
Oracle8 i

National Language Support Guide

Release 8.1.5

February, 1999

Part No. A67789-01

Oracle8i National Language Support Guide, Release 8.1.5

Part No. A67789-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Authors: Paul Lane and Gail Yamanaka

Contributors: Winson Chu, Sandy Dreskin, Jason Durbin, Jessica Fan, Yu Gong, Josef Hasenberger,
Claire Ho, Lefty Leverenz, Tom Portfolio, Den Raphaely, Makoto Tozawa, Hiro Yoshioka

Graphic Designer: Valarie Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Enterprise Manager, Pro*COBOL, Server Manager, SQL*Forms,
SQL*Net, and SQL*Plus, Net8, Oracle Call Interface, Oracle7, Oracle7 Server, Oracle8, Oracle8 Server,
Oracle8i, Oracle Forms, PL/SQL, Pro*C, Pro*C/C++, and Trusted Oracle are registered trademarks or
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Send Us Your Comments

Oracle8i National Language Support Guide, Release 8.1.5

Part No. A67789-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ electronic mail - infodev@us.oracle.com

■ FAX - (650) 506-7228

■ postal service:

Oracle Corporation

Oracle Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.
iii

iv

Preface

This manual provides reference information about Oracle’s National Language

Support (NLS) capabilities. This information includes:

■ Understanding Oracle NLS

■ Setting Up an NLS Environment

■ Choosing a Character Set

■ SQL Programming

■ OCI Programming

■ Locale Data

■ Customizing Locale Data

■ Obsolete Locale Data

■ Glossary

Feature Coverage and Availability
Oracle8i National Language Support Guide describes how to deal with many of the

common problems in working in environments with multiple languages or

character sets.

For information about the differences between Oracle8i and the Oracle8i Enterprise

Edition, please refer to Getting to Know Oracle8i. Oracle8i National Language Support
Guide describes those features which are common to both products.
v

Audience
This manual is written for database administrators, system administrators, and

database application developers who need to deal with NLS-related matters.

Knowledge Assumed of the Reader
It is assumed that readers of this manual are familiar with relational database

concepts, basic Oracle server concepts, and the operating system environment

under which they are running Oracle.

Installation and Migration Information
This manual is not an installation or migration guide. If your primary interest is

installation, refer to your operating-system-specific Oracle documentation. If your

primary interest is database and application migration, refer to Oracle8i Migration.

Application Design Information
In addition to administrators, experienced users of Oracle and advanced database

application designers will find information in this manual useful. However,

database application developers should also refer to the Oracle8i Application
Developer’s Guide - Fundamentals and to the documentation for the tool or language

product they are using to develop Oracle database applications.

How Oracle8 i National Language Support Guide Is Organized
This manual is organized as follows:

Chapter 1, "Understanding Oracle NLS"

 contains an overview of NLS issues and Oracle’s approach to NLS.

Chapter 2, "Setting Up an NLS Environment"

 contains an explanation of Oracle’s NLS capabilities.

Chapter 3, "Choosing a Character Set"

 contains sample scenarios for enabling NLS capabilities.

Chapter 4, "SQL Programming"

 describes NLS considerations for SQL programming.

Chapter 5, "OCI Programming"
vi

 describes NLS considerations for OCI programming.

Appendix A, "Locale Data"

 describes the languages, territories, character sets, and other locale data

 supported by the Oracle server.

Appendix B, "Customizing Locale Data"

 shows how to customize NLS data objects.

Appendix C, "Obsolete Locale Data"

 lists some obsolete names for character sets.

Appendix D, "Glossary"

 defines NLS terminology.

Conventions Used in This Manual
The following sections describe the conventions used in this manual.

Text of the Manual
The text of this manual uses the following conventions.

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, database object

names, parameters, filenames, and so on.

For example, "After inserting the default value, Oracle checks the FOREIGN KEY

integrity constraint defined on the DEPTNO column," or "If you create a private

rollback segment, the name must be included in the ROLLBACK_SEGMENTS

initialization parameter."

Italicized Characters
Italicized words within text are book titles or emphasized words.

Code Examples
Commands or statements of SQL, Oracle Enterprise Manager line mode (Server

Manager), and SQL*Plus appear in a monospaced font.

For example:

INSERT INTO emp (empno, ename) VALUES (1000, ’SMITH’);
vii

ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.

All punctuation in example statements is required. All example statements

terminate with a semicolon (;). Depending on the application, a semicolon or other

terminator may or may not be required to end a statement.

UPPERCASE in Code Examples
Uppercase words in example statements indicate the keywords within Oracle SQL.

When you issue statements, however, keywords are not case sensitive.

lowercase in Code Examples
Lowercase words in example statements indicate words supplied only for the

context of the example. For example, lowercase words may indicate the name of a

table, column, or file.

Your Comments Are Welcome
We value and appreciate your comment as an Oracle user and reader of our

manuals. As we write, revise, and evaluate our documentation, your opinions are

the most important feedback we receive.

You can send comments and suggestions about this manual to the Information

Development department at the following e-mail address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway Redwood Shores, CA 94065

Fax: (650) 506-7228
viii

Contents

Feature Coverage and Availability .. v
Audience.. vi

Knowledge Assumed of the Reader ... vi
Installation and Migration Information ... vi
Application Design Information ... vi

How Oracle8i National Language Support Guide Is Organized ... vi
Conventions Used in This Manual ... vii

1 Understanding Oracle NLS

Oracle Server NLS Architecture... 1-1
Locale-Independent Operation... 1-1
Client/Server Architecture ... 1-3

Standard Features ... 1-3
Language Support .. 1-3
Territory Support.. 1-4
Date and Time Formats ... 1-5
Monetary and Numeric Formats.. 1-5
Calendars ... 1-5
Linguistic Sorting.. 1-5
Character Set Support .. 1-7

Customization Features ... 1-7
Character Set Customization .. 1-7
Calendar Customization.. 1-8

SQL Support .. 1-8
 ix

2 Setting Up an NLS Environment

Setting NLS Parameters ... 2-1
Choosing a Locale with NLS_LANG .. 2-3

Specifying NLS_LANG.. 2-5
NLS_LANG Examples ... 2-5
Overriding Language and Territory Specifications... 2-6

Time Parameters .. 2-11
Date Parameters... 2-11

Date Formats ... 2-11
NLS_DATE_FORMAT... 2-11
NLS_DATE_LANGUAGE... 2-14

Calendar Parameter .. 2-15
Calendar Formats.. 2-15
NLS_CALENDAR .. 2-17

Numeric Parameters ... 2-18
Numeric Formats .. 2-18
NLS_NUMERIC_CHARACTERS .. 2-19

Monetary Parameters.. 2-20
Currency Formats ... 2-20
NLS_CURRENCY... 2-20
NLS_ISO_CURRENCY .. 2-21
NLS_DUAL_CURRENCY ... 2-22
NLS_MONETARY_CHARACTERS .. 2-23
NLS_CREDIT... 2-24
NLS_DEBIT.. 2-24

Collation Parameters .. 2-24
Sorting Order... 2-24
Sorting Character Data... 2-25
NLS_SORT ... 2-27
NLS_COMP ... 2-28
NLS_LIST_SEPARATOR... 2-29

Character Set Parameters ... 2-29
NLS_NCHAR .. 2-29
 x

3 Choosing a Character Set

What is an Encoded Character Set? ... 3-2
Which Characters to Encode? ... 3-3

Writing Systems.. 3-3
How many Languages does a Character Set Support? .. 3-4
How are These Characters Encoded? .. 3-7

Single-Byte Encoding Schemes... 3-7
Multibyte Encoding Schemes ... 3-8

Oracle’s Naming Convention for Character Sets.. 3-9
Tips on Choosing an Oracle Database Character Set .. 3-9

Interoperability with System Resources and Applications .. 3-10
Character Set Conversion .. 3-10
Database Schema .. 3-11
Performance Implications ... 3-11
Restrictions .. 3-11

Tips on Choosing an Oracle NCHAR Character Set.. 3-12
Database Schema .. 3-13
Performance Implications ... 3-13
Restrictions .. 3-13

Considerations for Different Encoding Schemes ... 3-13
Be Careful when Mixing Fixed-Width and Varying-Width Character Sets 3-13
Storing Data in Multi-Byte Character Sets .. 3-14

Naming Database Objects... 3-14
Summary of Data Types and Supported Encoding Schemes .. 3-16

Changing the Character Set After Database Creation ... 3-17
Customizing Character Sets.. 3-18

Character Sets with User-Defined Characters.. 3-18
Oracle’s Character Set Conversion Architecture ... 3-20
Unicode 2.0 Private Use Area ... 3-20
UDC Cross References ... 3-21

Monolingual Database Example.. 3-21
Character Set Conversion .. 3-22

Multilingual Database Example .. 3-23
Restricted Multilingual Support... 3-23
Unrestricted Multilingual Support .. 3-24
 xi

4 SQL Programming

Locale-Dependent SQL Functions... 4-1
Default Specifications... 4-2
Specifying Parameters.. 4-2
Unacceptable Parameters .. 4-4
CONVERT Function... 4-4
Character Set SQL Functions... 4-5
NLSSORT Function .. 4-6
Pattern Matching Characters for Fixed-Width Multi-Byte Character Sets........................... 4-9

Time/Date/Calendar Formats.. 4-9
Date Formats ... 4-9

Numeric Formats ... 4-10
Miscellaneous Topics ... 4-11

5 OCI Programming

NLS Language Information Retrieval... 5-2
OCINlsGetInfo().. 5-2
OCINlsGetInfo .. 5-2
OCI_Nls_MaxBufSz.. 5-5
NLS Language Information Retrieval Sample Code ... 5-6

String Manipulation ... 5-6
OCIMultiByteToWideChar ... 5-8
OCIMultiByteInSizeToWideChar .. 5-9
OCIWideCharToMultiByte ... 5-10
OCIWideCharInSizeToMultiByte .. 5-11
OCIWideCharToLower.. 5-11
OCIWideCharToUpper.. 5-12
OCIWideCharStrcmp ... 5-12
OCIWideCharStrncmp... 5-13
OCIWideCharStrcat.. 5-14
OCIWideCharStrchr ... 5-15
OCIWideCharStrcpy .. 5-15
OCIWideCharStrlen ... 5-16
OCIWideCharStrncat ... 5-16
OCIWideCharStrncpy .. 5-17
 xii

OCIWideCharStrrchr ... 5-18
OCIWideCharStrCaseConversion.. 5-18
OCIWideCharDisplayLength ... 5-19
OCIWideCharMultiByteLength ... 5-19
OCIMultiByteStrcmp ... 5-20
OCIMultiByteStrncmp ... 5-21
OCIMultiByteStrcat .. 5-21
OCIMultiByteStrcpy... 5-22
OCIMultiByteStrlen.. 5-22
OCIMultiByteStrncat.. 5-23
OCIMultiByteStrncpy .. 5-23
OCIMultiByteStrnDisplayLength .. 5-24
OCIMultiByteStrCaseConversion .. 5-25
String Manipulation Sample Code... 5-25

Character Classification ... 5-26
OCIWideCharIsAlnum.. 5-27
OCIWideCharIsAlpha ... 5-27
OCIWideCharIsCntrl ... 5-28
OCIWideCharIsDigit.. 5-28
OCIWideCharIsGraph ... 5-29
OCIWideCharIsLower ... 5-29
OCIWideCharIsPrint.. 5-30
OCIWideCharIsPunct .. 5-30
OCIWideCharIsSpace .. 5-31
OCIWideCharIsUpper ... 5-31
OCIWideCharIsXdigit ... 5-32
OCIWideCharIsSingleByte.. 5-32
Character Classification Sample Code .. 5-32

Character Set Conversion .. 5-33
OCICharSetToUnicode .. 5-34
OCIUnicodeToCharSet .. 5-34
OCICharSetConversionIsReplacementUsed .. 5-35
Character Set Conversion Sample Code ... 5-36

Messaging Mechanism .. 5-36
OCIMessageOpen... 5-37
 xiii

OCIMessageGet .. 5-38
OCIMessageClose ... 5-39
LMSGEN .. 5-39
Text Message File Format .. 5-40
Message Example.. 5-40

A Locale Data

Languages ... A-2
Translated Messages ... A-4
Territories.. A-5
Character Sets .. A-6

Asian Language Character Sets .. A-7
European Language Character Sets ... A-9
Middle Eastern Language Character Sets .. A-14
Universal Character Sets... A-16

Linguistic Definitions ... A-17
Calendar Systems... A-19
Character Sets that Support the Euro Symbol.. A-20

B Customizing Locale Data

Customized Character Sets ... B-1
Character Set Definition Files.. B-2

Customized Calendars .. B-11
Overview... B-11
NLS Calendar Utility... B-11
Utilities .. B-12

NLS Data Installation Utility... B-12
Overview... B-12
Syntax .. B-13
Return Codes .. B-14
Usage ... B-14

NLS Configuration Utility.. B-16
Overview... B-16
Syntax .. B-16
Menus .. B-17
 xiv

C Obsolete Locale Data

Obsolete NLS Data ... C-1

D Glossary

Glossary .. D-1
ASCII .. D-1
Binary Sorting ... D-1
Case Conversion ... D-1
Character.. D-1
Character Classification ... D-1
Character Encoding Scheme ... D-2
Character Set Conversion .. D-2
Client Character Set.. D-2
Collation... D-2
Combining Character... D-2
Composite Character.. D-2
Composite Character Sequence .. D-2
Database Character Set .. D-2
Diacritical Mark .. D-3
EBCDIC .. D-3
Encoded Character Set ... D-3
Encoding Scheme.. D-3
EUC... D-3
Euro .. D-3
Export ... D-3
Font ... D-3
Glyph.. D-4
Ideograph... D-4
Import... D-4
Internationalization .. D-4
ISO... D-4
ISO/IEC 10646 .. D-4
ISO Currency... D-4
ISO 8859.. D-5
Latin-1... D-5
 xv

Linguistic Index.. D-5
Linguistic Sorting... D-5
Local Currency ... D-5
Locale... D-5
Localization... D-5
Monolingual Support .. D-6
Multibyte Character .. D-6
NCHAR Character Set .. D-6
Net8.. D-6
NLS .. D-6
NLSDATA... D-6
NLSRTL... D-6
Replacement Character ... D-7
Restricted Multilingual Support.. D-7
SQL*Net... D-7
Script .. D-7
Server Character Set .. D-7
UCS-2... D-7
Unicode ... D-7
Unicode Codepoint.. D-8
Unicode Mapping Between UCS and UTF Formats... D-8
UCS2 .. D-9
UCS4 .. D-9
Unrestricted Multilingual Support.. D-9
UTF-8 ... D-9
UTF-16 ... D-9
Wide Character .. D-10
 xvi

Understanding Oracle
1

Understanding Oracle NLS

This chapter provides an overview of Oracle NLS support, including:

■ Oracle Server NLS Architecture

■ Standard Features

■ Customization Features

■ SQL Support

Oracle Server NLS Architecture
Oracle’s National Language Support (NLS) architecture allows you to store,

process, and retrieve data in native languages. It ensures that database utilities and

error messages, sort order, date, time, monetary, numeric, and calendar conventions

automatically adapt to the native language and locale.

Parameter settings determine the behavior of individual conventions.

Locale-Independent Operation
Oracle’s National Language Support architecture is implemented with the use of

the Oracle NLS Runtime Library. The NLS Runtime library provides a

comprehensive suite of language-independent functions, which allows for proper

text and character processing and language convention manipulations. These

functions are for a specific language and locale and are governed by a set of

locale-specific data identified and loaded at runtime.
 NLS 1-1

Oracle Server NLS Architecture
The following diagram illustrates loading locale-specific data at run time. For

example, French and Japanese locale data is loaded.

The locale-specific NLS data is stored in a directory specified by the ORA_NLS*

environment variable. For each new release, there is a different corresponding

ORA_NLS data directory. For Oracle8, release 8.1, the ORA_NLS33 directory is

used. For example, on most UNIX platforms, the environment variable ORA_

NLS33 should be set to $ORACLE_HOME/ocommon/nls/admin/data.

If your system is running in a mixed Oracle environment, you must ensure that the

appropriate ORA_NLS* variable is set and that the corresponding NLS data files for

that release are available.

Table 1–1 Location of NLS Data

Release Environment Variable

7.2 ORA_NLS

7.3 ORA_NLS32

8.0, 8.1 ORA_NLS33

Multilingual
Database

French

Data

Ja
pa

ne
se

Dat
a

French
Data

German
Data

Japanese
Data
1-2 Oracle8i National Language Support Guide

Standard Features
A boot file is used to determine the availability of the NLS objects which can be

loaded. Oracle supports both system and user boot files. The user boot file gives

you the flexibility to tailor what NLS locale objects will be available for the

database, thus helping you control memory consumption. Also, new locale-data

can be added and some locale-data components can be customized

Client/Server Architecture
Oracle8i is implemented using a client/server architecture. The

language-dependent operations are controlled by a number of parameters and

environment variables on both the client and the server. The server and client may

run in the same or different locale, and have the same or different language

requirements specified. In the event that the client and server specify different

character sets, Oracle8 will handle character set conversion of strings automatically.

Standard Features
Oracle’s standard features include language and territory support, as well as

support for various date, time, calendar, monetary, numeric and character set

formats.

Language Support
Oracle8i allows users to store, process, and retrieve data in native languages.

Table 1–2, "Language Support" lists the languages supported, with an asterisk for

languages with translations.

Table 1–2 Language Support

American English * English Japanese * Simplified Chinese *

Arabic * Estonian Korean * Slovak *

Bengali Finnish * Latin American Spanish * Slovenian

Brazilian Portuguese * French * Latvian Spanish *

Bulgarian German Lithuanian Swedish *

Canadian French German Din Malay Thai

Catalan * Greek * Mexican Spanish Traditional Chinese *

Croatian Hebrew * Norwegian * Turkish *

Czech * Hungarian * Polish * Ukrainian
Understanding Oracle NLS 1-3

Standard Features
See "Languages" on page A-2 for a complete list of Oracle language names and

abbreviations.

Message Support
Utilities and error messages can be made to appear in the native language.

Territory Support
Oracle8i supports different cultural conventions which are specific to a given

geographical location. Local time, date, numeric and monetary conventions are

handled. The following territories are supported.

Danish * Icelandic Portuguese * Vietnamese

Dutch * Indonesian Romanian *

Egyptian Italian * Russian *

Table 1–3 Territory Support

Algeria Egypt Latvia Spain

America Estonia Lithuania Sudan

Austria Finland Luxembourg Sweden

Australia France Malaysia Switzerland

Bahrain Germany Mauritania Syria

Bangladesh Greece Mexico Taiwan

Belgium Hong Kong Morocco Thailand

Brazil Hungary New Zealand The Netherlands

Bulgaria Iceland Norway Tunisia

Canada Indonesia Oman Turkey

Catalonia Iraq Poland Ukraine

China Ireland Portugal United Arab Emirates

CIS Israel Qatar United Kingdom

Croatia Italy Romania Uzbekistan

Cyprus Japan Saudi Arabia Vietnam

Czech Republic Jordan Slovakia Yemen

Table 1–2 Language Support
1-4 Oracle8i National Language Support Guide

Standard Features
Date and Time Formats
The world’s various conventions for hour, day, month, and year can be handled in

local formats.

Monetary and Numeric Formats
Currency, credit, and debit symbols can be represented in local formats. Radix

symbols and thousands separators can be defined by locales.

Calendars
Gregorian, Japanese Imperial, ROC Official, Thai Buddha, Persian, English Hijrah,

and Arabic Hijrah are supported. See "Calendar Systems" on page A-19 for a

complete list of calendars.

Linguistic Sorting
Oracle8i provides linguistic sorts for culturally accurate sorting.

Czechoslovakia Kazakhstan Slovenia

Denmark Korea Somalia

Djibouti Kuwait South Africa

Table 1–4 Linguistic Definitions

Basic Name Extended Name Special Cases

ARABIC --

ARABIC_MATCH --

ARABIC_ABJ_SORT --

ARABIC_ABJ_MATCH --

ASCII7 --

BENGALI --

BULGARIAN --

CANADIAN FRENCH --

Table 1–3 Territory Support
Understanding Oracle NLS 1-5

Standard Features
CATALAN XCATALAN æ, AE, ß

CROATIAN XCROATIAN D, L, N, d, l, n, ß

CZECH XCZECH ch, CH, Ch, ß

DANISH XDANISH A, ß, Å , å

DUTCH XDUTCH ij, IJ

EEC_EURO --

EEC_EUROPA3 --

ESTONIAN --

FINNISH --

FRENCH XFRENCH

GERMAN XGERMAN ß

GERMAN_DIN XGERMAN_DIN ß, ä, ö, ü, Ä, Ö, Ü

GREEK --

HEBREW --

HUNGARIAN XHUNGARIAN cs, gy, ny, sz, ty, zs, ß, CS, Cs, GY, Gy, NY, Ny, SZ, Sz,
TY, Ty, ZS, Zs

ICELANDIC --

INDONESIAN --

ITALIAN --

JAPANESE --

LATIN --

LATVIAN --

LITHUANIAN --

MALAY --

NORWEGIAN --

POLISH --

PUNCTUATION XPUNCTUATION

ROMANIAN --

RUSSIAN --

Table 1–4 Linguistic Definitions

Basic Name Extended Name Special Cases
1-6 Oracle8i National Language Support Guide

Customization Features
Character Set Support
Oracle supports a large number of single-byte, multi-byte, and fixed-width

encoding schemes which are based on national, international, and vendor-specific

standards. See "Character Sets" on page A-6 for a complete list of supported

character sets.

Customization Features
Oracle allows you to customize character sets and calendars.

Character Set Customization
User-defined characters are sometimes needed to support special symbols,

vendor-specific characters, or characters that represent proper names, historical

terms, and so on. Developers can extend an existing character set definition by

using the Unicode Private Use Area. See "Customized Character Sets" on page B-1

for further information.

SLOVAK XSLOVAK dz, DZ, Dz, ß (caron)

SLOVENIAN XSLOVENIAN ß

SPANISH XSPANISH ch, ll, CH, Ch, LL, Ll

SWEDISH --

SWISS XSWISS ß

THAI_DICTIONARY --

THAI_TELEPHONE --

TURKISH XTURKISH æ, AE, ß

UKRAINIAN --

UNICODE_BINARY

VIETNAMESE --

WEST_EUROPEAN XWEST_EUROPEAN ß

Table 1–4 Linguistic Definitions

Basic Name Extended Name Special Cases
Understanding Oracle NLS 1-7

SQL Support
Calendar Customization
You can define ruler eras for imperial calendars, and deviation days for lunar

calendars. See "Customized Calendars" on page B-11 for further information.

SQL Support
NLS parameters can be used to modify the behavior of SQL functions. For instance,

SQL functions that deal with time, date, monetary, and numeric formats, as well as

sorting and character classification, can change behavior based on different NLS

parameters that are implicitly set in the users’ environment or explicitly set as a

parameter to a function call. See Chapter 4, "SQL Programming", for further

information about function calls and see Chapter 2, "Setting Up an NLS

Environment", for information about environment parameters.
1-8 Oracle8i National Language Support Guide

Setting Up an NLS Environ
2

Setting Up an NLS Environment

This chapter tells how to set up an NLS environment, and includes the following

topics:

■ Setting NLS Parameters

■ Choosing a Locale with NLS_LANG

■ Time Parameters

■ Date Parameters

■ Calendar Parameter

■ Numeric Parameters

■ Monetary Parameters

■ Collation Parameters

■ Character Set Parameters

Setting NLS Parameters
NLS parameters determine the locale-specific behavior on both the client and the

server. There are four ways to specify NLS parameters:

1. As initialization parameters on the server. Parameters can be included in the

initialization file (INIT.ORA) to specify a default server NLS environment.

These settings have no effect on the client side; they control only the server’s

behavior. For example:

NLS_TERRITORY = "CZECH REPUBLIC"
ment 2-1

Setting NLS Parameters
2. As environment variables on the client. NLS parameters can be used to specify

locale-dependent behavior for the client, overriding the defaults set for the

server in the initialization file. For example, on a UNIX system:

% setenv NLS_SORT FRENCH

3. As ALTER SESSION parameters. NLS parameters set in an ALTER SESSION

statement can be used to override the defaults set for the server in the

initialization file, or set by the client with environment variables.

SVRMGR> ALTER SESSION SET NLS_SORT = FRENCH

For a complete description of ALTER SESSION, see Oracle8i SQL Reference.

4. As a SQL function parameter. NLS parameters can be used explicitly to

hardcode NLS behavior within a SQL function. Doing so will override the

defaults set for the server in the initialization file, the client with environment

variables, or ALTER SESSION on the client. For example:

TO_CHAR(hiredate, ’DD/MON/YYYY’, ’nls_date_language = FRENCH’)

Table 2–1 shows the precedence order when using NLS parameters. Higher priority

settings will override lower priority settings. For example, a default value will have

the lowest possible priority, and can be overridden by any other method. And

explicitly setting an NLS parameter within a SQL function can override all other

settings — default, INIT.ORA, environment variable, and ALTER SESSION

parameters.

:

Table 2–1 Parameters and Their Priorities

Highest Priority

1 Explicitly set in SQL functions

2 Set by an ALTER SESSION statement

3 Set as an environment variable

4 Specified in the initialization parameter file

5 Default

Lowest Priority
2-2 Oracle8i National Language Support Guide

Choosing a Locale with NLS_LANG
Table 2–2 lists the NLS parameters available with the Oracle server.

 :

Choosing a Locale with NLS_LANG
A locale is a linguistic and cultural environment in which a system or program is

running. Setting the NLS_LANG parameter is the simplest way to specify locale

Table 2–2 Parameters and their Scope

Parameter Description Default

Scope
(I= INIT.ORA,
E= Environment
Variable,
A= Alter Session)

NLS_CALENDAR Calendar system Gregorian I, -, A

NLS_COMP SQL Operator comparison Binary -, E, A

NLS_CREDIT Credit accounting symbol NLS_TERRITORY I, E, A

NLS_CURRENCY Local currency symbol NLS_TERRITORY I, E, A

NLS_DATE_FORMAT Date format NLS_TERRITORY I, E, A

NLS_DATE_LANGUAGE Language for day and month
names

NLS_LANGUAGE I, E, A

NLS_DEBIT Debit accounting symbol NLS_TERRITORY I, E, A

NLS_ISO_CURRENCY ISO international currency
symbol

NLS_TERRITORY I, E, A

NLS_LANG Language, territory, character
set

American_
America.US7ASCII

-, E, -

NLS_LANGUAGE Language NLS_LANG I, -, A

NLS_LIST_SEPARATOR Character separating items in
a list

NLS_TERRITORY I, -, A

NLS_MONETARY_CHARACTERS Monetary symbol for dollar
and cents
(or their equivalents)

NLS_TERRITORY I, E, A

NLS_NCHAR National character set NLS_LANG -, E, -

NLS_NUMERIC_CHARACTERS Decimal character and group
separator

NLS_TERRITORY I, E, A

NLS_SORT Character Sort Sequence NLS_LANGUAGE I, E, A

NLS_TERRITORY Territory NLS_LANG I, -, A

NLS_DUAL_CURRENCY Dual currency symbol NLS_TERRITORY I, E, A
Setting Up an NLS Environment 2-3

Choosing a Locale with NLS_LANG
behavior. It sets the language, territory, and character set used by the database for

both the server session and the client application. Using this one parameter ensures

that the language and territory environment for both the server and client are the

same.

The NLS_LANG parameter has three components (language, territory, and charset) in
the form:

NLS_LANG = language_territory.charset

Each component controls the operation of a subset of NLS features.

Note: All components of the NLS_LANG definition are optional; any item left out

will default. If you specify territory or charset, you must include the preceding

delimiter [underscore (_) for territory, period (.) for charset], otherwise the value

will be parsed as a language name.

The three arguments of NLS_LANG can be specified in many combinations, as in

the following examples:

NLS_LANG = AMERICAN_AMERICA.US7ASCII

or

NLS_LANG = FRENCH_CANADA.WE8DEC

language Specifies conventions such as the language used for Oracle messages, day
names, and month names. Each supported language has a unique name; for
example, American, French, or German. The language argument specifies
default values for the territory and character set arguments, so either (or
both) territory or charset can be omitted. If language is not specified, the
value defaults to American. For a complete list of languages, see
"Languages".

territory Specifies conventions such as the default calendar, collation, date, monetary,
and numeric formats. Each supported territory has a unique name; for
example, America, France, or Canada. If territory is not specified, the value
defaults to America. For a complete list of territories, see "Territories".

charset Specifies the character set used by the client application (normally that of
the user’s terminal). Each supported character set has a unique acronym, for
example, US7ASCII, WE8ISO8859P1, WE8DEC, WE8EBCDIC500, or
JA16EUC. Each language has a default character set associated with it.
Default values for the languages available on your system are listed in the
installation or user’s guide. For a complete list of character sets, see
"Character Sets".
2-4 Oracle8i National Language Support Guide

Choosing a Locale with NLS_LANG
or

NLS_LANG = JAPANESE_JAPAN.JA16EUC

Note that illogical combinations could be set, but would not work properly. For

example, the following tries to support Japanese by using a Western European

character set:

NLS_LANG = JAPANESE_JAPAN.WE8DEC

Since WE8DEC does not support any Japanese characters, the result is that you will

be unable to store Japanese data.

Specifying NLS_LANG
You can set NLS_LANG as an environment variable at the command line. For

example, on UNIX, you could specify the value of NLS_LANG by entering the

following line at the prompt:

% setenv NLS_LANG FRENCH_FRANCE.WE8DEC

NLS_LANG Examples
Because NLS_LANG is an environment variable, it is read by the client application

at startup time. The client communicates the information defined by NLS_LANG to

the server when it connects.

The following examples show how date and number formats are affected by NLS_

LANG.

%seenv NLS_LANG American_America.WE8ISO8859P1
SVRMGR> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
--------- --------- ------
Clark 09-DEC-88 4195.83
Miller 23-MAR-92 4366.67
Strauß 01-APR-95 3795.87

If NLS_LANG is set with the language as French, the territory as France, and the

character set as Western European 8-bit ISO 8859-1, the same query returns:

%setenv NLS_LANG French_France.WE8ISO8859P1;
SVRMGR> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
--------- --------- -------
Clark 09/12/88 4195,83
Setting Up an NLS Environment 2-5

Choosing a Locale with NLS_LANG
Miller 23/03/92 4366,67
Strauß 01/04/95 3795,87

Overriding Language and Territory Specifications
NLS_LANG sets the NLS language and territory environment used by the database

for both the server session and the client application. Using the one parameter

ensures that the language environments of both database and client application are

automatically the same. But you might want to modify your environment further.

To do that, you can use NLS_LANGUAGE or NLS_TERRITORY.

NLS_LANGUAGE

NLS_LANGUAGE specifies the default conventions for the following session

characteristics:

■ language for server messages

■ language for day and month names and their abbreviations (specified in the

SQL functions TO_CHAR and TO_DATE)

■ symbols for equivalents of AM, PM, AD, and BC

■ default sorting sequence for character data when ORDER BY is specified

(GROUP BY uses a binary sort, unless ORDER BY is specified)

■ writing direction

■ affirmative/negative response strings

The value specified for NLS_LANGUAGE in the initialization file is the default for

all sessions in that instance.

For example, to specify the default session language as French, the parameter

should be set as follows:

NLS_LANGUAGE = FRENCH

In this case, the server message

ORA-00942: table or view does not exist

Parameter type: string

Parameter scope: Initialization Parameter and ALTER SESSION

Default value: NLS_LANG

Range of values: any valid language name
2-6 Oracle8i National Language Support Guide

Choosing a Locale with NLS_LANG
will appear as

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in the

ORA_RDBMS directory, or the equivalent. Multiple versions of these files can exist,

one for each supported language, using the filename convention

<product_id><language_abbrev>.MSB

For example, the file containing the server messages in French is called ORAF.MSB,

"F" being the language abbreviation for French.

Messages are stored in these files in one specific character set, depending on the

particular machine and operating system. If this is different from the database

character set, message text is automatically converted to the database character set.

If necessary, it will be further converted to the client character set if it is different

from the database character set. Hence, messages will be displayed correctly at the

user’s terminal, subject to the limitations of character set conversion.

The default value of NLS_LANGUAGE may be operating system specific. You can

alter the NLS_LANGUAGE parameter by changing the value in the initialization

file and then restarting the instance.

For more information on the default value, see your operating system-specific

Oracle documentation.

The following examples show behavior before and after setting NLS_LANGUAGE.

SVRMGR> ALTER SESSION SET NLS_LANGUAGE Italian
SVRMGR> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
----- -------- ---
Clark 09-Dic-88 4195.83
Miller 23-Mar-87 4366.67
Strauß 01-Apr-95 3795.87

SVRMGR> ALTER SESSION SET NLS_LANGUAGE German
SVRMGR> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
----- -------- ---
Clark 09-DEZ-88 4195.83
Miller 23-MÄR-87 4366.67
Strauß 01-APR-95 3795.87
Setting Up an NLS Environment 2-7

Choosing a Locale with NLS_LANG
NLS_TERRITORY

NLS_TERRITORY specifies the conventions for the following default date and

numeric formatting characteristics:

■ date format

■ decimal character and group separator

■ local currency symbol

■ ISO currency symbol

■ dual currency symbol

■ week start day

■ credit and debit symbol

■ ISO week flag

■ list separator

The value specified for NLS_TERRITORY in the initialization file is the default for

the instance. For example, to specify the default as France, the parameter should be

set as follows:

NLS_TERRITORY = FRANCE

In this case, numbers would be formatted using a comma as the decimal character.

You can alter the NLS_TERRITORY parameter by changing the value in the

initialization file and then restarting the instance. The default value of NLS_

TERRITORY can be operating system-specific.

The following examples show behavior before and after setting NLS_TERRITORY.

SQL> describe SalaryTable;
Name Null? TYPE
--------- ------- ------
SALARY NUMBER

Parameter type: string

Parameter scope: Initialization Parameter and ALTER SESSION

Default value: NLS_LANG

Range of values: any valid territory name
2-8 Oracle8i National Language Support Guide

Choosing a Locale with NLS_LANG
SQL> column SALARY format L999,999.99;
SQL> SELECT * from SalaryTable;
 SALARY

 $100,000.00
 $150,000.00

SQL> ALTER SESSION SET NLS_TERRITORY = Germany;
Session altered.

SQL> SELECT * from SalaryTable;
 SALARY

 DM100,000.00
 DM150,000.00

SQL> ALTER SESSION SET NLS_LANGUAGE = German;
Sitzung wurde geandert.

SQL> SELECT * from SalaryTable;
 SALARY

 DM100,000.00
 DM150,000.00

SQL> ALTER SESSION SET NLS_TERRITORY = France;
Sitzung wurde geandert.

SQL> SELECT * from SalaryTable;
 SALARY

 F100,000.00
 F150,000.00

Note that the symbol for currency units changed, but no monetary conversion

calculations were done.

ALTER SESSION
The default values for language and territory can be overridden during a session by

using the ALTER SESSION statement. For example:

% setenv NLS_LANG Italian_Italy.WE8DEC
Setting Up an NLS Environment 2-9

Choosing a Locale with NLS_LANG
SVRMGR> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
----- -------- ---
Clark 09-Dic-88 4195,83
Miller 23-Mar-87 4366,67
Strauß 01-Apr-95 3795,87

SVRMGR> ALTER SESSION SET NLS_LANGUAGE = German
2 > NLS_DATE_FORMAT = ’DD.MON.YY’
3 > NLS_NUMERIC_CHARACTERS = ’.,’;

SVRMGR> SELECT ename, hiredate, ROUND(sal/12,2) sal FROM emp;
ENAME HIREDATE SAL
----- -------- ---
Clark 09.DEZ.88 4195.83
Miller 23.MÄR.87 4366.67
Strauß 01.APR.95 3795.87

This feature implicitly determines the language environment of the database for

each session. An ALTER SESSION statement is automatically executed when a

session connects to a database to set the values of the database parameters NLS_

LANGUAGE and NLS_TERRITORY to those specified by the language and territory
arguments of NLS_LANG. If NLS_LANG is not defined, no implicit ALTER

SESSION statement is executed.

When NLS_LANG is defined, the implicit ALTER SESSION is executed for all

instances to which the session connects, for both direct and indirect connections. If

the values of NLS parameters are changed explicitly with ALTER SESSION during a

session, the changes are propagated to all instances to which that user session is

connected.

Messages and Text
All messages and text should be in the same language. For example, when running

a Developer 2000 application, messages and boilerplate text seen by the user

originate from three sources:

■ messages from the server

■ messages and boilerplate text generated by SQL*Forms

■ messages and boilerplate text defined as part of the application

The application is responsible for meeting the last requirement. NLS takes care of

the other two.
2-10 Oracle8i National Language Support Guide

Date Parameters
Time Parameters
Many different time formats are used throughout the world. Some typical ones are:

Date Parameters
Oracle allows you to control how dates appear through the use of date parameters.

Date Formats
Many different date formats are used throughout the world. Some typical ones are:

NLS_DATE_FORMAT

Country Description Example

Finland hh24:mi:ss 13:50:23

Germany hh24:mi:ss 13:50:23

Japan hh24:mi:ss 13:50:23

UK hh24:mi:ss 13:50:23

US hh:mi:ss am 1.50.23 PM

Country Description Example

Finland dd.mm.yyyy 28.02.1998

Germany dd.mm.yy 28.02.98

Japan yy-mm-dd 98-02-28

UK dd-mon-yy 28-Feb-98

US dd-mon-yy 28-Feb-98

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: default format for a particular territory

Range of values: any valid date format mask
Setting Up an NLS Environment 2-11

Date Parameters
This parameter defines the default date format to use with the TO_CHAR and TO_

DATE functions. The default value of this parameter is determined by NLS_

TERRITORY. The value of this parameter can be any valid date format mask, and

the value must be surrounded by quotation marks. For example:

NLS_DATE_FORMAT = "MM/DD/YYYY"

To add string literals to the date format, enclose the string literal with double

quotes. Note that every special character (such as the double quote) must be

preceded with an escape character. The entire expression must be surrounded with

single quotes. For example:

NLS_DATE_FORMAT = ’\"Today\’s date\" MM/DD/YYYY’

As another example, to set the default date format to display Roman numerals for

months, you would include the following line in the initialization file:

NLS_DATE_FORMAT = "DD RM YYYY"
With such a default date format, the following SELECT statement would return the

month using Roman numerals (assuming today’s date is February 12, 1997):

SELECT TO_CHAR(SYSDATE) CURRDATE
 FROM DUAL;
CURRDATE

12 II 1997

The value of this parameter is stored in the internal date format. Each format

element occupies two bytes, and each string occupies the number of bytes in the

string plus a terminator byte. Also, the entire format mask has a two-byte

terminator. For example, "MM/DD/YY" occupies 12 bytes internally because there

are three format elements, two one-byte strings (the two slashes), and the two-byte

terminator for the format mask. The format for the value of this parameter cannot

exceed 24 bytes.

Note: The applications you design may need to allow for a variable-length default

date format. Also, the parameter value must be surrounded by double quotes:

single quotes are interpreted as part of the format mask.

You can alter the default value of NLS_DATE_FORMAT by changing its value in

the initialization file and then restarting the instance, and you can alter the value

during a session using an ALTER SESSION SET NLS_DATE_FORMAT command.
2-12 Oracle8i National Language Support Guide

Date Parameters
Year 2000 Issues
Currently, the default date format for most territories specifies the year format as

"YY" to indicate the last 2 digits. If your applications are Year 2000 compliant, you

can safely specify the NLS_DATE_FORMAT using "YYYY" or "RRRR". If your

applications are not yet Year 2000 compliant, you may wish to specify the NLS_

DATE_FORMAT as "RR". The "RR" format will have the following effect: Given a

year with 2 digits, RR will return a year in the next century if the year is less than 50

and the last 2 digits of the current year are greater than or equal to 50; return a year

in the preceding century if the year is less than or equal to 50 and the last 2 digits of

the current year are less than 50.

See the Date Format Models section in the Oracle8i SQL Reference for full details on

Date Format Elements.

Date Formats and Partition Bound Expressions
Partition bound expressions for a date column must specify a date using a format

which requires that the month, day, and 4-digit year are fully specified. For

example, the date format MM-DD-YYYY requires that the month, day, and 4-digit

year are fully specified. In contrast, the date format DD-MON-YY (11-jan-97, for

example) is invalid because it relies on the current date for the century.

Use TO_DATE() to specify a date format which requires the full specification of

month, day, and 4-digit year. For example:

TO_DATE('11-jan-1997', 'dd-mon-yyyy')

If the default date format, specified by NLS_DATE_FORMAT, of your session does

not support specification of a date independent of current century (that is, if your

default date format is MM-DD-YY), you must take one of the following actions:

■ Use TO_DATE() to express the date in a format which requires you to fully

specify the day, month, and 4-digit year.

■ Change the value of NLS_DATE_FORMAT for the session to support the

specification of dates in a format which requires you to fully specify the day,

month, and 4-digit year.

For more information on using TO_DATE(), see Oracle8i SQL Reference.
Setting Up an NLS Environment 2-13

Date Parameters
NLS_DATE_LANGUAGE

This parameter specifies the language for the spelling of day and month names by

the functions TO_CHAR and TO_DATE, overriding that specified implicitly by

NLS_LANGUAGE. NLS_DATE_LANGUAGE has the same syntax as the NLS_

LANGUAGE parameter, and all supported languages are valid values. For

example, to specify the date language as French, the parameter should be set as

follows:

NLS_DATE_LANGUAGE = FRENCH

In this case, the query

SELECT TO_CHAR(SYSDATE, ’Day:Dd Month yyyy’)
 FROM DUAL;

would return

Mercredi:12 Février 1997

Month and day name abbreviations are also in the language specified, for example:

Me:12 Fév 1997

The default date format also uses the language-specific month name abbreviations.

For example, if the default date format is DD-MON-YYYY, the above date would be

inserted using:

INSERT INTO tablename VALUES (’12-Fév-1997’);

The abbreviations for AM, PM, AD, and BC are also returned in the language

specified by NLS_DATE_LANGUAGE. Note that numbers spelled using the TO_

CHAR function always use English spellings; for example:

SELECT TO_CHAR(TO_DATE(’12-Fév’),’Day: ddspth Month’)
 FROM DUAL;

would return:

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: default language for dates

Range of values: any valid language name
2-14 Oracle8i National Language Support Guide

Calendar Parameter
Mercredi: twenty-seventh Février

You can alter the default value of NLS_DATE_LANGUAGE by changing its value

in the initialization file and then restarting the instance, and you can alter the value

during a session using an ALTER SESSION SET NLS_DATE_LANGUAGE

command.

Calendar Parameter
Oracle allows you to control calendar-related items through the use of parameters.

Calendar Formats
The type of calendar information stored for each territory is as follows:

■ First Day of the Week

■ First Calendar Week of the Year

■ Number of Days and Months in a Year

■ First Year of Era

First Day of the Week
Some cultures consider Sunday to be the first day of the week. Others consider

Monday to be the first day of the week. A German calendar starts with Monday.

März 1998

Mo Di Mi Do Fr Sa So

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31
Setting Up an NLS Environment 2-15

Calendar Parameter
First Calendar Week of the Year
Many countries, Germany, for example, use weeks for scheduling, planning, and

bookkeeping. Oracle supports this convention.

In the ISO standard, the year relating to an ISO week number can be different from

the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A

week always starts on a Monday and ends on a Sunday.

■ If January 1 falls on a Friday, Saturday, or Sunday, then the week including

January 1 is the last week of the previous year, because most of the days in the

week belong to the previous year.

■ If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the

week is the first week of the new year, because most of the days in the week

belong to the new year.

To support the ISO standard, a format element IW is provided that returns the ISO

week number.

A typical example with four or more days in the first week is:

A typical example with three or fewer days in the first week is:

 January 1998

Mo Tu We Th Fr Sa Su

1 2 3 4 <= 1st week of 1998

5 6 7 8 9 10 11 <= 2nd week of 1998

12 13 14 15 16 17 18 <= 3rd week of 1998

19 20 21 22 23 24 25 <= 4th week of 1998

26 27 28 29 30 31 <= 5th week of 1998

 January 1999

Mo Tu We Th Fr Sa Su

1 2 3 <= 53rd week of 1998

4 5 6 7 8 9 10 <= 1st week of 1999

11 12 13 14 15 16 17 <= 2nd week of 1999
2-16 Oracle8i National Language Support Guide

Calendar Parameter
Number of Days and Months in a Year
Oracle supports six calendar systems, as well as the default Gregorian.

■ Japanese Imperial—uses the same number of months and days as Gregorian,

but the year starts with the beginning of each Imperial Era.

■ ROC Official—uses the same number of months and days as Gregorian, but the

year starts with the founding of the Republic of China.

■ Persian—has 12 months of equal length.

■ Thai Buddha—uses a Buddhist calendar.

■ Arabic Hijrah—has 12 months with 354 or 355 days.

■ English Hijrah—has 12 months with 354 or 355 days.

First Year of Era
The Islamic calendar starts from the year of the Hegira. The Japanese Imperial

calendar starts from the beginning of an Emperor’s reign. For example, 1998 is the

tenth year of the Heisei era. It should be noted, however, that the Gregorian system

is also widely understood, so both 98 and 10 can be used to represent 1998.

NLS_CALENDAR

Many different calendar systems are in use throughout the world. NLS_

CALENDAR specifies which calendar system Oracle uses.

NLS_CALENDAR can have one of the following values:

■ Arabic Hijrah

■ English Hijrah

18 19 20 21 22 23 24 <= 3rd week of 1999

25 26 27 28 29 30 31 <= 4th week of 1999

Parameter type: string

Parameter scope: Initialization Parameter and ALTER SESSION

Default value: Gregorian

Range of values: any valid calendar format name

 January 1999
Setting Up an NLS Environment 2-17

Numeric Parameters
■ Gregorian

■ Japanese Imperial

■ Persian

■ ROC Official (Republic of China)

■ Thai Buddha

For example, if NLS_CALENDAR is set to "Japanese Imperial", the date format is "E

YY-MM-DD", and the date is May 15, 1997, then the SYSDATE is displayed as

follows:

SELECT SYSDATE FROM DUAL;
SYSDATE

H 09-05-15

Numeric Parameters
Oracle allows you to control how numbers appear.

Numeric Formats
The database must know the number-formatting convention used in each session to

interpret numeric strings correctly. For example, the database needs to know

whether numbers are entered with a period or a comma as the decimal character

(234.00 or 234,00). Similarly, the application needs to be able to display numeric

information in the format expected at the client site.

Some typical formats are:

Country Example

Finland 1.234.567,89

Germany 1.234.567,89

Japan 1,234,567.89

UK 1,234,567.89

US 1,234,567.89
2-18 Oracle8i National Language Support Guide

Numeric Parameters
NLS_NUMERIC_CHARACTERS

This parameter specifies the decimal character and grouping separator, overriding

those defined implicitly by NLS_TERRITORY. The group separator is the character

that separates integer groups (that is, the thousands, millions, billions, and so on).

The decimal character separates the integer and decimal parts of a number.

Any character can be the decimal or group separator. The two characters specified

must be single-byte, and both characters must be different from each other. The

characters cannot be any numeric character or any of the following characters: plus

(+), hyphen (-), less than sign (<), greater than sign (>).

The characters are specified in the following format:

NLS_NUMERIC_CHARACTERS = "<decimal_character><group_separator>"

The grouping separator is the character returned by the number format mask G. For

example, to set the decimal character to a comma and the grouping separator to a

period, the parameter should be set as follows:

NLS_NUMERIC_CHARACTERS = ",."

Both characters are single byte and must be different. Either can be a space.

Note: When the decimal character is not a period (.) or when a group separator is

used, numbers appearing in SQL statements must be enclosed in quotes. For

example, with the value of NLS_NUMERIC_CHARACTERS above, the following

SQL statement requires quotation marks around the numeric literals:

INSERT INTO SIZES (ITEMID, WIDTH, QUANTITY)
 VALUES (618, ’45,5’, TO_NUMBER(’1.234’,’9G999’));

You can alter the default value of NLS_NUMERIC_CHARACTERS in either of these

ways:

■ Change the value of NLS_NUMERIC_CHARACTERS in the initialization file

and then restart the instance.

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: decimal character and group separator

Range of values: any valid numeric character format mask
Setting Up an NLS Environment 2-19

Monetary Parameters
■ Use the ALTER SESSION SET NLS_NUMERIC_CHARACTERS command to

change the parameter’s value during a session.

Monetary Parameters
Oracle allows you to control how currency and financial symbols appear.

Currency Formats
Many different currency formats are used throughout the world. Some typical ones

are:

NLS_CURRENCY

This parameter specifies the character string returned by the number format mask

L, the local currency symbol, overriding that defined implicitly by NLS_

TERRITORY. For example, to set the local currency symbol to "Dfl" (including a

space), the parameter should be set as follows:

NLS_CURRENCY = "Dfl "

In this case, the query

SELECT TO_CHAR(TOTAL, ’L099G999D99’) "TOTAL"
 FROM ORDERS WHERE CUSTNO = 586

Country Example

Finland 1.234,56 mk

Germany 1.234,56 DM

Japan ¥1,234.56

UK £1,234.56

US $1,234.56

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: local currency symbol

Range of values: any valid format name
2-20 Oracle8i National Language Support Guide

Monetary Parameters
would return

TOTAL

Dfl 12.673,49

You can alter the default value of NLS_CURRENCY by changing its value in the

initialization file and then restarting the instance, and you can alter its value during

a session using an ALTER SESSION SET NLS_CURRENCY command.

NLS_ISO_CURRENCY

This parameter specifies the character string returned by the number format mask

C, the ISO currency symbol, overriding that defined implicitly by NLS_

TERRITORY.

Local currency symbols can be ambiguous; for example, a dollar sign ($) can refer to

US dollars or Australian dollars. ISO Specification 4217 1987-07-15 defines unique

"international" currency symbols for the currencies of specific territories (or

countries).

For example, the ISO currency symbol for the US Dollar is USD, for the Australian

Dollar AUD. To specify the ISO currency symbol, the corresponding territory name

is used.

NLS_ISO_CURRENCY has the same syntax as the NLS_TERRITORY parameter,

and all supported territories are valid values. For example, to specify the ISO

currency symbol for France, the parameter should be set as follows:

NLS_ISO_CURRENCY = FRANCE

In this case, the query

SELECT TO_CHAR(TOTAL, ’C099G999D99’) "TOTAL"
 FROM ORDERS WHERE CUSTNO = 586

would return

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: ISO international currency symbol

Range of values: any valid territory name
Setting Up an NLS Environment 2-21

Monetary Parameters
TOTAL

FRF12.673,49

You can alter the default value of NLS_ISO_CURRENCY by changing its value in

the initialization file and then restarting the instance, and you can alter its value

during a session using an ALTER SESSION SET NLS_ISO_CURRENCY command.

Typical ISO currency symbols are:

NLS_DUAL_CURRENCY

This parameter can be used to override the default dual currency symbol defined in

the territory. When starting a new session without setting NLS_DUAL_

CURRENCY, you will use the default dual currency symbol defined in the territory

of your current language environment. When you set NLS_DUAL_CURRENCY,

you will start up a session with its value as the dual currency symbol.

NLS_DUAL_CURRENCY was introduced to help support the Euro. The following

character sets support the Euro symbol:

:

Country Example

Finland 1.234.567,89 FIM

Germany 1.234.567,89 DEM

Japan 1,234,567.89 JPY

UK 1,234,567.89 GBP

US 1,234,567.89 USD

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: Dual currency symbol

Range of values: any valid name

Table 2–3 Character Sets that Support the Euro Symbol

Name Description Euro Code Value

D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German 0x9F
2-22 Oracle8i National Language Support Guide

Monetary Parameters
NLS_MONETARY_CHARACTERS

NLS_MONETARY_CHARACTERS specifies the characters that indicate monetary

units, such as the dollar sign ($) for U.S. Dollars, and the cent symbol (¢) for cents.

The two characters specified must be single-byte and cannot be the same as each

other. They also cannot be any numeric character or any of the following characters:

plus (+), hyphen (-), less than sign (<), greater than sign (>).

DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish 0x5A

S8EBCDIC1142 EBCDIC Code Page 1143 8-bit Swedish 0x5A

I8EBCDIC1144 EBCDIC Code Page 1144 8-bit Italian 0x9F

F8EBCDIC1147 EBCDIC Code Page 1147 8-bit French 0x9F

WE8PC858 IBM-PC Code Page 858 8-bit West European 0xD5

WE8ISO8859P15 ISO 8859-15 West European 0xA4

EE8MSWIN1250 MS Windows Code Page 1250 8-bit East European 0x80

CL8MSWIN1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic 0x88

WE8MSWIN1252 MS Windows Code Page 1252 8-bit West European 0x80

EL8MSWIN1253 MS Windows Code Page 1253 8-bit Latin/Greek 0x80

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish 0x80

BLT8MSWIN1257 MS Windows Code Page 1257 Baltic 0x80

VN8MSWIN1258 MS Windows Code Page 1258 8-bit Vietnamese 0xA0

TH8TISASCII Thai Industrial 520-2533 - ASCII 8-bit 0x80

AL24UTFFSS Unicode 1.1 UTF-8 Universal character set U+20AC

UTF8 Unicode 2.0 UTF-8 Universal character set U+20AC

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: derived from NLS_TERRITORY

Range of values: any valid name

Table 2–3 Character Sets that Support the Euro Symbol
Setting Up an NLS Environment 2-23

Collation Parameters
NLS_CREDIT

NLS_CREDIT sets the symbol that displays a credit in financial reports. The default

value of this parameter is determined by NLS_TERRITORY.

NLS_DEBIT

NLS_DEBIT sets the symbol that displays a debit in financial reports. The default

value of this parameter is determined by NLS_TERRITORY.

Collation Parameters
Oracle allows you to choose how data is sorted through the use of collation

parameters.

Sorting Order
Different languages have different sort orders. What’s more, different cultures or

countries using the same alphabets may sort words differently. For example, the

German language sharp s (ß) is sorted differently in Germany and Austria. The

linguistic sort sequence German sorts this sequence as the two characters SS, while

the linguistic sort sequence Austrian sorts it as SZ. Another example is the

treatment of ö, o, and œ. They are sorted differently throughout the various

Germanic languages.

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: derived from NLS_TERRITORY

Range of values: any string, maximum of 9 bytes (not including null)

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: derived from NLS_TERRITORY

Range of values: any string, maximum of 9 bytes (not including null)
2-24 Oracle8i National Language Support Guide

Collation Parameters
Oracle provides many different types of sort, but achieving a linguistically correct

sort frequently harms performance. This is a trade-off the database administrator

needs to make on a case-by-case basis. A typical case would be when sorting

Spanish. In traditional Spanish, ch and ll are distinct characters, which means that

the correct order would be: cerveza, colorado, cheremoya, lago, luna, llama. But a true

linguistic sort will cause some performance degradation.

Sorting East Asian languages is difficult and complex. At present, Oracle typically

relies on the binary order of the particular character set for sorting East Asian

Languages. As an example, the Shift-JIS character set table is ordered by kanji

radicals, therefore, Oracle uses that binary order for its sorts in a Shift-JIS

environment.

Sorting Character Data
Conventionally, when character data is sorted, the sort sequence is based on the

numeric values of the characters defined by the character encoding scheme. Such a

sort is called a binary sort. Such a sort produces reasonable results for the English

alphabet because the ASCII and EBCDIC standards define the letters A to Z in

ascending numeric value.

Note, however, that in the ASCII standard, all uppercase letters appear before any

lowercase letters. In the EBCDIC standard, the opposite is true: all lowercase letters

appear before any uppercase letters.

Binary Sorts
When characters used in other languages are present, a binary sort generally does

not produce reasonable results. For example, an ascending ORDER BY query would

return the character strings ABC, ABZ, BCD, ÄBC, in that sequence, when the Ä has

a higher numeric value than B in the character encoding scheme.

Linguistic Sorts
To produce a sort sequence that matches the alphabetic sequence of characters for a

particular language, another sort technique must be used that sorts characters

independently of their numeric values in the character encoding scheme. This

technique is called a linguistic sort. A linguistic sort operates by replacing characters

with other binary values that reflect the character’s proper linguistic order so that a

binary sort returns the desired result.

The Oracle server provides both sort mechanisms. Linguistic sort sequences are

defined as part of language-dependent data. Each linguistic sort sequence has a
Setting Up an NLS Environment 2-25

Collation Parameters
unique name. NLS parameters define the sort mechanism for ORDER BY queries. A

default value can be specified, and this value can be overridden for each session

with the NLS_SORT parameter. A complete list of linguistic definitions is provided

in "Linguistic Definitions" on page A-17.

Warning: Linguistic sorting is not supported on Asian multi-byte character sets. If

the database character set is multi-byte, you will get binary sorting, which makes

the sort sequence dependent on the character set specification. There are two

exceptions to this rule: Japanese Hiragana/Katakana and the UTF8 character set.

This means that the Japanese Yomi sort is only possible by creating an extra column

using the Hiragana or Katakana reading for the kanji and sorting on that column.

Linguistic Indexes
You can create a function-based index which uses languages other than English. A

simple example is:

SVRMGR> CREATE INDEX nls_index ON my_table (NLSSORT(name, ’NLS_SORT = German’));

So, after

SVRMGR> SELECT * FROM my_table ORDER BY name;

rows will be returned using a German collation sequence.

For more information, see the description of function-based indexes in Oracle8i
Concepts.

Case-Insensitive Sorting
You can create a function-based index which allows case-insensitive searches. For

example:

SVRMGR> CREATE INDEX case_insensitive_ind ON my_table(NLS_UPPER(empname));
SVRMGR> SELECT * FROM my_table WHERE NLS_UPPER(empname) = ’KARL’;

For more information, see the description of function-based indexes in Oracle8i
Application Developer’s Guide - Fundamentals.

Linguistic Special Cases
Linguistic special cases are character sequences that need to be treated as a single

character when sorting. Such special cases are handled automatically when using a

linguistic sort. For example, one of the linguistic sort sequences for Spanish specifies

that the double characters ch and ll are sorted as single characters appearing

between c and d and between l and m respectively.
2-26 Oracle8i National Language Support Guide

Collation Parameters
Another example is the German language sharp s (ß). The linguistic sort sequence

German can sort this sequence as the two characters SS, while the linguistic sort

sequence Austrian sorts it as SZ.

Special cases like these are also handled when converting uppercase characters to

lowercase, and vice versa. For example, in German the uppercase of the sharp s (ß)

is the two characters SS. Such case-conversion issues are handled by the NLS_

UPPER, NLS_LOWER, and NLS_INITCAP functions, according to the conventions

established by the linguistic sort sequence. (The standard functions UPPER,

LOWER, and INITCAP do not handle these special cases.)

NLS_SORT

This parameter specifies the type of sort for character data, overriding that defined

implicitly by NLS_LANGUAGE.

The syntax of NLS_SORT is:

NLS_SORT = { BINARY | name }

BINARY specifies a binary sort and name specifies a particular linguistic sort sequence.

For example, to specify the linguistic sort sequence called German, the parameter should be

set as follows:

NLS_SORT = German

The name given to a linguistic sort sequence has no direct connection to language

names. Usually, however, each supported language will have an appropriate

linguistic sort sequence defined that uses the same name.

Note: When the NLS_SORT parameter is set to BINARY, the optimizer can in some

cases satisfy the ORDER BY clause without doing a sort (by choosing an index

scan). But when NLS_SORT is set to a linguistic sort, a sort is always needed to

satisfy the ORDER BY clause.

Parameter type: string

Parameter scope: Initialization Parameter, Environment Variable, and
ALTER SESSION

Default value: character sort sequence

Range of values: BINARY or any valid linguistic definition name
Setting Up an NLS Environment 2-27

Collation Parameters
You can alter the default value of NLS_SORT by changing its value in the

initialization file and then restarting the instance, and you can alter its value during

a session using an ALTER SESSION SET NLS_SORT command.

A complete list of linguistic definitions is provided in Table A–8, "Linguistic

Definitions".

NLS_COMP

This parameter lets you avoid the cumbersome process of using NLS_SORT in SQL

statements. Normally, comparison in the WHERE clause is binary. To use

linguistic comparison, the NLSSORT function must be used. Sometimes this can be

tedious, especially when the linguistic sort needed has already been specified in the

NLS_SORT session parameter. NLS_COMP can be used in such cases to indicate

that the comparisons must be linguistic according to the NLS_SORT session

parameter. This is done by altering the session:

SVRMGR> ALTER SESSION SET NLS_COMP = ANSI;

To specify that comparison in the WHERE clause is always binary, do

SVRMGR> ALTER SESSION SET NLS_COMP = BINARY;

As a final note, when NLS_COMP is set to ANSI, a linguistic index must exist on

the column where the linguistic order is desired.

To enable a linguistic index, use the syntax:

SVRMGR> CREATE INDEX i ON t(NLSSORT(col, ’NLSSORT=FRENCH’));

Parameter type: string

Parameter scope: Environment Variable and ALTER SESSION

Default value: binary

Range of values: BINARY or ANSI
2-28 Oracle8i National Language Support Guide

Character Set Parameters
NLS_LIST_SEPARATOR

NLS_LIST_SEPARATOR specifies the character to use to separate values in a list of

values.

The character specified must be single-byte and cannot be the same as either the

numeric or monetary decimal character, any numeric character, or any of the

following characters: plus (+), hyphen (-), less than sign (<), greater than sign (>),

period (.).

Character Set Parameters
Oracle allows you to specify the character set used for the client.

NLS_NCHAR

NLS_NCHAR specifies the character set used by the client application for national

character set data. If it is not specified, the client application uses the same character

set which it uses for the database character set data.

Parameter type: string

Parameter scope: Initialization Parameter and ALTER SESSION

Default value: derived from NLS_TERRITORY

Range of values: any valid character

Parameter type: string

Parameter scope: Environment Variable

Default value: derived from NLS_LANG

Range of values: any valid character set name
Setting Up an NLS Environment 2-29

Character Set Parameters
2-30 Oracle8i National Language Support Guide

Choosing a Charact
3

Choosing a Character Set

This chapter explains NLS topics that you need to know when choosing a character

set. These topics are:

■ What is an Encoded Character Set?

■ Which Characters to Encode?

■ How many Languages does a Character Set Support?

■ How are These Characters Encoded?

■ Oracle’s Naming Convention for Character Sets

■ Tips on Choosing an Oracle Database Character Set

■ Tips on Choosing an Oracle NCHAR Character Set

■ Considerations for Different Encoding Schemes

■ Naming Database Objects

■ Changing the Character Set After Database Creation

■ Customizing Character Sets

■ Monolingual Database Example

■ Multilingual Database Example
er Set 3-1

What is an Encoded Character Set?
What is an Encoded Character Set?
A character set is specified when creating a database, and your choice of character

set will determine what languages can be represented in the database. This choice

will influence how you create the database schema and develop applications that

process character data. It will also influence interoperability with operating system

resources and database performance.

When processing characters, computer systems handle character data as numeric

codes rather than as their graphical representation. For instance, when the database

stores the letter "A", it actually stores a numeric code that is interpreted by software

as that letter.

A group of characters (e.g., alphabetic characters, ideographs, symbols, punctuation

marks, control characters) can be encoded as a coded character set. A coded

character set assigns unique numeric codes to each character in the character

repertoire. The following table is an example of characters that are assigned a

numeric code value.

There are many different coded character sets used throughout the computer

industry and supported by Oracle. Oracle supports most national, international,

and vendor-specific encoded character set standards. The complete list of character

Table 3–1 Encoded Characters in the ASCII Character Set

Character Description Code Value

! Exclamation Mark 0x21

Number Sign 0x23

$ Dollar Sign 0x24

1 The Number 1 0x31

2 The Number 2 0x32

3 The Number 3 0x33

A An Uppercase A 0x41

B An Uppercase B 0x42

C An Uppercase C 0x43

a A Lowercase a 0x61

b A Lowercase b 0x62

c A Lowercase c 0x63
3-2 Oracle8i National Language Support Guide

Which Characters to Encode?
sets supported by Oracle is included in Appendix A, "Locale Data". Character sets

differ in:

■ the number of characters available

■ the particular characters (character repertoire) available

■ the writing script(s) and the languages therefore represented

■ the code values assigned to each character in the repertoire

■ the encoding scheme used to represent a character entity

These differences will be discussed throughout this chapter.

Which Characters to Encode?
The first choice to make when choosing a character set will be based on what

languages you wish to store in the database. The characters that are encoded in a

character set depend on the writing systems that will be represented.

Writing Systems
A writing system can be used to represent a language or group of languages. For

the purposes of this book, writing systems can be classified into two broad

categories, phonetic and ideographic.

Phonetic Writing Systems
Phonetic writing systems consist of symbols which represent different sounds

associated with a language. Greek, Latin, Cyrillic, and Devanagari are all example

of phonetic writing systems based on alphabets. Note that alphabets can represent

more than one language. For example, the Latin alphabet can represent many

Western European languages such as French, German, and English.

Characters associated with a phonetic writing system (alphabet) can typically be

encoded in one byte since the character repertoire is usually smaller than 256

characters.

Ideographic Writing Systems
Ideographic writing systems, in contrast, consist of ideographs or pictographs that

represent the meaning of a word, not the sounds of a language. Chinese and

Japanese are examples of ideographic writing systems which are based on tens of

thousands of ideographs. Languages that use ideographic writing systems may use
Choosing a Character Set 3-3

How many Languages does a Character Set Support?
a syllabary as well. Syllabaries provide a mechanism for communicating phonetic

information along with the pictographs when necessary. For instance, Japanese has

two syllabaries, katakana, normally used for foreign and onomatopoeic words.

Characters associated with an ideographic writing system must typically be

encoded in more than one byte because the character repertoire can be as large as

tens of thousands of characters.

Punctuation, Control Characters, Numbers, and Symbols
In addition to encoding the script of a language, other special characters need to be

encoded such as punctuation marks (e.g., commas, periods, apostrophes), numbers

(e.g., Arabic digits 0-9), special symbols (e.g., currency symbols, math operators)

and control characters for computers (e.g., carriage returns, tabs, NULL).

Writing Direction
Most Western languages are written left-to-right from the top to the bottom of the

page. East Asian languages are usually written top-to-bottom from the right to the

left of the page. Exceptions are frequently made for technical books translated from

Western languages.

Another consideration is that numbers reverse direction in Arabic and Hebrew. So,

even though the text is written right-to-left, numbers within the sentence are

written left-to-right. For example, "I wrote 32 books" would be written as "skoob 32

etorw I". Irrespective of the writing direction, Oracle stores the data in logical order.

Logical order means the order used by someone typing a language, not how it looks

on the screen.

How many Languages does a Character Set Support?
Different character sets support different character repertoires. Because character

sets are typically based on a particular writing script, they can thus support

different languages. When character sets were first developed in the United States,

they had a limited character repertoire that incorporated:

■ Upper and lower case English characters A-Z and a-z

■ Arabic digits 0-9

■ Punctuation characters ! " # $ % & () * + , - . / : ; < = > ? @

■ Some common control characters including NULL, carriage return, and delete
3-4 Oracle8i National Language Support Guide

How many Languages does a Character Set Support?
For example, the ASCII and IBM EBCDIC character sets support the same character

repertoire, but assign different code values to some of the characters. Table 3–2,

"7-Bit ASCII Coded Character Set" shows how ASCII is encoded. Row and column

headings denote hexadecimal digits. To find the encoded value of a character, read

the column number followed by the row number. For example, the value of A is

0x41.

Over the years, character sets evolved to support more than just monolingual

English in order to meet the growing needs of users around the world. New

character sets were quickly created to support other languages. Typically, these

new character sets supported a group of related languages, based on the same

script. For example, the ISO 8859 character set series was created based on many

national or regional standards to support different European languages.

Table 3–2 7-Bit ASCII Coded Character Set

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ’ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 TAB EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
Choosing a Character Set 3-5

How many Languages does a Character Set Support?
Character sets evolved and provided restricted multilingual support, restricted in

the sense that they were limited to groups of languages based on similar scripts.

More recently, there has been a push to remove boundaries and limitations on the

character data that can be represented through the use of an unrestricted or

universal character set. Unicode is one such universal character set that

encompasses most major scripts of the modern and ancient world. The Unicode

character set provides support for a character repertoire of approximately 39,000

characters and continues to grow.

Table 3–3 lSO 8859 Character Sets

Standard Languages Supported

ISO 8859-1 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Faeroese,
Finnish, French, German, Greenlandic, Icelandic, Irish Gaelic, Italian, Latin, Luxemburgish,
Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish)

ISO 8859-2 Eastern European (Albanian, Croatian, Czech, English, German, Hungarian, Latin, Polish,
Romanian, Slovak, Slovenian, Serbian)

ISO 8859-3 Southeastern European (Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,
Maltese, Spanish, Turkish)

ISO 8859-4 Northern European (Danish, English, Estonian, Finnish, German, Greenlandic, Latin,
Latvian, Lithuanian, Norwegian, Sámi, Slovenian, Swedish)

ISO 8859-5 Eastern European (Cyrillic-based: Bulgarian, Byelorussian, Macedonian, Russian, Serbian,
Ukrainian)

ISO 8859-6 Arabic

ISO 8859-7 Greek

ISO 8859-8 Hebrew

ISO 8859-9 Western European (Albanian, Basque, Breton, Catalan, Cornish, Danish, Dutch, English,
Finnish, French, Frisian, Galician, German, Greenlandic, Irish Gaelic, Italian, Latin,
Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish,
Swedish, Turkish)

ISO 8859-10 Northern European (Danish, English, Estonian, Faeroese, Finnish, German, Greenlandic,
Icelandic, Irish Gaelic, Latin, Lithuanian, Norwegian, Sámi, Slovenian, Swedish)

ISO 8859-15 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Estonian,
Faroese, Finnish, French, Frisian, Galician, German, Greenlandic, Icelandic, Irish Gaelic,
Italian, Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic,
Spanish, Swedish)
3-6 Oracle8i National Language Support Guide

How are These Characters Encoded?
How are These Characters Encoded?
Different types of encoding schemes have been created by the computer industry.

These schemes have different performance characteristics, and can influence your

database schema and application development requirements for handling character

data, so you need to be aware of the characteristics of the encoding scheme used by

the character set you choose. The character set you choose will typically use one of

the following types of encoding schemes.

Single-Byte Encoding Schemes
Single byte encoding schemes are the most efficient encoding schemes available.

They take up the least amount of space to represent characters and are easy to

process and program with because one character can be represented in one byte.

7-bit Encoding Schemes
Single-byte 7-bit encoding schemes can define up to 128 characters, and normally

support just one language. Two of the most popular single-byte character sets, used

since the early days of computing, are ASCII (American Standard Code for

Information Interchange) and US EBCDIC.
Choosing a Character Set 3-7

How are These Characters Encoded?
8-bit Encoding Schemes
Single-byte 8-bit encoding schemes can define up to 256 characters, and often

support a group of related languages. One example being ISO 8859-1, which

supports many Western European languages.

Multibyte Encoding Schemes
Multibyte encoding schemes are needed to support ideographic scripts used in

Asian languages like Chinese or Japanese since these languages use thousands of

characters. These schemes use either a fixed number of bytes to represent a

character or a variable number of bytes per character.

Fixed-width Encoding Schemes
In a fixed-width multibyte encoding scheme, each character is represented by a

fixed number of n bytes, where n>=2.

Variable-width Encoding Schemes
A variable-width encoding scheme uses one or more bytes to represent a single

character. Some multibyte encoding schemes use certain bits to indicate the number
3-8 Oracle8i National Language Support Guide

Tips on Choosing an Oracle Database Character Set
of bytes that will represent a character. For example, if two bytes is the maximum

number of bytes used to represent a character, the most significant bit can be

toggled to indicate whether that byte is part of a single-byte character or the second

byte of a double-byte character. In other schemes, control codes differentiate

single-byte from double-byte characters. Another possibility is that a shift-out code

will be used to indicate that the following bytes are double-byte characters until a

shift-in code is encountered.

Oracle’s Naming Convention for Character Sets
Oracle uses the following naming convention for character set names:

<language_or_region><#_of_bits_representing_a_char><standard_name>[S] [C]
[FIXED]

For instance:

The optional "S" or "C" at the end of the character set name is sometimes used to

help differentiate character sets that can only be used on the server (S) or client (C).

On Macintosh platforms, the server character set should always be used. The

Macintosh client character sets are now obsolete. On EBCDIC platforms, if

available, the ’S’ version should be used on the server and the ’C’ version on the

client.

The optional "FIXED" at the end of the character set name is used to denote a

fixed-width multibyte encoding.

Tips on Choosing an Oracle Database Character Set
Oracle uses the database character set for:

■ data stored in CHAR, VARCHAR2, CLOB, and LONG columns

■ identifiers such as table names, column names, and PL/SQL variables

■ entering and storing SQL and PL/SQL program source

US7ASCII is the U.S. 7-bit ASCII character set

WE8ISO8859P1 is the Western European 8-bit ISO 8859 Part 1 character set

JA16SJIS is the Japanese 16-bit Shifted Japanese Industrial Standard character set
Choosing a Character Set 3-9

Tips on Choosing an Oracle Database Character Set
Four things you should consider when choosing an Oracle character set for the

database are:

1. What languages does the database need to support?

2. Interoperability with system resources and applications

3. Performance implications

4. Restrictions

Several character sets may meet your current language requirements, but you

should consider future language requirements as well. If you know that you will

need to expand support in the future for different languages, picking a character set

with a wider range now will obviate the need for migration later. The Oracle

character sets listed in Appendix A, "Locale Data" are named according to the

languages and regions which are covered by a particular character set. In the case

of regions covered, some character sets, the ISO character sets for instance, are also

listed explicitly by language. You may want to see the actual characters that are

encoded in some cases. The actual code pages are not listed in this manual,

however, since most are based on national, international, or vendor product

documentation, or are available in standards documents.

Interoperability with System Resources and Applications
While the database maintains and processes the actual character data, there are

other resources that you must depend on from the operating system. For instance,

the operating system supplies fonts that correspond to the character set you have

chosen. Input methods that support the language(s) desired and application

software must also be compatible with a particular character set.

Ideally, a character set should be available on the operating system and is handled

by your application to ensure seamless integration.

Character Set Conversion
If you choose a character set that is different from what is available on the operating

system, Oracle can handle character set conversion from the database character set

to the operating system character set. However, there is some character set

conversion overhead, and you need to make sure that the operating system

character set has an equivalent character repertoire to avoid any possible data loss.

Also note that character set conversions can sometimes cause data loss. For

example, if you are converting from character set A to character set B, the

destination character set (B) must have the same character set repertoire as A. Any
3-10 Oracle8i National Language Support Guide

Tips on Choosing an Oracle Database Character Set
characters that are not available in character set B will be converted to a

replacement character, which is most often specified as "?" or a linguistically related

character. For example, ä (a with an umlaut) will be converted to "a". If you have

distributed environments, consider using character sets with similar character

repertoires to avoid loss of data.

Character set conversion may require copying strings between buffers several times

with Oracle before the data reaches the client. Therefore, using the same character

sets for the client and the server can avoid character set conversion, and thus

optimize performance.

Database Schema
The character datatypes CHAR and VARCHAR2 are specified in bytes, not

characters. Hence, the specification CHAR(20) in a table definition allows 20 bytes

for storing character data.

This works out well if the database character set uses a single-byte character

encoding scheme because the number of characters will be the same as the number

of bytes. If the database character set uses a multibyte character encoding scheme,

there will be no such correspondence. That is, the number of bytes will no longer

equal the number of characters since a character can consist of one or more bytes.

Thus, column widths must be chosen with care to allow for the maximum possible

number of bytes for a given number of characters.

Performance Implications
There can be different performance overheads in handling different encoding

schemes depending on the character set chosen. For best performance, you should

try to choose a character set that avoids character conversion and uses the most

efficient encoding for the languages desired. Single-byte character sets are more

optimal for performance than multi-byte character sets, and they also are the most

efficient in terms of space requirements.

Restrictions
You cannot currently choose an Oracle database character set that is a fixed-width

multibyte character set. In particular, the following character sets cannot be used as

the database character set:
Choosing a Character Set 3-11

Tips on Choosing an Oracle NCHAR Character Set
Tips on Choosing an Oracle NCHAR Character Set
In some cases, you may wish to have the ability to choose an alternate character set

for the database because the properties of a different character encoding scheme

may be more desirable for extensive character processing operations, or to facilitate

ease-of-programming. In particular, the following data types can be used with an

alternate character set:

■ NCHAR

■ NVARCHAR2

■ NCLOB

Specifying an NCHAR character set allows you to specify an alternate character set

from the database character set for use in NCHAR, NVARCHAR2, and NCLOB

columns. This can be particularly useful for customers using a variable-width

multibyte database character set because NCHAR has the capability to support

fixed-width multibyte encoding schemes, whereas the database character set

cannot. The benefits in using a fixed-width multibyte encoding over a

variable-width one are:

■ optimized string processing performance on NCHAR, NVARCHAR2, and

NCLOB columns

■ ease-of-programming with a fixed-width multibyte character set as opposed to

a variable-width multibyte character set

When choosing an NCHAR character set, you must ensure that the NCHAR

character repertoire is equivalent to or a subset of the database character set

repertoire.

Note: all SQL commands will use the database character set, not the NCHAR

character set. Therefore, literals can only be specified in the database character set.

JA16EUCFIXED

ZHS16GBKFIXED

JA16DBCSFIXED

KO16DBCSFIXED

ZHS16DBCSFIXED

JA16SJISFIXED

ZHT32TRISFIXED
3-12 Oracle8i National Language Support Guide

Considerations for Different Encoding Schemes
Database Schema
When using the NCHAR, NVARCHAR2, and NCLOB data types, the width

specification can be in terms of bytes or characters depending on the encoding

scheme used. If the NCHAR character set uses a variable-width multibyte

encoding scheme, the width specification refers to bytes. If the NCHAR character

set uses a fixed-width multibyte encoding scheme, the width specification will be in

characters. For example, NCHAR(20). using the variable-width multibyte character

set JA16EUC will allocate 20 bytes while NCHAR(20) using the fixed-width

multibyte character set JA16EUCFIXED will allocate 40 bytes.

Performance Implications
Some string operations will be faster if you choose a fixed-width character set for

the national character set. For instance, string-intensive operations such as the SQL

LIKE operator used on a NCHAR fixed-width column will outperform LIKE

operations on a multi-byte column. A possible usage scenario is as follows:

Restrictions
Since SQL text can only be represented by the database character set, and not the

NCHAR character set, you must choose a NCHAR character set with which either

has an equivalent or subset character repertoire of the database character set.

Considerations for Different Encoding Schemes
There are several points to keep in mind when dealing with encoding schemes.

Be Careful when Mixing Fixed-Width and Varying-Width Character Sets
Because fixed-width multi-byte character sets are measured in characters but

varying-width character sets are measured in bytes, be careful if you use a

fixed-width multi-byte character set as your national character set on one platform

and a varying-width character set on another platform.

For example, if you use %TYPE or a named type to declare an item on one platform

using the declaration information of an item from the other platform, you might

receive a constraint limit too small to support the data. For example, "NCHAR (10)"

Database Character Set NCHAR Character Set

JA16EUC JA16EUCFIXED
Choosing a Character Set 3-13

Naming Database Objects
on the platform using the fixed-width multi-byte set will allocate enough space for

10 characters, but if %TYPE or the use of a named type creates a correspondingly

typed item on the other platform, it will allocate only 10 bytes. Usually, this is not

enough for 10 characters. To be safe, do one of the following:

■ Do not mix fixed-width multi-byte and varying-width character sets as the

national character set on different platforms.

■ If you do mix fixed-width multi-byte and varying-width character sets as the

national character set on different platforms, use varying-length type

declarations with relatively large constraint values.

Storing Data in Multi-Byte Character Sets
Width specifications of the character datatypes CHAR and VARCHAR2 refer to

bytes, not characters. Hence, the specification CHAR(20) in a table definition allows

20 bytes for storing character data.

If the database character set is single byte, the number of characters and number of

bytes will be the same. If the database character set is multi-byte, there will in

general be no such correspondence. A character can consist of one or more bytes,

depending on the specific multi-byte encoding scheme and whether shift-in/shift-out
control codes are present. Hence, column widths must be chosen with care to allow for the

maximum possible number of bytes for a given number of characters.

When using the NCHAR and NVARCHAR2 data types, the width specification

refers to characters if the national character set is fixed-width multi-byte. Otherwise,

the width specification refers to bytes.

 A separate performance issue is space efficiency (and thus speed) when using

smaller-width character sets. These issues potentially trade-off against each other

when the choice is between a varying-width and a fixed-width character set.

Naming Database Objects
Oracle allows you to name database objects.

Restrictions on Character Sets Used to Express Names and Text
Table 3–4 lists the restrictions on the character sets that can be used to express

names and other text in Oracle.
3-14 Oracle8i National Language Support Guide

Naming Database Objects
For a list of supported string formats and character sets, including LOB data (LOB,

BLOB, CLOB, and NCLOB), see Table 3–6.

The character encoding scheme used by the database is defined at database creation

as part of the CREATE DATABASE statement. All data columns of type CHAR,

CLOB, VARCHAR2, and LONG, including columns in the data dictionary, have

their data stored in the database character set. In addition, the choice of database

character set determines which characters can name objects in the database. Data

columns of type NCHAR, NCLOB, and NVARCHAR2 use the national character

set.

Once the database is created, the character set choices cannot be changed without

re-creating the database. Hence, it is important to consider carefully which character

set(s) to use. The database character set should always be a superset or equivalent

of the client’s operating system’s native character set. The character sets used by

client applications that access the database will usually determine which superset is

the best choice.

Table 3–4 Restrictions on Character Sets Used to Express Names and Text

Name

Single-
Byte
Fixed

Varying
Width

Multi-Byte
Fixed Width
character sets Comments

comments Yes Yes Yes

database link names Yes No No

database names Yes No No

filenames (datafile, logfile,
controlfile, initialization
parameter file)

Yes No No

instance names Yes No No

directory names Yes No No

keywords Yes No No Can be expressed in English
only

recovery manager filenames Yes No No

rollback segment names Yes No No The ROLLBACK_SEGMENTS
parameter does not support
NLS

stored script names Yes Yes No

tablespace names Yes Yes No
Choosing a Character Set 3-15

Naming Database Objects
If all client applications use the same character set, then this is the normal choice for

the database character set. When client applications use different character sets, the

database character set should be a superset (or equivalent) of all the client character

sets. This will ensure that every character is represented when converting from a

client character set to the database character set.

When a client application operates with a terminal that uses a different character

set, then the client application’s characters must be converted to the database

character set, and vice versa. This conversion is performed automatically, and is

transparent to the client application. The character set used by the client application

is defined by the NLS_LANG parameter. Similarly, the character set used for

national character set data is defined by the NLS_NCHAR parameter.

Summary of Data Types and Supported Encoding Schemes
Table 3–5 lists the supported encoding schemes associated with different datatypes.

Table 3–6 lists the supported data types associated with Abstract Data Types (ADT).

Note: BLOBs process characters as a series of byte sequences. The data is not

subject to any NLS-sensitive operations.

Table 3–5 Supported Encoding Schemes for Data Types

Data
Type Single-Byte

Multi-byte
Varying Width

Multi-byte
Fixed Width

CHAR Yes Yes No

NCHAR Yes Yes Yes

BLOB Yes Yes Yes

CLOB Yes Yes No

NCLOB Yes Yes Yes

Table 3–6 Supported Data Types for Abstract Data Types

Abstract DataType CHAR NCHAR BLOB CLOB NCLOB

Object Yes No Yes Yes No

Collection Yes No Yes Yes No
3-16 Oracle8i National Language Support Guide

Changing the Character Set After Database Creation
Changing the Character Set After Database Creation
In some cases, you may wish to change the existing database character set. For

instance, you may find that the number of languages that need to be supported in

your database have increased. In most cases, you will need to do a full

export/import to properly convert all data to the new character set. However, if

and only if, the new character set is a strict superset of the current character set, it is

possible to use the ALTER DATABASE CHARACTER SET to expedite the change in

the database character set.

The target character set is a strict superset if and only if each and every codepoint in

the source character set is available in the target character set, with the same

corresponding codepoint value. For instance the following migration scenarios can

take advantage of the ALTER DATABASE CHARACTER SET command since

US7ASCII is a strict subset of WE8ISO8859P1, AL24UTFFSS, and UTF8:

WARNING: Attempting to change the database character set to a character set that

is not a strict superset can result in data loss and data corruption. To ensure data

integrity, whenever migrating to a new character set that is not a strict superset, you

must use export/import. It is essential to do a full backup of the database before

using the ALTER DATABASE [NATIONAL] CHARACTER SET statement, since the

command cannot be rolled back. The syntax is:

ALTER DATABASE [<db_name>] CHARACTER SET <new_character_set>;
ALTER DATABASE [<db_name>] NATIONAL CHARACTER SET <new_NCHAR_character_set>;

The database name is optional. The character set name should be specified without

quotes, for example:

ALTER DATABASE CHARACTER SET WE8ISO8859P1;

To change the database character set, perform the following steps. Not all of them

are absolutely necessary, but they are highly recommended:

SQL> SHUTDOWN IMMEDIATE; -- or NORMAL
 <do a full backup>

Current Character Set New Character Set New Character Set is strict
superset?

US7ASCII WE8ISO8859P1 yes

US7ASCII ALT24UTFFSS yes

US7ASCII UTF8 yes
Choosing a Character Set 3-17

Customizing Character Sets
SQL> STARTUP MOUNT;
SQL> ALTER SYSTEM ENABLE RESTRICED SESSION;
SQL> ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;
SQL> ALTER DATABASE OPEN;
SQL> ALTER DATABASE CHARACTER SET <new_character_set_name>;
SQL> SHUTDOWN IMMEDIATE; -- or NORMAL
SQL> STARTUP;

To change the national character set, replace the ALTER DATABASE CHARACTER

SET statement with ALTER DATABASE NATIONAL CHARACTER SET. You can

issue both commands together if desired.

Customizing Character Sets
In some cases, you may wish to tailor a character set to meet specific user needs. In

Oracle8i, users can extend an existing encoded character set definition to suit their

needs. User-defined Characters (UDC) are often used to encode special characters

representing.

■ proper names

■ historical Han characters which are not defined in an existing character set

standard

■ vendor-specific characters

■ new symbols or characters you define, etc.

This section describes how Oracle supports UDC. It describes:

■ Character sets with User-defined Characters

■ Understanding Oracle’s character set conversion architecture

■ Unicode 2.0 Private Use Area

■ UDC cross reference

Character Sets with User-Defined Characters
User-defined characters are typically supported within East Asian character sets.

These East Asian character sets have at least one range of reserved codepoints for

use as user-defined characters. For example, Japanese Shift JIS preserves 1880

codepoints for UDC as follows:
3-18 Oracle8i National Language Support Guide

Customizing Character Sets
The Oracle character sets listed below contain pre-defined ranges that allow you to

support User Defined Characters:

Japanese Shift JIS UDC Range Number of Codepoints

0xf040-0xf07e, 0xf080-0xf0fc 188

0xf140-0xf17e, 0xf180-0xf1fc 188

0xf240-0xf27e, 0xf280-0xf2fc 188

0xf340-0xf37e, 0xf380-0xf3fc 188

0xf440-0xf47e, 0xf480-0xf4fc 188

0xf540-0xf57e, 0xf580-0xf5fc 188

0xf640-0xf67e, 0xf680-0xf6fc 188

0xf740-0xf77e, 0xf780-0xf7fc 188

0xf840-0xf87e, 0xf880-0xf8fc 188

0xf940-0xf97e, 0xf980-0xf9fc 188

Table 3–7 Oracle character sets with UDC

Character Set Name # of UDC codepoints available

JA16DBCS 4370

JA16DBCSFIXED 4370

JA16EBCDIC930 4370

JA16SJIS 1880

JA16SJISFIXED 1880

JA16SJISYEN 1880

KO16DBCS 1880

KO16DBCSFIXED 1880

KO16MSWIN949 1880

ZHS16DBCS 1880

ZHS16DBCSFIXED 1880

ZHS16GBK 2149

ZHS16GBKFIXED 2149
Choosing a Character Set 3-19

Customizing Character Sets
Oracle’s Character Set Conversion Architecture
The codepoint value that represents a particular character may vary among

different character sets. For example, the Japanese kanji character

 is encoded as follows in different Japanese character sets:

In Oracle, all character sets are defined in terms of a Unicode 2.0 code point. That is

each character is defined as a Unicode 2.0 code value. Character conversion takes

place transparently to users by using Unicode as the intermediate form. For

example, when a JA16SJIS client connects to a JA16EUC database, the character

(value 0x88F9) entered from the JA16SJIS client is internally converted to Unicode

(value 0x4E9C), then it is converted to JA16EUC(value 0xB0A1).

Unicode 2.0 Private Use Area
Unicode 2.0 reserves the range 0xE000-0xF8FF for the Private Use Area (PUA). The

PUA is intended for private use character definition by end users or vendors.

UDC can be converted between two Oracle character sets by using Unicode 2.0

PUA as the intermediate form as same as standard characters.

ZHT16DBCS 6204

ZHT16MSWIN950 6217

Character Set Unicode JA16SJIS JA16EUC JA16DBCS

Character Value of 0x4E9C 0x88F9 0xB0A1 0x4867

Table 3–7 Oracle character sets with UDC
3-20 Oracle8i National Language Support Guide

Monolingual Database Example
UDC Cross References
UDC cross references between Japanese character sets, Korean character sets,

Simplified Chinese character sets and Traditional Chinese character sets are

contained in the following distribution sets:

${ORACLE_HOME}/ocommon/nls/demo/udc_ja.txt
${ORACLE_HOME}/ocommon/nls/demo/udc_ko.txt
${ORACLE_HOME}/ocommon/nls/demo/udc_zhs.txt
${ORACLE_HOME}/ocommon/nls/demo/udc_zht.txt

These cross references are useful when registering User Defined Characters across

operating systems. For example, when registering a new UDC on both Japanese

Shift-JIS operating system and Japanese IBM Host operating system, you may want

to pick up 0xF040 on Shift-JIS operating system and 0x6941 on IBM Host operating

system for the new UDC so that Oracle is able to convert correctly between JA16SJIS

and JA16DBCS. You can find out that both Shift-JIS UDC value 0xF040 and IBM

Host UDC value 0x6941 are mapped to same Unicode PUA value 0xE000 in the

UDC cross reference.

For further details on how to customize a character set definition file, see

Appendix B, "Customizing Locale Data".

Monolingual Database Example

Same Character Set on the Client and the Server
The simplest example of an NLS database setup is as follows. Both the client and

server are running with the same language environment, and are both using the

same character encoding. The monolingual scenario has the advantage of fast

response because the overhead associated with character set conversion is avoided.

Unix
(JA16EUC)

Japanese
Server

(JA16EUC)
Choosing a Character Set 3-21

Monolingual Database Example
Character Set Conversion
Character set conversion is often necessary in a client/server computing

environment where a client application may reside on a different computer

platform from that of the server, and both platforms may not use the same character

encoding schemes. Character data passed between client and server has to be

converted between the two encoding schemes. Character conversion occurs

automatically and transparently via Net8.

A conversion is possible between any two character sets. For example,

However, in cases where a target character set does not contain all characters in the

source data, replacement characters must be used. If, for example, a server used

US7ASCII and a German client WE8ISO8859P1, the German character ß would be

replaced with ? and the character ä would be replaced with a.

Replacement characters may be defined for specific characters as part of a character

set definition. Where a specific replacement character is not defined, a default

replacement character is used. To avoid the use of replacement characters when

converting from client to database character set, the server character set should be a

superset (or equivalent) of all the client character sets. In the above example, the

server’s character set was not chosen wisely. If German data is expected to be

stored on the server, a character set which supports German letters is needed, for

example, WE8ISO8859P1 for both the server and the client.

Unix
(JA16EUC)

Windows
(JA16SJIS)

Japanese
Server

(JA16EUC)

Character
Conversion
3-22 Oracle8i National Language Support Guide

Multilingual Database Example
In some varying-width multi-byte cases, character set conversion may introduce

noticeable overhead. Users need to carefully evaluate their situation and choose

character sets to avoid conversion as much as possible. Having the appropriate

character set for the database and the client will avoid the overhead of character

conversion, as well as any possible data loss.

Multilingual Database Example
Note that some character sets support multiple languages. For example,

WE8ISO8859P1 supports the following Western European languages:

This is because they are all based on a similar writing script. This situation is often

called restricted multilingual support. Restricted because this character set supports

a group of related languages. In this case, ISO8859-1 supports Latin-based

languages.

Restricted Multilingual Support
In the following graphic, both clients have access to the server’s data.

Danish Finnish Italian Swedish

Dutch French Norwegian

English German Portuguese

Faeroese Icelandic Spanish
Choosing a Character Set 3-23

Multilingual Database Example
Unrestricted Multilingual Support
Often, unrestricted multilingual support is needed, and a universal character set

such as Unicode is necessary as the server database character set. Unicode has two

major encoding schemes: UCS-2 and UTF-8. UCS-2 is a two-byte fixed-width

format; UTF-8 is a multi-byte format with a variable width. Oracle8i provides

support for the UTF-8 format. This enhancement is transparent to clients who

already provide support for multi-byte character sets.

Character set conversion between a UTF8 database and any single-byte character

set introduces very little overhead. Conversion between UTF8 and any multi-byte

character set has some overhead but there is no conversion loss problem.

The following diagram shows how a database can support many different

languages. Here, Japanese, French, and German clients are all accessing the same

database based on the Unicode character set.

German
(WE8DEC)

French
(WE8ISO8859P1)

Western
European

Server
(WE8ISO8859P1)

Character
Conversion
3-24 Oracle8i National Language Support Guide

Multilingual Database Example
Unicode
Database

(UTF8)

Germ
an

Data

French

Data

Ja
pa

ne
se

Dat
a

Japanese
Client

(JA16SJIS)

German
Client

(WE8DEC)

French
Client

(WE8ISO8859P1)

Japanese
Client

(JA16EUC)

Character
Conversion

Character
Conversion

Character
Conversion

Character
Conversion
Choosing a Character Set 3-25

Multilingual Database Example
3-26 Oracle8i National Language Support Guide

SQL Program
4

SQL Programming

This chapter contains information useful for SQL programming in an NLS

environment, including:

■ Locale-Dependent SQL Functions

■ Time/Date/Calendar Formats

■ Numeric Formats

■ Miscellaneous Topics

Locale-Dependent SQL Functions
All SQL functions whose behavior depends on NLS conventions allow NLS

parameters to be specified. These functions are:

■ TO_CHAR

■ TO_DATE

■ TO_NUMBER

■ NLS_UPPER

■ NLS_LOWER

■ NLS_INITCAP

■ NLSSORT

Explicitly specifying the optional NLS parameters for these functions allows the

function evaluations to be independent of the NLS parameters in force for the

session. This feature may be important for SQL statements that contain numbers

and dates as string literals.
ming 4-1

Locale-Dependent SQL Functions
For example, the following query is evaluated correctly only if the language

specified for dates is American:

SELECT ENAME FROM EMP
WHERE HIREDATE > ’1-JAN-91’

Such a query can be made independent of the current date language by using these

statements:

SELECT ENAME FROM EMP
WHERE HIREDATE > TO_DATE(’1-JAN-91’,’DD-MON-YY’,
 ’NLS_DATE_LANGUAGE = AMERICAN’)

In this way, language-independent SQL statements can be defined where necessary.

For example, such statements might be necessary when string literals appear in SQL

statements in views, CHECK constraints, or triggers.

All character functions support both single-byte and multi-byte characters. Except

where explicitly stated, character functions operate character-by-character, rather

than byte-by-byte.

Default Specifications
When evaluating views and triggers, default values for NLS function parameters

are taken from the values currently in force for the session. When evaluating

CHECK constraints, default values are set by the NLS parameters that were

specified at database creation.

Specifying Parameters
The syntax that specifies NLS parameters in SQL functions is:

’parameter = value’

The following NLS parameters can be specified:

■ NLS_DATE_LANGUAGE

■ NLS_NUMERIC_CHARACTERS

■ NLS_CURRENCY

■ NLS_ISO_CURRENCY

■ NLS_SORT

Only certain NLS parameters are valid for particular SQL functions, as follows:
4-2 Oracle8i National Language Support Guide

Locale-Dependent SQL Functions
Examples of the use of NLS parameters are:

TO_DATE (’1-JAN-89’, ’DD-MON-YY’,
 ’nls_date_language = American’)

TO_CHAR (hiredate, ’DD/MON/YYYY’,
 ’nls_date_language = French’)

TO_NUMBER (’13.000,00’, ’99G999D99’,
 ’nls_numeric_characters = ’’.,’’’)

TO_CHAR (sal, ’9G999D99L’, ’nls_numeric_characters = ’’.,’’
 nls_currency = ’’Dfl ’’’)

TO_CHAR (sal, ’9G999D99C’, ’nls_numeric_characters = ’’,.’’
 nls_iso_currency = Japan’)

NLS_UPPER (ename, ’nls_sort = Austrian’)

NLSSORT (ename, ’nls_sort = German’)

Note: For some languages, various lowercase characters correspond to a sequence

of uppercase characters, or vice versa. As a result, the output from NLS_UPPER,

NLS_LOWER, and NLS_INITCAP can differ from the length of the input.

SQL Function NLS Parameter

TO_DATE NLS_DATE_LANGUAGE
NLS_CALENDAR

TO_NUMBER: NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY

TO_CHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_CALENDAR

NLS_UPPER NLS_SORT

NLS_LOWER NLS_SORT

NLS_INITCAP NLS_SORT

NLSSORT NLS_SORT
SQL Programming 4-3

Locale-Dependent SQL Functions
Unacceptable Parameters
Note that NLS_LANGUAGE and NLS_TERRITORY are not accepted as parameters

in SQL functions, except for NLSSORT. Only NLS parameters that explicitly define

the specific data items required for unambiguous interpretation of a format are

accepted. NLS_DATE_FORMAT is also not accepted as a parameter for the reason

described below.

If an NLS parameter is specified in TO_CHAR, TO_NUMBER, or TO_DATE, a

format mask must also be specified as the second parameter. For example, the

following specification is legal:

TO_CHAR (hiredate, ’DD/MON/YYYY’, ’nls_date_language = French’)

These are illegal:

TO_CHAR (hiredate, ’nls_date_language = French’)
TO_CHAR (hiredate, ’nls_date_language = French’,
 ’DD/MON/YY’)

This restriction means that a date format must always be specified if an NLS

parameter is in a TO_CHAR or TO_DATE function. As a result, NLS_DATE_

FORMAT is not a valid NLS parameter for these functions.

CONVERT Function
The SQL function CONVERT allows for conversion of character data between

character sets.

The CONVERT function converts the binary representation of a character string in

one character set to another. It uses exactly the same technique as described

previously for the conversion between database and client character sets. Hence, it

uses replacement characters and has the same limitations.

If the CONVERT function is used in a stored procedure, the stored procedure will

run independently of the client character set (that is, it will use the server’s

character set), which sometimes results in the last converted character being

truncated.
4-4 Oracle8i National Language Support Guide

Locale-Dependent SQL Functions
The syntax for CONVERT is:

where src_char_set is the source character set and dest_char_set is the destination character set.

In client/server environments using different character sets, use the TRANSLATE

(...USING...) statement to perform conversions instead of CONVERT. The

conversion to client character sets will then properly know the server character set

of the result of the TRANSLATE statement.

For more information on CONVERT, see Oracle8i SQL Reference.

Character Set SQL Functions
Two SQL functions, NLS_CHARSET_NAME and NLS_CHARSET_ID, are provided

to convert between character set ID numbers and character set names. They are

used by programs which need to determine character set ID numbers for binding

variables through OCI.

The NLS_CHARSET_DECL_LEN function returns the declaration length (in

number of characters) for an NCHAR column.

For more information on these functions, see Oracle8i SQL Reference.

Converting from Character Set Number to Character Set Name
The NLS_CHARSET_NAME(n) function returns the name of the character set

corresponding to ID number n. The function returns NULL if n is not a recognized

character set ID value.

Converting from Character Set Name to Character Set Number
NLS_CHARSET_ID(TEXT) returns the character set ID corresponding to the name

specified by TEXT. TEXT is defined as a run-time VARCHAR2 quantity, a character

set name. Values for TEXT can be NLSRTL names that resolve to sets other than the

database character set or the national character set.

If the value CHAR_CS is entered for TEXT, the function returns the ID of the

server’s database character set. If the value NCHAR_CS is entered for TEXT, the

CONVERT (char , dest_char_set
, source_char_set

)

SQL Programming 4-5

Locale-Dependent SQL Functions
function returns the ID of the server’s national character set. The function returns

NULL if TEXT is not a recognized name. The value for TEXT must be entered in all

uppercase.

Returning the Length of an NCHAR Column
NLS_CHARSET_DECL_LEN(BYTECNT, CSID) returns the declaration length (in

number of characters) for an NCHAR column. The BYTECNT argument is the byte

length of the column. The CSID argument is the character set ID of the column.

NLSSORT Function
The NLSSORT function replaces a character string with the equivalent sort string

used by the linguistic sort mechanism. For a binary sort, the sort string is the same

as the input string. The linguistic sort technique operates by replacing each

character string with some other binary values, chosen so that sorting the resulting

string produces the desired sorting sequence. When a linguistic sort is being used,

NLSSORT returns the binary values that replace the original string.

The ORDER BY clause in a SQL statement is determined by the NLS_SORT session

parameter, but it can be overridden by explicitly using the NLSSORT() function, as

the following example shows.

ALTER SESSION SET NLS_SORT = GERMAN;
SELECT
FROM
ORDER BY col1;

The example above uses a German sort, but the example below uses a French one.

ALTER SESSION SET NLS_SORT = GERMAN;
SELECT
FROM
ORDER BY NLSSORT(col1, ’NLS_SORT = FRENCH’);

The WHERE clause normally uses binary comparison rather than linguistic

comparison. But this can be overridden by two methods.

1. Use of the NLSSORT() function in the WHERE clause.

SELECT
FROM
WHERE NLSSORT(col1, ’NLS_SORT = FRENCH’)>

 NLSSORT(col2, ’NLS_SORT = FRENCH’);
4-6 Oracle8i National Language Support Guide

Locale-Dependent SQL Functions
2. Setting the session parameter NLS_COMP to ASCII, in which case the NLS_

SORT session parameter will be used in the WHERE clause.

ALTER SESSION SET NLS_COMP = ASCII;

NLSSORT Syntax
There are four ways to use NLSSORT:

■ NLSSORT()—which relies on the NLS_SORT parameter

■ NLSSORT(" ", "NLS_SORT=xxxx")

■ NLSSORT(" ", "NLS_LANG= xxxx")

■ NLSSORT(" ", "NLS_LANGUAGE=xxxx")

String Comparisons in a WHERE Clause
NLSSORT allows applications to perform string matching that follows alphabetic

conventions. Normally, character strings in a WHERE clause are compared using

the characters’ binary values. A character is "greater than" another if it has a higher

binary value in the database character set. Because the sequence of characters based

on their binary values might not match the alphabetic sequence for a language, such

comparisons often do not follow alphabetic conventions. For example, if a column

(COL1) contains the values ABC, ABZ, BCD, and ÄBC in the ISO 8859/1 8-bit

character set, the following query:

SELECT col1 FROM tab1 WHERE col1 > ’B’

returns both BCD and ÄBC because Ä has a higher numeric value than B. However,

in German, an Ä is sorted alphabetically before B. Such conventions are language

dependent even when the same character is used. In Swedish, an Ä is sorted after Z.

Linguistic comparisons can be made using NLSSORT in the WHERE clause, as

follows:

WHERE NLSSORT(col) comparison_operator NLSSORT(comparison_string)

Note that NLSSORT has to be on both sides of the comparison operator. For

example:

SELECT col1 FROM tab1 WHERE NLSSORT(col1) > NLSSORT(’B’)

If a German linguistic sort is being used, this does not return strings beginning with

Ä because, in the German alphabet, Ä comes before B. If a Swedish linguistic sort is

being used, such names are returned because, in the Swedish alphabet, Ä comes

after Z.
SQL Programming 4-7

Locale-Dependent SQL Functions
NLS_COMP
Normally, comparison in the WHERE clause is binary. To use linguistic

comparison, the NLSSORT function must be used. Sometimes this can be tedious,

especially when the linguistic sort needed has already been specified in the NLS_

SORT session parameter. NLS_COMP can be used in such cases to indicate that the

comparisons must be linguistic according to the NLS_SORT session parameter. This

is done by altering the session:

SQL> ALTER SESSION SET NLS_COMP = ASCII;

To specify that comparison in the WHERE clause is always binary, do

SQL> ALTER SESSION SET NLS_COMP = BINARY;

As a final note, when NLS_COMP is set to ASCII, a linguistic index must exist on

the column where the linguistic order is desired.

To enable a linguistic index, use the syntax:

SQL> CREATE INDEX i ON t(NLSSORT(col, ’NLSSORT=FRENCH’));

Partitioned Tables and Indexes
String comparison for partition VALUES LESS THAN collation for DDL and DML

always follows BINARY order.

Controlling an ORDER BY Clause
If a linguistic sorting sequence is in use, then NLSSORT is used implicitly on each

character item in the ORDER BY clause. As a result, the sort mechanism (linguistic

or binary) for an ORDER BY is transparent to the application. However, if the

NLSSORT function is explicitly specified for a character item in an ORDER BY item,

then the implicit NLSSORT is not done.

In other words, the NLSSORT linguistic replacement is only applied once, not twice.

The NLSSORT function is generally not needed in an ORDER BY clause when the

default sort mechanism is a linguistic sort. However, when the default sort

mechanism is BINARY, then a query such as:

SELECT ename FROM emp
ORDER BY ename

will use a binary sort. A German linguistic sort can be obtained using:

SELECT ename FROM emp
ORDER BY NLSSORT(ename, ’NLS_SORT = GERMAN’)
4-8 Oracle8i National Language Support Guide

Time/Date/Calendar Formats
Pattern Matching Characters for Fixed-Width Multi-Byte Character Sets
The LIKE operator is used in character string comparisons with pattern matching.

Its syntax requires the use of two special pattern matching characters: the

underscore (_) and the percent sign(%).

Time/Date/Calendar Formats
Several format masks are provided with the TO_CHAR, TO_DATE, and TO_

NUMBER functions to format dates and numbers according to the relevant

conventions.

Note: The TO_NUMBER function also accepts a format mask.

Date Formats
A format element RM (Roman Month) returns a month as a Roman numeral. Either

uppercase or lowercase can be specified, using RM or rm respectively. For example,

for the date 7 Sep 1998, "DD-rm-YYYY" will return "07-ix-1998" and "DD-RM-YYYY"

will return "07-IX-1998".

Note that the MON and DY format masks explicitly support month and day

abbreviations that may not be three characters in length. For example, the

abbreviations "Lu" and "Ma" can be specified for the French "Lundi" and "Mardi",

respectively.

Week and Day Number Conventions
The week numbers returned by the WW format mask are calculated according to

the algorithm int((day-ijan1)/7). This week number algorithm does not follow the ISO

standard (2015, 1992-06-15).

Table 4–1 Encoding for the Underscore, Percent Sign, and Pad Character

For This Character Set Use These Code Point Values

Underscore Percent Sign Pad Character (Space)

JA16SJISFIXED 0x8151 0x8193 0x8140

JA16EUCFIXED 0xa1b2 0xa1f3 0xa1a1

JA16DBCSFIXED 0x426d 0x426c 0x4040

ZHT32TRISFIXED 0x8eb1a1df 0x8eb1a1a5 0x8ebla1a0
SQL Programming 4-9

Numeric Formats
To support the ISO standard, a format element IW is provided that returns the ISO

week number. In addition, format elements I IY IYY and IYYY, equivalent in

behavior to the format elements Y, YY, YYY, and YYYY, return the year relating to

the ISO week number.

In the ISO standard, the year relating to an ISO week number can be different from

the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. A

week always starts on a Monday and ends on a Sunday.

■ If January 1 falls on a Friday, Saturday, or Sunday, then the week including

January 1 is the last week of the previous year, because most of the days in the

week belong to the previous year.

■ If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the

week is the first week of the new year, because most of the days in the week

belong to the new year.

For example, January 1, 1991, is a Tuesday, so Monday, December 31, 1990, to

Sunday, January 6, 1991, is week 1. Thus, the ISO week number and year for

December 31, 1990, is 1, 1991. To get the ISO week number, use the format mask

"IW" for the week number and one of the "IY" formats for the year.

Numeric Formats
Several additional format elements are provided for formatting numbers:

■ D (Decimal) returns the decimal character.

■ G (Group) returns the group separator.

■ L (Local currency) returns the local currency symbol.

■ C (International Currency) returns the international currency symbol.

■ RN (Roman Numeral) returns the number as its Roman numeral equivalent.

For Roman numerals, either uppercase or lowercase can be specified, using RN or

rn, respectively. The number to be converted must be an integer in the range 1 to

3999.

For complete information on using date and number masks, see Oracle8i SQL
Reference.
4-10 Oracle8i National Language Support Guide

Miscellaneous Topics
Miscellaneous Topics

The Concatenation Operator
If the database character set replaces the vertical bar ("|") with a national character,

then all SQL statements that use the concatenation operator (ASCII 124) will fail.

For example, creating a procedure will fail because it generates a recursive SQL

statement that uses concatenation. When you use a 7-bit replacement character set

such as D7DEC, F7DEC, or SF7ASCII for the database character set, then the

national character which replaces the vertical bar is not allowed in object names

because the vertical bar is interpreted as the concatenation operator.

On the user side, a 7-bit replacement character set can be used if the database

character set is the same or compatible, that is, if both character sets replace the

vertical bar with the same national character.
SQL Programming 4-11

Miscellaneous Topics
4-12 Oracle8i National Language Support Guide

OCI Program
5

OCI Programming

This chapter contains information useful for OCI programming, including:

■ NLS Language Information Retrieval

■ String Manipulation

■ Character Classification

■ Character Set Conversion

■ Messaging Mechanism
ming 5-1

NLS Language Information Retrieval
NLS Language Information Retrieval
An Oracle locale consists of language, territory, and character set definitions. The

locale determines conventions such as native day and month names, as well as date,

time, number, and currency formats. An internationalized application will obey a

user’s locale setting and cultural conventions. For example, in a German locale

setting, users will expect to see day and month names in German.

OCINlsGetInfo()
Using environment handles, you can retrieve the following information:

■ Days of the Week (Translated)

■ Abbreviated Days of the Week (Translated)

■ Month Names (Translated)

■ Abbreviated Month Names (Translated)

■ Yes/No

■ AM/PM

■ AD/BC

■ Numeric Format

■ Debit/Credit

■ Date Format

■ Currency Formats

■ Default Language

■ Default Territory

■ Default Character Set

■ Default Linguistic Sort

■ Default Calendar

OCINlsGetInfo

Syntax
sword OCINlsGetInfo(dvoid *hndl, OCIError *errhp, text *buf, size_t buflen, ub2
item)
5-2 Oracle8i National Language Support Guide

NLS Language Information Retrieval
Remarks
This function generates language information specified by item from OCI
environment or user session handle hndl into an array pointed to by buf within

size limitation as buflen .

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE, or OCI_ERROR on wrong item.

Table 5–1 OCINlsGetInfo Keywords/Parameters

Keyword/
Parameter Meaning

hndl (IN/OUT) the OCI environment or user session handle initialized in object mode

errhp
(IN/OUT)

the OCI error handle. If there is an error, it is recorded in errhp and this
function returns aNULL pointer. Diagnostic information can be obtained by
callingOCIErrorGet ()

buf(OUT) pointer to the destination buffer

buflen(IN) the size of destination buffer. The maximum length for each information is
OCI_NLS_MAXBUFSZ bytes

item (IN) It specifies to get which item in OCI environment handle and can be one
of following values:

OCI_NLS_DAYNAME1 : Native name for Monday.

OCI_NLS_DAYNAME2 : Native name for Tuesday.

OCI_NLS_DAYNAME3 : Native name for Wednesday.

OCI_NLS_DAYNAME4 : Native name for Thursday.

OCI_NLS_DAYNAME5 : Native name for Friday.

OCI_NLS_DAYNAME6 : Native name for Saturday.

OCI_NLS_DAYNAME7 : Native name for Sunday.

OCI_NLS_ABDAYNAME1 : Native abbreviated name for Monday.

OCI_NLS_ABDAYNAME2 : Native abbreviated name for Tuesday.

OCI_NLS_ABDAYNAME3 : Native abbreviated name for Wednesday.

OCI_NLS_ABDAYNAME4 : Native abbreviated name for Thursday.

OCI_NLS_ABDAYNAME5 : Native abbreviated name for Friday.

OCI_NLS_ABDAYNAME6 : Native abbreviated name for Saturday.

OCI_NLS_ABDAYNAME7 : Native abbreviated name for Sunday.
OCI Programming 5-3

NLS Language Information Retrieval
OCI_NLS_MONTHNAME1 : Native name for January.

OCI_NLS_MONTHNAME2 : Native name for February.

OCI_NLS_MONTHNAME3 : Native name for March.

OCI_NLS_MONTHNAME4 : Native name for April.

OCI_NLS_MONTHNAME5 : Native name for May.

OCI_NLS_MONTHNAME6 : Native name for June.

OCI_NLS_MONTHNAME7 : Native name for July.

OCI_NLS_MONTHNAME8 : Native name for August.

OCI_NLS_MONTHNAME9 : Native name for September.

OCI_NLS_MONTHNAME10 : Native name for October.

OCI_NLS_MONTHNAME11 : Native name for November.

OCI_NLS_MONTHNAME12 : Native name for December.

OCI_NLS_ABMONTHNAME1 : Native abbreviated name for January.

OCI_NLS_ABMONTHNAME2 : Native abbreviated name for February.

OCI_NLS_ABMONTHNAME3 : Native abbreviated name for March.

OCI_NLS_ABMONTHNAME4 : Native abbreviated name for April.

OCI_NLS_ABMONTHNAME5 : Native abbreviated name for May.

OCI_NLS_ABMONTHNAME6 : Native abbreviated name for June.

OCI_NLS_ABMONTHNAME7 : Native abbreviated name for July.

OCI_NLS_ABMONTHNAME8 : Native abbreviated name for August.

OCI_NLS_ABMONTHNAME9 : Native abbreviated name for September.

OCI_NLS_ABMONTHNAME10 : Native abbreviated name for October.

OCI_NLS_ABMONTHNAME11 : Native abbreviated name for November.

OCI_NLS_ABMONTHNAME12 : Native abbreviated name for December.

Table 5–1 OCINlsGetInfo Keywords/Parameters

Keyword/
Parameter Meaning
5-4 Oracle8i National Language Support Guide

NLS Language Information Retrieval
OCI_Nls_MaxBufSz
When calling OCINlsGetInfo (), you need to allocate the buffer to store the

returned information for the particular language. The buffer size varies, depending

on which item you are querying and what encoding you are using to store the

information. Developers should not need to know how many bytes it takes to store

"January" in Japanese using JA16SJIS encoding. That is exactly what OCI_NLS_
MAXBUFSZ is used for; it guarantees that the OCI_NLS_MAXBUFSZ is big enough to

hold the largest item returned by OCINlsGetInfo ().

This guarantees that the largest item returned by OCINlsGetInfo () will fit in the

buffer.

OCI_NLS_YES : Nativestring for affirmative response.

OCI_NLS_NO : Native negative response.

OCI_NLS_AM : Native equivalent string of AM.

OCI_NLS_PM : Native equivalent string of PM.

OCI_NLS_AD : Native equivalent string of AD.

OCI_NLS_BC : Native equivalent string of BC.

OCI_NLS_DECIMAL : decimal character.

OCI_NLS_GROUP : group separator.

OCI_NLS_DEBIT : Native symbol of debit.

OCI_NLS_CREDIT : Native symbol of credit.

OCI_NLS_DATEFORMAT : Oracle date format.

OCI_NLS_INT_CURRENCY: International currency symbol.

OCI_NLS_LOC_CURRENCY : Locale currency symbol.

OCI_NLS_LANGUAGE : Language name.

OCI_NLS_ABLANGUAGE : Abbreviation for language name.

OCI_NLS_TERRITORY : Territory name.

OCI_NLS_CHARACTER_SET : Character set name.

OCI_NLS_LINGUISTIC_NAME : Linguistic name.

OCI_NLS_CALENDAR : Calendar name.

Table 5–1 OCINlsGetInfo Keywords/Parameters

Keyword/
Parameter Meaning
OCI Programming 5-5

String Manipulation
See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

NLS Language Information Retrieval Sample Code
The following is a simple case of retrieving information and checking for errors.

sword MyPrintLinguisticName(envhp, errhp)
OCIEnv *envhp;
OCIError *errhp;
{
 text infoBuf[OCI_NLS_MAXBUFSZ];
 sword ret;

 ret = OCINlsGetInfo(envhp, /* environment handle */
 errhp, /* error handle */
 infoBuf, /* destination buffer */
 (size_t) OCI_NLS_MAXBUFSZ, /* buffer size */
 (ub2) OCI_NLS_LINGUISTIC); /* item */

 if (ret != OCI_SUCCESS)
 {
 checkerr(errhp, ret, OCI_HTYPE_ERROR);
 ret = OCI_ERROR;
 }
 else
 {
 printf("NLS linguistic: %s\n", infoBuf);
 }
 return(ret);
}

String Manipulation
Two types of data structure are supported for string manipulation: multi-byte string

and wide character string. Multi-byte strings are in native Oracle character set

encoding and functions operated on them take the string as a whole unit. Wide

character string wchar functions provide more flexibility in string manipulation and

support character-based and string-based operations.

The wide character data type is Oracle-specific and not to be confused with the

wchar_t defined by ANSI/ISO C standard. The Oracle wide character is always 4

bytes in all platforms, while wchar_t is implementation- and platform-dependent.

The idea of the Oracle wide character is to normalize multibyte character to have a
5-6 Oracle8i National Language Support Guide

String Manipulation
fixed-width encoding for easy processing. This way, round-trip conversion

between the Oracle wide character and the native character set is guaranteed.

The string manipulation can be classified into the following categories:

■ Conversion of string between multibyte and wide character

■ Character classifications

■ Case conversion

■ Display length calculation

■ General string manipulation, such as compare, concatenation and searching

Table 5–2 OCI String Manipulation Calls

Function Call Description

OCIMultiByteToWideChar() Converts an entire null-terminated string into the wchar format.

OCIMultiByteInSizeToWideChar() Converts part of a string into the wchar format.

OCIWideCharToMultiByte() Converts an entire null-terminated wide character string into a multi-byte
string.

OCIWideCharInSizeToMultiByte() Converts part of wide character string into the multi-byte format.

OCIWideCharToLower() If there is a lower-case character mapping in the specified locale, it will return
the lower-case in wide character. If not, returns the wide character.

OCIWideCharToUpper() If there is an upper-case character mapping in the specified locale, it will
return the upper-case in wide character. If not, returns the wide character.

OCIWideCharStrcmp() Compares two wide character strings in binary, linguistic, or case-insensitive
manners.

OCIWideCharStrncmp() Similar to OCIWideCharStrcmp(), but with some differences.

OCIWideCharStrcat() Appends a copy of the string pointed to by wrcstr. Then returns the number
of characters in the resulting string.

OCIWideCharStrchr() Searches for the first occurrence of wc in the string pointed to by wstr. Then
returns a pointer to the whcar if successful.

OCIWideCharStrcpy() Copies the wchar string pointed to by wsrcstr into the array pointed to by
wdststr. Then returns the number of characters copied.

OCIWideCharStrlen() Computes the number of characters in the wchar string pointed to by wstr,
and returns this number.

OCIWideCharStrncat() Appends a copy of the string pointed to by wrcstr. Then returns the number
of characters in the resulting string. Except that at most n characters are
appended.
OCI Programming 5-7

String Manipulation
OCIMultiByteToWideChar

Syntax
sword OCIMultiByteToWideChar(dvoid *hndl, OCIWchar *dst, CONST text *src, size_t
*rsize);

OCIWideCharStrncpy() Copies the wchar string pointed to by wsrcstr into the array pointed to by
wdststr. Then returns the number of characters copied. Except that at most n
characters are copied from the array.

OCIWideCharStrrchr() Searches for the last occurrence of wc in the string pointed to by wstr.

OCIWideCharStrCase
Conversion()

Converts the wide character string pointed to by wsrcstr into case specified by
flag and copies the result into the array pointed to by wdststr.

OCIWideCharDisplayLength() Determines the number of column positions required for wc in display.

OCIWideCharMultibyteLength() Determines the number of bytes required for wc in multi-byte encoding.

OCIMultiByteStrcmp() Compares two multi-byte strings in binary, linguistic, or case-insensitive
manners.

OCIMultiByteStrncmp() Compares two multi-byte strings in binary, linguistic, or case-insensitive
manners. Except that at most len1 bytes form str1 and len2 bytes form str2 are
compared.

OCIMultiByteStrcat() Appends a copy of the multi-byte string pointed to by srcstr.

OCIMultiByteStrcpy() Copies the multi-byte string pointed to by srcstr into an array pointed to by
dststr. It returns the number of bytes copied.

OCIMultiByteStrlen() Computes the number of bytes in the multi-byte string pointed to by str, and
returns this number.

OCIMultiByteStrncat() Appends a copy of the multi-byte string pointed to by srcstr. Except that at
most n bytes from srcstr are appended to dststr.

OCIMultiByteStrncpy() Copies the multi-byte string pointed to by srcstr into an array pointed to by
dststr. It returns the number of bytes copied. Except that at most n bytes are
copied from the array pointed to by srcstr to the array pointed to by dststr.

OCIMultiByteStrnDisplayLength() Returns the number of display positions occupied by the complete characters
within the range of n bytes.

OCIMultiByteStrCase
Conversion()

Converts part of a string from one character set to another.

Table 5–2 OCI String Manipulation Calls

Function Call Description
5-8 Oracle8i National Language Support Guide

String Manipulation
Remarks
This routine converts an entire NULL-terminated string into the wchar format. The

wchar output buffer will be NULL-terminated.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

OCIMultiByteInSizeToWideChar

Syntax
sword OCIMultiByteInSizeToWideChar(dvoid *hndl, OCIWchar *dst, size_t dstsz,
CONST text *src, size_t srcsz, size_t *rsize)

Remarks
This routine converts part of a string into the wchar format. It will convert as many

complete characters as it can until it reaches output buffer size or input buffer size

or it reaches a NULL-terminator in source string. The output buffer will be

NULL-terminated if space permits. If dstsz is zero, this function will only return

the number of characters not including the ending NULL terminator needed for

converted string.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

Table 5–3 OCIMultiByteToWideChar Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set of string

dst (OUT) destination buffer forwchar

src (IN) source string to be converted

rsize (OUT) Number of characters converted including NULL-terminator.

If it is a NULL pointer, nothing to return

Table 5–4 OCIMultiByteInSizeToWideChar Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set of string
OCI Programming 5-9

String Manipulation
OCIWideCharToMultiByte

Syntax
sword OCIWideCharToMultiByte(dvoid *hndl, text *dst, CONST OCIWchar *src, size_t
*rsize)

Remarks
This routine converts an entire NULL-terminated wide character string into

multi-byte string. The output buffer will be NULL-terminated.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

dst (OUT) pointer to a destination buffer forwchar . It can beNULL pointer
whendstsz is zero.

dstsz(IN) destination buffer size in character. If it is zero, this function just
returns number of characters will be need for the conversion.

src (IN) source string to be converted

srcsz(IN) length of source string in byte

rsize (OUT) number of characters written into destination buffer, or
number of characters for converted string isdstsz is zero. If
it is aNULL pointer, nothing to return

Table 5–5 OCIWideCharToMultiByte Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set of string

dst (OUT) destination buffer for multi-byte string

src (IN) sourcewchar string to be converted

srcsz(IN) length of source string in byte

rsize (OUT) number of characters written into destination buffer. If it is a
NULL pointer, nothing to return

Table 5–4 OCIMultiByteInSizeToWideChar Keywords/Parameters

Keyword/Parameter Meaning
5-10 Oracle8i National Language Support Guide

String Manipulation
OCIWideCharInSizeToMultiByte
sword OCIWideCharInSizeToMultiByte(dvoid *hndl, text *dst, size_t dstsz, CONST
OCIWchar *src, size_t srcsz, size_t *rsize)

Remarks
This routine converts part of wchar string into the multi-byte format. It will convert

as many complete characters as it can until it reaches output buffer size or input

buffer size or it reaches a NULL-terminator in source string. The output buffer will

be NULL-terminated if space permits. If dstsz is zero, the function just returns the

size of byte not including ending NULL-terminator needed to store the converted

string.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

OCIWideCharToLower

Syntax
OCIWchar OCIWideCharToLower(dvoid *hndl, OCIWchar wc)

Remarks
If there is a lower-case character mapping for wc in the specified locale, it will

return the lower-case in wchar , else return wc itself.

Table 5–6 OCIWideCharInSizeToMultiByte Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set of string

dst (OUT) destination buffer for multi-byte. It can beNULL pointer if dstsz is
zero.

dstsz(IN) destination buffer size in byte. If it is zero, it just returns the size of
bytes need for converted string.

src (IN) sourcewchar string to be converted

srcsz(IN) length of source string in character

rsize (OUT) number of bytes written into destination buffer, or number of bytes
need to store the converted string if dstsz is zero. If it is aNULL
pointer, nothing to return
OCI Programming 5-11

String Manipulation
Returns
A wchar.

OCIWideCharToUpper

Syntax
OCIWchar OCIWideCharToUpper(dvoid *hndl, OCIWchar wc)

Remarks
If there is a upper-case character mapping for wc in the specified locale, it will

return the upper-case in wchar , else return wc itself.

Returns
A wchar.

OCIWideCharStrcmp

Syntax
int OCIWideCharStrcmp(dvoid *hndl, CONST OCIWchar *wstr1, CONST OCIWchar *wstr2,
int flag)

Remarks
It compares two wchar string in binary (based on wchar encoding value),

linguistic, or case-insensitive.

Returns
■ 0, if wstr1 == wstr2.

Table 5–7 OCIWideCharToLower Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for upper-case mapping.

Table 5–8 OCIWideCharToUpper Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for upper-case mapping.
5-12 Oracle8i National Language Support Guide

String Manipulation
■ Positive, if wstr1 > wstr2.

■ Negative, if wstr1 < wstr2.

OCIWideCharStrncmp

Syntax
int OCIWideCharStrncmp(dvoid *hndl, CONST OCIWchar *wstr1, size_t len1, CONST
OCIWchar *wstr2, size_t len2, int flag)

Remarks
This function is similar to OCIWideCharStrcmp() , except that at most len1
characters from wstr1 and len2 characters from wstr1 are compared. The

NULL-terminator will be taken into the comparison.

Returns
■ 0, if wstr1 = wstr2

■ Positive, if wstr1 > wstr2

■ Negative, if wstr1 < wstr2

Table 5–9 OCIWideCharStrcmp Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wstr1 (IN) pointer to aNULL-terminatedwchar string.

wstr2 (IN) pointer to aNULL-terminatedwchar string

flag (IN) it is used to decide the comparison method. It can take one of
the following values:

■ OCI_NLS_BINARY : for the binary comparison, this is
default value.

■ OCI_NLS_LINGUISTIC : for linguistic comparison
specified in the locale.

This flag can be ORedwith OCI_NLS_CASE_INSENSITIVE for
case-insensitive comparison.
OCI Programming 5-13

String Manipulation
OCIWideCharStrcat

Syntax
size_t OCIWideCharStrcat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr)

Remarks
This function appends a copy of the wchar string pointed to by wsrcstr , including

the NULL-terminator to the end of wchar string pointed to by wdststr .

Returns
The number of characters in the result string not including the ending

NULL-terminator.

Table 5–10 OCIWideCharStrncmp Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wstr1 (IN) pointer to the firstwchar string

len1 (IN) the length for the first string for comparison

wstr2 (IN) pointer to the secondwchar string

len2 (IN) the length for the second string for comparison

flag (IN) it is used to decide the comparison method. It can take one of
the following values:

■ OCI_NLS_BINARY : for the binary comparison, this is
default value.

■ OCI_NLS_LINGUISTIC : for linguistic comparison
specified in the locale.

This flag can be ORedwith OCI_NLS_CASE_INSENSITIVE for
case-insensitive comparison.

Table 5–11 OCIWideCharStrcat Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wdststr (IN/OUT) pointer to the destinationwchar string for appending
5-14 Oracle8i National Language Support Guide

String Manipulation
OCIWideCharStrchr

Syntax
OCIWchar *OCIWideCharStrchr(dvoid *hndl, CONST OCIWchar *wstr, OCIWchar wc)

Remarks
This function searches for the first occurrence of wc in the wchar string pointed to

by wstr .

Returns
A wchar pointer if successful, otherwise a NULL pointer.

OCIWideCharStrcpy

Syntax
size_t OCIWideCharStrcpy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr)

Remarks
This function copies the wchar string pointed to by wsrcstr, including the

NULL-terminator, into the array pointed to by wdststr .

Returns
The number of characters copied not including the ending NULL-terminator.

wsrcstr (IN) pointer to the sourcewchar string to append

Table 5–12 OCIWideCharStrchr Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wstr (IN) pointer to thewchar string to search

wc (IN) wchar to search for

Table 5–11 OCIWideCharStrcat Keywords/Parameters

Keyword/Parameter Meaning
OCI Programming 5-15

String Manipulation
OCIWideCharStrlen

Syntax
size_t OCIWideCharStrlen(dvoid *hndl, CONST OCIWchar *wstr)

Remarks
This function computes the number of characters in the wchar string pointed to by

wstr , not including the NULL-terminator, and returns this number.

Returns
The number of characters not including ending NULL-terminator.

OCIWideCharStrncat

Syntax
size_t OCIWideCharStrncat(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr, size_t n)

Remarks
This function is similar to OCIWideCharStrcat (), except that at most n characters

from wsrcstr are appended to wdststr . Note that the NULL-terminator in

wsrcstr will stop appending. wdststr will be NULL-terminated.

Table 5–13 OCIWideCharStrcpy Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wdststr (OUT) pointer to the destinationwchar buffer

wsrcstr (IN) p ointer to the sourcewchar string

Table 5–14 OCIWideCharStrlen Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wstr (IN) pointer to the sourcewchar string
5-16 Oracle8i National Language Support Guide

String Manipulation
Returns
The number of characters in the result string not including the ending

NULL-terminator.

OCIWideCharStrncpy

Syntax
size_t OCIWideCharStrncpy(dvoid *hndl, OCIWchar *wdststr, CONST OCIWchar
*wsrcstr, size_t n)

Remarks
This function is similar to OCIWideCharStrcpy (), except that at most n characters

are copied from the array pointed to by wsrcstr to the array pointed to by

wdststr . Note that the NULL-terminator in wdststr will stop coping and result

string will be NULL-terminated.

Returns
The number of characters copied not including the ending NULL-terminator.

Table 5–15 OCIWideCharStrncat Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wdststr (IN/OUT) pointer to the destinationwchar string for appending

wsrcstr (IN) pointer to the sourcewchar string to append

n (IN) number of characters fromwsrcstr to append

Table 5–16 OCIWideCharStrncpy Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wdststr (OUT) pointer to the destinationwchar buffer

wsrcstr (IN) pointer to the sourcewchar string

n (IN) number of characters fromwsrcstr to copy
OCI Programming 5-17

String Manipulation
OCIWideCharStrrchr

Syntax
OCIWchar *OCIWideCharStrrchr(dvoid *hndl, CONST OCIWchar *wstr, OCIWchar wc)

Remarks
This function searches for the last occurrence of wc in the wchar string pointed to

by wstr . It returns a pointer to the wchar if successful, or a NULL pointer.

Returns
wchar pointer if successful, otherwise a NULL pointer.

OCIWideCharStrCaseConversion

Syntax
size_t OCIWideCharStrCaseConversion(dvoid *hndl, OCIWchar *wdststr, CONST
OCIWchar*wsrcstr, ub4 flag)

Remarks
This function converts the wide char string pointed to by wsrcstr into the

uppercase or lowercase specified by flag and copies the result into the array pointed

to by wdststr . The result string will be NULL-terminated.

Returns
The number of characters for result string not including NULL-terminator.

Table 5–17 OCIWideCharStrrchr Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wstr (IN) pointer to thewchar string to search

wc (IN) wchar to search for

Table 5–18 OCIWideCharStrCaseConversion Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle

wdststr (OUT) pointer to destination array

wsrcstr (IN) pointer to source string
5-18 Oracle8i National Language Support Guide

String Manipulation
OCIWideCharDisplayLength

Syntax
size_t OCIWideCharDisplayLength(dvoid *hndl, OCIWchar wc)

Remarks
This function determines the number of column positions required for wc in

display. It returns the number of column positions, or 0 if wc is the NULL-terminator.

Returns
The number of display positions.

OCIWideCharMultiByteLength

Syntax
size_t OCIWideCharMultiByteLen(dvoid *hndl, OCIWchar wc)

Remarks
This function determines the number of byte required for wc in multi-byte

encoding. It returns the number of bytes in multi-byte for wc.

Returns
The number of bytes.

flag (IN) Specify the case to convert:

■ OCI_NLS_UPPERCASE : convert to uppercase.

■ OCI_NLS_LOWERCASE: convert to lowercase.

This flag can be ORed with OCI_NLS_LINGUISTIC to specify
that the linguistic setting in the locale will be used for case
conversion.

Table 5–19 OCIWideCharDisplayLength Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar character

Table 5–18 OCIWideCharStrCaseConversion Keywords/Parameters

Keyword/Parameter Meaning
OCI Programming 5-19

String Manipulation
OCIMultiByteStrcmp

Syntax
int OCIMultiByteStrcmp(dvoid *hndl, CONST text *str1, CONST text *str2, int
flag)

Remarks
It compares two multi-byte strings in binary (based on encoding value), linguistic,

or case-insensitive.

Returns
■ 0, if str1 == str2.

■ Positive, if str1 > str2.

■ Negative, if str1 < str2.

Table 5–20 OCIWideCharMultiByteLength Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar character

Table 5–21 OCIMultiByteStrcmp Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle

str1 (IN) pointer to aNULL-terminated string

str2 (IN) pointer to aNULL-terminated string

flag (IN) It is used to decide the comparison method. It can take one of
the following values:

■ OCI_NLS_BINARY: for the binary comparison, this is
default value.

■ OCI_NLS_LINGUISTIC : for linguistic comparison
specified in the locale.

This flag can be ORedwith OCI_NLS_CASE_INSENSITIVE for
case-insensitive comparison.
5-20 Oracle8i National Language Support Guide

String Manipulation
OCIMultiByteStrncmp

Syntax
int OCIMultiByteStrncmp(dvoid *hndl, CONST text *str1, size_t len1, text *str2,
size_t len2, int flag)

Remarks
This function is similar to OCIMultiByteStrcmp (), except that at most len1 bytes

from str1 and len2 bytes from str2 are compared. The NULL-terminator will be

taken into the comparison.

Returns
■ 0, if str1 = str2

■ Positive, if str1 > str2

■ Negative, if str1 < str2

OCIMultiByteStrcat

Syntax
size_t OCIMultiByteStrcat(dvoid *hndl, text *dststr, CONST text *srcstr)

Table 5–22 OCIMultiByeStrncmp Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle

str1 (IN) pointer to the first string

len1 (IN) the length for the first string for comparison

str2 (IN) pointer to the second string

len2 (IN) the length for the second string for comparison

flag (IN) It is used to decide the comparison method. It can take one of
the following values:

■ OCI_NLS_BINARY: for the binary comparison, this is
default value.

■ OCI_NLS_LINGUISTIC : for linguistic comparison
specified in the locale.

This flag can be ORedwith OCI_NLS_CASE_INSENSITIVE for
case-insensitive comparison.
OCI Programming 5-21

String Manipulation
Remarks
This function appends a copy of the multi-byte string pointed to by srcstr ,

including the NULL-terminator to the end of string pointed to by dststr . It returns

the number of bytes in the result string not including the ending NULL-terminator.

Returns
The number of bytes in the result string not including the ending NULL-terminator.

OCIMultiByteStrcpy

Syntax
size_t OCIMultiByteStrcpy(dvoid *hndl, text *dststr, CONST text *srcstr)

Remarks
This function copies the multi-byte string pointed to by srcstr, including the

NULL-terminator, into the array pointed to by dststr. It returns the number of bytes

copied not including the ending NULL-terminator.

Returns
The number of bytes copied not including the ending NULL-terminator.

OCIMultiByteStrlen

Syntax
size_t OCIMultiByteStrlen(dvoid *hndl, CONST text *str)

Table 5–23 OCIMultiByteStrcat Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

dststr (IN/OUT) pointer to the destination multi-byte string for appending

srcstr (IN) pointer to the source string to append

Table 5–24 OCIMultiByteStrcpy Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) pointer to the OCI environment or user session handle

srcstr (OUT) pointer to the destination buffer

dststr (IN) pointer to the source multi-byte string
5-22 Oracle8i National Language Support Guide

String Manipulation
Remarks
This function computes the number of bytes in the multi-byte string pointed to by

str , not including the NULL-terminator, and returns this number.

Returns
The number of bytes not including ending NULL-terminator.

OCIMultiByteStrncat

Syntax
size_t OCIMultiByteStrncat(dvoid *hndl, text *dststr, CONST text *srcstr, size_t
n)

Remarks
This function is similar to OCIMultiByteStrcat (), except that at most n bytes

from srcstr are appended to dststr . Note that the NULL-terminator in srcstr
will stop appending and the function will append as many character as possible

within n bytes. dststr will be NULL-terminated.

Returns
The number of bytes in the result string not including the ending NULL-terminator.

OCIMultiByteStrncpy

Syntax
size_t OCIMultiByteStrncpy(dvoid *hndl, text *dststr, CONST text *srcstr, size_t

Table 5–25 OCIMultiByteStrlen Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) pointer to the OCI environment or user session handle

str (IN) p ointer to the source multi-byte string

Table 5–26 OCIMultiByteStrncat Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) pointer to OCI environment or user session handle

srcstr (IN/OUT) pointer to the destination multi-byte string for appending

dststr (IN) pointer to the source multi-byte string to append

n (IN) number of bytes from srcstr to append
OCI Programming 5-23

String Manipulation
n)

Remarks
This function is similar to OCIMultiByteStrcpy (), except that at most n bytes are

copied from the array pointed to by srcstr to the array pointed to by dststr .

Note that the NULL-terminator in srcstr will stop coping and the function will

copy as many character as possible within n bytes. The result string will be

NULL-terminated.

Returns
The number of bytes copied not including the ending NULL-terminator.

OCIMultiByteStrnDisplayLength

Syntax
size_t OCIMultiByteStrnDisplayLength(dvoid *hndl, CONST text *str1, size_t n)

Remarks
This function returns the number of display positions occupied by the complete

characters within the range of n bytes.

Returns
The number of display positions.

Table 5–27 OCIMultiByteStrncpy Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) pointer to OCI environment or user session handle

srcstr (OUT) pointer to the destination buffer

dststr (IN) pointer to the source multi-byte string

n (IN) number of bytes fromsrcstr to copy

Table 5–28 OCIMultiByteStrncpy Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle

str (IN) pointer to a multi-byte string

n (IN) number of bytes to examine
5-24 Oracle8i National Language Support Guide

String Manipulation
OCIMultiByteStrCaseConversion

Syntax
size_t OCIMultiByteStrCaseConversion(dvoid *hndl, text *dststr, CONST text
*srcstr, ub4 flag)

Remarks
This function convert the multi-byte string pointed to by srcstr into the

uppercase or lowercase specified by flag and copies the result into the array

pointed to by dststr . The result string will be NULL-terminated.

Returns
The number of bytes for result string not including NULL-terminator.

String Manipulation Sample Code
The following is a simple case of handling string manipulation.

size_t MyConvertMultiByteToWideChar(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
OCIWchar *dstBuf;
size_t dstSize;
text *srcStr; /* null terminated source string */
{
 sword ret;
 size_t dstLen = 0;
 size_t srcLen;

Table 5–29 OCIMultibyteStrCaseKeywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle

dststr (OUT) pointer to destination array

srcstr (IN) pointer to source string

flag (IN) Specify the case to convert:

■ OCI_NLS_UPPERCASE: convert to uppercase.

■ OCI_NLS_LOWERCASE: convert to lowercase.

This flag can be ORed with OCI_NLS_LINGUISTIC to specify
that the linguistic setting in the locale will be used for case
conversion.
OCI Programming 5-25

Character Classification
 /* get length of source string */
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 ret = OCIMultiByteInSizeToWideChar(envhp, /* environment handle */
 dstBuf, /* destination buffer */
 dstSize, /* destination buffer size */
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen); /* pointer to destination length */

 if (ret != OCI_SUCCESS)
 {
 checkerr(envhp, ret, OCI_HTYPE_ENV);
 }
 return(dstLen);
}

See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

Character Classification
The Oracle Call Interface offers many function calls for classifying characters.

Table 5–30 OCI Character Classification Calls

Function Call Description

OCIWideCharIsAlnum() Tests whether the wide character is a letter or decimal digit.

OCIWideCharIsAlpha() Tests whether the wide character is an alphabetic letter.

OCIWideCharIsCntrl() Tests whether the wide character is a control character.

OCIWideCharIsDigit() Tests whether the wide character is a decimal digital character.

OCIWideCharIsGraph() Tests whether the wide character is a graph character.

OCIWideCharIsLower() Tests whether the wide character is a lowercase letter.

OCIWideCharIsPrint() Tests whether the wide character is a printable character.

OCIWideCharIsPunct() Tests whether the wide character is a punctuation character.

OCIWideCharIsSpace() Tests whether the wide character is a space character.
5-26 Oracle8i National Language Support Guide

Character Classification
OCIWideCharIsAlnum

Syntax
boolean OCIWideCharIsAlnum(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a letter or decimal digit.

Returns
TRUE or FALSE.

OCIWideCharIsAlpha

Syntax
boolean OCIWideCharIsAlpha(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is an alphabetic letter.

Returns
TRUE or FALSE.

OCIWideCharIsUpper() Tests whether the wide character is an uppercase character.

OCIWideCharIsXdigit() Tests whether the wide character is a hexadecimal digit.

OCIWideCharIsSingleByte() Tests whether wc is a single-byte character when converted into multi-byte.

Table 5–31 OCIWideCharIsAlnum Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.

Table 5–30 OCI Character Classification Calls

Function Call Description
OCI Programming 5-27

Character Classification
OCIWideCharIsCntrl

Syntax
boolean OCIWideCharIsCntrl(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a control character.

Returns
TRUE or FALSE.

OCIWideCharIsDigit

Syntax
boolean OCIWideCharIsDigit(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a decimal digit character.

Returns
TRUE or FALSE.

Table 5–32 OCIWideCharIsAlpha Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.

Table 5–33 OCIWideCharIsCntrl Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.

Table 5–34 OCIWideCharIsDigit Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set
5-28 Oracle8i National Language Support Guide

Character Classification
OCIWideCharIsGraph

Syntax
boolean OCIWideCharIsGraph(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a graph character. A graph character is character with a visible

representation and normally includes alphabetic letter, decimal digit, and

punctuation.

Returns
TRUE or FALSE.

OCIWideCharIsLower

Syntax
boolean OCIWideCharIsLower(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a lowercase letter.

Returns
TRUE or FALSE.

wc (IN) wchar for testing.

Table 5–35 OCIWideCharIsGraph Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.

Table 5–36 OCIWideCharIsLower Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

Table 5–34 (Cont.) OCIWideCharIsDigit Keywords/Parameters

Keyword/Parameter Meaning
OCI Programming 5-29

Character Classification
OCIWideCharIsPrint

Syntax
boolean OCIWideCharIsPrint(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a printable character.

Returns
TRUE or FALSE.

OCIWideCharIsPunct

Syntax
boolean OCIWideCharIsPunct(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a punctuation character.

Returns
TRUE or FALSE.

wc (IN) wchar for testing.

Table 5–37 OCIWideCharIsPrint Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.

Table 5–38 OCIWideCharIsPunct Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.

Table 5–36 OCIWideCharIsLower Keywords/Parameters

Keyword/Parameter Meaning
5-30 Oracle8i National Language Support Guide

Character Classification
OCIWideCharIsSpace

Syntax
boolean OCIWideCharIsSpace(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a space character. A space character only causes white space in

displayed text (for example, space, tab, carriage return, newline, vertical tab or form

feed).

Returns
TRUE or FALSE.

OCIWideCharIsUpper

Syntax
boolean OCIWideCharIsUpper(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is an uppercase letter.

Returns
TRUE or FALSE.

Table 5–39 OCIWideCharIsSpace Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.

Table 5–40 OCIWideCharIsUpper Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.
OCI Programming 5-31

Character Classification
OCIWideCharIsXdigit

Syntax
boolean OCIWideCharIsXdigit(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a hexadecimal digit (0-9, A-F, a-f).

Returns
TRUE or FALSE.

OCIWideCharIsSingleByte

Syntax
boolean OCIWideCharIsSingleByte(dvoid *hndl, OCIWchar wc)

Remarks
It tests whether wc is a single-byte character when converted into multi-byte.

Returns
TRUE or FALSE.

Character Classification Sample Code
 /* Character classification sample code */
boolean MyIsNumberWideCharString(envhp, srcStr)
OCIEnv *envhp;
OCIWchar *srcStr; /* wide char source string */

Table 5–41 OCIWideCharIsXdigit Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.

Table 5–42 OCIWideCharIsSingleByte Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) OCI environment or user session handle to determine the character
set

wc (IN) wchar for testing.
5-32 Oracle8i National Language Support Guide

Character Set Conversion
{
 OCIWchar *pstr = srcStr; /* define and init pointer */
 boolean status = TRUE; /* define and init status variable */

 /* Check input */
 if (pstr == (OCIWchar*) NULL)
 return(FALSE);

 if (*pstr == (OCIWchar) NULL)
 return(FALSE);

 /* check each character for digit */
 do
 {
 if (OCIWideCharIsDigit(envhp, *pstr) != TRUE)
 {
 status = FALSE;
 break; /* non decimal digit character */
 }
 } while (*++pstr != (OCIWchar) NULL);

 return(status);
}

See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

Character Set Conversion
Conversion between Oracle character set and Unicode (16 bit, fixed width Unicode

encoding) is supported. Replacement characters will be used if there is no mapping

from Unicode to the Oracle character set, therefore, round-trip conversion is not

always possible.

Table 5–43 OCI Character Set Conversion Calls

Function Call Description

OCICharsetToUnicode() Converts a multi-byte string pointed to by src to Unicode into the array pointed to by dst.

OCIUnicodeToCharset() Converts a Unicode string pointed to by src to multi-byte into the array pointed to by dst.

OCICharSetConversionIs
ReplacementUsed()

Indicates whether the replacement character was used for nonconvertible characters in
character set conversion in the last invocation of OCICharsetConv().
OCI Programming 5-33

Character Set Conversion
OCICharSetToUnicode

Syntax
sword OCICharSetToUnicode(dvoid *hndl, ub2 *dst, size_t dstlen, CONST text *src,
size_t srclen, size_t *rsize)

Remarks
This function converts a multi-byte string pointed to by src to Unicode into the

array pointed to by dst . The conversion will stop when it reach to the source

limitation or destination limitation. The function will return number of characters

converted into Unicode. If dstlen is zero, it will just return the number of

characters into rsize for the result without real conversion.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

OCIUnicodeToCharSet

Syntax
sword OCIUnicodeToCharSet(dvoid *hndl, text *dst, size_t dstlen, CONST ub2 *src,
size_t srclen, size_t *rsize)

Remarks
This function converts a Unicode string pointed to by src to multi-byte into the

array pointed to by dst . The conversion will stop when it reach to the source

limitation or destination limitation. The function will return the number of bytes

converted into multi-byte. If dstlen is zero, it will just return the number of bytes

into rsize for the result without real conversion.

Table 5–44 OCICharSetToUnicode Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) pointer to an OCI environment or user session handle

dst (OUT) pointer to a destination buffer

dstlen(IN) size of destination buffer in character

src (IN) pointer to multi-byte source string

srclen(IN) size of source string in bytes

rsize (OUT) number of characters converted. If it is aNULL pointer,
nothing to return
5-34 Oracle8i National Language Support Guide

Character Set Conversion
If a Unicode character is not convertible for the character set specified in OCI
environment or user session handle, a replacement character will be used for it. In

this case, OCICharsetConversionIsReplacementUsed () will return true.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

OCICharSetConversionIsReplacementUsed

Syntax
boolean OCICharSetConversionIsReplacementUsed(dvoid *hndl)

Remarks
This function indicates whether or not the replacement character was used for

nonconvertible characters in character set conversion in last invoke of

OCICharSetToUnicode ().

Returns
TRUE is the replacement character was used in last OCICharsetConv () invoking,

else FALSE.

Conversion between the Oracle character set and Unicode (16-bit, fixed-width

Unicode encoding) is supported. Replacement characters will be used if there is no

Table 5–45 OCIUnicodeToCharSet Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) pointer to an OCI environment or user session handle

dst (OUT) pointer to a destination buffer

dstlen(IN) size of destination buffer in bytes

src (IN) pointer to a Unicode string

srclen(IN) size of source string in characters

rsize (OUT) number of bytes converted. If it is aNULL pointer, nothing to
return

Table 5–46 OCICharSetConversionIsReplacementUsed Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) pointer to an OCI environment or user session handle
OCI Programming 5-35

Messaging Mechanism
mapping from Unicode to the Oracle character set, thus, round-trip conversion is

not always possible.

Character Set Conversion Sample Code
The following is a simple conversion into Unicode.

size_t MyConvertMultiByteToUnicode(envhp, dstBuf, dstSize, srcStr)
OCIEnv *envhp;
ub2 *dstBuf;
size_t dstSize;
text *srcStr;
{
 sword ret;
 size_t dstLen = 0;
 size_t srcLen;

 /* get length of source string */
 srcLen = OCIMultiByteStrlen(envhp, srcStr);

 ret = OCICharSetToUnicode(envhp, /* environment handle */
 dstBuf, /* destination buffer */
 dstSize, /* size of destination buffer */
 srcStr, /* source string */
 srcLen, /* length of source string */
 &dstLen); /* pointer to destination length */

 if (ret != OCI_SUCCESS)
 {
 checkerr(envhp, ret, OCI_HTYPE_ENV);
 }
 return(dstLen);
}

See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

Messaging Mechanism
The user message API provides a simple interface for cartridge developers to

retrieve their own messages as well as Oracle messages.
5-36 Oracle8i National Language Support Guide

Messaging Mechanism
See Oracle Call Interface Programmer’s Guide and Oracle8i Data Cartridge Developer’s
Guide for further information.

OCIMessageOpen

Syntax
sword OCIMessageOpen(dvoid *hndl, OCIError *errhp, OCIMsg **msghp, CONST text
*product, CONST text *facility, OCIDuration dur)

Remarks
This function opens a message handle for facility of product in a language pointed

to by hndl. It first tries to open the message file corresponding to hndl for the

facility. If it succeeds, it will use that file to initialize a message handle, else it will

use the default message file which is for American language for the facility. The

function returns a pointer pointed to a message handle into the msghp parameter.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

Table 5–47 OCI Messaging Function Calls

Function Call Description

OCIMessageOpen() Opens a message handle for facility of product in a language pointed to by
envhp.

OCIMessageGet() Retrieves a message with message number identified by msgno and if the
buffer is not zero, the function will copy the message into the buffer pointed
to by msgbuf.

OCIMessageClose() Closes a message handle pointed to by msgh and frees any memory
associated with this handle.

Table 5–48 OCICharSetConversionIsReplacementUsed Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) pointer to an OCI environment or user session handlefor message
language

errhp (IN/OUT) theOCI error handle. If there is an error, it is record in errhp
and this function returns aNULL pointer. Diagnostic
information can be obtained by callingOCIErrorGet() .

msghp (OUT) a message handle for return
OCI Programming 5-37

Messaging Mechanism

e

OCIMessageGet

Syntax
text *OCIMessageGet(OCIMsg *msgh, ub4 msgno, text *msgbuf, size_t buflen)

Remarks
This function will get message with message number identified by msgno and if

buflen is not zero, the function will copy the message into the buffer pointed to by

msgbuf . If buflen is zero, the message will be copied into a message buffer inside

the message handle pointed to by msgh. For both cases. it will return the pointer to

the NULL-terminated message string. If it cannot get the message required, it will

return a NULL pointer.

Returns
A pointer to a NULL-terminated message string on success, otherwise a NULL
pointer.

product (IN) a pointer to a product name. Product name is used to locate th
directory for message in a system dependent way. For
example, in Solaris, the directory of message files for the
product ’rdbms’ is ’${ORACLE_HOME}/rdbms’.

facility (IN) a pointer to a facility name in the product. It is used to
construct a message file name. A message file name follows
the conversion with facility as prefix. For example, the
message file name for facility ’img’ in the American language
will be ’imgus.msb’ where ’us’ is the abbreviation for the
American language and ’msb’ as message binary file
extension.

dur (IN) duration for memory allocation for the return message handle.
It can be the following values:

■ OCI_DURATION_PROCESS

■ OCI_DURATION_STATEMENT

■ OCI_DURATION_SESSION

Table 5–48 OCICharSetConversionIsReplacementUsed Keywords/Parameters

Keyword/Parameter Meaning
5-38 Oracle8i National Language Support Guide

Messaging Mechanism
OCIMessageClose

Syntax
sword OCIMessageClose(dvoid *hndl, OCIError *errhp, OCIMsg *msgh)

Remarks
This function closes a message handle pointed to by msgh and frees any memory

associated with this handle.

Returns
OCI_SUCCESS, OCI_INVALID_HANDLE or OCI_ERROR.

LMSGEN

Remarks
The lmsgen utility converts text based message files (.msg) into binary format

(.msb).

Table 5–49 OCIMessageGet Keywords/Parameters

Keyword/Parameter Meaning

msgh (IN/OUT) pointer to a message handle which was previously opened by
OCIMessageOpen ()

msgno (IN) the message number for getting message

msgbuf (OUT) pointer to a destination buffer to the message retrieved. If buflen is
zero, it can beNULL pointer.

buflen (IN) the size of the above destination buffer

Table 5–50 OCIMessageClose Keywords/Parameters

Keyword/Parameter Meaning

hndl (IN/OUT) pointer to an OCI environment or user session handlefor message
language

errhp (IN/OUT) theOCI error handle. If there is an error, it is record in errhp
and this function returns aNULL pointer. Diagnostic
information can be obtained by callingOCIErrorGet() .

msgh (IN/OUT) a pointer to a message handle which was previously opened by
OCIMessageOpen ()
OCI Programming 5-39

Messaging Mechanism
Syntax
LMSGEN <text file> <product> <facility> [language]
WHERE,
 <text file> is a message text file
 <product> the name of the product
 <facility> the name of the facility
 [language] optional message language in <language>_<territory>.<character
set> format

This is required if the message file is not tagged properly with language.

Text Message File Format
■ Lines start with "/" and "//" are treated as internal comments and hence are

ignored.

■ To tag the message file with a specific language:

CHARACTER_SET_NAME= Japanese_Japan.JA16EUC

■ Each message is composed of 3 fields:

<message #>, <warning level #>, <message text>

– Message # has to be unique within a message file.

– Warning level # is not used currently, simply use 0.

– Message text cannot be longer than 76 bytes.

Example
/ Copyright (c) 1988 by the Oracle Corporation. All rights reserved.
/ This is a testing us7ascii message file
CHARACTER_SET_NAME= american_america.us7ascii
/
00000, 00000, "Export terminated unsuccessfully\n"
00003, 00000, "no storage definition found for segment(%lu, %lu)"

Message Example

Settings
This example will retrieve messages from a .msb message file. The following

settings are used:
5-40 Oracle8i National Language Support Guide

Messaging Mechanism
product = $HOME/myApp
facility = imp
Language = American language

Based on the above setting, the message file $HOME/myApp/mesg/impus.msb will

be used.

Message file
Lmsgen will convert the message file (impus.msg) into binary format

(impus.msb).

The following is a portion of the text message file, impus.msg:

...
00128,2, "Duplicate entry %s found in %s"
...

Messaging sample code:
/* Assume that the OCI environment or user session handle, product, facility and
cache size are all initialized properly. */
...
OCIMsg msghnd; /* message handle */
 /* initialize a message handle for retrieving messages from impus.msg*/
err = OCIMessageOpen(hndl,errhp, &msghnd, prod,fac,OCI_DURATION_SESSION);
if (err != OCI_SUCCESS)
 /* error handling */
...
 /* retrieve the message with message number = 128 */
msgptr = OCIMessageGet(msghnd, 128, msgbuf, sizeof(msgbuf));
 /* do something with the message, such as display it */
...
 /* close the message handle when we has no more message to retrieve */
OCIMessageClose(hndl, errhp, msghnd);
OCI Programming 5-41

Messaging Mechanism
5-42 Oracle8i National Language Support Guide

Locale D
A

Locale Data

This appendix lists the languages, territories, character sets, and other locale data

supported by the Oracle server. It includes these topics:

■ Languages

■ Translated Messages

■ Territories

■ Character Sets

■ Linguistic Definitions

■ Calendar Systems

You can also obtain information about supported character sets, languages,

territories, and sorting orders by querying the dynamic data view V$NLS_VALID_

VALUES. For more information on the data which can be returned by this view, see

Oracle8i Reference.
ata A-1

Languages
Languages
Table A–1 lists the languages supported by the Oracle server.

Table A–1 Oracle Supported Languages

Name Abbreviation

AMERICAN us

ARABIC ar

BENGALI bn

BRAZILIAN PORTUGUESE ptb

BULGARIAN bg

CANADIAN FRENCH frc

CATALAN ca

CROATIAN hr

CZECH cs

DANISH dk

DUTCH nl

EGYPTIAN eg

ENGLISH gb

ESTONIAN et

FINNISH sf

FRENCH f

GERMAN DIN din

GERMAN d

GREEK el

HEBREW iw

HUNGARIAN hu

ICELANDIC is

INDONESIAN in

ITALIAN i
A-2 Oracle8i National Language Support Guide

Languages
JAPANESE ja

KOREAN ko

LATIN AMERICAN SPANISH esa

LATVIAN lv

LITHUANIAN lt

MALAY ms

MEXICAN SPANISH esm

NORWEGIAN n

POLISH pl

PORTUGUESE pt

ROMANIAN ro

RUSSIAN ru

SIMPLIFIED CHINESE zhs

SLOVAK sk

SLOVENIAN sl

SPANISH e

SWEDISH s

THAI th

TRADITIONAL CHINESE zht

TURKISH tr

UKRAINIAN uk

VIETNAMESE vn

Table A–1 Oracle Supported Languages

Name Abbreviation
Locale Data A-3

Translated Messages
Translated Messages
Oracle error messages and user interfaces have been translated into the languages

which are listed in Table A–2.

Table A–2 Oracle Supported Messages

Name Abbreviation

ARABIC ar

BRAZILIAN PORTUGUESE ptb

CATALAN ca

CZECH cs

DANISH dk

DUTCH nl

FINNISH sf

FRENCH f

GERMAN d

GREEK el

HEBREW iw

HUNGARIAN hu

ITALIAN i

JAPANESE ja

KOREAN ko

LATIN AMERICAN SPANISH esa

NORWEGIAN n

POLISH pl

PORTUGUESE pt

ROMANIAN ro

RUSSIAN ru

SIMPLIFIED CHINESE zhs

SLOVAK sk

SPANISH e
A-4 Oracle8i National Language Support Guide

Territories
Territories
Table A–3 lists the territories supported by the Oracle server.

SWEDISH s

TRADITIONAL CHINESE zht

TURKISH tr

Table A–3 Oracle Supported Territories

Name

ALGERIA HUNGARY QATAR

AMERICA ICELAND ROMANIA

AUSTRALIA INDONESIA SAUDI ARABIA

AUSTRIA IRAQ SINGAPORE

BAHRAIN IRELAND SLOVAKIA

BANGLADESH ISRAEL SLOVENIA

BELGIUM ITALY SOMALIA

BRAZIL JAPAN SOUTH AFRICA

BULGARIA JORDAN SPAIN

CANADA KAZAKHSTAN SUDAN

CATALONIA KUWAIT SWEDEN

CHINA LATVIA SWITZERLAND

CIS LEBANON SYRIA

CROATIA LIBYA TAIWAN

CYPRUS KOREA THAILAND

CZECH LITHUANIA THE NETHERLANDS

CZECHOSLOVAKIA LUXEMBOURG TUNISIA

DENMARK MALAYSIA TURKEY

DJIBOUTI MAURITANIA UKRAINE

Table A–2 Oracle Supported Messages

Name Abbreviation
Locale Data A-5

Character Sets
Character Sets
Oracle-supported character sets are listed below, for easy reference, according to

three broad language groups:

■ Asian Language Character Sets

■ European Language Character Sets

■ Middle Eastern Language Character Sets

Note that some character sets may be listed under multiple language groups

because they provide multilingual support. For instance, Unicode spans the Asian,

European, and Middle Eastern language groups because it supports most of the

major scripts of the world.

The comment section indicates the type of encoding used:

SB = Single-byte encoding

MB = Multi-byte encoding

FIXED = Fixed-width multi-byte encoding

As mentioned in Chapter 3, "Choosing a Character Set", the type of encoding will

affect performance so you should use the most efficient encoding that meets your

language needs. Also, some encoding types can only be used with certain data

types. For instance, fixed-width multibyte encoded character sets can only be used

as an NCHAR character set, and not as a database character set.

Also documented in the comment section are other unique features of the character

set that may be important to users or your database administrator. For instance,

whether the character set supports the new Euro currency symbol, whether user

EGYPT MEXICO UNITED ARAB EMIRATES

ESTONIA MOROCCO UNITED KINGDOM

FINLAND NEW ZEALAND UZBEKISTAN

FRANCE NORWAY VIETNAM

GERMANY OMAN YEMEN

GREECE POLAND

HONG KONG PORTUGAL

Table A–3 Oracle Supported Territories

Name
A-6 Oracle8i National Language Support Guide

Character Sets
defined characters are supported for character set customization, and whether the

character set is a strict superset of ASCII (which will allow you to make use of the

ALTER DATABASE [NATIONAL] CHARACTER SET command in case of

migration.)

EURO = Euro symbol supported

UDC = User-defined Characters supported

ASCII = Strict Superset of ASCII

Oracle does not document individual code page layouts. For specific details about a

particular character set, its character repertoire, and code point values, you should

refer to the actual national, international, or vendor-specific standards.

Asian Language Character Sets
Table A–4 lists the Oracle character sets that can support Asian languages.

Table A–4 Asian Language Character Sets

Name Description Comments

BN8BSCII Bangladesh National Code 8-bit BSCII SB, ASCII

ZHT16BIG5 BIG5 16-bit Traditional Chinese MB, ASCII

ZHS16CGB231280 CGB2312-80 16-bit Simplified Chinese MB. ASCII

JA16EUC EUC 24-bit Japanese MB, ASCII

JA16EUCYEN EUC 24-bit Japanese with ’\’ mapped to the Japanese yen
character

MB

JA16EUCFIXED EUC 16-bit Japanese. A fixed-width subset of JA16EUC
(contains only the 2-byte characters of JA16EUC). Contains
no 7- or 8-bit ASCII characters

FIXED

ZHT32EUC EUC 32-bit Traditional Chinese MB, ASCII

ZHS16GBK GBK 16-bit Simplified Chinese MB, ASCII, UDC

ZHS16GBKFIXED GBK 16-bit Simplified Chinese (16-bit fixed-width, no single
byte)

FIXED, UDC

ZHT16CCDC HP CCDC 16-bit Traditional Chinese MB, ASCII

JA16DBCS IBM EBCDIC 16-bit Japanese MB, UDC

JA16EBCDIC930 IBM DBCS Code Page 290 16-bit Japanese MB, UDC
Locale Data A-7

Character Sets
JA16DBCSFIXED IBM EBCDIC 16-bit Japanese (16-bit fixed width, no single
byte)

FIXED, UDC

KO16DBCS IBM EBCDIC 16-bit Korean MB, UDC

KO16DBCSFIXED IBM EBCDIC 16-bit Korean (16-bit fixed-width, no single
byte)

FIXED, UDC

ZHS16DBCS IBM EBCDIC 16-bit Simplified Chinese MB, UDC

ZHS16DBCSFIXED IBM EBCDIC 16-bit Simplified Chinese (16-bit fixed-width,
no single byte)

FIXED, UDC

ZHT16DBCS IBM EBCDIC 16-bit Traditional Chinese MB, UDC

KO16KSC5601 KSC5601 16-bit Korean MB, ASCII

KO16KSCCS KSCCS 16-bit Korean MB, ASCII

JA16VMS JVMS 16-bit Japanese MB, ASCII

ZHS16MACCGB231280 Mac client CGB2312-80 16-bit Simplified Chinese MB

JA16MACSJIS Mac client Shift-JIS 16-bit Japanese MB

TH8MACTHAI Mac Client 8-bit Latin/Thai SB

TH8MACTHAIS Mac Server 8-bit Latin/Thai SB, ASCII

ZHT16MSWIN950 MS Windows Code Page 950 Traditional Chinese MB, ASCII, UDC

KO16MSWIN949 MS Windows Code Page 949 Korean MB, ASCII, UDC

VN8MSWIN1258 MS Windows Code Page 1258 8-bit Vietnamese SB, ASCII, EURO

IN8ISCII Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

SB, ASCII

JA16SJIS Shift-JIS 16-bit Japanese MB, ASCII, UDC

JA16SJISFIXED Shift-JIS 16-bit Japanese. A fixed-width subset of JA16SJIS
(contains only the 2-byte characters of JA16JIS). Contains no
7- or 8-bit ASCII characters

FIXED, UDC

JA16SJISYEN Shift-JIS 16-bit Japanese with ’\’ mapped to the Japanese yen
character

MB, UDC

ZHT32SOPS SOPS 32-bit Traditional Chinese MB, ASCII

ZHT16DBT Taiwan Taxation 16-bit Traditional Chinese MB, ASCII

TH8TISASCII Thai Industrial Standard 620-2533 - ASCII 8-bit SB, ASCII, EURO

Table A–4 Asian Language Character Sets

Name Description Comments
A-8 Oracle8i National Language Support Guide

Character Sets
European Language Character Sets
Table A–5 lists the Oracle character sets that can support European languages.

TH8TISEBCDIC Thai Industrial Standard 620-2533 - EBCDIC 8-bit SB

ZHT32TRIS TRIS 32-bit Traditional Chinese MB, ASCII

ZHT32TRISFIXED TRIS 32-bit Fixed-width Traditional Chinese FIXED

AL24UTFFSS Unicode 1.1 UTF-8 Universal character set MB, ASCII, EURO

UTF8 Unicode 2.0 UTF-8 Universal character set MB, ASCII, EURO

VN8VN3 VN3 8-bit Vietnamese SB, ASCII

Table A–5 European Language Character Sets

Name Description Comments

US7ASCII ASCII 7-bit American SB, ASCII

SF7ASCII ASCII 7-bit Finnish SB

YUG7ASCII ASCII 7-bit Yugoslavian SB

RU8BESTA BESTA 8-bit Latin/Cyrillic SB, ASCII

EL8GCOS7 Bull EBCDIC GCOS7 8-bit Greek SB

WE8GCOS7 Bull EBCDIC GCOS7 8-bit West European SB

EL8DEC DEC 8-bit Latin/Greek SB

TR7DEC DEC VT100 7-bit Turkish SB

TR8DEC DEC 8-bit Turkish SB, ASCII

TR8EBCDIC EBCDIC Code Page 1026 8-bit Turkish SB

TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII

TR8MACTURKISH MAC Client 8-bit Turkish SB

TR8MACTURKISHS MAC Server 8-bit Turkish SB, ASCII

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish SB, ASCII, EURO

WE8BS2000L5 Siemens EBCDIC.DF.L5 8-bit West European/Turkish SB

WE8DEC DEC 8-bit West European SB, ASCII

Table A–4 Asian Language Character Sets

Name Description Comments
Locale Data A-9

Character Sets
D7DEC DEC VT100 7-bit German SB

F7DEC DEC VT100 7-bit French SB

S7DEC DEC VT100 7-bit Swedish SB

E7DEC DEC VT100 7-bit Spanish SB

NDK7DEC DEC VT100 7-bit Norwegian/Danish SB

I7DEC DEC VT100 7-bit Italian SB

NL7DEC DEC VT100 7-bit Dutch SB

CH7DEC DEC VT100 7-bit Swiss (German/French) SB

SF7DEC DEC VT100 7-bit Finnish SB

WE8DG DG 8-bit West European SB, ASCII

WE8EBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB

WE8EBCDIC37 EBCDIC Code Page 37 8-bit West European SB

D8EBCDIC273 EBCDIC Code Page 273/1 8-bit Austrian German SB

DK8EBCDIC277 EBCDIC Code Page 277/1 8-bit Danish SB

S8EBCDIC278 EBCDIC Code Page 278/1 8-bit Swedish SB

I8EBCDIC280 EBCDIC Code Page 280/1 8-bit Italian SB

WE8EBCDIC284 EBCDIC Code Page 284 8-bit Latin American/Spanish SB

WE8EBCDIC285 EBCDIC Code Page 285 8-bit West European SB

F8EBCDIC297 EBCDIC Code Page 297 8-bit French SB

WE8EBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB

WE8EBCDIC500 EBCDIC Code Page 500 8-bit West European SB

EE8EBCDIC870 EBCDIC Code Page 870 8-bit East European SB

WE8EBCDIC871 EBCDIC Code Page 871 8-bit Icelandic SB

EL8EBCDIC875 EBCDIC Code Page 875 8-bit Greek SB

CL8EBCDIC1025 EBCDIC Code Page 1025 8-bit Cyrillic SB

CL8EBCDIC1025X EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic SB

BLT8EBCDIC1112 EBCDIC Code Page 1112 8-bit Baltic Multilingual SB

Table A–5 European Language Character Sets

Name Description Comments
A-10 Oracle8i National Language Support Guide

Character Sets
D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian German SB, EURO

DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish SB, EURO

S8EBCDIC1143 EBCDIC Code Page 1143 8-bit Swedish SB, EURO

I8EBCDIC1144 EBCDIC Code Page 1144 8-bit Italian SB, EURO

F8EBCDIC1147 EBCDIC Code Page 1147 8-bit French SB, EURO

EEC8EUROASCI EEC Targon 35 ASCI West European/Greek SB

EEC8EUROPA3 EEC EUROPA3 8-bit West European/Greek SB

LA8PASSPORT German Government Printer 8-bit All-European Latin SB, ASCII

WE8HP HP LaserJet 8-bit West European SB

WE8ROMAN8 HP Roman8 8-bit West European SB, ASCII

HU8CWI2 Hungarian 8-bit CWI-2 SB, ASCII

HU8ABMOD Hungarian 8-bit Special AB Mod SB, ASCII

LV8RST104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic) SB, ASCII

US8PC437 IBM-PC Code Page 437 8-bit American SB, ASCII

BG8PC437S IBM-PC Code Page 437 8-bit (Bulgarian Modification) SB, ASCII

EL8PC437S IBM-PC Code Page 437 8-bit (Greek modification) SB, ASCII

EL8PC737 IBM-PC Code Page 737 8-bit Greek/Latin SB

LT8PC772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic) SB, ASCII

LT8PC774 IBM-PC Code Page 774 8-bit Lithuanian (Latin) SB, ASCII

BLT8PC775 IBM-PC Code Page 775 8-bit Baltic SB, ASCII

WE8PC850 IBM-PC Code Page 850 8-bit West European SB, ASCII

EL8PC851 IBM-PC Code Page 851 8-bit Greek/Latin SB, ASCII

EE8PC852 IBM-PC Code Page 852 8-bit East European SB, ASCII

RU8PC855 IBM-PC Code Page 855 8-bit Latin/Cyrillic SB, ASCII

WE8PC858 IBM-PC Code Page 858 8-bit West European SB, ASCII, EURO

WE8PC860 IBM-PC Code Page 860 8-bit West European SB. ASII

IS8PC861 IBM-PC Code Page 861 8-bit Icelandic SB, ASCII

Table A–5 European Language Character Sets

Name Description Comments
Locale Data A-11

Character Sets
CDN8PC863 IBM-PC Code Page 863 8-bit Canadian French SB, ASCII

N8PC865 IBM-PC Code Page 865 8-bit Norwegian SB. ASCII

RU8PC866 IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII

EL8PC869 IBM-PC Code Page 869 8-bit Greek/Latin SB, ASCII

LV8PC1117 IBM-PC Code Page 1117 8-bit Latvian SB, ASCII

US8ICL ICL EBCDIC 8-bit American SB

WE8ICL ICL EBCDIC 8-bit West European SB

WE8ISOICLUK ICL special version ISO8859-1 SB

WE8ISO8859P1 ISO 8859-1 West European SB, ASCII

EE8ISO8859P2 ISO 8859-2 East European SB, ASCII

SE8ISO8859P3 ISO 8859-3 South European SB, ASCII

NEE8ISO8859P4 ISO 8859-4 North and North-East European SB, ASCII

CL8ISO8859P5 ISO 8859-5 Latin/Cyrillic SB, ASCII

AR8ISO8859P6 ISO 8859-6 Latin/Arabic SB, ASCII

EL8ISO8859P7 ISO 8859-7 Latin/Greek SB, ASCII

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew SB, ASCII

NE8ISO8859P10 ISO 8859-10 North European SB, ASCII

WE8ISO8859P15 ISO 8859-15 West European SB, ASCII, EURO

LA8ISO6937 ISO 6937 8-bit Coded Character Set for Text Communication SB, ASCII

IW7IS960 Israeli Standard 960 7-bit Latin/Hebrew SB

AR8ARABICMAC Mac Server 8-bit Latin/Arabic SB

EE8MACCE Mac Client 8-bit Central European SB

EE8MACCROATIAN Mac Client 8-bit Croatian SB

WE8MACROMAN8 Mac Client 8-bit Extended Roman8 West European SB

EL8MACGREEK Mac Client 8-bit Greek SB

IS8MACICELANDIC Mac Client 8-bit Icelandic SB

CL8MACCYRILLIC Mac Client 8-bit Latin/Cyrillic SB

Table A–5 European Language Character Sets

Name Description Comments
A-12 Oracle8i National Language Support Guide

Character Sets
AR8ARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII

EE8MACCES Mac Server 8-bit Central European SB, ASCII

EE8MACCROATIANS Mac Server 8-bit Croatian SB, ASCII

WE8MACROMAN8S Mac Server 8-bit Extended Roman8 West European SB, ASCII

CL8MACCYRILLICS Mac Server 8-bit Latin/Cyrillic SB, ASCII

EL8MACGREEKS Mac Server 8-bit Greek SB, ASCII

IS8MACICELANDICS Mac Server 8-bit Icelandic SB

BG8MSWIN MS Windows 8-bit Bulgarian Cyrillic SB, ASCII

LT8MSWIN921 MS Windows Code Page 921 8-bit Lithuanian SB, ASCII

ET8MSWIN923 MS Windows Code Page 923 8-bit Estonian SB, ASCII

EE8MSWIN1250 MS Windows Code Page 1250 8-bit East European SB, ASCII, EURO

CL8MSWIN1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic SB, ASCII, EURO

WE8MSWIN1252 MS Windows Code Page 1252 8-bit West European SB, ASCII, EURO

EL8MSWIN1253 MS Windows Code Page 1253 8-bit Latin/Greek SB, ASCII, EURO

BLT8MSWIN1257 MS Windows Code Page 1257 8-bit Baltic SB, ASCII, EURO

BLT8CP921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic SB, ASCII

LV8PC8LR Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic SB, ASCII

WE8NCR4970 NCR 4970 8-bit West European SB, ASCII

WE8NEXTSTEP NeXTSTEP PostScript 8-bit West European SB, ASCII

CL8KOI8R RELCOM Internet Standard 8-bit Latin/Cyrillic SB, ASCII

US8BS2000 Siemens 9750-62 EBCDIC 8-bit American SB

DK8BS2000 Siemens 9750-62 EBCDIC 8-bit Danish SB

F8BS2000 Siemens 9750-62 EBCDIC 8-bit French SB

D8BS2000 Siemens 9750-62 EBCDIC 8-bit German SB

E8BS2000 Siemens 9750-62 EBCDIC 8-bit Spanish SB

S8BS2000 Siemens 9750-62 EBCDIC 8-bit Swedish SB

DK7SIEMENS9780X Siemens 97801/97808 7-bit Danish SB

Table A–5 European Language Character Sets

Name Description Comments
Locale Data A-13

Character Sets
Middle Eastern Language Character Sets
Table A–6 lists the Oracle character sets that can support Middle Eastern languages.

F7SIEMENS9780X Siemens 97801/97808 7-bit French SB

D7SIEMENS9780X Siemens 97801/97808 7-bit German SB

I7SIEMENS9780X Siemens 97801/97808 7-bit Italian SB

N7SIEMENS9780X Siemens 97801/97808 7-bit Norwegian SB

E7SIEMENS9780X Siemens 97801/97808 7-bit Spanish SB

S7SIEMENS9780X Siemens 97801/97808 7-bit Swedish SB

WE8BS2000 Siemens EBCDIC.DF.04 8-bit West European SB

CL8BS2000 Siemens EBCDIC.EHC.LC 8-bit Cyrillic SB

AL24UTFFSS Unicode 1.1 UTF-8 Universal character set MB, ASCII, EURO

UTF8 Unicode 2.0 UTF-8 Universal character set MB, ASCII, EURO

Table A–6 Middle Eastern Character Sets

Name Description Comments

AR8APTEC715 APTEC 715 Server 8-bit Latin/Arabic SB, ASCII

AR8ASMO708PLUS ASMO 708 Plus 8-bit Latin/Arabic SB, ASCII

AR8ASMO8X ASMO Extended 708 8-bit Latin/Arabic SB, ASCII

AR8ADOS710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic SB, ASCII

AR8ADOS720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic SB, ASCII

TR7DEC DEC VT100 7-bit Turkish SB

TR8DEC DEC 8-bit Turkish SB

WE8EBCDIC37C EBCDIC Code Page 37 8-bit Oracle/c SB

IW8EBCDIC424 EBCDIC Code Page 424 8-bit Latin/Hebrew SB

WE8EBCDIC500C EBCDIC Code Page 500 8-bit Oracle/c SB

IW8EBCDIC1086 EBCDIC Code Page 1086 8-bit Hebrew SB

Table A–5 European Language Character Sets

Name Description Comments
A-14 Oracle8i National Language Support Guide

Character Sets
AR8EBCDICX EBCDIC XBASIC Server 8-bit Latin/Arabic SB

TR8EBCDIC1026 EBCDIC Code Page 1026 8-bit Turkish SB

TR8PC857 IBM-PC Code Page 857 8-bit Turkish SB, ASCII

IW8PC1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew SB, ASCII

AR8ISO8859P6 ISO 8859-6 Latin/Arabic SB, ASCII

IW8ISO8859P8 ISO 8859-8 Latin/Hebrew SB, ASCII

WE8ISO8859P9 ISO 8859-9 West European & Turkish SB, ASCII

LA8ISO6937 ISO 6937 8-bit Coded Character Set for Text Communication SB, ASCII

IW7IS960 Israeli Standard 960 7-bit Latin/Hebrew SB

IW8MACHEBREW Mac Client 8-bit Hebrew SB

AR8ARABICMAC Mac Client 8-bit Latin/Arabic SB

TR8MACTURKISH Mac Client 8-bit Turkish SB

IW8MACHEBREWS Mac Server 8-bit Hebrew SB, ASCII

AR8ARABICMACS Mac Server 8-bit Latin/Arabic SB, ASCII

TR8MACTURKISHS Mac Server 8-bit Turkish SB, ASCII

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish SB, ASCII, EURO

IW8MSWIN1255 MS Windows Code Page 1255 8-bit Latin/Hebrew SB, ASCII, EURO

AR8MSWIN1256 MS Windows Code Page 1256 8-Bit Latin/Arabic SB. ASCII, EURO

IN8ISCII Multiple-Script Indian Standard 8-bit Latin/Indian
Languages

SB

AR8MUSSAD768 Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic SB, ASCII

AR8NAFITHA711 Nafitha Enhanced 711 Server 8-bit Latin/Arabic SB, ASCII

AR8NAFITHA721 Nafitha International 721 Server 8-bit Latin/Arabic SB, ASCII

AR8SAKHR706 SAKHR 706 Server 8-bit Latin/Arabic SB, ASCII

AR8SAKHR707 SAKHR 707 Server 8-bit Latin/Arabic SB, ASCII

Table A–6 Middle Eastern Character Sets

Name Description Comments
Locale Data A-15

Character Sets
Universal Character Sets
Table A–7 lists the Oracle character sets that provide universal language support,

that is, they attempt to support all languages of the world, including, but not

limited to, Asian, European, and Middle Eastern languages.

Note: The Unicode 1.1 character set has been superseded by Unicode 2.0. One of

the major differences between version 1.1 and 2.0 is the redefinition and addition of

11,172 Korean characters. Whenever possible, you should use the latest version of

the Unicode standard. The primary scripts currently supported by Unicode 2.0 are:

For details on the Unicode standard, see http://www.unicode.org or refer to the

Unicode Standard, defined by the Unicode consortium.

WE8BS2000L5 Siemens EBCDIC.DF.04.L5 8-bit West European/Turkish SB

AL24UTFFSS Unicode 1.1 UTF-8 Universal character set MB. ASCII, EURO

UTF8 Unicode 2.0 UTF-8 Universal character set MB, ASCII, EURO

Table A–7 Universal Character Sets

Name Description Comments

AL24UTFFSS Unicode 1.1 UTF-8 Universal character set MB, ASCII, EURO

UTF8 Unicode 2.0 UTF-8 Universal character set MB, ASCII, EURO

Arabic Gujarati Latin

Armenian Gurmukhi Lao

Bengali Han Malayalam

Bopomofo Hangul Oriya

Cyrillic Hebrew Tamil

Devanagari Hiragana Telugu

Georgian Kannada Thai

Greek Katakana Tibetan

Table A–6 Middle Eastern Character Sets

Name Description Comments
A-16 Oracle8i National Language Support Guide

Linguistic Definitions
Linguistic Definitions
Linguistic definitions define linguistic cases for particular languages. Extended

linguistic definitions include some special linguistic cases for the language.

Typically, using the extended definition means that characters will be sorted

differently from their ASCII values. For example, ch and ll are treated as only one

character in XSPANISH. Table A–8 lists the linguistic definitions supported by the

Oracle server.

Table A–8 Linguistic Definitions

Basic Name Extended Name Special Cases

ARABIC --

ARABIC_MATCH --

ARABIC_ABJ_SORT --

ARABIC_ABJ_MATCH --

ASCII7 --

BENGALI --

BULGARIAN --

CANADIAN FRENCH --

CATALAN XCATALAN æ, AE, ß

CROATIAN XCROATIAN D, L, N, d, l, n, ß

CZECH XCZECH ch, CH, Ch, ß

DANISH XDANISH A, ß, Å , å

DUTCH XDUTCH ij, IJ

EEC_EURO --

EEC_EUROPA3 --

ESTONIAN --

FINNISH --

FRENCH XFRENCH

GERMAN XGERMAN ß

GERMAN_DIN XGERMAN_DIN ß, ä, ö, ü, Ä, Ö, Ü

GREEK --
Locale Data A-17

Linguistic Definitions
HEBREW --

HUNGARIAN XHUNGARIAN cs, gy, ny, sz, ty, zs, ß, CS, Cs, GY,
Gy, NY, Ny, SZ, Sz, TY, Ty, ZS, Zs

ICELANDIC --

INDONESIAN --

ITALIAN --

JAPANESE --

LATIN --

LATVIAN --

LITHUANIAN --

MALAY --

NORWEGIAN --

POLISH --

PUNCTUATION XPUNCTUATION

ROMANIAN --

RUSSIAN --

SLOVAK XSLOVAK dz, DZ, Dz, ß (caron)

SLOVENIAN XSLOVENIAN ß

SPANISH XSPANISH ch, ll, CH, Ch, LL, Ll

SWEDISH --

SWISS XSWISS ß

THAI_DICTIONARY --

THAI_TELEPHONE --

TURKISH XTURKISH æ, AE, ß

UKRAINIAN --

UNICODE_BINARY

VIETNAMESE --

WEST_EUROPEAN XWEST_EUROPEAN ß

Table A–8 Linguistic Definitions

Basic Name Extended Name Special Cases
A-18 Oracle8i National Language Support Guide

Calendar Systems
Calendar Systems
By default, most territory definitions use the Gregorian calendar system. Table A–9

lists the other calendar systems supported by the Oracle server.

March 20, 1998 looks like this in ROC Official:

Table A–9 NLS Supported Calendars

Name Default Format
Character Set Used
For Default Format

Japanese Imperial EEYY"\307\257"MM"\267\356"DD"\306\374" JA16EUC

ROC Official EEyy"\310\241"mm"\305\314"dd"\305\312" ZHT32EUC

Thai Buddha dd month EE yyyy TH8TISASCII

Persian DD Month YYYY AR8ASMO8X

Arabic Hijrah DD Month YYYY AR8ISO8859P6

English Hijrah DD Month YYYY AR8ISO8859P6
Locale Data A-19

Character Sets that Support the Euro Symbol
March 27, 1998 looks like this in Japanese Imperial:

Character Sets that Support the Euro Symbol
Table A–10 lists the character sets that support the Euro symbol.

Table A–10 Character Sets with Euro Support

Name Description Euro Code Value

D8EBCDIC1141 EBCDIC Code Page 1141 8-bit Austrian
German

0x9F

DK8EBCDIC1142 EBCDIC Code Page 1142 8-bit Danish 0x5A

S8EBCDIC1142 EBCDIC Code Page 1143 8-bit Swedish 0x5A

I8EBCDIC1144 EBCDIC Code Page 1144 8-bit Italian 0x9F

F8EBCDIC1147 EBCDIC Code Page 1147 8-bit French 0x9F

WE8PC858 IBM-PC Code Page 858 8-bit West European 0xD5

WE8ISO8859P15 ISO 8859-15 West European 0xA4

EE8MSWIN1250 MS Windows Code Page 1250 8-bit East
European

0x80
A-20 Oracle8i National Language Support Guide

Character Sets that Support the Euro Symbol
CL8MSWIN1251 MS Windows Code Page 1251 8-bit
Latin/Cyrillic

0x88

WE8MSWIN1252 MS Windows Code Page 1252 8-bit West
European

0x80

EL8MSWIN1253 MS Windows Code Page 1253 8-bit
Latin/Greek

0x80

TR8MSWIN1254 MS Windows Code Page 1254 8-bit Turkish 0x80

BLT8MSWIN1257 MS Windows Code Page 1257 Baltic 0x80

VN8MSWIN1258 MS Windows Code Page 1258 8-bit
Vietnamese

0xA0

TH8TISASCII Thai Industrial 520-2533 - ASCII 8-bit 0x80

AL24UTFFSS Unicode 1.1 UTF-8 Universal character set U+20AC

UTF8 Unicode 2.0 UTF-8 Universal character set U+20AC

Table A–10 Character Sets with Euro Support

Name Description Euro Code Value
Locale Data A-21

Character Sets that Support the Euro Symbol
A-22 Oracle8i National Language Support Guide

Customizing Locale D
B

Customizing Locale Data

A set of NLS data objects is included with every Oracle distribution set, some of

which is customizable.

This appendix contains:

■ Customized Character Sets

■ Customized Calendars

■ NLS Data Installation Utility

■ NLS Configuration Utility

Customized Character Sets
It is possible to extend Oracle’s character set definition files by adding user-defined

characters to an existing Oracle character set.

Character set information and encoding are defined in text files. These character set

definition text files contain descriptions of a character set and are specified so that a

database administrator can modify or create a new character set easily. All

characters are defined in terms of Unicode 2.0 code points. That is, each character is

defined as a Unicode 2.0 character code value. Conversion between character sets is

done by using Unicode as the intermediate form.

Once a character set definition file is created, it must be ’compiled’ into

platform-specific binary files that can be dynamically loaded into memory at

runtime. The NLS Data Installation Utility (lxinst) described in this appendix

allows you to convert and install character set definition text files into binary

format, and merge it into an NLS data object set.

Be aware that this procedure does not ensure any of the following:
ata B-1

Customized Character Sets
■ Input of User-Defined Characters

Input of user-defined characters must still be managed by the system, either

through an input method or a virtual keyboard.

■ Display of User-Defined Characters

Display of user-defined characters must still be managed by the system and/or

the application. In the case of display, a new font specification may be needed.

Many vendors provide support of a font editor. Once a new font is created,

they must be installed on to your system and made accessible to application

programs.

■ Sorting of User-Defined Characters

Sorting of user-defined characters is not supported. More specifically,

customized sorting of any character set is currently not supported. Binary or

linguistic sorting can be chosen, however, in the case of linguistic sorting, only

the predefined Oracle linguistic sorts can be used.

Character Set Definition Files
Character set information and encoding are defined in text files (with the suffix

".nlt"). Character set definition text files (*.nlt files) contain descriptions of a

character set and are specified in a user-friendly format so that a database

administrator can modify or create a new character set easily. All characters are

defined in terms of Unicode 2.0 code points. That is, each character is defined as a

Unicode 2.0 character code value.

Conversion between character sets is done by using Unicode as the intermediate

form. The following file is a sample customized character set template character set

definition file format:

Customized Character Set Definition File Format Template

The following is a template of a customized character set definition file.
You may use this template to create a user-defined character set or copy
and modify an existing one. The convention used for naming character
set definition (.nlt) files is in the format: lx2 dddd.nlt, where
dddd = 4 digit character set ID in hex
All letters in the definition file are case-insensitive.

Version number: specify the current loadable data version.
VERSION = <x.x.x.x.x>

The following is the body of the definition file
B-2 Oracle8i National Language Support Guide

Customized Character Sets
DEFINE character_set

Oracle supports a feature called 'base_char_set'. It allows you
to extend an existing character set based on an existing Oracle supported
standard character set. Generally, you may only need to edit the
following fields:

Name and ID of the character set are required for any character sets.

Character set name must be specified in a double quoted string.
Rules for choosing a character set name:
- Cannot use a character set name that is already in use. (Each
character set must be assigned a unique character set name).
- Must consist of single-byte ASCII or EBCDIC characters only
(single-byte compiler character set).
- Cannot contain multibyte characters.
- Maximum length of 30 characters.
- Must start with an alphabetic character.
- Composed of alphanumeric characters only (e.g. no periods,
dashes, underscore characters allowed)
- The name is case-insensitive.
To register a unique character set name, send mail to
nlsreg@us.oracle.com.
 name = <text_string>

Character set ID is specified as an integer value.
Rules for choosing a character set ID:
- Cannot use a character set ID that is already in use. (Each
character set must be assigned a unique character set ID.)
- Must be in the decimal range of 10000-20000
- Character set IDs must be registered with Oracle to receive a
uniquely assigned character set ID number.
To register a unique character set ID, send mail to nlsreg@us.oracle.com.
 id = <integer>

The "base_char_set" feature allows users to define the base character set in
a new character set definition file.
The new character set will inherit all definitions from the base
character set, therefore, the user only needs to add the customized data
into the new character set definition file.

The syntax of the base character set is:
base_char_set = <id> | <name>

- <id> or <name> should be a valid Oracle NLS character set id or name.
Customizing Locale Data B-3

Customized Character Sets
Example is: base_char_set = "JA16EUC" or base_char_set = 830
base_char_set = <id> | <name>

If you use base_char_set feature, remember you need to copy your base
character set definition file (text or binary format) from $ORA_NLS33
into the working directory specified by $ORANLS so that the new character
set can inherit the definition from the base character set.
Example:
%cp $ORA_NLS33/lx2033e.nlt $ORANLS
or
%cp $ORA_NLS33/lx*33e.nlb $ORANLS

Character data is defined as a list of <char_value>:<unicode_value>
pairs. <char_value> is a hex number specifying the complete character
value in this character set (e.g. 0xa1b1), while <unicode_value> is a
16-bit hex number specifying its corresponding Unicode 2.0 character
value.
Alternatively, a range of characters can be specified with a corresponding
range of Unicode values. Each successive character in the
<start_char>-<end_char> range will be assigned to each successive
character in the <start_unicode>-<end_unicode> range. There must be
an equal number of characters in each range.
User-defined characters must be assigned to characters in Unicode's
private use area, and in particular the range 0xe000 to 0xf4ff. The
remaining 1024 characters in the private use area are reserved for Oracle
private use.
If you already defined "base_char_set", you only need to add the
customized character set mappings.
 character_data = {
<char_value>:<unicode_value>,
<start_char>-<end_char>:<start_unicode>-<end_unicode>,
...
 }

A character classification list is used to specify the type of characters.
Valid values:
UPPER LOWER DIGIT SPACE PUNCTUATION CONTROL
HEX_DIGIT LETTER PRINTABLE
You only need to add customized characters' classification if you defined
base_char_set.
classification = {
<char_value> = { UPPER, LOWER, DIGIT,
 SPACE, PUNCTUATION, CONTROL,
 HEX_DIGIT, LETTER, PRINTABLE },
B-4 Oracle8i National Language Support Guide

Customized Character Sets
...
 }

Lower-to-Upper case character relationships are defined as pairs, where
the first specifies the value of a character in this character set and the
second specifies its uppercase value in this character set. You may add
the customized case mapping only if needed.
 uppercase = {
<char_value>:<upper_char_value>,
<start_char>-<end_char>:<start_upper>-<end_upper>,
...
 }

Upper-to-Lower case character relationships are defined as pairs, where
the first specifies the value of a character in this character set and the
second specifies its lowercase value in this character set. You may add
the customized case mapping only if needed.
 lowercase = {
<char_value>:<lower_char_value>,
<start_char>-<end_char>:<start_lower>-<end_lower>,
...
 }

There are a lot of other fields in an Oracle character set definition file.
Presumably, you will only need the above fields, at most.

ENDDEFINE character_set

Example of Character Set Customization
This section uses an example to introduce the steps required to create a new

character set with an example. For this example, we will create a new character set

based on Oracle's JA16EUC character set and add a few user defined characters.

Step 1. Register a New Character Set Name and ID
In order to maintain unique character set names and IDs, you must register the

character name with Oracle to receive a uniquely assigned character set ID.

Requests for character set name and ID registration can be sent to:

nlsreg@us.oracle.com

Attention: If the character set name and ID are not unique, you could experience

incompatibilities between character sets and potential loss of data.

Note the following restrictions on character set names:
Customizing Locale Data B-5

Customized Character Sets
■ you cannot use a character set name that is already in use. (Each character set

must be assigned a unique character set name)

■ the name must consist of single-byte ASCII or EBCDIC characters only

(single-byte compiler character set)

■ there is a maximum length of 30 characters

■ the name must start with an alphabetic character

■ the name must be composed of alphanumeric characters only (e.g., no periods,

dashes, underscore characters allowed)

■ the name is case-insensitive

Rules for choosing a character set ID:

■ the ID cannot use a character set ID that is already in use (each character set

must be assigned a unique character set ID)

■ the ID must be in the decimal range of 10000-20000 (hexadecimal range of

0x2710-0x3a98)

If a character set is derived from an existing Oracle character set, we recommend

using the following character set naming convention:

<Oracle_character_set_name><organization_name>EXT<version>

Example:

If a company such as Sun Microsystems were adding user-defined characters to the

JA16EUC character set, the following character set name might be appropriate:

JA16EUCSUNWEXT1

where:

JA16EUC is the character set name defined by Oracle

SUNW represents the organization name (company stock trading
abbreviation for Sun Microsystems)

EXT specifies that this is an extension to the JA16EUC character
set

1 specifies the version
B-6 Oracle8i National Language Support Guide

Customized Character Sets
For this example and all further steps, we will use the character set ID 10000 (hex

value 0x2710).

Step 2. Create an NLS Text Boot File
The NLS binary boot files indicate which NLS data objects will be loaded into the

database. Therefore, the binary boot file must be updated whenever a new

character set is created. To update the binary boot file, you must create an entry for

your new character set in a text boot file lx0boot.nlt first.

NLS Boot File Format

The following is a template for an Oracle NLS boot file.

Version number specifies the current loadable data version.
VERSION=<x.x.x.x.x>

List the character set names and IDs that will be merged into the existing
system boot file using the $ORACLE_HOME/bin/lxinst utility.
#
CHARACTER_SET
<name> <id>
<name> <id>
...

Example:

Create a text boot file (lx0boot.nlt) in the working directory.

% vi /tmp/lx0boot.nlt

To add JA16EUCSUNWEXT1, set:

VERSION=2.1.0.0.0

CHARACTER_SET
"JA16EUCSUNWEXT1" 10000

where the version number is based on the Oracle release. Refer to the version

number listed in the existing lx2*.nlt files for the latest version number.

Note that it is possible to list multiple user defined character sets in a single

lx0boot.nlt file. For example:

VERSION=2.1.0.0.0

CHARACTER_SET
"JA16EUCSUNWEXT1" 10000
Customizing Locale Data B-7

Customized Character Sets
"ZH16EUCSUNWEXT1" 10001

Step 3. Create a Character Set Definition File (lx2 dddd .nlt)
The convention used for naming character set definition (.nlt) files is in the format:

lx2dddd.nlt, where dddd = 4 digit Character Set ID in hex.

A few things to note when editing a character set definition file:

■ you can only extend (add characters to) an existing Oracle character set

■ you should not remap existing characters

■ all character mappings must be unique

■ one-to-many character mapping is not allowed

■ many-to-one character mapping is not allowed

■ new characters should be mapped into the Unicode private use range: e000-f4ff.

(Note that the actual Unicode 2.0 private use range is e000-f8ff, however, Oracle

reserves f500-f8ff for its own private use.)

■ no line can be longer than 80 characters in the character set definition file

There is a feature, 'BASE_CHAR_SET', that can make customized character set

support easier. Since you are extending an existing Oracle character set, you can use

the 'BASE_CHAR_SET' feature which causes the new character set to inherit all

definitions from the base character set and the user only need add user-specific

customized character set data.

Example:

Assume you are extending the JA16EUC character set and have added some new

customized character set data to it.

Based on the character set ID of 10000 you specified in Step 1, name the new

character set definition file lx22710.nlt (based on the character set id hex value of

0x2710).

This example uses /tmp as the working directory. Edit the new character definition

file with an editor.

% vi /tmp/lx22710.nlt
VERSION = 2.1.0.0.0

DEFINE character_set
 name = "JA16EUCSUNWEXT1"
 id = 10000
 base_char_set = 830
B-8 Oracle8i National Language Support Guide

Customized Character Sets
 character_data = {
 0x9a41 : 0xe001,
 0x9a42 : 0xe002,
 }
 classification = {
 0x9a41 = { LETTER, LOWER },
 0x9a42 = { LETTER, UPPER },
 }
 uppercase = {
 0x9a41 : 0x9a42,
 }
 lowercase = {
 0x9a42 : 0x9a41,
 }
ENDDEFINE character_set

Refer to "Customized Character Set Definition File Format Template" on page B-2

for more information about the format of the character set definition files.

Minimally, you will need to set the character set name, character set ID and, base character
set, add customized character data and classification fields.

Step 4. Back up the NLS binary boot files
Oracle recommends that you backup the NLS installation boot file (lx0boot.nlb) and

the NLS system boot file (lx1boot.nlb) in the ORA_NLS33 directory prior to

generating and installing .nlb files.

% cd $ORA_NLS33
% cp lx0boot.nlb lx0boot.nlb.orig
% cp lx1boot.nlb lx1boot.nlb.orig

Step 5. Generate and install the .nlb files
Now you are ready to generate and install the new .nlb files. The .nlb files are

platform-dependent, so you must make sure to regenerate them on each platform

and also install these files on both the server and clients.

You use the lxinst utility to create both the binary character definition files

(lx2dddd.nlb) and update the NLS boot file (lx*boot.nlb).

Example:

The lxinst utility will make use of the existing system boot file. Therefore, copy the

existing binary system boot file into the directory specified by SYSDIR. For this

example, specify SYSDIR to the working directory (/tmp).

% cp lx1boot.nlb /tmp
Customizing Locale Data B-9

Customized Character Sets
The new character set definition file (lx22710.nlt) and the text boot file containing

the new character set entry (lx0boot.nlt) that was created in Step 2 & 3 should reside

in the directory specified by ORANLS, for this example, specify it to be /tmp. Also,

since we define JA16EUC (Id 830 in hex value 033e) as "BASE_CHAR_SET", the

base definition file, text-format (lx2033e.nlt) or binary format (lx*033e.nlb), should

be in the directory ORANLS too, so that the new character set can inherit all

definitions from it.

% cp lx2033e.nlt /tmp

or

% cp lx*033e.nlb /tmp

Use the lxinst utility to generate a binary character set definition file (lx22710.nlb) in

the directory specified by ORANLS and an updated binary boot file (lx1boot.nlb) in

the directory specified by DESTDIR. For this example, define ORANLS, SYSDIR

and DESTDIR all to be /tmp.

% $ORACLE_HOME/bin/lxinst oranls=/tmp sysdir=/tmp destdir=/tmp

Then, install the newly generated binary boot file (lx1boot.nlb) into the ORA_NLS33

directory:

% cp /tmp/lx1boot.nlb $ORA_NLS33/lx1boot.nlb

Finally, install the new character set definition file lx2*.nlb into the ORA_NLS33

directory. If there is lx5*.nlb or lx6*.nlb or both, install them too:

% cp /tmp/lx22710.nlb $ORA_NLS33
% cp /tmp/lx52710.nlb $ORA_NLS33
% cp /tmp/lx62710.nlb $ORA_NLS33

Step 6. Repeat for Each Platform
You must repeat Step 5 on each hardware platform since the .nlb file is a

platform-specific binary. It must also be repeated for every system that must

recognize the new character set. Therefore, you should compile and install the new

.nlb files on both server and client machines.

Step 7. Create the Database Using New Character Set
After installing the .nlb files, you must shutdown and restart the database server in

order to initialize NLS data loading.
B-10 Oracle8i National Language Support Guide

Customized Calendars
After bringing the database server back up, create the new database using the

newly created character set.

To use the new character set on the client side, simply exit the client (such as

Enterprise Manager or SQL*Plus) and re-invoke it after installing the .nlb files.

Customized Calendars

Overview
A number of calendars besides Gregorian are supported. Although all of them are

defined with data linked directly into NLS, some of them may require the addition

of ruler eras (in the case of imperial calendars) or deviation days (in the case of

lunar calendars) in the future. In order to do this without waiting for a new release,

you can define the additional eras or deviation days in an external file, which is

then automatically loaded when executing the calendar functions.

The calendar data is first defined in a text-format definition file. This file must be

converted into binary format before it can be used. The Calendar Utility described

here allows you to do this.

NLS Calendar Utility

Syntax
The Calendar Utility is invoked directly from the command line:

LXEGEN

There are no parameters.

Usage
The Calendar Utility takes as input a text-format definition file. The name of the file

and its location are hard-coded as a platform-dependent value. On UNIX platforms,

the file name is lxecal.nlb, and its location is $ORACLE_HOME/ocommon/nls. A

sample calendar definition file is included in the distribution.

Note: The location of files is platform dependent. Please see the platform-specific

Oracle documentation for information about the location of files on your system.

The lxegen executable produces as output a binary file containing the calendar data

in the appropriate format. The name of the output file is also hard-coded as a
Customizing Locale Data B-11

NLS Data Installation Utility
platform-dependent value; on UNIX, the name would be lxecal.nlb were you to

define deviation days for the Arabic Hijrah calendar. The file will be generated in

the same directory as the text-format file, and an already-existing file will be

overwritten.

Once the binary file has been generated, it will automatically be loaded during

system initialization. Do not move or rename the file, as it is expected to be found in

the same hard-coded name and location.

Utilities
The Oracle server includes the following three utilities to assist you in maintaining

NLS data:

NLS Data Installation Utility

Overview
When you order an Oracle distribution set, a default set of NLS data objects is

included. Some NLS data objects are customizable. For example, in Oracle8i, you

can extend Oracle’s character set definition files to add user-defined characters.

These NLS definition files must be converted into binary format and merged into

the existing NLS object set. The NLS Data Installation Utility described here will

allow you to do this.

Along with the binary object files, a boot file is generated by the NLS Data

Installation Utility. This boot file is used by the modules to identify and locate all

the NLS objects which it needs to load.

To facilitate boot file distribution and user configuration, three types of boot files are

defined:

NLS Data Installation Utility
(lxinst)

Generate binary-format data objects from
their text-format versions. Use this when you
receive NLS data updates or if you create
your own data objects.

NLS Calendar Utility
(lxegen)

Generate a binary file with the appropriate
format for the calendar data.

NLS Configuration Utility
(lxbcnf)

Create and edit user boot files.
B-12 Oracle8i National Language Support Guide

NLS Data Installation Utility
Syntax
The NLS Data Installation Utility is invoked from the command line with the

following syntax:

LXINST [ORANLS=pathname] [SYSDIR= pathname] [DESTDIR= pathname] [HELP=[yes | no]]
[WARNING=[0 | 1 | 2 | 3]]

where

Installation Boot File The boot file included as part of the distribution set.

System Boot File The boot file generated by the NLS Data Installation Utility
which loads the NLS objects. If the user already has an installed
system boot file, its contents can be merged with the new system
boot file during object generation.

User Boot File A boot file that contains a subset of the system boot file
information. For information about how this file is generated,
see "NLS Configuration Utility".

ORANLS=pathname Specifies where to find the text-format boot and object files and
where to store the new binary-format boot and object files. If not
specified, NLS Installation Utility uses the value in the
environment variable ORA_NLS33 (or the equivalent for your
operating system). If both are specified, the command line
parameter overrides the environment variable. If neither is
specified, the NLS Installation Utility will exit with an error.

SYSDIR=pathname Specifies where to find the existing system boot file. If not
specified, the NLS Installation Utility uses the directory
specified in the initialization file parameter ORANLS. If there is
no existing system boot file or the NLS Installation Utility is
unable to find the file, it will create a new file and copy it to the
appropriate directory.

DESTDIR=pathname Specifies where to put the new (merged) system boot file. If not
specified, the NLS Installation Utility uses the directory
specified in the initialization file parameter ORANLS. Any
system boot file that exists in this directory will be overwritten,
so make a backup first.

HELP=[yes | no] If "yes", a help message describing the syntax for the NLS
Installation Utility will be displayed.
Customizing Locale Data B-13

NLS Data Installation Utility
Return Codes
You may receive the following return codes upon executing lxinst:

Usage
Use lxinst to install customized character sets by completing the following tasks:

■ Create a text-format boot file (lx0boot.nlt) containing references to new data

objects.

■ Data objects can be generated only if they are referenced in the boot file.

■ You can generate only character set object types

■ Create your new text-format data object files. See "Data Object File Names" on

page B-15 for naming convention information.

Note: Your distribution set contains a character set definition demonstration file

that you can use as a reference or as a template. On UNIX-based systems, this

file is located in $ORACLE_HOME/demo/*.nlt.

■ Invoke lxinst as described above (using the appropriate parameters) to generate

new binary data object files. These files will be generated in the directory you

specified in ORANLS.

■ Lxinst also generates both a new installation boot file and system boot file.

If you have a previous NLS installation and want to merge the existing

information with the new in the system boot file, copy the existing system

boot file into the directory you specified in SYSDIR. A new system boot file

containing the merged information is generated in the directory specified in

DESTDIR.

[WARNING=
[0 | 1 | 2 | 3]]

If you specify "0", no warning messages are displayed. If you
specify "1", all messages for level 1 will be displayed. If you
specify "2", all messages for levels 2 and 1 will be displayed. If
you specify "3", all messages for levels 3, 2, and 1 will be
displayed.

0 The generation of the binary boot and object files, and merge of
the installation and system boot files completed successfully.

1 Installation failed: the NLS Installation Utility will exit with an
error message that describes the problem.
B-14 Oracle8i National Language Support Guide

NLS Data Installation Utility
Attention: As always, you should have backups of any existing files you do not

want overwritten.

Object Types
Only character set object types are currently supported for customizing.

Object IDs
NLS data objects are uniquely identified by a numeric object ID. The ID may never

have a zero or negative value.

In general, you can define new objects as long as you specify the object ID within

the range 10000-20000.

Warning: When you want to create a new character set, you must register with

Oracle Corporation by sending email to nlsreg@us.oracle.com, which will

ensure that your character set has a unique name and ID.

Object Names
Only a very restricted set of characters can be used in object names:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_- and <space>

Object names must start with an alphabetic character. Language, territory, and

character set names cannot contain an underscore character, but linguistic definition

names can. There is no case distinction in object names, and the maximum size of an

object name is 30 bytes (excluding terminating null).

Data Object File Names
The system-independent object file name is constructed from the generic boot file

entry information:

lxtdddd

where:

t 1 digit object type (hex)

dddd 4 digit object ID (hex)
Customizing Locale Data B-15

NLS Configuration Utility
The installation boot file name is lx0BOOT; the system boot file name is lx1BOOT;

user boot files are named lx2BOOT. The file extension for text format files is .nlt, for

binary files, .nlb.

Examples:

NLS Configuration Utility

Overview
At installation, all available NLS objects are stored and referenced in the system

boot file. This file is used to load the available NLS data.

The NLS Configuration Utility allows you to configure your boot files such that

only the NLS objects that you require will be loaded. It does this by creating a user

boot file, which contains a subset of the system boot file. Data loading by the kernel

will then be performed according to the contents of this user boot file.

The NLS Configuration Utility allows you to configure a user boot file, either by

selecting NLS objects from the installed system boot file which will then be

included in a new user boot file, or by reading entries from an existing user boot file

and possibly removing one or more of them and saving the remaining entries into a

new user boot file. Note that you will not be allowed to actually "edit" an existing

boot file as it may be in use by either the RDBMS or some other Oracle tool (that is,

saving of boot file entries is never done to an existing one).

You may also use the NLS Data Installation Utility to check the integrity of an

existing user boot file. This is necessary since the contents of existing NLS objects

may change over time, and the installation of a new system boot file may cause user

boot files to become out of date. Thus, a comparison function will notify you when

it finds that the file is out of date and will allow you to create a new user boot file.

Syntax
The NLS Configuration Utility is invoked from the command line with the

following syntax:

lx22711.nlt Text-format character set definition, ID=10001

lx0boot.nlt Text-format installation boot file

lx1boot.nlb Binary system boot file

lx22711.nlb Binary character set definition, ID=10001
B-16 Oracle8i National Language Support Guide

NLS Configuration Utility
LXBCNF [ORANLS=pathname] [userbootdir= pathname] [DESTDIR= pathname]
[HELP=[yes | no]]

where:

Menus
When the NLS Configuration Utility is started you are presented with the following

top-level menu:

■ File Menu

■ Edit Menu

■ Action Menu

■ Windows Menu

■ Help

File Menu
The file menu contains choices pertaining to file operations. Options are:

ORANLS=pathname Specifies where to find the text-format boot and object files and
where to store the new binary-format boot and object files. If not
specified, the NLS Installation Utility uses the value in the
environment variable ORA_NLS (or the equivalent for your
operating system). If both are specified, the command line
parameter overrides the environment variable. If neither is
specified, the NLS Installation Utility will exit with an error.

SYSDIR=pathname Specifies where to find the existing system boot file. If not
specified, the NLS Installation Utility uses the directory
specified in the initialization file parameter ORANLS. If there is
no existing system boot file or the NLS Installation Utility is
unable to find the file, it will create a new file and copy or move
it to the appropriate directory.

DESTDIR=pathname Specifies where to put the new (merged) system boot file. If not
specified, the NLS Installation Utility uses the directory
specified in the initialization file parameter ORANLS. Any
system boot file that exists in this directory will be overwritten
so make a backup first.

HELP=[yes | no] If "yes", a help message describing the syntax for the NLS
Installation Utility will be displayed.
Customizing Locale Data B-17

NLS Configuration Utility
Note: As long as the system boot file has not been opened and read, all these

menu items will remain "greyed out". That is, you cannot build a user boot file

as long as there is no system boot file information available.

As soon as you select New to create a new user boot file, the following NLS objects

will be created in the new file by default:

If you choose to read the contents of an existing user boot file, the entries read will

be checked against the entries of the system boot file. If an entry is found which

does not exist in the system boot file, you will receive a warning, and the entry will

not be included.

Edit Menu
The Edit Menu contains choices for editing information that you enter in any of the

dialogs or windows of the NLS Configuration Utility.

Table B–1 File Menu Options

Menu Item Options Description

System Boot
File

Open This will open the current system boot file. Note
that the Open menu item will be "greyed out" as
soon as a system Boot File has been successfully
read. Also note that you cannot perform any
other functions until you have opened a system
boot file.

User Boot File New Open a new user boot file.

Read Read the contents of an existing user boot file.

Save Save changes to the new user boot file.

Revert Undo the changes to the currently open user
boot file made since the last "Save".

Choose Printer Not implemented in this release.

Page Setup Not implemented in this release.

Print Not implemented in this release.

Quit Exit from the file.
B-18 Oracle8i National Language Support Guide

NLS Configuration Utility
Action Menu
The Action Menu contains choices for performing operations on the user boot file.

Note that this menu is available only in the character mode NLS Configuration

Utility.

Windows Menu
The Windows Menu allows you to either activate certain windows or set the focus

to an already open window (the latter is meant for character-mode platforms).

Whenever a new window is opened, its name will be added to the Windows Menu

automatically.

Help Menu
This menu provides functions which allow you to retrieve various levels of help

about the NLS Configuration Utility.

Copy Item Copies the selected item from the system boot file to the user
boot file.

Delete Item Deletes the selected item from the user boot file.

NLS Defaults Not implemented in this release.

About Shows version information for the NLS Configuration Utility.

Help System Not implemented in this release.
Customizing Locale Data B-19

NLS Configuration Utility
B-20 Oracle8i National Language Support Guide

Obsolete Locale D
C

Obsolete Locale Data

 Oracle has renamed many character sets over time. This appendix lists them.

■ Obsolete NLS Data

Obsolete NLS Data
Prior to Oracle server release 7.2, when a character set was renamed, the old name

was usually supported along with the new name for several releases after the

change. Beginning with release 7.2, the old names are no longer supported.

Table C–1 lists the affected character sets. If you reference any of these character sets

in your code, please replace them with their new name:

Table C–1 New Names for Obsolete NLS Data Character Sets

Old Name New Name

AR8MSAWIN AR8MSWIN1256

JVMS JA16VMS

JEUC JA16EUC

SJIS JA16SJIS

JDBCS JA16DBCS

KSC5601 KO16KSC5601

KDBCS KO16DBCS

CGB2312-80 ZHS16CGB231280

CNS 11643-86 ZHT32EUC

ZHT32CNS1164386 ZHT32EUC
ata C-1

Obsolete NLS Data
Character set CL8MSWINDOW31 has been desupported. The newer character set

CL8MSWIN1251 is actually a duplicate of CL8MSWINDOW31 and includes some

characters omitted from the earlier version. Change any usage of

CL8MSWINDOW31 to CL8MSWIN1251 instead.
C-2 Oracle8i National Language Support Guide

Gloss
D

Glossary

Glossary

ASCII
American Standard Code for Information Interchange. A common encoded 7-bit

character set for English. ASCII includes the letters A-Z and a-z, as well as digits,

punctuation symbols, and control characters. The Oracle character set name for this

is US7ASCII.

Binary Sorting
Sorting of strings based on their binary coded value representations.

Case Conversion
Case conversion refers to changing a character from its uppercase to lowercase

form, or vice versa.

Character
An independent unit used to represent data, such as a letter, a letter with a

diacritical mark, a digit, ideograph, punctuation, or symbol.

Character Classification
Character classification information provides details about the type of character

associated with each legal character code; that is, whether it is an alphabetic,

uppercase, lowercase, punctuation, control, or space character, etc.
ary D-1

Glossary
Character Encoding Scheme
The type of mapping used in defining an encoded character set. Oracle supports

many character set encodings including single-byte, multiple-byte, shift-sensitive

multi-byte and fixed-width character set encoding.

Character Set Conversion
Conversion from one encoded character set to another.

Client Character Set
The encoded character set which the client uses. A client character set can differ

from the database server character set, in which case, character set conversion must

occur.

Collation
Ordering of all character strings from an alphabet into a linear sequence. Collation

may be used on a linguistic sort order or a binary sort order.

Combining Character
A character that graphically combines with a preceding base character. These

characters are not used in isolation. They include such characters as accents,

diacritics, Hebrew points, Arabic vowel signs, and Indic matras.

Composite Character
A single character which can be represented by a composite character sequence.

This type of character is found in the scripts of Thai, Lao, Vietnamese, and Korean

Hangul, as well as many Latin characters used in European languages.

Composite Character Sequence
A character sequence consisting of a base character followed by one or more

combining characters. This is also referred to as a combining character sequence.

Database Character Set
The encoded character set.
D-2 Oracle8i National Language Support Guide

Glossary
Diacritical Mark
A mark added to a letter that usually provides information about pronunciation or

stress.

EBCDIC
Extended Binary Coded Decimal Interchange Code. EBCDIC is a family of encoded

character sets used mostly on IBM systems.

Encoded Character Set
A character set encoding is a set of unambiguous rules that establishes a character

set and the one-to-one relationship between each character of the set and its bit

representation.

Encoding Scheme
See "Character Encoding Schemes".

EUC
Extended UNIX Codes. A common encoding method used on Asian UNIX

systems. It combines up to four different encoded character sets in a single data

stream.

Euro
The new monetary currency used by participating member states of the European

Union.

Export
To write data to files for the purpose of archiving, or moving data between

operating systems or Oracle databases.

Font
An ordered collection of character glyphs which provides a graphical representation

of characters within a character set.
Glossary D-3

Glossary
Glyph
The graphic representation of a character on a display device or paper. For

example, H, H, or H are different glyphs, but represent the same character.

Ideograph
A symbol representing an idea. Chinese is an example of an ideographic system.

Import
To read a module from the file system or database, and incorporate it into a display.

Internationalization
The process of making software flexible enough to be used in many different

linguistic and cultural environments. Internationalization should not be confused

with localization, which is the process of preparing software for use in one specific

locale.

ISO
International Standards Organization.

ISO/IEC 10646
A universal character set standard defining the characters of most major scripts

used in the modern world. In 1993, ISO adopted Unicode version 1.1 as ISO/IEC

10646-1:1993. ISO/IEC 10646 has two formats: UCS2 is a 2-byte fixed-width format

and UCS4 is a 4-byte fixed-width format. There are three levels of implementation,

all relating to support for composite characters. Level 1 requires no composite

character support, level 2 requires support for specific scripts (including most of the

Unicode scripts such as Arabic, Thai, etc.), and level 3 requires unrestricted support

for composite characters in all languages.

ISO Currency
The 3-letter abbreviation used to denote a local currency, which is based on the ISO

4217 standard. For example, "USD" represents the United States Dollar.
D-4 Oracle8i National Language Support Guide

Glossary
ISO 8859
A family of 8-bit encoded character sets. The most common one is ISO 8859-1 (also

known as Latin-1), and is used for Western European languages.

Latin-1
Formally known as the ISO 8859-1 character set standard. An 8-bit extension to

ASCII which adds 128 characters covering the most common Latin characters used

in Western Europe. The Oracle character set name for this is WE8ISO8859P1. See

also "ISO 8859".

Linguistic Index
An index built on a linguistic collation order.

Linguistic Sorting
Sorting of strings based on requirements from a locale instead of based on the

binary representation of the strings.

Local Currency
The currency symbol used in a country or region. For example, "$" represents the

United States Dollar.

Locale
A collection of information regarding the linguistic and cultural preferences from a

particular region. Typically, a locale consists of language territory, character set,

linguistic, and calendar information defined in NLS data files.

Localization
The process of providing language- or culture-specific information for software

systems. Translation of an application’s user interface would be an example of

localization. Localization should not be confused with internationalization, which

is the process of generalizing software so it can handle many different linguistic and

cultural conventions.
Glossary D-5

Glossary
Monolingual Support
Support for only one language.

Multibyte Character
A coded character that can be represented in one or more bytes. Multibyte data

streams can include characters with varying widths, and can therefore make

extensive text processing of individual characters a challenge. See "Wide

Characters".

NCHAR Character Set
An alternate character set from the database character set that can be specified for

NCHAR, NVARCHAR2, and NCLOB columns. NCHAR character sets, unlike the

database character set, can support fixed-width multibyte character sets. Care must

be taken when selecting an NCHAR character set, since its character repertoire must

be included in the database character set as well.

Net8
Net8 enables two or more computers that run the Oracle server to exchange data

through a third-party network. It is independent of the communications protocol.

NLS
National Language Support. NLS allows users to interact with the database in their

native languages. It also allows applications to run in different linguistic and

cultural environments.

NLSDATA
A general phrase referring to the contents in many files with .nlb suffixes. These

files contain data that the NLSRTL library uses to provide specific NLS support.

NLSRTL
National Language Support Run-Time Library. This library is responsible for

providing locale-independent algorithms for internationalization. The

locale-specific information (i.e., NLSDATA) is read by the NLSRTL library during

run-time.
D-6 Oracle8i National Language Support Guide

Glossary
Replacement Character
A character used during character conversion when the desired character is not

available in the target character set. For example, "?" is often used as Oracle’s

default replacement character.

Restricted Multilingual Support
Multilingual support which is restricted to a group of related languages. Support

for related languages, but not all languages. Similar language families, such as

Western European languages can be represented with, for example, ISO 8859/1. In

this case, however, Thai could not be added.

SQL*Net
Now called Net8. Net8 enables two or more computers that run the Oracle server

to exchange data through a third-party network. It is independent of the

communications protocol.

Script
A collection of related graphic symbols used in a writing system. Some scripts are

used to represent multiple languages, and some languages use multiple scripts.

Example of scripts include Latin, Arabic, and Han.

Server Character Set
The character set used by the database server.

UCS-2
UCS stands for "Universal Multiple-Octet Coded Character Set". It is a 1993 ISO and

IEC standard character set.

Unicode
Unicode is a type of universal character set, a collection of 64K characters encoded

in a 16-bit space. It encodes nearly every character in just about every existing

character set standard, covering most written scripts used in the world. It is owned

and defined by Unicode Inc. Unicode is canonical encoding which means its value

can be passed around in different locales. But it does not guarantee a round-trip

conversion between it and every Oracle character set without information loss.
Glossary D-7

Glossary
Unicode Codepoint
A 16-bit binary value that can represent a unit of encoded text for processing and

interchange. Every point between U+0000 and U+FFFF is a code point. The term is

interchangeable with code element, code position, and code value.

Unicode Mapping Between UCS and UTF Formats
The following shows how different Unicode-related character sets relate to one

another in terms of character code value ranges:

UCS2 UTF8 Description

0x0000 - 0x007F 0x00 - 0x7F Single bytes

0x0080 - 0x07FF 0xC0 - 0xDF 2-byte sequence leaders (5+6 bits)

0x0800 - 0xFFFF 0xE0 - 0xEF 3-byte sequence leaders (4+6+6 bits)

0x80 - 0xBF Follower bytes (6 bits each)

UCS4 UTF8 Description

0x00000000 - 0x0000007F 0x00 - 0x7F Single bytes

0x00000080 - 0x000007FF 0xC0 - 0xDF 2-byte sequence leaders (5+6 bits)

0x00000800 - 0x0000FFFF 0xE0 - 0xEF 3-byte sequence leaders (4+6+6 bits)

0x00001000 - 0x001FFFFF 0xF0 - 0xF7 4-byte sequence leaders (3+6+6+6 bits)

0x00200000 - 0x03FFFFFF 0xF8 - 0xFB 5-byte sequence leaders (2+6+6+6+6 bits)

0x04000000 - 0x7FFFFFFF 0xFC - 0xFD 6-byte sequence leaders (1+6+6+6+6+6 bits)

0x80 - 0xBF Follower bytes (6 bits each)

0xFE - 0xFF Reserved or unused

UCS4 UTF16 Description

0x00000000 - 0x0000FFFF 0x0000 - 0xFFFF Same as UCS2

0x00010000 - 0x0010FFFF 0xD800 - 0xDBFF High surrogate ((x-0x10000)>>10)&0x3FF

0xDC00 - 0xDFFF Low surrogate (x-0x10000)&0x3FF

0x00110000 - 0x7FFFFFFF Not mapped to UTF16
D-8 Oracle8i National Language Support Guide

Glossary
UCS2
Fixed-width 16-bit Unicode. Each character occupies 16 bits of storage. The Latin-1

characters are the first 256 code points in this standard, so it can be viewed as a

16-bit extension of Latin-1. Oracle does not yet support this character set in the NLS

run-time library.

UCS4
Fixed-width 32-bit Unicode. Each character occupies 32 bits of storage. The UCS2

characters are the first 65,536 code points in this standard, so it can be viewed as a

32-bit extension of UCS2. This is also sometimes referred to as ISO-10646.

ISO-10646 is a standard that specifies up to 2,147,483,648 characters in 32768 planes,

of which the first plane is the UCS2 set. The ISO standard also specifies

transformations between different encodings.

Unrestricted Multilingual Support
Being able to use as many languages as desired. A universal character set, such as

Unicode, helps to provide unrestricted multilingual support because it supports a

very large character repertoire, encompassing most modern languages of the world.

UTF-8
A variable-width encoding of UCS2 which uses sequences of 1, 2, or 3 bytes per

character. Characters from 0-127 (the 7-bit ASCII characters) are encoded with one

byte, characters from 128-2047 require two bytes, and characters from 2048-65535

require three bytes. The Oracle character set name for this is UTF8 (for the Unicode

2.0 standard). The standard has left room for expansion to support the UCS4

characters with sequences of 4, 5, and 6 bytes per character.

UTF-16
An extension to UCS2 that allows for pairs of UCS2 code points to represent

extended characters from the UCS4 set. UCS2 has ranges of code points allocated

for high (leading) and low (trailing) surrogates that support UTF16 encodings.
Glossary D-9

Glossary
Wide Character
A fixed-width character format that is well-suited for extensive text processing

because it allows for data to be processed in consistent fixed-width chunks. Wide

characters are intended for supporting internal character processing, and are

therefore implementation-dependent.
D-10 Oracle8i National Language Support Guide

Index

A
abbreviations

AM/PM, 2-14

BC/AD, 2-14

Languages, A-2

ALTER SESSION command

SET NLS_CURRENCY option, 2-21, 2-22

SET NLS_DATE_FORMAT option, 2-12

SET NLS_LANGUAGE option, 2-9

SET NLS_NUMERIC_CHARACTERS

option, 2-20

SET NLS_TERRITORY option, 2-9

ALTER SYSTEM command

SET NLS_LANGUAGE option, 2-9

alternate character mappings, 4-9

AM/PM abbreviation

language of, 2-14

ASCII character set

sorting order, 2-25

B
BC/AD abbreviation

language of, 2-14

binary sorting, 2-25

C
calendar formats, 2-15

calendar parameter, 2-15

calendar systems, 2-6, 2-8, 2-11, 2-14, 2-17, 2-19,

2-20, 2-21, 2-22, 2-27, 2-28

supported, A-19

calendars, A-19, A-20

case-insensitive sorting, 2-26

CHAR datatype

multi-byte character sets and, 3-14

character data

binary sorts, 2-25

linguistic indexes, 2-26

linguistic sorts, 2-25

special cases, 2-26

sorting, 2-25

character set

conversion, 3-22

definition files, B-2

parameters, 2-29

character set conversion using OCI, 5-33

character sets

8-bit versus 7-bit, 4-4

conversion, 3-22

CONVERT function, 4-4

converting, 4-4

multi-byte, 3-14

pattern matching characters, 4-9

sorting data, 2-25

supported, 3-16

character string functionality and character sets

supported, 3-16

Codepoints, 4-9

Collation parameters, 2-24

concatenation operator, 4-11

conversions

between character set ID number and character

set name, 4-5

CONVERT function, 4-4, 4-5

converting character sets, 4-4
 Index-1

currency

monetary units characters, 2-23

Currency formats, 2-20

currency symbol

default, 2-8

local currency symbol, 2-20

Customized Calendars, B-11

customized character sets, B-1

D
data

conversion, 4-4

CONVERT function, 4-5

Date formats, 2-12, 4-9

and partition bound expressions, 2-13

date parameters, 2-11

dates

ISO standard, 2-16, 4-10

NLS_DATE_LANGUAGE parameter, 2-14

NLS_TERRITORY parameter, 2-8

day

format element, 2-14

language of names, 2-14

decimal character

default, 2-8

NLS_NUMERIC_CHARACTERS

parameter, 2-19

when not a period (.), 2-19

E
EBCDIC character set

sorting order, 2-25

environment variables

NLS_LANG, 2-4

Euro symbol

supported character sets, A-20

F
format elements, 4-9, 4-10

C, 4-10

D, 2-19, 4-10

day, 2-14

G, 2-19, 4-10

IW, 4-10

IY, 4-10

L, 2-20, 4-10

month, 2-14

RM, 2-12, 4-9

RN, 4-10

G
group separator, 2-19

default, 2-8

NLS_NUMERIC_CHARACTERS

parameter, 2-19

I
indexes

partitioned, 4-8

initialization parameters

NLS_CALENDAR parameter, 2-6, 2-8, 2-11,

2-14, 2-17, 2-19, 2-20, 2-21, 2-22, 2-27, 2-28

NLS_LIST_SEPARATOR parameter, 2-29

NLS_MONETARY_CHARACTERS

parameter, 2-23

ISO standard

date format, 2-16, 4-9, 4-10

ISO week number, 4-9

IW format element, 4-10

IY format element, 4-10

L
L format element, 2-20

Language support, 1-3

LIKE operator, 4-9

linguistic definitions

supported, A-17

linguistic definitions, NLS, A-16, A-17

linguistic indexes, 2-26

linguistic sorts, 2-25

controlling, 4-8

list separator, 2-29

local currency symbol, 2-20

LXBCNF executable, B-16
Index-2

LXEGEN executable, B-11

LXINST executable, B-13

M
messages

error, A-4

monetary parameters, 2-20

monetary units characters, 2-23

month

format element, 2-14

language of names, 2-14

multi-byte character sets, 3-14

storing data, 3-14

N
naming database objects, 3-14

national character set

parameter, 2-29

National Language Support (NLS)

architecture, 1-1

calendars, A-19, A-20

linguistic definitions, A-16, A-17

NLS Configuration Utility, B-16

NLS Data Installation Utility, B-12

NLS_LANGUAGE parameter, 2-6, 4-4

NLS Calendar Utility, B-11

NLS data

error messages, A-4

obsolete, C-1

supported calendar systems, A-19

supported linguistic definitions, A-17

supported storage character sets, A-7

supported territories, A-5

NLS Data Installation Utility, B-12

NLS parameters

using in SQL functions, 4-1

NLS_CALENDAR parameter, 2-6, 2-8, 2-11, 2-14,

2-17, 2-19, 2-20, 2-21, 2-22, 2-27, 2-28

NLS_CHARSET_DECL_LEN function, 4-6

NLS_CHARSET_ID function, 4-5

NLS_CHARSET_NAME function, 4-5

NLS_COMP, 4-8

NLS_COMP parameter, 2-28

NLS_CREDIT environment variable, 2-24

NLS_CREDIT parameter, 2-20, 2-24

NLS_CURRENCY parameter, 2-20

NLS_DATE_FORMAT parameter, 2-11

NLS_DATE_LANGUAGE parameter, 2-14

NLS_DEBIT parameter, 2-24

NLS_DUAL_CURRENCY parameter, 2-22

NLS_ISO_CURRENCY parameter, 2-21

NLS_LANG, 2-3

NLS_LANG environment variable, 2-4, 3-16

NLS_LANG examples, 2-5

NLS_LANG, specifying, 2-5

NLS_LANGUAGE parameter, 2-6, 4-4

NLS_LIST_SEPARATOR parameter, 2-29

NLS_MONETARY_CHARACTERS

parameter, 2-23

NLS_NCHAR environment variable, 3-16

NLS_NCHAR parameter, 2-29

NLS_NUMERIC_ CHARACTERS parameter, 2-19

NLS_NUMERIC_CHARACTERS parameter, 2-20

NLS_SORT parameter, 2-27, 2-28, 2-29

NLS_TERRITORY parameter, 2-8

NLSDATA (language independent data)

utilities for loading, B-12

NLSSORT function, 4-6

Numeric formats, 2-18, 4-10

Numeric parameters, 2-18

O
ORANLS option, B-13, B-16

ORDER BY clause, 4-8

sorting character data, 2-25

Overriding Language and Territory

Specifications, 2-6

P
pad character

alternate mappings, 4-9

partitioned indexes, 4-8

partitioned tables, 4-8

percent sign

alternate mappings, 4-9
 Index-3

Q
queries

ordering output, 2-25

R
replacement characters, 4-4

restricted multilingual support, 3-23

RM format element, 2-12

Roman numerals

format mask for, 2-12

S
setting NLS parameters, 2-1

sorting

character data, 2-25

double characters, 2-26

following language conventions, 2-25

order, 2-25

specifying non-default, 2-27, 2-28

storage character sets, A-6

supported, A-7

storing data

in multi-byte character sets, 3-14

string comparisons

and WHERE clause, 4-7

string manipulation using OCI, 5-6

supported character sets, 3-16

supported character string functionality and

character sets, 3-16

T
tables

partitioned, 4-8

territories, A-5

supported, A-5

territory, 2-8

territory support, 1-4

Time parameters, 2-11

TO_CHAR function

default date format, 2-12

format masks, 4-9

group separator, 2-19

language for dates, 2-14

spelling of days and months, 2-14

TO_DATE function

default date format, 2-12

format masks, 4-9

language for dates, 2-14

spelling of days and months, 2-14

TO_NUMBER function

format masks, 4-9

group separator, 2-19

translated messages, A-4

U
underscore

alternate mappings, 4-9

UNICODE, 3-24

V
VARCHAR2 datatype

multi-byte character sets and, 3-14

W
week numbers, 4-9

WHERE clause

and string comparisons, 4-7
Index-4

	PDF Directory
	Send Us Your Comments
	Preface
	Feature Coverage and Availability
	Audience
	Knowledge Assumed of the Reader
	Installation and Migration Information
	Application Design Information

	How Oracle8i National Language Support Guide Is Organized
	Conventions Used in This Manual

	1 Understanding Oracle NLS
	Oracle Server NLS Architecture
	Locale-Independent Operation
	Client/Server Architecture

	Standard Features
	Language Support
	Territory Support
	Date and Time Formats
	Monetary and Numeric Formats
	Calendars
	Linguistic Sorting
	Character Set Support

	Customization Features
	Character Set Customization
	Calendar Customization

	SQL Support

	2 Setting Up an NLS Environment
	Setting NLS Parameters
	Choosing a Locale with NLS_LANG
	Specifying NLS_LANG
	NLS_LANG Examples
	Overriding Language and Territory Specifications

	Time Parameters
	Date Parameters
	Date Formats
	NLS_DATE_FORMAT
	NLS_DATE_LANGUAGE

	Calendar Parameter
	Calendar Formats
	NLS_CALENDAR

	Numeric Parameters
	Numeric Formats
	NLS_NUMERIC_CHARACTERS

	Monetary Parameters
	Currency Formats
	NLS_CURRENCY
	NLS_ISO_CURRENCY
	NLS_DUAL_CURRENCY
	NLS_MONETARY_CHARACTERS
	NLS_CREDIT
	NLS_DEBIT

	Collation Parameters
	Sorting Order
	Sorting Character Data
	NLS_SORT
	NLS_COMP
	NLS_LIST_SEPARATOR

	Character Set Parameters
	NLS_NCHAR

	3 Choosing a Character Set
	What is an Encoded Character Set?
	Which Characters to Encode?
	Writing Systems

	How many Languages does a Character Set Support?
	How are These Characters Encoded?
	Single-Byte Encoding Schemes
	Multibyte Encoding Schemes

	Oracle’s Naming Convention for Character Sets
	Tips on Choosing an Oracle Database Character Set
	Interoperability with System Resources and Applications
	Character Set Conversion
	Database Schema
	Performance Implications
	Restrictions

	Tips on Choosing an Oracle NCHAR Character Set
	Database Schema
	Performance Implications
	Restrictions

	Considerations for Different Encoding Schemes
	Be Careful when Mixing Fixed-Width and Varying-Width Character Sets
	Storing Data in Multi-Byte Character Sets

	Naming Database Objects
	Summary of Data Types and Supported Encoding Schemes

	Changing the Character Set After Database Creation
	Customizing Character Sets
	Character Sets with User-Defined Characters
	Oracle’s Character Set Conversion Architecture
	Unicode 2.0 Private Use Area
	UDC Cross References

	Monolingual Database Example
	Character Set Conversion

	Multilingual Database Example
	Restricted Multilingual Support
	Unrestricted Multilingual Support

	4 SQL Programming
	Locale-Dependent SQL Functions
	Default Specifications
	Specifying Parameters
	Unacceptable Parameters
	CONVERT Function
	Character Set SQL Functions
	NLSSORT Function
	Pattern Matching Characters for Fixed-Width Multi-Byte Character Sets

	Time/Date/Calendar Formats
	Date Formats

	Numeric Formats
	Miscellaneous Topics

	5 OCI Programming
	NLS Language Information Retrieval
	OCINlsGetInfo()
	OCINlsGetInfo
	OCI_Nls_MaxBufSz
	NLS Language Information Retrieval Sample Code

	String Manipulation
	OCIMultiByteToWideChar
	OCIMultiByteInSizeToWideChar
	OCIWideCharToMultiByte
	OCIWideCharInSizeToMultiByte
	OCIWideCharToLower
	OCIWideCharToUpper
	OCIWideCharStrcmp
	OCIWideCharStrncmp
	OCIWideCharStrcat
	OCIWideCharStrchr
	OCIWideCharStrcpy
	OCIWideCharStrlen
	OCIWideCharStrncat
	OCIWideCharStrncpy
	OCIWideCharStrrchr
	OCIWideCharStrCaseConversion
	OCIWideCharDisplayLength
	OCIWideCharMultiByteLength
	OCIMultiByteStrcmp
	OCIMultiByteStrncmp
	OCIMultiByteStrcat
	OCIMultiByteStrcpy
	OCIMultiByteStrlen
	OCIMultiByteStrncat
	OCIMultiByteStrncpy
	OCIMultiByteStrnDisplayLength
	OCIMultiByteStrCaseConversion
	String Manipulation Sample Code

	Character Classification
	OCIWideCharIsAlnum
	OCIWideCharIsAlpha
	OCIWideCharIsCntrl
	OCIWideCharIsDigit
	OCIWideCharIsGraph
	OCIWideCharIsLower
	OCIWideCharIsPrint
	OCIWideCharIsPunct
	OCIWideCharIsSpace
	OCIWideCharIsUpper
	OCIWideCharIsXdigit
	OCIWideCharIsSingleByte
	Character Classification Sample Code

	Character Set Conversion
	OCICharSetToUnicode
	OCIUnicodeToCharSet
	OCICharSetConversionIsReplacementUsed
	Character Set Conversion Sample Code

	Messaging Mechanism
	OCIMessageOpen
	OCIMessageGet
	OCIMessageClose
	LMSGEN
	Text Message File Format
	Message Example

	A Locale Data
	Languages
	Translated Messages
	Territories
	Character Sets
	Asian Language Character Sets
	European Language Character Sets
	Middle Eastern Language Character Sets
	Universal Character Sets

	Linguistic Definitions
	Calendar Systems
	Character Sets that Support the Euro Symbol

	B Customizing Locale Data
	Customized Character Sets
	Character Set Definition Files

	Customized Calendars
	Overview
	NLS Calendar Utility
	Utilities

	NLS Data Installation Utility
	Overview
	Syntax
	Return Codes
	Usage

	NLS Configuration Utility
	Overview
	Syntax
	Menus

	C Obsolete Locale Data
	Obsolete NLS Data

	D Glossary
	Glossary
	ASCII
	Binary Sorting
	Case Conversion
	Character
	Character Classification
	Character Encoding Scheme
	Character Set Conversion
	Client Character Set
	Collation
	Combining Character
	Composite Character
	Composite Character Sequence
	Database Character Set
	Diacritical Mark
	EBCDIC
	Encoded Character Set
	Encoding Scheme
	EUC
	Euro
	Export
	Font
	Glyph
	Ideograph
	Import
	Internationalization
	ISO
	ISO/IEC 10646
	ISO Currency
	ISO 8859
	Latin-1
	Linguistic Index
	Linguistic Sorting
	Local Currency
	Locale
	Localization
	Monolingual Support
	Multibyte Character
	NCHAR Character Set
	Net8
	NLS
	NLSDATA
	NLSRTL
	Replacement Character
	Restricted Multilingual Support
	SQL*Net
	Script
	Server Character Set
	UCS-2
	Unicode
	Unicode Codepoint
	Unicode Mapping Between UCS and UTF Formats
	UCS2
	UCS4
	Unrestricted Multilingual Support
	UTF-8
	UTF-16
	Wide Character

	Index

