the number of parents increases, i.e., ifj > i and row0 = true
in link matrix m, thenm(0, j) m(0, i). As before, the unconditioned probability ofq, P(q), is com-
puted by multiplying the prior probability of each logical combination of parents by its co
sponding weight from the link matrix, and summing these products. The difference is that fo
operators, there is a single weight (and hence a single column in the link matrix), for all lo
combinations in which the same number of parents are true. This fact not only reduces the
to n+1 columns; it also makes possible a much more efficient algorithm for operator evalua
[Greiff, SIGIR ‘97] The curve ofP(q)= truevs. # of true parents can be linear or non-linear. Se
arate matrices must be specified for the soft boolean OR and the soft boolean AND respec
Commonly, but not necessarily, the parents are terms in the document being evaluated, t
also in the query. The probabilities in the link matrix for the soft boolean OR operator are s
that the curve rises rapidly for a small number of parents, and then increases more slowl
corresponds to the idea that for a generalization of OR, a small number of query terms pres
a given document count a lot toward the total probability that the document is relevant, but
tional terms present add a little more. Similarly, for a soft boolean AND operator, the probabi
in the link matrix are set so that the curve increases slowly until most of the parents are true
increases rapidly; this corresponds to the idea that for a generalization of AND, a small num
query terms present in a given document count a little, but presence of most or all of the
terms add a lot more to the total probability that the document is relevant. If the parents are
in a given document, then truth of a parent is presence of the term in the given document. Th
ents can be weighted as before, e.g., using some variant oftf*idf . The childq can be the query
(Information Need in the Turtle et al. terminology), or a concept within the query (see below

Greiff et al. show that PIC operators can be implemented to run inO(n2) time. Moreover, if the
probability vs. number of parents curve is piecewise linear, and “all but one of the pieces o
function is of constant width,” the operator can be evaluated inO(n) time. (Note, by the way, that
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the strict boolean operators are also defined by PIC matrices. However, for the strict boolea
link matrix can be represented by a closed form operator, so the PIC algorithm is not neces

The operator at any given non-root node,Ni, computes a belief (probability) inNi in terms of
operands which are the beliefs inNi’s parent nodes. A set of operators have been implemente
the INQUERY system that can be specified at the level of the query network, i.e., that are
tively part of the INQUERY query language. They include strict boolean AND, OR, and N
extended (soft) boolean operators such as those discussed above, weighted sum (similar
used for computing the cosine similarity of a document in document vector space), unwei
sum (i.e., mean), and maximum (maximum of operand values). There are also proximity o
tors which return not a belief but “true” if the proximity condition is satisfied or “false” if it is n
satisfied. Proximity operators include unordered text window proximity operators (operand
terms that must occur in any order in a text window ofsize< n), and ordered interword proximity
operators (operands are terms that must occur in a specified order with interwordseparation< n).
A proximity value can be converted into a belief value by an operator such as “PHRASE” (i.
the operands satisfy the ordered proximity condition with n = 3,calculate the unweighted sum o
their beliefs).[Turtle and Croft, ACM Trans IS, 1991] [Callan et al., IP&M, 1995] [Callan et a
DB & ExSys, 1992] The set of possible operators is clearly open-ended. However, every op
evaluates the probability (the belief) of a given node in terms of the probabilities (beliefs) o
parents. This is the basic “update procedure for Bayesian networks.”

For example, suppose that the user’s query includes an OR condition (strict or extended), e
is looking for documents that containt1 or t2 or t3. This is represented, in the query network, by
nodeQ with three inputs, corresponding tot1, t2, and t3. Thet1 input may represent the probabil
ity that t1 is a good content descriptor, i.e., a good descriptor for purposes of distinguishing
vance, given that some documentD has been observed in the current collection, and similarly
t2, andt3. These probabilities may be computed by a widely used ad hoc, statistical measur
tf*idf (see section on Building Term Vectors in Document Space), or by a measure based on
theoretical model, e.g., the BI model (see section on Binary Independence Model). Then, th
put of the OR node will represent the joint probability thatt1 OR t2 OR t3 is a good content
descriptor, given the probabilities associated witht1, t2, andt3 separately. If the OR node is a con
cept node,c1, then its output is the probability that thec1 is present, givenD, i.e., thatD is “about”
c1. The separate boolean probabilities associated with the ANDs, ORs, NOTs, etc. of whic
query is composed are then combined into one total probability for the user’s query, the pro
ity that the user’s information need, expressed as a logical combination of concepts, has be
isfied by the observed documentD. This same process can be applied to each document in
collection, thus generating a probabilistic ranking of the documents.

As a simple special case, the OR node or AND node of the preceding paragraph could
user’s actual query, i.e., there may be no intermediate concept layer. In that case, evaluation
boolean node, given documentD, would give the probability thatD was “about” the user’s query,
i.e., satisfied the user’s information need.

On the other hand, the user’s query could be a term vector (either supplied directly by the us
extracted from a free-text specification of the user’s need. If the vector consists of the three
t1, t2, and t3, then these three terms are parents of the user’s query node. The link matrix fo
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query,Q, would contain (as before) a column for each of the eight logical combinations of t
value for the three parents. Note that “truth” oft1 givenD doesnot mean thatt1 is observed inD.
If t1 is present inD, truth of t1 is the proposition thatt1 is a good descriptor ofD (or in other
words, contributes evidence that D is relevant to queries containingt1). The value oft1 is a mea-
sure of the probability thatt1 is indeed a good descriptor, i.e., some measure of its “goodne
The corresponding value of the proposition thatt1 is false is then 1-P(t1 = true|D). On the other
hand, if t1 is not present inD at all, the value of the proposition “t1 is a good descriptor” is zero,
becauseD offers no support for the proposition. Correspondingly, the value of the propositiont1
is not a good descriptor is 1-0 = 1. (But note that if the concept of adefault probability, discussed
above, is employed, then the probability thatt1 is a good descriptor, givennodocument support, is
not zero; using Turtle’s function, given above, its value = 0.4.)

One essential virtue of the inference network approach is that it allows one to represent a co
set of dependencies, dependencies in a document collection, dependencies in a complex in
tion need specification, and dependencies between the concepts that represent the docum
lection and the concepts used to express the information need. The belief that a given inform
need is satisfied by a given document or set of documents in the given collection can then b
mated by evaluating the operator at each non-root node of the network. Different sources o
dence (automatically extracted terms, phrases, paragraphs, and manually assigned desc
can be combined. Different query types, e.g., natural language and Boolean, “can be comb
a consistent probabilistic framework. This type of ‘data fusion’ has been known to be effecti
the information retrieval context for a number of years.” [Callan et al., IP&M, 1995] (Note: T
“data fusion” is fusion of document representations and evidence, and fusion of queries. Th
section deals with fusion of results, i.e., fusion of retrieved documents from different sourc
different queries.) Last but not least, inference net evaluation does not require a complex
form expression that captures all the dependencies. Instead, the logic of evaluation is sprea
the network. However, the one problem that neither inference networks nor any other probab
representation can solve is the difficulty of ever knowing/estimating the dependencies and
probabilities in a complex relationship among documents and queries.

7.4.3 Logical Imaging

Another approach to computing posterior probabilities, based on “non-classical logics
described by Crestani and van Rijsbergen [SIGIR ‘95]. Given a documentDi, the key to “Logical
Imaging” is to determine for every termtk that indexes the given document collection and isnot in
Di, the term inDi that is “most similar” totk. Then posterior term probabilities forDi are com-
puted by transferring the prior probability of each term not inDi to its most similar term inDi.
The transfer is additive, i.e., if termstj, tk, andtl are terms not inDi, and all three are “most simi-
lar” to Di termti1, then we add the prior probabilities oftj, tk, andtl to the prior probability ofti1 to
obtain its posterior probability. Probability is neither “created” nor “destroyed” in this proc
merely transferred from non-document terms to document terms. Hence, if the prior probab
for the entire term space sum to one, the posterior probabilities for a given document mus
sum to one. The sum of posterior probabilities of document terms that are also in a given
then becomes the probability of relevance for the given document relative to the given quer
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The obvious question is how to compute term “similarity” in order to compute for each term ti the
degree of similarity of every other term. (Given this ranking, it is then straightforward to de
mine for any termtk that is not in a given documentDi, the term inDi that is “most similar” totk.)
The measure chosen by Crestani and van Rijsbergen is the “Expected Mutual Information
sure” (EMIM) between terms. As applied to IR, “[t]he EMIM between two terms is often int
preted as a measure of the statistical information contained in the first term about the other o
vice versa, being a symmetric measure.” [Crestani & van Rijsbergen, SIGIR ‘95]. LetTi be a vari-
able that takes on two values:Ti=1 means that termti occurs in a randomly chosen document an
Ti=0 means that it does not. SimilarlyTj is a variable for the occurrence or non-occurrence
another termtj, P(Ti) is the probability of eventTi, P(Tj) is the probability of eventTj andP(Ti, Tj)
is the joint probability of eventsTi and Tj. Then the EMIM is:

where the summation is over the four possible values ofTi andTj together, i.e.,Ti occurs andTj
does not,Tj occurs andTi does not, they both occur, or neither occurs, in a given document. N
that if Ti andTj occur independently,P(Ti, Tj) = P(Ti)P(Tj) andI(Ti, Tj) =0, so the EMIM is a mea-
sure of how much the two events, in this case co-occurrence ofTi andTj in a document, departs
from stochastic independence. [van Rijsbergen, 1979]

Crestani and van Rijsbergen also describe an extension of Logical Imaging called “General
cal Imaging.” The difference is that instead of identifying the termtl in Di most similar to a given
term tk not in Di, one identifies the set of terms, e.g.,tl, tm, tn, in Di most similar totk. Then one
transfers the prior probability oftk to the settl, tm, tn according to a transfer function (called a
“opinionated probability function”) which prescribes how much oftk’s prior probability is trans-
ferred to the most similar termtl, how much to the next most similar term,tm, and so on.

7.4.4 Logistic Regression

Cooper et al. [TREC, 1994] [SIGIR ‘92], use “a probabilistic model … to deduce the gen
form that the document-ranking equation should take, after which regression analysis is app
obtain empirically-based values for the constants that appear in the equation … The proba
model is derived from a statistical assumption of ‘linked dependence.’” (See discussion of L
Dependence in earlier section.) Logistic regression is the regression analysis method emp
That is, the “probability of relevance vs. document evidence” curve is fitted to a logistic reg
sion function. The values of the “empirically-based” constants are derived from a training s

Cooper et al. explain the reasons why logistic regression is more appropriate than standard
logistic) linear regression for predicting the probability of relevance. The most important reas
that the probability of relevance to be modeled is two-valued, i.e., every document in the tra
set is either known to be relevant (probability of relevance equals one), or known to be non
vant (probability of relevance equals zero). Hence, the desired probability curve must fit a

I t i t j,( ) P Ti , Tj( )
P Ti , T j( )

P Ti( ) P Tj( )⋅
------------------------------log⋅

Ti T j,
∑=
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data points all of which reside either on the horizontalp=0 line, or the horizontalp=1 line.
Clearly, the sloping straight line generated by linear regression will fit these points very poor
any possible slope. On the other hand, logistic regression generates an “S-shaped” curve. With
appropriate parameters, the lower arm of the “S” can be made to approximatep=0, while the
upper arm can be made to approximatep=1.

To obtain this “S-shaped” curve, we express the probability of relevance as a logistic regre
(“logit”) function, as follows:

where theXj are individual facts about a given document. Cooper et al. group the facts (the
dence”) from a given query/document pair into “composite” clues,Ai, (i = 1 to N), where each
composite clue is composed of a set of factsXj (j = 1 toM). For example, “if …Ai is a word stem,
thenX1 might be (say) the relative frequency of the stem in the query,X2 its relative frequency in
the document, andX3 its inverse document frequency in the collection.” Hence, in contrast to v
tor space methods, and most other probabilistic approaches (except inference networks),
describe each document with a single level of features, a “feature vector,” Cooper et al. m
each document and query more accurately astwo levels of feature: At the outer level, each docu
ment and query is described by a conventional feature vector of “composite” features,Ai. At the
second (inner) level, each composite feature is expanded into a set of elementary featurXi.
Each composite feature,Ai, is related to its elementary features by logistic regression. The pro
bility of relevance of the document as a whole is related to its composite features, theAi, by the
traditional linked dependence assumption.

The calculation turns out to be easier in terms of the log of the “odds” of relevance. The “odd
relevance is defined as the ratio of the probability of relevance to the probability of non-relev
Hence, the odds that a document is relevant, given a single composite feature,Ai, can be expressed
in terms of its corresponding elementary features, as:

If one replaces the probability by the corresponding logistic regression function in the above
tity, and takes the natural log of both sides, one obtains:

P R X1 … XM, ,( ) e
c0 c1X1 … cM XM+ + +

1 e
c0 c1X1 … cM XM+ + +

+
---------------------------------------------=

O R Ai( ) O R X1 … XM, ,( )
P R X1 … XM, ,( )

P R¬ X1 … XM, ,( )
-------------------------------------------= =

P R X1 … XM, ,( )
1 P R X1 … XM, ,( )–
------------------------------------------------=

O R Ai( )log O R X1 … XM, ,( )log c0 c1X1 … cM XM+ + += =
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This equation gives the logodds of relevance given a single composite clue,Ai. To extend it to a
set ofN clues,A1,..., AN, one uses the linked dependence assumption, discussed above in a
lier section. This assumption is that the same degree of dependence holds for both the r
document set and the non-relevant document set. This degree of dependence is ex
(crudely) as a common proportionality constant. Hence in symbols, we have:

Note that linked dependence, like pure binary independence, breaks a complex joint prob
into a product of simpler separate probabilities for the individual “composite” clues. Cooper
point out that since each clue, each piece of evidence, is a separate factor in the linked depe
formulation, and hence makes a separate contribution to the total probability of relevanc
effect is that the probability of relevance computed for high-ranking documents, documents
taining many clues matching the given query, will tend to be too high. They offer a couple of
tively crude methods of compensating for this effect, discussed below.

Dividing the second linked dependence equation by the first (which causes the proportio
constantK to cancel out), and using the identity,

we have:

or, generalizing toN composite clues, multiplying byO(R), and taking the log of both sides, we
have:

where theAi are the “composite features” to be used to characterize any randomly chosen q
document pair,O(R|Ai) is the odds that the document is relevant to the query given the comp
featureAi, O(R) is the odds that the document is relevant to the query in the absence of an
dence, andO(R|A1, A2, …, An) is the odds that a document is relevant given all the composite
tures,A1, A2, …, An. The sum in the above equation is taken over all the clues, i.e., fromi =1 to i =
N. Note that the composite features employed are those that match in at least one query-do
pair in the training set. This is the “fundamental equation” employed by Cooper et al. for d
ment ranking by logistic regression. Note that the regression is “logistic” in the sense tha

P A B R,( ) K P A R( ) P B R( )⋅ ⋅=

and

P A B, R¬〈 | 〉 K P A R¬( ) P B R¬( )⋅ ⋅=

P A R( )
P A R¬〈 | 〉
---------------------

O R A( )
O A( )

------------------=

O R A B,( )( )
O R( )

------------------------------
O R A( )
O A( )

------------------
O R B( )
O B( )

------------------⋅=

O R A1 A2 ... AN, , ,( )log O R( )log O R|Ai( )log O R( )log–[ ]
i 1=

N

∑+=
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express the probability of relevance as a logit function. The actual regression performed
below) is linear regression.

If all the composite features,Ai, for a query/document pair are of the same type, i.e., defined
terms of the same independent variables,Xj, then the set of composite features forms a mat
with M + 1 columns. For any query-document pair in the training set, there will be a set of row
the matrix with one row for each composite feature, e.g., each word stem, that occurs in
query and document.(These are called “match terms.”) Hence, each row in the training set
sponds to a query-document-term “triple.” The row for a given composite feature of a g
query-document pair will contain theM values of the elementary features,Xj, comprising that
composite feature, e.g., the relative (normalized) frequency of the term in the given docume
relative frequency of the term in the query, etc. The given row will also contain one additi
value: the logodds of relevance given the presence ofAi, log O(R/Ai). This value is computed from
the training set, by observing the proportion of documents relevant to the given query (as ju
by the humans who constructed the training set) that containAi, the proportion of documents no
relevant to the given query that containAi, dividing the former by the latter, and taking the log o
this quotient. This value is the (M+1)th value in the row for the given query-document-compos
clue triple. The entire set of such rows in the training set forms a matrix. If this training set ma
or a matrix composed of a representative sample of rows drawn from the training set, is sub
to a statistical program package capable of performing ordinary linear regression, the pa
will compute values for the coefficientsc0, c1, …, cm. Cooper et al. argue that the resulting line
function of theXj with thecj computed by the regression program will be a better predictor oflog
O(R/Ai) than direct computation from the training set. Note that each coefficient,cj, is the coeffi-
cient applied to any value of elementary clue type,Xj, e.g., ifX1 is relative frequency of a given
match term in a given document, thenc1 is the coefficient applied to the relative frequency of a
term in any document for purposes of computing its logodds of relevance to any query conta
the same term.

At retrieval time, the system is given a new queryQ against an operational document collection
is hoped will have similar statistical properties to the training set. Given any documentD from
this operational collection, the retrieval system can estimatelog O(R|Ai) of D for each of theAi
using the coefficients computed from the training set (as described above), and the values oXi
obtained from the given document and query. Thelog O(R)can be estimated straightforwardl
from the proportion of relevant documents in the training set. Summing thelog O(R|Ai)- log O(R)
contributions, the system obtains from the above equation an estimate forlog O(R|A1, A2, …, An)
for the given document. These logodds estimates can be used to relevance rank the retriev
uments relative to the given query. Moreover, a logodds estimate can be converted into a pro
ity of relevance for the benefit of the end user.

In a subsequent TREC experiment [TREC-2], Cooper et al. employ a variant of the me
described above. They call the earlier method the “triples-then-pairs” approach. The term
ples” refers to the fact that coefficients are computed separately for each of the composite
theAi; each of the rows in the training set used to compute the coefficients for a givenAi corre-
sponds to a query-document-composite clue triple, i.e., to the values of the elementary clu
Xi, for a givenAi, obtained from a given query and document. By contrast, Cooper et al. call
TREC version the “pairs-only” approach. A single linear regression is applied to a set of
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derived from the entire training set. Each row corresponds to a single query-document pair;
each row contains theM elementary clues,Xi, for each of theN composite clues,Ai. Therefore,
the elementary clues have a double index,Xn,m, wheren indexes the composite clue, andm
indexes the elementary clues for a given composite clue.Hence, instead of obtaining coeffi
for computing the logodds of relevance given a singleAi (as in the earlier “triples” approach)
Cooper et al. obtain at once the coefficients for computing the logodds of relevance of any
document to any given query givenall theAi. In other words, they apply regression to obtain th
coefficients for:

As noted earlier, the effect of the “linked dependence” assumption (or the even stronger b
independence assumption) is to overstate the probability of relevance asN, the number of com-
posite clues in the query that match the document being ranked, increases. In other wor
effect is to overstate the probability of relevance for high-ranking documents. In their TRE
work, Cooper et al. compensate for this by multiplying each of theXn,m terms by a “functionf(N)
that drops gently with increasingN, say  or .”

For the TREC2 experiment, three “composite” clues were employed: (1) normalized word
frequency in query, (2) normalized word stem frequency in document, and (3) normalized
stem frequency in collection. Note that, whereas for the “triples-then-pairs” approach, each
posite clue might be, e.g., a stemmed match word, and the facts comprising the composite
be its various (in this case, three) frequencies, in the “pairs-only” approach, each composit
is a type of frequency, and the facts comprising a given composite are the values of the give
quency for each of theM match word stems. For word stemm, these were defined in TREC2 a
follows:

1. Xm,1 = number of times them-th word stem occurs in query, divided by (total number of a
stem occurrences in query + 35);

2. Xm,2= number of times them-th word stem occurs in the document, divided by (total number
all stem occurrences in document + 80);

3. Xm,3 = log(number of times them-th word stem occurs in the collection, divided by the tot
number of all stem occurrences in the collection).

Note that Cooper et al. assume above (in both the “triples” and “pairs only” methods) that a
ing set is available for a sample of “typical” queries, but not for the actual future queries for w
retrieval is to be performed. Hence, regression coefficients, theci above, are computed for the ele
mentary clues associated with each composite match termAi, e.g., each word stem that matches
at least one query-document pair of the training set. When a documentD is to be ranked against a
new query,Q, theAi employed are those which occur in bothQ andD, i.e., they are match terms
for the particular query-document pair being evaluated, not the complete set of match term
the training set as a whole. (On the other hand,Q andD might contain a match term that neve

O R A1 A2 ... AN, , ,( )log c0 c1 Xn 1,
n 1=

N

∑ … cM Xn M,
n 1=

N

∑+ + +=

1 N( )⁄ 1 1 Nlog+( )⁄
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occurred in the training set. Such a match term could not be used in computing the logodds
evance ofD to Q, because.the coefficientscj would not be known for this “new”Ai.) That is, the
predictors whose values are used to compute the logodds of relevance of a documentD to a new
queryQ include the elementary clues, theXn,m, for every term, e.g., every word stem, that occu
in bothQ andD, and is also a match term of the training set. In the “triples” method, the valu
each of those elementary clues, e.g., the relative frequency of a given word stem inD (that also
occurs inQ), is multiplied by the coefficient for that type of elementary clue, as computed fr
the training set. Then these products are summed to compute the logodds of relevance
givenAi, e.g., the given word stem. These logodds values are then summed to compute the
of the logodds of relevance ofD to Q, given all the matching terms. In the “pairs only” metho
the values of all the elementary clues of a given type, e.g., the relative frequencies of all m
terms forQ andD are summed first, and then multiplied by the coefficient for that clue type.

By contrast, if training data is available for the actual queries to be evaluated operationally (w
is commonly the case in routing applications), then, given one of those actual queries,Q, Cooper
et al. [TREC-2] develop an equation that predicts the logodds of relevance of any given docu
D to Q. This equation is derived, as before, from their “fundamental equation.” However n
each of theAi corresponds to presence or absence of thei-th retrieval clue, e.g., thei-th term ofQ,
in D. Note that the odds of relevance for each termAi in Q can now be estimated directly from th
training set. IfAi is in D, one computes the ratio of relevant to non-relevant documents contai
Ai. Similarly, If Ai is not inD, one computes the ratio of relevant to non-relevant documentsnot
containingAi. Hence, the composite cluesAi need not be expressed in terms of the element
clues, as in the earlier cases. However, it may be that, in addition to the query-specific trainin
there is also a larger non-specific training set for “typical” queries as before. In that case
logodds of relevance ofQ to D can be expressed as a linear combination of a query-specific fu
tion of all theAi in Q, and a non-specific predictive function of theAi in Q that are also inD,
obtained by the earlier method where the queries to be evaluated operationally are not know
non-specific component will be expressed in terms of elementary clues, as before. How sho
query-specific and non-specific components be weighted? According to Cooper et al. [TRE
this remains a subject for research.

7.4.5 Okapi (Term Weighting Based on Two-Poisson Model)

Robertson et al. [SIGIR ‘94] has developed a term weighting scheme based on the Poisson
bution. This scheme was fist presented in the City University of London Okapi system. As i
proved to be one of the most successful weighting schemes in TREC competitions, it has
adopted by other TREC participants, and is generally identified by the system in which it
introduced, as Okapi weighting.

The Okapi approach starts with the view of a document as a random stream of term occurr
Each term occurrence is a binary event with respect to a given termt. That is, there is a (typically
small) probabilityp that the event will be an occurrence oft, and a probabilityq = 1-p that the
event isnot an occurrence oft. Then, the probability of x occurrences (commonly called “su
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cesses”) oft in n terms is given by the binomial distribution. [Hoel, 1971] For very smallp and
very largen, the binomial distribution is well approximated by the Poisson distribution:

whereµ is the mean of the distribution. To incorporate within-document term frequencytf, Rob-
ertson makes the fundamental assumption that the term frequency of a given termt is also given
by a Poisson distribution, but that the mean of this distribution is different depending on wh
the document is “about”t or not. It is assumed that each termt represents some “concept,” an
that any document in whicht occurs can be said to be either about or not about the given conc
Documents that are aboutt are said to be “elite” fort. Hence, Robertson assumes that there
two Poisson distributions for a given termt, one for the set of documents that are elite fort, the
other for documents that are not elite fort. (This is why the Okapi weighting is said to be a 2-Poi
son model.) The Poisson distribution for a given termt becomes:

wherem, the mean of the distribution, is eitherµ or λ depending on whether the distribution is fo
documents elite fort (mean =µ), or documents that are not elite fort (mean =λ). Note that these
two Poisson distributions give the probability of a given term frequency for a given termt in terms
of document eliteness tot, not in terms of relevance to a given query. A query can contain multi-
ple terms. A document contains many terms, and may be about multiple concepts. The
assumptions about term independence, or Cooper’s “linked dependence,” are extended t
ness; that is the eliteness properties of any termti are assumed to be independent of those for a
other termtj.

Robertson defines the weightw for a given termt in terms of a logodds function:

whereptf is the probability oft being present with frequencytf given that the document is relevan
to a given query, andqtf is the probability oft being present with frequencytf given that the docu-
ment is non-relevant to the given query. Thep0 andq0 are the corresponding probabilities witht
absent. Hence,Ptf/P0 is not the odds oft being present in a relevant document as before, but
odds oft being present with a giventf as compared to not being present in a relevant documen
all. (And similarly, forqtf/q0 with respect to non-relevant documents.) When the Poisson distr
tions of t relative to document eliteness/non-eliteness given above are incorporated into
logodds function oft relative to document relevance/non-relevance, the result is a rather com
function in terms of four difficult-to-estimate variables:p’, q’, µ andλ. Here,p’ is the probability

p x( ) eµ, µx

x!
-----=

p tf( ) em mtf

tf( )!
-----------=

w
ptf q0

qtf p0

-----------log=
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that a given document is elite fort, given that it is relevant, i.e.,P(document elite fort|R). Simi-
larly, q’ = P(document elite fort| notR).

Robertson converts this difficult-to-compute term weight function into a more practical func
His basic strategy is to replace complex functions by much simpler functions of term frequ
that have approximately the same shape, e.g., the same behavior attf=0, the same behavior astf
increases, and grows large, etc. His approximation starts with the traditional logodds functio
presence/absence oft, as derived from the relevance/non-relevance contingency table in 7
(Binary independence). This is multiplied (in effect, “corrected” or “improved”) by a sim
approximation function for term weight in a document as a function oftf, a function that approxi-
mates the shape of the true 2-Poisson function. The approximation contains a “tuning con
k1, in the denominator, whose value (determined by experimentation) influences the shape
curve. Then, the weight function is multiplied by a similar approximation function for the qu
i.e., a function of within-query term frequency,qtf. This function also contains a tuning constan
k3.

To improve the approximation further, Robertson takes document length into account. He
two broad hypotheses to account for variation in document length: The “Verbosity hypothes
the hypothesis that longer documents simply cover the same material as corresponding
documents but with more words, or (more fairly) cover the same topic in more detail. (This i
hypothesis that underlies most document vector normalization schemes discussed abov
“Scope hypothesis” is the hypothesis that longer documents deal with more topics than s
documents. (This is the hypothesis that underlies most work with document “passages.”)
ously, each hypothesis can be correct in some cases, and indeed, in other cases, both hyp
may be correct, i.e., a document may be longer than another both because it uses more w
discuss a given topic, and because it discusses a greater number of topics. Hence, Ro
refines his approximation to allow the user to take either or both hypotheses into accou
appropriate. First, on the basis of the Verbosity hypothesis, he wants the weight function
independent of document length. On the simple common assumption that term frequency
portional to document length, he multipliesk1 by dli, the length of thei-th document, the docu-
mentDi under consideration, so that all terms will increase proportionally with document len
and the weight function will remain unchanged. Then, on the assumption that the value ofk1 has
been chosen for the average document, he further normalizesk1, dividing it by dlavg the average
document length for the collection under consideration. Then, he modifies this normalizatio
tor with another tuning constant,b, into a composite constantK = k1((1-b) + b(dli/dlavg)). The
constant,b, also determined by experiment, controls the extent to which Verbosity hypoth
applies (b=1) or does not apply (b=0).

To compute document-query similarity for a given document,Di, the term weights determined by
the above approximation function are added together for all query terms that match termsDi.
Finally, to this sum Robertson adds a “global correction term” that depends only on the ter
the query, and not at all on whether they match terms inDi. This correction term reflects the influ
ence of document length variation, departure from the average length, with respect to the w
of each query term. The correction term contain yet another tuning constant,k2.
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The final result, first used in TREC3 [Robertson et al., 1995] and TREC4 [Robertson et al., 1
is called BM25; the BM stands for “Best Match” and the 25 is the version number, reflecting
evolution of this term weighting scheme. The BM25 function for computing the simila
between a queryQ, and a documentDi is:

where

Summation is over all termst in queryQ
r = number of documents relevant toQ containing termt
R = number of documents relevant toQ
n = number of documents containingt
N = number of documents in the given collection
tf = frequency (number of occurrences) oft in Di
qtf = frequency oft in Q
avdl = average document length in the given collection
dl = length ofDi, e.g., the number of terms, or the number of indexed terms, inDi
|Q| = number of terms inQ
k1, k2, k3, andK are tuning constants as described above.
K = k1((1-b) + b(dli/dlavg)) where b is another tuning parameter.

Varieties of Okapi BM25 have continued to be used down through TREC-9, both by its orig
tors [Robertson et al., 2000] and others, due to its effectiveness. According to Robertson et ak1
andb default to 1.2 and 0.75 respectively, but smaller values ofb are sometimes advantageous;
long queriesk3 is often set to 7 or 1000 (effectively infinite).”k2 has often been set to 0, e.g., i
TREC-4 and TREC-9.

8. Routing/Classification Approaches

In theory, the “routing” or “classification” problem is identical to the information retrieval pro
lem: to identify documents that match, i.e., are relevant to, a specified query or information
Hence, in principle the same methods are applicable to both problems. [Belkin & Croft, CA
1992] However, the practical differences between the two problems affect which method
practical for each.

In information retrieval, the user has at any given time one or more relatively static collect
The collections may be updated, but not so rapidly as to change their basic, e.g., statist
semantic, properties overnight. New collections may come on-line, but they will have the
relatively static characteristics as the existing collections. The user generates many queries
these collections. In other words, the collections are relatively static; the queries are not.

S Q Di,( ) r 0.5+( ) R r– 0.5+( )⁄
n r– 0.5+( ) N n– R– r 0.5+ +( )⁄

-------------------------------------------------------------------------------------log 
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K tf+
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In the classification environment, there is no fixed collection. Instead, there is a steady (pe
high volume) stream of incoming documents. There is a well-defined set of topics of interes
well-defined set of users, each with his own well-defined set of interests and concerns. The
lem is to classify each document according to which topic(s) it is “about” or which user(s)
document would interest, and then route the document to the appropriate “bin(s).” Documen
are not about any topic of interest are thrown away. The set of documents to be classifie
routed is not static at all; rather it is constantly changing. Moreover, these documents a
available initially for the purposes of studying their statistical or other properties. Rather, they
arrive over a (perhaps long) period of time. On the other hand, the set of user needs are pre
to be (relatively) stable [Belkin & Croft, CACM, 1992], although new needs and users will ar
over time, and old needs will become obsolete. Hence, the queries/information needs ar
tively static; the document population is not.

The term “routing” is often applied to a classification system in which there is only a single t
of interest. Hence, the objective is to distinguish and pass on all documents relevant to the
topic, and discard all other documents. In that case, the router is often called a “filter”. Filte
can be “negative” as well as positive, i.e., the purpose of a user’s “profile” may be to sp
“junk” that he wants to throw away. [Belkin & Croft, CACM, 1992]

Of course, this distinction between routing and information retrieval is an idealization. In prac
the distinction is not necessarily so clear-cut. The collections to which information retriev
applied may not be as static as one would wish. The information needs in the routing applic
may also change rapidly. Routing and information retrieval may be viewed as opposite end
spectrum with many actual applications in between.

In the routing application, one does not start with a large static collection of actual docume
which classification and routing are to be applied. Hence, it is common to employ a “training
of documents which are (it is hoped) statistically typical of the documents to be encounter
practice. The routing system is trained against these documents. Training a system ag
“training set” is analogous to expanding or refining a query with relevance feedback. In the
case, the retrieved documents judged relevant are, in effect, the “training set”. In the former
the user supplies relevance judgments for the documents in the training set, e.g., documenD1 is
relevant to classC1, documentD2 is relevant to classesC1 andC2, D3 is non-relevant, etc. The
effect of training is to build a query or set of queries that classify the incoming documents
rectly. Hence, the desired effect is that the query for classC, will match or rank documents
according to their degree of relevance to classC.

The biggest practical difference between routing and information retrieval is that in routing
training, i.e., the query expansion and refinement, are performed in advance, i.e., before th
tem goes “operational.” Hence, computationally expensive and time-consuming training me
that would not be acceptable in real time become practical. (In short, routing permits prepro
ing, perhaps slow, of the relatively static queries. In contrast, ad hoc querying permits prepro
ing, perhaps slow, of the relatively static document collections.) The essential requirement
once the system has been trained, the amount of time required to perform the classification
time is moderate. Moreover, even at run time, the user is not sitting at his screen waiting
response to a query he has just issued. Hence, response time may not be as critical an iss
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information retrieval. However, the volume of documents that a routing application must cla
may be very large in some applications. In such cases, it may be impossible for the syst
“keep up” with the traffic volume unless the run-time classification algorithm is very fast.

Even during a pre-operational training phase, a very large “feature space” can present pro
As noted above, classification or learning algorithms break down if the number of fea
required for classification, the number of dimensions of the feature space, is very large
[SIGIR ‘94] notes that “[i]f there are too many predictor variables [i.e., features used to cla
the documents], the classifier will overfit the training data … there must be significantly fe
predictor variables than relevant documents before it is possible to obtain good estimates
parameters in the classification model.” Similarly, Schutze et al. [SIGIR ‘95] consider “classi
tion techniques which have decision rules that are derived via explicit error minimization … E
minimization is difficult in high-dimensional feature spaces because the convergence proc
slow and the models are prone to overfitting.” In particular, if the feature space consists of a
nificant terms in a given collection, or even in the relevant documents of a collection, the nu
of features will certainly be far too large. Hence, even though the training is performed “off-li
i.e., before classifying the actual traffic, methods to reduce the number of features are ess
Note that overfitting is the same problem that Buckley and Salton [SIGIR ‘95] encountered w
they used relevance feedback to expand queries, thereby increasing greatly the number o
terms, i.e., “features.” They developed their technique of Dynamic Feedback Optimizatio
avoid that problem (see above).

Two methods [Schutze et al., SIGIR ‘95] have been used to reduce the dimensionality of th
ture space: reparameterization (which replaces the original feature space by a lower dim
feature space derived from the original features), and feature selection (which selects fro
complete set of features a small subset of the “best” features, i.e., the ones most likely to
guish relevant from non-relevant documents). A popular method of reparameterization (L
discussed above. Methods of feature selection (more specifically, term selection but the m
are generalizable to other statistical features) are discussed above in the section on query
sion.

Another problem with large feature spaces or computationally expensive classification algor
is that the “real world” that generates the documents to be classified may change rapidly, res
in a document population with rapidly changing statistical characteristics. Hence, it may be n
sary to re-train the system frequently, which becomes unacceptably expensive if the training
rithm is very slow or requires enormous computational resources. This issue seems to hav
largely ignored in the literature, which generally assumes that user needs and the statistica
acteristics of the document population to be classified are stable.

If the population of incoming documents is completely stable, then the training set (if it is a re
sentative sample of that future population) is sufficient to train the classifier. If the training s
imperfect (or non-existent), relevance feedback can be applied to the accumulating collect
documents. [Buckley et al., SIGIR ‘94] Documents that have satisfied a user can become
time, a very large and effective training set for that user or for a given topic. [Belkin & Cr
CACM, 1992] “Over the life of the query [i.e., a long-standing information need], thousand
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documents could conceivably be returned to the user for relevance judgments.” [Buckley
SIGIR ‘94]

On the other hand, Lewis [SIGIR ‘95] is one of the few to consider the case where “the clas
is applied to time-varying data such as news feeds or electronic mail.” In such a case,relevance
feedback(i.e., query refinement and expansion based on user identification of those docu
retrieved by the original query which are relevant to her need - see below for a more detaile
cussion) can be applied to the incoming documents to update the query, enabling it to track
ulation of incoming documents whose statistical characteristics are (slowly) changing. (Bu
et al. consider the application of relevance feedback to a routing application, but they donot spe-
cifically address the issue of changing statistical properties; they assume that the purpose
tinuing feedback is to enable the classifier to approach more closely a fixed target.) Lewisdoes
consider time-varying data but he explicitly doesnot consider relevance feedback. Instead,
considers the case where the classifiers are “autonomous” systems, i.e., there is little fee
from end users, and hence the systems must estimate their own effectiveness and re-o
themselves as the incoming data changes. He assumes probabilistic classifiers, i.e., classifi
given a document, output both a classification and a probability that the document belongs
classification, given the set of features being used for classification. His method is to spec
“effectiveness” measure for the classifier as a function of the classifications and associated
bilities assigned toN previous documents. The classifier then re-tunes itself to maximize
effectiveness measure. Lewis studies three possible effectiveness measures.

Yu et al. [CIKM 98] address the issue of routing a stream of (possibly) time varying data, i
interactive environment where each incoming document judged relevant by the system i
sented to the user for a possible relevance judgment. Their “adaptive text filtering” algo
maintains a pool of terms,PoolR, that have occurred in documents judged relevant by the user,
another pool of terms,PoolN, that haveonlyoccurred in documents judged non-relevant. (In oth
words, a term that has occurred in relevant documents will be inPoolR, regardless of whether it
has also appeared in non-relevant documents. By contrast, a term will be inPoolN only if it has
appeared in non-relevant documents, and has never appeared in relevant documents.) An
ing document is retrieved and presented to the user as possibly relevant under two conditio
The document is retrieved if the sum of the weights of terms in the document that arealso in
PoolR exceeds a specified threshold. The weight of a term in this calculation is actually the s
two weights, itsfeatureweight, based on all the documents in which it has occurred so far
have been presented to the user and judged relevant, and itsdocumentweight, its weight in the
current document computed by the traditionaltf*idf function. (2) The document is also retrieved
the proportion ofnewterms in its document vector plus the proportion of terms in the docum
vector that are also inPoolR exceeds a specified threshold. Anewterm is a term that is neither in
PoolR or PoolN. In other words, a document is presented to the user as a relevance can
according to the 2nd criterion if some proportion of its terms have already been seen in docu
he has judged relevant,anda proportion have not been seen at all. A weighting factor is use
determine the relative importance of presence inPoolR versus novelty.PoolR and PoolN.are
updated based on the user’s relevance judgment. The feature weights of terms in the docum
also updated based on the user’s relevance judgment. (Note that the presence of many nov
can cause a document to be presented to the user, but only his relevance judgment can ca
feature weights and pool contents to be updated.) The weight of a given term is increased
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document was retrieved on the basis of the 2nd (novelty) criterion, and the user judges it rel
The weight of a term is decreased if the document was retrieved on the basis of the first
vance) criterion, and the user judges it non-relevant.

Leaving the realm of adaptive classification methods applied to time-varying data, let us con
methods of classification where the training set is static. As noted above, the first considera
how to limit the feature space. Once the feature space has been reduced sufficiently, a va
classification training or learning methods are available. Let’s consider some of these me
briefly.

Relevance feedback weighting (e.g., the Rocchio formula discussed in a later section), c
applied to the training set. If nothing is known about the classification weights initially, then
weight of the original “query” to be refined or expanded by feedback in the can be set to ze
other words, we are using relevance feedback here togeneratethe classification “query” rather
than torefineit as in an ad hoc query application. Schutze et al.[SIGIR ‘95] tried Linear Discr
inant Analysis (LDA), Logistic Regression, and Neural Networks. In contrast to Rocchio, all t
of these methods “have decision rules that are derived via explicit error minimization.” Note
logistic regression and Rocchio formulas both have constant parameters that need to be
mined but with logistic regression, the parameters are computed directly to optimize the fo
whereas in the Rocchio approach, the parameters (A, B, andC) can only be determined by system
atic trial and error. LDA classifies the population into two (or more) distinct groups. The sep
tion between the groups is maximized by maximizing an appropriate criterion, e.g.,
“separation of the vector means” of the groups. [Hull, SIGIR ‘94] For the present case, LDA c
putes a linear functionz of the document descriptors that distinguishes the two groups of inte
relevant documents and non-relevant documents, “as widely as possible relative to the varia
values of z within [each of] the two groups.” [Hoel, 1971] Again, this is a direct rather than a
and error procedure. Schutze et al. found in their experiments that all three of these “clas
perform 10-15% better than relevance feedback via Rocchio expansion for the TREC-2
TREC-3 routing tasks.” Hull [SIGIR ‘94] also employed discriminant analysis. Hull applied t
technique to a feature space whose dimensionality was reduced using LSI. As a further
ment, LSI was applied not to the entire collection used for training but to the set of relevant d
ments for a given query. Hence, LSI must be applied separately for each query but the doc
term matrix to which it is applied in each case is much smaller than the matrix for the entire
lection.

Dumais et al. {CIKM ‘98] compared five classification methods that work by learning from
training set: Rocchio relevance feedback, decision trees, Naive Bayes, Bayes Nets, and S
Vector Machines (SVM). They trained on the “so-called Reuters-21578 collection,” a collec
of news stories. They “used 12,902 stories that had been classified into 118 categories (e.
porate acquisitions, earnings, money market, grain, and interest).” (Note that news stories, t
an important, and widely used, type of text corpus, are in some respects particularly easy, b
of their relatively standard organization, conventions, and vocabulary.)

Dumais et al. represented the documents in the traditional way as vectors of words. Then
performed feature selection to reduce the dimension of the vectors. They used mutual inf
tion, MI(xi, c) as the feature selection measure, wherexi is the i-th feature, andc is the category
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for which the various classifiers are being trained. (See the section on Logical Imaging for th
inition of “mutual information.”) They selected the 300 “best” features (highest MI value)
SVM and decision trees, and 50 features for the other three classification methods.

Since Rocchio’s method is here being used for classification rather than query refinement, t
no “initial query” term, as noted above. Dumais et al. also elected to discard the negative e
ples, i.e., the documents that were not relevant to the given category for which the classifier
being trained. Since the training set starts with relevance judgments for each category, there
interactive relevance judgments. Hence, the Rocchio formula for a given category was redu
computing the centroid (the average) of the documents labeled relevant to the given categ
test time, a new document was judged relevant to a given category if its similarity to the
gory’s centroid (as measured by the Jaccard similarity measure) exceeded a specified thre

Lewis and Gale [SIGIR ‘94] use a variation on traditional relevance feedback which they
“uncertainty sampling.” In any situation where the volume of training data is too large for the
to rate all the documents, some sampling method is required. In traditional relevance feed
the sample the user is asked to classify consists of those documents that the current classifi
siders most relevant. Hence, Lewis and Gale call this approach “relevance sampling”. It h
notable virtue, especially if the relevance feedback is taking place while the system is opera
that the documents the user is asked to classify are the ones that (as far as the classifier can
wants to see anyway. However, if the training is taking place before the system is operation
in a very early stage of operation) and the primary objective is to perfect the classifier, then u
tainty sampling (derived from “results in computational learning theory”) may work better.
method assumes a “classifier that both predicts a class and provides a measurement of how
that prediction is. Probabilistic, fuzzy, nearest neighbor, and neural classifiers, along with
others, satisfy this criterion or can be easily modified to do so.” The sample documents chos
the user to rate are those about which the classifier is most uncertain, e.g., most uncertain w
to classify them as relevant or non-relevant. For a probabilistic classifier (such as the on
actually describe and test in their paper), the most uncertain documents are those that are
fied with a probability of correct classification close to 0.5. Lewis and Gale obtained substan
better classification for a given sample size when the classifier was trained by uncertainty
pling of the training set than when it was trained by relevance sampling (and far better than
training on a random sample).

Yang [SIGIR ‘94] addresses the classification problem that there is often a wide gap betwe
vocabulary used in documents to be classified and the terms used in the class or topic (here
“category”) descriptions, i.e., the “queries.” The training set consists of documents to which
have manually assigned category descriptions. (Yang is using a medical application so exa
of category descriptions are “acquired immunodeficiency syndrome” and “nervous system
eases”.) A given category may be assigned to many documents. More surprisingly, the sam
ument, e.g., a common diagnosis, may occur multiple times in the training set. Even
surprisingly, the same category may be assigned multiple times to the “same” document; th
this comes about is that the category is assigned to two distinct documents which become
cal as the result of aggressive application of a stoplist. The problem is to classify, i.e., a
appropriate category descriptions to, a new document. Yang’s approach consists of two sta
the first stage, she computes the conventional cosine similarity between the new documen
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classified and the documents in the training set, e.g., the similaritysim(X, Dj) between the new
documentX and a training documentDj. In the second stage (the novel part of the method), s
estimates the conditional probabilityPr(ck|Dj) that a given categoryck is relevant to a training
documentDj. Pr(ck|Dj) is estimated as the “number of times categoryck is assigned to documen
Dj” (see above) divided by the “number of times documentDj occurs in the training sample”.
Thensim(X, Dj) is multiplied byPr(ck|Dj) for eachDj and this product is summed over theN top-
rankingDj’s, i.e., the ones most similar toX. Experimentally, Yang found that the optimum valu
of N for her collection wasN = 30. The result isrel(ck|X), a relevance score forck.These scores are
not probabilities but they provide a ranking of categories for the given documentX similar to what
would be obtained with probabilities. This ranking can then be used to assign the highest ra
categories to documentX.

DR-LINK [Liddy et al., ACMIS, ‘94] deals with an issue that arises whenever a collection
stream of documents must be categorized and routed according to multiple topics. The di
tion of relevant documents with respect to computed topic similarity scores will tend to
widely from one topic to another. For example, suppose that a categorization engine ranks a
ment population with respect to two topics,T1 andT2, producing two separate document ran
ings, one with respect toT1 and the other with respect toT2. In the T1 ranking, 95% of the
documents actually relevant to topicT1 (as judged by human users) may be found in the top-ra
ing 5%. On the other hand, in theT2 ranking, it may be necessary to traverse the top-ranking 3
to find 95% of the documents actually relevant to topicT2. Hence, quite different topic similarity
thresholds are required forT1 andT2 respectively. DR-LINK deals with this problem by develop
ing a multiple regression formula on document training sets for each of the topics to be ca
rized. (Clearly, this approach only applies to an application such as routing, where a fixed nu
of topics will be applied to a changing population of documents, and a training set of typical
uments is available for each topic.) The regression formula for each topic has two indepe
variables, (1) the desired recall level, e.g., 95% in the example above, and (2) the top-ranke
ument’s similarity. The dependent variable returned by the regression formula is the estim
topic-document similarity score threshold needed to achieve the desired level of recall. He
different threshold can be computed for each topic. In tests involving TREC-2 topics and
(173,255 Wall Street Journal articles from 1986-1992), this formula proved quite effective at
puting a threshold appropriate for a given topic and desired recall level. Moreover, it was f
that because a few relevant documents (“stragglers”) tend to be low-ranking, the number of
ments that need to be examined can be drastically reduced by lowering the recall level fro
unrealistic 100% to a more realistic 80%;

9. Natural Language Processing (NLP) Approaches

The phrase “Natural Language Processing” (NLP) approaches” to IR refers here to all me
based on knowledge of the syntax and/or semantics of the natural language in which doc
text is written, or knowledge of the world, e.g., the application domains, to which the docum
refer. Hence such approaches may also be broadly characterized assemanticapproaches, in the
sense that they attempt to address the structure and meaning of textual documents directly,
of merely using statistical measures as surrogates. However, as discussed below, there a
sources of terminological confusion. First, the term “semantic” is sometimes used to refer t
particular level of NLP, although in reality it is applies to (at least) five different levels. Secon
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many NLP techniques, especially in the realm of “shallow” (and correspondingly, computa
ally efficient) NLP methods employ statistical techniques, e.g., to determine the most likely s
or part of speech of a given word in a given context. Third, NLP techniques are rarely use
themselves in IR. More commonly, they are used to supplement statistical techniques.

Human beings find it amazingly easy to assess the relevance of a given document based on
and semantics. They find statistical and probabilistic methods much more difficult, tediou
error prone. For automated systems, the situation is the reverse. They can perform statistic
culations easily. Developing automated systems that can understand documents in the sy
semantic sense is much more difficult. As a result, most IR systems to date have been ba
statistical methods. Increasingly however, syntactic and semantic methods are being used
plement statistical methods. The reason is plain. Even the best statistical or probabilistic me
will miss some relevant documents and retrieve some (often quite a bit of) junk. The hope i
an appropriate combination of traditional statistical/probabilistic methods and syntactic/sem
methods will perform better than the statistical methods alone. Ideally, the combination w
approach human performance. This ideal is a long way from realization. [Faloutsos & O
UMd-CS, 1995].

Note, by the way, that a technique like LatentSemanticIndexing (LSI) (discussed above) is not
semantic method in the sense used here despite the presence of the word “semantic” in its
Rather, it is a statistical method for capturing term dependencies that it is hoped have se
significance.

Liddy [BASIS, ‘98] classifies NLP techniques according to the level of linguistic unit proces
and (correspondingly) the level and complexity of the processing required. She identifies th
lowing levels: phonological, morphological, lexical, syntactic, semantic, discourse, and p
matic. Thephonologicallevel is the level of interpreting speech sounds, e.g., phonemes.
mainly of interest in speech to text processing, rather than textual IR.

Several traditional IR techniques do use NLP techniques, almost entirely at themorphological
and lexical levels. The morphological level is concerned with analysis of the variant forms
given word in terms of its components, e.g. prefixes, roots, and suffixes. Hence, traditional
ming techniques that reduce variants of a word to a common root form for query-document
matching, exemplify morphological IR processing. The lexical level is concerned with analys
structure and meaning at the purely word level. For example, traditional lexical IR proce
includes construction of stop lists of words believed to have low semantic content. [Falouts
Oard, UMd-CS, 1995] (But see below!) Similarly, generation and use of thesauri for query ex
sion, and of controlled vocabulary lists for indexing and query formulation, are other traditi
examples of lexical IR processing. Proper noun identification is another, somewhat newer, fo
IR lexical processing. Tagging words with their parts of speech is also a kind of lexical pro
ing, common and well-established in NLP, but rare in traditional IR.

Thesyntacticlevel is the level at which the syntactic structure of sentences is determined, in t
of the parts of speech of the individual words. In practice, a single sentence can have many
ble structures. Determining the correct structure from these alternatives requires knowledge
higher levels (or statistics based on a training set). For this reason, and more generally bec
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is relatively expensive computationally, syntactic level processing has been little used in
tional IR. Some use of syntax has been made to identify units larger than single words
phrases, but even here, statistical co-occurrence and proximity rather than NLP, have been t
ferred methods in IR.

Thesemanticlevel is the level at which one tries to interpret meaning at the level of clauses,
tences, rather than just individual words. Note that the disambiguation of words having mu
senses is a semantic-level task, because a word can only be disambiguated in the contex
phrase, sentence, or sometimes larger text unit in which it occurs (and also because disam
tion may require real-world knowledge, generic, user-specific, or domain-specific). Becau
the difficulty and NLP sophistication required (and the need for the aid of the higher levels), t
tional IR has avoided semantic-level processing in favor of statistical keyword matching, a
cussed in earlier sections.

Thediscourselevel is the level at which one tries to interpret the structure and meaning of la
units, e.g., paragraphs, whole documents, etc., in terms of words, phrases, clauses, and se

Thepragmaticlevel is the level at which one applies external knowledge (that is, external to
document and original query). The knowledge employed at this level may include general k
edge of the world, knowledge specific to a given application domain, and knowledge abou
user’s needs, preferences, and goals in submitting a given query.

The most important source of semantic content in traditional IR is relevance feedback, the r
ment and expansion of a query based on human judgments of which of the documents retrie
the query are relevant to the given query. Naturally, these human judgments are based
user’s understanding of the semantic content (in the broadest sense) of the retrieved docu
and her understanding of her actual needs. Hence, the feedback is implicitly at the highe
levels. However in traditional IR, this feedback is typically used merely to improve statistic
the set of term descriptors and the weights assigned to those descriptors. Only the huma
“understands” or “processes” the documents at any semantic or natural language level. Ho
the methods discussed below can be extended to relevance feedback in various ways, e
descriptors extracted from documents identified as relevant can be higher-level linguistic
such as phrases, or even concepts that do not actually appear in the documents themselve

This section discusses research into the application of the higher levels of NLP, i.e., syn
semantic, discourse, and pragmatic, to the classic problems of IR. It also discusses advance
lexical levels, e.g., improved proper noun recognition and classification.

It should be stressed that, almost without exception, the NLP methods discussed below are
conjunction with, not in place of, traditional boolean, vector, and statistical term weighting t
niques for document-topic matching and document categorization. [Lewis et al, CACM] Sem
methods can be used to extend the terms to which matching is applied from keywords t
phrases. They can be used to disambiguate terms that have multiple meanings, or fit multipl
of speech. They can be used to map keywords, phrases and proper nouns into conceptua
e.g., subject category terms, that express more naturally the user’s interests, but that will no
essarily co-occur in both the user’s topic statement and the relevant documents. They can b
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to supplement the terms in a user’s query with candidate synonyms. They can be used to id
semantic relationships among the keywords or phrases occurring in a topic, or in a candidat
ument. Hence, topics and documents can be matched not only on whether the specified ke
occur in both, but on whether they occur in the same (or similar) relationship in both topic
document. Semantic methods permit the identification of relationships other than the purely
ean, e.g., given the keywords “company” and “investigation,” semantic methods can distingu
query about a company performing an investigation from a document about a company
investigated. Note that statistical or user-specified weights can be applied to all of these se
cally derived terms, i.e., to phrases, conceptual terms, synonyms, relationships, etc.

Semantic methods can significantly enhance term normalization techniques. Term normali
reduces query and document descriptor terms to a common form for matching purposes.
ming is the most common type of normalization in traditional IR systems. Another traditi
technique is the manual assignment of index terms to documents from a controlled vocab
Semantic methods permit more sophisticated forms of automated normalization. Varied syn
forms can be mapped to a standard syntax, e.g., “investigation by the company,” and “the
pany is investigating” can be mapped into the common noun phrase “company investiga
Related words, e.g., house, apartment, and hut, can be mapped into a common subject c
“dwelling.” Varied forms of a proper noun can be mapped into a standard form. And so on.

9.1 Phrase Identification and Analysis

A common use of syntactic (and to some degree semantic) methods is phrase identific
[Riloff, SIGIR ‘95] [Jacqemin & Royaute, SIGIR ‘94] [Kupiec, SIGIR ‘93] [Anick & Flynn,
SIGIR ‘93] [Strzalkowski & Carballo, TREC-2] [Evans & Lefferts, TREC-2] Phrases are ty
cally identified in IR so that they can be used as descriptor terms, i.e., so the descriptors of
ument are not limited to single words. Traditional methods identify phrases by statistica
occurrence, e.g., co-occurrence of pairs of terms in documents at a rate greater than wo
expected by random chance. Co-occurrence can be combined with adjacency, e.g., if tw
more) terms co-occur within a few words of each other at a rate greater than chance, the pro
ity that they are related semantically certainly increases. If the terms in question are also r
syntactically, the chance that they form a phrase is still greater. Syntactic analysis can id
phrases even when the terms of which they are composed are not adjacent, or do not co
with greater than chance frequency. However, extraction of phrases by purely syntactic m
alone is seldom effective since it is likely to extract many phrases of little value for character
the topic(s) of a given document or query. [Croft et al., SIGIR ‘91] A combination of synta
and statistical methods is more effective. {Lewis, SIGIR ‘92] [Lewis et al., SIGIR 96] Lewis e
suggest that statistical weighting techniques should be applied to phrase descriptors, even
are generated by NLP or combined NLP/statistical techniques. However, they sugges
“[w]eighting for phrases may differ from weighting for single-word terms to allow for their low
frequency and different distribution characteristics.”

Lewis et al. urge that phrase descriptors should be “linguistically solid compounds,” e.g.,
phrases, etc. However, they also stress that phrase matching should reflect the variety of f
phrase can assume, and the varying degrees of evidence provided by each form. For exa
the noun phrase “prefabricated units” is extracted from a document, it is likely that it signifie
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corresponding concept. The presence in a given document of the verb phrase “[they] prefab
units” would provide weaker evidence for the presence of the concept. The co-occurrenc
given document of the two words “prefabricated” and “units” in close proximity, e.g., in the s
sentence or paragraph, but not in the same syntactic phrase, would provide still weaker (b
non-zero) evidence that the concept was present. The co-occurrence of the two words in di
paragraphs of the given document would provide much weaker evidence still, and so on.

The above example also illustrates that NLP identification and extraction of phrases can h
important effect on the traditional approach of word stemming. A stemmer would reduce “pr
ricated” and “prefabricate” to the root “prefabricat.” But, as we see above, the distinction bet
“prefabricated” and “prefabricate” (or prefabricating, for that matter) may be the differe
between a noun phrase and a verb phrase, and hence a corresponding difference in the e
that the respective phrases contribute about the topic(s) discussed by a document that c
them.

Lewis et al. also note that the degree of sophisticated NLP and statistical processing app
extraction of phrases and other compound terms might be considerably greater for user q
than for documents. There are several reasons for this: First, the number of queries is no
very much less than the number of documents, so that an IR system can afford to process t
ries more carefully. Second, it is very important to understand what the user’s requiremen
this is complicated by the fact that queries are generally much shorter than documents, an
more carelessly formulated by users who are not professional IR searchers. (For the same r
it is very desirable to support interactive query refinement, using thesauruses, NLP analy
user queries, relevance feedback with regard to both good terms and good documents, as a
by the user, etc.) Third, any error in extracting phrases and compound terms from documen
be corrected (or at least compensated for) during the query-document matching process, si
matching process will take into account not merely a single phrase that may have been ex
from a given document incorrectly, but the context of other words and phrases that have
extracted from the same document.

The burden of applying expensive NLP to large document collections can be further ease
two-step process: First, coarse ranked retrieval of candidate documents using statistical an
low NLP techniques. Second, more sophisticated NLP applied only to the much smaller l
highly ranked documents retrieved by the first stage.

Shallow or coarse NLP refers to techniques for extraction, based on local contexts, of nou
verb phrases, compound proper nouns (discussed later), simple basic propositions, e.g
duce(factory, house), complex nominals, e.g., “debt reduction,” “health hazards,” and simple
cept-relation-concept (CRC) structures, e.g., the sentence fragment “the company’s invest
of the incident...” generates two CRC triples, each relating a noun to the verb: [investigat
(AGENT) -> [company], and [investigate] -> (PATIENT) -> [incident], which convey the info
mation that the company acts in the investigation, and the incident is the object of the inve
tion. CRC triples and structures constructed from them are discussed further below. He
should be stressed that shallow, localized extraction of such “solid” linguistic components is
trasted with complete parsing of sentences and paragraphs, a very much more difficult and
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multiple legal parses.

Lewis et al. further argue that, although NLP may be used to supplement word descriptors
phrase and compound term descriptors, these compound term descriptors shouldnotbe combined
into higher level structured descriptors, e.g., frames, templates. Note that they do not ob
such higher-level descriptors forknowledgerepresentation and retrieval. Rather, they object
them as index descriptors for document retrieval. Their argument is that such higher-level
tures are labor-intensive to produce, and that an exact query-document match at the level o
elaborate structures is very unlikely. In subsequent sections, there is a discussion of c
higher-level document structures. In particular, there is a discussion of exciting work in the a
documentdiscourse structure, the structure of clauses, sentences, and paragraphs that deter
the narrative or expository flow of a document. It is this discourse structure that enables a
to follow the flow of the writer’s argument, and understand what the writer is saying. S
research indicates that combining term descriptors with this discourse structure can enhan
ument retrieval. It can also be used for forms of knowledge retrieval, e.g., document summ
tion. But note that the discourse structure is not a structure composed of conventional doc
descriptors such as words and phrases. Rather, it is a wholly separate, higher-level structur
document as a whole. The words and phrases are related to the discourse structure either b
locatedin identifiable components of the discourse structure, or by serving as linguistic cluto
identify the components of the discourse structure.

Strzalkowski and Carballo [TREC-2] extract phrases syntactically from a large collection
then apply a variety of statistical techniques to these phrases before formulating queries.

The extracted phrases are statistically analyzed in syntactic contexts
in order to discover a variety of similarity links between smaller
subphrases and words occurring in them. A further filtering process
maps these similarity links onto semantic relations (generalization,
specialization, synonymy, etc.) after which they are used to trans-
form a user’s request into a search query.

As an example of “statistical analyz[ing] in syntactic contexts,” they filter out poor terms wi
statistical measure called Global Specificity Measure (GTS) “similar to the standard inverted
document frequency (idf) measure except that term frequencyis measured over syntactic unit
[e.g., phrases such as verb-object, noun-adjunct, etc.]rather than document size units.” (italics
mine). (See below for further discussion of GTS.) As an example of using a derived semantic
tion “to transform a user’s request into a search query,” they offer the example of adding the
pound term “unlawful activity” to “a query … containing the compound term ‘illegal activity’ v
a synonymy link between ‘illegal’ and ‘unlawful.’”

Note that the above example illustrates another use of combining syntactic with statistical
niques: the automated creation of thesauri. Traditionally, thesauri have been constructed
manually, e.g., WordNet, or statistically. (Because of the many semantic relations it sup
WordNet, described below, is more properly described as a semantic network.) Stzalows
Carballo illustrate that thesaurus type information (not only synonymy but other semantic
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tions like specialization and generalization) can be derived by applying statistical techniques
co-occurrence, similarity, etc.) to syntactic units derived by automated parsing (and not o
the syntactic units themselves but to their internal structure). Note that even when the the
generation, e.g., determination of synonymy, is wholly statistical [Evans & Lefferts, TREC
[Milic-Frayling et al. TREC-4], the extraction of candidate phrases syntactically allows th
phrases to be units to which the statistical methodology can be applied.

Phrases are commonly extracted to serve as document (query) descriptors, i.e., as index
However, they are also used in a variety of other, related ways. For example, phrase extrac
used as a key feature of a system, MURAX [Kupiec, SIGIR ‘93], that answers natural lang
questions that require a noun phrase as answer. The answers are obtained from a large,
purpose, on-line encyclopedia. The method does not depend on domain-specific knowled
questions can be on any topic whatever, as long as they require noun phrase answers.
method does make use of other simple semantic and syntactic heuristics, e.g., the quest
begin with “who”, “what”, “where”, or “when” because such questions usually require pers
things, places, or times (which can be expressed as noun phrases) as answers; questions b
with “why” or “how” (which usually require procedural answers) are forbidden. Phrases
extracted from the question, and the question is reformulated as a structured boolean que
proximity constraints. The query returns a number of encyclopedia articles (possibly none)
number of hits (retrieved articles) can be increased by broadening the query, e.g., relaxing
imity constraints, dropping phrases, or reducing a phrase to a sub-phrase. The number of h
be decreased by narrowing the query, e.g., adding a term such as the main verb. Retrieved
are ranked by number of matches with the query. Phrases or words that match phrases or w
the query are then extracted from the retrieved articles. An answer to the original question
require information from multiple retrieved articles. A variety of term matching rules are used
phrase that appears in an article need not have exactly the same form as the corresponding
in the question, e.g., “was succeeded by” can match “who succeeded.” This system demon
that “shallow syntactic analysis can be used to advantage in broad domains.”

Syntactic phrase extraction is performed and used somewhat differently by Riloff [SIGIR
The goal is one of those specified for the Message Understanding Conference (MUC) series
than the Text REtrieval Conference (TREC) series. In this case, the goal is extraction of data
a particular topic, e.g., terrorist events or joint ventures, from each relevant document, and th
ing out of a topic-specific template for each such document. For example, given a docu
reporting a terrorist event, the goal might be to extract such key elements as the name of th
petrator, the name of the victim, the location at which the event took place, etc. Since the obj
is not merely to identify relevant documents but to “understand” each document well enou
extract key elements, Natural Language Processing (NLP) naturally assumes greater impo
So does knowledge of the domain to which the extraction task applies, e.g., terrorism. H
Riloff extracts instances of phrase patterns called “concept nodes.” A concept node is a s
linguistic pattern containing a specific word. For example, each occurrence of the concep
called “$murder-passive-victim$” is a string of the form “<X> was murdered” (or “<X> we
murdered” for multiple victims).

An important result demonstrated by Riloff (also noted by others) is that such common IR
niques as stop-lists and stemming, which are intended only to remove noise words and nois
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ation of a given term, can in fact remove clues crucial for judging the relevance of a docume
the semantics of its content. For example, the presence of the term “dead” in a document w
a reliable guarantee that the document described a murder, but the phrase “was found
proved to be an extremely reliable descriptor for that purpose. It evidently “has an implicit co
tation of foul play.” Similarly, the presence of the term “assassination” (singular) in a docum
proved a much more reliable indicator that the document described a specific assassinatio
than the presence of the term “assassinations” (plural). The plural often referred to assassi
in general. Prepositions, passive vs. active verb form, positive vs. negative assertion, also
significant to determining the significance of a phrase as a descriptor, at least within a sp
domain. For example, the term “venture” by itself in a document was not a good indicator t
document described a joint venture. But the phrases “venture with” and “venture by” proved
good descriptors indeed, e.g., 95% precision for the test collection.

9.2 Sense Disambiguation of Terms and Noun Phrases

Another area (besides phrase extraction and phrase analysis) where researchers have trie
syntactic/semantic techniques to improve IR performance is “word sense disambigua
[Chakravarthy & Haase, SIGIR ‘95] [Sanderson, SIGIR ‘95] [Voorhees, SIGIR ‘93] It is co
monplace that natural language words have multiple meanings. More precisely, a string of c
ters representing a word (a “lexical token” in the jargon of the field) can represent multiple w
each with a different meaning (a different “sense”). (The technical term for such a word ispolyse-
mous.) Sometimes, the meanings are closely related meanings of what we tend to consid
“same” word. Often, they are two (or more) completely different words that happen to be sp
the same, e.g., “bank” can mean either a financial institution or the border of a river, “bat”
mean either a flying mammal or a sporting implement, etc. It is plausible to suggest that if on
use syntactic/semantic methods to determine which “sense” of a word is intended by each
rence of the word in any given document or query, one will be better able to retrieve the d
ments relevant to a given query (better recall) and to reject non-relevant documents (
precision). In particular, one would be able to avoid matching one sense of a word in a query
a completely different sense of the word in a document.

One crucial issue that arises in sense disambiguation is how fine-grained the sense distincti
to be. This may depend on the resources available, e.g., an on-line Machine Readable Dic
(MRD) such as the Longman Dictionary of Contemporary English (LDOCE) [Procter, 1978]
provide a relatively large number of senses relative to what may be generated by hand f
training corpus. On the other hand, the number of senses to distinguish depends heavily
task for which the sense disambiguation is being performed. The number of senses that nee
distinguished for IR, may be considerably less than the number that need to be distinguishe
for polished machine translation.

One reason is that senses of a single word that are closely related in one language may (an
will) correspond to different words in another language.

Moreover, for IR purposes, it may often be sufficient to distinguish fairly broad subject catego
For example, the 1978 LDOCE distinguishes 13 senses of the wordbank. [Guthrie, 1993] Yet,
these thirteen senses may be grouped into several broader categories. One coarse sense obankis
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a repository to which one can make deposits and from which one can make withdrawals
finer grain, one can distinguish a financial bank from a blood bank or a leave bank. Simi
another quite different coarse sense ofbankis a heap of material. At a finer grain, one can disti
guish a snow bank, a sand bank, a cloud bank, and the bank of a river. For many IR purpo
may be sufficient to distinguish the senses of bank at the coarser level, or to distinguish a fin
bank from other repositories.

Guthrie et al. [1991] disambiguates words likebank by using word co-occurrence statistic
derived from an electronic reference source, in this case the LDOCE MRD. The problem is t
ambiguate polysemous words likebank, occurring in a test corpus. Given an occurrence in the t
corpus ofbank, they extract the local context of the given occurrence. The context may be the
tence in which the given word occurs, e.g., “We got a bank loan to buy a house,” or some spe
number of words on either side of the given word. This context is then matched against
neighborhoodof the given word, derived from the LDOCE.

The neighborhood of a given word is the set of words (excluding stop words) that co-occur
definition of one sense or group of related senses of the given word. The electronic vers
LDOCE specifies a set of relatively broad subject categories, each category designated by
ject Field Code (SFC). (The use of SFC’s is discussed in greater detail below, in the secti
Concept Identification.) SFC’s are assigned to some of the sense definitions of a given wor
example, the sense of bank as “a place in which money is kept and paid out on dema
assigned an SFC of “EC” which stands for the subject category “Economics.” (The verb sen
bank, “to put or keep (money) in a bank” is also assigned the code “EC.”) At the simplest le
the neighborhood of the Economics sense ofbankis the set of words (excluding stop words) in a
the definitions ofbankthat are assigned an SFC of “EC.” Since the definitions are relatively sh
a co-occurrence neighborhood is computed for each non-stop word in each ‘EC” definiti
bank. In other words, since the word “money” occurs in one or more EC definitions ofbank, a
neighborhood is computed formoney. The union of these neighborhoods becomestheneighbor-
hood for the EC sense ofbank. Guthrie et al. then compute the overlap (number of words in co
mon) of this neighborhood with the context of the occurrence ofbankto be disambiguated. In the
same way, the overlap is computed between the context and the neighborhood of every
sense (or subject category) ofbank. The sense of the neighborhood with the greatest amoun
overlap with the context is chosen to be the sense ofbank in the occurrence being disambiguate
The Guthrie procedure is automatic, but the best success rate achieved in this and
approaches is only about 70% accuracy.

From the sentence used in the above example, i.e., “We got a bank loan to buy a house,” it
to see why sense disambiguation using MRD definitions might be relatively ineffective. A
word in the above sentence is “loan.” Although a great many loans involve money, it is en
possible that none of the definitions of money in the MRD involve the use of the word “loan.”
word “loan” may co-occur with the word “money” with significant frequency in a news or bu
ness corpus, yet not occur in definitions of “money.”

Voorhees [SIGIR ‘93] uses the large general purpose semantic network, WordNet [Miller,
1990]. WordNet groups words into strict synonym sets called “synsets.” The synsets are d
into four main categories: nouns, verbs, adjectives, and adverbs. Within each category, syns
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linked together by a variety of semantic relations appropriate to the category, e.g., for nou
relations include hypernymy/hyponymy (the “is-a” or class/subclass relation, e.g., a caris a vehi-
cle), antonymy (word A means the opposite of word B), and several “part-of” relations. Voorh
in the reported research, disambiguates nouns only. The approach is to group noun syn
WordNet so that the synsets in a given group all contain words with closely related sense
groups are called “hoods”. A hood is effectively similar to a class in Roget’s thesaurus. Giv
document, she can then count the number of nouns in the document that are found in a
hood, i.e., the number of nouns that can have the sense (or related senses) of a given h
course, a given noun can belong to multiple hoods, corresponding to multiple senses. In
cases, the noun is assumed to have the sense it possesses in the hood which contains th
number of words (or word occurrences) from the document. In other words, it is assumed th
given document, a given noun will tend to co-occur most with other nouns having related se
(The word “bat” is ambiguous, but if it co-occurs in a document with the also ambiguous wo
“base,” “glove,” and “hit,” it is very likely that the word is being used in its baseball sense.)

Leacock et al. [Corpus Proc, 1996] have investigated sense disambiguation of words in a
text corpus by statistical classification based on term co-occurrence in the contexts in whi
given words occur. In this study, a context was defined to be a sentence in which a given
occurred, and the preceding sentence. The preceding sentence was included in the context
a given word is often used anaphorically. If the preceding sentence also contained the given
in the same sense, then the sentence precedingthat sentence was also included in the context.
single polysemous word, “line,” was studied., A training set was constructed consisting of
texts for each of six different senses of “line.” These included: line of text (“a line from Hamle
a formation (“a line at the box office”), an abstract division (“the narrow line between tact
lying”), a telephone connection (“the line went dead”), a thin, flexible cord (“A fishing line”), a
a class of product (“a product line”). Elements varied included: type of classifier (Bayesian, v
space, and neural network), number of senses (two, three and six), and number of cont
training set (50, 100, and 200). The machine classifiers were also compared to human clas
All of the machine classifiers performed best with 200 contexts (71% to 76% correct answ
Performance of the three classifiers tended to converge as the number of contexts went up
only two senses to distinguish (between product line and formation), the accuracy was over
However, with three senses (product line, line of text, formation), the classifiers did only a
better than with six (mean accuracy of 76%). In general, some senses were harder than oth
all three classifiers to identify; the hardest were: line of text, formation, division, in that order.
three easiest for all three classifiers were product, phone, and cord, although the order of e
these three varied with the classifier. Moreover, for any given sense, some contexts made
identification easier than others. Interestingly, the humans, when given the same informat
the machine classifiers, e.g., a vector of stemmed substantive words for the vector space cla
found the same senses (and context within a sense) easy to distinguish, and the same sen
cult. In general, the humans did better than the machine classifiers. The exception was the
contexts, chosen because the machine classifiers made no errors on them; the humans ha
error rate on these contexts. Most significant, when the humans were given the original sen
comprising each context, their performance was nearly perfect. On the other hand, whe
were given the same input as the Bayesian classifier, i.e., the complete set of words in the c
with no stemming or stop-word removal, but with the words in reverse alphabetical order (be
none of the classifiers used word order), their performance was much the same as whe
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words (also calledfunction words) were removed. The stop words were of no value to the hu
classifiers except when they were presented in the proper syntactic order. Plainly, the m
classifiers would do much better if they could make effective use of order and proximity a
human classifiers do.

Evaluation of sense disambiguation can be very tedious since it is necessary not only to ev
the retrieved output for relevance, but to examine the retrieval process at the level of indiv
words to determine how it was affected by the disambiguation. Moreover, it is sometimes dif
to determine what the intended sense of a word, e.g., in a short query, actuallyis. Sanderson
[SIGIR ‘94] reports on a novel method of evaluation, attributed to Yarowsky [Hum Lang, 19
The approach is to create ambiguous pseudo-words artificially by replacing each occurren
pair of distinct words in the document (any pair, not just adjacent words) by a pseudo-
formed by concatenating the two actual words. The effect is to create a new document with h
many word occurrences, each having a known-in-advance ambiguity. Still greater ambiguit
be created by generating pseudo-words composed of N real words whereN may be, 3, 4, …, 10,
etc. Of course, indexes and queries have to be modified correspondingly. “The disambigu
then applied to each occurrence of [each] new word. Evaluation of the disambiguator’s outp
trivial matter as we know beforehand the correct sense of each occurrence of the word.”

The surprising result of such research into disambiguation is that it seems to improve IR p
mance very little. Indeed, in most cases, it actually degrades performance. Sanderson fou
adding quite large amounts of controlled ambiguity, e.g., size ten pseudo-words, had little
on IR retrieval. Removing a controlled amount of ambiguity seemed to make IR perform
worse. Voorhees too found that in most cases, performance was degraded by disambiguati
following reasons were identified: If the number of terms in the query is not very small, the
combination itself appears to have the effect of disambiguating documents and queries (e.g
the “base, bat, glove, hit” example above). This phenomenon is also noted by Lewis et al. [C
‘96] On the other hand, if the query is very small, then it provides very little context for the dis
biguator to use. Hence, the disambiguator is likely to introduce errors, resulting in missed
document matches. According to Voorhees, “[t]hese results demonstrate that missing m
between the documents and query degrades performance more than eliminating spurious m
[by disambiguation] helps retrieval for small homogeneous collections.” Sanderson used
homogeneous collection with similar results. He found that the disambiguator had to be a
90% accurate to avoid performance degradation. Supplying a domain-specific context for
queries (as humans do) and selecting the most frequent sense for an ambiguous term may a
the problem. However, there are some queries for which Voorhees found that disambiguatio
very helpful.

9.3 Concept Identification and Matching

In all of the previous discussion of methods for matching documents against queries or topic
query and document terms being matched are words or phrases extracted from the given
and documents, or (in the case of techniques like LSI) factors derived statistically from the w
The words may be subject to pre-processing, e.g., stemming to reduce variants to a commo
but in essence query words are being matched against document words. However, the wo
essentially being used as surrogates for the concepts they express. Boolean expressions,
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SVD factors and the like may be used to capture the intended concept more precisely, by sp
ing the words that co-occur in a given semantic context. However, what the user really want
retrieve documents that areaboutcertain concepts. Of course, in many cases the user is look
for documents about a specific named entity, e.g., a given person, or a given book. Even the
tain concepts are usually implicit, e.g., if she is looking for documents about a person n
“Baker,” she wants to specify that the documents must be about a person named “Baker” a
about the profession, “baker.” Moreover, she may want to see documents about an author
“Baker,” or a CEO named “Baker,” or a Baker who participated in a certain criminal action, 

Liddy et al., [ACM Trans IS, 1994] have developed a technique for matching topics (or topic
files) against documents at the concept or subject level. They have implemented a text cate
tion module based on this technique; the module provides a front-end filtering function fo
larger Document Retrieval through LINguistic Knowledge (DR-LINK) text retrieval syste
although it can also serve as a stand-alone routing or categorization system and has been t
this mode, e.g., using TREC 2 data. The text categorizer described in TREC-2 used a ma
readable dictionary (MRD), the “Longman’s Dictionary of Contemporary English”(LDOCE).
The second edition (1987) of LDOCE contains 35,899 “headwords”, i.e., words for which
LDOCE contains an entry. Each headword may contain multiple definitions, correspondi
multiple senses of the word. The LDOCE contains 53,838 senses of the 35,899 headword
each word, the LDOCE specifies one or more “parts of speech.” For each part of speech a
ated with a given word, the LDOCE specifies all its senses, and assigns a “Subject Field C
(SFC) to each sense. For example, “earth” can be both a noun and a verb (the latter chiefly i
ish terminology). As a noun, it can refer to the planet on which we live (SFC = ASTRONOM
or to the soil in which we plant crops (SFC = AGRICULTURE), or to a class of chemicals (SF
SCIENCE), etc. In all, the LDOCE assigns six SFC’s to “earth” as a noun. (Current versio
DR-LINK use a proprietary MRD, containing a proprietary, and larger, set of SFC’s. [Liddy,
Since this MRD is specifically designed to serve the needs of DR-LINK, it omits many featur
stand-alone, commercial MRD’s such as the LDOCE.)

The categorizer uses the SFC’s to construct SFC vectors, instead of term vectors. First, it a
one or more parts of speech to each word in the document or topic statement, using a proba
part-of-speech tagger, POST. (As in most vector space approaches, the topic or query is tre
just another document; a vector is developed for the topic in exactly the same way as for th
uments to be categorized.) Then, it looks up each part-of-speech tagged word in the LDOC
attaches to the word all SFC’s associated with it. For example, if a particular occurrence of “e
in a given document is tagged as a noun, it would have six SFC’s attached to it, inclu
ASTRONOMY, AGRICULTURE, SCIENCE, etc. If the word is not found in the LDOCE, stem
ming is applied, and a second LDOCE lookup is performed. Note that some words may n
assigned any SFC at all, either because the word is not in the LDOCE, or because it do
appear in the LDOCE as the part-of-speech with which it has been tagged. Some word
require a larger, or a more specialized dictionary resource than the LDOCE.

Since a given word, even when tagged with a given part of speech, may still have multiple S
assigned to it (as in the example of “earth” above”), the word sense must be disambiguated
ever, in contrast to the word sense disambiguation discussed in the preceding section, here
biguation is conducted entirely at the SFC, i.e., concept, level. Disambiguation is first perfo
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at the level of the local context, here interpreted as the sentence level. SFC frequencies ar
puted for the given sentence. There are two reasons why a given SFC may be assigned mo
once in a given sentence. First, two or more words in the given sentence may each be assig
same SFC as one of their respective senses. Second, two or more senses of the same wor
rence, even tagged with the same part of speech, may be assigned the same SFC. Liddy et
the example of the sentence, “State companies employ about one billion people.” The
“state” is assigned the SFC “POLITICAL SCIENCE” four times, corresponding to four differ
senses of the word, e.g., state” as nation, “state” as subdivision of a nation, “state” as in “se
tion of church and state,” state” as in “secretary of state,” etc. The word “people” is assigne
SFC “POLITICAL SCIENCE” twice, e.g., “people” as in “the people of New York,” and “pe
ple” as in “the people have chosen a president,” etc. Two important cases of SFC frequen
identified for purposes of sense disambiguation: If a given word within the given sentence is
assigned a single SFC, this is called a “unique SFC.” Obviously, for such a word, no sense d
biguation is required. On the other hand, an SFC is considered “highly frequent” if it is assi
more than three times over all the words in the given sentence. If a word is assigned mu
SFC’s and one of these SFC’s is highly frequent, that SFC will be assigned to the given wo
the illustrative sentence above, “Political Science” is a highly frequent SFC since it is assign
times (four for “state” and two for “people”). Hence, it will be assigned asthe SFC for both
“state” and “people” in that sentence. Note that a word like “people” has other senses, e.g
LDOCE also assigns the SFC’s “SOCIOLOGY” and “ANTHROPOLOGY” to the word “peopl
But in the given sentence, ‘POLITICAL SCIENCE” is a much more frequent SFC than eith
“SOCIOLOGY” or “ANTHROPOLOGY,” so it is chosenin that sentenceas the preferred SFC to
disambiguate “state” and “people.”

If a word in the given sentence remains ambiguous, i.e., the word is assigned multiple SFC
none of the SFC’s assigned to the given word is highly frequent, then an SFC correlation ma
used. This matrix is built from a training corpus; in the research described here, the corpu
sisted of 977 newspaper articles. The matrix is 124 X 124 because there were 124 SFC’s
LDOCE edition used in the research described here. The given word is disambiguated by c
ing that one of its assigned SFC’s that has the highest correlation (tendency to co-occur
same document) with the unique and highly frequent SFC’s in the same sentence. Note th
correlation matrix measures correlations among SFC’s at the document level. Hence, at this
document as well as sentence level knowledge is being used for disambiguation.

After every ambiguous word in every sentence in the given document has been disambigu
document-level SFC vector is created by summing the single SFC’s assigned to each wor
example, if the SFC “POLITICAL SCIENCE” is assigned as the SFC of one or more word
one or more sentences of the given document, then it will become one of the terms of the
vector for the given document, with a term weight determined by its normalized term frequ
or some other appropriate term weighting formula. For example, the reported research
Sager’s term weighting formula,fin/kn, wherefin is the SFC frequency of SFCi in documentn and
kn is the number of tokens (SFC occurrences) in documentn.

Once an SFC vector has been created for every document in the collection being categorize
every topic for which documents are to be categorized, the similarity of each document to
topic can be computed, and all documents above a specified threshold for a given topic c
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assigned to its category. However, in DR-LINK, the SFC vectors are employed in a more sop
cated manner, to take advantage of the discourse structure of the document. This is descr
the next section. Moreover, similarity at the SFC vector level, though it can be used in a s
alone mode, can also (and in DR-LINK is) combined with similarity at other levels, e.g., matc
at the level of proper nouns, relationships, etc. These issues are discussed in sections that

The Liddy topic matching scheme described above is a novel form of “controlled vocabu
methodology. It is customary to distinguish IR systems as “controlled vocabulary” or “free
vocabulary.” In the former, documents are indexed manually by their authors or by profess
indexers from a preset vocabulary of index terms. In the latter (as in most of the res
described in this report), the index terms for a given document are generated automatically
the content of the document. The great advantage of the former is that expert human judgm
applied to choose appropriate document descriptors. The great disadvantages are th
extremely labor-intensive, and that users must know and use the controlled vocabulary in f
lating their queries and topic profiles. The Liddy scheme offers “the best of both worlds.” On
one hand, documents are indexed automatically, and the user can formulate queries and to
terms of her own vocabulary. On the other hand, document and topic terms are mapped
large dictionary lexicon into a controlled vocabulary of concept terms, the SFC’s. This contr
vocabulary has been developed and refined over a considerable period of time by profession
icographers.The only drawback is that machine-readable resources such as the LDOCE ne
extended (along with the set of SFC’s) to deal with documents in specialized domains.

Note thatrelevance feedback(see below) can readily be applied to these SFC vectors [Liddy e
Online, 1995]. The user’s original query is converted into an SFC vector and matched agains
vectors representing each document in the given collection, as described above. A list of
ments, ranked by SFC vector similarity to the query and above a specified similarity thresho
returned to the user. The user then identifies those documents on the list (or paragraphs
tences within those documents) that she considers relevant to the given query. DR-LINK ca
erate a Relevance Feedback (RF) SFC vector from each of the user-selected documen
aggregate these vectors into one RF-SFC vector. Since the documents (or paragraphs
tences) selected by the user should be good examples of the kind of document for which
looking, the resulting RF-SFC vector should exemplify (better than the original query) the u
requirements at the conceptual (subject-category) level. Hence, the RF-SFC vector can be
place of the SFC vector generated from the original query, to calculate similarity at the conce
level, and return a new ranked list of documents. As with other forms of relevance feedback
process can be repeated to refine the query further, until no more improvement is observ
course as with all relevance feedback, improvement depends upon the existence within the
tion of documents that are truly relevant to the user’s requirements.

The advantages of an NLP-based, subject-based system such as DR-LINK, over the fa
common keyword-based systems is well-illustrated by the comparison of three IR sys
reported by Feldman. [ONLINE, 96] For example, she cites a common experience of IR se
ers, expressed by the rule, “Search for wars, and you will also retrieve sports.” It is not hard
why keyword-based systems, whether boolean or vector space, are vulnerable to such erro
vocabularies of sports and war overlap to a significant degree, e.g., terms like “battle,” “con
“win,” “loss,” “victory,” “defeat,” and many more. If the user employs some of these terms in f
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mulating her query, a keyword based system will have difficulty distinguishing sports stories
war stories. Feldman encountered this difficulty when she asked for “information about Af
countries which had civil wars, insurrections, coups, or rebellions.” She encountered this
culty with both the boolean DIALOG system, and the relevance ranking TARGET system.
encountered this difficulty even though the terms she used (or stemmed), terms like “ins
tions,” “coups,” “rebellions, “wars,” are not the most common terms to appear in sports sto
Presumably, some of these terms, or synonyms for them, e.g., synonyms for “war,” do app
sports stories. The only way to exclude such stories from a boolean query without excluding
imate stories too, would be to add “AND NOT....,” where the “NOT” is followed by a set
sports-specific terms, e.g., “NOT rugby,” “NOT soccer,” etc. A relevance ranking system mig
expected to do somewhat better, if the specified terms occur more frequently in war stories t
sports stories. However, TARGET didnot do better on this query than DIALOG in Feldman’s tes
DR-LINK did much better on this query, retrieving 50 relevant war stories, and excluding
“false drop” sports stories altogether.

It is easy to see why DR-LINK was much more successful on this query. The SFC v
approach provides several advantages in such an example. For instance, a sports story
almost always contain some sports-specific terms. Hence, the corresponding SFC vector fo
a sports story would contain sports-specific SFC’s. The presence of such SFC’s would hel
LINK to disambiguate terms that belong to both the sports and war domains correctly, cho
the sports sense of such terms. On the other hand, the fact that all the terms in the user’s qu
a war sense and none had a pure sports sense would favor disambiguating the query terms
ing their war senses at the SFC level.

It should be noted that DR-LINK is not the only system that indexes a large document colle
automatically using a controlled vocabulary. For example, CONSTRUE-TIS [Hayes et al., 1
assigns subject category terms automatically from a controlled vocabulary to a large collect
news stories maintained by Reuters. The subject categories include 135 economic categori
mergers and acquisitions, corporate earnings, interest rates, various currencies, etc. 539
name categories (people, countries, companies, etc.) are also supported. Rapid automatic i
enables the system to keep up with the rapid addition of new stories. Indexing is based on s
knowledge base techniques. Each subject category is recognized by if-then rules. The “if” c
tions are specified in terms of “concepts.” The concepts, in turn, are defined in terms of a p
language. The pattern language specifies keyword patterns. The patterns may include su
tures as keyword order, boolean combinations of keywords, gaps for a specified number o
trary words, etc. Hence, CONSTRUE-TIS conceptual indexing by subject category em
much more than simple boolean conditions, but much less than true natural language proc
However, the subject category terms that are assigned automatically to each story (the term
comprise the controlled vocabulary) are the same terms that users must employ to retrie
story. By contrast, the user of DR-LINK never sees or needs to know its controlled vocabu
Documents and natural language topic requests are both mapped automatically into the co
controlled vocabulary of SFC’s.

9.3.1 Formal Concepts
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The preceding section dealt with concepts assigned to word senses by human beings, e.g.,
experts or lexicographers. In this section, we describe how “formal concepts” can be defined
given domain, or a given body of text, using a mathematical method for knowledge repres
tion, exploration, and processing called Formal Context Analysis (FCA).

FCA is an unsupervised learning technique that “allows implications between attributes
determined and visualized.” [Cole et al., Comp Int, 1999]

FCA models a domain as being composed of individual objects (calledformal objects) and their
attributes (calledformal attributes). The set of objects and attributes chosen to model a doma
called aformal context. Formal contexts relate objects to their attributes. A context may be re
sented as a matrix in which the rows are objects, the columns are attributes, and each cell sp
whether a given object has (yes) or doesn’t have (no) a given attribute. If a formal context r
sents a textual document (or collection of documents), the objects may be the individuals
tioned in the text, e.g., specific persons, companies, locations, buildings, etc., whether nam
unnamed. Correspondingly, the attributes of a given individual object will be those menti
explicitly or implicitly in the text as characterizing the objects, e.g., a building may be small,
or ornate, etc. The object type is also considered an attribute of the object, e.g., the attribu
the Empire State Building include both the descriptive adjective “tall,” and the object type “bu
ing.”

Semantic relations can also be formalized by a context matrix. Each row of a relation matrix
ordered pair of objects (classes or instances) that the text specifies (explicitly or implicitly)
some relation to each other. The columns are the relations, and the attributes of the objects
ipating in those relations. Note that a pair of objects may be in more than one relation to
other. If rowi represents the ordered object pair {O1, O2}, and columnj represents the relationR,
then a “yes” in cell {i, j} means thatO1 is in the directed relationR to O2.

The formal contexts of FCA can be translated into Sowa’s conceptual graphs (CG’s) [1984
vice versa.[Wille, 1997] Both CG’s and FCA have been used to represent and process know
Both are methods of formalizing logic, and relating logical concepts to real-world concepts. S
CG’s were developed to represent the syntax and semantics of natural language, FCA can
for the same purpose. The objects of FCA map into Sowa’s concept nodes. The relations m
the relations that connect Sowa’s concepts. These relations are generic rather than appl
domain-specific, e.g., Sowa defines such relations as “agent” (AGNT), “patient” (PTNT), “l
tion” (LOC), etc. Agents act upon objects, patients (not necessarily the medical kind!) are ob
that are acted upon, and so on. Hence, in the above example, if John sued Mary,O1could be John,
O2 could be Mary,O1 would be the AGNT with respect to suing, the one who isdoing the suing,
and Mary would be the PTNT with respect to the suing, the one who isbeingsued. The context
would show “yes” for the cell {John, AGNT}; it would also show “yes” for the cell {Mary
PTNT}. The context would also contain cells for attributes of John and Mary individually, e
John may be tall and antagonistic, Mary may be blonde, reasonable, etc.

An FCA formal conceptis a pair (A,B) whereA is a subset of the objects in a context, andB is a
corresponding subset of attributes applicable to all the objects in theconcept. Eklund et al. [pro-
posal, 1999] offer a very simple example of a context that describes the solar system. The o
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A, are the planets, the attributes,B, are size (small, medium, large), distance (near, far), and m
(yes, no). One of the concepts that FCA can discover is {{Earth, Mars}, {small, near, yes}
defining characteristic of the formal concept (A, B) is that“A must be the largest set of objects fo
which each object in the set possesses all the attributes ofB. The reverse must be true also ofB.”
[Cole et al., 1999] In other words, the set of attributes,B, must be the largest set of attribute value
that characterize the set of objects,A.

The relationships among concepts and individuals that are captured in a formal context or
ceptual graph, can also be represented as a “concept lattice.” Each node of a concept lattice
sponds to the maximum set of objects that possesses a given attribute. This set of objects is
the extent; the number of objects comprising this extent may be attached to the node. (T
may also be viewed as the maximal concept associated with the given attribute.) If a paren
representing objects with attributem1 branches to two child nodes representing objects w
attributesm2 andm3 respectively, then the extent of them2 node represents objects having bo
attributem1 and attributem2. Similarly, the extent of them3 node represents objects having bo
attributem1 and attributem3. Now, since a lattice is a more general graph than a tree, it is q
permissible for two nodes, e.g., them2 andm3 nodes of the above example, to meet in a comm
node below. This common meet node represents the set of objects that possess attributesm1, m2
and (not or!) m3. If a node having attributem4 is immediately below this meet node, variou
implications involvingm2, m3 andm4 (givenm1) can be represented. If the extent ofm4 is greater
than or equal to the extent of the meet ofm2 andm3, this represents “m2 andm3 impliesm4” (in
other words, every object having both attributem2 and attributem3 is one of the objects having
m4). Similarly, If the extent ofm4 is less than or equal to the extent of the meet ofm2 andm3, this
represents “m4 impliesm2 andm3” (in other words, every object having attributem4 is one of the
objects having both attributem2 and attributem3). If the extent ofm4 is exactly equal to the exten
of the meet ofm2 andm3, then there is equivalence betweenm4 and the meet (intersection) ofm2
andm3.
Partial implications (conditional probabilities) can also be represented. The probability om1
givenm0, denoted Pr(m1 | m0), is extent(m1)/extent(m0). If the m0 node is the root of the lattice,
representing the entire population of objects under consideration, then the implications des
in the preceding paragraph are unconditional. However, one can still compute Pr(m1 | m2) as
extent(meet(m1 and m2))/extent (m2). That is, the probability of an object having attributem1
given that it has attributem2, is computed as the quotient of the number of objects having bothm1
andm2 (objects havingm1 given that they also havem2) divided by the total number of objects
havingm2.

Given that a rich context may involve a large number of objects and attributes, the user wil
mally want to focus on a more manageable subset. Cole et al. [Comp Int 1999] provide this
bility. That is, the user can focus on certain specific objects and attributes of interest; the s
will generate the concept lattice for the selected entities. Cole calls this a “scale.” As a fu
refinement, their system allows the user to generate a lattice involving one set of concepts w
lattice involving another set of concepts, i.e., to nest one scale within the nodes of the latt
another scale.

For example, Cole et al. have applied FCA to the analysis of medical discharge summar
both cases, the objectives are to represent the relationships and implications among the co
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“The relationships will often be mundane, but occasionally surprising and new.” For exam
they generate a concept lattice exhibiting relationships among classes and subclasses of
e.g., “respiratory tract diseases,” is a broad disease class, “asthma” is a disease subclas
that broader class. Another broad class may contain such subclasses as “carcinoma.” The
may indicate (via “meet” nodes) the co-occurrence of diseases, e.g., how many patients
from both asthma and carcinoma. Within each node of this “disease” lattice, another lattice
be nested, exhibiting, e.g., patient behaviors such as smoking, and drug therapies that hav
applied. For example, the “smoking” node of the behavior lattice can be found in each node
the “carcinoma” node, of the disease lattice. The extent of the “smoking” node within the “c
noma” node gives the number of patients diagnosed with carcinoma who smoke. By stu
these lattices, relationships among diseases, patient behaviors, and therapies may be d
and analyzed.

Recently, Cole et al. [KDD99] have focused on semi-structured text (XML-based and HT
based). The FCA objects studied are text documents, e.g., email messages. The attributes
words and patterns found in the documents. The patterns are specified as regular expressio
example, email attributes may include the originator and addressees (from and to lines), and
condition, e.g., all dates in the range from September to November 1994. The attributes ma
include keywords, e.g., names, mentioned in the textual body of the email document. Analy
the conceptual lattice associated with an email collection leads to the discovery of patterns
that a high proportion of the emails addressed to a given addressee mention a given pe
combination of persons by name.

9.3.2 Concepts and Discourse Structure

Many researchers have recognized that a document, especially a large document, may no
ideal unit for matching against queries or topics. A document may deal with multiple topics.
matters of concern to a given user, or the key words that identify her interests, may be locali
a small portion of a document. Hence, a variety of research efforts, some of them described
report, attempt to break documents into segments, often called “passages.” Sometimes, the
aries of these segments are determined orthographically, e.g., on the basis of paragraph or
or sentence boundaries. In other cases, documents are segmented arbitrarily, e.g., by over
windows N characters long. The former approach takes semantics into account, but only
rectly, by assuming that sentence, paragraph, or section boundaries specified by the autho
rately reflect her intended semantic structure. The latter approach ignores semantics in fa
locality. Of course, it is likely that the words or sentences that occupy a local passage have
semantic relationship, but it is impossible to say a priori what that relationship will be.

Liddy et al. [Proc RIAO Conf., 1994] have taken a more principled approach by studying the
course structure (based on “discourse linguistic theory”) of various types of documents,
newspaper articles [TREC-2, 1994], or abstracts of empirical technical documents [Liddy,
‘87] Liddy, 1988]. A coherent, well-written document has a semantic structure that represen
way the author has organized the ideas or story she wants to tell. Moreover, textual docum
a particular type will have a predictable, standard structure. The elements of this structu
called “discourse components.” Liddy has extended an earlier model due to van Dijk [Hills
1988] for the text type “newspaper article.” She has identified 38 discourse components
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extended model. Each clause or sentence in a given article can be tagged as one of these
nents. These tags “instantiate” the model. Assigning a tag to a clause says that the given
belongs in the corresponding component of the model. Each component will contain certain
of information relative to the story told by the entire article. Examples of component tags fo
newspaper article model are: MAIN EVENT, VERBAL REACTION, EVALUATION, FUTURE
CONSEQUENCE, and PREVIOUS EVENT. Components may be nested, corresponding to
ing in the sentence structure. Linguistic clues are used to identify the components. For exa
Liddy [TREC-2] offers the following example of nested, tagged discourse components.

<LEAD-FUT> South Korea’s trade surplus, <LEAD-HIST> which more than dou-
bled in 1987 to $6.55 billion, <LEAD-HIST> is expected to narrow this year to
above $4 billion, </LEAD-HIST> is expected to narrow this year to above $4 bil-
lion. </LEAD-FUT>

Plainly, this is a LEAD-FUTURE component about the expected future trade surplus of S
Korea, as indicated by linguistic clues such as the phrase “is expected to,” containing a n
LEAD-HISTORY component about South Korea’s past trade surplus, as indicated by lingu
clues such as the past tense “doubled” and the “1987” date.

Tagging the clauses and sentences of a document by discourse component allows Liddy to
ate multiple SFC vectors, one for each component. This means that one can not only ma
subjects found in a topic against the subjects found in a document; one can also dete
whether they are in the correct discourse component. For example, if the topic required that
ument discuss future trade surpluses in South Korea, it would be important not only that the
ject appear in a given document, but that it appear in a FUTURE EVENT or LEAD-FUTU
discourse component. A document that has the right subject in the right discourse comp
should receive a higher relevance ranking score than a document that has the right subjec
wrong component. Liddy has identified 38 discourse components for the newspaper artic
type. However, she has found that topic requests usually do not have so fine a discourse
Hence, she has improved the performance of DR-LINK by mapping the 38 components into
meta-components for the purpose of topic-document matching and ranking: LEAD-MAIN, H
TORY, FUTURE, CONSEQUENCE, EVALUATION, ONGOING, and OTHERS. These sev
meta-components yield eight SFC vectors, one for each component and one for the comb
of all seven together. The resulting module that matches topics against documents using
eight SFC vectors is called the “V-8 SFC Matcher.”

Mann et al. [Text, 1988] have developed an alternative method of discourse analysis calledRhe-
torical Structure Theory(RST) [Mann et al., Text]. RST can be used for the automated mar
and parsing of natural language texts [Marcu, AAAI, 96] [Marcu, PC, 1999]. Both Marcu
Eklund et al. [proposal, 1999] are exploring possible applications of RST to automated te
information extraction. Marcu is studying the application of RST to document summarization
machine translation of natural languages. Eklund et al. have considered its application to te
mining, knowledge base construction, and knowledge fusion across documents.

Mann et al. claim that RST “provides a general way to describe the relations [calledrhetorical
relations] among clauses in a text, whether or not they are grammatically or lexically signal
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Of course, automatic parsing as developed by Marcu, depends on recognizing just such gra
ical or lexical signals, and using them to drive the actions of the parser. Marcu has take
approaches to automated RST parsing. First, he has developed a set of manual rules. Sec
has applied a machine learning tool to a large text corpus to “learn” a set of parsing rules. C
the success of such automated parsing depends on the text possessing a certain cohere
clarity typical of news article text, and well-written scientific and legal papers. The techni
might be much less successful if applied to informal text, e.g., e-mail; they have never
applied to such informal texts. [Marcu, PC, 1999]

A rhetorical relation links two clauses (non-overlapping spans), called thenucleusand thesatel-
lite. The significance of these terms is that most (though not all) of the relations are asymm
One clause, the nucleus, is usually more essential than the other. The less essential clause
ellite, is sometimes incomprehensible without the nucleus to which it is related. Even wher
satellite is comprehensible by itself, the nucleus is generally more essential for the writer’s
poses. Marcu capitalizes on this fact to generate automatic document summaries. The n
clauses, taken by themselves, form a coherent summary of the document’s essence. The s
do not. Another indication that the satellites are less essential is that they are often substit
i.e., in a given relation one satellite can often be substituted for another while retaining the
nucleus. Mann and Thompson define 24 rhetorical relations, but stress that the set is open
Marcu has discovered a considerably larger set of relations, but anticipates that other rese
may discover yet more relations, as they explore other classes of text. [Marcu, PC, 1999]

Marcu is also considering the possible application of RST parsing to machine translation (
One of the difficulties with existing MT is that even when words and phrases and even claus
properly translated, the overall translation of the text may be awkward or incorrect. Th
because the discourse structure in the RST sense may vary from one language to anothe
cially at the lower levels of the RST trees. Translating this structure may substantially improv
quality of the translation.

The parsing of a text according to RST identifies and marks up all the rhetorical relations, an
clauses participating in those relations. The rhetorical structure is defined recursively, i.e., o
the spans participating in a rhetorical relation can itself be composed of rhetorical rela
Hence, the rhetorical structure of a text is a tree. Only the nodes of the tree are necessarily
ple” clauses. A given text can be parsed in multiple ways. Hence, a given text may be repre
by multiple rhetorical parse trees. However, Marcu has defined principled rules for “legal” p
trees. If one adheres to Marcu’s rules, one can still generate multiple trees for a given text
ment, but it becomes possible to reject some candidate parses as ill-formed while accepting
as well-formed.

The following passage illustrates two asymmetric rhetorical relations: “concession” and “ela
tion.”

Although discourse markers are ambiguous,1

one can use them to build discourse trees for unrestricted texts;2

this may lead to many new applications in text data mining.3



Page 97

eus is

asser-
ance of

.

al or
ions.”

for a
ell-
stud-
ents,
alysis

le lin-
erse
-
ry.”A
types
s
rob-

d recall
tified,
tified
against
ieve a
or the
erable
ing to

hose
he rela-
sim-

e CG.
plete

ments

at the
ent of
A concessionrelation exists between the nucleus, either 2 or 3, and the satellite, 1. The nucl
asserted to be true despite the contradictory “concession” of the satellite. Anelaborationrelation
exists between the satellite 3 and the nucleus, either 1 or 2. The satellite elaborates on the
tion made by the nucleus. Note that the same clause, e.g., 3, can be a nucleus in one inst
one relation, and a satellite in one instance of another relation.

The word “although” is a lexical marker for theconcessionrelation in the example given above
Similarly, the semicolon is a marker for theelaborationrelation in this example. However, Mann
et al. stress that “the definitions [of the rhetorical relations] do not depend on morphologic
syntactic signals … We have found no reliable, unambiguous signals for any of the relat
Marcu’s relative success indicates that for well-structured text, reliable markers can be found
fairly high proportion of instances of the relations. But Marcu’s studies have been limited to w
structured text types, e.g., Scientific American articles. Mann et al., on the other hand, have
ied a wide variety of types including “administrative memos, magazine articles, advertisem
personal letters, political essays, scientific abstracts, and more.” They claim that an RST an
is possible for all of these diverse types. However, not surprisingly, they have found no simp
guistic markers that work for recognizing or delimiting these relations across all of the div
text types. They also find that certain text types donot have RST analyses, including “laws, con
tracts, reports ‘for the record’ and various kinds of language-as-art, including some poet
common characteristic of the text types studied with some success by Marcu is that they are
of expositorywriting. Hence, Marcu’s approach might work well with legal (judicial) opinion
which are typically expository, although according to Mann et al. as quoted above, it would p
ably not work for laws and contracts, which are typicallynot expository.

Marcu measured the success of his automated parsers in terms of the classical precision an
measures. Recall measured the proportion of the rhetorical relations in a text that were iden
i.e., the “coverage.” Precision measured the proportion of identified relations that were iden
correctly. These values were computed by comparing the results of the automated parses
parses performed manually by human judges. It was found that human judges could ach
high degree of agreement in their respective parses, thereby justifying the claims of RST f
text types studied. However, it was also found that the human judges required a consid
amount of training and practice before they could achieve this consistency. Parsing accord
the rules of RST is far from trivial.

Eklund et al. have proposed combining RST with FCA by generating formal contexts w
objects are larger entities like clauses, sentences, and even documents. Correspondingly, t
tions would be rhetorical relations. If a simple formal context based on RST is converted to a
ple conceptual graph (CG), its nucleus (in the RST sense) would become the “head” of th
Other text spans having RST relations to the nucleus could then be used to build more com
CG’s. In this way, a CG knowledge base could be constructed, extending over whole docu
and fusing the knowledge of multiple documents.

9.3.3 Proper Nouns, Complex Nominals and Discourse Structure

It is not sufficient to match topics against documents at the level of subject categories, i.e.,
level of SFC’s. Much of the essential content of a topic request and the corresponding cont
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documents, is found in proper names (PN’s), e.g., names of persons, countries, companie
ernment agencies, etc. Much of the remaining content is found in “complex nominals” (CN
e.g., noun phrases formed by adjacent nouns, adjective-noun combinations, etc. In the p
about South Korea quoted near the beginning of the preceding section, “South Korea” is an
ple of an essential proper name (PN); “trade surplus” is an example of an essential complex
inal (CN) noun phrase. Systems that recognize and extract CN’s and PN’s for use as doc
and topic descriptors include DR-LINK [Liddy et al.,TREC-2], and Strzalkowsk’s syst
[TREC-3] developed at NYU. The latter system augments a traditional statistical backbone
various natural language processing components.”

Recognition and extraction of complex nominals (CN’s) involves several problems. [Strzalko
et al., TREC-3] First, it is necessary to recognize CN’s in any of various syntactic structure,
to recognize “information retrieval” in “information retrieval system,” “retrieval of informatio
from databases,” and “information that can be retrieved by...” It is necessary to distinguish
where two-word CN’s are satisfactory, from cases where longer CN’s are necessary, e.g.,
phrase “former Soviet president,” “former president” and “Soviet president” have quite diffe
meanings so the longer three-word phrase should be preserved. It is also important to reso
ambiguity in parsing CN’s, e.g., to recognize that in the phrase “insider trading case,” the
head word is “trading” and its modifier “insider.” Phrases like “insider case” and “trading ca
would be much less significant. Here, statistics must supplement pure syntactic analysis to
that the extracted phrase is semantically significant as well as syntactically correct. A stat
analysis of a corpus of business and economics stories will reveal that “insider trading” occu
more often than the other pairs.

DR-LINK extracts CN’s with its “Complex Nominal Phraser.” Complex nominals are recogni
“as adjacent noun pairs or non-predicating adjective + noun pairs in the output of the pa
speech tagger.” DR-LINK’s PN recognition and categorization capability is described below
subsequent section.

The problems of recognizing, extracting, and categorizing proper nouns, and the approac
these problems taken by several research teams, is discussed in a later section.

DR-LINK not only extracts proper nouns (PN’s) and complex nominals (CN’s) from the to
statement, but also identifies the discourse component in which each should preferably be
A discourse component in a given document is weighted on the basis of how many com
nouns and complex nominals from the topic statement it contains. This weight is then mult
by another weight factor that reduces the total weight if the discourse component is not th
required by the topic statement, e.g., if the topic statement requires a noun phrase to b
FUTURE component, but the phrase only occurs in the LEAD-MAIN component of a given
ument, the weight of that component will be reduced. If the FUTURE component also con
the given noun phrase, the FUTURE component will receive a higher weight than the LE
MAIN component. A CONSEQUENCE component that doesn’t contain the desired noun p
at all will receive a lower weight than the LEAD-MAIN component. Hence, the PN/CN simila
score depends not only on the presence of specified proper nouns and complex nomina
given document (conventional keyword matching), but also on the discourse components in
they occur (discourse text structure matching). In fact, it is properly called a PN/CN/TS s
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where the third acronym stands for Text Structure. Hence, both the SFC similarity score an
PN/CN/TS similarity score for a given document reflect the discourse structure of the docu
and the discourse requirements of the topic statement.

Observe too that proper nouns are assigned semantic categories in DR-LINK [Paik, ARPA W
shop]; this categorization is discussed below. Hence, the PN similarity score of a documen
tive to a given topic may depend on a category match as well as a match on the actual prope
itself.

9.3.4 Integrated SFC/PN/CN Matching

Plainly, a document that matches a topic statement not only at the level of subject cate
(SFC’s) and the discourse components in which they occur, but also matches on proper nou
noun phrases, should be ranked higher relative to the given topic statement than a docume
matches only on the one or the other. DR-LINK’s “integrated matcher” combines these two
of matching. It takes as input two similarity scores: one based on SFC vector similarity, an
based on Proper Noun (PN), Complex Nominal (CN) similarity. An SFC cutoff or threshold s
is computed. Documents are then ranked by a combined similarity score, with documents h
a non-zero PN/CN similarity being ranked above those with a zero PN/CN score. Generally
uments below the SFC threshold are not returned, but a fraction of documents (depending
recall level) with high PN/CN scores and documents below the SFC threshold are inserted
the zero PN/CN documents.

9.3.5 Relations and Conceptual Graph Matching

If a topic and a document match on the presence of two entities, there is a chance that the
ment is about the specified topic. If the two entities occur in close proximity in the documen
chance is better. If the topic requires that the entities occur in a certain discourse compone
the entities occur in the required component within the document, the chance of documen
vance to the given topic is better still. But the assurance of relevance will be even stronger
entities are related in the same way in both topic and document. Hence, DR-LINK also ha
capability to identify relationships in a number of syntactic cases, e.g., noun phrases (NP’s),
inalized verbs (NV’s), prepositional phrases (PP’s), and the complex nominals (CN’s) alr
mentioned. In all cases where DR-LINK can identify a relation, it generates a concept-rela
concept (CRC) triple. This process not only identifies relations. It also converts varied syn
forms into a single canonical form to simplify topic-document matching.

Once CRC triples have been generated, they are linked together to form larger units, e.g., c
Linking can occur because the same proper noun, e.g., a company name, occurs in two CR
it can occur because of coreference resolution, e.g., a pronoun in one CRC is identified as
ring to a given proper noun in another. The structures that DR-LINK forms by linking CRC’s
conceptual graphs(CG’s). CG’s [Sowa, 1984] are a graphical notation for representing the sy
and semantics of natural language. CG’s are also available in a linear textual form. The gra
nodes represent entities, and relationships among the entities. However, CG’s are more po
than simple entity-relationship diagrams. They can represent first-order predicate logic, e.g
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can express quantification. CG’s have been discussed earlier with respect to Wille’s work on
equivalence to formal contexts, as defined in Formal Context Analysis

Liddy offers an example of converting an NV into canonical CRC’s: The phrase “the compa
investigation of the incident” is converted into:

[investigate] -> (AGENT) -> [company]
[investigate] -> (PATIENT) -> [incident]

Note that the “nominalized” form “investigation” has been converted into the standard verb
“investigate.” This simplifies matching with another phrase in which the verb form occurs.
relations “AGENT” and “PATIENT” are standard CG relations. The AGENT is the entity (a
called the “actor’) who performs the action, in this case investigates. The PATIENT is the pa
entity that is the object of the action, in this case the entity that is being investigated.

Once CG’s have been generated, they are made more “conceptual,” by replacing entity no
codes representing the concepts of which the entities are instances. In TREC-2, DR-LINK
the Roget International Thesaurus (RIT) codes. (Current versions of DR-LINK, use Wor
Synsets. [Liddy, PC]) Finally, CG’s in topics can be matched against CG’s in docum
[Myaeng et al., JITAE, 1992]

9.3.6 Recognition of Semantic Similarity in CN’s

Strzalkowski [IP&M, 1994] [TREC-2] [TREC-3] uses statistics not only to choose semantic
significant head-modifier pairs from ambiguous CN’s. He also use it to identify clusters of w
that are semantically related, and hence are candidates for use in query expansion. Two te
candidates if they occur in the same contexts, e.g., as head nouns with a number of commo
ifiers, or as modifiers of a number of common head nouns. For example, “man” and “boy
modified by a number of the same modifiers (appear in a number of the same “contexts”)
corpus studied, including “bad,” “young,” and “older.” That is, the corpus contains a numbe
references to “young men” and “young boys,” “older men” and “older boys,” etc. The same
words, “man” and “boy,” also serve as modifiers of a number of the same head nouns, incl
“age” (references to “man’s age” and “boy’s age), “mother” (references to “a man’s mother”
“a boy’s mother”), and so on. Hence, “man” and “boy” appear in the same contexts both as
nouns and as modifiers.

Several additional factors must be considered to identify two terms as semantically similar.
the terms should appear in few contexts other than the ones they share. Second, the shar
texts must not be too common, e.g., “natural” is too common a term to justify predicting simil
of “logarithm” and “language” on the basis of the shared contexts, “natural language” and “
ral logarithm.” Third, the number ofdistinct shared contexts must exceed some threshold;
threshold depends on how narrow or broad the training corpus is, e.g., a Wall Street Journ
pus is broader than a Communications of the ACM (CACM) corpus. Hence, “banana” and
tic” may share the context “republic” a number of times, but their similarity is rejected bec
they share no other context. Similarly, “Dominican” and “banana” share two contexts, “repu
and “plant,” but in a broad corpus, this is still not enough. A still more striking example is “ph
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maceutical” and ““aerospace” which are not semantically similar despite being found to s
more than six common contexts: “firm,” “industry,” “sector,” “concern,” etc. Here the comm
ness, and hence relative unimportance, of the shared contexts must outweigh the mere nu
shared contexts. Strzalkowski et al. also observe that modifiers are more reliable context
head terms; hence, in totalling the number of shared contexts for a term, they count a head c
as only 0.6 of a context.

A final problem with Strzalkowski’s statistical clustering of terms with shared contexts is th
does not distinguish similarities that indicate synonyms (“merge,” “buyout,” and “acquisitio
and specialization, which generate terms suitable for query expansion, from complements
tralian” and “Canadian”) and antonyms (“accept” and “reject”) which are generallynot suitable
for query expansion. Strzalkowski addresses this by defining a “Global Term Specificity” (G
measure. The GTS is roughly analogous to theidf but is measured over syntactic contexts rath
than documents. Moreover, it is only useful for comparing terms that are already known to be
ilar in terms of context co-occurrence. For such contextually similar termsw1 andw2, the assump-
tion is thatw1 is more specific thanw2 if it occurs in fewer distinct contexts; ifw1 andw2 occur in
the same number of distinct contexts, butw1 occurs in many more instances of those contexts th
w2, it may be more specific. GTS is given by:

where (withnw, dw>0):

Here,dw is the number of distinct contexts in whichw occurs (as a modifier forICL, as a head for
ICR), andnw is the number of actual occurrences ofw in these contexts. IfGTS(w1) is greater than
or equal by some appropriate factor thanGTS(w2), thenw1 is assumed to be more specific tha
w2. If GTS(w1) is less than or equal toGTS(w2) by some appropriate factor and vice versa, th
the terms are assumed to be synonymous. Hence, this process leads to clusters of terms
predicted to be either synonyms, or in the relation that one term is a specialization of the
These clusters can be used either for automatic query expansion or interactively, to sugges
date expansion terms to a human user.

DR-LINK also uses statistical techniques to identify terms that are likely to be interchangea
certain CN contexts, specifically terms that are premodified by the same set of terms in a
corpus. If two termsa andb are premodified by the same set of terms, there is said to be a “se
order association” betweena andb. Hence, this process identifies phrases that are substitutabl
each other for purposes of document-topic matching.

GTS

ICL w( ) ICR w( )• if both exist

ICR w( ) if only it exists

ICL w( ) otherwise





=

ICL w( )
nw

dw nw dw 1+ +( )
----------------------------------------= head is context

ICL w( )
nw

dw nw dw 1+ +( )
----------------------------------------= modifier is context
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9.4 Proper Noun Recognition, Categorization, Normalization, and Matching

The presence of specified proper nouns is often a necessary, though not necessarily su
condition for a document to be relevant to a specified topic. If the topic is the Japanese stoc
ket, then some form of the proper noun “Japan” is clearly essential, although by itself hardly
ficient, since documents might deal with many other aspects of Japan. Names of pe
companies, government agencies, religions, chemicals, and many other entities may be e
to the specification of a topic, and the recognition of documents relevant to the given topic.

Recognition, extraction, and matching of proper nouns is considerably more complex th
might at first seem. A variety of factors complicate the process. Many proper nouns cons
more than one noun, e.g., “Wall Street Journal.” Many proper nouns include a preposition
“Department of Defense,” or a conjunction, e.g., “John Wiley and Sons.” Many proper noun
be specified in multiple forms, e.g., “MCI Communications Corp.,” “MCI Communications,” a
“MCI.” Many proper nouns are group nouns, which may result in references either to the gro
a whole, or to the individual entities making up the group, e.g., “European Community,” “L
America.” Common nouns and noun phrases may also group individual entities that have p
noun names, e.g., western nations, socialist countries, third world, agricultural chemicals.

Borgman et al. [JASIS] discuss at length the particularly difficult case of names of persons.
ventions for assigning names vary with the culture and historical period. In ancient times, s
names were normal. The practice of assigning multiple names, e.g., first, middle, and last n
is more recent. Some cultures use compound surnames, but the conventions vary from one
to another, e.g., “[h]ispanic children receive a combination of their parents’ surnames, and
acquire a combination of their maiden surnames, and their husbands’ surnames.” Order of
also varies with culture, e.g., “[a]sians traditionally place the surname first, although asians
in Western nations often report their names with surnames last.” “Personal names may be
lated from one language to another, retaining meaning,... or be transliterated from one alph
character set to another.” Multiple transliteration schemes exist. People change their name
their lifetime, as a result of marriage, divorce, adoption, or movement from one countr
another. People adopt or receive nicknames and diminutives, e.g., “Dick” for “Richard,” “B
for “Robert.” A person may use one form of her name on a drivers license, but another form
publication as an author. On top of all this, errors are common, not only typographical e
which affect any typed input, but phonetic errors, e.g., a person from one cultural or lingu
background transcribing a spoken name from another cultural or linguistic background is
cially likely to err.

Paik et al. [ARPA Workshop] [Corpus Proc] have developed a sophisticated series of proce
for proper noun recognition and matching in their DR-LINK (Document Retrieval through L
guistic Knowledge) and KNOW-IT (KNOWledge base Information Tools) IR engines. The pro
noun recognition system described here was developed through corpus analysis of new
texts. First they assign parts of speech to all the words in the document; then they execute
eral purpose noun phrase bracketter, and a special-purpose proper noun phrase boundar
fier. Next the system categorizes all the proper nouns; this is consistent with the DR-L
emphasis on capturing the conceptual level of a document, as well as the actual keywor
phrases. Topic requests may often be stated at the conceptual level. As Liddy et al. note, “q



Page 103

esence
ntry.”
ain the
ize
ent,
sub-
both

lia-

ion
s.,and
es for
A World
er noun
herwise

s they
e stan-
rds,
rgely
ng of
that
n two
nt. In

brevi-
Natu-

he same

a doc-
quest
ebel-
lso
and

e for
them-
his cat-
FC’s)
docu-
other
e used
ourth,
y can
about government regulations of use of agrochemicals on produce from abroad, require pr
of the following proper noun categories: government agency, chemical, and foreign cou
Note that a document that contains proper nouns in those categories may not actually cont
words “government,” “agrochemicals,” “produce,” or “abroad.” DR-LINK attempts to recogn
eight categories: Geographic Entity, Affiliation, Organization, Human, Document, Equipm
Scientific, and Temporal; within each of these categories, DR-LINK recognizes two or more
categories, for a total of 29 meaningful sub-categories. (A more recent version, embodied in
DR-LINK and another commercial tool, KNOW-IT, recognizes over 60 sub-categories.) “Affi
tion” includes “religion” and “nationality.” “Human” includes “person” and “title.” “Scientific”
includes “disease,” “drug,” and “chemical.” And so on. DR-LINK performs this categorizat
using such clues as known prefixes, infixes, and suffixes for each category, e.g., Dr., Mr., M
Jr. for persons, Inc. and Ltd., for companies, etc. DR-LINK also uses a database of alias
alternate names of some proper nouns, and knowledge bases such as gazetteers, the CI
Factbase, etc. Contextual clues are also used, e.g., if the pattern proper noun, comma, prop
is encountered, and the second noun has been identified as a state, the first noun (if not ot
categorized) will be categorized as a city.

Since a given proper noun may take multiple forms, DR-LINK standardizes proper nouns a
are being categorized. That is, all forms of the same proper noun are mapped into a singl
dard form, to simplify subsequent matching. This is equivalent to stemming of ordinary wo
reducing all variants to a common form. However, whereas stemming (at least in English!) la
involves processing of multiple suffixes, standardizing of proper nouns involves standardizi
prefixes, infixes, suffixes, and variant forms of proper nouns, e.g., “Dick” to “Richard.” Note
two variant forms of the same proper noun, referring to the same entity, may occur not only i
different documents, or in a document and a topic request, but also within a single docume
particular, an entity may be named in full on its first reference, and mentioned in a more ab
ated form on subsequent references. It is an important instance of reference resolution for a
ral Language Processing (NLP) based IR system to recognize that these are references to t
entity.

DR-LINK also expands group proper and common nouns, so that a topic request can match
ument on either the group name or its constituents. For example [Feldman, ONLINE], a re
for documents about “African countries which have had civil wars, insurrections, coups, or r
lions” will return not only documents that contain some form of the proper noun “Africa,” but a
documents containing references to countries within Africa. DR-LINK uses proper noun
common noun expansion databases.

Note that, in a system like DR-LINK, proper nouns can provide several levels of evidenc
topic-document similarity computations. First, there is the obvious matching on the names
selves. Second (as noted earlier), there is matching on categories assigned to the names. T
egory matching is similar to, but supplements, the matching on subject categories (S
described in an earlier section. Third, expansion of group nouns can result in matching a
ment on proper nouns not actually mentioned in the topic statement. This can work in the
direction too, e.g., if a document mentions Montana or Atlanta, then these references may b
to match the document against a topic that only speaks about “American” companies. F
proper nouns naming geographical entities can provide relationship information, e.g., the
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“reveal the location of a company or the nationality of an individual.” Subject information can
combined with proper noun category information for more refined topic-document matchin
report of a merger should involve (at least) two proper nouns of category “company,” wh
report of an invasion is likely to specify two geographic entities, most likely at the level of cou
or province.

A significantly different approach to proper noun recognition is taken by Mani et al. [Cor
Proc, 1996] Their approach differs somewhat both in goals and methods. They focus on a
smaller set of subject categories: people, products, organizations, and locations. Within larg
corpora, they seek (like Paik) to categorize previously unknown names automatically. How
they attempt to go further than Paik, extracting from the text appropriate semantic attribute
each named entity, e.g., the occupation and gender of a person. A given entity may be men
more than once in a given document, and each mention may employ a different variation
entity’s name, e.g., “President Clinton,” “Bill Clinton,” “Clinton,” “the president,” etc. They se
to “unify” these mentions, i.e., to recognize all mentions to the same entity, and to combin
attributes associated with these varied mentions into one common schema describing the
entity. This is called “coreference resolution” for proper nouns. When two mentions (and
associated attributes) are successfully unified as referring to the same entity, they are sai
“coanchored.” Note that this goes considerably beyond (although it includes) the normalizat
proper nouns performed by Paik.

Coreference resolution is closely tied to attribute extraction. On the one hand, attributes ext
from one mention of a given entity can be combined with attributes extracted from another
tion, to fill out as many of the “slots” associated with the given type of entity as possible.
example, one mention may indicate that Clinton’s occupation or title is “president.” Another m
tion may indicate that his gender is “male.” On the other hand, extracted attributes can se
evidence to determine whether two mentions refer to the same entity, or to two distinct en
For example, if “President Clinton” has been associated with the gender attribute value “m
and “Hilary Clinton” has been associated with the gender attribute value “female,” this is evid
that these mentions donot refer to the same entity. But, “President Clinton” and “Mr. Clinton
will match on gender, and hence will be coreference candidates unless additional evidenc
cates a contradiction. Moreover, attributes may also serve to indicate whether two mention
to distinct but related entities. For example, “Bill Clinton,” “Hilary Clinton,” and “the Clintons
are distinct, but related entities. As a further refinement, Mani distinguishes between “disc
pegs,” i.e., entities that are distinct in a given discourse, and entities that are distinct in th
world. For example, President Clinton, and ex-Governor Clinton may be two distinct disco
pegs for purposes of analyzing a given document, although they refer to the same real
object in the world model or belief system of an external knowledge base.

As Mani encounters new proper noun mentions in the text of a given document, he nat
wants to limit the number of earlier mentions that must be evaluated as possible candida
coreference. He does this by indexing each mention bynormalized name(a standardized form,
analogous to Paik), byname elementsin its name (individual words within the name), and by i
abbreviations. Only mentions that match on at least one of these indexes are coreference
dates. Abbreviations are generated by rule, or retrieved from a lexicon; hence, a full name
mention can be matched against an abbreviated name in another.
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Another difference between the Mani and Paik approaches is that Mani makes greater use
context surrounding a proper noun, and of the discourse structure of successive mentions.
ticular, Mani makes use of both honorifics and “appositive phrases,” phrases adjoining and i
fying a proper noun. It is a widely used convention, especially in news stories, to attac
honorific or an appositive phrase to the first mention of a given name, e.g., “Anthony Lake,
ton’s national security advisor,” or “Osamu Nagayama, 33, senior vice president and chief
cial officer of Chugai,” or “German Chancellor Gerhard Schroeder.” Such appositives
honorifics are generally employed whenever the named entity is not a “household name,”
not sufficiently identified by title. It is applied to entities other than persons, especially orga
tions and locations, e.g., “X, a small Bay Area town.” (Paik indicates that one of their inten
research directions is the use of appositive phrases. However, in one knowledge base der
KNOW-IT from New York Times articles, Anthony Lake was erroneously categorized as a b
of water, presumably because the appositive phrase was ignored or misinterpreted.) Mani
fies candidate appositive phrases by pattern matching based on left and right delimiters s
commas and certain parts of speech. Syntactic analysis is then used to extract key elements
head or premodifier, from the given phrase. In the “Nagayama” example above, “senior vice
ident” would be extracted, and looked up in a semantic lexicon ontology, which identifies the
as a “corporate officer.” Plainly, the value of such appositive phrases for categorization de
on the availability of lexicons that enable one to interpret their semantic content.

Another distinctive feature of the Mani methodology, closely related to the gathering of evid
over multiple mentions of an entity, is the explicit handling of uncertainty. Evidence gathere
one mention can reinforce or contradict evidence gathered in another mention. Mani emp
variety of Knowledge Sources (KS’s). KS’s are little rule-based programs that attempt to ca
rize (“tag”) entities. Many of the rules employed by Mani’s KS’s are similar to the rules emplo
by Paik’s system, e.g., one KS attempts to identify organizations by using suffixes such as
and “Ltd.” Another tries to identify persons by looking for titles and honorifics, e.g., “Mr.”, “L
Col.”, “Ms.”, etc. Other KS’s use lexicons, e.g., organization lexicons, gazetteers as geogr
lexicons, etc. On the basis of the evidence it collects, a KS can generate multiple hypothese
different confidences.Mani offers the example that “General Electric Co.” may generate
hypothesis that the entity named is a person, with “General” as a title, while other hypothese
be that it is an organization or a county, based on the abbreviated suffix “Co.”. On the other
multiple KS’s may generate the same hypothesis based on different evidence, e.g., one K
hypothesize that the given mention is an organization based on the “Co.” suffix; another KS
generate the same hypothesis based on the presence of the name in an organization lex
“Combine-Confidence” function computes the confidence of a given hypothesis about a
mention as the weighted sum of the probabilities assigned to the hypothesis by each KS th
tributed to it, each probability weighted by the reliability of the KS that generated it.

The confidence values associated with hypotheses play an important role in mention unific
If two person mentions have conflicting hypotheses about the occupation slot, but one hypo
has a much lower confidence than the other, unification may succeed. On the other hand,
mentions have conflicting gender hypotheses, and these hypotheses both have high con
values (e.g., based on the honorifics “Mr.” and “Mrs.” respectively), the unification will fail.
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9.5 Semantic Descriptions of Collections

In a later section, the fusion of IR results from multiple collections is discussed. However, a
cases discussed there assume that the set of collections to be accessed is known, prefe
advance. If the set of collections is very large, diverse, and dynamic, e.g., the Internet
assumption no longer holds in general. In such cases, IR becomes a two-stage process, i
find an appropriate set of collections, and then apply IR techniques such as those discussed
paper. The process of finding the “right” collections becomes more manageable (though fa
trivial) if each candidate collection includes, or is assigned, a formal machine-readable de
tion of its contents. (The problem of searching and indexing the Internet - or a large Intrane
the normal case where such standardized formal descriptions are not available, is discuss
later section.) The first stage of the IR process then becomes the matching of a given query
a “collection” consisting of these collection descriptions. Chakravarthy and Haase [SIGIR
explore a case where structured collection descriptions (they call the collections “archives”)
semantic content are created manually using WordNet, and then natural language quer
translated automatically (using syntactic/semantic techniques, an on-line Webster’s dicti
and WordNet again) into a structured form that can be matched against the archive descri
They report that their system, NetSerf, has a “database” that currently contains descriptions
call them “representations”) of “227 Internet archives. Most of these are from two sources
Whole Internet Catalog [Krol, 1992] and the Internet Services List [Yanoff, 1993].”

An archive description (“representation”) consists of <relation-type, relation-word> pairs. R
tion types illustrated by the authors in their examples include: TOPIC, INFO-TYPE, OBJE
AUTHOR, PERTAINS-TO, IN, and HAS-OBJECT. “For each relation-word, NetSerf uses Wo
Net to identify all its synsets.” The relation word is disambiguated by the synsets containin
word that arenot chosen. Chakravarthy and Haase offer the example of the World Factb
archive, described in natural language as, “World facts listed by country.” The TOPIC is “c
try,” and the INFO-TYPE is “facts.” Three of WordNet’s four synsets are assigned to the rela
word, “country:”

SYNSET: {nation, nationality, land, country, a_people}

SYNSET: {state, nation, country, land, commonwealth, res_publica, body_politic}

SYNSET: {country, state, land, nation}

A fourth synset of “country,” [rural area, country] is omitted since it corresponds to a sense o
word “country” that is obviously inapplicable here.

The authors plan to explore in the future the automatic construction of such descriptions
sources such as home pages and README files.

Query processing in NetSerf starts with a natural language query. “The query processor ma
assumption that the query, after preprocessing, consists of one or more topic words follow
prepositional phrases and verb clauses that modify either the topic words or preceding mod
Manual rephrasing is sometimes necessary, e.g., where the original query takes the form
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sentences. The query is then “tagged,” i.e., a part of speech is assigned to each word or oth
cal “token.” Common query introductions such as “What is” are deleted. Words or phrases id
fying the leading information type are extracted, e.g., given the query “satellite photograp
hurricane’s progress,” the information type “satellite photographs” is extracted. Topic words
modifiers are extracted and cast into <relation-type, relation-word> form. The relation ty
determined by the syntactic type of the modifier. A word sense disambiguator based on neig
ing relation words in the original textual query, WordNet hypernyms, etc., is executed. Finally
main topic relation words are expanded “using semantic relations from the dictionary” tha
“extracted using a pattern definition language.” For example, given the topic relation-word “
and its dictionary definition, the query processor generates the <relation-type, relation-w
pair: <PERTAINS-TO, “alcoholic beverage”>.

NetSerf queries are matched to archive representations. Query relation-words are matched
archive description relation-words. A “hit” occurs “if some valid synset of some relation wor
R [the archive representation] is a hypernym of some valid synset of some relation word in Q
NetSerf query]” A positive weight is added for every hit where the relation types match. A n
tive weight is added for every hit where the relation types do not match.

Chakravarthy and Haase found that “structured representations [of archives, i.e., the a
descriptions], and semantic knowledge-based matching lead to significant improvements.” O
other hand, sense disambiguation led to a slight degradation of performance.

9.6 Information Extraction

One of the most important areas of IR where NLP plays a crucial role isinformation extraction
(IE). IE is the extraction of information from a collection of documents in response to a que

IE must be clearly distinguished fromdocument retrieval(DR), anddocument summarization
(DS). DR, the focus of much of the research described in this report, is the retrieval ofdocuments
relevant to a given query or topic. The document set retrieved may be relevance ranked o
Either way, what the user receives is a set of documents believed to be relevant to the user’
DS is similar to DR except that the system generates a summary of each retrieved documen
summary may be a few sentences or paragraphs (perhaps modified syntactically achieve
reading “smoothness” and “continuity”) believed to capture the essence of what the given
ment is about, or a set of key words believed to suggest the document’s essence. In either c
retrieval is document-based. Indeed, the distinction between DR and DS systems is ofte
clear-cut. A DR system seldom returns a list of documents directly. Rather, it typically retu
list of document identifiers, perhaps accompanied by relevance scores. These identifiers m
titles, subject lines, summaries, etc. The user can then request the actual text of a given do
by selecting its identifier. On the other hand, a DS system returns a list of summaries. The D
tem may allow the user to expand on the summary by requesting the document from whic
summary was extracted.

By contrast, an IE system returns to the userinformation(not a document list) responding to the
user’s information request (query). The response may be generated from multiple docume
from a combination of a document and a database entry. Moreover, note that the term isinforma-



Page 108

oes
actic
ssage
have
n, or
in any
ically
r cor-
f the
ually
from

tion
acted

. How-
ument,
name
unced
ppears

the

brary
st, and
nd the

vel of
ch a
ment

sing,”
gh-
e “shal-
acter-
naries

cal role,
. This
ech
er to
“can”

pus. In
tion extraction, nottextextraction. This implies that the “answer” generated by the IE system d
not necessarily consists of text literally extracted from the document, with only minor synt
tinkering if any. Instead, the answer may be (as with the systems participating in the Me
Understanding Conference - MUC [Darpa, 1992] competition) a template in which slots
been filled in. The template is usually generated manually in advance of the IE competitio
execution of an IE application. The names of the template fields do not necessarily appear
document from which relevant data is extracted. The IE system must “understand” (typ
using simple linguistic clues) that a term appearing in the text of a document, e.g., a human o
porate name, is an appropriate value for a given field of the template, and “fill in” the value o
field with the extracted value. Hence, the answer provided to the user is a mixture of man
generated template names, and extracted text values. Moreover, if a person is identified
information in a text document, the template may be filled in with a combination of informa
about the given person extracted from the given document, and additional information extr
from an entry about the person in a structured database.

Alternatively, the answer returned to the user may be textual, e.g., a sentence or paragraph
ever, the sentence may be a combination of extracts from two sentences in the original doc
linked by co-reference resolution. For example, the first sentence may identify a person by
and title. The second sentence may refer back to the individual by pronoun, e.g., “he anno
that ….” Hence, the textual answer generated and returned to the user never actually a
explicitly in the text of the given document.

Note that, even in an IE system, e.g., KNOW-IT [Liddy, WP, 1999], the user may be given
option of going back to the original document(s) from which the answer was extracted.

Ideally, an IE system would “understand” the documents it reads (just as a human li
researcher would), extract and condense all the information relevant to the user’s reque
return a single, coherent, comprehensive answer. In actual fact, such a strategy is far beyo
state of the art. The time required to compile the knowledge and logic required for such a le
processing, even for a relatively narrow subject domain, would be prohibitive. Moreover, su
level of logical analysis would be far too elaborate and slow for processing the huge docu
collections available today in libraries and on the Internet.

Hence, many IE systems use statistical part-of-speech tagging followed by “shallow par
(also called “partial parsing”). [Cowie et al., 1996] The term “shallow parsing” refers to hi
speed parsing techniques in which only key fragments of a sentence are parsed. The phras
low knowledge” refers to relatively simple ad hoc rules, often tailored to the needs and char
istics of a given domain, and supplemented by large lexicons, machine readable dictio
(MRD’s) and other on-line reference sources.

Part-of-speech tagging is the process that assigns to each word in a sentence the grammati
e.g., noun, verb, adjective, determiner, etc., that the given word plays in the given sentence
role is called its “part of speech.” “[M]ost English words have only one possible part of spe
[but] many words have multiple possible parts of speech and it is the responsibility of a tagg
choose the correct one for the sentence at hand.” {Charniak, 1997] For example, the word
can be a modal verb, noun, or verb. Statistical parsers are typically trained on a tagged cor
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the simplest form, the parser will simply know which part of speech is most common for the g
word in the training corpus. A more sophisticated statistical tagger uses context, e.g., k
which part of speech is most probable for a given word when the word occurs following s
other part of speech. For example, taken by itself, the most probable part of speech for “can”
modal-verb. However, if the word “can” follows the determiner “the,” the part of speech “no
becomes far more probable.

Shallow parsing allows an IE system to “skim” over a sentence, only parsing the most cr
fragments, rather than generating a complete parse tree for the entire sentence. Pars
attempt to parse a sentence fully “typically operate in polynomial time and tend to get bo
down with sentences containing more than 20 to 30 words.” [Cowie et al. 1996] Moreover,
plete parsers generate a great many legal parses for a single sentence of significant leng
many IE tasks, the output of a partial parser is quite adequate, identifying critical sub
objects, proper noun categories, etc.

Shallow knowledge is domain-specific knowledge, typically consisting of ad hoc rules that
in, but perhaps only in, the given domain. As an example of how narrowly tailored these IE
can be, consider these examples from the U.Mass/MUC-4 [MUC-4] [Cowie et al., 1996] sy
for extracting events in the domain of Latin American terrorism (the rule numbering is arbitra

Rule 1: The direct object of “robbed” (active voice) is the victim of a robbery.

Rule 2: The subject of “disappeared” (active voice) is the victim of a kidnapping.

Rule 3: The object of “in” after traveling (active voice) is the target of an attack.

Rule 4: The subject of “hurled” passive voice is the instrument of an attack.

Rule 5: The subject of “placed” is the instrument of a bombing.

The rules were evidently derived from the text corpus. Rule 1 is fairly general, and might a
outside of the target domain. On the other hand, the other rules would obviously break
badly outside the intended domain. Consider the use of Rule 4 in a “baseball” domain! Ru
and 5 are even more specialized. Obviously, in most domains, traveling in a vehicle carri
implication about an attack at all, let alone who the target of the attack is. Similarly, in m
domains, objects can be “placed” without any implication that they are bombing instruments
clear that the use of such rules requires a two-step process. First, IR techniques must be em
to locate the documents (or passages within documents) that are likely to be about terrorism
when the corpus has been narrowed down in this way do rules such as those above sta
chance of working. Yet within the intended domain, such naive rules have been found to
fairly well.

Note that because ad hoc shallow knowledge is only useful in the specific domain for which i
developed, it is usually the case that it cannot be re-used in another domain. Therefore, the
opment of a shallow knowledge base makes sense only if it can be generated so rapidly an
pensively that it can be treated as “a disposable artifact.” In other words, the assum
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underlying the shallow knowledge approach is that it is easier and cheaper to create a s
knowledge base for each new domain that comes along, than to create a deep knowledge b
can be re-used for many domains.

The opposite extreme is represented by the Cyc project [Lenat et al., 1989], the goal of whic
create a huge KB of commonsense knowledge of the world, the kind of knowledge that i
explicitly represented in encyclopedia and other reference books because it is knowledg
“everybody knows,” knowledge that is taken for granted, but knowledge that expert system
IE systems tailored to a specific domain do not possess. Cyc research has demonstrated th
ing such a KB is a very long-term, expensive, difficult affair. It should be noted that the
approach has been to enter knowledge manually, although the hope has always been th
would reach a critical mass at which it could begin acquiring knowledge automatically from l
textual sources.

The KNOW-IT system represents an intermediate approach to IE. It is not tailored to any pa
lar application or knowledge domain. Like its technical and commercial relation, DR-LINK
supports a broad hierarchy (60+) of proper noun categories, in a hierarchy eight levels deep
ilarly, it supports generic semantic relationships, such as “affiliation, agent, duration, locatio
point in time,” as opposed to relations specific to a particular domain such as terrorism, e.g.
tions “such as ‘weapons used’ or ‘victim’.” The KNOW-IT approach takes advantage of
“common practice among writers of including predictable information-rich linguistic constr
tions in close proximity to related proper names.” Hence, KNOW-IT identifies and catego
proper nouns, then identifies generic relationships among the concepts embodied by those
nouns, so-called Concept-Relation-Concept (CRC) triples. (In common with most other IE
tems, KNOW-IT also performs part-of-speech tagging to all the words in the text, assigning
of 48 possible grammatical tags, such preposition, determiner, or singular noun.) The user c
play the concept structure graphically, penetrate from higher to lower levels of the concept h
chy, until actual proper nouns are reached. She can also display the relationships in
concepts or proper nouns participate, the documents in which those proper nouns and re
ships occur, the sentences in which they occur, and finally, the full text of the documents in w
the sentences occur. DR-LINK and KNOW-IT were originally developed for newswire text,
KNOW-IT has been extended to document types as diverse as technical manuals and
home pages.

The methods used by KNOW-IT for proper noun recognition and categorization are those d
oped by Paik [1993] for the DR-LINK project, as described earlier in the section on proper
techniques. The CRC triples are the same as those widely used in Conceptual Graph stu
developed by Sowa and others. CG’s are discussed earlier in the section on formal concep
again in the section on relations and conceptual graph mapping. The former discusses
work on the equivalence of CG’s and formal contexts in Formal Context Analysis (FCA). The
ter discusses the work on CRC triples and CG’s in the DR-LINK system, closely relate
KNOW-IT.

Although the basic KNOW-IT approach is domain-independent, it can and in some case
been extended with knowledge of some specialized domain, e.g., international politics.
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10 Clustering

“Clustering” of documents is the grouping of documents into distinct classes according to
intrinsic (usually statistical) properties. Clustering is a kind of classification but it differs from
classification for routing purposes discussed in the section above on routing in one crucial re
In a routing application, the documents are classified in terms of their similarity or relevan
external queries or topics or user profiles. In “clustering,” we seek features that will separa
documents into natural groups based entirely on the internal properties of the collection. Id
the groups will be completely separate and as far apart as possible in feature space. But
times, overlap of clusters is unavoidable. [van Rijsbergen, 1979] Since clustering depends
statistical properties of the collection being clustered rather than on matching the docu
against some external set of queries, it is normally (but not always - see below!) applied to
existing collection rather than an incoming stream of documents as in a routing application

Why should documents be clustered? The basic reason is that clustering can reveal the in
structure of a collection, e.g., by topic, subtopic, etc., (assuming of course, that thereis a signifi-
cant internal structure). If a language-independent statistical method such as “n-grams” is used, a
collection may also be clustered by language or document type, by topic within language
(See section 3.3.6.) Moreover, by the “cluster hypothesis,” “closely associated documents t
be relevant to the same requests.” [van Rijsbergen, 1979] Document clustering of a large c
tion is particularly effective when it ishierarchical, i.e., when the collection is partitioned into
(relatively) large, high-level clusters corresponding to broad categories, each high-level clus
turn clustered into smaller clusters corresponding to tighter, more cohesive categories, wh
turn are composed of still smaller, still more cohesive clusters, and so on. Ideally, the lowes
clusters in such a hierarchy will consist of documents that are very similar, e.g., that are al
vant to most of the same topics or queries. Hence, clustering, especially when combined
modern graphical display techniques, can be an effective tool for browsing a large collectio
“zeroing in” on documents relevant to some given topic or other criterion. For similar reaso
can increase theeffectivenessof document retrieval, i.e., of querying large collections. [Willett
IP&M, 1988]

Searching a hierarchically clustered collection can proceed eithertop-downor bottom-up. Top-
down searching proceeds as follows:

A top-down search of the cluster hierarchy is performed by compar-
ing (using a similarity measure) the query to cluster representatives
[e.g., centroids] of the top-level (largest) clusters, choosing the best
clusters, comparing the query with representatives of lower-level
clusters within these clusters, and so on until a ranked list of lowest-
level clusters is produced. The documents in the top-ranked [of
these lowest-level] clusters are then ranked individually for presen-
tation to the user. [Belkin & Croft, ARIST, 1987]

The biggest problem with a top-down search is that the highest-level clusters may be so lar
loosely coupled that a representative of such a cluster may bear little resemblance to most
documents in the cluster. Hence, choosing a cluster at the highest levels becomes almost a
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and the search procedure is likely to choose a search path that misses the relevant doc
Hence, top-down searches work best when the clustering method and associated threshold
that even the highest-level clusters are reasonably small and cohesive.

A bottom-up search is the inverse of a top-down search. If one starts at the bottom, the cl
should be smaller and more cohesive than at the top. The problem is which one of those b
level clusters to choose as a starting point. One approach is to do a conventional query se
find one relevant document. Then one can start the cluster search with the cluster containi
document. Or, one can do a conventional query search to match the query against the repr
tives of all the bottom-level clusters. The cluster representative that is most similar to the
query then determines the starting cluster. Cluster searching then proceeds upward until a
is reached containing the number of documents the user wants to retrieve. [Willett, IP&M, 1

Of course, there is no guarantee that the cluster hypothesis is widely satisfied. It can only b
fied empirically in any given collection. (See section on cluster validation.) In general, it is p
ble that a given algorithm will not generate any clusters, or that the clusters will overlap too m
to be useful, or that the clusters which are formed will not correspond to meaningful topi
interest to prospective users. In an earlier section on relevance feedback (see above), anot
sible complication was pointed out: the documents relating to a given topic may form not on
two or more separate clusters. However, it should be noted that all statistical IR techn
assume that it is possible to separate a collection of documents into at least two classe
respect to any given query, i.e., relevant and non-relevant documents.

Hierarchical clustering offers the potential for very fast retrieval search time since most o
searching involves cluster representatives rather than all the documents in each cluster. Ho
if documents are fully indexed, vector space or boolean retrieval without clustering may pro
retrieval time as fast or better since the only documents that need to be searched are those
terms match the terms in the given query. If the query is well-formulated, these documents m
only a very small fraction of the collection.

The great virtue of most proposed clustering methods is that they are automatic. Of course
ual assignment of useful categories to each document in a collection is more certain to be
but it is very time-consuming and requires substantial manpower for large collections. Auto
clustering offers the hope of eliminating much of this effort. In the preceding section, an inte
diate approach was described: Subject categories were assigned manually to a training se
after, categories were assigned to new documents automatically.

Clustering requires some measure of the similarity between documents in document spac
widely used cosine similarity described earlier is an obvious choice. But other similarity mea
are available. [van Rijsbergen, 1979] [Salton & McGill, 1983] [Korfhage, 1997] (See the dis
sion of document query similarity above.) Measures of dissimilarity can also be used, espe
since the objective is to maximize the distance between clusters, e.g., between their centro
document space. A dissimilarity measure is, in essence, a distance measure, i.e., its value
two documentsD1 andD2 is greater the farther apartD1 andD2 are in document space. (Cosin
similarity has the opposite property; it has its maximum value when two document vectors



Page 113

a dis-

racter-
used
epen-
pen-
ilarity

imple-
“simi-

IR
riptor,
atic

imilar-
stered
ategy.
nts is
stering
taining

re
pari-

mbined
larity
f two
ophis-
ibitive
hand,
t simi-
1979]
dded,
) the

nt pair
rather
urred
ment

e-

t al.,
in a
cide, and has a value of zero when the document vectors are orthogonal. But 1 - cosine is
tance measure, increasing withangular distance.)

Document clustering methods are generally distinguished from the descriptors used to cha
ize each document, and the similarity (or dissimilarity) function of those descriptors that is
by the clustering method. In general, the choice of inter-document similarity measure is ind
dent of the choice of clustering method. And the choice of a similarity measure is (often) inde
dent of the choice of the document descriptors that serve as independent variables of the sim
function. [Willett, IP&M, 1988] (But note that this isnot true of the method of Zamir et al.,
described below.)

In general, research into clustering has focused on clustering methods, and algorithms for
menting these methods efficiently with respect to space and time. Willett concedes that the
larity coefficient may affect the clustering that is obtained.” The method of Zamir et al. [SIG
98], described below, provides at least preliminary evidence that a novel document desc
combined with novel inter-document and inter-cluster similarity functions, can produce dram
improvement in cluster quality.

Two main strategies have been used for clustering. Both require a document-to-document s
ity measure. The first strategy requires that the complete collection of documents to be clu
be available at the start of the clustering process. Hence, one may call this the “complete” str
(One might also call it the “static” strategy, since it assumes that the collection of docume
not going to change, i.e., documents are not going to be added or deleted, during the clu
process.) Most methods based on the complete/static strategy start by generating a list con
the similarity of every document pair in the collection. Hence, if the collection containsN docu-
ments, the list will containN(N-1)/2 similarities. Methods using this “complete” strategy a
expensive because of the large number of similarities involved, and the large number of com
sons that must be performed as documents are combined into clusters, and clusters are co
into larger clusters. A straightforward implementation requires that the interdocument simi
matrix, containing O(N2) elements, must be searched O(N) times, once for each “fusion” o
clusters. Hence, the time requirement is O(N3) and the space requirement is O(N2). More s
ticated implementations have reduced the time requirement to O(N2), but even this is proh
for document collections of realistic size such as the larger TREC collections. On the other
because these “complete” cluster methods take advantage of the full set of inter-documen
larities, they meet van Rijsbergen’s three criteria for theoretical soundness: [van Rijsbergen,
[Salton, 1989] (1) The clustering is unlikely to be altered drastically as new documents are a
(2) Small errors in the description of documents lead to small errors in clustering, and (3
method is independent of the initial order of document reference, e.g., the order of docume
similarities. Essentially, these methods “attempt to seek an underlying structure in the data [
than] impose a suitable structure on it.” [van Rijsbergen, 1979] Moreover, the expense is inc
mainly (apart from updates for new documents) when the collection is indexed, not at docu
retrieval time. However for realistically large values ofN, the execution time and storage requir
ments even for pre-processing is prohibitively large. [Willett, IP&M, 1988]

The second major approach is the “incremental” strategy. Incremental methods [Zamir e
SIGIR 98] [Salton, 1989] assume that the document collection to be clustered is arriving
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stream as the clustering proceeds. Hence, as each document arrives it is added to some cl
becomes the seed of a new cluster. When documenti arrives, thei-1 documents that preceded i
are already clustered. Thei-th document may be added to one of those existing clusters.It m
become the seed of a new cluster. Or the existing clusters may be re-clustered in the pro
adding thei-th document. If reclustering is not allowed by the method, i.e., if thei-th document
must be added to one of the existing clusters, the method may be termed single-pass, n
incremental.

10.1 Hierarchical Cluster Generation (“Complete/Static” Methods)

A completealgorithm may start by considering all the documents as a single cluster and
breaking it down into smaller clusters (“divisive” clustering). Or, the algorithm can start with
individual documents and group them together into progressively larger clusters (“agglomer
clustering). (Since agglomerative clustering produces a hierarchy of clusters grouped into
clusters, it is often called Agglomerative Hierarchical Clustering, or AHC for short.) In the la
case, the similarities are sorted in descending order. Initially, each document is considered
rate cluster. The general rule is that at each stage the two most similar clusters are combin
tially, the most similar documents are combined into a cluster. At that stage, “most similar” m
having the highest similarity of any document pair. Thereafter, we need a criterion for dec
what “most similar” means when some of the clusters are still single documents and som
multi-document clusters that we have previously formed by agglomeration (or when all o
clusters have become multi-document). The various agglomerative cluster methods are
guished by the rule for determining inter-cluster similarity when one or both clusters being
pared are multi-document. [Willett, IP&M, 1988]

In “single-link” clustering (the most famous clustering method), the similarity between two c
ters is defined to be “the similarity between themost similarpair of items, one of which appears in
each cluster; thus each cluster member will be more similar to at least one member in tha
cluster than to any member of another cluster.” The algorithm is called “single-link” because
clusters can be combined on the basis of one high similarity between a document in the on
ter and a document in the other. It is also called “nearest neighbor” clustering because two c
are combined on the basis of the two documents, one from each cluster, that are nearest
other. Hence, each cluster is formed by a chain of nearest neighbor document-to-documen
links.

In “complete-link” clustering by contrast, the similarity between two clusters is defined to be
similarity between the least similar pair of items” one of which appears in each cluster. “[T
each cluster member is more similar to the most dissimilar member of that cluster than to the
dissimilar member of any other cluster.” [Salton, 1989] Hence, in the “complete-link” algorit
the similarity between two clusters (which determines whether they should be combined o
depends onall the similarities between documents in the one cluster and documents in the o

For any clustering method a similarity threshold can be applied, i.e., two clusters will be c
bined only if their inter-cluster similarity is greater than some threshold,T. Or the clustering pro-
cess can be terminated when some halting criterion is reached, e.g., a pre-specified num
clusters. In the case of agglomerative clustering, the number of clusters is successively re
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until all clusters have been combined into a single cluster, the “root” of the hierarchy. If a ha
criterion is specified, the agglomeration may stop when the criterion is satisfied, e.g., when
cessive levels of clustering have reduced the number of clusters to a specified valueNCH. Zamir et
al. note that these AHC algorithms “are very sensitive to the halting criterion - when the algo
mistakenly merges multiple ‘good’ clusters, the resulting cluster could be meaningless t
user.”

Note that by either criterion, it is quite possible for a document in clusterC1 to be more similar to
somedocuments in clusterC2 than tosomeother documents inC1. Ideally, one would want to
impose the criterion that every document inC1 is closer to every other document inC1 than to any
document in any other clusterC2. However, such strict criteria for “cohesion and isolation” o
clusters appear to be too strict; in experiments, “very few sets could be found to satisfy” suc
teria. [van Rijsbergen, 1979]

“Complete-link” clustering is considerably more computationally expensive (in either spac
time but not both — there is a trade-off) than “single-link” clustering, but it has the advantage
one can generate clusters such that every pair of documents in a given cluster is above a s
similarity threshold. A documentDi whose similarity to any other documentDj is lower than the
specified threshold will not be inanycluster. By contrast, in “single-link” clustering, the membe
of a cluster are chained together by “single links” such that the similarity between any two d
ments connected by a link, i.e., any two documents that were nearest neighbors at some s
cluster combination, is guaranteed to be above the specified similarity threshold, but a pair o
uments that are both in the same cluster but which were not directly chained together by the
tering process arenot guaranteed to be above the threshold. Hence, single-link clustering al
document pairs with very low similarity to be in the same cluster. For that reason, complete
clustering is probably better suited to IR applications. [Salton, 1989] In particular, complete
clustering tends to produce small, tightly bound, cohesive clusters, whereas single-link clus
tends to produce large, loosely-bound, “straggly” clusters. [Willets, IP&M, 1988]

A third agglomerative clustering method, “group-average” clustering, is intermediate betw
single-link and complete-link in that each member of a cluster has a greateraveragesimilarity to
the remaining members of the that cluster than it does to all members of any other cluster.

A fourth agglomerative clustering method, Ward’s method, “joins together those two clu
whose fusion results in the least increase in the sum of the [Euclidean] distances from each
ment [in the fused cluster] to the centroid” of the cluster. Evidently, this method is only defi
when Euclidean distance is used for computing interdocument similarity. The centroid of a c
is the average of the document vectors comprising the given cluster.

The defining characteristic of a clustermethodis the rule that defines the clusters. For example
the method issingle link clustering, then the defining cluster rule is the one stated above: T
clusters are combined into a single cluster, if their closest members (according to the given
document similarity measure) are closer (more similar) than either is to the closest member
other cluster.
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In general, each of these clustermethodsshould be distinguished from thealgorithmsthat have
been developed to implement it since a given method often can be implemented by many di
algorithms, each algorithm having its own distinct performance characteristics regarding
and time. [Willets, IP&M, 1988] For example, many algorithms are known that produce sin
link clusters. They are all the “same” from the outside, i.e., given the sameN documents, they will
produce the same hierarchy of clusters. However, they may vary considerably in their spac
time requirements. The SLINK algorithm [Sibson, 1973] has been shown to achieve optima
formance for single link clustering:O(N2) time complexity andO(N) space. Trade-offs are poss
ble. The complete-link method has the same time complexity,O(N2), as single-link, if it also has
access toO(N2) space; however, if it only hasO(N) space, it requiresO(N3) time complexity.
[Voorhees, PC]

10.2 Heuristic Cluster Methods

The term “heuristic” has been used by authors such as van Rijsbergen [1979] (he also us
term “ad hoc”) to characterize methods that take shortcuts to achieve greater efficiency in te
space and time requirements. In particular, such terms refer to cluster methods that donot gener-
ate or do not access the fullO(N2) set of interdocument similarities in a collection ofN docu-
ments. Such methods effectively make fewer (sometimes far fewer) effective “passes” throu
interdocument similarity matrix or its equivalent. Heuristic methods tend to violate van Rijs
gen’s three criteria for theoretical soundness. In particular, it is characteristic of many such
ods that the clusters for a given set ofN documents vary depending on the order in whic
documents are initially referenced. In the case of the “Buckshot” method discussed below
method starts with a random sample of theN documents; hence, the clusters produced will va
from one execution of the clustering method to another as the random sample varies.

In return for sacrificing theoretical soundness (and correspondingly, reducing one’s confi
that the true underlying structure of the collection has been captured), these methods tend
cute inO(N) time. Actually, some of them execute inO(kN) time (sometimes calledrectangular
time bounds, see below), wherek is equal to the number of clusters desired, or proportional to
number of clusters. Ifk is a constant, especially a small constant, these are linear time meth
However, if thek is proportional toN (as for some methods and purposes it may be), then
method becomes O(N2) after all.

The distinction betweenheuristicandnon-heuristicmethods cuts across another distinction: th
betweenincrementalandnon-incrementalmethods. Briefly, incremental methods operate entire
in “update” mode, generating and modifying clusters “on the fly” as each document is acce
Below, we discuss some non-incremental heuristic methods. In the next section, we discuss
mental methods in some detail. Purely incremental methods tend also to be heuristic, e.g.,
pass methods and the like. However, we discuss one novel incremental method, STC, th
ceeds in being linear timeand non-heuristic.

In one respect, the very term “heuristic” is misleading with respect to clustering methods. In
ventional usage, the concept of a “heuristic” algorithm or method of solving a problem im
that there is a perfect solution to the given problem. Heuristic methods are, by definition, not
anteed to find that perfect solution. One employs a heuristic method only if methods that are
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anteed to find the perfect answer are either (a) unknown, or (b) computationally impractical
far too costly with respect to space or time, or not guaranteed to terminate at all. However,
realm of document clustering, a “perfect” result is not defined. In general, the “best” set of
ters depends on the objective for which clustering is being performed, e.g., classification,
mation retrieval, browsing, thesaurus generation, etc. Moreover, the best cluster method eve
given objective may depend on the statistical characteristics of the collection. Hence, even t
called “complete” orO(N2) methods are not guaranteed to produce the “best” result.

A heuristic algorithm, associated with Rocchio, [Rocchio, 1996] was developed on the SM
project. It begins with applying a density test to each document that has not yet been clus
thereby identifying “cluster seeds,” documents “that lie in dense regions of the document s
that is items surrounded by many other items in close proximity.” [Salton, 1989] For exam
density may be defined by requiring thatn1 documents have a similarity (Rocchio typically use
cosine similarity) of at leastp1, andn2 documents have a correlation ofp2. All documents suffi-
ciently similar to a seed, i.e., having a similarity to the seed that exceeds a pre-specified thre
form a cluster. Clusters may overlap, i.e., a document may be assigned to more than one
[van Rijsbergen, 1979] In a second, iterative stage, the clusters formed in the first stag
adjusted to conform to certain pre-specified parameters, e.g., minimum and maximum docu
per cluster, number of clusters desired, degree of overlap permitted, etc. Documents t
removed from cluster seeds, or occupying regions insufficiently dense, remain uncluster
undergo a separate clustering process in a third stage.

Much more recently, Cutting et al. [SIGIR 1992] have developed two linear-time heuristic clu
ing methods, calledBuckshotandFractionation, respectively. More precisely, they are rectangu
bound, i.e.,O(kN), methods. These clustering methods have been developed for use in an in
tive browsing technique called “Scatter/Gather.” (See section on User Interaction below.) Fo
application,k is small and constant, e.g., eight in the examples given by the authors. Hence,O(kN)
is practical and effectively linear. Moreover, Cutting et al. [SIGIR 1993] have developed
enhancement to Scatter/Gather that works even for very large corpora, e.g., gigabytes.
Buckshot and Fractionation continue to be useful even for TREC-sized corpora.

The essential “trick” of Buckshot and Fractionation is to use one of the “complete”O(N2) cluster-
ing methods, but to apply it very incompletely to the original large corpus. The result is to ge
ate rough clusters very rapidly. The centroids of these clusters then become “seeds” around
the entire corpus can be clustered on the basis of simple document-centroid similarity.

For example, in Buckshot, clustering is applied initially to a random sample of docum
Hence, anO(N2) method applied to this sample clearly runs inO(kN) time. (Cutting et al. use
Group Average Agglomerative Hierarchical Clustering (AHC) as theirO(N2) method.) This AHC
method is used to obtaink clusters from the random sample. The centers of these clusters are
used as seeds around which the entire corpus is clustered. Hence, in Buckshot, a complete
chical clustering method is used, but it is applied to a small sample of the corpus.

In Fractionation, the entire corpus is initially partitioned intoN/m buckets, each of fixed sizem
documents, wherem > k. Each of the buckets is then clustered using an AHC method. The ob
tive of the clustering is to reduce each bucket fromm individual documents tomr clusters, where

kN
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ther is a pre-specified reduction factor (r < 1). Hence, after the first clustering stage, there aremr
clusters in each of themoriginal buckets. Each of thesemr clusters is then treated as an individu
“virtual document” of size 1/r original documents. Since there areN/m buckets, there are now
mr(N/m) = Nr virtual documents. These virtual documents are now processed exactly like
original documents, i.e., partitioned intoNr/mbuckets, each of which is then clustered intomr vir-
tual documents at the second stage. Hence, after stage two, there are(Nr/m)*mr = Nr2 virtual doc-
uments. This process continues until afterj stages, there areNrj < k virtual documents or clusters
One final agglomerative stage producesk clusters, whose centers then become the seeds for c
tering the entire corpus on an individual document basis. Hence, in Fractionation (in contr
Buckshot), the complete hierarchical clustering method is applied to the entire corpus, b
clustering performed is coarse, because the corpus is partitioned arbitrarily into buckets, a
clustering is applied separately to each bucket rather than to the corpus as a whole.

Given thek seeds or cluster centers (produced by either Buckshot or Fractionation), how areN
documents clustered? As a simple approach (similar to Rocchio), each document can be a
to the center to which it is most similar. This process can be refined by iteration, i.e., after
document in the corpus have been clustered around one of the seeds, the centers can be
puted, and once again, each document can be assigned to the most similar center. Sever
refinements are employed by Cutting et al. First, they summarize each cluster as aprofile. The
profile of a cluster is a term vector equal to the sum of the term vectors representing the
ments in the cluster. Hence, in successive iterations, instead of adding a document to the
with the most similar center, one can add the document to the cluster with the most similar p
vector. They also definesplit and join algorithms. The former ‘separates poorly defined clust
into two well separated parts,” and the latter “merges clusters which are too similar.” In gen
the choice whether to use these refinements, and how many refinements and iterations to
involves a trade-off between speed and accuracy. However, the entire method including
ments, runs inO(kN) time.

Buckshot and Fractionation partition the corpus, i.e., they do not support overlap (although
can be modified to support overlap). [Zamir et al., SIGIR ‘98] Neither algorithm is incremen
Moreover, Buckshot generates its initial cluster samples from a random sample of the initia
pus. Hence, it is not deterministic, i.e., in successive runs, it may generate different clu
“although [in the author’s experience] repeated trials generally produce qualitatively similar p
tions.” [Cutting et al., 1992] A further risk is that “when one is possibly interested in small c
ters,... they may not be represented in the [random] sample.” [Zamir et al., SIGIR 1998]

Buckshot and Fractionation (and the STC clustering method described in the next section)
motivated by the desire to allow the user to browse a large document collection interactively.
an application requires that the clustering be performed very rapidly, e.g., in seconds, ev
very large collections. If the collection is available in advance, e.g., hours before the user b
browsing, then hybrid approaches to speed up the interactive clustering are possible. The e
idea is that a fixed cluster hierarchy is generated off-line. The nodes of this hierarchy then be
“virtual documents” to be clustered on-line (as in Fractionation above).

Clearly, the “complete”O(N2) methods described in the preceding section can be used to gen
this cluster hierarchy. However, for large collections, e.g., thousands of documents or more,O(N2)
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methods are far too slow even for off-line clustering. Hence, Cutting et al. [SIGIR ‘93] prop
using anO(kN) clustering method such as their own Buckshot or Fractionation, even in the
line stage. These algorithms only produce one level of cluster, i.e., they produce a “flat” par
of the collection intok clusters. However, the flat clustering method can be applied iterativel
partition each of the originalk clusters intok sub-clusters, then to partition each of these sub-cl
ters yet again, and so on. The partitioning stops only when individual documents are reache
iterative procedure generates the required cluster hierarchy. Since the clustering at each lev
O(kN) time, the entire hierarchy can be generated inO(kN log N)time. (In their reported experi-
ment, Cutting et al. generated a cluster hierarchy for a DARPA Tipster collection of 700,000
uments, occupying 2.1 gigabytes of text, and containing over a million unique words, in
hours on a Sun SPARCStation 10. While faster hardware would obviously do the job
quickly, it is evident that the production of such cluster hierarchies remains an off-line task.

Given this pre-computed cluster hierarchy, Cutting performs constant-time clustering int
tively, based on the assumption that a fixed number of virtual documentsM >> k is to be clustered.
M is chosen such that the clustering can be performed in the desired constant time bound,
less of the true number of actual documents in the collection. Cutting obtains theM virtual docu-
ments (also calledmeta-documents) by starting at the root of the cluster hierarchy, or at any no
in the hierarchy designated by the user. He replaces the initial node by its children. Each
node is itself a virtual document. At each subsequent stage, he finds the child that has th
leaves and replace that child byits children. He continues this process untilM children, i.e.,M vir-
tual documents, have been accumulated. Then, he clusters theseM virtual documents intok clus-
ters. In his published experiment, he found that interactive clustering took approximate
seconds.

Note that most clustering methods (including those used by Cutting) involve computing inter
ument or document-centroid similarities. These similarities typically involve a similarity func
such as cosine similarity applied to documents represented as term vectors, where each te
vector is a word or phrase. When the documents being clustered arevirtual documents, the term
vectors will be very long; the term vector for virtual documentVi will contain a non-zero value for
every term in any of its descendent leaves, i.e., for any of the actual documents of which it is
posed. In other words, the set of terms in a virtual document is the union of the terms in its
ponent actual documents. To keep the similarity computations from being very slow, Cu
truncatesthe term vectors of every virtual document, retaining only the fifty highest weigh
terms. (This also reduces substantially the space required to store the cluster hierarchy.) S
et al. [SIGIR ‘97] find that with such truncation, “the speed increase is significant while - sur
ingly - the quality of clustering is not adversely affected.”

The Cutting constant-time clustering method clusters virtual documents, where each virtual
ment is essentially a node from some level in the pre-computed cluster hierarchy. The cl
produced are always unions of these virtual documents. Of course, as the browsing user f
more narrowly, on lower levels of the cluster hierarchy, the virtual documents that get clus
may be correspondingly narrow, i.e., may contain small numbers of actual documents. B
some degree, the user is limited by the original pre-computed hierarchical structure. Silvers
al. [SIGIR ‘97] address this issue with their “almost-constant-time” cluster method.
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Like Cutting, Silverstein assumes a pre-computed cluster hierarchy,H, covering a document cor-
pusC of sizeN. However, whereas Cutting only allows the user to designate a node (or per
several nodes at some level) inH as the starting point for clustering, Silverstein assumes that
user has obtained (and wishes to cluster for browsing) some subsetSof actual documents fromC.
For example, the subsetS might be obtained by executing a queryQ againstC using some IR
engine. Silverstein wishes to mapS into H in such a way that the clusters reflectSbut use the pre-
computedH to speed up the clustering. He acquiresM virtual document nodes fromH for cluster-
ing as Cutting does. However, he departs from Cutting in two significant ways. First, in expan
the set of virtual documents to reach his goal ofM, he uses a “goodness” test to weed out t
nodes that contain the smallest proportion of documents fromS. Specifically, when a node is
replaced by its children, this goodness test is used to identify theworst child, the one with the
smallest proportion of documents fromS. This “bad seed” is replaced bysomeof its children. The
replacement process is also a weeding out process: Specifically, child nodes that contain no
ments fromSare discarded. Each child node that contains only a single document fromS (actu-
ally less thanc documents fromS, wherec is a small constant) is replaced by a “singleton” nod
that contains only the document(s) fromS. After M nodes have been accumulated, Silverste
clusters theseM nodes (actually the union of theM nodes and the “singleton” nodes) intok clus-
ters, as Cutting does. Finally, he goes through the all the clustered nodes, removing actua
ments that are not inS.

The Cutting method is constant time (at user interaction time, not cluster hierarchy pre-com
tion time, of course) because it clusters a fixed numberM of nodes, whereM is chosen so that the
clustering time is acceptable to an interactive user. The Silverstein method isalmost-constant-
time because it requires the generation of a function (implemented as a table) that identifi
documents inS that are contained in any given node n of H. The computation of this table ta
O(|S|log N)time. Hence, computation of this table is not constant, and cannot be pre-com
because it depends onS, which is specified by the interactive user. However, the time to comp
the table is “dwarfed, in practice by the contribution of the [constant] clustering step.”

It should be stressed that both the Cutting and Silverstein methods depend on the availab
advance, i.e., off-line, of the collection to be clustered (or in the case of Silverstein, the colle
from which a subset is to be clustered). Moreover, this collection must be available we
advance of user interaction, because the required pre-computation of a cluster hierarchy is
consuming process. By contrast, the STC method, described in the next section, achieves
rable or better run-time speed without any pre-computation. It is genuinelyincremental.

Heuristic algorithms fail van Rijsbergen’s three criteria for theoretical soundness, but have
found “about as effective as those based on hierarchical agglomerative methodologies [e.
gle-link and complete-link]” in “many retrieval settings.” [Salton, 1989]

10.3 Incremental Cluster Generation

Incremental methods also make use of a similarity measure but they don’t require that simila
be pre-computed for all document pairs. Indeed, all document pairs are not available ini
since by definition, incremental methods cluster a stream of incoming documents. The simila
are computed “on the fly” as the documents stream past the incremental cluster system (o
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comes to the same thing, as the incremental system makes a “pass” through the document
tion). All incremental cluster methods may be said to make a single pass through the docum
in the sense that as thei-th document is accessed and processed, the result is the best set o
ters the method can produce withi documents. By the time theN-th document, i.e., the “final”
document, is processed, the entire collection has been clustered and the method is “done
that it doesn’t make any difference to an incremental method whether the collection ofN docu-
ments is available initially, or whether it is a stream ofN documents arriving in sequence, e.g.,N
documents that have been retrieved from the Web by an IR engine. In either case, an incre
method processes thei-th document as if it only has knowledge about the firsti documents, and
hasn’t yet encountered documentsi+1 toN.

One can distinguish between methods that are purely incremental, and methods that can
either an incremental or non-incremental mode. For example, the single-link method discus
the preceding section is classically executed in a static mode, i.e., it starts withN documents.
Algorithms exist for clustering theN documents according to the single-link method. Algorithm
also exist for adding an additional (N+1)th document, without starting over from scratch. Su
updateprocedures produce the same effectas if one had started from scratch. One can see t
such algorithms must exist for the single-link method by considering the effect they must pro
in terms of the single-link clustering rule. TheN documents have been grouped into a hierarchy
clusters according to the single-link rule. DocumentDN+1 must be linked to the documentDi
(i≤N) with which it is most similar. The effect is to link it into every cluster in the hierarchy th
containsDi. If DN+1 is equally similar to several “closest” documentsDi, Dj, andDk (which need
not be very similar to each other, and hence may be in different clusters up to a very high le
the hierarchy), then the clusters to which they belong will be linked together into a single cl
(if they were not already so linked). It is plain that the cluster hierarchy formed by adding d
mentDN+1 continues to obey the single-link clustering rule.

However, if an update procedure exists, then why not use it starting with documentD2 (the 2nd
document encountered), and throw away any non-incremental methods that work on theN
documents, whereN >> 2? If the non-incremental procedure is retained, then it must be becau
is more efficient (in documents clustered per unit of time) than the update procedure, or bec
produces a data structure better-suited to efficient document or cluster retrieval.

On the other hand, if the update procedure is theonly procedure used in the clustering, then th
implementation is purely incremental. If the update procedure is the cluster-defining rule, the
clustermethod is incremental.

All incremental methods make a single pass through the documents. However, they are not
gle-pass methods. The essential distinction is whether the method, on encountering thei-th docu-
ment, revisits earlier documentsj < i, or existing clusters, with a view to possible re-clustering.
it does, it is not a “pure” single pass method, since it may visit documents more than once,
process of making its “single” pass. Actually, virtually all incremental methods dosomerevisit-
ing, but a method that does no reclustering, and minimizes document revisiting is “more” si
pass than a method that revisits and re-clusters extensively. In general, single-pass meth
order-dependent, i.e., the clusters formed depend on the order in which documents are pro
The reason is evident; there is no opportunity to revise clusters formed from early docume
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the basis of information in documents that are processed later. This violates one of van R
gen’s three criteria for theoretical soundness.

A nearly single-pass method works as follows: If a new document is similar enough (accord
some similarity measure and threshold) to one of the preceding documents, they are com
into a cluster. Similarly, if a new document is similar enough to a cluster formed from two or m
of the preceding documents, it is added to that cluster. A document is added to all clust
which it is similar enough. (To simplify the process of computing the similarity of a document
a cluster, a centroid is computed for each cluster. Each new document is then compared to t
troid of each existing cluster. If a document is added to a cluster, its centroid is recompute
course, recomputation of the centroid of a cluster involves revisiting the documents that are
bers of the given cluster, so even this simple algorithm involvessomerevisiting.) When the single
pass is completed, a number of clusters have been formed. The results may depend on the
which the documents were examined. This process may result in very large clusters, or c
with a large amount of overlap. Hence, one usually specifies such parameters as minimu
maximum cluster size, and maximum overlap, etc. The clusters formed in the original
through the data are then adjusted, e.g., by cluster splitting and merging, to conform to
parameters.

Zamir et al. [SIGIR 98] have developed a novel incremental clustering method, called Suffix
Clustering (STC). The STC method is motivated by a problem that arises frequently when q
ing the Web with an IR engine: A huge ranked list of documents is retrieved, of which only a
small number are relevant to the user’s query. To make matters worse, the relevant docume
often far down the list of documents returned. In IR terminology, precision is often very
Zamir et al. propose to alleviate this problem by clustering the documents returned to the use
labeling each cluster with phrases that characterize (one hopes) its common topic(s). Th
then browses through the clusters, picking out and ranking the clusters that appear most r
to her query on the basis of their labels. She can then begin examining documents in the mo
evant cluster. If she needs or desires more information than she finds in the first cluster, she
on to the next most relevant cluster (as determined by its labels and the user’s judgment),
on. In this way, the number of documents that she must sift through to find relevant data c
reduced by at least an order of magnitude. (See the section on User Interaction for further d
sion of browsing.)

Note that STC, although motivated by the difficulties of Web retrieval, is applicable in any
where the number of documentsN retrieved, is large, and the precision is low. It is particular
applicable if the user is doing her retrieval interactively, and wants to see her output very qui

STC has a number of very noteworthy features. Some of these features are found in other c
ing methods, but no other method (to the author’s knowledge) combines them all. (1) STC islin-
ear timemethod, i.e., the time required to clusterN documents rises only linearly withN. This is
an essential requirement wheneverN is very large, as it is in many practical applications. (The
are constant-time and almost-constant-time clustering methods (see previous section), b
depend on off-line pre-clustering.) (2) STC isincremental, which means that it can begin cluste
ing documents as soon as the first document arrives; it doesn’t have to wait until all the retr
documents have arrived before it begins clustering, as non-incremental methods do. (By co
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thecompleteclustering methods discussed in an earlier section are non-incremental and no
ear time. Theheuristic clustering methods discussed in the preceding section are either li
time, but non-incremental, or near constant time, but require substantial pre-processing, and
are also non-incremental.) (3) The STC method isnon-heuristicin the sense that the clusters
produces are independent of the order in which the documents it clusters are initially access
The STC method doesnot require pre-specification of either the number of clusters to be ge
ated, or the maximum or minimum size of the resulting clusters. Heuristic methods comm
have such halting or clean-up criteria; even AHC algorithms are often used in conjunction
such criteria. STC only requires pre-specification of two parameters, a cluster overlap me
and the number of “best clusters” to be reclustered (see below). But Zamir et al. find that S
not very sensitive to the value of the overlap parameter. (5) The STC method permits a doc
to be placed in more than one cluster (a characteristic that is termedcluster overlap). This is a
very important consideration when the objective is to cluster documents by topic, since a
document may be about multiple topics.

(6) A feature that sets STC apart from practically all other clustering methods is that it
ordered strings of words, which it calls “phrases,” as its document descriptors. (Most other
ods of text document clustering use unordered sets of words.) Moreover, STC uses the pres
a phrase in two documents as its inter-document similarity measure for clustering purpose
presence of a shared phrase is also the STC primary (first stage) cluster method rule. (In
contrast, all of the other clustering methods described above are totally indifferent to how sim
ity of text documents is defined, or indeed even to the fact that the objects being clusteredare text
documents.) In other words, ifD1 andD2 share at least one common phrase (as defined belo
they are combined into a “base” cluster. Hence, instead of anN2 matrix of inter-document similar-
ities, STC employs a structure called a “suffix tree,” that indexes a document collection b
phrases of which its documents are composed. The index itself grows linearly with the size
text, and can be updated and accessed in linear time. Experiments by Zamir et al. indicate t
use of ordered strings as document descriptors is critical to the success of the STC method

STC employs a second stage of clustering, using a different clustering rule. The second sta
combines the clusters produced by the first stage according to the proportion of documen
they share (see below). In other words, cluster overlap is permitted, but if the percentage o
lap is very high (Zamir et al. use a parameter of 50%), the clusters are combined into a large
ter. Note that STC is not hierarchical; only two stages of clustering are performed. Hence, n
cluster is generated, and no halting criterion is required. STC is also not iterative (like Rocc
method). Rather, it is incremental. The two clustering stages are performed every time a new
ument arrives or is accessed.

STC indexes the collection of documents as a “suffix tree,” hence the name of the method. In
past applications, a body of text has been viewed as an ordered string of characters. The su
has been employed as an efficient representation of the string for such purposes as finding
ear time): a given wordw in the text, the first occurrence ofw in the text, the number of occur-
rences ofw in the text, etc. [Crochemore et al., 1994] Each path in the tree from root to a leaf
represents a “suffix” of the text. Each internal node of the tree represents a “prefix” shared b
or more suffixes. In STC, the text is viewed as an ordered string ofwords. The application is to
cluster documents that share one or more word strings. (Zamir et al. call these strings “phr
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but no syntactic structure is implied.) A suffix tree is constructed to represent and index a
sentences in a collection of documents. Each sentenceSEi is treated as an ordered string ofn
words,wi1, wi2,...,win. Every sub-stringwij ,...win for 1 <= j <= n, is a suffix ofSEi. In other words,
there aren suffixes for every sentence of lengthn words, the string beginning at word 1, the strin
beginning at word 2, etc. (Technically, there aren+1 suffixes, because the set includes t
“empty” suffix, located at the root of the tree.) A suffix tree is constructed for the first senten
document 1, updated with the suffixes of the second sentence, and so on. As each new do
arrives and is added to the growing collection, the suffix tree is updated to reflect all the new
fixes in its sentences that were not encountered in any previous document, and all the re-
rences of suffixes that were previously encountered in one or more earlier documents. A
new sentenceSEi of the current documentDj is processed, the suffix tree is updated to reflect
the new suffixes inSEi that were not encountered in any previous document or any previous
tence ofDj, and all the re-occurrences of suffixes that were previously encountered in one or
earlier documents. Each distinct suffix becomes the path, the series of edges, leading to
node of the suffix tree. Each leaf node is labeled with the suffix whose path leads to that nod
is indexed by all the documents in which the given suffix appears. Similarly, the path to each
nal (non-leaf) node represents aprefix, a string of words that begins two or more suffixes. Th
internal node is labeled with its prefix, and indexed to identify all the documents in which its
fixes occur.

For example, documentD1 may contain the suffix “The quick brown fox jumped over the laz
dog.” Call this suffixS1. (Actually, there will ben suffixes for this sentence, corresponding t
“dog,” “lazy dog,” “the lazy dog,” etc., up to and including the suffix representing the comp
sentence.) Each non-leaf (internal) node represents the firstn1 words, the prefix, of two or more
suffixes. There will ben-1 implicit prefixes for this sentence: “The,” “The quick,” “The quic
brown,” “The quick brown fox,” etc. However, these prefixes remain implicit, until one of them
encountered in a subsequent sentence ofD1 or a subsequent documentD2, with a different contin-
uation. Each internal node must have at least two children, each child representing a differen
tinuation of the parent. DocumentD2 may contain a sentence with the suffix,S2, “The quick
brown fox leaped over the sleeping collie.” WhenD2 is encountered, the implicit prefix node “Th
quick brown fox” becomes an explicit nodePa. A third documentD3 may arrive containing a sen-
tence with the suffixS3, “The quick are livelier than the dead.” In that case, an internal expl
node is created representing the prefix,Pb, “The quick.” This node will have two children, one th
leaf node forS3, the other the internal node for prefixPa (a continuation ofPb), branching in turn
to the two children representing the suffixesS1 andS2. In this way, all of the word sequences rep
resenting (and characterizing) a collection of documents can be efficiently represented, and
updated as new documents arrive, containing new suffixes, and new instances of existing s
Each internal node of the suffix tree represents a prefix, and the set of one or more documen
taining that prefix, e.g., in the above example there is an internal node representing the prePb,
and the documents,D1, D2, andD3, containing it. Each leaf node represents a suffix, and the se
documents containing it, e.g., there is a leaf node representingS3, and the documentD3 contain-
ing it. The set of documents associated with a node of the suffix tree is called a “base cluste
the phrase that is common to those documents is its label.D1, D2, andD3 comprise a base cluste
whose label isPb. Note that a phrase can be either a prefix or a suffix, or even both, i.e., it can
suffix of a sentence in one document, and a prefix of a sentence in another document.
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Note that, for purposes of clustering, we are only interested in phrases (prefixes or suffixe
occur in two or more documents. However, we create a node for every suffix of a sentenc
given documentD1, and for every prefix that occurs in two or more sentences ofD1. That is
because we don’t know in advance whether a given prefix or suffix inD1 will be encountered
again in a later document. However, we only form base clusters for phrases that occur in a
two documents.

Any sequence of words in a sentence of the collection is a phrase in STC. The sequence n
be a phrase in any syntactic sense, though syntactic phrases will be included (provided th
composed of contiguous words). Also observe that a given document may (and normally
contain multiple phrases, e.g.,D1 containsPb, Pa, andS1. Some of these phrases will be unique
the given document, others will be shared with other documents. It should also be noted that two
documents may share more than one phrase, e.g.,D1 andD2 share bothPa andPb. Hence, the base
cluster with labelPa and the base cluster with labelPb overlap, i.e., shareD1 andD2. On the other
hand, the two base clusters donot coincide; the base cluster forPb also containsD3, a document
that is not in the base cluster forPa.

The construction of the suffix tree not only indexes the document collection, linking each p
(including suffixes) to the documents that contain it; it also performs the first stage of cluste
the identification of the base clusters. The second stage of clustering combines base clust
are “similar.” Base cluster similarity is defined as having a high degree of document overla
other words, base clusterC1 (defined by containing the phraseP1) and base clusterC2 (defined by
containing the phraseP2) are said to be similar if a high proportion of the documents in these
clusters containboth P1 and P2. Specifically,

where 0.5 is the overlap threshold chosen by Zamir et al.

The clusterC12 formed by combiningC1 andC2 contains the union of the documents inC1 and
C2 (and is labeled with bothP1 andP2). Similarly, C2 may be combined withC3 into C23 on the
basis that a high proportion of the documents in these clusters contain bothP2 andP3. C12 and
C23 are then combined intoC123 on the basis of the common linking clusterC2. The result is a
form of single-link clustering withC1 linked toC2 which is linked toC3. However, the undesir-
able chaining effect in which the end points of the chain are quite dissimilar is much less
nounced in the STC case because the chaining is taking place at the level of base cluster
than individual documents. The composite clusters that emerge from stage two are labele
the set of phrases that label their component base clusters.

Each new document that arrives causes the suffix tree to be updated. If documentDi contains a
suffix Sj that did not occur in any of the preceding documentsD1 to Di-1, then a new leaf node is
added to the suffix tree with valueSj (and maybe a new internal node as well, if the new suffix is
new continuation of an existing prefixPold that was previously only the beginning of one suffix o
suffixes in only one document,Dh, h< i, but is now the prefix of suffixes in two documents an
hence rates its own internal node.) Corresponding to the new leaf node, a new base cluster
ated, containing initially just the one documentDi, and labeled with the new suffix,Sj. (If a new

C1 C2∩ C1⁄ 0.5>
C1 C2∩ C2⁄ 0.5>
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internal node is created too, a new base cluster will be defined forthat node, containingDi and
Dh, and labeled with the shared prefix,Pold.) If Di contains a phrasePk (prefix or suffix) that is
already in the suffix tree, i.e., that occurs as the value of a node in one or more of the firsti-1 doc-
uments, thenDi must be added to the base cluster with labelPk. Note that this may have the effec
of either increasing or decreasing the similarity of base clusterCk to other base clusters. IfDi also
contains the phraseP1, it increases the overlap ofCk with C1 (or creates such an overlap if it did
not exist previously). IfDi does not contain phraseP1, it decreases the overlap (if any). Hence,Di
may push the overlap betweenC1 andCk over the user-defined threshold, causing clustersC1 and
Ck to be combined if they were not combined previously. Similarly,Di may push the overlap
betweenC1 andCk below the threshold, causing combined clusterC1k to be split apart into its
component base clustersC1 andCk. Hence, each new document may cause re-clustering of ex
ing clusters. (STC is an incremental clustering method, but definitely not a pure one-pass m
as that term has been defined here.)

The potential re-clustering when a new documentDi arrives requires that inter-cluster similarit
be recomputed for all affected base clusters, and for all clusters composed of affected bas
ters. The number of such clusters goes up as each new document arrives. Hence, the nu
required similarity computations can rise dramatically as the population of documents g
Since the objective is to support real-time clustering (remember that the original motivation
to support browsing of documents retrieved by an interactive user from the Web!), the numb
similarity computations is held constant by only comparing updated base clusters withq
“best” base clusters, whereq is a parameter;q=500 in the research reported here. The term “be
doesnot refer to relevance to the user’s query; that is determined interactively by the user aft
the retrieved documents have been clustered. Instead, it refers to a measure of a cluster’s mas
a cluster.

Base clusters are ranked by scores(B), computed as:

where |B| is the number of documents in base clusterB, |P| is the effective length of phraseP, and
f(P) is a non-linear function of phrase length. The functionf(P) “penalizes single word phrases, i
linear for phrases that are two to six words long, and becomes constant for longer phrases.”
that, strictly speaking, the “break points,” two and six, off(P) are also parameters of the STC
method. Clearly, other values could be chosen, e.g., the phrase length score could be allo
increase linearly up to a length of eight. Zamir et al. do not discuss how they arrived at thes
ues, or any study of the effect of altering these values.) The length of a phrase is the total n
of words, excluding stop words; for Web applications, the usual stoplist is expanded to in
common Internet words like “java” and “mail.” Hence, a phrase consisting of a single sto
word has a length of zero. The value off(0) is zero, so base clusters defined by sharing a sin
stopword are discarded. Note that although stop words do not contribute to the length of p
in which they occur, and hence do not contribute to the ranking of the corresponding base c
scores, theycanserve to distinguish phrases. In the above example, if documentD4 arrives ending
with the suffix, “The slow brown fox can’t jump over anything,” the phrase “The quick” becom
two distinct phrases, “The quick” and “quick,” because the phrase, “The,” now becomes a
rate node with two distinct children, “quick” and one beginning with “slow.” The base cluster
responding to “The” is discarded because its score is zero.

s B( ) B f P( )⋅=
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After the N-th (final) retrieved document has been processed, allN documents have been clus
tered; the STC clustering process is completed. The user can then browse these clusters,
on the basis of their labels which are most likely to contain relevant documents. (Zamir hyp
sizes that the phrases that label a cluster will prove effective descriptors of that cluster’s co
for effective human browsing, but this belief had not yet been tested in the reported rese
When she finds the most promising cluster, the user can “drill down” and look at titles or wha
other “snippets” the Web engine has returned. When she finds an interesting “snippet,” sh
drill further to look at the full text of the corresponding page. Zamir assumes that even at the
ter level, the number of entities generated by STC will be greater than the user can comfo
browse. So, he ranks the final set of clusters, assigning each cluster a score “based on the s
its base clusters, and their overlap.” Hence, the user only has to (is allowed to?) browse thep best
clusters. Again, “best” is a measure of cluster quality, e.g., number, size and overlap of its co
nent base clusters (and hence of its coherence), length of the phrases that label it (longer
are likely to be more descriptive), etc. Cluster relevance is determined interactively by the b
ing human user. The human browser sees the number of documents in each cluster, a
phrases of its base clusters.

The STC method appears to achieve the quality of a “complete,” i.e.,O(N2) method (see discus-
sion of Cluster Validation below), while running in linear time, i.e.,O(N). The “secret” is the
nature of the “similarity” measure STC uses, and the efficient data structure and algorithm
uses to index the documents and compute the similarity. Practically all other cluster methods
measure such that if documentD1 is similar to documentD2, and documentD2 is similar toD3,
one cannot assume thatD1 is similar toD3. In a word, these measures, e.g., cosine similarity,
non-transitive. As a result, every pair of interdocument similarities needs to be computed
accessed for “completeness.” By contrast, STC forms its base clusters on the basis of
phrases. IfD1 andD2 share a phrase, andD2 andD3 share the same phrase, thenD1 andD3 cer-
tainly share that phrase too! Hence, STC can perform complete clustering at the base cluste
without incurring theO(N2) penalty. STC achievesO(N) time and space by employing a suffi
tree to index the document collection, and an efficient algorithm due to Ukkonen [Algorith, 1
[Nelson, 1996] to build and update the suffix tree. The second-stage clustering of base clus
not transitive, but involves clustering of base clusters, not documents. Moreover (and this
most “heuristic” element of the method), during the incremental re-clustering of base clu
only theq “best” existing clusters are revisited, as noted above. This keeps the time (actual
maximum time) required for stage two constant as the number of documents grows.

Finally, it should be noted that because it is incremental, the performance of STC in the ap
tion domain for which it was developed, e.g., clustering of documents retrieved from the
may be much better than linear. STC can cluster the documents as they are arriving. Hence
time the last (Nth) document arrives, STC’s clustering may be nearly completed. In a repo
experiment, cluster results are returned “to the user a mere 0.01 seconds after the last docu
received by” the Web retrieval engine. However, it should be noted that clustering in this cas
performed on the “snippets” extracted from Web pages by the IR engine, not the full text o
actual pages. This is compared by Zamir to the truncation of document vectors by Cutting
{SIGIR ‘93] and Schutze et al. [SIGIR ‘97] described earlier
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10.4 Cluster Validation

Since even randomly generated data can be clustered, it is important to determine wheth
clusters produced when a given clustering method is applied to a given collection, are mean
It is even more important to determine whether the clusters produced contribute toeffectiveinfor-
mation retrieval. In other words, are the clusters produced likely to satisfy the cluster hypoth
If a query or browsing method locates and retrieves a cluster of appropriate size, is it likely
many or most of the documents in that cluster will be relevant to the query, or of interest t
browsing user? If the user relaxes the cluster threshold, retrieving documents that were c
the boundary of the original cluster, are these new documents likely to be at least partially re
to the user’s need?

Several approaches to cluster evaluation with specific applicability to document retrieval
been tried. These approaches try to determine whether a given collection is a good candid
clustering, i.e., whether clustering will promote retrieval effectiveness. One approach, due t
Rijsbergen and his associates [van Rijsbergen et al., 1973] is to compare the average inte
ment similarity among relevant documents to the average similarity among relevant-nonre
document pairs. This average can be computed for a given query or over a set of queries
cluster hypothesis holds, the average similarity among relevant documents should be subst
larger than the average over relevant-nonrelevant pairs. A second approach, due to Voorhe
determine for each document relevant to a given query how many of its nearest neighbors a
relevant to the query. In her experiments, Voorhees [TR 85-658] considered the five nearest
bors to each relevant document. These two methods both require that a query or set of que
applied to the collection and that relevance judgments be applied to the documents retriev
these queries. The assumption is made that the results for the given queries characterize th
collection in the sense that other queries applied to the collection will give similar results. A
approach, due to El-Hamdouchi and Willett [JIS, 1987] depends entirely on properties of th
lection itself, or more precisely on the terms that index the documents in the collection. The
culate aterm density, defined as the number of occurrences of all index terms in the collection
number ofpostings) divided by the product of the number of documents in the collection and
number of unique index terms. This density is a measure of how densely populated the term
ument matrix is. The theory is that the greater the term density, the more frequently docu
will share terms, and hence the better a clustering can represent degrees of similarity be
documents. In a reported comparison of these methods, the term density measure correla
with effectiveness of cluster searching. [Willetts, IP&M, 1988]

As the size of distributed collections and the corresponding size of retrieval sets grow, the ap
tion of clustering to user interactive browsing also grows in importance. A number of the clu
ing methods described above, are specifically aimed at this application domain. Hence,
evaluations of effective clustering have also been aimed at this application. Browsing experi
have been conducted to evaluate the effectiveness of clustering for this purpose. These
ments are discussed further in the section below on User Interaction. However, one t
retrieval effectiveness [Zamir et al., SIGIR ‘98] that simulates browsing will be discussed h
This test compared the STC clustering method (described in the preceding section) against
heuristic clustering methods (described in the section on Heuristic Methods) andO(N2) methods
(discussed in the section on Complete Methods). Specifically, it compared STC against fo
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ear-time heuristic methods: Single-Pass, K-means (this is the Rocchio method), Bucksho
Fractionation), and oneO(N2) method: Group-Average Hierarchical Clustering (GAHC).

The strategy adopted by Zamir et al. is based on results reported by researchers who con
actual browsing experiments. These experiments indicate that a user is usually (about 80%
time) able to select the cluster containing the highest proportion documents relevant to her
on the basis of the cluster labels or summaries provided to her. Hence, Zamir generated 1
ries, retrieved documents from the Web for each of those queries, and then manually gen
human relevance judgments for each of the 10 retrieval sets, relative to the query for which
retrieved. Then, they clustered each of the retrieval sets using each of the cluster methods,
parameters as appropriate so that 10 clusters were generated for each retrieval set/cluster
pair. Then, for each retrieval set and cluster method, they automatically selected the “best” c
i.e., the cluster containing the highest proportion of relevant documents, then the next best,
on, until they had selected clusters containing 10% of the documents in the “collection,” i.
the given retrieval set. This was based on the assumption, noted above and borne out to
extent in practice, that users can select the best clusters on the basis of their labels or sum
In all cases, the cutoff was 10% of the documents in the given set; this meant that the cutoff
occur in the middle of a cluster, even in the middle of the first cluster, if that cluster was larg
a given cluster method. The resulting 10% documents were then ranked, and the average pr
computed, averaged over all 10 collections. (Since STC supports document overlap, a given
ment might appear in two or more selected clusters. For purposes of ranking, such duplicate
discarded.) Equalizing the number of clusters generated, and the number of documents r
across methods and collections, allowed for a fair comparison of cluster methods. Note that
ranked documents by cluster, i.e., the documents in the best cluster were ranked higher th
documents in the next best cluster, and so on. Zamir et al. do not specify how they ranked
ments within a given cluster. However, Hearst et al. rank documents within a cluster using
different criteria: closeness to the cluster centroid, and similarity to the original query.

The results reported by Zamir et al. show that STC out-performed the other methods, ev
GAHC method, by a significant margin. GAHC out-performed the other methods, which is
surprising considering that it is anO(N2) method (and consequently far too slow for interacti
use, and even for off-line use of large collections). It is striking that STC, anO(N)and incremental
method, out-performed GAHC, which is neither! Zamir et al. concede that their results are
liminary; indeed, the title of their paper refers to the reported study as a “feasibility demon
tion.” The results are preliminary for (at least) four reasons. First, the results were obtained
non-standard, e.g., non-TREC, collections, retrieved from the Web by 10 arbitrary queries.
was deliberate, since Web retrieval is the intended application of STC.) Second, the resultin
lections were (relatively) small, e.g., 200 documents each. (On average, there were abou
relevant documents for each query.) Third, the relevance judgments were generated
researchers rather than by independent judges, as in TREC. Fourth, the study did not use
human users, performing actual interactive browsing. However, their system, MetaCrawler
has been fielded on the Web, so that statistics can be gathered from actual users. The d
employed is also being published on the Web, so that other researchers can replicate and v
these experiments.
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11 Query Expansion and Refinement

A query or information need submitted by an end-user is ordinarily a short statement or an
shorter list of terms. This is only to be expected. The normal user is not necessarily an exp
all the term usages in a large collection of documents he wishes to query. Nor does he w
spend his time consulting thesauri and other reference works in an attempt to generate a
query. A sophisticated user may in fact do some of these things. But the approach taken i
some commercial IR engines and much IR research is to refine and expand the original
automatically based on the documents retrieved by the original query. {Salton et al., JASIS,
Query refinement and expansion may involve adding additional terms, removing “poor” te
and refining the weights assigned to the query terms. It is possible to recompute the weights
out expanding the query, or to expand the query without recomputing the weights, but exper
indicates that both expansion and re-weighting improve retrieval performance. [Harman, S
‘92] The process of query expansion and re-weighting can be applied to either vector spac
ries or extended boolean queries. [Salton, ATP, 1989] [Salton, IP&M, 1988] The process m
wholly automatic or may involve a combination of automatic processes and user interaction

11.1 Query Expansion (Addition of Terms)

A number of approaches to automatic query expansion have been tried. A common approac
expand the query with terms drawn from the most relevant documents, i.e., the documen
the user judges relevant among those that were retrieved when her original query was app
the collection. This process is called “relevance feedback.” [Salton et al., JASIS, 1990], [Har
SIGIR ‘92] The process is interactive to the extent that the user must look at the documents
highly ranked by the retrieval system and tell the system which ones are relevant. Note tha
modern IR systems typically rank all the documents in the collection, the user must decide
far down the ranking she wants to go, e.g., she must decide to read the highest rankingX docu-
ments whereX is a parameter of the retrieval procedure. In effect, she makes the working ass
tion that the firstX documents are likely to be relevant and hence are worth examining initiall
judge their relevance. (But see below for further refinements.) However, the system can “t
from there,” extracting terms from the relevant documents and adding them to the original q
The system can also reweight terms in the original query, e.g., increasing the weights of term
appear in the documents judged relevant, and reducing the weights of terms that do not ap
the relevant documents. If there is a training set of documents such that human judges
already identified relevant and non-relevant documents for this set (relative to the given qu
topic), then terms occurring in the relevant documents of this training set can be added to th
tial query. (Training sets are normal for routing or classification applications.) The process o
evance feedback is iterative. Each time the query is expanded and re-weighted, this “impr
query, also called the “feedback query” [Buckley et al., SIGIR ‘94], is executed. The user
makes relevance judgments of the topN documents retrieved by the feedback query. “The proc
can continue to iterate until the user’s information need is satisfied.” Harman [SIGIR ‘92] rec
mends repeating the process as long as each iteration retrieves relevant documents not retr
the previous iteration. (Note: In the “residual collection” method of evaluation of relevance f
back [Salton and Buckley, JASIS, 1990] [Haines and Croft, SIGIR ‘93] [Chang et al., SMA
1971], all documents previously seen and judged by the user are factored out of evaluation
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next iteration so that each iteration is only “credited” with additional relevant documents not
viously retrieved.)

A refinement of the above procedure is to let the IR systemassumethat the topX documents as
ranked by the IR system are relevant. The system automatically expands the query using tX
documents, runs the expanded query and returns the ranking produced by this second-stag
as the first result actually seen by the user. Note that for the purposes of automatic query
sion (the first stage of this two-stage process), precision is more important than recall, i.e
essential that as many of the high-rankingX documents as possible are relevant even if some re
vant documents are overlooked. Hence, similarity measures may be employed in this auto
first stage that emphasize precision and sacrifice some recall. [Cornell, TREC 5]

When terms from relevant documents are to be added to the query, two questions are imp
(1) How many documents should the user judge for relevance, e.g., the top 10 (a screenfu
top 30, the top 200? Or should the threshold be determined by similarity or probability value
all documents above a given similarity value? In any case, once a threshold is set, all docu
above that threshold become the “retrieval set.” The user judges each document in the retrie
as relevant or non-relevant. (2) What should be the measure of whether a term that occurs
uments judged relevant is “important enough” to be added to the query? A common answer
latter question is to add the term vectors of all documents judged relevant to the query. In
words, all terms in the relevant documents (after stop-word removal and stemming) are ad
the query. However, if a relevant document is very large, adding all the terms in its term vec
the original query can produce a very large expanded query. This can degrade respons
because “efficient large-scale retrieval systems have response times that are heavily depen
the number of query terms rather than the size of the collection.” [Harman, SIGIR ‘92]

A refinement to the term selection procedure is to take all the terms from the term vectors
relevant retrieved documents, sort them according to some criterion of importance, and the
the topN terms from this sorted list to the query. An effective key for sorting in one experim
[Harman, SIGIR ‘92] was found to be “noise*frequency” wherenoiseis a global distribution term
similar to idf, andfrequencyis the log of the total number of occurrences of the given term with
the set of relevant retrieved documents. In other words, preference is given to terms that occ
quently in the documents judged relevant but that do not occur frequently in the collection
whole. The same experiment found that adding the top 20 terms produced better retrieval p
mance (measured as average precision) than adding a much larger number of terms, e.g., a
non-stop words in the retrieved relevant documents. Adding all the terms dilutes “the effect o
‘important’ terms … causing many non-relevant documents to move up in rank.” (Of course
given query goes through repeated iterations, 20 terms will be added at each iteration.
experiment simulated an interactive, ad hoc query environment in which the user issues a
judges the topN (N = 10) documents for relevance, and the system then automatically expand
query using the “best” terms taken from the relevant retrieved documents. The user repea
relevance feedback process with each iteration using the query expansion produced by the
ous iteration.

Buckley et al.[TREC 2] [TREC 3] achieved substantial improvement in a routing environm
by massive query expansion, e.g., each query was expanded by 200-300 terms before r
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improvement reached a point of diminishing returns. Subsequently [SIGIR ‘94], they repo
improved performance for expansion up to 500 terms. However, Singhal et al. [TREC 4] f
that with their improved term weighting scheme (Lnu — see section 3.3.2), the maximum
improvement occurs at 80-100 added terms. (Traditional term weighting favors shorter
ments. Massive query expansion compensates for this bias by favoring longer document
new weighting scheme, by eliminating the document length bias, reduces the need for the
pensating bias of massive expansion.)

The above approaches distinguish “important” terms, i.e., terms that are effective at discrim
ing documents about a given topic, from terms that are poor at such discrimination. Howev
noted earlier, a large document may deal with a number of topics. Hence, it is quite possib
inappropriate terms will be added to the query, drawn from non-relevant sections of relevan
uments. These terms may be good topic discriminators but they may discriminate the wrong
One approach to this problem, discussed earlier (see section on query-document similarity
break each large document into sections, commonly called “passages,” and treat each pass
“document.” {Allan, SIGIR ‘95] In other words, the system computes the similarity between e
passage and the user’s query. This enables the system to determine the “best” passage,
passage in a given document most similar (and hence one hopes most relevant) to the que
query is then expanded only with terms taken from the “best” passage of each relevant docu

An alternative method of query expansion (mentioned earlier) is to expand each term in the
nal query with synonyms or related terms drawn from a generic on-line thesaurus, e.g., P
ton’s public domain WordNet [Miller, IJL, 1990] or a thesaurus developed for a partic
application domain. [van Rijsbergen, 1979] A thesaurus may be an independently generated
ence work, e.g., WordNet, or it may be generated from the target collection based on ter
occurrence or adjacency, e.g., INQUERY’s PhraseFinder. [Callan et al, IP&M, 1995] A term
be expanded with synonyms or replaced by a more general word representing the class to
the original term belongs. [van Rijsbergen, 1979] The use of a thesaurus to expand a set o
automatically into a boolean expression was discussed briefly in the section above on bo
queries. Query expansion by thesaurus may be truly automatic since unlike expansion ba
relevance feedback, no feedback from the user is required. On the other hand, a user may
a query manually using a thesaurus. Of course, expansion by thesaurus, and expansion wit
drawn from the relevant document set of the original query, are not mutually exclusive.

In a third approach to query expansion, interactive query expansion, the user is supplied with
of candidate expansion terms derived from the relevant documents and ordered by some c
of importance such as the “noise*frequency” discussed above. The user then chooses term
this list to add to the query. [Efthimiadis, IP&M, 1995].

Whether terms for query expansion are selected interactively or automatically, a term ord
(also called “ranking” or “selection”) method is required. Efthimiadis, Harman [SIGIR ‘92], a
Haines and Croft [SIGIR ‘93], have all studied term ordering methods. In general, the ex
ments conducted by these authors found that multiple ordering methods had comparable
mance. They also found that the results depended on the collection to which it was applied
Haines and Croft found that relevance feedback worked much better on a collection of abs
than on a collection of full-text documents. They found that a good term ordering method
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rdf*idf whererdf is the number of documents judged relevant by the user that contain the g
term. Harman and Efthimiadis both found that a probabilistic ordering method comparable
Harman, slightly better than) “noise*frequency” was the BI weighting formula (see section a
on probability):

wherepk is the probability that the termtk appears in a document given that the document is re
vant, anduk is the probability thattk appears in a document given that the document is non-r
vant. Harman and Efthimiadis both got good results withwk(pk - uk). Efthimiadis got comparable
results with his “r-lohi” method which consists of ranking terms byrtf (the number of occurrences
of the given term in relevant documents) and breaking ties according to their term frequency
all documents) from low frequency to high frequency. Buckley et al. [SIGIR ‘94] userdf, break-
ing ties by choosing the term with the highest average weight in the set of relevant docume

Local Context Analysis (LCA) [Xu et al., SIGIR ‘96] employs a more elaborate scheme for a
matic choosing, ranking, and weighting of query expansion terms. LCA “combines global a
sis and local feedback.” It is based on fixed length passages (300 words in the rep
experiments). It is also based on “concepts” where a concept is a noun group (phrase), defi
“either a single noun, two adjacent nouns, or three adjacent nouns.” Given a queryQ, a standard
IR system (INQUERY in the reported experiments) retrieves the top n passages in the coll
being queried, i.e., then passages in the entire collection that matchQ most closely. Concepts in
the top n passages are ranked according to the formula:

wherec is the concept being ranked relative to queryQ, andbel (which stands for “belief”) is the
ranking function. The heart of this ranking function is:

which multiplies the frequency of occurrence of query termti in passagej (ftij) by the frequency
of occurrence of conceptc in passagej (fcj), and then sums this product over all then top pas-
sages. Hence, this factor measures the co-occurrence of a given query termti with the concept c
being ranked, over all of the topn passages. The greater the amount of co-occurrence (co-oc
rence in more passages, greater frequency of co-occurring query term and concept within a
passage), the greater the ranking ofc. This ranking factor is modified (multiplied) byidfc, a varia-
tion on the familiar globalidf statistic which penalizes concepts occurring frequently in the c
lection. This product is normalized by the log of the number of top ranked passages. A small
δ, is added to prevent any concept from getting a score of zero. The resulting sum is raised

wk
pk 1 uk–( )⋅
uk 1 uk–( )⋅
----------------------------log=

bel Q c,( ) δ af c ti,( )( )log idf c n( )log⁄+( )idf i

ti εQ
∏=

af c ti,( ) ftij fcj

j 1=

n

∑=
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poweridfi to emphasize infrequent query terms. The result is a score forc relative to query termti.
Finally, the scores forc relative to each of the query termsti are multiplied together to obtain the
final ranking score for conceptc. Note that “[m]ultiplication is used to emphasize co-occurren
with all query terms.” In other words, if even one of the query terms has a very low co-occurr
score with a conceptc, that concept will receive a low ranking.

Once the concepts in the topn passages have been ranked, them highest ranking concepts are
used to form an auxiliary query, which combined with the original queryQ using a weighted sum
operator. In the reported experiments, m was set to 70. Thesem expansion concepts were
weighted (within the auxiliary query) according to a linear weighting function such that the h
est ranking concept,c1 received a weight close to 1, and the lowest ranking (m-th) concept
received a weight of 0.1. The expanded query was then applied to TREC3 and TREC4 da
runs produced improvement (measured in average precision), but the amount of improv
depended on the number of passages. The best run on TREC3 (200 passages) prod
improvement of 24.4%. The best run on TREC4 (100 passages) produced an improvem
23.5%. Currently, no method of choosing the optimum number of passages is known, but
nately, performance is relatively flat for a wide range (30 to 300 passages), at least for the
data. If the number of passages is below or above this optimum range, the level of improve
declines.

Note the mixture of global and local analysis in LCA. Then passages that best matchQ are
selected globally from the entire collection. Likewise, the twoidf statistics,idfc andidfi, are calcu-
lated globally over all the passages in the collection. On the other hand, query term/conce
occurrence is computed “locally,” i.e., it is computed only for thosen best passages retrieved fo
Q. Note that term occurrence statistics and idf statistics can be computed ahead of time for
passages in a given collection. At run time, i.e., when a queryQ is being executed, the only globa
activity required is retrieval of then best passages. Co-occurrence statistics and the concept
ing can then be computed locally. Hence, retrieval time is very fast.

LSI has been used as a form of query “expansion” in conjunction with (or in place of) relev
feedback. In “[m]ost of the tests … the initial query is replaced with the vector sum of the d
ments the users have selected as relevant.” [Berry et al., SIAM, 1995] The effect is equival
incorporating terms from the relevant documents into the query, yet the resulting query v
using LSI factors is much lower-dimensional than if the terms themselves were actually a
(which means that the query will execute much faster). [Harman, SIGIR ‘92] [Hull, SIGIR ‘
Dramatic improvements were achieved when even the first relevant document or the aver
the first three relevant documents were used.

11.2 Query Refinement (Term Re-Weighting)

Once the query has been expanded, the weights of query terms must be recalculated. A
used method of re-calculating the term weights given relevance feedback is the Rocchio fo
[Buckley et al., SIGIR ‘94] The Rocchio formula calculates new term weights from the old t
weights and the relevance judgments as follows. LetQi

old be the existing weight of thei-th term,
e.g., computed using a scheme like the popular “ltc” (see section above on term weights) for
term in the original (non-expanded) query. Of course, if termti is an expansion term, then there
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old = 0 in the equation below. LetQi
newbe the new weight of query termi after re-

evaluation. Let |rel docs| be the number of retrieved documents judged relevant. Let |nonrel-docs|
be the number of retrieved documents judged non-relevant. Letwti the weight of termti in any
given relevant or non-relevant document. LetA, B, andC be three constants to be adjusted expe
mentally. Then the Rocchio formula [Buckley et al., SIGIR ‘94] [Salton and Buckley, JAS
1990] is:

Note that theB term in the Rocchio formula averages the weights of query termti over the rele-
vant documents. (Remember that a given term can have a different weight in each relevant
ment in which it occurs.) TheC term averages the weights of query termti over the non-relevant
documents. Hence, the ratios ofA, B, andC determine the relative importance of the old que
(i.e., the previous version of the query), the relevant documents, and the non-relevant docu
in modifying term weights in the query. It should be stressed that the query expansion term
drawn entirely from the documents judged relevant. However, some of these expansion term
also occur in non-relevant documents. Hence, theC portion of the Rocchio formula does not ad
any terms to the query; its only effect is to reduce the weights of some expansion query term
on a first iteration, original query terms) because of their occurrence in non-relevant docum
The effect of theC portion of Rocchio may be to make the weight of some terms negative. Te
with negative weights may be dropped. [Buckley et al., SIGIR ‘94]

This is the “original” Rocchio formula. A modified version of the formula [Buckley, SIGIR ‘9
re-interprets “nonrel docs” to include not just the retrieved documents that the user has explic
judged non-relevant but all documents in the collection that have not been explicitly judged
vant by the user. The assumption of the “modified” formula is that most of the documents the
never sees, the non-retrieved or lower-ranking documents, will in fact be non-relevant.

Buckley et al. point out a significant virtue of the modified Rocchio formula. By pure chanc
low frequency term may easily happen to occur more frequently in relevant than in non-rel
documents within a given collection. Rocchio averages such a term over all the relevant
ments, and all the non-relevant documents, in the collection, not merely the relevant and no
vant documents in which the term happens to occur. Hence, both relevant and non-re
documents will make a small contribution to the weight of a low-frequency term. Rocchio we
an expansion term by the difference between these contributions, which will therefore al
small. This is contrasted with the probabilistic BI term weighting formula discussed in sec
7.3.1. This formula computes the term weight as the log of a ratio involving the probabilitie
occurrence of the given term in relevant and non-relevant documents. For example, if 1/10
relevant documents contain the given termtk (pk = 0.1), and 1/100 of the non-relevant documen
containtk (uk = 0.01), thentk’s weight,wk (by the BI formula) is log (11). Iftk is much lower fre-
quency, e.g.,pk = 0.01 anduk = 0.001), thenwk is approximately equal to log (10.1). The weigh
of a low frequency term can be approximately the same as the weight of a high frequency te

Qi
new A Qi

old⋅ B
1

rel docs
---------------------- wti

rel docs
∑⋅ ⋅ C

1
nonrel docs
------------------------------- wti

nonrel docs
∑⋅ ⋅–+=
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long as the ratio of their occurrence in relevant and non-relevant terms, is the same. H
[SIGIR ‘92] notes the same problem with probabilistic term weighting.

In general, the SMART system weighting scheme described above allows one weighting sc
to be applied to query terms and another weighting scheme to be applied to document
However, as Buckley et al. [SIGIR ‘94] point out, the Rocchio formula involves adding qu
weights to document weights so the same weighting scheme, e.g.,ltc, must be applied to both
query and document terms if Rocchio is to be used for relevance feedback. (This is in cont
the usual scheme, e.g.,lnc-ltc as described in section 6.3, in which theidf is a factor in the query
term weight, but not in the document term weights.)

The effect of Rocchio re-weighting is to increase the weights of terms that occur in relevant d
ments and to reduce the weights of terms that occur in non-relevant documents. This works
all the relevant documents are clustered near each other in document space.[Salton, ATP 1
that case, relevance re-weighting using the Rocchio formula will move the query vector to
the centroid of the cluster of relevant documents and away from the centroid of the non-re
documents. However, if the relevant documents are not tightly clustered, the “optimum” q
may not be effective at retrieval. Even worse, repeated re-weighting may cause the query to
der around the document space, never settling down, because one set of relevant docume
pull the query this way, another set may pull it that way. One possible solution is to use a
nique like LSI that captures term dependencies; relevant documents may be far more tightly
tered in a document space whose dimensions are LSI factors than in a conventional doc
space whose dimensions are actual terms occurring in the documents. Another possibilit
modify the document vectors by adding terms drawn from the user’s query or application do
to the indexes of documents judged relevant. The effect is to move relevant documents
together in document space, and move non-relevant documents farther away. [Salton, ATP
Of course, this approach won’t improve performance for the original query, but it will help if
user submits similar queries in the future. A third approach is to cluster the retrieved relevan
uments (see section on clustering). If two or more well-defined clusters are detected, one ca
the original query into multiple queries, one for each identified cluster, and then proceed with
mal relevance feedback.[Salton, ATP, 1989]

Other re-weighting formulas can be effective. In general, term ordering formulas are poten
term re-weighting formulas. The BI probabilistic formula can be applied to relevance feed
data as described above in the section on probabilistic approaches. This formula can be u
both a term ordering formula to select good terms for query expansion, and as a formula f
weighting query terms after each query iteration. [Sparck Jones, JDoc, 1979] According to
man [SIGIR ‘92], the effectiveness of “query expansion using the probabilistic model seems
heavily dependent on the test collection being used … Collections with short documents …
erally perform poorly, probably because there are not enough terms to make expansion effe
Salton and Buckley [JASIS, 1990] note that probabilistic re-weighting does not make use of
useful information as the weights of terms assigned to retrieved documents. “Furthermore,
of relevant retrieved items [documents] is not used directly for query adjustment … Instea
term distribution in the relevant retrieved items [documents] is used indirectly to determi
probabilistic term weight.” They claim that probabilistic relevance feedback is less effective
vector, e.g., Rocchio, relevance feedback, perhaps for these reasons.
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Haines and Croft [SIGIR ‘93] usedrtf*idf to weight query expansion terms, wherertf is the fre-
quency, i.e., total number of occurrences, of the given term in relevant documents. Thertf*idf is
similar to Harman’s “noise*frequency”. Note that they could not have used either BI or Rocch
for re-weighting because they were running their queries against an inference network re
engine. For an inference network, “the weight associated with a query term is used to estima
probability that an information need is satisfied given that a document is represented b
term.” Hence, relevance feedback involves re-estimation ofthatprobability rather than estimation
of the probability that a document described by a given term is relevant to the given query
the BI formula). Moreover, non-relevant documents are not considered at all in their infer
network. [Haines and Croft, SIGIR ‘93] Instead, “relevance feedback using the inference ne
model adds new terms as parents of the query node … and re-estimates the relative weight
parents’ contributions to [a] weighted sum” representing the belief that the information
expressed by that query is satisfied by a given document.

Buckley et al. [TREC 5} have tried to improve re-weighting by applying relevance feedback
to the entire collection, but to documents in a vector sub-space around the query, called aquery
zone. This is a loose region around the query, such that documents in the region are not nec
ily relevant to the query, but are (it is hoped) related to the query, e.g., they may be abo
application domain to which the query belongs. For example, a document about computer
tors is not relevant to a query such as, “Which disk drive should I get for my Mac?” but query
document both belong to the domain of computer hardware, and hence may be in the same
zone. Use of query zone may improve re-weighting in two ways: First, a term like “compu
that is very common in the query zone, but much less common in the larger collection will be
stantially downweighted, reflecting the fact that the term is good for distinguishing the dom
but not good for distinguishing relevant from non-relevant documents within the domain. Se
a term may be common in the collection as a whole (hence, not good for distinguishin
domain), but very good for distinguishing the relevant from non-relevant documents within
domain. They offer the example oftire for the queryrecycling of tires. Such a term will have its
weight substantially increased by the query zone approach. Clearly, the choice of a good s
ity measure for inclusion in the zone is the key to success with this approach.

Buckley and Salton [SIGIR ‘94] point out that:

[t]he same relevance feedback techniques can be used in the routing environment,
in which a user may have a long-lived information need and is interested in any
new documents that match the need. In this case, the user’s query [initially
weighted by the training set] can be constantly updated by the system as it receives
relevance information about new documents seen by the user. Over the life of the
query, thousands of documents could conceivably be returned to the user for rele-
vance judgments.

In a document routing or classification environment, relevance feedback is often provided
(relatively large) “training set” or “learning set” of documents whose relevance or non-relev
has been judged before the actual routing begins. In a test and evaluation environment such
TREC conferences, it is common to break a document collection in half, with one half servi
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the “training set” and the other half serving as the “test set” on which the routing abilities
trained system (or an enhanced, refined query) are to be tested. The crucial point is that the
is trained (at least initially) on a different set of documents than the ones on which it wi
required to perform. Hence, there is a danger that the system will be so perfectly “overfitte
the training set that it will perform very poorly against the “real” documents. Buckley and Sa
[SIGIR ‘95] point to an extreme example of overfitting: an information need expressed as a
ean expression in which each known relevant document in the training set is represented
AND of all its index terms, and these ANDs are then ORed together. Such a query is guara
to retrieve all of the relevant documents in the training set, but it has been so specialized
will do very poorly against new, incoming documents.

Buckley and Salton [SIGIR ‘95] try to avoid the danger of overfitting by what they call Dynam
Feedback Optimization (DFO). They generate an initial feedback query by expanding the
query using theN best terms from the known relevant documents in the training set. (Their or
ing criterion for “best” terms is number of occurrences of the given term in the relevant d
ments, i.e.,rtf.) They weight the terms using the Rocchio approach. Then (this is where D
comes in) they refine the query weights by a process that doesnot involve adding any additional
terms. Instead, they run a series of passes on the existing set of query terms and weights. O
pass they try the effect of increasing each term weight by a factor which is fixed for each pa
may change (be reduced) from one pass to the next. They test each term weight increase
ning the query with just that change against the training set. At the end of a pass, they prese
term weight increases that improved performance against the training set as measured by a
recall-precision on the topX documents (200 in their experiments). Number of passes, percen
weight increase per pass, Rocchio coefficients (A, B, C) etc., are parameters that can be varie
Interestingly, Buckley and Salton note that the run in which the weights were increased mo
each pass produced the best “retrospective” performance on the training set, but the worst
mance on the test set, a classic example of overfitting! They conclude that limiting the w
increase on each pass is an essential element of DFO.

11.3 Expansion/Refinement of Boolean and Other Structured Queries

The previous section discussed the expansion and re-weighting of vector space, e.g., term
queries. Similar techniques, e.g., relevance feedback, can be used to expand and re-weigh
tured queries, e.g. boolean [Salton, ATP, 1989] [Salton, IP&M, 1988], and phrase-structured
ries. [Haines and Croft, SIGIR ‘93]

Salton expands a boolean query by extracting terms from retrieved documents judged rele
in the vector case. However, instead of merely ranking the terms as candidates for expansio
the vector case, he uses the term “postings”, i.e., the number of relevant documents indexed
given term (rdf), to estimate the number of relevant documents likely to be retrieved by var
boolean combinations, e.g., for three termsti, tj, andtk, the combinations (ti AND tj), (ti AND tk),
(tj AND tk), and (ti AND tj AND tk) are applicable. The combinations that are estimated to retr
the most additional relevant documents are then ORed to the original query. Obviously, the
ber of additional terms must be limited to prevent a combinatorial explosion of boolean A
terms. Also, it is clear that boolean expansions generated in this way do not reflect the full se
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Strict boolean expressions do not have weights. However, extended booleans do, e.g., thep-norm
model discussed earlier. The components of ap-norm extended boolean query can be weighted
assigning different values of the parameterp to different clauses. A higher value (Salton sugge
p = 2.5) can be assigned to more important clauses, “implying a stricter interpretation of the
ean operators;” less important clauses can be assigned a lowerp value, e.g.,p = 1.5, meaning that
their boolean operators will be interpreted more loosely (closer to a vector space interpreta

Haines and Croft [SIGIR ‘93] ran some relevance feedback tests on structured queries in
the structure consisted of phrase or proximity operators rather than the standard boolean
tors. In other words, the query was a term vector in which some of the terms were phrases
gle terms in proximity. The tests were run on an inference network search engine (see sec
inference networks). They used the classic query expansion and re-weighting technique
that the “terms” added were not single words but phrases or groups of words in proximi
phrase is a statistical or syntactic co-occurrence of words. The words in a phrase may but ne
satisfy a proximity relationship. [Croft et al., SIGIR ‘91] Croft et al. found that relevance fe
back improved the performance of such structured queries but not as much as for querie
posed of single words.

11.4 Re-Use of Queries

A lot of effort goes into refining, expanding, and optimizing a query using the methods desc
above, particularly the methods that require user relevance judgments. Yet once the opt
query is executed to the user’s satisfaction it is typically thrown away. (The one notable exce
to this is the routing or classification case where a query or topic specification is used on an
ing basis to identify relevant incoming documents and direct them to the appropriate user.)

Raghavan and Sever [SIGIR ‘95] suggest that these “past optimal queries” should be sav
Information Retrieval (IR) applications too. Their reasonable assumption is that user inform
needs will recur. They call queries that satisfy such recurrent needs “persistent” queries. The
pose storing optimal persistent queries in a query data base which they call a “query base;
persistent query in the query base would be associated with the documents that it had prev
retrieved. (Obviously, it would not be necessary to store the actual retrieved documents for a
persistent query in the query base, only logical pointers to these documents.)

Raghavan and Sever identify two ways in which this query base could be used in conjunction
a new user query: (1) “If there exists a persistent query with which [the] user query has suffi
similarity, then the retrieval output that is associated with the persistent query is presented
user.” (2) If there is no persistent query in the query base close enough to the user query to p
candidate output as in case 1, the system can find the persistent query that is closest to t
query, and use this persistent query as the starting point of a search through query space
optimal query via a “steepest descent” search method. Note: The search through queryspaceis
not a search through the querybase; if the optimal query for which we were searching wa
already in the query base, this would be case 1. The search method is described briefly be



Page 140

on’t
ain.

ture
ument;”
e same
com-

eldom
e that a

uch a
be

y, the
but a
. An

t
s when
imal”
ven

an be
e judg-

a nor-

axi-
d dis-
the set
d
ne)

ieved
es, the

sumes
ds. As

ments.
ection
What does it mean for two queries to exhibit “sufficient similarity?” Raghavan and Sever d
specify a similarity threshold; indeed, the threshold might depend on the application dom
However, they do make a valuable point: Most of the IR literature, especially the litera
devoted to vector space methods, assumes that a query can be viewed as “just another doc
in other words, queries and documents are viewed as occupying the same space, and th
similarity measures, e.g., cosine similarity, are applied whether two documents are being
pared or whether a document is being compared to a query. However, the IR literature s
addresses the issue of computing similarity between two queries. Raghavan and Sever argu
different kind of similarity measure is required for comparing queries, and they propose s
measure. Then, the threshold for “sufficient similarity” in a given application domain can
expressed in terms of their proposed similarity measure.

Their argument is based on another valuable idea: the concept of a “solution region”. Briefl
search for an optimal query to satisfy the user’s need will yield not a single optimal query
region of query space containing optimal queries. This region is called the “solution region”
important property of a solution regionS is that if two query vectorsQ andQ’ are both members
of S, thenkQ (k > 0) andQ+Q’ are members ofS too. On the other hand, cosine similarity is no
preserved by such a transformations. Hence, cosine similarity can lead to various anomalie
queries are compared with reference to a solution region. For example, two different “opt
queries will not be computed as exactly similar (identical) according to cosine similarity e
though they are both in the solution region. Moreover, given an “optimal” queryQopt0 in the solu-
tion region, and two queriesQ1 andQ2 outside the region, cosine similarity may say thatQ1 is
closer (more similar) toQopt0 thanQ2 even thoughQ2 is closer to the solution region thanQ1.
Their proposed query similarity measure overcomes these difficulties.

The essential idea is to compute a normalized “distance” between two queriesQ1 andQ2 based on
comparingnot the queries themselves but their respective retrieval sets. The retrieval sets c
compared either on the basis of their IR engine rankings, on the basis of the user’s relevanc
ments, or on the basis of some combination of the two measures. For example, they propose
malized distance measure based on ranking such that the distance betweenQ1 and Q2 will be
minimum (zero) if they produce identical rankings of common retrieved documents, and m
mum (one) if they are in complete disagreement in their rankings. They propose a normalize
tance measure based on relevance judgments such that distance will be minimum (zero) if
of documents judged relevant in the retrieval set forQ1 is identical to the set of documents judge
relevant in the retrieval set forQ2; the distance for the relevance measure will be maximum (o
if there is no document judged relevant that is common to the retrieval sets ofQ1 andQ2. In a
combined measure, IR engine rankings for documents retrieved byQ1 andQ2 are compared as
before, but only for document pairs such that the first is drawn from the set of relevant retr
documents, and the 2nd from the set of non-relevant retrieved documents. In all three cas
similarity of Q1 andQ2 is simply 1—distance.

How do they propose to search through query space for an optimal query? Their method as
that the user supplies more relevance information than is usual in relevance feedback metho
in other relevance feedback methods, the initial user query goes through a series of refine
As in other feedback methods, each refinement of the query is applied to the document coll
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to obtain a set of retrieved documents. And as in other feedback methods, the user provide
vance judgments for each successive retrieval set. However, the user supplies not just a jud
as to whether each document in the retrieval output is relevant or non-relevant, but pairwise
erences: given any pair of documentsD1 andD2 in the retrieval set, the user specifies eitherD1 >
D2 (meaningD1 is either preferable toD2 or equally good) orD2 > D1. If D1 > D2 andD2 is not>
D1, thenD1 > D2 (D1 is preferable toD2). Transitivity is assumed to hold, i.e., ifD1 > D2 andD2
> D3, thenD1 > D3, so the number of preferences the user needs to specify does not explode
binatorially. (Also, note that this reduces to the conventional case if the user divides the ret
set into a relevant set and a non-relevant set such that each document in the relevant set is
ble to every document in the non-relevant set.) The query optimization process starts by ch
as the initial query, not the query specified by the user,Quser, but the query from the query bas
that has the maximum similarity toQuser. Call thisQ0. Then thekth iteration,k = 0, 1, 2, etc., con-
sists of looking for document pairsD1, D2 in the retrieval set forQk such thatD1 > D2 but the IR
retrieval engine ranksD2 above (more relevant toQk than)D1. For each such pair, the differenc
vectorD1—D2 is added toQk. (So, if a given termta has a higher weightwa1 in D1 than its weight
wa2 in D2, thenwa1—wa2 will be added to the weight ofta in Qk. Similarly, if for some other term
tb, wb1 < wb2, then the weight oftb in Qk will be reduced bywb2—wb1. In other words, the query
weights for the next iterationk+1 are moved in the direction of each “preferable” documentD1.)
This iterative process continues until it reaches aQn whose retrieval set is such that wheneverD1
> D2, D1 is ranked by the IR engine aboveD2. In other words, we have reached a query for whi
the user’s subjective relevance judgments agree with the IR engine’s rankings. ThisQn is consid-
ered the optimal queryQopt.

12 Fusion of Results

Considerable research has been devoted in IR to the problem of “fusion” of results. The
“fusion” has been applied in IR to two different problems: the fusion of results retrieved f
multiple collections, and the fusion of results retrieved from the same collection by mul
methods.

12.1 Fusion of Results from Multiple Collections

“The need to search multiple collections in distributed environments is becoming important a
sizes of individual collections grow and network information services proliferate.” [Callan, SIG
‘95] A given query may be submitted to multiple collections. A list of documents, typica
ranked, will be retrieved from each collection. The fusion problem is then how to merge t
ranked collections for presentation to the user. “[T]he goal … is to combine the retrieval re
from multiple, independent collections into a single result such that the effectiveness of the
bination approximates the effectiveness of searching the entire set of documents as a sing
lection.” [Voorhees, SIGIR ‘95] Given that the user wants to see a total ofN documents, the
problem is to determine how many of those documents to obtain from each ofC collections,C1,
C2, …, CC.

Note that collections may have different specialties. Hence, the number of documents releva
given queryQ1 may vary widely from one collection to another. For this reason, it is gener
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unsatisfactory to merge documents by taking equal numbers (N/C) from each collection. Also
note that, in general, each collection may be indexed differently, and may be served by a dif
information server, using a different IR algorithm or combination of algorithms. Hence, even
same set of documents may be relevance-ranked differently with respect to the same queryQ1 by
two different information servers. We cannot, in general, assume that the similarities compu
the various information servers are comparable. Hence, in general, we cannot simply takeN
documents having the highest similarity scores relative toQ1.

Voorhees et al. propose two schemes for determining how many documentsDRi to retrieve from
the i-th collection such thatDR1 + DR2 + … + DRC = N. The schemes differ in how theDRi cut-
offs are to be computed. However, the merging of documents given that the cutoffs have
computed is the same in both cases. The merging scheme is to keep track of how many doc
remain to be merged from each collectionCi to satisfy its cutoff requirementDRi. Let DNi be the
number of documents not yet selected from collectionCi to reach its cutoff. (Initially,DNi = DRi.)
At each step, aC-faced die (C = the number of collections) is (conceptually) thrown. The die
biased in proportion to theDNi so that the probability of selecting the next document fromCi is
DNi/N. Whichever face of the die “comes up”, the next document in rank order from the co
sponding collection is selected and added to the growing merge stream. The biases of the f
the die are recomputed, the die is thrown again, and another selection made.

For example, suppose thatN = 10,C = 3, and the cutoffs areDR1 = 5,DR2 = 3,DR3 = 2. Then, the
merging would proceed as follows (whereDij  is the document of rankj retrieved from collection
i): The first document selected would be eitherD11 (with a probability of 1/2), orD21 (with a
probability of 3/10), orD31 (with a probability of 1/5). Assuming for concreteness thatD11 was
selected, the biases would be recomputed so that the next document selected would be eiD12
(with a probability of 4/9),D21 (with a probability of 1/3), orD31 (with a probability of 2/9). This
process would continue until ten documents had been selected. Note that the order of docu
from a given collectionCi in the merged retrieval set reflects the document rankings returned f
Ci, and the number of documents from each collection in the merged retrieval set equals its
value. SinceC2 has a cutoff of 3, the merged retrieval set will contain the three top ranking d
ments fromC2, i.e.,D21, D22, andD23 in that order, but their actual ranks in the merged list wi
be determined probabalistically by the throws of the die. It should also be noted that this m
method is completely independent of how the cutoff values are computed or estimated; it m
assumes that the user has obtained cutoff values for each collection in the set whose retrie
puts are to be fused. The cutoff values might even be obtained after retrieval from each of th
vidual collections has occurred. That might be necessary, for example, in a dynamic, distrib
environment where the collections to be accessed is not known in advance.

Now, how can the cutoff values be computed? Both methods proposed by Voorhees et
based on the existence of a static set of collections known in advance, a training set of querie
the corresponding training set of retrieved documents from each collection for each query
training set. Each document in the training retrieval set for a given training query is assum
have been judged relevant or non-relevant to the given query. (That, of course, is what mak
training set!) As with all methods dependent on a training set, the assumption is that the r
obtained with the training queries are predictive of the results that will be obtained with new
ries, i.e., that there will be training queries “similar enough” to the new queries with respect t
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given collections. The first method is called the “relevant document distribution” (RDD) met
Given a proposed queryQ1, thek most similar training queries (the “nearest neighbors” toQ1 in
query space) are computed using some similarity measure. (Voorhees uses cosine similarit
value ofk is a parameter of the method. The retrieval sets for thesek most similar queries are then
used to compute a “relevant document distribution” as follows: For each collectionCi, determine
the average number of relevant documents at rank one for thek nearest neighbor training queries
Then, determine the average number of relevant documents at ranks one plus two for thek
queries, etc. For example, suppose that there are three collections,C1, C2, andC3. Further assume
thatk = 3, i.e., there are three nearest neighbor training queries toQ1: QT1, QT2, andQT3. Then
our training data includes nine retrieval sets, e.g., the retrieval set forQT1 applied to collectionC2
is R12 The retrieval setsR12, R22, andR32 tell us how documents inC2 were ranked byQT1, QT2,
andQT3, respectively. If the rank one document inR12 is relevant, but the rank one documents
R22 andR32 respectively are non-relevant, then an “average” of 0.333 relevant documents
relevant document divided by three training queries) is retrieved fromC2 at rank one by the set of
nearest neighbor training queries. Similarly, if the rank two documents inR12 andR32 are relevant
but the rank two document inR22 is non-relevant, then after two documents have been retrie
from C2 by each of the three training queries, an average of one relevant document has
retrieved (three relevant documents divided by three training queries). We repeat this proce
ranks three toN, generating a cumulative average distribution of relevant documents by rank
RDD) for C2. Similar distributions are calculated forC1 andC3. By examining these distributions
one can determine the optimum cutoff value for each of the collectionsC1, C2, andC3. The essen-
tial point is that the optimum set of cutoffs for a set of collections depends not only on how m
relevant documents are retrieved in the topN documents for each collection. It also depends
how these relevant documents are ranked in each collection. For example, suppose that
average (across a set ofk training queries for the given queryQ1), three relevant documents ar
retrieved in the top ten for each of two collectionsC1 andC2. But suppose that the relevant docu
ments have higher rankings on average inC1 than inC2, e.g., ranks 1, 2, and 4 inC1 vs. ranks 3, 7
and 8 inC2. The RDD forC1 is {1, 2, 2, 3, 4, 4, 4, 4, 4, 4}; the RDD forC2 is {0, 0, 1, 1, 1, 1, 2,
3, 3, 3}. Then forN = 10 (the merged stream returned to the user will contain ten documents
optimum cutoffs are plainlyDR1 = 2, DR2 = 8 for which the RDD’s predict that the user wil
retrieve five (2 + 3) relevant documents.

The 2nd proposed method of computing cutoffs from a set of training queries is computatio
cheaper but does not take rankings into account.

For each collection, the set of training queries is clustered using the number of
documents retrieved in common between two queries as a similarity measure. The
assumption is that if two queries retrieve many documents in common, they are
about the same topic … The centroid of a query cluster is created by averaging the
vectors of the queries contained within the cluster. This centroid is the system’s
representation of the topic covered by that query cluster.

For each query cluster in the training set and each collection, a weight is assigned equal
average number of relevant documents retrieved by queries in the cluster from the given coll
among the firstL documents (whereL is a method parameter). Hence given a query cluster,
have a set of weights, one for each collection.
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Given a queryQ1, the query cluster method associatesQ1 with the cluster whose centroid vecto
is most similar toQ1 (presumably using cosine similarity or the like again). A cutoff is assigned
each collection as in the RDD method. As in RDD, the cutoffs must sum toN, but this time they
are proportional to the collection weights for the given cluster. Hence, the number of docum
DRi taken from a given collectionCi in response toQ1 is proportional to the average number o
relevant documents retrieved fromCi by training queries in the cluster that is most similar toQ1. It
is not at all dependent on how the documents retrieved fromCi by the training queries were
ranked (except that they must have been rankedL or better, of course).

Initial experiments using a subset of the TREC topics showed that the relevant document di
tion method performed better than the query clustering method, but at a cost in greater proc
time and larger data structures. Both methods performed less well than the ideal, i.e., the
that would have been obtained if all the documents were in a single collection. But the decre
quality was small enough that it appears that these fusion methods are feasible given the a
tions on which they are based: static collections, training queries, etc.

Note that regardless of the method used to compute the cutoffs,DRi, it is quite possible that some
of theDRi will be equal to zero, reflecting the fact that some collections may have few if any
uments relevant to the given query. This is especially likely if some of the collections are sp
ized to particular topics.

Also note, as pointed out by Voorhees et al., that these fusion methods make no allowance
possibility that the same relevant document may be retrieved from two or more collections, a
sibility that is particularly likely if two or more collections deal with the same specialized top

What if the collections are widely distributed and dynamic? Callan et al. [SIGIR ‘95] have
posed an alternative fusion approach, an extension to the inference network method, a prob
tic approach to IR (see preceding section) that has been applied in the INQUERY system
inference network approach has previously been applied to retrieval of documents in a colle
In the paper discussed here, it has been extended to apply to fusion of outputs from collecti
re-interpreting some of the basic statistical measures at the collection level. Hence, two lev
index are created: First, there is the traditional document level where documents are inde
the terms they contain, their frequencies within each document, and the distributions of
terms over the entire collection. Then, there is a new collection level of index where collec
are in effect treated as very large “virtual documents” indexed by terms in ways analogous
document level indexes. It would appear that the same kind of extension could be applied
method based on term indexing of documents. The inference network defined by this colle
level index is called a Collection Retrieval Inference Network, or CORI net for short.

For example, term frequency (tf) meaning “number of occurrences of a given term within a giv
document” is replaced by document frequency (df) meaning “the number of documents within
given collection containing occurrences of a given term.” Similarly, the number of documents
collection, D, is replaced by the number of collections to be accessed,C. The document fre-
quency, in turn, is replaced by collection frequency (cf) meaning “the number of collections (ou
of the totalC to be accessed) containing a given term.” And, inverse document frequencyidf),
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defined for a given term in a given collection as log(D/df), is replaced by inverse collection fre
quency (icf), defined for a given term in a given set of collections as log (C/cf). The idf is a mea-
sure of how few documents in a given collection use a given term, i.e., it is zero if the term is
by every document in the given collection and is maximized if only one document in the g
collection uses the term (which may indicate that it is a good descriptor of the topic with w
the given document deals). Similarly, theicf is a measure of how few collections (out of theC to
be accessed) use a given term. Note: Actually, Callan et al. use a slightly more complex fo
for icf:

In the usual application of inference networks to document retrieval from a single collection
presence of a given term in a given document may provide evidence to increase the prob
that the given document satisfies the user’s information need. In the extension to multiple c
tions, a given term may also provide evidence about the probability that a given collection
tains documents satisfying the user’s information need.

Hence, retrieval of documents for a given queryQ from a distributed collection of document
becomes a two-stage process: First the collection level index is used to rank the collection
tive to Q. Then, if the number of collections is large, document retrieval is applied only to
higher ranking collections, the ones most likely to contain documents relevant to Q. If the nu
of collections is small, all the collections (or all with score above some threshold) ma
accessed, but greater weight may be given to documents retrieved from higher ranking c
tions.

Oneveryimportant limitation of a collection level index should be noted here. In an ordinary d
ument level index, each term (and associated term frequency) is associated with the docum
which it occurs. Hence, if two termst1 andt2 appear in the index, one can determine whether th
co-occur in the same document(s). (However, if they co-occur in documentD1, one can’t tell
whether they occur in close proximity, unless term position within the document is retained i
index, which would greatly increase the index size, or the actual document itself is retrieve
examined.) If two termst1 andt2 appear in a collection level index, one can tell whether they
occur in the same collection, i.e., the same “virtual document,” but we can’t tell whether the
occur in the same document within that collection, let alone whether they occur in close prox
within a given document. This means that the problem of determining whether two co-occu
terms are semantically related, difficult enough when the terms are known to co-occur in a
document, becomes much more severe when the terms are only known to co-occur in a giv
lection, perhaps in entirely different documents. Methods of compensating for these limita
are discussed later.

The extension of the method from the document level to the collection level introduces a pro
relating to large collections analogous to the problem identified by Lee (discussed earlie
large documents. Lee pointed out that a large document is apt to deal with multiple topics.

icf

C 0.5+
cf

------------------log

C 1.0+( )log
-------------------------------=
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ously, this is even more likely with respect to a large collection! In the case of a large docum
Lee points out that “maximum normalization,” i.e., normalization of term weights for a given d
ument by maximum term frequency in the given document, is liable to drag down the weigh
terms relating to a relevant topic; specifically, if the highest frequency term in large documeDi
deals with sub-topicA, it will drag down the weights of terms inDi dealing with relevant sub-
topic B. Callan et al. point out the same difficulty for large collections. At the collection lev
maximum term frequency (tfmax) is replaced by maximum document frequency (dfmax), the num-
ber of documents containing the most frequent term in the given collection. (Here, “most freq
term” means the term that occurs in the most documents of any term in the collection.) Norm
ing document frequency (df) by dfmax for a large collection can produce a similar effect to th
noted by Lee for large documents. If the large collection contains a significant subset of
ments relevant to an information needQ1, maximum normalization may obscure the presence
this subset if other larger subsets deal with other topics, and particularly, if the most frequ
occurring term is associated with one of these other topics.

Callan et al. propose to deal with this maximum normalization problem for collections by us
different kind of normalization for df:, scaling bydf + K whereK is a large constant, rather tha
scaling bydfmax. They suggestK should be a function of the number of documents in the colle
tion. (They have tried a similar approach at the document level; in that case, the scaling facttf
+ K andK is a smaller constant, a function of document length.)

The CORI net approach allows the system to rank collections by the probability that they wil
isfy the user’s information need, just as the document level inference network allows the sys
rank documents within a given collection relative to the user’s information need. One virtu
this approach is that the same system can perform the ranking at both levels; indeed, the
algorithm can be applied to both the document level inference network and the collection
CORI net, since the indexes have the same structure and analogous semantics. Another v
that the collections, like the documents within a collection, receive scores, not just ranking
score for a given collection reflects the probability that it will contain documents that satisfy
user’s information need.

Once each collection has been searched, we must address the same problem as with the “
document distribution” and “query clustering” methods discussed above: how to merge the r
(and scored) outputs from each of the searched collections into a single merged, ranked ou
present to the user. Because the CORI net approach generates a score for each collection,
sible to compute a weight for each collection without using or requiring a query training set
the query clustering method. An example of a formula for calculating collection weights f
their CORI net is:

wherewi is the weight assigned to collectionCi, C is the number of collections searched,si, the
CORI net score of collectionCi, ands is the mean of all the collection scores. Bear in mind th

wi 1 C
si s–

s
-----------⋅+=
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these collection weights (and the scores from which they are derived) are relative to a give
query or information need. Given a different query, different weights would be computed fo
collections searched.

Once a weight has been computed for each collection, how should one use them to mer
retrieved (and ranked and scored) document outputs of these collections into a single stream
could clearly use the same approach as in the query clustering method: convert the weigh
proportional cutoffs summing to some desired totalN, and then merge the retrieval sets using t
merge algorithm described above. However, both the query clustering and relevant docume
tribution methods assume that the retrieval sets are ranked, but make no assumption ab
documents in each set being scored. The inference net approach produces a score for eac
ment as well as for each collection. If one can assume that the scores assigned to retrieve
ments from one collection are strictly comparable to the scores of documents retrieved
another collection, then one can of course merge the documents into a linear order by score
However, experience shows that even when the same method, e.g., the inference net meth
the same indexing, is applied to different collections, the scores for a given query may n
comparable due to large variations in the statistical properties of the collections. Hence, the
net approach to merging is to compute a global score for each document as the product
weight of the collection from which it was retrieved, and its “local” score within that collecti
Documents are then merged by ranking them according to these global scores. The effe
favor documents from highly weighted collections (equivalent to favoring documents from co
tions with high cutoffs in the cutoff-merge method); however, documents with very high sc
from lower weighted collections are also favored (equivalent to choosing a very highly ra
document from a collection with a low cutoff in the cutoff-merge method).

Why should it be the case that scores from documents retrieved from two different collection
not necessarily comparable even when the documents are represented and described in t
way in both collections, and the same retrieval algorithm is used to compute document score
ative to a given query) for both collections? Consider two collections, one containing legal
ions, the other containing papers relating to computers and computer science. Now cons
queryQ1 containing the word “tort.” Many documents in the legal collection will probably co
tain the word “tort.” The computer science collection may contain a few documents relating t
bility of software engineers in which the word “tort” appears. Ifidf is used in the term weighting
scheme, a document in the computer science collection dealing with liability will receive a m
higher score relative toQ1 than a comparable document (even the same document!) in the law
lection. Viewing each collection separately, this is quite appropriate; “tort” is a much more si
icant descriptor in the computer science collection because of its rarity, than it is in the
collection. But the scores cannot be compared directly whenQ1 is used to search the two collec
tions, and the resulting retrieval sets are to be merged. This problem can be remedied by co
ing normalized global statistics, e.g., a normalizedidf that reflects the number of documen
containing the term “tort” in the law and computer collections combined; this normalized idf
to be computed from the statistics of all the collections to be searched, it has to be com
before any of the searches are executed, and it has to be used by all the information ser
place of the local idf’s available to those servers. The effect in the computer-law example i
the scores of documents in the law collection forQ1 that contain “tort” become higher (because o
all the documents in the computer collection that don’t contain “tort”) and the scores of the
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documents in the computer collection that contain “tort” become lower (because of all the d
ments in the law collection thatdo contain “tort”). Now the scores are comparable; in effect, t
two collections are being treated as if they were one. However, this is an expensive proced
computation and communication, especially if the collections are widely distributed. Experim
indicate that ranking based on the product of collection weight and document score is ab
effective, and considerably cheaper.

The CORI net method of fusion (or any similar approach using term-based indexing on the c
tion level) is obviously better suited than the relevant document distribution or query clust
methods to a dynamic environment where the collections are widely distributed, the numbe
identity of the collections to be searched changes rapidly from one query to another, and th
tents of the individual collections themselves change rapidly as new documents are added.
because it does not require the existence of a query training set of documents which must
sarily have been prepared by applying some fixed set of training queries to a fixed set of c
tions. Adding additional collections to be searched does not require the major effort of upda
training set to include these new collections. It only requires that each collection be compa
indexedandthat global statistics for the set of collections to be searched, e.g.,icf, be updated. The
latter, of course may involve some significant run-time expense, but a lot less expense than
ing a training set. Rapid updating of individual collections requires (at least) periodic updatin
their indexes, and correspondingly, updating of global statistics likeicf when a set of collections is
searched. But again, this is less expensive than regular updating of a training set.

Xu and Callan [SIGIR ‘98] carry the CORI net research further, increasing the number of co
tions substantially (from 17 to 107), and improving the retrieval process. (They also, it app
abandon the acronym CORI net, which is a good idea since the essence of the reported re
does not depend on the use of an INQUERY inference network, and could be carried ou
some other effective IR engine.)

The first important (but not surprising) result they report is that the effectiveness of straigh
ward word-based retrieval is considerably poorer for 107 collections than for 17 collection
particular, average precision for a distributed set of collections becomes considerably worse
number of collections goes up, relative to the precision achieved when the same data is effe
treated as a single integrated, centralized database, e.g., with population wide statistics sucidf
computed and maintained for the entire set of collections rather than for each collection
rately. Note that going from 17 to 107 collections did not involve increasing the amount of d
The same TREC data was used in both cases. The number of collections was increased in
ter case by subdividing the same total set of documents more finely, into a much larger num
subsets. Rather, the important difference was that statistics were computed and maintain
separate index for each collection, as would be the case in a realistic situation, e.g., a large
collections on the Internet. Yet with 17 collections (17 indexes) and the CORI net appr
described above, average precision was almost as good as for a single, centralized collecti
a single centralized index. With 107 collections (107 indexes), the average precision declin
23% to 32.7%, depending on the cutoff (number of documents retrieved).

To compensate for the loss of precision resulting from distributing the index information over
separate indexes, they adopt two strategies: use of syntactically determined phrases as
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individual words as index terms, and query expansion using the Local Context Analysis (L
method described above in the section on query expansion. The value of the former is obvi
the common words “high,” “blood,” and “pressure” co-occur in a collection, they may occu
entirely different documents. However, if the phrase “blood pressure” occurs as an index ter
given collection, the likelihood that one or more documents in the collection actually deal wit
subject of “high blood pressure” is obviously much greater.

The value of query expansion by LCA arises from the fact that terms are added to the or
query that co-occur in actual documents. Such co-occurrence may be a significant indicat
the collection contains documents relevant to the topic of the original query. Especially impo
is the addition of “topic” words, i.e., words that by themselves are strong indicators of the
under discussion in any document in which they appear. For example, given the topic “high
pressure,” the expansion may generate words like “hypertension” and “cholesterol” whose
ence greatly increases the likelihood that a given collection contains documents about the d
topic, and greatly increases the likelihood that documents retrieved from the given collectio
actually be relevant to the given topic.

Note that, as explained earlier, LCA works by retrieving the best passages relative to the
query using a conventional IR engine, and then ranking candidate concepts for expansion
basis of co-occurrence in the retrieved passages with all the query terms. Hence, LCA re
document indexes at the passage level, i.e., the “documents” are passages (fixed length te
dows) within the documents. However, these passage-level indexes are maintained separa
each collection. The only global index is the collection-level index, which only contains term
tistics by “virtual document,” i.e., by collection. Hence, the global index can be quite small r
tive to the large set of collections being indexed. Xu and Callan point out that if docum
boundary information, i.e., which documents a given term is in, were maintained in the colle
level index, the index would be about as large as the set of collections being indexed!

In the reported experiments using TREC3 and TREC4 data, LCA proved quite effective.
average precision using the expanded queries was only slightly less (an average drop of onl
for TREC4) than querying the same data as a single centralized database. Use of phrase d
tors also improved performance substantially for distributed collections, but not as much as
The combination of LCA and phrase descriptors was best of all, but LCA alone accounte
most of the improvement.

Viles and French [SIGIR ‘95] deal with a closely related problem: How often must global st
tics be updated as individual collections receive new documents? The situation they cons
not quite the one we have been considering above: a set of independent collections at (pe
widely distributed sites. Instead, they consider a single collection (they call it an “archive”)
tributed over multiple sites. Each site has a different subset of the total set of documents in th
lection, and its own server which maintains indexes for its site and cooperates with serv
other sites. How does this differ from the case of multiple “independent” collections which
have been considering up to now? The primary difference is that each server maintains co
global statistics such asidf. In other words, all sites possess the same global value ofidf for a
given term, a value that applies to the total collection, i.e., the total of all the subsets from a
sites. This globalidf is essentially the normalized idf discussed above for the computer collec
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law collection example. A given site must maintain such a globalidf for every term used as an
index at the given site. Given that a new document is added to the subset at one of the sites,
the update should be disseminated immediately to all the other sites so that they can upd
their idf’s. This is quite expensive if there are many sites, they are widely distributed, and up
are frequent. Moreover, the addition of a single document at one site is not likely to have a
effect on all the globalidf’s (or on any of them). Nor is it essential that sites receive update in
mation in exactly the same order that the updates occurred. As Viles and French note, “The
of an IR system generally do not include serializability of updates on theidf.” The question Viles
and French pose and attempt to answer is this: How often must each site notify other sites
updates it has received so that retrieval performance is not significantly degraded? (They ca
than-immediate dissemination of updates “lazy dissemination.”)

To discuss this problem, Viles and French define a dissemination parameter,d, and an affinity
probability,a. The i-th site,si, knows about all its own documents, i.e., the documents physic
stored atsi. The site also “knows about” the firstd-th fraction of the documents stored at any oth
site, sj; here, “knows about” means that global statistics such asidf have been updated atsi to
reflect that fraction of the documents at any other site,sj. Hence,d varies continuously between 0
and 1. Whend = 0, no dissemination occurs. Whend = 1, each site has “complete” (statistica
knowledge about the documents at every other site. When 0 >d > 1, si’s global knowledge is
derived partly from its own physical holdings, and partly from disseminated knowledge of d
ments held elsewhere. Hence,d is a parameter for experimenting with the percentage of a si
holdings for which knowledge is disseminated to other sites. The affinity probability,a, is a tool
for experimenting with different strategies for allocating new documents among the sites. Wa
= 0, documents are randomly allocated among the sites. “Whena = 1, documents relevant to the
same query are co-located, mapping to the case where content has a large influence on do
location.” (The assumption that documents relevant to the same query are relevant to each
a simple scheme employed by Viles and French to experiment with content-based allocat
documents; it is not intended “as a recommendation for document clustering.”)

Viles and French experimented using SMART v11.0 software and four well-known documen
lections. Perhaps the most important result was that for all values ofa the greatest increase in IR
effectiveness occurred asd was increased from 0.0 (no dissemination) to 0.2. Fora = 0.0, (random
rather than content-based allocation of documents to sites), boostingd from 0.0 to 0.2 was suffi-
cient to achieve precision levels for all levels of recall that were “essentially indistinguish
from [a] central archive”. At high levels of affinity (a = 1.0) corresponding to content-based all
cation of documents, higher levels of dissemination were required to achieve precision equi
to that of a centralized archive. The required dissemination varied from 0.4 to 0.8 dependi
the document collection used for the experiment. However, even in these cases, the largest
the improvement occurred in going fromd = 0.0 tod = 0.2. “Successive jumps in disseminatio
past thed = 0.2 mark yield relatively lower effectiveness gains.” Hence, it appears that effec
IR can occur in a distributed archive, even when each site has considerably less than co
knowledge of the other sites. However, “[t]here appears to be some minimal sample of docu
that a site needs to know about to achieve search effectiveness comparable to a central arc
remains to be seen whether this sample is a fraction of the whole, or if some minimal numb
documents is needed.”
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12.2 Fusion of Results Obtained by Multiple Methods

A number of researchers have observed that different retrieval methods applied to the sam
lection to satisfy the same information need can result in retrieving quite different document
i.e., there was surprisingly little document overlap across sets, either in relevant docu
retrieved, or in non-relevant documents retrieved. [Belkin et al, SIGIR ‘93] [McGill et al., Syr
1979] Moreover, the performance of these different methods tended to be comparable, i.
proportion of relevant documents retrieved did not vary as much as one would have expecte
one method to another given the small amount of overlap in their respective retrieval sets. [K
et al., 1982] These plausible findings would lead one to expect that combining results of mu
methods would lead to improved retrieval, because more relevant documents would be re
(or would receive high rankings) from the combination of methods than from any one me
alone. Such a result would be plausible, because one would expect that different methods
have different strong points and weak points. This has been called the “skimming effect” [Vo
al., SIGIR ‘98] because the user is “skimming” the best documents retrieved by each meth

In contrast, Lee [SIGIR ‘97] and Vogt et al. [SIGIR ‘98] find (in more recent research) that dif
ent retrieval methods tend to retrieve thesamerelevant documents, butdifferentnon-relevant doc-
uments. This has been called the “chorus effect,” [Vogt et al., SIGIR ‘98] because it means th
more methods retrieve a document (in other words, the louder the “chorus” acclaiming the
ment), the more likely it is to be relevant.

The phrase “different retrieval methods” can mean quite different things:

1. Different users using the same query formalism, e.g., all the users formulate boolean que
response to the same information requirement, but each user formulates her query indepe
of the others. [Belkin et al, SIGIR ‘93] [Saracevic et al., JASIS, 1988] [McGill et al., Syr U, 19

2. The same or different users employing different query formalisms, e.g., natural languag
Boolean vs. Probabilistic, to satisfy the same information need. [Turtle et al., ACM Trans
1991] [Belkin et al, SIGIR ‘93]

3. The same or different users employing different vocabularies, e.g., controlled vs. free-te
satisfy the same information need.[McGill et al., Syr U, 1979]

4. Different document representations, e.g., title vs. abstract, or automatically generated
terms vs. manually assigned terms, or LSI vs. keywords. [Katzer et al., IT, R&D, 1982] [Turt
al., ACM Trans IS, 1991] [Foltz et al., CACM, 1992]

5. Different weights applied to the query terms and document terms within a single query r
sentation and a single document representation. [Lee, SIGIR ‘95]

6. Different retrieval (document classification, filtering, query-document similarity) strateg
e.g., vector space cosine similarity with query expansion vs. logistic regression, vs. neura
works vs. linear discriminant analysis (LDA), or linear and logistic regression vs. neural netw
vs. pattern recognition techniques. [Schutze et al., SIGIR ‘95] [Chen, CIKM ‘98]
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As noted above, some of this research has also indicated that combining retrieval or classifi
results from two or more methods (fusion of results) can produce better retrieval perform
than any one of the methods by itself. Typically, results are combined by applying each m
separately to a given document, and taking the sum (or equivalently, the mean) of the scores
et al., TREC-2] [Lee, SIGIR ‘95] [Hull et al., SIGIR ‘96] Note that there are two cases here: In
ad hoc query case, a query is executed against a given collection by each of several metho
several IR engines each employing a different method of computing document-query simi
In that case, each individual run returns a ranked list of documents, with each retrieved doc
in the ranked list assigned a similarity or probability score. Then, for each document retriev
at least one run, the scores assigned to the given document by each run are summed (or av
of course, if a given document is not retrieved at all by a given run, its score for that run is us
considered zero. On the other hand, in the routing (or filtering) case, a single stream of docu
is classified. Each document is classified by each of the classification methods. Each cla
assigns a score to the given document with respect to each query. The scores assigned to th
document for a given query are then summed (or averaged) as in the ad hoc case.

Variations on this simple combination scheme are possible. A weighted sum may be emplo
there is reason to believe that one method is more reliable than another. If the scores are pr
ities, it “may make more sense” to average logodds ratios. [Hull et al., SIGIR ‘96]. If it is des
to give particular favor to documents retrieved by multiple methods, even more favor than d
simple sum of the scores, then one can employ Fox and Shaw’s [TREC-2] CombMNZ func
defined as the sum of the similaritiestimesthe number of non-zero similarities. Lee’s [SIGIR ‘95
findings with this function are discussed below.

In some of the cases listed above, the “multiple methods” are multiple query formulations, r
than distinct IR engines or classifiers. In case one, multiple users employ the same form
Hence, multiple individual runs correspond to multiple users, each formulating a query usin
same formalism, in response to the same information need, and executing their queries aga
same collection via the same IR engine. Hence, the individual runs can be combined exa
above, but instead of trying to balance the strengths and weaknesses of different retrieval o
sification methods, we are trying to balance the strengths and weaknesses and background
ferent users. The second “multiple method” case also involves multiple queries applied t
same information need, but in this case each query (whether generated by the same or a d
user) employs a different formalism. So, once again, individual runs can be combined usin
above methods, but now it is the strengths and weaknesses of different formalisms (assum
users have comparable experience and ability, of course) that are being balanced. It should
noted that, using a system like INQUERY, it is possible to combine separately formulated qu
into one “super” query which is then executed normally by the INQUERY retrieval engine; in
situation (not discussed here), it is the queries (not the results) that are fused together, an
one output retrieval set is produced. [Belkin et al, SIGIR ‘93]

To complicate matters further, two distinct query formalismsmay indicate two distinct retrieval
methods, e.g., a term query may be treated as a term vector and evaluated by cosine sim
while a boolean query is presumably being executed by boolean logic evaluation. However,
query and a natural language query may both be evaluated as term vectors, i.e., in some ca
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terms are extracted from a natural language query exactly as from a document to form a ter
tor.

Why should fusion of results produce better performance, e.g., better precision for a given le
recall? Belkin et al. [SIGIR ‘93] suggest two general reasons: First (and most obvious), if the
relatively little overlap between the document sets retrieved by two methods, and the me
(taken separately) exhibit comparable performance, the implication is that each method
retrieves a different fraction of the relevant documents. Hence, merging the best docu
retrieved by each method should result in a set containing a higher percentage of relevant
ments than any single method alone. Presumably, each query formulation or term weig
method or retrieval strategy has its own strengths and weaknesses.

Second, if there is some non-zero probabilitypi that a methodmi will retrieve a relevant document
Drel, then the probability that at least one of several such distinct methods,mj, mk, andml, will
retrieveDrel is surely greater. Hence, a document retrieved by several different methods is
likely to be relevant than a document retrieved by one method alone. If a document is retriev
classified) as relevant to a given query by more than one method, i.e., more than one m
assigns it a score above a specified threshold, the probability that it will “make the cut” whe
outputs are combined is greater than if only one method retrieves the document. This prob
is greater still if the rank of a document is raised in proportion to the number of methods
retrieve it. Saracevic and Kantor [JASIS, 1988] didn’t actually return the intersection, but
found that “the odds of a document being judged relevant increased monotonically accord
the number of retrieved sets that it appeared in.” [Belkin et al., SIGIR ‘93]

It should be noted that all of the fusion results discussed in this section represent averages
set of queries. If one looks closely at the results for individual queries, one finds that some
ods work very well on some queries, other methods work very well on other queries. Hen
one knew in advance which method was best for each query, applying that method would pr
better results than fusion. But since, in the current state of the art, one generally does not
which method is best for a given query, fusion of the results of multiple methods represen
best compromise.

Let’s consider several of the above examples briefly. Lee [SIGIR ‘95] combines the resu
pairs of retrieval methods. All of the retrieval methods use the term-based vector space m
(with the SMART system as a testbed). Each method differs from the others in the weig
scheme used. A weighting scheme (see section on “Classification of Term Vector Weig
Schemes”) is characterized by two three-character codes, one three character code specif
weighting scheme applied to the documents in the target collection, the other the weig
scheme applied to the query. Lee argues theoretically and demonstrated experimentally th
ferent classes of weighting schemes may retrieve different types of documents - different s
document (both relevant and nonrelevant).” Specifically, weighting schemes that employ c
normalization of documents (he calls this classC) are better at retrieving single topic documen
of widely varying length. On the other hand, weighting schemes (called classM) that employ
maximum normalizationof documents, i.e., normalization of term frequency by maximum te
frequency within a given document, but that do not employ cosine normalization, are bet
retrieving those multi-topic documents in which only one of the topics is relevant to the g



Page 154

, it is
ollec-

i-
r short
e
orms
ieval
s

n
nts.”

rs, the
the

from

es.

d

ity. In
each

y these

rity
similar-
rate a

the
eight-
e for-

n,

l

query. Hence (as one would expect), combining the results of a classC run with the results of a
classM run produced significant improvement over the results of either run alone. However
evident that the extent of improvement (if any) is dependent on the characteristics of the c
tion and the query.

However, Lee defines a third class of weighting schemes,N, consisting of schemes that use ne
ther cosine nor maximum normalization. Such schemes tend to favor long documents ove
documents. Surprisingly, combining aC run with anN run also produced improvement. As Le
summarizes, “we can get significant improvements by combining two runs in which one perf
cosine normalization and the other does not if the two runs provide similar levels of retr
effectiveness.” Lee notes that “the combinations between classC and the other classes have les
common documents than those between classesM andN, which means that cosine normalizatio
is a more important factor than maximum normalization in retrieving different sets of docume

It should be noted that, as discussed above in the section on normalization of term vecto
pivoted unique normalization (Lnu) scheme developed by Singhal et al. appears to achieve
same kind of improvement with a single retrieval run that Lee achieves by fusion of output
multiple runs, each run using a different, older weighting scheme. In other words,Lnu appears to
achieve (and perhaps improve on) the combined benefits of several older weighting schem

Finally, Lee combined an extended boolean (p-norm) run with a vector run, and achieve
improvement both by combiningp-norm with aC class and by combiningp-norm with anM class
vector weighting scheme.

In all of the above cases, each individual run produces a list of documents ranked by similar
each combined run, the results of the participating individual runs are combined so that
retrieved document receives a combined similarity score, and the documents are ranked b
combined scores. In all cases, Lee chooses the top-rankingN documents (N = 200), i.e., the docu-
ments with the topN similarity scores. The problem is how to compute the combined simila
for a given document. The vector space runs generate document rankings based on cosine
ity values (similarity of each document to the given query). The extended boolean runs gene
similarity score based on thep-norm model. The range ofpossiblesimilarity values for cosine
similarity or p-norm is always zero to one. However, the range of actual similarity values for
same query applied to the same document collection will be different for each model and w
ing scheme. Hence, the similarity values must be normalized to make them comparable. Th
mula:

converts each similarity,old_sim, calculated for a given query in a given individual retrieval ru
to a value in the common range zero to one, i.e., the largest similarity value,maximum_sim, will
be mapped into one, the smallest similarity value,minimum_sim, will be mapped into zero, and al

Normalized_Similarity
old_sim minimum_sim–

maximum_sim minimum_sim–
--------------------------------------------------------------------------=
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intermediate similarity values will be mapped into values between zero and one. (Lee also
that if one knew in advance which retrieval runs were likely to perform better, it would m
sense to weight the similarity values of those runs more heavily; however, in general, for a
queries and arbitrary collections, one doesn’t have that kind of information.) Once all the sim
ity values have been calculated for the runs to be combined, the retrieval setscouldbe merged in
straightforward numeric order by (normalized) similarity value, and theN documents with the
highest similarity returned.

However, straightforward numeric merging by normalized similarity value has the drawback
it does not take into account the number of retrieval sets in which a given document occu
noted above, the more retrieval sets in which documentDi occurs, the more likely it is to be rele
vant to the given query. Hence, Lee, following Fox & Shaw [TREC-2, 1994], computes a c
bined similarity value for each document equal to the sum of its similarity values in each retr
set in which it occurs. (Naturally, the similarity of a given document is zero in a retrieval se
which it does not occur.) Documents are then ranked by these combined similarity values, a
top N selected as before. Note that ranking each document by the sum of its similarity valu
equivalent to ranking the given document by the mean of its similarity values.

Fox and Shaw [TREC-2, 1994] combined the results of extended boolean (p-norm) query runs
with the results of “natural language vector query” runs, i.e., vector queries obtained by extra
and stemming terms in the usual way from natural language topic statements. As noted
they merged the results of multiple retrieval runs for a given query by computing a combined
ilarity value for each document retrieved in at least one run. In addition to the sum (or eq
lently mean) of the similarity values (which they call “CombSUM”), they also tried two oth
methods of combining similarities: In their “CombANZ” method, they divide the CombSU
value by the number of retrieval runs in which the document received a non-zero similarity
effect is to compute a mean that ignores retrieval runs in which the given document i
retrieved. In their “CombMNZ” method, they multiply the CombSUM value by the number
non-zero similarities the given document received; the effect is to enhance the importan
retrieval of a given document by multiple runs.

Fox and Shaw ran five individual retrieval runs. Three of these runs usedp-norm extended bool-
ean queries, each with a different value ofp (1.0, 1.5, and 2.0). The other two runs used vec
queries. The vectors were generated from TREC-2 natural language topic descriptions. The
vector” run took its query terms from the Title, Description, Concepts, and Definitions sectio
the standard TREC-2 topic format. The “long vector” run took its query terms from all of th
sections plus the Narrative section as well. In contrast to Lee, who only combined pai
retrieval runs, Fox and Shaw combined all five of their individual retrieval runs as well as com
ing two or three individual runs. This led them to the following interesting observation: “W
combining all five runs produced an overall improvement in retrieval effectiveness over ea
the [individual] runs, the same does not always hold true when combining only two or three r
Thus, the effectiveness of combining runs can depend not only on the query and the colle
but also on how many runs are combined and which ones.

In later research, Lee [SIGIR ‘97] builds on the work of Fox and Shaw. He studies combina
of up to six individual retrieval runs, using results derived from TREC-3. In his own previ
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work [SIGIR ‘95], described above, he showed theoretically, and demonstrated experime
that two different term weighting schemes, appropriately chosen, could result in retrieving d
ent relevant documents from the same collections, even when the weights are applied to ter
tors in both cases, and cosine similarity is the method used to compute the individual q
document similarity in all cases. Improvement resulted in his experiments provided the two m
ods contrasted appropriately, and were equally effective. Even in that work, he also allowe
the effect of multiple runs retrieving the same document by using one of Fox and Shaw’s co
nation functions, CombSUM, to compute the combined similarity of a document that
retrieved by both runs. In the SIGIR’97 work, he finds that the improvement that results
combining multiple TREC runs derives primarily from the fact that the runs tend to retrieve
samerelevant documents (which pushes up the combined similarity of each document retr
by more than one run), butdifferentnon-relevant documents (which pushes down their combin
similarity scores). He went beyond Fox and shaw by (1) normalizing the similarities, using
SIGIR ‘95 formula given above, so that the similarity scores combined would be more com
ble, (2) by showing that CombMNZ (defined above), which emphasizes the importance of
retrieved by multiple runs, gives even better results than CombSUM, and (3) by computin
actual amount of overlap across individual runs, for relevant and non-relevant documents
computes the overlap on a scale running from zero (no overlap) to one (total overlap), usin
functions: and . He finds
values ofRoverlap in the range 0.75 to 0.82, values ofNoverlap in the range of 0.30 to 0.40. Plainly
the proportion of overlap among retrieved relevant documents is much higher than the prop
of retrieved non-relevant documents.

Turtle and Croft [ACM Trans IS, 1991] used the inference network approach (see section 7.3
combine Boolean and term-based (they call the latter “probabilistic”) queries for the same
mation need. Both query formulations were based on an initial natural language statement
problem. The queries were combined using a weighted sum. They found that the combin
produced better results (better precision at most recall levels) than either type of query for
tion by itself. However, they found that the improvement was due to the fact that the boo
query formulators used the boolean structure to capture information present in the natura
guage statement of the information need that was lacking in the term-based query. Henc
boolean query retrieved a subset of the documents retrieved by the term-based query. Add
boolean query to the term-based query produced not additional documents but a better ran
the documents retrieved by the term-based query, resulting in better precision at a given
level. They conjecture that if the boolean formulators had been asked to produce high-recal
ean queries, they would have added additional terms, and retrieved additional documen
retrieved by the term-based queries. It should be stressed that Turtle and Croft were com
two query formulations to produce a single query, and then running this single combined
against their retrieval engine. They werenot combining the retrieval sets returned by the two qu
ries run separately.

Belkin et al. [SIGIR ‘93] generated extended boolean queries which were executed usin
INQUERY system’s extended boolean operators which are similar to, but not identical to
operators of the P-norm model. They “recruited experienced on-line searchers to generate
statements for the same search topics.” The recruits were told to generate boolean querie
AND, OR, NOT, any degree of nesting desired, and operators (at the word level only) for

Roverlap Rcommon 2×( ) R1 R2+( )⁄= Noverlap Ncommon 2×( ) N1 N2+( )⁄=



Page 157

each
They
que-

d then in
al. did
used
g the
hey
ics.)

query
query

1 plus
within
bined
topic

antage
lud-
ion of
seline
ms.

uery
cases
own
ge the
wever,
olean
ained
y. By
e que-
ethods
x and

s are
n IR
users

o-
ser is

erests.
rofile.
ur IR

r pro-
cency, i.e., two terms next to each other, proximity, i.e., terms within a given distance of
other, and order, i.e., terms in proximity to each other and occurring in a specified order.
were not told the system (INQUERY) to which the queries were to be submitted or that the
ries were to be executed as extended booleans. The queries were executed separately, an
combination. However, in contrast to Lee, and Fox and Shaw, as described above, Belkin et
not combine the results (retrieval sets) of the individual query runs; instead, they
INQUERY’s ability to combine the queries themselves. The queries were combined usin
INQUERY “unweighted sum” operator. (Actually, the experiment was more complex. T
started with five query “groups”, each group consisting of a query for each of ten TREC-2 top
The queries were combined cumulatively, e.g., first a single query group, then two of the
groups (for the same set of search topics) combined, then three, then four, and then all five
groups for the given search topic combined. Results were reported for group 1, then group
group 2, etc. Unweighted sums were used to combine queries across groups. Combination
a group is not discussed. Then the combination of all five boolean queries was further com
with a natural language query based on the corresponding TREC-2 natural language
description. This natural language query provides a powerful baseline because it takes adv
of a “version of INQUERY [that] performs a sophisticated analysis of the TREC topics … inc
ing recognition of country names and automatic syntactic phrase generation …” Combinat
Boolean queries (translated into INQUERY) and the corresponding natural language ba
INQUERY queries (designated “INQC” by Belkin et al.) was done with various weighted su

The results obtained by Belkin et al. indicated that combining Boolean queries (actually q
groups - see above) improved performance. An interesting point they note is that in some
adding a group that performed poorly on its own to a group that performed well on its
resulted in better performance than the good group by itself. Hence, one cannot always jud
performance of a combination of methods solely by evaluating the methods separately. Ho
combining the Boolean queries with the INQC queries reduced performance when the bo
and the INQC queries were given equal weight. Significantly improved performance was obt
only when the INQC query was given a weight four times that of the combined boolean quer
contrast, Fox and Shaw obtained significant improvement (see above) when natural languag
ries were combined with extended boolean queries. However, as Fox and Shaw note, the m
of combination are not strictly comparable because Belkin et al. combine queries while Fo
Shaw combine output retrieval sets.

Foltz and Dumais [CACM, 1992] combine two vector space methods: key-word, i.e., term
words, and LSI, i.e., terms are LSI factors. Their application is a routing/filtering rather than a
application. The task they address is to assign abstracts of incoming technical reports to
based onuser profiles, anddocument profiles. A user profile is a list of words and phrases pr
vided by the user to characterize her technical interests. The document profile for a given u
the set of abstracts that the given user has previously rated as highly relevant to her int
Hence, the query or information need for a given user is the user’s profile or her document p
The document “collection” is the stream of incoming technical reports. Hence, there are fo
methods:

1. Vector space retrieval by calculating the similarity of an incoming abstract and a given use
file,
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2. Vector space retrieval by calculating the similarity of an incoming abstract to abstracts p
ously rated highly relevant by a given user,

3. Same as (1) but with similarity calculated in the reduced dimension LSI space.

4. Same as (2) but with similarity calculated in the reduced dimension LSI space.

Methods were combined by sending each user monthly the top seven abstracts selected by
the four methods. This meant that each user could receive up to 28 abstracts per month. Bu
a given abstract could be selected by more than one method, the users actually received a
age of 17 abstracts per month. Foltz and Dumais found that as the number of method
retrieved a given abstract increased, the “mean relevance rating” increased too. (Each us
asked to rate the abstracts she received each month for relevance on a scale from one for n
vant to seven for very relevant.) The rating went up from about three for an abstract select
one or more methods to five for an abstract selected by all four methods. But of course, the
ber of abstracts selected by all four methods was much less (about 5%) than the num
abstracts returned to all users. However, ratings also improved if one was more selective
given method, e.g., only selecting abstracts above a given similarity threshold. So the mean
for abstracts selected by all four methods was compared to the mean rating for the top
abstracts selected by each method separately. The mean rating for documents selected by
methods together still came out on top, though not by as much, e.g., a mean of 4.54 for ab
selected by a single method vs. 5.04 for abstracts selected by all four methods.

All of the above cases involve combination of IR algorithms or query formalisms, e.g., boo
and vector space, vector space with two different weightings, etc. However, if a training s
documents with relevance judgments is available (as is often the case in routing and fil
applications), one can make use of general methods of machine learning, methods not spe
IR. Each method can be trained to classify documents using the training set. The result is a
predictive models, one for each learning technique. These predictive models can be combin
as traditional IR methods are.

For example, Hull et al. {SIGIR ‘96] study the combination of four methods: Only the first, R
chio query expansion based on relevance feedback, derives from the IR field. The other th
general purpose “learning” methods, employed to generate a predictive model for documen
sification. They are: “Nearest Neighbors,” Linear Discriminant Analysis (LDA),” and a “Neu
Network” fitting a logistic model. Hull et al. study a filtering application. Hence, each predic
model must classify each incoming document as either relevant (accept the document), or n
evant (discard the document. Each of the four resulting models, given a document to classify
erates a probability-of-relevance score. Hull et al. try several approaches to combining the
for a given document. (1) Most simply, they compute a straight average of the scores. (2)
“given that they are working in a probabilistic domain,” they average the logodds ratios, and
reconvert this average back to a probability. (Given a score interpreted as a probability,p, the
logodds ratio is defined as log(p/(1-p)). See the section on the Probabilistic Approach.) They po
out that probabilities derived by straight averaging will tend to have much less variability
probabilities derived from averaging of logodds ratios, In particular, if one of the classifie
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very certain of the relevance (or non-relevance) of a given document, the probability derived
logodds ratio averaging will be very close to one (or zero). In general, this isnot the case with
straight probability averaging. Hence, logodds ratio averaging will reflect the certainty of an
vidual classifier more clearly and directly than straight probability averaging. Both straight pr
bility averaging and logodds ratio averaging were found to outperform the individual class
for ranking documents, but for a filtering application, where the important criterion is accu
calculation of relevance probability (or other similarity score) relative to a filtering threshold
neural network classifier outperformed both classifiers. (3) Hence, to improve calculation of
age probabilities, Hull et al. “renormalized the probability estimates via logistic regression u
the relevance judgments from the training set.” They found that “after normalization, the prob
ity estimates [were] much more accurate, scoring significantly better than the neural netw
except at very low thresholds.

All of the above examples of fusing different IR methods involve fusion of a small numbe
manually selected methods. Bartell et al. [SIGIR ‘94] have developed a method for automat
combining “experts,” i.e., modules executing different IR methods. The method involves a he
tic gradient-based search over the space of possible combinations and can be applied to
number of experts (although the two tests of the method discussed in their paper involv
experts and three experts respectively). The method is independent of how each expert pe
its IR task; the only requirement, satisfied by an increasing number of IR systems, is tha
experts must all returnrankedoutput, i.e., each system must return a numerical estimate of
degree of relevance of each retrieved document to the given query. A notable feature of this
method is that it optimizes thecombinedoutput of all the participating experts, rather than eva
ating the performance of each expert separately. This is significant in light of the finding of B
et al. (noted above) that one cannot always judge whether a given IR method will make a po
contribution to combined performance based solely on evaluating the given method separa

In the Bartell model, each experti returns a numeric estimateEi(Q, D) of the degree of relevance
of documentD to queryQ. They combine these estimates into a single overall estimate,Re(Q, D)
of the degree of relevance ofD to Q. In this paper, they use a linear combination of the estima
e.g., for three experts, they have:

Their goal is then to find values of the parametersΘi “so that the overall estimates result in th
best ranking of documents possible.” Optimization is based on a training set, i.e., a training
documents, a set of training queries, and a relevance judgment for every document retrieve
given training query. The relevance judgment is expressed as a preference relation, i.e., us
fersD1 to D2 for any pair of documents retrieved by a queryQ. (This is the same kind of prefer-
ence relation used by Rhagavan and Sever [SIGIR ‘95] as discussed above in regard to re

Re Q D,( ) Θ1 E1 Q D,( )• Θ2 E2 Q D,( )• Θ3 E3 Q D,( )•+ +=



Page 160

able,
t. “The
docu-

ever’s
pace.)

erfor-
rtain
actual
y the
and
were
tition,
for a
heir
y basis

e fea-
cision.
ure of
d was
they
ant
docu-
g the
his set
linear
ry) as

mputes
ted as
riable.

early is
ets of
.

hods,
e IR or
cuss
ng IR
taking
ple as
optimal queries.) If only the usual two-valued judgment, relevant or non-relevant, is avail
then the preference relation reduces to preferring the relevant to the non-relevant documen
goal of the optimization is to find parameter values such that the [combined] system ranks
mentD1 higher than documentD2 wheneverD1 is preferred by the user toD2.” A gradient-based
numerical optimization technique is used. (Note that this is very similar to Rhagavan and S
use of the preference relation in a “steepest descent” search for an optimum query in query s

Most of the examples above combined two or more document classifiers and studied the p
mance of the combination relative to that of the individual classifiers. Lee also identified ce
cases where combination would be effective, and factors contributing to the success of
experimental combinations. However, Vogt et al. [SIGIR ‘98] studied more comprehensivel
factors contributing to effective combination. They limited their study to linear combinations,
also limited themselves to combinations of two classifiers. The combinations they studied
derived from TREC5 ad hoc query data. Since there were 61entries in the ad hoc compe
Vogt et al. were able to form (61*6))/2 = 1830 pairs for each query. They studied 20 queries
grand total of 1830*20 = 36,600 “IR system (method) combinations.” Although they drew t
data from the ad hoc query competition, the fact that they combined systems on a per-quer
means that the results are more applicable to the routing application.

Their theoretical approach was to identify a set of method performance features. Some of th
tures were measures of the performance of an individual system (method), e.g., average pre
Others were pairwise measures. For example, Guttman’s Point Alienation (GPA) is a meas
how similar two document rankings are to each other. Another pairwise measure employe
the intersection, i.e., the number of documents retrieved by both methods. Following Lee,
also computedRoverlapandNoverlap (see above). The former measures the proportion of relev
documents retrieved by both systems; the latter measures the proportion of non-relevant
ments retrieved by both systems. They then performed a multiple linear regression, usin
actual TREC5 data as the training set, the method performance features computed from t
(for all system pairs and a given query) as the independent, i.e., predictor, variables of the
regression equation, and the average precision of the optimal combination (for the given que
the dependent variable of the equation, the variable to be predicted. The regression then co
coefficients for the predictor variables in this equation. These coefficients can be interpre
indicating how much each predictor contributes to the overall estimate of the dependent va

The results they obtained indicate that the best time to combine two systems (methods) lin
when (1) at least one system exhibits good performance, (2) both systems return similar s
relevant documents, and (3) both systems return dissimilar sets of non-relevant documents

12.3 Fusion of Results Obtained by Multiple Versions of the Same Method

In the previous section, we discussed techniques for combining multiple classification met
where the training set used to set the parameters of each method was the same, but th
machine learning algorithm was different for each classifier. In this section, we dis
approaches where the training set, the machine learning (ML) method, and the underlyi
method are the same, yet multiple classifiers are obtained. This is accomplished, e.g., by
multiple samples from the training set (“resampling”) with replacement and using each sam
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a new training set (“bagging”), or by weighting the training documents differently in each trainin
session (“boosting”). Note that since reweighting the training set is equivalent to changing
number of occurrences of each document in the training set, boosting can also be viewe
“resampling” method. A number of variants of these approaches are known, mostly derived
the machine learning community. Breiman [TR, 1996] characterizes this entire family as Pe
and Combine (P&C) methods, i.e.,perturb the training set a number of times to create a numb
of new training sets, generate a classifier for each training set created by perturbation, an
combinethese classifiers.

In bagging, [Breiman, ML, 1996] one selectsN documents at random from the training set “wit
replacement,” whereN is the size of the training set. The phrase “with replacement” means
after each document is taken, it is (in effect) put back, so that all the documents of the traini
are available the next time a document is selected. In other words, each document is take
the full, original training set. SinceN documents are selected, the “new” training set will b
exactly the same size as the original training set. However, since each of theN documents is cho-
sen at random from the original set, some documents may be chosen more than once, while
may not be chosen at all. Hence, the new training set will be different from the original. This
cedure can be repeated as many times as desired, to produce a set of training sets, each oN.
Each training set is chosen independently of the others, so that the order in which the trainin
are chosen, or used for training, is immaterial. Each training set is then used to train a clas
using the same IR or ML method. Hence, a set of classifiers (commonly called an “ensemble” in
this context) is generated. Each classifier is then executed against any new document, an
results are combined. A common method of combination is “voting,” i.e., if the classifiers h
been trained to determine whether a new documentd belongs to classC or not, the choice is “yes”
if more classifiers chooseC than choose “notC.” Another common method is to average the cla
sification scores produced by all the classifiers in the ensemble. (Of course,C may be relevance to
a given topicT. On the other hand, the classifiers may be trained to select among multiple cla
C1, C2, etc.)

Breiman [TR, 1996] argues that the main effect of bagging is to reduce classification error d
variance. This is the degree to which the classification estimate varies with the data the clas
is being asked to classify. [Witten et al., DM] [Opitz et al., 1999] [Friedman, DM&KD] In oth
words, it is a measure of how dependent the classifier is on the particular training set ch
which may be unrepresentative of the larger population the classifier may be requir
judge.(This overdependence on the training set is called “overfitting.”) Opitz et al. [1999] fol
ing Bauer and Kohavi [1999], argue that bagging also reducesbiaserror, theaveragedifference
between the output of the classifier and the output of the “target” function the classifier is tryi
learn.

Boosting, in contrast to bagging, generates aseriesof classifiers, ordered in the sense that ea
classifier is generated based on the performance of earlier classifiers in the series. [Opitz
1999] In a powerful version of boosting called Ada-Boosting [Schapire et al., 1998], each c
fier is trained on the same training set, using the same IR algorithm. However, the docume
the training set are weighted, and the weights assigned to the training set for generating cla
CLi are based on the performance of the previous classifierCLi-1. Specifically, after each classi
fier, CLi-1, is executed, the documents in the training set are reweighted so that the weights
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documents that it misclassified are increased, and the weights of the documents it classifie
rectly are decreased. This new weight vector and the associated training set are the input fo
ing CLi. Hence, it is hoped,CLi will be better at classifying the documents that were previou
misclassified. This process is repeated forT iterations, resulting inT classifiers,CL1 to CLT. (T is
chosen by an ad hoc rule.) A weightwi is assigned to each classifierCLi. The final “boosted” clas-
sifier for classifying new documents is a weightedvoteof theseT classifiers. That is, for a given
new documentd, each classifierCLi votes +1 if it classifiesd as relevant, -1 if it classifiesd as
non-relevant. The vote of each classifierCLi is multiplied by its weight,wi. TheseT weighted
votes are then summed. The classification ofd is relevant if the sum is positive, non-relevant if th
sum is negative. Note that if the weights are all equal (which they usually are not), this is eq
lent to classification by majority vote.

The underlying IR algorithm, which may be any simple algorithm chosen by the develop
called a “weak learner.” The goal of boosting is to combine a set of weak learners into a s
“strong learner.” (The terms “weak learner” and “strong learner” have technical definiti
[Breiman, TR, 1996]) The weak learner that Schapire et al. use is the presence or absen
term in a given document. If the term is present, the document is assumed to be relevan
belongs to the class for which the classifier is being developed. If the term is absent, the doc
is assumed to be non-relevant. The algorithm “learns” from the training set at stagei by choosing
the termt that minimizes the misclassification error,erri(t). The errorerri(t) is defined as the sum
of the weights of documents in the training set that either contain the termt but are non-relevant,
or do not containt but are relevant. Schapire et al. define a “term” to be either a single word,
bigram, i.e., two consecutive words. Actually, the learner doesn’t always choose thet that mini-
mizeserri(t). Rather, it chooses the optimum termt=topt that minimizes eithererri(t) or 1-erri(t),
because a term with a veryhigh misclassification error is distinguishing relevant from non-re
vant documents just as well as a term with a very low error; it is just getting its classification
sions reversed, consistently calling relevant documents non-relevant, and non-relevant doc
relevant. (By contrast, a term with a misclassification error close to 1/2 is very poor at disting
ing relevant from non-relevant documents.) Hence, classifierCLi follows the simple rule that a
new document is relevant if it containstopt and non-relevant if it does not containtopt.

The document weights are maintained as a probability distribution over the training set, i.e
sum of the weights always equals one. (Hence, the misclassification error may be interprete
probability of misclassification.) So initially, each document in the training set is given a we
of 1/N whereN is the number of documents in the training set. Thereafter, each time the d
ments are reweighted, the weights are also normalized so that their sum remains equal to o
documents are reweighted at stagei, based on whether they were correctly classified or miscla
fied by thei-th classifier,CLi, which learned using thei-th set of weights. Each document that wa
correctly classified byCLi has its weight multiplied bye-ai, and each document that wasmisclas-
sified byCLi is multiplied byeai, whereai is defined as (1/2)ln((1-ei)/ei). The effect is that if the
error ei is minimized, the smaller it is the largerai is, and correspondingly, the more drastical
document weights are modified, the weights of correctly classified documents going down
the weights of misclassified documents going up. Hence, the next classifier generated,CLi+1, will
be tend to be better at classifying the documents that were misclassified byCLi. On the other
hand, if 1-ei is minimized,ei is maximized. Ifei is > 1/2, ai will be negative. The closerei is to
one, the more negative ai will be, and correspondingly, the more drastically document we
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will be modified in the opposite direction, weights of correctly classified documents going up
weights of misclassified documents going down. (In other words, if the term is present in a d
ment, its weight will go down if the document is, in fact, non-relevant.)

A explained above, afterT iterations, the resultingT classifiers,CL1 to CLT are combined by
weighted voting. Each classifierCLi is multiplied by a weight wi. This weightwi = ai as defined in
the previous paragraph. Since ai is a very large positive number for very low classification e
i.e., for very good classifiers, a very large negative number for classification errors close to
i.e., for classifiers that misclassify consistently, and close to zero for classifiers that don’t do
thing consistently, the effect is to weight classifiers by their effectiveness.

How many iterationsT, i.e., how many classifiers, does boosting require? Schapire et al. hav
theoretical basis for choosing the value ofT, so they use a simple empirical rule: Iterate until th
training error reaches a minimum (which may be zero). Call this number of iterations,T0. Then
run another 10%, i.e., run (1.1,)T0 iterations, generating (1.1,)T0 classifiers. Note that since eac
classifier distinguishes relevance from non-relevance on the basis of a single term, the ef
generating (1.1,)T0 classifiers is to create a final weighted vote classifier based on (1.1,)T0 terms,
(1.1,)T0 document features. In general, the harder the classification “problem,” i.e., the harde
to learn to recognize the target class, the greater T0 will be, and hence the greater the num
features in the final classifier.

The boosting scheme described above makes use of document weights, and (at the fina
classifier weights, but it does not make use of term weights, as most traditional IR algorithm
Schapire et al. say that they are studying ways of incorporating term weights into their boo
algorithm.

One easily remedied problem with boosting as described above is that it gives equal credit t
sifying relevant and non-relevant documents correctly. In practice, it is often more importa
recognize relevant documents. For example, if there are very few relevant documents, a “d
classifier that classifies every document as non-relevant will exhibit a very low classification
although it will certainly not be very useful! Hence, it is desirable to tell the boosting algori
that correct classification of relevant documents is more useful than correct classification o
relevant documents. Schapire et al. accomplish this very simply by modifying the initial dist
tion of weights. Specifically, instead of giving each document an initial weight of 1/N, each rele-
vant document is given a weight of (urel+-urel-)/Z0, and each non-relevant document is given
weight of (unrel--unrel+)/Z0, whereurel+ is the utility of classifying a relevant document correctl
andurel- is the utility (in this case, the harm) of misclassifying a relevant document. Simila
unrel- is the utility of correctly classifying a non-relevant document, andunrel+ is the utility (i.e.,
harm) of misclassifying a non-relevant document.Z0 is a normalization factor, set so that the su
of all the initial weights is one as usual. By adjusting these four initial weights, the relative u
of correctly classifying relevant and non-relevant documents can be set as desired.

Breiman [TR, 1996] characterizes the family of boosting algorithms, including Ada-Boosting
Adaptive Resampling and Combining orarcingalgorithms. It has already been observed that bo
boosting and bagging involveresampling(to provide multiple training sets from the original se
andcombiningof the classifiers generated from these multiple sets, e.g., by averaging or wei
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voting. The term “adaptive” refers to the fact that in boosting algorithms, each classifier le
from the performance of previous classifiers. Breiman hypothesized that the effectiveness
ing came from use of adaptive sampling, andnot from the particular reweighting function
employed. To demonstrate this, he experimented with other reweighting approaches. He
that a reweighting method which he dubbed arc-x4 worked as well as Ada-boosting (whic
dubbed arc-fs (in honor of the original developer, Freund and Schapire).

In arc-x4, the reweighting of a given documentdj at thei-th stage (to generate the weights th
will be used for training classifierCLi+1) depends on the number of timesdj has been misclassi-
fied byall the i classifiers generated up to that point. Specifically, the weight of documentdj (or
equivalently the probabilitypj that dj will be selected for the training set of classifierCLi+1) is
given by:

wheremj is the number of timesdj has been misclassified by all of the previousi classifiers, andN
is the number of documents in the training set. AfterT iterations, the resultingT classifiers are
combined byunweighted voting.

13. User Interaction

Users interact with IR engines in many ways. They formulate queries or routing requests.
review the results (if any) returned by the engines. They refine their original requests. They g
ate “profiles” reflecting their interests and preferences. They build training sets, and tra
engines to classify documents. They set parameters to guide the engines, e.g., retrieval thre
cluster sizes or numbers.

Much of this material is covered elsewhere in this report, e.g., relevance feedback for
refinement, high-speed clustering methods for interactive clustering, the variety of query cap
ties provided by Web IR and research engines, etc. But much of this discussion is conducte
the perspective of the IR engine, and its developer. Here, we will consider user interaction
the point of view of the user, and the researchers who are trying to make the user’s intera
more convenient and effective.

13.1 Displaying and Searching Retrieved Document Sets

Most IR engines return retrieved data in the form of a list of documents, ranked according to
ilarity to the topic or query for which they were retrieved, or the probability of relevance to
given topic/query. To make it easier for the user to scan this list, it is normally presented as
of document surrogates, i.e., each document is represented by its title, or a short summar
perhaps associated with its computed similarity or probability of relevance.

pj
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However, the number of retrieved documents may be very large, especially when the doc
collection is the huge number of pages comprising the Web, and all the databases to whic
pages act as gateways. Moreover, in many cases, the precision is low, due to the limitations
existing technology on which IR engines are based, and the inexperience of human users.
the relevant documents retrieved (if any) may be far down on the list returned to the user.
systems may give the user the ability to limit the number of documents returned, either by s
a similarity/probability threshold, or by specifying the maximum number of documents to
returned. However, limiting the number of documents returned won’t improve the precision;
precision is low, an arbitrary cutoff point may simply prevent the system from returning the
vant documents the user wants to see.

Another problem with a simple ranked list is that it gives few clues to which documents
closely related. These relationships depend, in general, on many attributes, e.g., many do
terms, as well as external attributes such as author, date of publication, etc. In other wo
ranked list only represents one dimension. The user would like to see documents posi
according to many dimensions. (Of course, this applies equally to the original collection ag
which the query was executed.)

An alternative is to organize the retrieved document set so that the user gets the “big pi
quickly and visually, and can zero in rapidly on the desired documents, regardless of ho
down the ranked list they are. The big picture also enables the user to see which docume
closely related.

Veerasamy et al. [SIGIR ‘96] [SIGIR ‘97] display the retrieval set as a matrix. The rows co
spond to key words from the query. The columns correspond to retrieved documents, orde
rank, i.e., the leftmost column corresponds to the highest ranking document, the 2nd colum
responds to the document in rank 2, etc. The elements of the matrix are small vertical ba
height of the bar for query word (row)i, and retrieved document (rank) j, is the weight of wordi in
document j. The effect is that “one gets an immediate idea of how the different query words
ence the document ranking.” One can see immediately which query terms are well-represe
high-ranking documents, and which are not. This may lead the user to modify the query by a
new words, dropping ineffective words, re-weighting query terms, etc. If two terms are clo
related to each other and to the intended topic in the user’s mind, but exhibit low and diss
distributions in the retrieval set, this becomes immediately obvious to the user; she may be a
improve retrieval and ranking, by modifying the query to specify the words as a phrase, or s
fying that they must satisfy a proximity condition. In this way, documents in which the key wo
co-occur in close proximity are favored, and receive higher ranking.

In their SIGIR ‘97 paper, Veerasamy et al. describe a carefully controlled experiment to me
the effectiveness of their retrieval set visualization technique. The nature of the experimen
the measures defined for interactive measurement are as interesting and significant as the
themselves. And the experimental results tell us as much about the human task of makin
vance judgments as about the value of the visualization tool. They used a portion of the T
data, and ten TREC information topics (queries). Veerasamy et al. used the INQUERY
engine as the common IR engine. They controlled for precision, on the assumption that the t
recognizing a relevant document is significantly different (and harder!) than the task of reco
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ing a non-relevant document. Hence, each user was given, for each topic, a high-precision
low precision document set. (The high precision set was the first 60 documents retriev
INQUERY. The low precision set consisted of the documents ranked 90 to 150 by INQUERY
control for the effect of the visualization display, the high precision set was further divided int
even-ranked set (ranks, 2, 4, etc.) of 30 documents, presented to the user with the visual
tool available, and an odd ranked set (ranks 1,3, etc.) of documents, presented to the user
the visualization tool. A similar division was made in the low precision set. For a given topic,
user was tasked to judge the relevance of the documents in each of four sets: high-precisio
rank, high-precision odd rank, low-precision even rank, and low-precision odd rank. They
told that they were testing the effectiveness of the visualization tool. They werenot told that all
four sets came from the same collection, andnot told that some were high precision, some lo
precision. Finally, they were given a monetary incentive to judge relevant accurately, and to
quickly; the users who ranked best in a score that measured both accuracy and speed in c
ing a task received a sum of money.

Veerasamy et al. defined several measures of human interactive effectiveness:Interactive preci-
sion is defined as the proportion of documents judged relevant by the user that were also j
relevant by the TREC judges.Interactive recallis defined as the ratio of documents judged re
vant by the user to documents judged relevant by the TREC judges.Accuracyis defined as the
number of correct relevance judgments minus the number of incorrect judgments. Corre
means agreement with the judgment of the TREC judges, both with regard to relevance an
relevance. Hence, in all cases the judgment of the TREC judges was treated as absolute
So, the difference between interactive precision and recall, and their more traditional counte
is that the interactive versions measure auser’s relevance judgments rather than an IR system
judgments.

The Veerasamy experiment showed that users can “identify document relevancemore accurately
with the visualization tool than without.” The effect of the visualization tool onaccuracyis about
the same for high precision and low precision document sets. The visualization tool also imp
the time required to judge relevance (about 20% improvement), but this effect is much more
nounced for low precision sets than for high precision sets. Finally, the experiment showe
the visualization tool produced a significant improvement ininteractive recall(and in the speed of
identifying relevant documents as well), but only a minimal improvement ininteractive precision.
However, users achieve a much higher absoluteaccuracyfor low precision document sets than fo
high precision document sets independently of whether they use the visualization tool, sh
that their ability “to identify non-relevant documents as non-relevant is much higher than
ability to identify relevant documents as relevant.” In other words, non-relevant document
easy to recognize, while it takes extra effort to identify a document as relevant. This effect is
stronger than the influence of the visualization tool.

Note by the way, the interplay ofinteractive recall, interactive precision, and accuracy. The
improvement ininteractive recallmeans that the visualization tool is helping users to correc
recognize a higher proportion of the actual relevant documents. The corresponding mi
improvement ininteractive precisionmeans that the improvement increase in relevant docume
identified is counterbalanced by a proportionate increase in non-relevant documents falsely
fied as relevant. Hence, the concurrent improvement inaccuracymust mean that the visualization
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tool substantially helps the users in correctly classifying documents as non-relevant, class
more non-relevant documents correctly as non-relevant, and fewer relevant documents inco
as non-relevant.

Hearst’sTileBar display paradigm [ACM SIGCHI, 1995] may be compared and contrasted w
the Veerasamy approach. In Hearst’s display, each row corresponds to a retrieved documen
document is represented as a series of adjacent non-overlapping segments calledtiles. The order
in which tiles are displayed in a row is the order in which they occur in a document. As expla
in the section on query-document similarity, tiles are multi-paragraph segments such that ea
is about some sub-topic of the document, and the boundary between successive tiles repre
change in topic, as measured by thetf*idf similarity measure. In the tilebar display, each tile
represented as a small rectangle. Its shading on a grey scale from white to black represe
sum of the frequencies of all the query terms, white representing the complete absence
query terms, and black representing a heavy concentration of the query terms. Hence, the u
see at a glance whether a given document is largely about the given query (much black throu
the row), whether it has passages relevant to the given topic (isolated black sections separ
much white), whether it has passages that may be about the given topic (grey sections), and
The user can see not only how much of the document is relevant, but also where the releva
sages are, e.g., at the beginning of the document, in the middle, etc. Similarly, the user can s
glance which of the set of documents displayed are most likely to contain relevant passage
be largely about the given query.

As a further refinement, the user can see the document set displayed relative to several
query terms. For example (the example is Hearst’s), the user may be interested in “com
aided medical diagnosis.” She may supply three sets of query terms, one set relating to me
and patients, a second related to tests and diagnoses, and a third related to computer softw
TileBarsdisplay for a given document will show three rectangles for each tile, arranged verti
one above another. The degrees of shading of the rectangles for a given tile immediately
how much the tile is about each of the sub-queries. If all three rectangles for a given tile are
or dark grey, there is a good chance that the corresponding passage is about all three of the
fied sub-topics. On the other hand, if the dark rectangles for one sub-topic are in complete
ferent tiles from the dark rectangles for another sub-topic, then the document is less likely
relevant to the user’s topic, although it might score high on a conventional document simi
ranking. For example, the document might discuss both software and medical diagnosis, b
references to software might have nothing to do with its application to medical diagnosis.

Note that the Hearst display, unlike the Veerasamy display, isnot a term-by-document matrix, or
even a tile-by-document matrix. Indeed, a tile “column” would be meaningless, since each
ment is composed of its own unique set of tiles. But documents, i.e. rows, can be compare
respect to the distribution and shading of their respective tiles. Moreover, the display of each
ument in Hearst’s display represents not merely term occurrence as with Veerasamy, bu
term co-occurrence within the document’s tiles.

Both Veerasamy and Hearst give the user a visual display of each of a set of individual
ments. The user can study the properties of an individual document, or compare documents
a set. By contrast, another way to give the user an overview of the retrieval set is tocluster the
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documents. Instead of seeing a (perhaps very long) list high-ranking documents, the user
modest number of documentsets, each set clustered by some measure of content similarity
one hopes corresponds to topic similarity. Each group is identified by key-words, phrases, o
labels, that (again, one hopes) tell the user what topic(s) each cluster is about.

Clustering a very large retrieval set retrieved from an even larger set such as the Web impos
tain requirements. First, pre-processing (which can serve to speed up clustering - see the
on clustering above) is impossible. The original collection, e.g., the internet, is far too large
dynamic) to pre-cluster. The retrieval set itself also cannot be pre-processed because its co
not known until the IR engine executes a user query. Second, the clustering must be fast; s
cally, it must not add substantially to the time required for retrieval by the IR engine, which
Web retrievals is typically a matter of seconds.If clustering adds minutes or hours, the addi
time would usually far outweigh the benefit of clustering. Third, the cluster labels should en
the user to pick out the best cluster(s) very rapidly. Finally, selecting the best cluster(s) s
substantially improve the precision of the user’s search, i.e., the effective precision if the
examines the documents in the best cluster(s) first, should be much better than if the user
searched down the ranked list returned by the IR engine.

STC clustering, described above in the section on clustering, has been developed with jus
requirements in mind. It is linear-time, not as good as the constant-time and almost-constan
methods described in the section on clustering, but probably as good as can be achieved
pre-processing. Moreover, it isincremental, which means that clustering can proceed while t
data is being retrieved and documents are being returned to the user. By the time the las
ment in the retrieval set arrives, the clustering can therefore be nearly done. (This assum
course, that the documents can be clustered as fast as they arrive at the user’s site, which 
the case, in the Web retrieval test reported by the STC developers, Zamir et al. [SIGIR ‘98
actual test with real users was conducted in the reported research, so it remains to be dete
how effective the cluster labels (strings of consecutive words shared by the documents in a
ter) prove to be identifying cluster topics and topic relevance to a real user. However, intuit
strings of words should prove more informative than individual key words, and could alway
supplemented with titles (where applicable) and statistically derived terms. In any case, the
study made use of the experience of other researchers, who did provide document clusters
hunan users. These experiences indicated that a user could select the “best” cluster first abo
of the time. Hence, the STC researchers calculated precision on the assumption that the u
able to rank the topic clusters by number of relevant documents. On this assumption, they
pared STC with several other linear time clustering methods, and one classicO(N2) method. STC
was the clear winner. However, it should be stressed that this was a comparison of cluster q
i.e., the best STC clusters contained more relevant documents than the best clusters prod
the other methods,nota comparison of the user ability to select the best clusters. It should als
noted that the queries employed by the researchers were generated by the researchers the
the queries were executed via real Web engines against the actual Web, and relevance jud
were assigned to the retrieved data by the researchers. Thus, the queries and test data we
very large standardized test set such as the TREC data so widely employed in IR research

13.2 Browsing a Document Collection
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The term “browsing” implies that the user starts searching the data without a clear-cut end g
mind, without clear-cut knowledge of what data is available, and very likely, without clear
knowledge of how the data is organized. She may have a rough goal in mind or perhaps no
all, or many possible goals. If she has a rough goal at all, it isn’t clearly defined enough to b
mulated as a query. She searches the data as fancy takes her, formulating and modifying g
she encounters data or categories of interest.

The browsing method depends, in the first place, on whether or not the collection to be bro
has been manually indexed, i.e., whether or not human indexers have assigned subject ca
to each document. A very popular example of manual indexing is the Web service, Yahoo
cussed below in the section on Web IR engines). However, much IR research has been dev
accessing collections that have not been manually indexed. Let us consider first some bro
techniques that can be applied to collections that are only indexed by IR engines.

The information spacebrowsing paradigm allows the user to visualize a vector space (such a
spaces discussed in an earlier section), and move around freely in that space (or what come
same thing, to manipulate the space itself). The human user is accustomed to moving arou
three-dimensional space in the real world. She is also accustomed to moving a cursor aro
the two-dimensional space of computer monitor screen, using a device such as a mouse. Ho
to apply the “movement in space” metaphor to IR browsing, several problems must be
mounted.

The most obvious difficulty is that the number of dimensions in a typical IR vector space is m
greater than two or three. Even with dimension reduction techniques such as LSI, the num
dimensions may be 50 to 200, far more than a human can readily visualize. Hence, a num
key dimensions, e.g., especially important query or document terms must be selected. If
than three dimensions are selected, the additional dimensions must be mapped into visual
teristics other than spatial coordinates. Each document is located in space by its spatial c
nates, and represented by a visual object, often called aglyphor icon. The additional dimensions
can be represented by such visual characteristics as color, shape, texture, degree of opac
[Ebert, CIKM’95] Note that while each of these characteristics can vary according to a li
scale, opacity can effectively act as a filter. That is, on an opacity scale, a glyph varies
opaque to transparent. But a transparent (or near transparent) object disappears from the
hence, it will be effectively filtered out.

Viewing a glyph-based information space, and browsing in such a space, is significantly enh
by the Stereoscopic Field Analyzer (SFA) [Ebert et al., IEEE Graph, 1997]. It is trivial to re
sent two spatial dimensions on a two-dimensional computer monitor screen. Three dime
can be represented by the use of perspective, and manipulated, e.g., rotated and transla
mouse control. SFA improves on these techniques in three ways. First, it provides a true 3-
reo effect, by rendering the information space twice, once for each eye, and viewing the
through Liquid Crystal Shutter Glasses. Second, the user is given a tracking control, equ
with buttons. By moving this control with her hand in actual physical space as she sits in fro
the monitor, and pressing the buttons to grip and release the information space, the us
manipulate the entire 3-D space, both rotating it in 3 dimensions so that the space may be
tively viewed from any direction, and translating it, i.e., moving the entire space up, down,
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right, away from the user, and toward the user (the latter two movements corresponding to
ing out and zooming in). Third, the user is given another hand control to be manipulated wit
other hand. This control can be used for finer manipulation, such as sweeping out a section
space for closer examination, or pointing at a particular glyph (which may represent a single
ument or a cluster of documents).

One inherent limitation of the SFA/Information Space approach is that only three dimension
be manipulated and browsed directly with the two manual controls. This is not merely a limit
of SFA. It is also a limitation of the human perceptual capability. We live and perceive in a th
dimensional world. However, SFA provides flexibility by permitting the user to specify which
the document attributes are to be mapped into each of the three spatial dimensions. The u
also specify what range of attribute values is to be mapped into the corresponding axis
information space display. This capability can be used for such purposes as filtering out un
esting ranges, e.g., a large cluster of documents near the origin of coordinates. Other att
can, of course, be mapped into other visual cues as noted above: color, shape, texture, etc
dimensions can not be manipulated with the 3-D tracker, but could be controlled separately
by graphical sliders.

A completely different approach to browsing, the “scatter/gather” method [Cutting et al., SI
‘92], is based on a different metaphor, that of alternating between consulting the table of co
of a book (to get an overview of what is available), and consulting its index (to find the pag
section dealing with a specific, narrow topic). The “table of contents” is generated (concept
by clustering the document collection. The labels or summaries that identify each cluster for
table of contents. The hope is that the documents that cluster together will be about a co
topic, and that the label will identify that topic (or topics) to the user. This is called the “sca
phase, because the documents, initially comprising a single collection, arescatteredinto multiple
clusters. Then, the user scans the cluster labels (the “table of contents”) and selects the clu
that interest her most. This selection process is the “gather” phase, because the user isgathering
the selected clusters together into one document collection, a subset of the original colle
Next, the system clusters (scatters) again, but this time the clustering is applied to the subs
lection. Hence, the clustering will be finer-grain, identifying sub-topics within (and perh
across) the topics selected by the user. Hence, a new finer-grain table of contents is pro
Once again, the user selects (gathers) clusters (topics) of particular interest. The user repe
scatter/gather process until she has narrowed her focus down to one or more specific top
which she wants to read or scan the actual documents. Or perhaps, summaries, or abstract
cluster labels themselves, at a fine level of detail, are sufficient to tell her what she wants to
At any stage in thisscatter/gathersequence, the user can employ an alternative focused se
strategy, e.g., a key-word or boolean query to select particular documents from a cluster rep
ing a topic of interest to the user. This corresponds to looking up a specific term or narrow to
an index, the second part of the metaphor of alternating table of contents overview and
lookup.

At any level of detail, the user can back up to a higher level, and select different topics to pu
initiating a new gather/scatter/gather sequence.
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Various techniques can be used to generate labels for a cluster. Cutting et al. use acluster digest.
The digest of a given clusterC consists of themmost central documents inC, and thew most cen-
tral words inC. The most central documents are those most similar to the cluster centroid (w
they call the clusterprofile). The highest weighted terms can be selected either from the clu
profile, or from the profile of its most central documents. The centroid (or profile) of the clust
the normalized sum of the term vectors describing the documents of which the cluster is
posed. Cosine similarity is used to compute the similarity of a document in the cluster to its
file. Term weight for a given term in a given document is computed as the square root of the
frequency.

Sincescatter/gatherrequires “on the fly” re-clustering (scattering) of clusters selected (gathe
interactively, a rapid clustering method and algorithm is essential. Cutting et al. usebuckshotand
fractionation, two linear time clustering methods described above, in the section on heuristic
tering. These algorithms are used to find cluster centers rapidly. Each document is assigned
closest center. Then, various refinement techniques are applied, e.g., once each docum
been assigned to a center, the centers can be re-computed, and then each document can o
be assigned to the closest center. This process can be repeated indefinitely. Other refin
include splitting clusters that fail some simple coherency criterion, and joining clusters that h
sufficient number oftopic (highly weighted) words in common. Finally, since even a linear tim
clustering method can be too slow for interactive clustering if the collection to be cluster
large, they use computationally expensive pre-processing, specifically the computation in ad
of a cluster hierarchy before runtime, to achieve constant-time clustering [Cutting et al., S
‘93] during an interactive scatter/gather session. This constant-time method is discussed
section on heuristic clustering above.

13.3 Interactive Directed Searching of a Collection

In contrast tobrowsing, “directed” searching means that the user has a specific information n
(This is the usual assumption of both ad hoc querying and routing.) “Interactive” directed se
ing means, of course, that instead of merely formulating and kicking off a single query and e
ining the results returned by the IR engine, the user engages in an interactive process, e
formulate the original query, or to refine the query on the basis of the initial results returned

Relevance feedback, discussed above in the sections on Query Expansion and Query Refi
is the classic method of improving a query interactively. Here, a variation of relevance feed
and the use of clustering for query refinement are discussed.

Aalbersberg [SIGIR ‘92] proposes a simplified form of interactive relevance feedback tha
calls “incremental relevance feedback.” Most IR systems that support relevance feedback p
the reformulation of the query automatically, concealing the mechanics and often the refo
lated query from the user. However, in conventional systems, each time the user execu
(original or reformulated) query, she sees a set ofN retrieved documents, typically 10 to 20, from
which she must select those she judges relevant. After she has judged theN documents for rele-
vance, she requests an automatic reformulation of the query, and execution of the reform
query. In Aalbersberg’s system, the user is not aware of her query being reformulated at a
user sees one document at a time. She designates that document as relevant or not. If it is r
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its title is added to a “Results” window of relevant documents. She then sees another docu
and again judges its relevance, and so on. After the user has viewed and judgedN documents, the
titles of that fractionNR that have been judged relevant are in theResultswindow. Hence, she has
the sense that she is merely judging a series of documents that the system believes may
vant to her original query (or the information need that query is intended to represent). How
in actual fact, the first document she sees is the highest ranking document in the list returne
executing the original query. Thereafter, each time the she judges the relevance of the c
“best” document, this judgment is immediately used to reformulate the current query. This r
mulated query is immediately executed, invisibly to the user. The next document submitted
user for relevance judgment is the highest ranking document returned for the reformulated 

Aalbersberg uses the Rocchio formula for query reformulation. However, this formula takes
very simple form in Aalbersberg’s system, since each stage involves modifying the query v
by either adding a single document vector (if the current document is judged relevant), or
tracting a single document vector (if the current document is judged non-relevant). In either
the document vector represents the single document the user has just judged, multiplied
appropriate constant (B or C) from the Rocchio formula.

Above, the use of clustering for browsing a document collection, the so-calledscatter/gather
method, was discussed. Earlier, in the section on clustering, the use of hierarchical clusterin
directed search was discussed. By drilling down through the hierarchy, the user can focus
small number of documents, in a cluster at the lowest level of the hierarchy, about the topi
concerns him. Roussinov et al. [SIGIR ‘99] suggest another interactive use of clustering: to
the user refine and reformulate his query.

The scheme is to submit a simple natural language query to a Web IR engine (Roussinov et
Alta Vista). Their system fetches the 200 highest ranking documents from the list returned b
IR engine. These documents are automatically clustered, using an unsupervised clusterin
nique. (Roussinov et al. use the self-organizing map technique. Another, possibly better tec
would be the STC clustering method discussed earlier in the section on Incremental Clus
The essential characteristics of the clustering method is that it must be unsupervised, and
must generate labels for each cluster that can aid the user in rapidly identifying the conten
given cluster. Speed is another important characteristic of a clustering method for on-line cl
ing of retrieved results. However, Roussinov et al. are only clustering the top 200 documen
they don’t need as fast a method as Zamir et al. who use STC to cluster a much larger re
set.) The system then displays for the user the cluster labels and “representative terms ass
with each cluster.” The user selects from this display those labels and terms that seem rele
his original query (or to the current information need the query was intended to express)
selected terms and labels may also suggest additional terms that belong in the query. He
these additional words or phrases. The system then uses the selected and typed terms and
create a set of new or reformulated queries, which it then submits to the IR engine. Multiple
tions of this process are supported.
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14. IR Standard - Z39.50

Z39.50 is a national (ANSI/NISO) standard for information retrieval. Its two primary functio
are search and retrieval. These functions are initiated by an entity called the Origin, which is
tained in an application called the Client, residing on the Client system. The Origin communi
with the Target, which is contained in an application called the Server, residing on the Serve
tem. The Server is the database provider. [ANSI/NISO Z39.50, 1995] “Unlike other Internet
tocols such as HTTP or WAIS, Z39.50 is a session-oriented protocol. That means t
connection to a Z39.50 server [from a Z39.50 client] is made and a persistent session is s
The connection with the server is not closed until the session is completed.” [LeVan, OCLC

Searching is the selection of database records, based on origin-
specified criteria, and the creation by the target of a result-set repre-
senting the selected records. Retrieval, idiomatically speaking, is
the transfer of result set records from the target to the origin [but see
below]. [ANSI/NISO Z39.50, 1995].

Z39.50 started life as a standard of the library community, specifying a protocol for “search
and retriev[ing] USMARC-formatted bibliographic records … However, the standard has gr
considerably … Today, there are organizations using Z39.50 to deliver full-text documents
on natural language queries.” [LeVan, OCLC]. Today, Z39.50 is evolving to meet the com
requirements of the IR community. To the extent that it satisfies these needs, and is support
wide variety of commercial and governmental IR providers, it will become (and appears o
way to becoming) the standard language for accessing IR engines. As such, it may play a
the IR community analogous to the role of SQL in the structured DBMS community.

In comparing Z39.50 to SQL, one essential caveat is in order. As the preceding sections
paper make abundantly clear, there is an uncertainty in Information Retrieval which is not pr
in retrieval from a DBMS. This is reflected in a basic difference between SQL and Z39.50.
SQL standard defines, at least in principle, the semantics as well as the syntax of the “blac
retrieval that is to be performed by a conforming DBMS in response to an SQL query. What
that mean? Suppose that the same data, i.e., the same tables (or “relations”), are loaded in
distinct DBMSs, implemented by three distinct DBMS vendors, but all conforming to the s
level or version of SQL. Suppose further that an SQL query is formulated against this data
data structure) and executed by each of the three DBMSs. Then as long as the query confo
the level of SQL supported by the three vendors, and doesn’t use any non-standard vend
cific features,exactly the same data should be returned by each DBMS. The internal details of
how the query is executed may vary considerably from one DBMS to another, depending o
its optimizer works, how the tables are indexed, and so on; correspondingly, the respons
may vary substantially from one DBMS to another. But exactly the same data should ultim
be returned.

Plainly, this is not (and cannot possibly be) the case with Z39.50 (and will be even less the c
Z39.50 evolves to support more powerful and diverse IR engines and queries). The behavio
engines varies far too widely. A term vector submitted to a term-based vector space IR engin
produce a different result than the same vector submitted to an LSI-based vector space e
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The result will be different again, if the IR engine is based on a probabilistic model, and will
from one probabilistic model to another. An extended boolean query will produce different re
depending on which boolean model it employs. (And different results than a strict boolean e
which must ignore clause weights!) Even two IR engines that use the same term-based
space approach may differ if they employ different index weighting schemes, employ diffe
stop lists, employ different query expansion schemes, employ different query/document sim
measures, etc.

So, it should be understood that what Z39.50 provides is a consistent way of talking to diver
engines. The results returned may vary widely depending on all of the factors mentioned a
and more.

14.1 Searching via Z39.50

The Z39.50 search process starts (as noted above) with the specification by the origin of
criteria. These criteria are specified by a Z39.50 query. The queries currently supported by Z
are called Type-1 and Type-101. The functionality of a Type-1 query is described briefly in
section. (Type-101 is functionally identical to Type-1. The only difference is that the definitio
Type-101 is independent of the version of Z39.50, i.e., it works with both Z39.50-1992
Z39.50, 1995, known as version 2 and version 3 respectively.) Z39.50 also supports some
query types with grammars that are severely limited in extensibility, are not widely used, an
not mandatory in the standard; these other query types should probably not be used and
discussed further here. [LeVan, 1995]

Z39.50 allows the sender to specify strict term-based boolean queries using the operators
OR, AND-NOT, and Prox. The latter is a proximity operator that tests whether two terms ar
are not) within a specified distance of each other, where the distance is measured in units a
possible choices for the unit include: Character, Word, Sentence, Paragraph, Section, C
Document, Element, Subelement, ElementType, Byte or privately defined unit. The order o
terms may be specified. [ANSI/NISO Z39.50, 1995]

Each operand of the boolean query may consist of a term and a list of attributes that quali
term. Attributes specify something about the semantics of the given term. The attributes are
from an “attribute set.” An attribute set specifies a “list of the types of things that can be sea
for.” [LeVan, OCLC] A number of attribute sets have been defined, and other sets can be d
in the future. A query can draw attributes from more than one set. The core attribute set, refl
the origins of Z39.50 in the library community, is called “bib-1.” The bib-1 attribute set has
types: Use, Relation, Position, Structure, Truncation, and Completeness. “The “Use” att
allows the client to specify how the term would have been used in the records to be retrieved
example, the term might be used as a Title, as (the name of an) Author, etc. At present (
1995 version of the standard), 99 values of Use are defined. Most of them are clearly rela
bibliographic reference, e.g., Dewey and other classification numbers, Date of Publication
Some have more general applicability, e.g., Personal Name, Corporate Name, Conference
Name Geographic, etc.
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The Structure attribute specifies the structure, e.g., WORD, PHRASE, DATE, NUME
STRING, FREE-FORM-TEXT, etc. The POSITION attribute specifies the position of the term
the structure, e.g., FIRST IN FIELD. (These attributes are actually represented in Z39.5
numeric codes.) [ANSI/NISO Z39.50, 1995]

The end result of the Z39.50 search process is “the creation by the target of a result-set rep
ing the selected records.” These result set records are then transferred by the target to the
during the retrieval process.

Note that Z39.50 Type-1 queries are always structured, term-based queries. Z39.50 does n
port unstructured queries, e.g., documents as queries. (But see the relevance feedback fe
the proposed Type 102 query discussed below.)

14.2 Retrieval via Z39.50

[T]he “transfer of a result set record” more accurately means: the
transfer of some subset of the information in a database record (rep-
resented by that result set entry) according to some specified format
[called a retrieval record].

Z39.50 retrieval supports the following basic capabilities:

* The origin may request specific logical information elements
from a record (via an element specification …).

* The origin and target may share a name space for tagging ele-
ments … so that elements will be properly identified …

* The origin may request an individual element according to a spe-
cific representation or format …

* The origin may specify how the elements, collectively, are to be
packaged into a retrieval record … [ANSI/NISO Z39.50, app. 14]

The structure of a retrieval record may be hierarchical, e.g., may include sub-fields, sub
fields, etc. “An origin might request, for example, ‘the fourth paragraph of section 3 of chap
of book1.’” Or the retrieved data might be more conventional structured data, e.g., a product
ability field may contain a “distributor” sub-field, which may, in turn, contain the sub-sub-fie
for the name, organization, address, and phone number of the distributor.

14.3 Type 102 Ranked List Query (RLQ) - A Proposed Extension to Z39.50

A number of IR features discussed extensively in this paper are notably lacking from the Z
query capability discussed above: extended boolean queries, weighting of terms or clauses
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ing of the retrieved results, relevance feedback, etc. These “ranked searching technologie
used by the majority of large-scale commercial information providers and information indu
software vendors. This includes 80-90% of the mainstream commercial ranked searching te
ogies …” The proposed type 102 Ranked List Query (RLQ) has been designed to meet
requirements. [Type 102, 1995] This query has been developed by the Z39.50 Impleme
Group (ZIG), which includes such organizations as Chemical Abstracts Service, Clearing
for Networked Information Discovery & Retrieval (CNIDR), Excalibur Technologies Cor
Knight-Ridder Information Services, LEXIS-NEXIS, National Institute of Health (Nation
Library of Medicine), and West Publishing Company.

A weight may be attached to each operand in a Type 102 query. A Type 102 query “is a r
sively defined structure of operators and weighted operands.” Since the query is recur
defined, a clause, e.g., an operator and its associated operands, can itself be an operand, a
can itself be weighted. The weight attached to an operand “specifies the value to be placed
operand with respect to its importance in selecting records from the designated collectio
[Type 102, 1995]

Type 102 supports operators that may take more than two operands (as required by some e
boolean models).

Type 102 supports extended, i.e., relevance ranked, boolean operators (called “relevancy-
operators in the type 102 spec). For example, instead of a strict boolean AND operator, ther
operator called “rqAND.” Each operator and its associated operands comprise a clause. A n
may be attached to each clause. These numbers determine the degree to which the clause
given a strict or extended boolean interpretation. Note that some servers may ignore these
bers. These numbers should not be confused with term weights.

Type 102 supports the retrieval of ranked output, i.e., each result record is associated
Retrieval Status Value (RSV) which is a measure of its degree of relevance to the given qu
Moreover, the type 102 query allows the user to limit the number of records retrieved, eith
specifying the number of records to be returned, e.g., the top-rankedN records, or by threshold
value, e.g., all records withRSVabove threshold valueRTHR. Note that the interpretation of the
RSVis server-dependent, e.g., it might be a cosine similarity in one system and a probabi
relevance in another. Also note that while the result set will normally be ordered byRSV, other
orderings, e.g., by date, can be requested.

A Type 102 query can be applied to one or more record collections. (The Type 102 spec us
term “record” instead of “document.”) The query can restrict the collections to which the g
query is to be applied, or specify particular collections to which it isnot to be applied. (The Type
102 spec uses the terms “collection” and “database,” apparently interchangeably.)

A Type 102 query can specify the degree to which recall is to be emphasized (at the possible
of loss of precision).

A Type 102 query may specify whether the original query may be reformulated, e.g., expa
by the retrieval engine. Moreover, the query may specify that only the reformulated query is
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returned. Alternatively, the query may specify that only the retrieved records are to be retu
Or, both the retrieved records and the reformulated query may be requested.

A Type 102 query allows the user to specify relevance feedback info, either within the ori
query or within a resubmission of a reformulated query. The feedback info takes the form of
of records with a relevance measure (in the range from -1 to +1) attached to each record.
that the negative numbers allow the user to specify the degree to which given records are u
able.

The Type 102 query can request the return of demographic data pertaining to the collection
queried, or to the result set, or to the retrieved record, etc. The collection-level metadata th
be returned includes: number of records, number of unique terms (either including or excl
stopwords), total number of term occurrences, total number of records in which each term o
and total number of occurrences of each query term in the collection.

Type 102 supports proximity as does Type 101. However, in Type 102, there is no boolean
imity operator. Instead, a proximity condition (called a “qualifier”) is attached to a boolean cl
to indicate that all operands within that clause (structured operand) must be satisfied with
same proximity unit.

15. A Brief Review of some IR Systems

This section is a brief review of some of the leading commercial and research IR engines
engines reviewed here are chosen to be representative, not exhaustive.

15.1 LEXIS/NEXIS

LEXIS/NEXIS is a commercial system for retrieving legal (LEXIS) or newspaper (NEXIS) do
ments.

LEXIS/NEXIS [qrel] supports traditional “strict” boolean queries, i.e., booleans that return e
matches only. Specifically, it supports queries formulated with the boolean operators (called
nectors” in LEXIS/NEXIS) OR, AND, and W/n. The latter is a proximity operator, e.g.,homeless
W/5 shelterspecifies thathomelessandsheltermust occur within five words of each other. It als
supports two “wild card” characters (called “universal” characters in LEXIS/NEXIS): The ch
acter ! specifies any suffix that can be added to the root word, e.g., “transport!finds transporta-
tion, transporting, transported, etc.” The character * specifies any single character. It “must
filled in if its in the middle of a word, but not if it’s at the end. (EXAMPLE:wom*nfindswoman,
women; transport** findstransport, transports, transported, but nottransportation, etc.)”

More recently, LEXIS/NEXIS has followed the trend toward natural language queries (c
“FREESTYLE™ search descriptions” in LEXIS/NEXIS); these queries do not require (or per
boolean connectors. This is, in essence, the vector space approach described earlier in thi
It “identifies significant terms and phrases from your search description, removes irrelevant
from your search description [e.g., applies stoplists, etc.], applies a formula that weighs the
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tical importance of the significant terms and phrases from your search description and com
them to the documents in the library and file(s) in which you are searching [e.g., weights th
nificant terms and computes the similarity of query to documents in the target collection] —
more uncommon or unique the word, the greater the statistical weight [e.g., usestf*idf weighting
or the like].”

LEXIS/NEXIS provides a number of ways of qualifying or enhancing a natural language qu
The user can tell LEXIS/NEXIS to treat two or more consecutive words as a phrase by brack
them with quotation marks. In addition, LEXIS/NEXIS itself will recognize certain word com
nations as phrases, and put quotation marks around these combinations automatically; t
can override this feature by editing out the quotation marks. The user can specify that c
words or phrases are mandatory, i.e., they must appear in any retrieved document. (Note th
a feature is meaningless in a strict boolean query, since the boolean operators themselve
mine whether a given term is mandatory, and under what conditions it is mandatory.) The us
specify “restrictions,” i.e., constraints (other than mandatory words) that must be satisfie
retrieved documents; for example, a legal document may be constrained by date or cour
legal user may invoke an online thesaurus of legal terms. “A list of the terms in your se
description for which synonyms [or alternative forms] are available will appear.” The user ha
option of displaying the synonyms and alternative forms for a given word, and adding any of
additional terms that she chooses. Hence, query expansion via thesaurus is manual, with t
saurus providing online guidance, but the user deciding which terms (if any) to add. Finally
user may specify how many documents to retrieve. (Again, note that this feature would be m
ingless for a strict boolean query, since a strict boolean determines a set of documents that
satisfy the query; there is no notion of degree of relevance in a strict boolean retrieval.)

LEXIS/NEXIS provides some result display options that are only available (indeed, only app
ble), to a natural language, i.e., vector space, query. For example, the user can display “th
heavily weighted block of text — the portion that most closely matches [her] search descrip
More interesting is the “WHY” option. This option “shows how your search was interpre
…,displaying the order in which your terms were ranked, the total number of retrieved docum
with each of your terms, … and the importance assigned to each term.” Note that this is c
related to the Z39.50/type 102 query features that allow you to look at the system expans
your query, and the demographics of its terms.

15.2 Dialog

DIALOG [QT] is a commercial system for retrieving documents from databases in such t
areas as: Business, Intellectual property/Law/Government, Medicine and Pharmaceuticals,
People, Sciences, Social Sciences & Reference, and Technologies.

The user selects a topic. Then she selects a database (or group of databases) within the to
search options vary with the database. For example, options for a newspaper database i
Subject (keyword), Title/Lead Paragraph, Author, Journal Name, Section/Subject Heading
Limit options.
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DIALOG supports a strict boolean query capability very similar to that of LEXIS/NEXIS, e
AND, OR, and w (proximity) operators. Like LEXIS/NEXIS, DIALOG supports a wild ca
character (?) that can only be used to specify any suffix to a common root, e.g., “smok?” wil
smoke, smoker, smokers, smoking, etc. There is no thesaurus; it is up to the user to think of
priate synonyms.

In “menu” mode, the user enters a term and any synonyms connected by “OR”. Then sh
modify the query by eitherbroadeningit, i.e., adding additional terms implicitly connected b
“OR”, or narrowing it, i.e., adding additional terms implicitly connected by “AND.”

In “command” mode, the user can generate nested boolean expressions. To make the exp
simpler to read and generate, the user generates terms, e.g., “smoking OR tobacco,” “heart
OR heart attack”. Each term is assigned an id by DIALOG, e.g., the first term may be assign
identifier “S1,” and the second term may be assigned the identifier “S2.” The user can then g
ate compound boolean expressions using these identifiers, e.g., “SELECT S1 AND S2.” DIA
will now assign an identifier, e.g., S3, to the compound expression “S1 AND S2.” At each s
DIALOG tells the user how many documents are retrieved, e.g., how many are retrieved b
term “smoking” by itself, how many are retrieved by “smok? OR tobacco,” how many
retrieved by “S1 and S2,” etc. In this way, the user can decide when he has limited his retriev
sufficiently. At all stages, retrieval involves a strict boolean match.

DIALOG allows the user to save a query. Thereafter, if the query matches a new documen
has been added to the given database, the user is alerted. The set of saved queries for a gi
is called an “alert profile.”

15.3 Dow Jones News/Retrieval

Dow Jones News Retrieval [Dow QR] is a commercial system that can search up to 1900
sources, e.g., newspapers, newsletters, news magazines, etc., general interest and specia
with the other commercial engines described here, it supports strict boolean queries with a
what broader set of operators, e.g., AND, OR, NOT, SAME, NEAR, etc. A query can be fu
restricted by specifying a date, categories and subjects, document sections, and specific s
e.g., specific publications. The system displays a set of available subject and category cod
all codes work in all publications. Similarly, not all document section types are available i
publications.

Retrieved documents can be sorted, highlighted, etc. One can retrieve a hit paragraph rath
an entire document. One can retrieve the headline and lead paragraph, or the full text of an

15.4 Topic

Topic [Topic Intro] is a commercial IR engine, marketed by Verity, Inc. In contrast to the th
commercial IR services described above, Topic is not an IR service maintaining indexed
ment collections, but a stand-alone IR tool that can be used by any purchaser to provide I
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vices. Verity also markets an application program interface to Topic, the Topic Developmen
(TDK). This allows Topic to be incorporated into application systems, and other vendor pro

Before a collection of documents can be searched by Topic, it must be loaded “into” Topic, a
cess that involves sophisticated indexing. In this respect, of course, it resembles most ot
search engines, whether commercial or research, as well as the information services de
above.

The basic text search condition or query in Topic is called a “topic” (formerly called a “conc
tree”). Topics are hierarchically structured. Each topic has a name which is the root of its “t
Below the root are any number of child sub-topics, also named. A sub-topic may itself hav
number of named sub-topics. Hence, there may be any number of levels of sub-topic. At th
est level (the leaves of the tree) are “evidence topics” which specify the actual words or ph
for which Topic is to search each document in a given Topic collection. For example, the t
ballet, drama, dance, opera, and symphonymay be evidence topics for a sub-topic namedper-
forming-arts. “[T]he sub-topicsperforming-arts, film, visual-arts, andvideo[may be] children of
the art topic. Theart [sub-]topic itself [may be] a child of theliberal-arts [sub-]topic.” Thelib-
eral-arts topic might be the root topic. Alternatively, “[t]heliberal-arts topic could in turn be a
child of successively higher parent topics within the [topic] structure.” [Topic Intro]

Topic performs relevance ranking as described below. When a topic is executed against a
collection, it is evaluated against each document, and the document is assigned a score
range 0.01 to 1.0. The higher the score, the better the document matches the topic (accor
Topic’s matching formula, of course). Documents are returned to the user in descending or
score.

An operator may be associated with each topic or sub-topic node. There are three classes o
ator. The evidence operators specify the string or set of strings for which each document is
searched. Hence, they only appear at the lowest level, i.e., below any of the other operato
example, “WORD” specifies a word, actually a string of up to 128 alphanumeric characters
usually an ordinary word or number, e.g., “microchip” or “80386.” The STEM operator spec
the usual stemming, e.g., to stem “transport” is to search for “transports,” “transported,” “tr
porting,” etc. (Note that stemming must be specified explicitly for each evidence word w
means that the user can avoid stemming of a given word if he wishes. In contrast, some
other systems discussed above and below performed stemming automatically.) The WILDC
operator allows specifying of search patterns. It uses a richer set of wild-card characters th
commercial services described above, perhaps because the creator of a topic is assume
more sophisticated than the typical user of those IR services. Wildcard characters may occu
where in a search pattern, not just at the end, and support single characters (?), zero or mo
acters (*), any one of a specified set of characters, any character in a range (e.g., [A-F]), et
NOT operator may be used to exclude documents that contain a specified word or phrase.

Above the evidence operators in precedence are the proximity operators: PARAGRAPH,
TENCE, PHRASE, NEAR and NEAR/N. Each of these operators specify two or more words
must satisfy the given proximity constraint. A proximity operator may be assigned to any
topic above the evidence level. PARAGRAPH and SENTENCE are self-explanatory. PHR
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specifies a string of consecutive words, e.g., “arts and crafts”. NEAR/N specifies that the spe
words must not be separated by more than N words. NEAR differs from NEAR/N in that “[d]o
ment scores are calculated based on the proportion of instances found in relation to the size
region containing the words … Thus, the document with the smallest region containing all s
terms always receives the highest score.” An ORDER operator can be used with SENTE
PARAGRAPH, and NEAR/N to specify that the search terms must occur in a specified orde

Above the proximity operators in precedence are the “concept” operators, which are the bo
operators: AND, OR, and ACCRUE. The AND operator is a strict boolean, i.e., it only se
documents that contain all its children (operands). In other words, it contributes a score of ze
each document that does not contain all its children. However, if all its childrenare present, the
score returned by AND is not simply 1.0 (as it would be for a conventional strict boolean) but
be the minimum of the scores of its children. OR is also a (kind of) strict boolean in the sens
it returns a score of zero only if all its children have scores of zero, e.g., if its children are w
and phrases, at least one must be present in the document if the OR is to contribute a no
score to that document’s total score. Moreover, the score it contributes to a given document
of its children are present doesnotdepend on how many of the children are present. However,
not 1.0 either; instead, it is the maximum score of any of its children. ACCRUE is a (kind
extended boolean OR, i.e., the more of its children are present in a document, the higher th
that it contributes to that document. However, the score it returns is the maximum of its child
scores (like an OR) plus a little extra for each child that is present.

A further degree of ranking can be specified by using the MANY operator in conjunction wit
evidence or proximity operator to rank “documents based on the density of the search term
use.” In other words, MANY normalizes term frequency by document length so that “a lo
document that contains more occurrences of a word may score lower than a shorter docume
contains fewer occurrences.”

Finally, the user may assign weights in the range of 0.01 to 1.0 to operators. Specifically
child of a logical operator (AND, OR, and ACCRUE) may be assigned a weight. Since a lo
operator may be a child of another logical operator, the logical operators themselves m
assigned weights. Similarly, evidence operators (WORD, STEM, etc.,) may be assigned a w
Proximity operators may not be assigned a weight. Weights determine the relative importa
search terms or higher level children. For example, the score for a given document contribu
a given AND operator is not merely the minimum score of any of its children but rather the p
uct of that score and the weight assigned to the child having that minimum score.

Finally, there are a number of operators that only apply to structured fields of a document
title, subject, author, etc. These operators do not rank documents but filter them, e.g., on
specify only documents by a given author or only documents whose titles contain a
sequence of words.
15.5 SMART

The SMART system [Salton & McGill,1983], developed at Cornell, is the “granddaddy” of
systems that (1) use fully automatic term indexing, (2) perform automatic hierarchical clust
of documents and calculation of cluster centroids, (3) perform query/document similarity cal
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tions and rank documents by degree of similarity to the query, (4) represent documents an
ries as weighted term vectors in a term-based vector space, (5) support automatic procedu
query enhancement based on relevance feedback. SMART has been widely used as a tes
research into, e.g., improved methods of weighting and relevance feedback, and as a base
comparison with other IR methods.

Note that extended boolean retrieval, i.e., thep-norm method, was developed in the SMAR
“shop”, although it does not appear to be formally incorporated into the SMART testbed.

All of the above topics have been discussed extensively above; the discussion need
repeated here.

15.6 INQUERY

INQUERY [Callan et al., DB&ExSysApp, 1992] is a probabilistic IR research system, develo
at the University of Massachusetts, and “designed for experiments with large [text] datab
INQUERY is based on the inference network model, which is discussed in an earlier secti
this paper. Here, a brief overview of the INQUERY system will be given.

[The inference net model] implemented in the INQUERY system
emphasizes retrieval based on combination of evidence. Different
text representations (such as words, phrases, paragraphs, or manu-
ally assigned keywords) and different versions of the query (such as
natural language and Boolean) can be combined in a consistent
probabilistic framework. [Callan et al., IP&M, 1995]

The INQUERY document parser analyzes the overall structure of the document, converts
canonical format, and identifies those sections to be indexed. Then, it performs lexical analy
extract words, fields, etc., “recognizes stop-words, stems the words, and indexes the wo
retrieval.” Stop-words are not indexed but they are retained in the text so that subsequent
analysis (syntactic analysis, feature recognition [see below]) may make use of them.” [Cal
al., IP&M, 1995] (See discussion above of Riloff’s work on the use of stop-words in sema
analysis.)

INQUERY feature recognizers (earlier called “concept recognizers”) “search text for words
correspond to simple semantic components,” e.g., numbers, dates, person names, company
country names, U.S. cities, etc. The set of feature recognizers is open-ended. The number
nizer maps multiple forms of a number, e.g., 1 million, or 1000000, or 1,000,000, into a com
canonical format. The company name recognizer “looks for strings of capitalized words tha
with one of the legal identifiers that often accompany company names (e.g., “Co,” “Inc,” “L
…).” [Callan et al., DB&ExSysApp, 1992] In addition to such heuristics, databases, e.g
known person or city names, are used.

“Queries can be made to INQUERY using either natural language, or a structured quer
guage.” Query pre-processing includes stop-phrase removal, stop-word removal, stemmin
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“conversion of hyphenated words and sequences of capitalized words into proximity constra
[Callan et al, IP&M, 1995] (The latter corresponds to the fact that, e.g., hyphenated word
indexed as separate words but with their textual positions retained.)

Queries are expanded using an INQUERY tool called PhraseFinder, which builds a datab
“pseudo-documents” based on a given collection of actual documents.

Each pseudo-document represents aconcept, in this case a noun
sequence, that occurs in the document collection. The “text” of the
pseudo-document consists of words that occur near the concept in
the document collection. For example, a PhraseFinder document for
a Wall Street Journalcollection contains anamnesty program
pseudo-document indexed by1986, act, control, immigrant, law …
A query is expanded by evaluating it against a PhraseFinder data-
base, selecting the top ranked concepts, weighting them and adding
them to the query. [Callan et al, IP&M, 1995]

Concepts are ranked by performing a conventional match between the given query and the
tion of pseudo-documents. The concepts associated with the highest ranking pseudo-doc
are added to the query. The assumption is that concepts, e.g., noun sequences, co-occurr
some of the same terms in both a query and a document context, e.g., a pseudo-document,
related semantically. Hence, if “amnesty program” co-occurs with “immigrant” and “law” in b
a query and a document, it probably refers to the same entity in both places. Evid
PhraseFinder performance is sensitive to how near to a concept a term must be to be inclu
its “pseudo-document.”

INQUERY 3.0 [INQ 3.0, ACSIOM, 1995] supports a number of structured operators. Opera
can be nested within operators. Each of these operators returns a belief value, e.g., a s
weight, or a proximity list that can be converted into a belief list. The beliefs returned by
clauses of a structured query contribute to the belief that the given document satisfies the in
tion need expressed by the total query in which these clauses occur. The primary boolean
tors, #and and #or, are extended booleans. (By convention, all the INQUERY operators sta
#.) For example, the interpretation of #and is that “[t]he more terms contained in the AND op
tor which are found in a document, the higher the belief value of that document.” Pla
extended booleans are more in tune than strict booleans with the probabilistic natu
INQUERY, since they return a degree of satisfaction of the boolean condition rather than a
or-nothing true or false. There are also some strict boolean operators: #band, and #bandno
latter is satisfied if the first term is in a given document and the second term is not.) There is
#not command which awards higher belief to a document that does not contain its operand

There are several proximity operators: The Unordered Window operator #uwN requires th
operand terms co-occur in the document in any order but within a window ofN words. The
Ordered Distance operator, #odN, is similar except that in addition to co-occurring within a
dow of N words, the terms must occur in the specified order within that window. The #ph
operator evaluates terms to determine if they occur together frequently in the collection. If th
[i.e., if the phrase occurs frequently in the collectionasa phrase], then they are required to occ
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in the specified order within a three word window, i.e., #phrase is evaluated as #od3. Othe
#phrase reduces to #sum (see below); the more operand terms a given document contains,
less of their proximity, the higher belief (rank) the document receives. The #passage oper
similar to #uwN except that instead of looking for anN-word window in which all the specified
terms occur, it looks for the “best” passage, i.e., theN-word window that most nearly satisfies th
specified operands; “the document is rated based on the score of its best passage.”

A synonym operator, #syn, allows the user to specify that its operands are to be treated as s
mous terms.

There are two sum operators: Sum (#sum) and Weighted Sum (#wsum). The former sum
beliefs of its operands. The latter takes a set of weight/operand pairs and computes the we
sum, i.e.,W1*T1 + W2*T2 +… +Wn*Tn. (One can also specify a scaling factor, an overall weig
for the entire weighted sum.) A weighted sum allows the user to say that some operands
terms, are more important than others, e.g., contribute more by their presence in a documen
belief that the document satisfies the information need expressed by the query. The belief
puted by these sum operators are normalized, e.g., the weighted sum is divided by the sum
specified weights.

Note that, in general, an operator such as a weighted sum can be attached to any node of th
ence network. If it is attached to a node of the query network, it is a component of the query
the operands are the parents of the given node, which may be lower level (more nested)
components, or term representation nodes for the document under consideration. If a given
ment is instantiated, each term is assigned a belief, e.,g., it may be atf*idf weight or a one (for
strict boolean evaluation). The evaluation of the query will then evaluate the specified wei
sum which will then sum the beliefs of each query term in the document, weighting them by
the belief in the term, and the weight assigned by the user to the given term in the query
result may be equivalent to a cosine similarity calculation, or a strict boolean evaluation,
extended boolean evaluation, or something more complex, depending on the operator and w
assigned to each node.

Table 3 below summarizes some of the important characteristics of the IR systems descri
this section, as determined by their documentation.
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Table 3: Characteristics of IR Systems

Lexis/
Nexis

Dialog Dow Jones Topic SMART INQUERY

Strict

Booleana
    Y     Y      Y      Y     N     Y

Extended

Booleanb
    N     N      N     Y     N     Y

Proximity
Operator

Y     Y     Y     Y     N     Y

Terms/

Keywordsc
    N     N     N      Y d     Y     Ye

Wild Card

Termsf
    Y     Y     N     Y     N     N

Stemming     N     N     N     Yg     Yh     Yi

Phrase     Y     Y     Y     Y     Y     Y

User-
assigned
Weights

    N     N     N     Y     Y     Y

NL Queryj     Y     N     N     N     Y     Y

Ranked

Outputk
    Y     N     N     Y     Y     Y

Probabilis-
tic

    N     N/A     N/A     N     N     Y

Document
ranking by
Similarity

   Y     N/A     N/A     Y     Y     Y

a. Exact Match (does not produce ranked output).
b. Does not require exact match (produces ranked output).
c. Roughly equivalent to a strict boolean with all terms connected by OR’s.
d. ACCRUE operator is roughly equivalent to a keyword vector but uses a similarity function different from

cosine similarity.
e. Unweighted sum operator (#sum) roughly equivalent to term vector
f. Wildcard terms can be used as an alternative to stemming, or in addition to stemming.
g. Stemming can be requested explicitly for any given word.
h. Automatic stemming
i. Automatic stemming
j. May be subject to semantic analysis, thesaurus expansion, or merely reduced to a term vector.
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16. Web-Based IR Systems

16.1 Web-Based Vs. Web-Accessible IR Systems

Commercial services such as DIALOG and LEXIS/NEXIS provide retrieval of documents
abstracts) from a repository owned by the company providing the service. The repository m
specialized by subject, e.g., LEXIS provides access to legal reference material such as j
opinions. The repository may, like NEXIS or Dow Jones News/Retrieval, provide access to
cles appearing in any of a specified set of publications. Or like DIALOG, it may provide acce
any of a broad but predetermined set of subject categories, and then within each categor
predetermined set of publications. In all of these cases, the service preselects the subject
ries, the publications, and the documents or articles from each publication to be made availa
the user. These services are available via the Internet, but the user of such a service is restr
the documents available in the repository maintained by the given service. In return for a fe
user receives the benefit of the of the editorial judgment of the service, i.e., in selecting app
ate publications, selecting appropriate documents from each publication, indexing docu
appropriately, etc. In this section, we consider a different class of retrieval services, those se
(usually free) that provide access, at least in principle, to everything publicly available on
Internet, more specifically, on that very large portion of the Internet known as the World W
Web (WWW), or more simply, the Web.

16.2 What a Web-Based IR Engine Must Do

Web retrieval engines do not maintain their own document repositories; the Web itself is
repository. They do build and maintain indexes to the Web. Since the Web is very large, ver
tributed, and grows and changes rapidly, one of the great challenges faced by these engin
generate and maintain indexes that are sufficiently exhaustive (ideally, that cover the entire
sufficiently up-to-date, and sufficiently accurate. Since these search engines are available
widely used by, anyone with internet access, from a casual “surfer” of the Web, to a lay
searching for information on a particular topic, to professional researchers and librarians,
general-purpose Web IR engines face a second great challenge: to provide interfaces
enough for the layman but powerful enough for the professional. Since they cater to any u
the Web (rather than a more specialized class such as lawyers, medical researchers or jou
and since the number and kind of topics, documents, and document collections on the Web
tually unlimited, they face a third great challenge: they must be able to retrieve documents o
topic whatever. The first of these challenges is unique to IR engines that search a very larg
either the Web, i.e., the Internet Web, or a large corporateintranet web. The second and third
challenges are exactly those addressed by most of the IR research described in this report

k. Ranked output may be produced by evaluating extended boolean, query/document similarity, or probab
ity that document satisfies query.
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16.3 Web Characteristics Relevant to IR

The Web consists of a very large and growing set of information units called “pages.” A
page is a computer file; it may be the same size as an ordinary book page, but it may also b
much larger, and may even contain many book pages. These Web pages are woven toge
(1) a common scheme for addressing pages, Universal Resource Locators (URLs), (2) a co
protocol, Hypertext Transfer Protocol (HTTP) that allows a web client program on the u
computer to request a page P1 by URL, and a web server on the computer where P1 is loc
respond to the request by sending a copy of P1 to the user’s computer, and (3) a common s
for specifying the structure of a page, Hypertext Markup Language (HTML). HTML is
“markup” language, which means that each component of a page, e.g., its title, its author, ab
figures, etc., is explicitly identified within the text of the page itself. A component is identif
and delimited by tags preceding and following the given component. (This tagging proce
called “markup.”) For the present discussion, only a few essential features of Web pages s
be noted.

First, the components that occur and are tagged within an HTML page may be URLs of
pages. Since a given page may contain many URLs of other pages, and since many pag
contain the URL of a common, popular page, the pages comprising the Web are linked toge
an elaborate structure of arbitrary complexity. This complexity explains the use of the
“Web.” But in fact, the structure of the Web is far more complex, far less orderly, than any a
spider web in nature.

Second, the presence in a given page,P1, of a URL pointing to a second page,P2, implies some
association between the two pages. But there are no general uniform rules, let alone enfor
mechanisms, for ensuring that there is some reasonable connection, e.g., by author or
between any two pages linked by URL. Virtually any individual or organization can crea
“home page,” a page expressing the interests or concerns of the given individual or organiz
Any author of a page can link her page to any other, e.g., an individual may choose to lin
page to other pages on diverse topics that she personally “likes.”P2may have been created by th
author ofP1, or by another individual working for the same organization, and may be on the s
computer asP1 (in which case they are said to be part of the same web site). But P2 may ju
easily be a page created by a completely different author, and be located on a computer loc
a different part of the world. A sentence inP1 containing a tagged URL toP2 may, but need not,
explain the reason for the reference. Even if such an explanation is present, it will probably
natural language, not readily interpretable by any search engine. The URL itself is a string o
consisting of a number of standardized components in a standardized order. The most co
URL format specifies the official registered internet name (variously called host name or s
name or domain name) of the computer that provides access to the page being addressed,
pathname (within the file structure of the given host) of the file where the page actually res
The host name is itself a string of component names, ideally chosen to identify and give
clue(s) to the organization maintaining the host, e.g., “www.microsoft.com” is a computer se
as a gateway to all the computers within the commercial organization “Microsoft,”
“www.cs.umbc.edu ” is a Web page for the Computer Science department of the Universit
Maryland at Baltimore County, an educational institution. Similarly, the file path name is a s
of directory and sub-directory names, ideally chosen to give some clues to the subject or au
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purpose of the given page, e.g., “galaxy/Arts-and-Humanities//Performing-Arts/Drama-and
ater.html” specifies a directory named “galaxy,” a sub-directory within “galaxy” named “A
and-Humanities,” a sub-directory within “Arts-and-Humanities” named “Performing-Arts,” an
file within the “Performing-Arts” directory named “Drama-and-Theater.html” containing URL
to numerous drama and theater resources. (Of course, to access this file, you need the othe
tial component of the URL, the host name, which happens to be “galaxy.einet.net.”) If t
names are well chosen, their components can serve as keywords for an IR engine (or a
searcher). But again, there are no universal standards or enforcement mechanisms to ens
the names of which a URL is composed are well-chosen or informative. In particular, these n
are not chosen from any kind of controlled vocabulary.

Third, although the Web does not enforce any uniform or consistent semantic structure, its
plexity makes possible the linking or grouping together of pages along multiple dimensions
a given page may be grouped with other pages by the same author (because the author’
page contains URLs to all his publications), and also grouped together by topic (because
devoted to the given topic contains the URLs of other pages devoted to the same topic). A
P1 may refer by URL to pageP2 becauseP2 deals with a topic mentioned or discussed inP1.
Simultaneously,P1 may contain a URL reference to pageP3 becauseP3 deals with a different
topic mentioned or discussed inP1. P3, in turn, may contain a URL reference toP4 which deals
with another related topic, or a special aspect, a sub-topic, of the main topic ofP3. In this way, the
URLs may specify a very elaborate network of citations by subject, author, etc. A user can
such a citation path exactly as she would in a traditional library, but much more quickly and
ily, e.g., by a succession of mouse clicks on highlighted URLs as they appear on her scree
the other hand, the citations in a given page are only as valuable as the judgment of the au
the page, who (in the decentralized, anarchic world of the Web) is not subject to review by p
sional publishers or reviewers.

Fourth, a URL may point to a file that isnot a Web page. This may mean that a Web server
available on the host, but the page is not in HTML format, and hence does not contain as
“metadata” as a document that has been properly “marked up.” In that case, the page c
retrieved by a client that supports HTTP (a Web “browser”), but it may require some addit
program to display the file, e.g., an ordinary text editor for an ASCII text file, an image viewe
a file in some standard image format, etc. Or, it may mean that the file cannot be retrieved v
HTTP protocol because its host does not contain a Web (HTTP) server. In that case, some
kind of server must be used to retrieve the given file. The two most common non-Web serve
FTP and Gopher. An immense number of files, both textual and binary files, are availabl
transfer free of charge to the local host of any Internet user via an FTP server. (FTP stands f
Transfer Protocol).Textual files may contain any conceivable kind of textual or numeric d
including documents on any conceivable subject and program source code for distribution. B
files may contain images, video, audio, executable programs, etc. The files at an FTP site m
arranged in a structure, typically hierarchical, that can be browsed by the Internet user. An
that the user encounters in her browsing that “looks” interesting (perhaps on the basis of its
name), can be retrieved using the FTP server andreally looked at. However, these FTP files ar
not Web pages, and hence willnotcontain URL links to files (whether Web pages or FTP files)
other sites. The only browsing that can be done at an FTP site is up or down the local hierar
FTP files.
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Gopher servers provide a hierarchy of menus. When the user selects an item from a given
e.g., with a mouse click, she gets either another menu or a data file. The data file may be
the types that can be accessed via FTP. However, the file selected by a menu selection ma
a different host than the one where the menu was located. Hence, Gopher supports a f
“hyperlink” equivalent to a URL link between Web pages. In fact, the Gopher servers, me
files, and links to files at other Gopher servers formed (and still form) an early form of hy
space, called gopherspace, still quite useful and widespread, although it has been supers
the hyperspace by the Web.

Finally, a Web page may be a gateway to a set of structured databases, textual databases,
services outside of the Web itself. In other words, once such a page is reached, further acce
database or service may involve servers other than web servers, and local links other than
Moreover, further access may depend upon payment of a fee, e.g., as in the case of the co
cial databases described above. For example, you can reach the DIALOG home page
charge. From there, you can jump freely to other pages that advertise the products and s
that the DIALOG company provides commercially. The user can log on to these services fr
DIALOG Web page. However, logging on requires a password and hence an account with
LOG; this, in turn, requires payment of a fee. Hence, DIALOG databases and services c
accessed from the Web, but it is a commercial service and its databases are not a part of t

An example of an intermediate form of commercial information source on the Web is the on
bookseller, “amazon.com.” From this company’s web site, the user can freely browse thro
very extensive book catalog, searching for books by title, author, or subject. When the user fi
book of interest, she may find not only the normal bibliographic data, but links to such addit
information as reviews by customers, an interview with the author, etc. The user only inc
charge when she orders a book.

By contrast, there is an extensive non-commercial on-line source of books (and magazines
nals, manuals, catalogs, etc.) called the Online Book Initiative (OBI), at the Gopher
“gopher.std.com.” This resource is wholly free, and volunteer-run. Its advantages and disa
tages follow from this fact. The primary advantage is that the Gopher menus will lead you n
bibliographic data but to the actual text of an item of interest (which can be as short as a poe
as long as a full-length novel). This text can be downloaded to the user’s own computer, and
read right on her monitor screen or printed for more convenient reading later and elsewhe
the other hand, the OBI is by necessity limited (except by accident) to material in the p
domain, which is, of course, still an immense resource. Moreover, the material is archiv
whatever format it is received from volunteer contributors, which means that it is in diverse
mats, e.g., plain ASCII text, compressed text, HTML documents, sets of files archived tog
with the tar utility and then compressed, etc. The selection, though extensive, is necessaril
hazard, dependent on what has been submitted by volunteer contributors who may have s
the text into electronic form on their own time, at their own expense. So, there is no ration
consistent basis for determining why this author or subject is represented, and that author o
ject is not. Finally, there is no extensive or consistent indexing. The top-level menu mixes tog
authors and subjects in simple alphabetical order.
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16.4 Web Search Engines

A good many free IR search engines are available on the Web. These engines allow a user
mit queries and retrieve a (usually ordered) list of Web pages that are (one hopes) relevant
query.

Virtually all IR engines, commercial, free, or the research engines described in most of this r
work by indexing the document collection(s) to which retrieval is to be applied. With a relati
small collection, it may be possible to generate the index terms for a given document, its de
tors, dynamically, as the collection is being searched. (In a routing application, where the
ments to be routed or classified or filtered are not available when the query is generated, t
no other choice.) But for a very large collection, indexing in advance is essential. For a huge
collections such as the information sources available through the Web, no other course is po
Hence, all of the prominent Web IR engines generate indexes; moreover, given the dy
nature of the Web, they must constantly be updating their indexes, as new web sites are c
new information sources are created at existing web sites, information sources are update
pages are created, updated, or deleted, etc.

There are two basic alternatives for creating an index:

(1) The index can be handcrafted by professional indexers as librarians have been doing fo
years. This has the obvious advantage that human judgment is employed in deciding what a
document or resource is “about,” i.e., what descriptors are appropriate for the given docu
Moreover the index can be orderly, arranged by topic in a systematic and hierarchical fashio
indexers can also exercise some editorial judgment with regard to what documents are
indexing. (This can be either an advantage or a disadvantage, depending on whether th
wants expert judgment interposed between herself and the Web.)

(2) The index can be generated automatically, e.g., using techniques such as those discu
this report. The big advantage of this approach is that it permits (relatively) more complete c
age. The Web is so immense and dynamic that it is virtually impossible for human indexers,
ing at human speeds, and taking time to exercise human judgment, to cover the Web comp

Both approaches are in use on the Web today.

Another issue is whether the resource to be indexed is the Web as a whole, or some more s
ized resource, available through the Web. If the resource is more specialized (and pe
intended primarily for use by professionals), manual indexing is both more practical (becau
resource though large, is still much smaller than the entire Web, and the topic area is lik
limited), and more worthwhile (because of the importance of the resource). An example of
specialized resource for a field of great importance (medicine) is MEDLINE, “one of the wo
largest biomedical databases with over 8,000,000 references to journal articles in all fie
medicine and related disciplines.” MEDLINE is produced by the National Library of Medici
Free advertiser-supported Web access is available through a commercial company. On th
hand, Lexis provides Web access (but not free access) to a major information resource in a
major discipline, law.



Page 191

es that

ust be
kind of
hyper-
his case
docu-
ributed
es by
re fre-
for tra-
p two,

pro-
em are
by a

t

e
e not
s is

hand-
Cool
e vari-
struc-
d [by

Web
” way
ucture
res-

anating
t get-
s that
over,
in the

all
The discussion that follows focuses on free, general-purpose Web IR engines, i.e., engin
attempt to index and access the entire Web.

16.4.1 Automated Indexing on the Web

There are two steps to automated indexing on the Web. First, the documents to be indexed m
found. Second, index terms must be generated for each document. Step two involves the
statistical and NLP techniques discussed earlier in this report. Step one is unique to a large
space such as the Web, gopherspace, or a large corporate intranet. The documents, in t
Web pages, are not conveniently aggregated into one or a few collections, relatively static (
ments added or deleted slowly), and stored at a few predefined sites. Instead, they are dist
over an immense and rapidly changing set of sites, linked together in complex structur
URLs. New web sites are frequently created, old sites are deleted or moved, new pages a
quently created, updated, or deleted at a given site. Hence algorithms must be developed
versing the web structure at frequent intervals to find currently existing pages, so that ste
indexing can be performed on these pages. To carry the “web” metaphor a bit farther, the
grams that execute these traversal algorithms are often called “spiders.” Other names for th
“robots,” “agents,” “crawlers,” “worms,” etc. (Note that whether the Web is being traversed
human user or by a robot, “traversal” from pageP1 to pageP2 doesnot mean that the human or
robot is physically moving from the site ofP1 to the site ofP2. Instead, it means that a web clien
or robot extracts the URL ofP2 from P1, issues a request forP2 using this URL, and receives a
copy ofP2 from the web server at the host computer whereP2 is located. Mobile agents capabl
of physically traveling from one network host to another actually do exist; however, they ar
normally employed for Web indexing.) A robot that explores the Web to accumulate URL
sometimes called a “discovery” robot.

A discovery robot begins its search with one or more popular known pages. These may be
selected by a human guide. Common starting points are Netscape’s What’s New or What’s
pages, because these pages are obviously not subject-specific, and normally point to a wid
ety of unrelated pages. Thereafter, the robot “automatically traverses the Web’s hypertext
ture by retrieving a document and recursively retrieving all documents that are reference
URL in the retrieved document].” However, in practice, the strategy is not quite so simple.

The Web structure is both complex and non-uniform. That is, different sites or regions of the
may be structured according to different organizing principles. Hence, there is no one “best
for a robot to traverse the Web. Moreover, some sites may have a “deep” structure, i.e., a str
with many levels of URL link. A site may also have many links to related pages, or pure dig
sions. Hence, a robot that attempts to traverse every path at a given site, or every path em
from a given site, may devote an inordinate amount of time to the given site, at the cost of no
ting around to many other sites. If the given site is organized around a given topic, this mean
the robot will be devoting too much time to one topic at the expense of many others. More
the site may have been created by an individual or organization with extensive expertise
given topic, or by one eccentric individual with a quirky personal view of the topic. They are
the same to the Internet.
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Furthermore, the robot should not request too many pages from a given site in rapid succe
lest it overburden (and perhaps even crash) the web server. Besides, the computer at that s
have other work to perform. So a robot may issue requests only at carefully calculated inte
e.g., one request a minute, set a limit to the number of requests to a given site on one “vis
request only a sample of pages at one visit to the site. Remember that a robot will usua
returning many times to a given site to keep its index updated, so on each visit it will be ab
request some pages it didn’t request on its previous visit.

In general, the robot may employ either a breadth-first or a depth-first strategy. The former (a
at the broadest though perhaps shallowest coverage of the Web) means going only one lev
from a given page, before going back to the given page and looking for another link. The
(aimed at deeper coverage of individual topics) means going up to N levels deep. N may b
siderably greater than one, but some depth limit must be imposed for the practical reason
tioned above. In either case, when a new page is retrieved, the robot extracts all URLs in th
page and adds them to its growing URL database. Of course, by limiting N to a value no
much greater than one, by limiting the maximum number of retrievals from a given site, an
judicious sampling of a the URLs in a given page, the robot may employ a strategy interme
between pure breadth-first and pure depth-first.

Once the robot has explored all the links in a given page to whatever depth and proporti
strategy dictates, the next question is what page to explore next. In a breadth-first strate
robot will give preference to URLs that point to hosts the robot has not visited before, or ho
has not visited recently, e.g., hosts it has not visited on the current update pass, or the la
passes. Given a choice among many URLs on the same host, the breadth-first robot will c
the ones with the shortest pathnames. This is based on the theory, often justified for well-de
sites but by no means guaranteed, that the pages at a given site are organized in a tradition
ject-hierarchy. Hence, if two pathnames are of the same length, differing only at the name
last (lowest) sub-directory, they are assumed to point to pages differing in subject at that lev
the other hand, if two pathnames differ in length with the longer name being an extension (
sub-directories) of the shorter name, then the longer name is assumed to point to a page
with a sub-topic of the subject dealt with by the page to which the shorter name points. H
given the assumption that different hosts deal with different subjects, and the assumptio
pages at a given host are organized hierarchically by subject, a breadth-first strategy will
mize subject coverage. In any case, it will maximize web site coverage.

On the other hand, depth-first strategy can maximize coverage of “important” sites, by wha
criterion of importance is used to select the original pages. In particular, if the starting page
selected by subject, then the depth-first approach can maximize coverage of the selected s

An IR engine can speed up its rate of URL accumulation, and hence its coverage of the We
its ability to update its index frequently and stay up-to-date, by running multiple robots in par
each robot traversing a different part of the Web. The speed can be further increased by runn
robots on different computers. For example, “Open Text uses 14 64-bit servers ‘working in
dem’ to create and store its index.”
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A discovery robot need not save all the URLs it discovers. It may use characteristics of the
or of the page itself to determine that the page is not “worth” indexing, and hence choose t
card its URL. The criteria used to determine whether a page is worth indexing are general
documented. Some URLs will be discarded because the are “dead,” i.e., they point to pag
no longer exist.

Given the complex structure of the Web, in which many pages may point to the same po
page, a robot will often discover the same URL more than once. Hence, an important feat
building the URL database is sorting the URLs and removing duplicates. A further complic
is that, in many cases, the same page may be replicated at multiple sites, or at the same s
multiple URLs (aliases). Hence, it is not enough to eliminate duplicate URLs; it is becom
increasingly important to recognize two pages reached by different URLs as being iden
either because they are literally the same page reached via two different URLs, or becau
page is an identical copy of another. (The practice of copying popular pages is common.) To
matters still more difficult, one page may be a copy or near-copy of another, yet not an ide
copy. For example, copies may differ in format, e.g., one copy may be in HTML and another
in Postscript. Or one copy may be a slightly older version of another. Hence, algorithm
detecting near-duplicates have been developed. [Shivakumar et al., WebDB98] [Shivakuma
1995] These algorithms are generally based on computing “fingerprints” for documents, eit
the whole-document level, or at finer levels of granularity, e.g., paragraphs, lines of text, w
etc. Whatever the chosen level of granularity, documents are divided into “chunks” at that
Each chunk is replaced by some compact representation, its “fingerprint.” Documents, e.g
pages, are compared according to a similarity function based on the number of chunks they
Algorithms vary according to the level of chunk, the method of representing the chunks, an
similarity function. The lower the level of the chunks, the greater the ability to detect partial o
laps, but the greater the chance of detecting “false positives,” documents that are falsely sai
similar. Note that the chunk level, the similarity function, and the similarity threshold ab
which two documents are said to be similar, will vary with the user’s purpose. The threshol
discarding duplicate or near-duplicate Web pages may be quite different from the thresho
detecting possible plagiarism.

Once a database of URLs has been accumulated, the discovery robot (or another robot) ca
vest” the URLs, i.e., retrieve each page by URL and index it, using techniques such as thos
cussed elsewhere in this report. IR engines can vary, not only in the order in which they fin
save URLs, but also in how they order the URLs in their database, and hence the order in
they retrieve the pages to which these URLs point for harvesting. They can also vary in how
intertwine URL accumulation and harvesting. Since a URL database will contain both URL
pages that have never been visited and harvested, and pages that have already been har
least once but must be revisited to update their index entries, harvesters may also vary in the
ity they give to unvisited pages and the frequency with which they revisit pages. For exam
harvester may start with the oldest URL not yet visited (retrieved). It may retrieve and index
page, and then go back to its URL database to retrieve the next oldest unvisited URL. It ma
tinue in this way until there are no more unvisited pages, and then go on to revisit pages, s
with the page that has gone the longest time without a revisit. On the other hand, since the d
ery robot is continuing to update the URL database with new URLs, the harvester may ne
balance visiting “new” pages, with revisiting “old,” already visited, pages.
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Or (as a narrower, more focused strategy to fill in subject gaps in its index), the harvester ma
with a page judged relevant to a given topic (perhaps on the basis of its URL or its existing
entry), and accumulate and harvest all the pages linked to the given starting page. In this st
harvesting and accumulating new URLs are intertwined.

Since Web pages are HTML tagged, the harvester can use these tags as guides (an op
available to IR research engines such as those discussed elsewhere in this report, that ind
trary collections of text). For example, since URLs are always tagged, the harvester can ap
indexing techniques to the text of each URL that occursin a given page, to generate index term
for the given page. (Of course, it can also index the text of the URL thatpointsto the given page.)
It may generate index terms from other components of the page itself, e.g., a component
“title,” or a component labeled “description.” It may index the text of “hyperlinks” (also cal
simply “links”); a hyperlink is the highlighted or underlined text that a user sees, and on w
she clicks to invoke the underlying URL and retrieve the page to which the URL points. It
also generate index terms from the full text of each page; remember that a page may be a l
file. The harvester may also take HTML tags into account in weighting index terms, e.g., by
ing a higher weight to a key word in a component with the tag “title.”

Web IR engines vary considerably in what they index. For example, some engines do not
URLs, so that a query on a term that appears only in a page’s URL, but not in the page itsel
fail to retrieve the given page with such an engine. Other engines may index a “descriptio
“body” component, but limit themselves to some maximum number of words within the g
component. On the other hand, some IR engines, e.g., WebCrawler, AltaVista, Infoseek, d
text indexing of the pages they index. Some IR engines, e.g., AltaVista, index word positi
well as content, permitting support of proximity conditions in queries; others do not. Som
engines use HTML tags, either to determine what text to index, or to determine what weig
give to a given index term; other IR engines ignore HTML tags.

Robot-based Web IR engines also vary in what kind of pages they will index. The robot can
index pages it can reach, i.e., pages that have URLs that are referenced in Web pages. A
earlier, not all the pages to which URLs points are themselves Web pages, formatted in H
Some engines only index true HTML-formatted Web pages. Some will also index Gopher p
FTP pages, or simple text (ASCII) pages. However, even if a robot indexes Gopher or FTP p
it cannot automatically traverse a Gopher or FTP site. Hence, it will only index those Goph
FTP or simple ASCII pages that it can reach directly by URL.

Some primarily robotic Web IR engines, e.g., WebCrawler, Infoseek, Excite, also allow the a
of a Web page to submit its URL. Hence, these engines may index pages that their norma
searches would not have discovered, or would have discovered much later. However, such
submissions represents only a small part of the index of such an engine.

What algorithms do the robot-based Web IR engines use to harvest summaries and index
from the pages whose URLs they accumulate? Detailed information on this subject is gen
not available. Some engines use conventional stop lists, e.g., Excite, HotBot, Lycos, WebCr
to eliminate common words of little value as page descriptors. Some engines, e.g., InfoSee
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statistical or NLP techniques to weight common stopwords lower than more significant wor
to weight words that are rare on the Web higher. Some use conventional stemming techniq
normalize index terms. A number of engines, e.g., Lycos, AltaVista, use term frequencies w
the page being indexed. Since Lycos also collects the total number of words in a page, it m
presumed that it normalizes term frequencies. Some engines limit the number of words or li
text they index. For example, Lycos indexes the “first 20 lines,” but doesn’t specify unamb
ously what it means by that phrase. Most engines build a summary or surrogate record
record almost always contains the title. It often contains a fixed amount of text from the begin
of the document, e.g., the first 50 words. Alternatively, it may contain the most “weighty” wo
according to some algorithm based on statistical frequency, position, or both. Position may
to relative position in the page, e.g., words near the beginning of the document count for mo
position may refer to the HTML-tagged components in which it appears. In particular, s
engines look for a component (if any) tagged “description” by the page’s author, and use its
tents (if it exists) as a page summary instead of generating a summary automatically, e.g.,
eek accepts a description of up to 200 words. An engine may use HTML tags in various
ways, e.g., AltaVista effectively indexes terms by both relative position in the document, an
the HTML-tagged component(s) in which it appears; this enables AltaVista to support both
imity searches (term A must be near term B) and queries specifying that a given term must
in a given tagged component. On the other hand, other engines treat meta-tags as just ordin
for indexing or summary purposes.

Despite the variety of criteria used by the various robot-based engines to harvest pages an
their indexes, most of them have one thing in common: The descriptors by which they index
are primarily words or phrases actually contained in the pages being harvested. (Of cours
may also use other descriptors, e.g., the date a page was created or discovered or harve
words in the URLof the given page.) Excite differs from most other engines in that it uses
(see section on LSI) to build its index. This means that it creates an index of “concepts,” de
statistically by co-occurrence from the actual words. Hence, two pages may be indexed b
same concepts even though they differ substantially in the keywords they contain, provide
their keywords co-occur with many of the same words in other pages.

One problem for the user seeking to understand IR engine behavior is that most of the p
general-purpose IR engines, though free, are nonetheless proprietary. Hence, the source
usually not available, and the documentation with respect to strategies for gathering URL
indexing pages is frequently incomplete or inaccurate, and sometimes non-existent. These
engines are usually commercial enterprises, supporting themselves either by advertising
selling their software to private organizations for use on corporate intranets. So, they ha
incentive to attract users more successfully than competitors. Their documentation is, a
partly, a form of advertising.

Moreover, the fact that these free, commercial IR engines are advertising-supported has a
curious consequence. The company operating the engine is providing a service, which,
extent that it works well, will provide links to other Web pages. Yet, the effectiveness of adve
ing and the number of advertisements the company can display to the user (not to menti
possibility that the user will follow a link provided by one of the advertisers) depends on kee
the user at the web site of the IR engine itself as long as possible. Hence, the web sites of th
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engines tend to grow, adding information and entertainment resources locally, so that the us
have more reason to remain at the given web site, instead of using the IR engine!

Finally, it is noteworthy that general web IR engines do not (and have found that they ca
charge fees for their service (because users will not pay them), while commercial databas
vices can and do charge fees. Clearly, customers are willing to pay for effective human ind
of a large, well-chosen, set of databases. Just as clearly, customers are not willing to pay
search engines to the Web. Although it is potentially an enormous information resource, the
is currently too broad, shallow, chaotic, and unfocused. And, search engines based on r
indexing are currently too unreliable, returning too many references, or too few, or the wron
erences, or references poorly ranked.

16.4.2 Manual Indexing on the Web

The preceding section discussed free, general purpose Web IR engines that generate the
indexes primarily by executing robots: discovery robots that traverse the Web looking for U
and build a URL database, and harvester robots that retrieve the pages to which the co
URLs point, and index each page using the kind of techniques discussed elsewhere in this
However, there are also free general purpose Web IR engines that employ a staff of profes
indexers to specify a hierarchy of subject categories similar to that found in a traditional lib
e.g., the famous Dewey Decimal System, and index Web pages in terms of these subject c
ries. In other words, human beings determine the subject categories which serve as index
and the words used to name the categories, so the pages are indexed by a controlled p
mined vocabulary. (By contrast, the robot-based engines generate index descriptors from th
tent of the pages themselves, using statistical and positional clues.) Similarly, human b
organize the index terms into major categories, sub-categories of the major categories, su
categories, etc., for as many levels as seems appropriate. Hence, a human user can sear
the subject hierarchy to find the narrow, specific subject category in which she is interested
contrast, the robot based engines do not determine any logical structure among the index
they generate. It may happen that an index term generated for one page may be a sub-cate
an index term generated for another page, but the robot(s) that generate the terms won’t kno
or hence can’t tell the user.) Finally, human beings determine what subject categories s
index a given page. Since human knowledge and judgment is involved, a page may be inde
a subject category, even though no name of that category appears in the given page or its UR
contrast, most robot-based IR engines will only index a page to terms that actually occur
page or its URL. One robot-based engine, Excite, claims to be using the statistical technique
As discussed earlier in section 6.5, such co-occurrence techniques can sometimes recog
similarity of a query to a document even though the document contains no words that are
query. But this is a long way from true human understanding.)

The best known, most widely used web IR engine that employs manual (human) index
Yahoo! (the exclamation point is part of the name). Since Yahoo! is not robot-based, it depen
voluntary human submission to obtain the URLs it indexes. (Actually, just as some of the r
based engines also accept manual submissions, so Yahoo! also operates a robot. Howeve
the manual submissions represent a small part of the harvest for robot-based engines, so
retrieved pages represent a very small part of Yahoo’s index.) The human author or publish
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Web page can submit its URL to Yahoo! using an automated procedure available at the Y
site. She browses the Yahoo! subject hierarchy looking for an appropriate subject category o
category, one that correctly describes the page she is submitting. When she reaches the p
responding to the category she considers most descriptive of her page, she clicks on a “s
URL” button (which is available at the bottom of every page). This causes her to enter the
URL” procedure with the current category as the “preferred” category. She can suggest add
categories that also describe her page. She can provide a title, and a short textual descriptio
page. And of course, she specifies the URL of the page she is submitting.

A number of characteristics of Yahoo! should be noted:

First, each subject category is itself a Web page. The category structure is created by linki
page for each category to the pages for all its sub-categories through the usual URL/HTTP
anism. Of course, the page for a given category is also linked to any external Web pages th
given subject category indexes. Hence, when a Yahoo! user clicks on an entry in a subjec
gory page, she is requesting the page whose URL is associated with that entry, and mak
usual “hyperlink” jump typical of the Web.

Second, a submitted Web page can be linked to a category at any level, e.g., it can be linked
main category, “Social Science,” or the sub-category, “Anthropology_and_Archaeology,” o
sub-sub-category, “Archaeology,” or the still lower sub-category, “Marine Archaeology.“

Third, a page may be linked to several categories or sub-categories. In that case, it will be
able from each of those categories.

Fourth, the Yahoo! indexers (called “surfers by the company) will review each submitted p
and may override the authors own choices for preferred or additional subject categories, cha
adding, or deleting categories from the set chosen by the submitter.

Fifth, if the submitter can’t find any category appropriate to describe her page in the exi
Yahoo! subject category structure (or thinks some new category is needed as an add
descriptor), she can suggest one or more new categories, and indicate where these sugges
categories should be inserted within the existing structure. The Yahoo! staff may accept, rej
modify these suggestions.

Sixth, sub-categories as well as external Web pages can be referenced from multiple highe
category or sub-category pages; in other words, a given subject category can be a sub-cate
more than one higher-level category. For example, the category “Aphasia” can be found as
category of “Linguistics_and_Human_Languages,” which is a sub-category of the main cate
“Social_Science.” However, it can also be found as a sub-category of “Diseases_and_Condi
which is a sub-category of the main category, “Health.” When a sub-category appears in
than one place in the subject category hierarchy, one of those references is the “primary”
ence; clicking on any other occurrence of the sub-category will get the user to the same p
clicking on the primary reference. In the above example, clicking on “Aphasia” un
“Linguistics_and_Human_Languages” will cause a hyperlink jump to the same “Aphasia”
page as clicking on “Aphasia” under “Diseases_and_Conditions.” However, the actual posit
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the “Aphasia” Web page in the Yahoo! directory structure, as determined by the pathname co
nent of its URL, is under the “Diseases_and_Conditions” directory.

Seventh, each external web page is represented in the Yahoo directory by a surrogate pa
taining the title, description (if any), and the URL. Clicking on the URL in this surrogate page
cause a normal hyperlink jump to the actual, external Web page selected by the user. Some
gate pages may contain URLs of multiple external Web pages. Such a surrogate page may
as a lowest level subject category page, i.e., a page that contains references only to externa
and none to other subject categories. For example, the “Aphasia” page contained references
time of writing) to four external Web pages dealing (at least partly) with the subject of aph
One of these references is to the home page of an organization devoted to the treatment of
ease. Another is to a National Institutes of Health (NIH) paper on aphasia. And so on. This
references could be updated at any time, new references added, obsolete references delete
rally, new references to aphasia will only be added if someone submits (“suggests” is the
currently used by Yahoo!) a new Web page dealing (at least partly) with aphasia.

The Yahoo! approach has inevitable drawbacks as well as advantages. Since Yahoo! is pr
dependent on voluntary submissions, its coverage of the Web is inevitably very incomplet
uneven. If the user wants to issue a query on a subject that does not fit any of Yahoo’s existin
egories, or is an unanticipated hybrid of those categories, she may be out of luck. On the
hand, if the user’s query leads her to one of Yahoo’s sub-categories, it is likely that a high pr
tion of the pages returned will be relevant to the query. Moreover, a relevant page index
Yahoo! may often have links to other relevant pages, not indexed directly by Yahoo! So, Yah
often a good place to start a search. Pages on a given topic retrieved via Yahoo! may not o
linked to other pages. Their content may suggest good search terms to use in a query via
the robot-based engines.

Finally, it should be stressed that Yahoo!, despite the “value added” by extensive human ind
and development of a subject category hierarchy, is nevertheless a “free” service, suppor
advertising rather than user fees. Evidently, customers will not pay fees unless the servic
plies human-generated or selected databases as well as human indexing.

16.4.3 Querying on the Web

IR engines on the Web don’t break any new ground relative to the research engines discusse
where in this report.

Many IR engines provide two levels of query formulation, a “basic” level, and an “advanc
level (which may enjoy a fancier name like “power” level). The basic level is typically a se
keywords, combined logically by a default boolean “OR.” In other words, they are effecti
term vectors. The query terms are normally words; some engines, e.g., WebCrawler, Info
AltaVista, also support phrases, typically by enclosing a sequence of words in quotation m
Some engines allow the user to precede a term by a plus (“+”) or a minus (“-”). The plus may
weak form of AND, i.e., the designated term must be present in the page. The minus m
equivalent to NOT, i.e., the designated term must not be in the page. (Lycos uses the minus
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differently; putting a minus in front of a keyword “a” means, not that pages containing the
“a” are excluded, but that they will be ranked lower on the list of pages returned to the user

The advanced level usually offers some form of boolean query, with the operators AND, OR
NOT. Some engines also support parentheses to control the order of evaluation of ope
Often, proximity operators are offered too. For example, WebCrawler offers both a NEAR an
ADJ (for adjacent) operator. The condition “a NEAR/N b” says that terms a and b must o
within N words of each other; the condition “a ADJ b” says that a must immediately follows b
that order. By contrast, AltaVista’s NEAR operator does not allow the user to specify the de
of proximity; it is always a separation of 0 to 10 intervening words. Open Text’s “a FOLLOW
BY b” requires that a and b occur in the specified order, but they need not be adjacent, only
a certain degree of proximity; as with AltaVista, the user cannot specify this degree. Lycos o
an interesting enhancement to the traditional boolean AND (or looking at it from a different
spective, an enhanced degree of control of a “soft” boolean); the user can specify how many
search terms (from 2 to 7) must be present in a given page.

Some engines support stoplists, although their documentation usually doesn’t tell you what
are on the list. Other engines effectively generate their stop lists statistically, ignoring w
found to be too common on the Web. And some engines provide no stoplist at all. Similarly,
engines, e.g., InfoSeek, provide stemming, but their stemming algorithms are not publicly
mented; others do not provide automatic stemming at all. Some engines provide a wildcard
acter to allow the user to some (limited) stemming on her own. For example, AltaVista sup
an asterisk (“*”) either at the end of a word, or in the middle (but it must be preceded by at
three characters). So “run*” can find “run,” “runs,” “running,” etc., while “labo*r” finds bot
“labor” and “labour.” On the other hand, Lycos provides only truncation at the end of a word,
“run$.” However, truncation is the default in Lycos; a period must be specified to inhibit trun
tion.

The nature of the Web allows IR engines to support certain more specialized query condition
example, HotBot supports querying by Internet domain; the “domain” is the final compone
the host name in a URL, e.g., “edu” is the domain of educational institutions such as univer
“com” is the domain of commercial organizations, “mil” is the domain of military organizatio
(Note that the entire Internet address of a host computer is also called a “domain” name; h
the components are sometimes called “sub-domains,” and the righthand component is then
the “top-level” sub-domain.) These “old” domain names were developed when the Interne
largely restricted to the U.S. As the Internet has grown and become international, a “new”
two-character domain codes based on country has been developed, e.g., “uk” is the United
dom, “ca” is Canada, “jp” is Japan, etc. HotBot allows the user to restrict its search to (1) a
organizational domain, e.g., “edu” restricts the search to hosts belonging to educational in
tions, (2) a given country, e.g., “jp” restricts the search to Japanese hosts, or (3) a given geo
ical region, e.g., “Europe” would restrict the search to domain codes corresponding to count
Europe. HotBot also supports a query condition restricting the search to pages containing
pointing to files of a givenmedia type. By convention, the media type of a file is specified by
suffix called an “extension.” For example, the filename of an HTML formatted page will end w
the extension “.html” or “.htm.” The name of an image file in Graphics Interchange Format
end with the extension “.gif,” etc. Hence, a HotBot user can restrict her search so that e.g.
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pages containing URLs ending with “.gif” will be returned. (Remember that a URL address
sists of a hostname followed by a pathname, and that the pathname consists of a series of d
and sub-directory names terminating in the actual filename; hence, the extension will be a
of this filename.)

AltaVista takes advantage of the HTML format of a conventional Web page to support query
ditions based on field. For example, the user can specify that search of a a page for a given
phrase, or boolean combination, should be restricted to the title, the body of text that the use
the URLof the given page, a URL within the given page, the host name in the URL of the g
page, or a link within the given page pointing to a specified kind of file such as a Java applet
image file., etc. Similarly, InfoSeek allows the user to restrict the term search of a given pa
the title, or the URLs of links within the body of the page. An infoSeek URL search return
pages whose URLs contain the specified term. The InfoSeek user can also specify a “site” s
which means that the search retrieves only those pages that contain the given term in the ho
of their respective URLs. This feature can be used to retrieve all pages at a given “site,” i.
pages available at a given host. But it can also be used to retrieve all pages at a number o
having the specified component(s) in common. And, Open Text supports searches on title
(similar to the InfoSeek URL search), and “First Heading.” The latter restricts the search t
first HTML component tagged “<HEADING>.”

Since Yahoo! indexes pages by an elaborate hierarchy of human-generated subject catego
natural way for a user to generate a query to Yahoo! is to traverse this subject category inde
general to more specific category until she finds the narrow category that best categorizes th
ject in which she is interested. However, the user may want to go straight to a desired cat
without browsing through the subject hierarchy. Also, she may want a category that do
exactly fit any of the predefined categories. Hence, Yahoo! also provides a keyword and bo
search capability similar to those provided by the robot-based search engines. This search
tially applied to Yahoo’s own index, i.e., to the names of categories in the subject hierarchy, a
the words that appear in the surrogate records generated at the lowest level of the Yahoo!
However, if the search is not satisfied by the Yahoo! index, Yahoo! passes the search to Alta
which searches its own, very large, robot-generated index. (Naturally, going to AltaVista incr
the likelihood that the user will get a “hit,” but decreases the chance that the higher-ranke
will actually be about the subject that interests the user, since the AltaVista’s indexing is
mated rather than human-generated.)

On the other hand, some robot-based engines, e.g., InfoSeek, Lycos, and WebCrawler, al
vide a limited human-generated hierarchical subject category index. In the case of Lyco
index is limited to the most “popular” sites, where popularity is measured by the number of
from other sites exceeding a given threshold. WebCrawler’s index provides reviews of sites t
human operators have somehow judged “best of the net.” In general, a user who wants to b
by subject category will do better to use Yahoo’s far more extensive and well-organized su
index.

How do these Web IR engines compute the score, i.e., similarity, of each indexed Web page
tive to a given query? As with indexing, the Web engines usually don’t document their simila
ranking algorithms. The one clear (and desirable) point is that all of the major enginesdo rank
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their results. Given the large number of results they may return, ranking is a necessity. As w
research systems described elsewhere in this report, the ranking is usually far from perfect

Generally speaking, the engines rank pages (as one would expect) according to the num
“hits,” e.g., on a simple OR of a set of keywords, the highest ranking pages will tend be thos
contain the largest number of specified terms, or the largest number of occurrences of the
terms. More generally, the highest ranking pages will tend to be those that satisfy the most
specified search conditions. Some engines, e.g., WebCrawler, InfoSeek, give higher we
terms that are less common on the Web. Some weight query terms, i.e., search terms, more
if they are in a “significant” position in a given page, e.g., Lycos and InfoSeek weight terms m
highly if they appear in the title, AltaVista and InfoSeek weight terms more heavily if they oc
near the beginning of the page, HotBot gives higher weights to terms in <title> and <Meta>
ponents, etc. Lycos weighs search terms more heavily if they are in close proximity. S
engines, e.g., InfoSeek, AltaVista, Hotbot, weight terms more heavily based on frequen
occurrence. Hotbot bases its weighting on normalized term frequency, i.e., a given term freq
will count more in a short page than in a long page. Some engines allow the user to weight a
term explicitly, e.g., Excite allows the user to attach a weight to a query term either by speci
the weight as a number: “Gates^3,” or by repeating the term: Gates Gates Gates.” Info
weights more heavily those terms that appear earlier in a given query, so the user can weigh
terms implicitly, but can’t assign relative numeric weights.

Excite claims to use LSI. Therefore, its query-similarity algorithm must differ in at least
essential respect from that of the other engines. It must compute a concept similarity rather
word or phrase similarity. In other words, pages must be ranked according to the degree o
larity between the (statistically derived) concepts by which they are indexed, and the (statis
derived) concepts computed from the user’s query. Ordinary term weights still remain signifi
but their significance is the effect they have on the statistical derivation of the concepts.

A number of engines assign a relevance score as well as a ranking. As noted earlier, rel
scores generally have no absolute, independent meaning to the user unless they are prob
of relevance; none of these Web engines claim to be computing such a probability. Typi
engines assign scores in the range 0 to 100. However, InfoSeek appears to claim that all i
vance scores are computed against an objective standard. This means that the relevance
the highest ranking page in one search can be compared against the corresponding s
another search. If the highest score in search one is 42, and the highest score in search tw
then the highest ranking page in the second search is a lot more likely to be relevant than the
est ranking page in the first search. Moreover, the best score, e.g., in search one, may be fa
100. Hence, InfoSeek can tell the user that the even the best score is not too likely to be rele
her query. By contrast, many other engines will compute scores that only compare pages re
in a given search for pages matching a given query. Hence, the highest score will be at or c
the maximum, e.g., 99 or 100, no matter how poor the query-page match.

Finally, it should be noted that some engines provide a limited form of relevance feedback
user can designate one of the pages retrieved by a previous search as satisfying her nee
cially well, and ask for more pages like the designated one. The engine then retrieves pa
similar as possible to the “good” one. Excite calls this feature ‘Query by Example.” Open
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call its corresponding feature ‘Find Similar Pages.” However, these two engines compute
page similarity (and query-page similarity) differently. Open Text identifies the most freque
occurring words in the designated page, and looks via its index for other pages containing
words, especially pages that contain those in the <TITLE> or first <HEADING> compone
EXCITE uses LSI to map the designated page into LSI concepts, and then searches its ind
other pages associated with the same concepts. As noted earlier, two pages may be about t
concepts even though they differ in the words they contain, provided that they both contain w
associated statistically with those shared concepts.

16.4.4 Meta-Querying on the Web

As the previous sections illustrated, Web IR engines vary enormously in how they travers
Web to discover URLs, how frequently they update their list of discovered URLs, how they in
the pages to which those URLs point, how often they harvest the discovered pages to upda
index, what kinds of queries they allow the user to formulate, how they interpret the user’s
ries, how they compute the similarity between a user’s query and the pages they have indexe
how they order, i.e., rank, the pages they retrieve for presentation to the user. Moreover, th
itself changes and grows very rapidly. Hence, no one engine can possibly index the Web
pletely. Moreover, engines vary enormously in what parts or proportion of the Web they c
how deeply they cover a given part of the Web, how well (or easily) they will permit the use
formulate a query that expresses her needs, how well they will do at retrieving relevant pag
ranking the pages by degree of relevance, etc. Hence, it is clear that for many kinds of que
user will do best by searching with more than one engine.

But precisely because of all this variation, it can be a tedious chore to execute multiple en
and collate the results returned by these engines. One response to this problem is to pro
meta-engine that allows the user to generate a single query from a single interface. MetaC
{Selberg & Etzioni, WWW Journal, 1995] [Etzioni, AAAI-96, 1996] is an example of such
meta-engine. It accepts a single query from the user, translates it into queries for multip
engines, and issues these queries to their respective engines, which then execute the qu
parallel. Typically, each engine returns a ranked list of URLs from its index. MetaCrawler col
these URL lists, cleans up the result, and presents a single result list to the user. Etzioni [ibid
the metaphor of a “food chain.” The Web IR engines are herbivores, presumably becaus
“graze” directly on the information in the Web itself. A meta-engine like WebCrawler is a ca
vore, “feeding” off the herbivores. (Happily, it does not consume the herbivores in the pro
The metaphor breaks down at that point.) Applications that invoke WebCrawler or some
general-purpose meta-engine, are still higher up the food chain.

The MetaCrawler query interface is similar to the interfaces of the Web IR engines it drive
basic level supports “any” (boolean keyword “OR”), “all” (boolean keyword “AND”), an
“phrase” (exact match on series of words). It also offers a pull-down menu choice between s
ing the Web and various more specialized searches. e.g., stock market quotes. The “power”
allows the user to restrict the search to a high-level domain, either a geographic domain by
nent, or one of the three traditional domains: com, edu, and gov. This domain restriction is s
to that provided by HotBot but the set of choices is more limited. The more “refined” search
conventional punctuation: phrases are enclosed in quotes, a + prefixing a word or phrase mean
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the term must be in each page returned, a - prefixing a word or phrase means that the term
not be in each page returned. A number of the IR engines discussed above support simila
involving +, -, and quotes.

What “value added” does MetaCrawler offer?

1. The user sees only a single interface, and only has to learn a single query syntax. MetaC
translates the user’s query into the diverse syntaxes of the various engines it knows. This ra
obvious question. What if MetaCrawler’s own query interface offers a feature not supporte
some of the engines it drives? For example, MetaCrawler supports phrase searches; som
engines described above do not. What should MetaCrawler do? There are several possi
MetaCrawler can approximate the phrase, e.g., with a boolean “AND” of the terms comprisin
phrase. Then, MetaCrawler can either (a) return all retrieved pages, with those that satis
mere “AND” ranked lower than those that satisfied a strict phrase query, or (b) test retrieved
for a strict phrase condition itself, during post-retrieval processing. The phrase test would
have to be applied to pages retrieved by engines that do not support exact phrase querie
selves. A third possibility (c) is to restrict the scope of exact phrase queries to those engine
do support them. Alternative (b) is more expensive in post-processing time; on the other
alternative (c) reduces MetaCrawler’s coverage, one of its most attractive features. At the ti
writing, commercial MetaCrawler said that it would like to avoid (c), but it was “under consid
ation.”

2. Web coverage is broader than that which can be provided by any single IR engine. The
three reasons. First, as noted earlier, no engine can hope to cover the entire Web; it is sim
large and grows too fast. Moreover, different engines have different algorithms for traversin
Web, and discovering URLs. They vary too in the number of robots they employ, the degr
parallelism of these robots, the frequency with which the Web is traversed for update purp
etc. It follows that there will be substantial variation in which URLs each engine has discov
and indexed, and how up-to-date the URL discovery and harvesting is. Second, IR engine
substantially in how they harvest the pages whose URLs they have discovered, what desc
they extract from a given page and put in their respective indexes. Third, they vary substanti
how they compute query-page similarity (relevance), and how they rank references t
retrieved pages for presentation to the user. The first reason means that two different engin
be applying a given query to sets of URLs that only partially overlap; many URLs may be un
to the index of one engine or the other. The second and third reasons mean that even if a
URL is present in the indexes of two different engines, a given query may retrieve it from
index but not the other; another query may have the reverse effect, retrieving the URL from
second index, but not the first. In other words, different engines have different strong point
weak points with regard to Web coverage, indexing, query evaluation and ranking. A meta-e
by collating the retrieval results of many engines can achieve greater coverage than any
engine alone.

3. WebCrawler is lightweight. It employs no robots, does no discovery or harvesting, and doe
build or maintain a huge Web index. It leaves all of that hard work, and the correspon
required storage capacity and processing power to the IR engines it invokes, engines such a
discussed in previous sections. This means that it would be quite possible for copies of
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Crawler, called WebCrawler “clients” by the creators of this meta-engine, to reside on user
(In actual fact, MetaCrawler has followed the path taken by many IR engines, evolving fro
University research project to a commercial engine. Copies of MetaCrawler are not for
although instructions are available in the MetaCrawler Frequently Asked Questions (FAQ
how to make MetaCrawler the default search engine in MS Internet explorer, Netscape Navi
Communicator, etc. But such defaults only determine which search engine will be invoked p
entially. It doesn’t put the meta-engine on the user’s own system.) Because WebCrawler d
do all the work of a conventional IR engine, it can devote its resources to intelligent post-pro
ing of the retrieved URLs.

4. The standard post-processing of a query that commercial WebCrawler performs includes
ing, i.e., merging, the URL streams it receives from the various engines it invokes, remo
duplicates, andverifying the URLs. Individual engines attempt to remove duplicate URLs fro
their indexes. However, the inevitable overlap of the indexes of different IR engines mean
there will be considerable duplication when result sets from multiple engines are merged.
Crawler removes these duplicates, but it also combines and normalizes (into a single numbe
1 to 1000) the confidence/relevance scores assigned by the various engines that returned
URL, and lists each of the engines that returned the given reference. The combination/norm
tion algorithm is not documented. Verifying a URL means reading the page to which it points
determining that the page still exists. Given the dynamic nature of the Web, and the inev
period between successive visits by a given engine to a given site, it is inevitable that
engine’s index will contain some proportion ofdeadlinks, URLs pointing to pages that have bee
deleted or moved since they were last visited. WebCrawler can delete such dead links.

5. [Selberg & Etzioni, WWW Journal, 1995] suggest a variety of other kinds of post-proces
that a MetaCrawler, especially a copy residing on a user’s PC, could do. These include
cor[ing] the page using supplementary syntax supplied by the user,” clustering the re
“engag[ing] in secondary search[es] by following references to related pages,” customized
ing, e.g., of X-rated pages, etc. At the organizational level, WebCrawler could cache retr
pages, either those that were highly ranked, or those that one or more users designated as r
for sharing by members of the organization. This could facilitate collaboration or informa
exchange. Or, it could simply reflect a presumption that people within the same organization
have shared professional interests, and hence will want to see many of the same pages. A
WebCrawler could also support scheduled, or data driven queries, e.g., “Retrieve reports da
the XYZ company.” Another possibility [Etzioni, AAAI-96, 1996] is that the client could enga
in a dialog with the user to enable her to better focus her query. The existing commercial
Crawler supports a limited form of customization, but since the meta-engine itself resides
centralized web site, the customization consists entirely of placing a WebCrawler form o
user’s system, and specializing the existing generic query capability.

In fairness, it should be noted that Maze et al. [1997] in their survey of Web IR engines a
againstusing meta-tools. Their argument is that since Web IR engines are so diverse in the
capabilities they offer, and in the way they interpret queries, e.g., one engine may reco
“AND” as a boolean operator while another does not, the user may be better off generating
rate queries to each of two or three engines than issuing one query to a meta-engine. Of c
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that means investing the extra effort to learn the syntax of each engine. Only experience wil
given user which approach works better for her.

Applications that invoke MetaCrawler (or any comparable meta-engine) are on a still higher
of the food chain, analogous presumably to carnivores that feed off other lower-level carniv
An example {Etzioni, ibid] is Ahoy!, a “softbot” (short for “software robot”) that finds the hom
pages of individuals, given their name and affiliation. In effect, it is a “White Page” serv
Ahoy! uses specialized knowledge about the “geography” and nomenclature conventions
Web, e.g., that the host name of a corporate home page will usually end with “name.com,” w
“name” is the name or acronym of the institution; hence, it may try “www.go2net.com” as
home page of a company named “go2net.” Similarly, given the name “Smith” at UMBC’s C
puter Science department, it may try “http://www.umbc.edu/smith.” It may learn by releva
feedback that the computer science department uses the prefix “cs” in its host names; there
will try “Nicholas” in the Computer Science department successfully as “htt
www.cs.umbc.edu/~nicholas/.” Subsequently, it may learn by similar feedback that all h
pages at the University of Washington are in a “homes” directory. Thereafter, given “etzion
the Computer Science department at the University of Washington, it will successfully try “h
www.cs.washington.edu/homes/etzioni.” Ahoy! also makes use of its knowledge of home
format, e.g., the knowledge that a home page title for an individual is likely to contain the ind
ual’s last name. Plainly, Ahoy! could run on top of any individual Web IR engine, e.g., InfoS
but by “feeding” on WebCrawler, it increases its Web coverage, and hence its chances of fi
the desired home page.

Moukas and Maes [AAMAS, 1998] provide an alternative approach to meta-retrieval on the
Amalthaea. Like MetaCrawler, Amalthaea feeds off existing Web IR engines rather than ind
the Web itself. However, it differs from MetaCrawler in several important ways:

1. A single Metacrawler engine provides mappings to a variety of Web IR engines. The com
cial MetaCrawler is centralized; its creators envision a situation where each user could ha
own copy of MetaCrawler, but even in that view, each copy of WebCrawler maps from a s
query interface presented to the user into parallel queries issued to the selected Web IR e
By contrast, Amalthaea is a community of agents, serving a given user. There are two clas
agents: Information Filtering Agents (IFAs) and Information Discovery Agents (IDAs). E
selected Web IR agent has one or more IDAs assigned to it. Each user has one or mor
assigned to her.

2. The Amalthaea user does not formulate queries as the MetaCrawler does. Essentia
Amalthaea queries are “by example.” The pages exemplifying the user’s interests can be sp
explicitly by the user, e.g., she can point Amalthaea to a page while browsing, or submit a
favorite URLs (bookmarks in Web browser parlance), etc. If the browser maintains a histor
of pages the user has visited, Amalthaea can check this file to determine patterns of interes
sites or pages frequently visited. From these examples, Amalthaea generates a profile, rep
ing the given user’s interests. Currently, the profile is a set of weighted keyword vectors, eac
tor representing one of the interests. (The weights are based on the familiar tf*idf form
Amalthaea generates an initial IFA representing each interest, containing the correspondin
word vector. IFAs issue keyword vector requests based on the interests they represent
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accept requests from IFAs, and translate them into queries for “their” respective Web IR en
Each IDA knows how to issue queries to “its” assigned Web IR engine. An IDA returns retrie
pages to the IFA that issued the corresponding request. The IFA filters retrieved pages by co
ing the cosine similarity between its vector, and the vector of each retrieved page. If a page
the IFAs filter, the IFA presents the user with a “digest” of the page, accompanied by a confid
factor (based on the similarity computation) indicating how confident the IFA is that the user
like the given page.

3. The biggest difference between Amalthaea and MetaCrawler is that Amalthaea is based
artificial life/evolutionary paradigm. The population of IFAs and IDAs evolves, driven partly
random changes (mutation, crossover), and partly by the user’s judgment of how well the
she receives match her current interests. Pages are rated on a scale from one to seven. If a
highly rated, the IFA that chose to pass it to the user, and the IDA that retrieved it and passe
the IDA, receive “credit.” The amount of credit an agent receives for a given document is pro
tional to its confidence that the user will like the document. If the user rejects the documen
agents get negative credit, again proportional to the confidence level. High-ranking agents (i
lutionary terms, agents possessing high “fitness”) get to reproduce. Low-ranking agen
purged. Mutation and crossover ensure that there will always be some “new” agents.
increases the system’s ability to explore parts of the Web that may have been prev
neglected, and to track changes in the user’s interests. An agent may be new either by havi
keywords in its vector (its genotype, in evolutionary terms), or new weights on existing keyw

16.4.5 Personal Assistants for Web Browsing

The Web IR engines and meta-engines described in preceding sections index each page
ered as a separate entity. The indexes they generate (or in the case of the meta-engines, f
reflect only to a very limited degree the hyperlink structure of the Web. Of course, the robot in
ers necessarily traverse as much of the Web as they can. But the index descriptors generat
given page do not reflect the Web structure in which the page is embedded, except to the l
degree that descriptors may be extracted from hyperlink references and URLs within the
page, and the URL of the given page. Nor do they reflect the experience of the many user
may have browsed a given area of the Web (except that some engines may provide lists, o
human reviews, of popular sites, i.e., sites that have been visited frequently).

A different class of engine, exemplified by WebWatcher [Armstrong et al., AAAI, 1995], attem
to guide the user as she browses the Web, suggesting at each page she reaches, where she
go next given her stated interests and the experience of other previous users.

WebWatcher monitors the user as she browses. It does this by modifying each URL in each
the user reaches, so that selecting a reference causes a jump to the WebWatcher server ra
to the selected reference. WebWatcher then records the reference before completing the
jump the user requested. WebWatcher also modifies the page as seen by the user. In partic
page is modified to highlight existing references that WebWatcher thinks will be particu
interesting to the user given her stated goals, adds additional “suggested references” tha
Watcher thinks will be of interest to the user either because of her stated interests or beca
their similarity to the current page, and adds a menu that allows the user to specify that the p
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interesting, that the user has reached her goal (that is, found the information for which she is
ing), that she would like to see similar pages, or that she gives up.

The essential feature of WebWatcher that enables it to act as a “tour guide” is its ability to
what pages would be good references for a given user, with stated goals, when she reaches
page. WebWatcher learns by recording the choices of previous users when they reached th
page with similar goals. This set of previous choices becomes the “learning set.” Effectively,
Watcher asks the question, “What hyperlink selection would best satisfy the user’s goal now
she has reached the current page?” or replaces it by the question, “What hyperlink is the use
likely to select, given her present goal, when she reaches the current page?” The latter que
one for which WebWatcher can be trained, given the previous experience (monitored by
Watcher) of other users, including of course the current user if she has come this way befo

Over the course of WebWatcher research history, the researchers have tried a number of pre
algorithms. One algorithm is based on the idea that two pagesP1 andP2 are likely to be closely
related if the pages that contain references toP1 are likely to contain references toP2 as well. A
mutual information measure was used to measure the similarity between references toP1and ref-
erences toP2. Computing such a measure assumes that the topology of the Web with regard
given pages is known, at least with regard to some well-explored or well-known area of the
e.g., a University web site.

Another approach used in WebWatcher is to represent each possible user choice as a traditi
term vector. The terms for a given hyperlink in a given page and a given user goal are se
from (a) words contained in or describing the hyperlink (note that this includes not only
underlined words that the user sees, it also includes words in the goals of previous user
selected the given hyperlink), (b) words entered by the user to describe her goal at the sta
session, and (c) words contained in the given page. (In one reported example, the page wo
obtained from the sentence (if any) containing the hyperlink, and words in headings (if
enclosing the hyperlink.) The term vector for each hyperlink can be reduced to a number in
ous ways. One reported way is to assign a weight to each term in a given vector based
familiar tf*idf weighting scheme. In this way, a term vector can be generated for each ins
where a user reaches the given page and selects a hyperlink, either selecting or not selec
given link. Two prototype vectors can be generated, a positive prototype by adding up all the
tors corresponding to cases where the user selected the given link, a negative prototype by
up all the vectors corresponding to cases where the user did not select the given link.
instance of user selection or non-selection is then evaluated by taking the cosine similarity
instance vector and the positive prototype vector, the cosine similarity of the instance vecto
the negative prototype vector, and then taking the difference of the two cosine values. The re
a numeric value for each hyperlink in the given page, and the given user goal. The hyperlink
then be ranked by these numeric values, and the highest ranking hyperlink(s) suggested
user. (Other methods of evaluating the instance vector for each page/hyperlink/goal combi
have been tried. For example, the conditional probability that a link will be followed given th
certain word occurs in the instance vector can be estimated as the ratio of the number of
rences of the word when the given hyperlink is selected divided by the total number of o
rences of the word. If these single-word probability estimates are assumed to be independen
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Again, the highest probability link(s) can be suggested to the user.)

A third approach tried by the WebWatcher researchers is Reinforcement Learning (RL). In
of learning the value of a hyperlink from thetf*idf values of keywords describing the goals of pr
vious users who selected it (as in the previous approach), the RL method computes its va
terms of thetf*idf values of goal keywords encountered in pages reached, directly or indirectl
selecting the given hyperlink, and the number of hyperlink jumps required to reach them. In
words, WebWatcher learns the value of a hyperlink from the successes or failures of user
selected it. However, success or failure is computed, not by user feedback, but automatic
terms of thetf*idf values of the goal words encountered as a result of selecting the given h
link, and the number of pages (i.e., hyperlink jumps) traversed to reach a page containing
of) the goal keywords. A hyperlink that will get the user to a very good page (as measur
terms of thetf*idf values of the goal keywords it contains) in five jumps may be valued lower t
another hyperlink that gets the user to a pretty good page in two jumps. Moreover, the va
each keyword that can be reached from the given hyperlink is measured separately. So
given hyperlinkH1 in pageP1 (pointing to pageP2) can reach keyword 1 via the path {P2, P3},
keyword 2 via path {P2, P4}, and keyword 3 via path {P2, P5}, H1 may rate higher than anothe
hyperlink H2 in P1 that reaches a single pageP6 containing all three keywords with the sam
tf*idf values as inP3, P4, andP5 respectively, but via five hyperlink jumps. Or putting it anoth
way, if a third hyperlinkH3 can reachP6 in two jumps {P7, P6}, H3 may not be ranked any
higher thanH1. In other words, WebWatcher’s RL algorithm does not appear to value high
page containingN keywords thanN pages, reachable via the same number of jumps, each con
ing one of theN keywords (assuming that the “tf*idf ” values are the same). This seems to ru
counter to the usual practice in information retrieval, but of course could easily be changed
value of a hyperlinkis increased if the goal keywords are in the hyperlink itself.)

WebWatcher learns relative hyperlink values for a given Web locale. For example, since i
developed at CMU, it has learned the CMU locale. On the other hand, a “personal WebWa
has also been developed that learns the preferences of a given an individual.

The existing WebWatcher only asks the user for her goals at the beginning of a session. As
Watcher researchers point out, a more sophisticated version could engage in an ongoing d
with the user as she browses.
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