
Oracle8 i Parallel Server

Concepts and Administration

Release 8.1.5

February 1999

Part No. A67778-01

 Oracle8i Parallel Server Concepts and Administration

Part No. A67778-01

Release 8.1.5

Copyright © 1999 Oracle Corporation. All Rights Reserved.

Primary Author: Mark Bauer.

Primary Contributors: Wilson Chan, Andrew Holdsworth, Anjo Kolk, Rita Moran, Graham Wood, and
Michael Zoll.

Contributors: Christina Anonuevo, Lance Ashdown, Bill Bridge, Sandra Cheever, Carol Colrain, Mark
Coyle, Sohan Demel, Connie Dialeris, Karl Dias, Anurag Gupta, Deepak Gupta, Mike Hartstein, Ken
Jacobs, Ashok Joshi, Jonathan Klein, Jan Klokkers, Boris Klots, Tirthankar Lahiri, Bill Lee, Lefty Leverenz,
Juan Loaiza, Sajjad Masud, Neil Macnaughton, Ravi Mirchandaney, Kant Patel, Erik Peterson, Mark Por-
ter, Darryl Presley, Brian Quigley, Ann Rhee, Pat Ritto, Roger Sanders, Hari Sankar, Ekrem Soylemez,
Vinay Srihari, Bob Thome, Alex Tsukerman, Tak Wang, and Betty Wu.

Graphic Designer: Valarie Moore.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited. The information con-
tained in this document is subject to change without notice. If you find any problems in the documenta-
tion, please report them to us in writing. Oracle Corporation does not warrant that this document is error
free. If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Loader, Secure Network Services, and SQL*Plus are registered trademarks of Oracle
Corporation, Redwood Shores, California. Oracle Call Interface, Oracle8i, Oracle8, Oracle Parallel Server,
Oracle Forms, Oracle TRACE, Oracle Expert, Oracle Enterprise Manager, Oracle Server Manager, Net8,
PL/SQL, and Pro*C are trademarks of Oracle Corporation, Redwood Shores, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

iii

Send Us Your Comments

Oracle8 i Parallel Server Concepts and Administration, Release 8.1.5

Part No. A67778-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to the Information Development

department using any of the following:

■ Electronic mail: infodev@us.oracle.com

■ FAX: (650) 506-7228 Attn: Oracle Server Documentation

■ Postal service:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Worldwide Support Center.

iv

v

Preface

This manual describes the Oracle Parallel Server (OPS) and supplements the

Oracle8i Administrator’s Guide and Oracle8i Concepts.

This manual prepares you to successfully implement parallel processing by

providing a thorough presentation of the concepts and procedures involved.

Information in this manual applies to OPS as it runs on all operating systems.

For information about the differences between Oracle8i and the Oracle8i Enterprise

Edition and the available features and options, please refer to Getting to Know
Oracle8i.

Note: Oracle8i Parallel Server Concepts and Administration contains

information that describes the features and functionality of the

Oracle8i and the Oracle8i Enterprise Edition products. Oracle8i and

the Oracle8i Enterprise Edition have the same basic features.

However, several advanced features are available only with the

Oracle8i Enterprise Edition, and some of these are optional. For

example, to use client application failover, you must have the

Enterprise Edition and the Parallel Server Option.

vi

Intended Audience
This manual is written for database administrators and application developers who

work with Oracle Parallel Server.

Structure

Part I: Parallel Processing Fundamentals

Part II: Oracle Parallel Server Concepts

Chapter 1, "Parallel Processing and Parallel

Databases"

This chapter introduces parallel processing and

parallel database technologies that offer great

advantages for online transaction processing and

decision support applications.

Chapter 2, "Implementing Parallel Processing" This chapter explains how to attain the goals of

speedup and scaleup by effectively implementing

parallel processing and parallel database

technology.

Chapter 3, "Parallel Hardware Architecture" This chapter describes the range of available

hardware implementations that allow parallel

processing, and surveys their advantages and

disadvantages.

Chapter 4, "How Oracle Implements Parallel

Processing"

This chapter gives a high-level view of how OPS

provides high performance parallel processing.

Chapter 5, "Oracle Instance Architecture for

Oracle Parallel Server"

This chapter explains features of Oracle multiple

instance architecture that differ from an Oracle

server in exclusive mode.

Chapter 6, "Oracle Database Architecture for the

Parallel Server"

This chapter describes features of Oracle database

architecture that pertain to the multiple instances

of OPS.

Chapter 7, "Overview of Locking Mechanisms" This chapter provides an overview of internal

OPS locking mechanisms.

Chapter 8, "Integrated Distributed Lock

Manager"

This chapter explains the role of the Integrated

Distributed Lock Manager in controlling access to

resources in OPS.

vii

Part III: OPS System Development Procedures

Part IV: OPS System Maintenance Procedures

Chapter 9, "Parallel Cache Management

Instance Locks"

This chapter provides a conceptual overview of

PCM locks. The planning and allocation of PCM

locks is one of the most complex tasks facing the

Oracle Parallel Server database administrator.

Chapter 10, "Non-PCM Instance Locks" This chapter describes some of the most common

non-PCM instance locks.

Chapter 11, "Space Management and Free List

Groups"

This chapter explains space management

concepts.

Chapter 12, "Application Analysis" This chapter provides a conceptual framework for

optimizing OPS application design.

Chapter 13, "Designing Databases for Parallel

Server"

This chapter prescribes a general methodology for

designing systems optimized for OPS.

Chapter 14, "Creating a Database and Objects

for Multiple Instances"

This chapter describes aspects of database creation

that are specific to OPS.

Chapter 15, "Allocating PCM Instance Locks" This chapter explains how to allocate PCM locks to

datafiles by specifying values for parameters in the

initialization file of an instance.

Chapter 16, "Ensuring IDLM Capacity for

Resources and Locks"

This chapter explains how to reduce contention for

shared resources and gain maximum performance

from OPS by ensuring that adequate space is

available in the Integrated Distributed Lock

Manager for all the necessary locks and resources.

Chapter 17, "Using Free List Groups to

Partition Data"

This chapter explains how to allocate free lists and

free list groups to partition data. By doing this you

can minimize contention for free space when using

multiple instances.

Chapter 18, "Administering Multiple

Instances"

This chapter describes how to administer instances of

OPS.

Chapter 19, "Tuning to Optimize

Performance"

This chapter provides an overview of tuning issues.

viii

Part V: Reference

Chapter 20, "Cache Fusion and

Inter-instance Performance"

This chapter describes Cache Fusion in detail and

explains how to monitor Cache Fusion and

inter-instance performance.

Chapter 21, "Backing Up the Database" This chapter explains how to protect your data by

archiving the online redo log files and periodically

backing up the datafiles, the control file for your

database, and the parameter files for your instances.

Chapter 22, "Recovering the Database" This chapter describes Oracle recovery features on a

parallel server.

Chapter 23, "Migrating from a Single

Instance to Parallel Server"

This chapter describes database conversion from a

single instance Oracle database to a multi-instance

Oracle database using the parallel server option.

Appendix A, "Differences Among Versions" This appendix describes the differences between this

release and previous releases of the Oracle that

pertain to OPS.

Appendix B, "Restrictions" This appendix lists restrictions for OPS.

ix

Related Documents
Before reading this manual, you should have already read Oracle8i Concepts and the

Oracle8i Administrator’s Guide.

Conventions
This section explains the conventions used in this manual including the following:

■ Text

■ Syntax diagrams and notation

■ Code examples

Text
This section explains the conventions used within the text:

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, object names,

parameters, filenames, and so on.

For example, "If you create a private rollback segment, the name must be included

in the ROLLBACK_SEGMENTS parameter of the parameter file."

Italicized Characters
Italicized words within text are book titles or emphasized words.

Syntax Diagrams and Notation
The syntax diagrams and notation in this manual show the syntax for SQL

commands, functions, hints, and other elements. This section tells you how to read

syntax diagrams and examples and write SQL statements based on them.

Keywords
Keywords are words that have special meanings in the SQL language. In the syntax

diagrams in this manual, keywords appear in uppercase. You must use keywords in

your SQL statements exactly as they appear in the syntax diagram, except that they

can be either uppercase or lowercase. For example, you must use the CREATE

keyword to begin your CREATE TABLE statements just as it appears in the

CREATE TABLE syntax diagram.

x

Parameters
Parameters act as place holders in syntax diagrams. They appear in lowercase.

Parameters are usually names of database objects, Oracle datatype names, or

expressions. When you see a parameter in a syntax diagram, substitute an object or

expression of the appropriate type in your SQL statement. For example, to write a

CREATE TABLE statement, use the name of the table you want to create, such as

EMP, in place of the table parameter in the syntax diagram. (Note that parameter

names appear in italics in the text.)

This list shows parameters that appear in the syntax diagrams in this manual and

examples of the values you might substitute for them in your statements:

Parameter Description Examples

table The substitution value must be the
name of an object of the type
specified by the parameter.

emp

’text’ The substitution value must be a
character literal in single quotes.

’Employee Records’

condition The substitution value must be a
condition that evaluates to TRUE or
FALSE.

ename > ’A’

date

d

The substitution value must be a
date constant or an expression of
DATE datatype.

TO_DATE (

’01-Jan-1996’,

DD-MON-YYYY’)

expr The substitution value can be an
expression of any datatype.

sal + 1000

integer The substitution value must be an
integer.

72

rowid The substitution value must be an
expression of datatype ROWID.

00000462.0001.0001

subquery The substitution value must be a
SELECT statement contained in
another SQL statement.

SELECT ename

 FROM emp

statement_name

block_name

The substitution value must be an
identifier for a SQL statement or
PL/SQL block.

s1

b1

xi

Code Examples
SQL and SQL*Plus commands and statements appear separated from the text of

paragraphs in a monospaced font. For example:

 INSERT INTO emp (empno, ename) VALUES (1000, ’SMITH’);
 ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.

All punctuation in example statements is required. All example statements

terminate with a semicolon (;). Depending on the application, a semicolon or other

terminator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.

When you issue statements, however, keywords are not case sensitive.

Lowercase words in example statements indicate words supplied only for the

context of the example. For example, lowercase words may indicate the name of a

table, column, or file.

xii

xiii

Contents

Send Us Your Comments ... iii

Preface ... v

Part I Parallel Processing Fundamentals

1 Parallel Processing and Parallel Databases

What Is Parallel Processing? ... 1-1
Parallel Processing Defined... 1-2
Problems of Parallel Processing.. 1-4
Characteristics of a Parallel System ... 1-4
Parallel Processing for SMPs and MPPs.. 1-5
Parallel Processing for Integrated Operations.. 1-5

What Is a Parallel Server?.. 1-6
What Are the Key Elements of Parallel Processing?.. 1-6

Speedup and Scaleup: the Goals of Parallel Processing ... 1-6
Synchronization: A Critical Success Factor... 1-9
Locking... 1-11
Messaging .. 1-11

What Are the Benefits of Parallel Processing? .. 1-12
Enhanced Throughput: Scaleup ... 1-12
Improved Response Time: Speedup.. 1-13

What Are the Benefits of Parallel Databases? ... 1-13
Higher Performance ... 1-13

xiv

High Availability .. 1-14
Greater Flexibility ... 1-14
More Users... 1-14

Do You Need Parallel Server?... 1-14
Single Instance with Exclusive Access... 1-15
Multi-Instance Database Systems... 1-16
Distributed Database Systems .. 1-17
Client-Server Systems .. 1-20

What Is the Role of Parallel Execution?.. 1-21

2 Implementing Parallel Processing

The Four Levels of Scalability .. 2-1
Scalability of Hardware and Network... 2-2
Scalability of Operating System.. 2-5
Scalability of Database Management System ... 2-5
Scalability of Application... 2-6

When Is Parallel Processing Advantageous?... 2-7
Data Warehousing Applications .. 2-7
Applications Updating Different Data Blocks.. 2-7
Failover and High Availability ... 2-8
Summary.. 2-8

When Is Parallel Processing Not Advantageous? ... 2-9
Guidelines for Effective Partitioning.. 2-10

Overview.. 2-10
Vertical Partitioning ... 2-10
Horizontal Partitioning.. 2-12

Common Parallel Processing Misconceptions .. 2-12

3 Parallel Hardware Architecture

Overview... 3-1
Parallel Processing Hardware Implementations.. 3-2
Application Profiles.. 3-2

Required Hardware and Operating System Software ... 3-3
High Speed Interconnect ... 3-3
Globally Accessible Disk or Shared Disk Subsystem .. 3-3

xv

Shared Memory Systems... 3-3
Shared Disk Systems ... 3-5
Shared Nothing Systems ... 3-6

Overview of Shared Nothing Systems .. 3-7
Massively Parallel Systems ... 3-7
Summary of Shared Nothing Systems... 3-8

Shared Nothing /Shared Disk Combined Systems.. 3-9

Part II Oracle Parallel Server Concepts

4 How Oracle Implements Parallel Processing

Enabling and Disabling Parallel Server... 4-1
Synchronization .. 4-3

Block Level Locking ... 4-3
Row Level Locking... 4-4
Space Management... 4-4
System Change Number.. 4-4

High Performance Features... 4-5
Fast Commits, Group Commits, and Deferred Writes.. 4-5
Row Locking and Multiversion Read Consistency ... 4-6
Online Backup and Archiving .. 4-6
Cache Fusion ... 4-6
Sequence Number Generators .. 4-7
Lamport SCN Generation.. 4-7
Free Lists .. 4-8
Free List Groups.. 4-8
Disk Affinity .. 4-8
Job and Instance Affinity ... 4-9
Transparent Application Failover .. 4-11

Cache Coherency... 4-12
Parallel Cache Management Issues.. 4-12
Non-PCM Cache Management Issues ... 4-16

xvi

5 Oracle Instance Architecture for Oracle Parallel Server

Overview... 5-1
Characteristics of OPS Multi-instance Architecture .. 5-4
System Global Area .. 5-5
Background Processes .. 5-5

Foreground Lock Acquisition ... 5-6
Cache Fusion Processing and the Block Server Process .. 5-7
Configuration Guidelines for Oracle Parallel Server .. 5-9

6 Oracle Database Architecture for the Parallel Server

File Structures .. 6-1
Control Files... 6-1
Datafiles.. 6-2
Redo Log Files ... 6-3

The Data Dictionary ... 6-6
The Sequence Generator ... 6-6

The CREATE SEQUENCE Statement .. 6-6
The CACHE Option.. 6-6
The ORDER Option .. 6-7

Rollback Segments ... 6-7
Rollback Segments in OPS... 6-8
Parameters Controlling Rollback Segments ... 6-9
Public and Private Rollback Segments .. 6-9
How Instances Acquire Rollback Segments ... 6-10

7 Overview of Locking Mechanisms

Differentiating Oracle Locking Mechanisms .. 7-1
Overview.. 7-1
Local Locks .. 7-2
Instance Locks ... 7-4
The LCK Process ... 7-6
The LMON and LMD0 Processes ... 7-7

Cost of Locks .. 7-7
Oracle Lock Names ... 7-8

xvii

Lock Name Format... 7-8
PCM Lock Names ... 7-9
Non-PCM Lock Names.. 7-10

Coordination of Locking Mechanisms by the IDLM .. 7-12
The IDLM Tracks Lock Modes ... 7-12
The Instance Maps Database Resources to IDLM Resources... 7-13
How IDLM Locks and Instance Locks Relate .. 7-14
The IDLM Provides One Lock Per Instance on a Resource.. 7-16

8 Integrated Distributed Lock Manager

What Is the Integrated Distributed Lock Manager? .. 8-1
The IDLM Grants and Coordinates Resource Lock Requests ... 8-1

Lock Requests Are Queued... 8-2
Asynchronous Traps (ASTs) Communicate Lock Request Status... 8-2
Lock Requests Are Converted and Granted... 8-3

IDLM Lock Modes: Resource Access Rights... 8-6
IDLM Features... 8-8

Distributed Architecture.. 8-8
Fault Tolerance.. 8-8
Lock Mastering ... 8-9
Deadlock Detection .. 8-9
Lamport SCN Generation.. 8-9
Group-owned Locks... 8-9
Persistent Resources ... 8-10
Memory Requirements .. 8-10
Support for MTS and XA... 8-10
Views to Monitor IDLM Statistics .. 8-11

9 Parallel Cache Management Instance Locks

PCM Locks and How They Work .. 9-1
What PCM Locks Are... 9-2
Allocation and Release of PCM Locks... 9-3
How PCM Locks Operate.. 9-4
Number of Blocks per PCM Lock... 9-6
Pinging: Signaling the Need to Update... 9-8

xviii

Partitioning to Avoid Pinging... 9-9
Lock Mode and Buffer State .. 9-10

How Initialization Parameters Control Blocks and PCM Locks ... 9-13
GC_* Initialization Parameters ... 9-13
Handling Data Blocks .. 9-15

Two Methods of PCM Locking: Fixed and Releasable.. 9-15
IDLM Lock Elements and PCM Locks... 9-15
Number of Blocks per PCM Lock... 9-17
Fine Grain Locking: Locks for One or More Blocks... 9-18
How Fine Grain Locking Works... 9-19
Performance Effects of Releasable Locking .. 9-20
Applying Fine Grain and Hashed Locking to Different Files .. 9-21

How Oracle Assigns Locks to Blocks.. 9-22
File to Lock Mapping ... 9-22
Number of Locks per Block Class .. 9-23
Lock Element Number ... 9-24

Examples: Mapping Blocks to PCM Locks .. 9-24
Setting GC_FILES_ TO_LOCKS ... 9-24
More Sample Hashed Settings of GC_FILES_TO_LOCKS... 9-27
Sample Fine Grain Setting of GC_FILES_TO_LOCKS .. 9-28

10 Non-PCM Instance Locks

Overview... 10-1
Transaction Locks (TX)... 10-3
Table Locks (TM)... 10-3
System Change Number (SC) ... 10-4
Library Cache Locks (N[A-Z]) .. 10-4
Dictionary Cache Locks (Q[A-Z]) .. 10-5
Database Mount Lock (DM) ... 10-5

11 Space Management and Free List Groups

How Oracle Handles Free Space .. 11-1
Overview.. 11-2
Database Storage Structures.. 11-2
Structures for Managing Free Space .. 11-4

xix

Example: Free List Groups .. 11-8
SQL Options for Managing Free Space.. 11-11
Managing Free Space on Multiple Instances .. 11-11

Partitioning Free Space into Multiple Free Lists.. 11-11
Partitioning Data with Free List Groups... 11-12
How Free Lists and Free List Groups Are Assigned to Instances..................................... 11-13

Free Lists Associated with Instances, Users, and Locks.. 11-14
Associating Instances with Free Lists .. 11-14
Associating User Processes with Free Lists .. 11-15
Associating PCM Locks with Free Lists .. 11-15

Controlling Extent Allocation .. 11-17
Automatic Allocation of New Extents... 11-17
Pre-allocation of New Extents .. 11-17
Moving the High Water Mark of a Segment .. 11-18

12 Application Analysis

How Detailed Must Your Analysis Be? .. 12-1
Understanding Your Application Profile ... 12-2

Analyzing Application Functions and Table Access Patterns ... 12-2
Read-only Tables .. 12-2
Random SELECT and UPDATE Tables .. 12-3
INSERT, UPDATE, or DELETE Tables.. 12-4
Planning the Implementation ... 12-5

Partitioning Guidelines ... 12-5
Overview.. 12-5
Application Partitioning.. 12-6
Data Partitioning... 12-7

xx

Part III Oracle Parallel Server Development Procedures

13 Designing Databases for Parallel Server

Overview... 13-1
Case Study: From Initial Database Design to OPS .. 13-2

"Eddie Bean" Catalog Sales.. 13-2
Tables.. 13-3
Users ... 13-3
Application Profile.. 13-3

Analyze Access to Tables ... 13-4
Table Access Analysis Worksheet .. 13-4
Case Study: Table Access Analysis .. 13-8

Analyze Transaction Volume by Users ... 13-9
Transaction Volume Analysis Worksheet... 13-9
Case Study: Transaction Volume Analysis ... 13-10

Partition Users and Data.. 13-13
Case Study: Initial Partitioning Plan.. 13-13
Case Study: Further Partitioning Plans ... 13-14

Partition Indexes ... 13-16
Implement Hashed or Fine Grain Locking .. 13-17
Implement and Tune Your Design... 13-18

14 Creating a Database and Objects for Multiple Instances

Creating a Database for a Multi-instance Environment.. 14-1
Summary of Tasks .. 14-1
Setting Initialization Parameters for Database Creation... 14-2
Database Creation and Start Up ... 14-3
Setting CREATE DATABASE Options.. 14-3

Creating Database Objects to Support Multiple Instances .. 14-5
Creating Additional Rollback Segments ... 14-5
Configuring the Online Redo Log for OPS ... 14-8
Providing Locks for Added Datafiles .. 14-10

Changing the Value of CREATE DATABASE Options ... 14-10

xxi

15 Allocating PCM Instance Locks

Planning the Use and Maintenance of PCM Locks.. 15-2
Planning and Maintaining Instance Locks.. 15-2
Key to Allocating PCM Locks... 15-2
Examining Datafiles and Data Blocks.. 15-3
Using Worksheets to Analyze PCM Lock Needs... 15-4
Mapping Fixed PCM Locks to Data Blocks .. 15-5
Partitioning PCM Locks Among Instances... 15-6

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile .. 15-6
GC_FILES_TO_LOCKS Syntax... 15-7
Fixed Lock Examples ... 15-8
Releasable Lock Example .. 15-9
Guidelines.. 15-9

Tips for Setting GC_FILES_TO_LOCKS ... 15-10
Providing Room for Growth... 15-10
Checking for Valid Number of Locks.. 15-11
Checking for Valid Lock Assignments .. 15-11
Setting Tablespaces to Read-only... 15-11
Checking File Validity ... 15-12
Adding Datafiles without Changing Parameter Values ... 15-12

Setting Other GC_* Parameters ... 15-12
Setting GC_RELEASABLE_ LOCKS.. 15-13
Setting GC_ROLLBACK_ LOCKS ... 15-13

Tuning PCM Locks ... 15-14
Detecting False Pinging ... 15-14
How Much Time Do PCM Lock Conversions Take? .. 15-16
Which Sessions Are Waiting for PCM Lock Conversions to Complete? 15-17
What Is the Total Number of PCM Locks and Resources Needed?.................................. 15-17

16 Ensuring IDLM Capacity for Resources and Locks

Overview .. 16-1
Planning IDLM Capacity .. 16-2

Avoiding Dynamic Allocation of Resources and Locks ... 16-2
Computing Lock and Resource Needs.. 16-2
Monitoring Resource Utilization.. 16-3

xxii

Calculating the Number of Non-PCM Resources .. 16-4
Adjusting Oracle Initialization Parameters ... 16-6
Minimizing Table Locks to Optimize Performance ... 16-6

Setting DML_LOCKS to Zero ... 16-7
Disabling Table Locks .. 16-7

17 Using Free List Groups to Partition Data

Overview... 17-2
Deciding How to Partition Free Space for Database Objects... 17-2

Database Object Characteristics.. 17-2
Free Space Worksheet .. 17-5

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement 17-6
FREELISTS Option.. 17-6
FREELIST GROUPS Option .. 17-6
Creating Free Lists for Clusters .. 17-7
Creating Free Lists for Indexes ... 17-8

Associating Instances, Users, and Locks with Free List Groups ... 17-9
Associating Instances with Free List Groups.. 17-10
Associating User Processes with Free List Groups.. 17-10
Associating PCM Locks with Free List Groups.. 17-11

Pre-allocating Extents (Optional)... 17-11
The ALLOCATE EXTENT Option ... 17-11
Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters 17-13
Setting the INSTANCE_NUMBER Parameter ... 17-13
Examples of Extent Pre-allocation.. 17-14

Dynamically Allocating Extents... 17-15
Translation of Block Database Address to Lock Name... 17-15
!blocks with ALLOCATE EXTENT Syntax... 17-15

Identifying and Deallocating Unused Space... 17-16
How to Determine Unused Space .. 17-16
Deallocating Unused Space... 17-16
Space Freed by Deletions or Updates .. 17-16

xxiii

Part IV Oracle Parallel Server System Maintenance Procedures

18 Administering Multiple Instances

Overview .. 18-2
Oracle Parallel Server Management.. 18-2
Defining Multiple Instances with Parameter Files .. 18-3

Using a Common Parameter File for Multiple Instances ... 18-3
Using Individual Parameter Files for Multiple Instances... 18-4
Embedding a Parameter File Using IFILE .. 18-5
Specifying a Non-default Parameter File with PFILE ... 18-8

Setting Initialization Parameters for Multiple Instances ... 18-8
GC_* Global Cache Parameters .. 18-9
Parameter Notes for Multiple Instances.. 18-10
Parameters that Must Be Identical on All Instances.. 18-11

Determining the Amount of Locks Needed and Setting LM_* Parameters........................ 18-12
Creating Database Objects for Multiple Instances .. 18-12
Starting Instances.. 18-13

Enabling Parallel Server and Starting Instances .. 18-13
Starting with OPS Disabled... 18-14
Starting in Shared Mode.. 18-15

Specifying Instances .. 18-17
Differentiating Between Current and Default Instance .. 18-17
How SQL Statements Apply to Instances ... 18-18
How Server Manager Commands Apply to Instances ... 18-18

The Cluster Manager.. 18-22
OPS Cluster Administration ... 18-22
Specifying Instance Groups .. 18-23
Using a Password File to Authenticate Users on Multiple Instances 18-26

Shutting Down Instances .. 18-26
Limiting Instances for Parallel Query .. 18-27

PARALLEL_SERVER_INSTANCES.. 18-28
Instance Registration and Client/Service Connections ... 18-28

How Clients Access Services .. 18-29
Configuring Client-to-service Connections .. 18-31
Database Instance Registration... 18-31

xxiv

Connect Time Failover ... 18-32
Client Load Balancing .. 18-32
Connection Load Balancing .. 18-32

Parallel Execution Load Balancing .. 18-33
Managed Standby and Standby Databases ... 18-33

19 Tuning to Optimize Performance

General Guidelines .. 19-1
Overview.. 19-2
Keep Statistics for All Instances.. 19-2
Statistics to Keep ... 19-2
Change One Parameter at a Time... 19-3

Contention .. 19-3
Detecting Lock Conversions ... 19-3
Locating Lock Contention within Applications ... 19-4

Tuning for High Availability .. 19-7
Detection of Error ... 19-8
Recovery and Re-mastering of IDLM Locks... 19-8
Recovery of Failed Instance... 19-8

20 Cache Fusion and Inter-instance Performance

The Role of Cache Fusion in Resolving Cache Coherency Conflicts...................................... 20-2
How Cache Fusion Produces Consistent Read Blocks .. 20-2

Partitioning Data to Improve Write/write Conflict Resolution .. 20-4
Improved Scalability with Cache Fusion ... 20-4

Reduced Context Switches and CPU Utilization ... 20-5
Reduced CPU Utilization with User-mode IPCs ... 20-5
Reduced I/O for Block Pinging and Reduced X-to-S Lock Conversions 20-6
Consistent-read Block Transfers by way of High Speed Interconnects.............................. 20-6

The Interconnect and Interconnect Protocols for OPS .. 20-6
Influencing Interconnect Processing.. 20-6
Supported Interconnect Software... 20-7

Performance Expectations ... 20-7
Cache Fusion Block Request Latencies .. 20-8

Monitoring Cache Fusion and Inter-instance Performance.. 20-9

xxv

Goals of Monitoring Cache Fusion and OPS Performance .. 20-9
Latency Statistics in OPS ... 20-9

Statistics for Monitoring OPS and Cache Fusion... 20-11
Creating OPS Data Dictionary Views with CATPARR.SQL.. 20-12

Global Dynamic Performance Views... 20-12
Analyzing Global Cache and Cache Fusion Statistics... 20-14
Analyzing Global Lock Statistics.. 20-18
Analyzing IDLM Resource, Lock, Message, and Memory Resource Statistics 20-20
IDLM Message Statistics.. 20-23
Analyzing OPS I/O Statistics ... 20-26
Analyzing Lock Conversions by Type .. 20-29
Analyzing Latch, OPS, and IDLM-related Statistics ... 20-31

Using V$SYSTEM_EVENTS to Identify Performance Problems ... 20-34
Events in V$SYSTEM_EVENTS Specifically Related to OPS... 20-34
General Observations... 20-35

21 Backing Up the Database

Choosing a Backup Method.. 21-2
Archiving the Redo Log Files ... 21-2

Archiving Mode.. 21-3
Automatic or Manual Archiving.. 21-3
Archive File Format and Destination .. 21-5
Redo Log History in the Control File .. 21-6
Backing Up the Archive Logs ... 21-7

Checkpoints and Log Switches .. 21-9
Checkpoints ... 21-9
Forcing a Checkpoint ... 21-9
Forcing a Log Switch.. 21-10
Forcing a Log Switch on a Closed Thread .. 21-11

Backing Up the Database .. 21-12
Open and Closed Database Backups ... 21-12
Recovery Manager Backup Issues.. 21-13
Operating System Backup Issues ... 21-15

xxvi

22 Recovering the Database

Overview... 22-1
Recovery from Instance Failure.. 22-2

Single-node Failure... 22-2
Multiple-node Failure .. 22-3
Fast-Start Checkpointing ... 22-3
Fast-Start Roll Back... 22-3
Access to Datafiles for Instance Recovery... 22-4
Freezing the Database for Instance Recovery... 22-4
Phases of Oracle Instance Recovery... 22-5

Recovery from Media Failure ... 22-6
Complete Media Recovery .. 22-7
Incomplete Media Recovery.. 22-8
Restoring and Recovering Redo Log Files .. 22-9
Disaster Recovery ... 22-10

Parallel Recovery... 22-14
Parallel Recovery Using Recovery Manager .. 22-14
Parallel Recovery Using Operating System Utilities ... 22-15
Fast-start Parallel Rollback in OPS... 22-16

Managed Standby and Standby Databases ... 22-16

23 Migrating from a Single Instance to Parallel Server

Overview... 23-1
Deciding to Convert ... 23-2

Reasons to Convert ... 23-2
Reasons Not to Convert ... 23-2

Preparing to Convert .. 23-2
Hardware and Software Requirements ... 23-3
Converting the Application from Single- to Multi-instance... 23-3
Administrative Issues... 23-3

Converting the Database from Single- to Multi-instance... 23-4
Troubleshooting the Conversion ... 23-9

Database Recovery After Conversion.. 23-9
Loss of Rollback Segment Tablespace.. 23-9
Inadvisable NFS Mounting of Parameter File .. 23-9

xxvii

Part V Reference

Differences Between 8.0.4 and 8.1 ... A-1
Cache Fusion Architecture Changes.. A-1
New Views... A-2
Removal of GMS... A-2
Parallel Transaction Recovery is now "Fast-Start Parallel Rollback" A-2
Changes to Instance Registration ... A-3
Listener Load Balancing .. A-3
Diagnostic Enhancements ... A-4
Oracle Parallel Server Management (OPSM) ... A-4
Parallel Server Installation and Database Configuration ... A-4
Instance Affinity for Jobs ... A-4
Obsolete Parameters... A-5

Differences Between Release 8.0.3 and Release 8.0.4 .. A-5
New Initialization Parameters .. A-5
Obsolete Initialization Parameters ... A-5
Obsolete Startup Parameters... A-6
Dynamic Performance Views ... A-6
Group Membership Services... A-6

Differences Between Release 7.3 and Release 8.0.3 ... A-6
New Initialization Parameters .. A-6
Obsolete GC_* Parameters .. A-6
Changed GC_* Parameters.. A-7
Dynamic Performance Views ... A-7
Global Dynamic Performance Views... A-7
Integrated Distributed Lock Manager ... A-8
Instance Groups .. A-8
Group Membership Services... A-8
Fine Grain Locking ... A-8
Client-side Application Failover .. A-8
Recovery Manager.. A-8

Differences Between Release 7.2 and Release 7.3 .. A-9
Initialization Parameters.. A-9
Data Dictionary Views... A-9
Dynamic Performance Views ... A-9

xxviii

Free List Groups.. A-9
Fine Grain Locking ... A-9
Instance Registration ... A-10
Sort Improvements .. A-10
XA Performance Improvements .. A-11
XA Recovery Enhancements .. A-11
Deferred Transaction Recovery ... A-12
Load Balancing at Connect... A-13
Bypassing Cache for Sort Operations ... A-14
Delayed-Logging Block Cleanout ... A-14
Parallel Query Processor Affinity.. A-15

Differences Between Release 7.1 and Release 7.2.. A-15
Pre-allocating Space Unnecessary ... A-15
Data Dictionary Views .. A-15
Dynamic Performance Views... A-16
Free List Groups... A-16
Table Locks ... A-16
Lock Processes.. A-16

Differences Between Release 7.0 and Release 7.1.. A-17
Initialization Parameters... A-17
Dynamic Performance Views... A-17

Differences Between Version 6 and Release 7.0... A-17
Version Compatibility... A-17
File Operations ... A-17
Deferred Rollback Segments .. A-19
Redo Logs.. A-19
Free Space Lists .. A-20
SQL*DBA .. A-20
Initialization Parameters... A-21
Archiving .. A-21
Media Recovery ... A-22

Compatibility... B-1
The Export and Import Utilities.. B-1
Compatibility Between Shared and Exclusive Modes .. B-1

Restrictions... B-2

xxix

Maximum Number of Blocks Allocated at a Time .. B-2
Restrictions in Shared Mode ... B-2

xxx

Part I
 Parallel Processing Fundamentals

Parallel Processing and Parallel Databases 1-1

1
Parallel Processing and Parallel Databases

This chapter introduces parallel processing and parallel database technologies. Both

offer great advantages for Online Transaction Processing (OLTP) and Decision

Support Systems (DSS). The administrator’s challenge is to selectively deploy these

technologies to fully use their multiprocessing powers.

To do this successfully you must understand how multiprocessing works, what

resources it requires, and when you can and cannot effectively apply it. This chapter

answers the following questions:

■ What Is Parallel Processing?

■ What Is a Parallel Server?

■ What Are the Key Elements of Parallel Processing?

■ What Are the Benefits of Parallel Processing?

■ What Are the Benefits of Parallel Databases?

■ What Is the Role of Parallel Execution?

■ Do You Need Parallel Server?

What Is Parallel Processing?
This section defines parallel processing and describes its use.

■ Parallel Processing Defined

■ Problems of Parallel Processing

■ Characteristics of a Parallel System

■ Parallel Processing for SMPs and MPPs

What Is Parallel Processing?

1-2 Oracle8i Parallel Server Concepts and Administration

■ Parallel Processing for Integrated Operations

Parallel Processing Defined
Parallel processing divides a large task into many smaller tasks and executes the

smaller tasks concurrently on several nodes. As a result, the larger task completes

more quickly.

Some tasks can be effectively divided and are good candidates for parallel

processing. For example, in a bank with one teller, customers must form one line to

be served. With two tellers, the task of waiting on customers can be effectively split

between the two tellers so customers are served twice as fast. This is an instance

where parallel processing is an effective solution.

Not all tasks can be effectively divided. Assume that for the previous example, the

bank manager must approve all loan requests. In this case, parallel processing does

not necessarily improve service. No matter how many tellers are available to

process loans, all requests must form a single line for bank manager approval. No

amount of parallel processing can overcome this built-in restriction.

The following figures contrast sequential processing of a single parallel query with

parallel processing of the same query. Figure 1–1 illustrates sequential processing in

which a query executes as a single task.

Figure 1–1 Sequential Processing of a Single Task

Figure 1–2 illustrates parallel processing in which a query is divided into multiple,

smaller tasks, and each component task executes on a separate instance.

Note: A node is a separate processor, often on a separate machine.

Multiple processors, however, can reside on a single machine.

TOTAL ELAPSED TIME

task (runtime)

Processor 1

What Is Parallel Processing?

Parallel Processing and Parallel Databases 1-3

Figure 1–2 Parallel Processing: Executing Component Tasks in Parallel

These figures contrast sequential processing with parallel processing of multiple

independent tasks from online transaction processing (OLTP) environments.

Figure 1–3 shows sequential processing of multiple independent tasks.

Figure 1–3 Sequential Processing of Multiple Independent Tasks

Processors

TOTAL ELAPSED TIME

component task (runtime)

1

2

3

4
5

6

7
8

9

10

Processors

TOTAL ELAPSED TIME

task (runtime)

1

2

3

4

5

6

7
8

9

10

wait

What Is Parallel Processing?

1-4 Oracle8i Parallel Server Concepts and Administration

Figure 1–4 shows parallel processing of independent tasks.

Figure 1–4 Parallel Processing: Executing Independent Tasks in Parallel

In sequential processing, independent tasks compete for a single resource. Only task

1 runs without having to wait. Task 2 must wait until task 1 completes. Task 3 must

wait until tasks 1 and 2 complete, and so on. Although the figure shows the

independent tasks as the same size, the sizes of the tasks may vary.

By contrast, if you have a parallel server on a symmetric multiprocessor you can

assign more CPU power to the tasks depending on how your CPUs are partitioned.

Each independent task executes immediately on its own processor; no wait time is

involved.

Problems of Parallel Processing
Effective implementation of parallel processing involves two challenges:

■ Structuring tasks so some tasks execute at the same time "in parallel"

■ Preserving task sequencing for tasks that must execute serially

Characteristics of a Parallel System
A parallel processing system has the following characteristics:

■ Each processor in a system can perform tasks concurrently

■ Tasks may need to be synchronized

Processors

TOTAL ELAPSED TIME

task (runtime)

1

2

3

4
5

6

7
8

9

10

What Is Parallel Processing?

Parallel Processing and Parallel Databases 1-5

■ Nodes usually share resources, such as data, disks, and other devices

Parallel Processing for SMPs and MPPs
Parallel processing architectures support:

■ Clustered and massively parallel processing (MPP) hardware where each node

has its own memory

■ Single memory systems, also known as "symmetric multiprocessing" (SMP)

hardware, where multiple processors use one memory resource

Clustered and MPP machines have multiple memories, with each node typically

having its own memory. Such systems promise significant price and performance

benefits by using commodity memory and bus components to eliminate memory

bottlenecks.

Database management systems supporting only one type of hardware limit the

portability of applications, the potential to migrate applications to new hardware

systems, and the scalability of applications. Oracle Parallel Server (OPS) exploits

both clusters and MPP systems, and has no such limitations. Oracle without the

Parallel Server Option exploits single CPU or SMP machines.

Parallel Processing for Integrated Operations
Parallel database software must effectively deploy the system’s processing power to

handle diverse applications such as online transaction processing (OLTP)

applications, decision support system (DSS) applications, and mixtures of OLTP

and DSS systems or "hybrid" systems.

OLTP applications are characterized by short transactions with low CPU and I/O

usage. DSS applications have large transactions, with high CPU and I/O usage.

Parallel database software is often specialized, usually to serve as query processors.

Since they are designed to serve a single function, however, specialized servers do

not provide a common foundation for integrated operations. These include online

decision support, batch reporting, data warehousing, OLTP, distributed operations,

and high availability systems. Specialized servers have been used most successfully

in the area of very large databases: in DSS applications, for example.

Versatile parallel database software should offer excellent price/performance on

open systems hardware, and serve a wide variety of enterprise computing needs.

Features such as online backup, data replication, portability, interoperability, and

support for a wide variety of client tools can enable a parallel server to support

application integration, distributed operations, and mixed application workloads.

What Is a Parallel Server?

1-6 Oracle8i Parallel Server Concepts and Administration

What Is a Parallel Server?
A variety of hardware architectures allow multiple computers to share access to

data, software, or peripheral devices. A parallel server is designed to take

advantage of such architectures by running multiple instances that "share" a single

physical database. In appropriate applications, a parallel server allows access to a

single database by users on multiple machines with increased performance in terms

of speedup and improved scaleup to process larger workloads.

A parallel server processes transactions in parallel by servicing a stream of

transactions using multiple CPUs on different nodes where each CPU processes an

entire transaction. Using parallel data manipulation language (PDML), one

transaction can be executed by multiple nodes. This is an efficient approach because

many applications consist of online insert and update transactions that tend to have

short data access requirements. In addition to balancing the workload among CPUs,

the parallel database provides concurrent access to data and ensures data integrity.

What Are the Key Elements of Parallel Processing?
This section describes key elements of parallel processing:

■ Speedup and Scaleup: the Goals of Parallel Processing

■ Synchronization: A Critical Success Factor

■ Locking

■ Messaging

Speedup and Scaleup: the Goals of Parallel Processing
You can measure the performance goals of parallel processing in terms of two

important properties:

■ Speedup

■ Scaleup

Speedup
Speedup is the extent to which more hardware can perform the same task in less

time than the original system. With added hardware, speedup holds the task

See Also: "Do You Need Parallel Server?" on page 1-14 for a

discussion of the Oracle configurations.

What Are the Key Elements of Parallel Processing?

Parallel Processing and Parallel Databases 1-7

constant and measures time savings. Figure 1–5 shows how each parallel hardware

system performs half of the original task in half the time required to perform it on a

single system.

Figure 1–5 Speedup

With good speedup, additional processors reduce system response time. You can

measure speedup using this formula:

Where:

Time_Original is the elapsed time spent by a small system on the given task.

Time_Parallel is the elapsed time spent by a larger, parallel system on the same

task.

100% Task
Time

Time

Original System:

Parallel System:

Time

50% Task

50% Task

Hardware

Hardware

Hardware

Speedup =
Time_Original

Time_Parallel

What Are the Key Elements of Parallel Processing?

1-8 Oracle8i Parallel Server Concepts and Administration

For example, if the original system took 60 seconds to perform a task, and two

parallel systems took 30 seconds, then the value of speedup would equal 2.

However, you may not experience direct, linear speedup. Instead, speedup may be

more logarithmic. That is, assume the system can perform a task of size "x" in a time

duration of "n". But for a task of size 2x, the system may require a time duration of

3n.

Scaleup
Scaleup is the factor that expresses how much more work can be done in the same

time period by a larger system. With added hardware, a formula for scaleup holds

the time constant, and measures the increased size of the job which can be done.

Figure 1–6 Scaleup

If transaction volumes grow and you have good scale-up, you can keep response

time constant by adding hardware resources such as CPUs.

Note: For most OLTP applications, no speedup can be expected:

only scaleup. The overhead due to synchronization can, in fact,

cause speed-down.

2 =
60

30

100% Task
Time

Original System:

Parallel System:

Hardware

200% Task
Time

Hardware

Time
Hardware

What Are the Key Elements of Parallel Processing?

Parallel Processing and Parallel Databases 1-9

You can measure scaleup using this formula:

Where:

For example, if the original system processes 100 transactions in a given amount of

time and the parallel system processes 200 transactions in this amount of time, then

the value of scaleup would be equal to 2. A value of 2 indicates the ideal of linear

scaleup: when twice as much hardware can process twice the data volume in the

same amount of time.

Synchronization: A Critical Success Factor
Coordination of concurrent tasks is called synchronization. Synchronization is

necessary for correctness. The key to successful parallel processing is to divide tasks

so very little synchronization is necessary. The less synchronization necessary, the

better the speedup and scaleup.

In parallel processing among nodes, having a high-speed interconnect among the

parallel processors is helpful. The overhead of this synchronization can be very

expensive if a great deal of inter-node communication is necessary. For parallel

processing within a node, messaging is not necessary: shared memory is used

instead. Messaging and locking between nodes is handled by the Integrated

Distributed Lock Manager (IDLM).

The amount of synchronization depends on the amount of resources and the

number of users and tasks working on the resources. Little synchronization may be

needed to coordinate a small number of concurrent tasks, but significant

synchronization may be necessary to coordinate many concurrent tasks.

Volume_Original is the transaction volume processed in a given amount of

time on a small system.

Volume_Parallel is the transaction volume processed in a given amount of

time on a parallel system.

Scaleup =
Volume_Parallel

Volume_Original

What Are the Key Elements of Parallel Processing?

1-10 Oracle8i Parallel Server Concepts and Administration

Overhead
 A great deal of time spent in synchronization indicates high contention for

resources.

Response time equals time spent waiting and time spent doing useful work.

Table 1–1 illustrates how overhead increases as more concurrent processes are

added. If 3 processes request a service at the same time, and they are served serially,

then response time for process 1 is 1 second. Response time for process 2 is 2

seconds (waiting 1 second for process 1 to complete, then being serviced for 1

second). Response time for process 3 is 3 seconds (2 seconds waiting time plus 1

second service time).

One task, in fact, may require multiple messages. If tasks must continually wait to

synchronize, then several messages may be needed per task.

Cost of Synchronization
While synchronization is a necessary element of parallel processing to preserve

correctness, you need to manage its cost in terms of performance and system

resources. Different types of parallel processing software may permit

synchronization, but a given approach may or may not be cost-effective.

Sometimes you can achieve synchronization very inexpensively. In other cases the

cost of synchronization may be too high. For example, if one table takes inserts from

many nodes, a lot of synchronization is necessary. There may be high contention

from the different nodes to insert into the same datablock: the datablock must be

passed between the different nodes. This type of synchronization can be done, but

the overhead in some cases might be significant.

Note: Too much time spent in synchronization can diminish the

benefits of parallel processing. With less time spent in

synchronization, better speedup and scaleup can be achieved.

Table 1–1 Increased Overhead with Increased Processes

Process Number Service Time Waiting Time Response Time

1 1 second 0 seconds 1 second

2 1 second 1 second 2 seconds

3 1 second 2 seconds 3 seconds

What Are the Key Elements of Parallel Processing?

Parallel Processing and Parallel Databases 1-11

Locking
Locks are resource control mechanisms that synchronize tasks. Many different types

of locking mechanisms are required to synchronize tasks required by parallel

processing.

The Integrated Distributed Lock Manager (Integrated DLM, or IDLM) is the internal

locking facility used with OPS. It coordinates resource sharing between nodes

running a parallel server. The instances of a parallel server use the IDLM to

communicate with each other and coordinate modification of database resources.

Each node operates independently of other nodes, except when contending for the

same resource.

The IDLM allows applications to synchronize access to resources such as data,

software, and peripheral devices, so concurrent requests for the same resource are

coordinated among applications running on different nodes.

The IDLM performs the following services for applications:

■ Keeps track of the current "ownership" of a resource

■ Accepts lock requests for resources from application processes

■ Notifies the requesting process when a lock on a resource is available

■ Notifies processes blocking a resource that they should release or downgrade a

lock

■ Obtains access to a resource for a process

Messaging
Parallel processing performs best when you have fast and efficient communication

among nodes. The optimal type of system to have is one with high bandwidth and

low latency that efficiently communicates with the IDLM. Bandwidth is the total size

of messages that can be sent per second. Latency is the time in seconds that it takes

to place a message on the interconnect and receive a response.

See Also: Chapter 8, "Integrated Distributed Lock Manager",

Chapter 12, "Application Analysis", and Chapter 19, "Tuning to

Optimize Performance".

See Also: Chapter 7, "Overview of Locking Mechanisms", for a

discussion of locking mechanisms internal to the Oracle database,

and Chapter 8, "Integrated Distributed Lock Manager".

What Are the Benefits of Parallel Processing?

1-12 Oracle8i Parallel Server Concepts and Administration

Most MPP systems and clusters have networks with reasonably high bandwidths.

Latency, on the other hand, is an operating system issue that is mostly influenced by

interconnect software and interconnect protocols. MPP systems, and most clusters,

characteristically use interconnects with high bandwidth and low latency; other

clusters may use Ethernet connections with relatively low bandwidth and high

latency.

What Are the Benefits of Parallel Processing?
Parallel processing can benefit certain types of applications by providing:

■ Enhanced Throughput: Scaleup

■ Improved Response Time: Speedup

You can achieve improved response time either by breaking up a large task into

smaller components or by reducing wait time, as shown in Figure 1–3.

Table 1–2 shows which types of workload can attain speedup and scaleup with

properly implemented parallel processing.

Enhanced Throughput: Scaleup
If tasks can run independently of one another, they can be distributed to different

CPUs or nodes and you can achieve scaleup: more processes can run through the

database in the same amount of time.

If processes can run ten times faster, then the system can accomplish ten times more

in the original amount of time. The parallel query feature, for example, permits

scaleup: a system might maintain the same response time if the data queried

increases tenfold, or if more users can be served. OPS without the parallel query

feature also provides scaleup, but by running the same query sequentially on

different nodes.

Table 1–2 Speedup and Scaleup with Different Workloads

Workload Speedup Scaleup

OLTP No Yes

DSS Yes Yes

Batch (Mixed) Possible Yes

Parallel Query Yes Yes

What Are the Benefits of Parallel Databases?

Parallel Processing and Parallel Databases 1-13

With a mixed workload of DSS, OLTP, and reporting applications, you can achieve

scaleup by running multiple programs on different nodes. You can also achieve

speedup by rewriting the batch programs and separating them into a number of

parallel streams to take advantage of the multiple CPUs that are available.

Improved Response Time: Speedup
DSS applications and parallel query can attain speedup with parallel processing:

each transaction can run faster. For OLTP applications, however, no speedup can be

expected: only scaleup. With OLTP applications, each process is independent. Even

with parallel processing, each insert or update on an order table still runs at the

same speed. In fact, the overhead due to synchronization may cause a slight

speed-down. Since each of the operations is small, it is inappropriate to attempt to

parallelize them; the synchronization overhead would be greater than the benefit.

You can also achieve speedup with batch processing. The degree of speedup,

however, depends on the cost and amount of synchronization between tasks.

What Are the Benefits of Parallel Databases?
Parallel database technology can benefit certain kinds of applications by enabling:

■ Higher Performance

■ High Availability

■ Greater Flexibility

■ More Users

Higher Performance
With more CPUs available to an application, higher speedup and scaleup can be

attained. The performance improvement depends on the degree of inter-node

locking and synchronization activities. Each lock operation is processor- and

message-intensive; there can be a lot of latency. The volume of lock operations and

database contention, as well as the throughput and performance of the IDLM,

ultimately determine the scalability of the system.

Do You Need Parallel Server?

1-14 Oracle8i Parallel Server Concepts and Administration

High Availability
Nodes are isolated from each other, so a failure at one node does not bring the entire

system down. One of the surviving nodes recovers the failed node and the system

continues to provide data access to users. This means data is much more available

than it would be with a single node upon node failure. This also amounts to

significantly higher database availability.

Greater Flexibility
An OPS environment is extremely flexible. You can allocate or deallocate instances

as necessary. For example, as database demand increases, you can temporarily

allocate more instances. Then you can deallocate the instances and use them for

other purposes once they are no longer required.

More Users
Parallel database technology can make it possible to overcome memory limits,

enabling a single system to serve thousands of users.

Do You Need Parallel Server?
This section describes the following Oracle configurations that deliver high

performance for different types of applications:

■ Single Instance with Exclusive Access

■ Multi-Instance Database Systems

■ Distributed Database Systems

■ Client-Server Systems

The parallel server is one of several Oracle options that provide high-performance

relational databases serving many users. You can combine these configurations to

suit your needs. A parallel server can be one of several servers in a distributed

database environment, and the client-server configuration can combine various

Oracle configurations into a hybrid system to meet specific application

requirements.

Note: Support for any given Oracle configuration is

platform-dependent; check to confirm that your platform supports

the configuration you want.

Do You Need Parallel Server?

Parallel Processing and Parallel Databases 1-15

For optimal performance, configure your system according to your particular

application requirements and available resources, then design and tune the

database and applications to make the best use of the configuration. Consider also

the migration of existing hardware or software to the new system or to future

systems.

The following sections help you determine which Oracle configuration best meets

your needs.

Single Instance with Exclusive Access
Figure 1–7 illustrates a single instance database system running on a symmetric

multiprocessor (SMP). The database itself is located on a set of disks.

Figure 1–7 Single Instance Database System

A single instance accessing a single database can improve performance by running

on a larger computer. A large single computer does not require coordination

between several nodes and generally performs better than two small computers in a

multinode system. However, two small computers often cost less than one large

one.

The cost of redesigning and tuning your database and applications for OPS might

be significant if you want to migrate from a single computer to a multi-node

See Also: Chapter 3, "Parallel Hardware Architecture".

SMP

Database

Oracle Instance

. . .DBWR LGWR

SGA

Do You Need Parallel Server?

1-16 Oracle8i Parallel Server Concepts and Administration

system. In situations like this, consider whether a larger, single computer might be a

better solution than moving to a parallel server.

Multi-Instance Database Systems
Figure 1–8 illustrates the OPS option running on a cluster or MPP. This

configuration is also referred to as a "multi-instance database system". OPS is an

excellent solution for applications that can be configured to minimize the passing of

data between instances on different nodes.

Figure 1–8 Multi-Instance Database System

This system requires the LMD, LCK, and BSP processes as well as foreground

processes on each instance. These processes coordinate global locking by

communicating directly from one instance to another by way of the interconnect.

See Also: Oracle8i Concepts for more information about single

instance Oracle.

Database

Oracle Instance

. . . DBWR LGWR LMD LCK BSP

Node 1

SGA

Oracle Instance

. . . DBWR LGWR LMD LCK BSP

Node 3

SGA

Oracle Instance

. . . DBWR LGWR LMD LCK BSP

Node 2

SGA

Do You Need Parallel Server?

Parallel Processing and Parallel Databases 1-17

In OPS, instances are decoupled from databases. In exclusive mode, there is a

one-to-one correspondence of instance to database. In shared (parallel) mode,

however, there can be many instances to a single database.

In general, any single application performs best when it has exclusive access to a

database on a larger system, as compared with its performance on a smaller node of

a multinode environment. This is because the cost of synchronization automatically

increases if you migrate to a multinode environment. The performance difference

depends on characteristics of that application and all other applications sharing

access to the database.

Applications with one or both of the following characteristics are well suited to run

on separate instances of a parallel server:

■ Applications that primarily only read (not update) data

■ Applications that either change disjoint groups of datablocks or change the

same datablocks at different times

Distributed Database Systems
You can link several Oracle servers and databases to form a distributed database
system. This configuration includes multiple databases, each of which is accessed

directly by a single server and which can be accessed indirectly by other instances

through server-to-server cooperation. You can use each node for database

processing, but the data is permanently partitioned among the nodes. A parallel

server, in contrast, has multiple instances with direct access to one database.

Note: BSP is the Block Server Process that only exists in an OPS

environment. BSP manages out-going messages to requesting

nodes as well as the transmission of consistent read blocks from

one node to another. The LMD process manages in-coming lock

requests for instances holding locks needed by other instances.

See Also: For more information about BSP, please refer to "Cache

Fusion Processing and the Block Server Process" on page 5-7 and

Chapter 20, "Cache Fusion and Inter-instance Performance".

See Also: "Enabling and Disabling Parallel Server" on page 4-1,

Chapter 8, "Integrated Distributed Lock Manager", and Oracle8i
Concepts for more information about the DBWR, LGWR, LMD, and

LCK background processes.

Do You Need Parallel Server?

1-18 Oracle8i Parallel Server Concepts and Administration

Figure 1–9 illustrates a distributed database system. This database system requires

the RECO background process on each instance. There is no LCK, LMON, or LMD

background process because this is not an OPS configuration, and the Integrated

Distributed Lock Manager is not needed.

Figure 1–9 Distributed Database System

The multiple databases of a distributed system can be treated as one logical

database, because servers can access remote databases transparently using Net8.

If you can partition your data into multiple databases with minimal overlap, you

can use a distributed database system instead of a parallel server, sharing data

between the databases, as mentioned, with Net8. A parallel server provides

automatic data sharing among nodes through the common database.

A distributed database system allows data to reside at several widely separated

sites. Users can access data from geographically separated databases providing

network connections exist between the separate nodes. A parallel server requires all

data to be at a single site because of the requirement for low latency, high

bandwidth communication among nodes. But a parallel server can also be part of a

distributed database system as illustrated in Figure 1–10.

Note: Oracle Parallel Server can one component of a distributed

database.

Database

Oracle Instance

. . .DBWR LGWR RECO

Node 1

SGA

Database

Oracle Instance

. . .DBWR LGWR RECO

Node 2

SGA

Net8

Do You Need Parallel Server?

Parallel Processing and Parallel Databases 1-19

Figure 1–10 Oracle Parallel Server as Part of a Distributed Database

Multiple databases require separate database administration, and a distributed

database system requires coordinated administration of the databases and network

protocols. A parallel server can consolidate several databases to simplify

administrative tasks.

Multiple databases can provide greater availability than a single instance accessing

a single database, because an instance failure in a distributed database system does

not prevent access to data in the other databases: only the database owned by the

failed instance is inaccessible. A parallel server, however, allows continued access to

all data when one instance fails, including data accessed by the instance running on

the failed node.

A parallel server accessing a single consolidated database avoids the need for

distributed updates, inserts, or deletions and more expensive two-phase commits

by allowing a transaction on any node to write to multiple tables simultaneously,

regardless of which nodes usually write to those tables.

See Also: Oracle8i Backup and Recovery Guide for more information

about instance recovery and Oracle8i Distributed Database Systems
for more information about Oracle distributed database features.

Database 1

Oracle Instance 1

Oracle Instance 2 Oracle Instance 3

Database 2

Oracle Instance 4

Net8

Do You Need Parallel Server?

1-20 Oracle8i Parallel Server Concepts and Administration

Client-Server Systems
Any Oracle configurations can run in a client-server environment. In Oracle, a client

application runs on a remote computer using Net8 to access an Oracle server

through a network. The performance of this configuration is typically limited to the

power of the single server node.

Figure 1–11 illustrates an Oracle client-server system.

Figure 1–11 Client-Server System

The client-server configuration allows you to off-load processing from the computer

that runs an Oracle server. If you have too many applications running on one

machine, you can off-load them to improve performance. However, if your database

Note: Client-server processing is suitable for any Oracle

configuration. Check your Oracle platform-specific documentation

to see whether it is implemented on your platform.

Net8

Node 2

client 1

client 2

client 3

Database

Oracle Instance

. . .DBWR LGWR

Node 1

SGA

Node 3Server

What Is the Role of Parallel Execution?

Parallel Processing and Parallel Databases 1-21

server is reaching its processing limits you might want to move either to a larger

machine or to a multinode system.

For compute-intensive applications, you could run some applications on one node

of a multinode system while running Oracle and other applications on another

node or on several other nodes. In this way you could use various nodes of a

parallel machine as client nodes and one as a server node.

If the database has several distinct, high-throughput parts, a parallel server running

on high-performance nodes can provide quick processing for each part of the

database while also handling occasional access across parts.

A client-server configuration requires that the network convey all communications

between clients and the database. This may not be appropriate for high-volume

communications as is required for many batch applications.

What Is the Role of Parallel Execution?
With its parallel execution features, Oracle can divide the work of processing certain

types of SQL statements among multiple query server processes.

OPS provides the framework for parallel execution to work between nodes. Parallel

execution features behave the same way in Oracle with or without the Parallel

Server Option. The only difference is that OPS enables multiple nodes to execute on

behalf of a single query or other parallel operation.

In some applications, notably data warehousing applications, individual queries

consume a great deal of CPU resources and require significant disk I/O, unlike

most online insert or update transactions. To take advantage of multiprocessing

systems, the data server must parallelize individual queries into units of work that

can be processed simultaneously. Figure 1–12 shows an example of parallel query

processing.

See Also: "Client-Server Architecture" in Oracle8i Concepts.

What Is the Role of Parallel Execution?

1-22 Oracle8i Parallel Server Concepts and Administration

Figure 1–12 Example of Parallel Execution Processing

If the query was not processed in parallel, disks would be read serially with a single

I/O. A single CPU would have to scan all rows in the LINE_ITEMS table and total

the revenues across all rows. With the query parallelized, disks are read in parallel,

with multiple I/Os. Several CPUs can scan a part of the table in parallel and

aggregate the results. Parallel query benefits not only from multiple CPUs but also

from more of the available I/O bandwidth.

See Also: Oracle8i Concepts and Oracle8i Tuning for detailed

explanations of parallel execution.

Server 2 Server 2

Without parallel execution With parallel execution

Server 1 Server 1

SELECT SUM (REVENUE) FROM LINE_ITEMS;

CPU

CPU

CPU

CPU
scan

CPU
scan

CPU
scan

CPU
scan

CPU
scan

Implementing Parallel Processing 2-1

2
Implementing Parallel Processing

There is an old network saying: Bandwidth problems can be cured with money. Latency
problems are harder because the speed of light is fixed—you can’t bribe God.

— David Clark, MIT

To attain speedup and scaleup, you must effectively implement parallel processing

and parallel database technology. This means designing and building your system

for parallel processing from the start. This chapter covers the following issues:

■ The Four Levels of Scalability

■ When Is Parallel Processing Advantageous?

■ When Is Parallel Processing Not Advantageous?

■ Guidelines for Effective Partitioning

■ Common Parallel Processing Misconceptions

The Four Levels of Scalability
Successful implementation of parallel processing and parallel database requires

optimal scalability on four levels:

■ Scalability of Hardware and Network

■ Scalability of Operating System

■ Scalability of Database Management System

■ Scalability of Application

The Four Levels of Scalability

2-2 Oracle8i Parallel Server Concepts and Administration

Figure 2–1 Levels of Scalability

Scalability of Hardware and Network
Interconnects are key to hardware scalability. That is, every system must have some

means of connecting the CPUs, whether this is a high speed bus or a low speed

Ethernet connection. Bandwidth and latency of the interconnect then determine the

scalability of the hardware.

Bandwidth and Latency
Most interconnects have sufficient bandwidth. A high bandwidth may, in fact,

disguise high latency.

Hardware scalability depends heavily on very low latency. Lock coordination traffic

communication is characterized by a large number of very small messages among

the LMD processes.

Consider the example of a highway and the difference between conveying a

hundred passengers on a single bus, compared to one hundred individual cars. In

the latter case, efficiency depends largely upon the capacity for cars to quickly enter

and exit the highway. Even if the highway has 5 lanes so multiple cars can pass, if

Note: Inappropriately designed applications may not fully use the

potential scalability of the system. Likewise, no matter how well

your applications scale, you will not get the desired performance if

you try to run them on hardware that does not scale.

See Also: "Required Hardware and Operating System Software"

on page 3-3.

Application

Database

OS

Hardware and
Network

Scalability of:

The Four Levels of Scalability

Implementing Parallel Processing 2-3

there is only a one-lane entrance ramp, there can be a bottleneck getting onto the

"fast" highway.

Other operations between nodes, such as parallel query, rely on high bandwidth.

Disk Input and Output
Local I/Os are faster than remote I/Os (those which occur between nodes). If a

great deal of remote I/O is needed, the system loses scalability. In this case you can

partition data so that the data is local. Figure 2–2 illustrates the difference.

The shared disk architectures shown in Figure 2–2 are explained in the next chapter,

Chapter 3, "Parallel Hardware Architecture".

Note: Various clustering implementations are available from

different hardware vendors. On shared disk clusters with dual

ported controllers, the latency is the same from all nodes. However,

with MPP (shared nothing) systems, this may not me true.

The Four Levels of Scalability

2-4 Oracle8i Parallel Server Concepts and Administration

Figure 2–2 Local and Remote I/O on Shared Nothing and Shared Disk

Remote CPU

Shared Nothing

CPU

Local

Node 2 Node 1

Remote

CPU

Local

Node 2 Node 1

Shared Disk Cluster

CPU

Local

Node 2 Node 1

Shared Disk Cluster with
Dual Ported Controller

CPUCPU

Controller 1 Controller 2
Local

The Four Levels of Scalability

Implementing Parallel Processing 2-5

Scalability of Operating System
The ultimate scalability of your system also depends upon the scalability of the

operating system. This section explains how to analyze this factor.

Software scalability can be an important issue if one node is a shared memory

system (that is, a system where multiple CPUs connect to a symmetric

multiprocessor single memory). Methods of synchronization in the operating

system can determine the scalability of the system. In asymmetrical

multiprocessing, for example, only a single CPU can handle I/O interrupts.

Consider a system where multiple user processes request resources from the

operating system:

Figure 2–3 Asymmetric Multiprocessing vs. Symmetric Multiprocessing

Here, potential scalability of the hardware is lost because the operating system can

only process one resource request at a time. Each time a request enters the operating

system, a lock is held to exclude the others. In symmetrical multiprocessing, by

contrast, there is no such restriction.

Scalability of Database Management System
An important distinction in parallel server architectures is internal versus external

parallelism; this has a strong effect on scalability. The key difference is whether the

object-relational database management system (ORDBMS) parallelizes the query, or

an external process parallelizes the query.

Operating

All I/O

Asymmetric Multiprocessing: Symmetric Multiprocessing:

Interrupts

CPU CPU CPU CPU CPU CPU CPU CPU

User User User User User User User User

Operating
SystemSystem

The Four Levels of Scalability

2-6 Oracle8i Parallel Server Concepts and Administration

Disk affinity can improve performance by ensuring that nodes mainly access local,

rather than remote, devices. An efficient synchronization mechanism enables better

speedup and scaleup.

Scalability of Application
Application design is key to taking advantage of the scalability of the other

elements of the system.

No matter how scalable the hardware, software, and database may be, a table with

only one row which every node is updating will synchronize on one datablock.

Consider the process of generating a unique sequence number:

UPDATE ORDER_NUM
SET NEXT_ORDER_NUM = NEXT_ORDER_NUM + 1;
COMMIT;

Every node needing to update this sequence number must wait to access the same

row of this table: the situation is inherently unscalable. A better approach is to use

sequences to improve scalability:

INSERT INTO ORDERS VALUES
 (order_sequence.nextval, ...)

In the above example, you can preallocate and cache sequence numbers to improve

scalability. However you may not be able to scale some applications due to business

rules. In such cases, you must determine the cost of the rule.

See Also: "Disk Affinity" on page 4-8, and the chapters on Parallel

Execution in Oracle8i Tuning.

Note: Applications must be specifically designed to be scalable!

Note: Clients must be connected to server machines in a scalable

manner: this means your network must also be scalable!

See Also: Chapter 13, "Designing Databases for Parallel Server"

and Chapter 12, "Application Analysis".

When Is Parallel Processing Advantageous?

Implementing Parallel Processing 2-7

When Is Parallel Processing Advantageous?
This section describes applications that commonly benefit from a parallel server.

■ Data Warehousing Applications

■ Applications Updating Different Data Blocks

■ Failover and High Availability

■ Summary

Data Warehousing Applications
Data warehousing applications that infrequently update, insert, or delete data are

often appropriate for Oracle Parallel Server (OPS). Query-intensive applications and

other applications with low update activity can access the database through

different instances with little additional overhead.

If the data blocks are not to be modified, multiple nodes can read the same block

into their buffer caches and perform queries on the block without additional I/O or

lock operations.

Decision support applications are good candidates for OPS because they only

occasionally modify data, as in a database of financial transactions that is mostly

accessed by queries during the day and is updated during off-peak hours.

Applications Updating Different Data Blocks
Applications that either update different data blocks or update the same data blocks

at different times are also well suited to the parallel server. An example is a

time-sharing environment where users each own and use one set of tables.

An instance that needs to update blocks held in its buffer cache must hold one or

more instance locks in exclusive mode while modifying those buffers. Tune parallel

server and the applications that run on it to reduce this type of contention for

instance locks. Do this by planning how each instance and application uses data

and partition your tables accordingly.

OLTP with Partitioned Data
Online transaction processing applications that modify different sets of data benefit

the most from parallel server. One example is a branch banking system where each

branch (node) accesses its own accounts and only occasionally accesses accounts

from other branches.

When Is Parallel Processing Advantageous?

2-8 Oracle8i Parallel Server Concepts and Administration

OLTP with Random Access to a Large Database
Applications that access a database in a mostly random pattern also benefit from

parallel server. This is true only if the database is significantly larger than any

node’s buffer cache. One example is a motor vehicle department’s system where

individual records are unlikely to be accessed by different nodes at the same time.

Another example is an archived tax record or research data system. In cases like

these, most access results in I/O even if the instance had exclusive access to the

database. Oracle features such as fine grained locking further improve performance

of such applications.

Departmentalized Applications
Applications that primarily modify different tables in the same database are also

suitable for OPS. An example is a system where one node is dedicated to inventory

processing, another is dedicated to personnel processing, and a third is dedicated to

sales processing. In this case there is only one database to administer, not three.

Failover and High Availability
Applications requiring high availability benefit from the Oracle Parallel Server’s

failover capability. If the connection through one instance to the database is broken,

you can write applications to automatically reconnect through a different instance.

Summary
Figure 2–4 illustrates the relative scalability of different application types. Data

warehousing applications, depicted by the left-most bubble, typically scale well

since updates are less common and the degree of partitioning is higher than other

application types. OLTP and departmentalized applications with partitioning and

increasing rates of change also scale well.

OLTP applications making random changes to large databases were historically not

considered good parallel server candidates. Such applications, however, are

becoming more scalable with advanced intra-node communication by way of the

interconnect. This is particularly true if, for example, a table is modified on one

instance and then another instance reads the table. Such configurations are now

much more scalable than in previous releases.

When Is Parallel Processing Not Advantageous?

Implementing Parallel Processing 2-9

Figure 2–4 Scalability of Applications

When Is Parallel Processing Not Advantageous?
The following guidelines describe situations when parallel processing is not
advantageous.

■ In general, parallel processing is less advantageous when the cost of

synchronization becomes too high and therefore throughput decreases.

If many users on a large number of nodes modify a small set of data, then

synchronization is likely to be very high. However, if they just read data, then

no synchronization is required.

■ Parallel processing is not advantageous when there is contention between

instances on a single block or row.

For example, it would not be effective to use a table with one row used

primarily as a sequence numbering tool. Such a table would be a bottleneck

because every process would have to select the row, update it, and release it

sequentially.

Low

High

No Change Heavy Change

Operations

D
eg

re
e

o
f

P
ar

ti
ti

o
n

in
g

 o
f

D
at

a

May
Not

Scale

Data
Warehousing

Departmentalized
Applications

OLTP with Partitioning

OLTP: Random Changes
to Large Database

Scale
Well

Guidelines for Effective Partitioning

2-10 Oracle8i Parallel Server Concepts and Administration

Guidelines for Effective Partitioning
This section provides general guidelines for partitioning decisions that decrease

synchronization and improve performance.

■ Overview

■ Vertical Partitioning

■ Horizontal Partitioning

Overview
You can partition any of the three elements of processing, depending on function,

location, and so on, such that they do not interfere with each other. These elements

are:

■ Users

■ Applications

■ Data

Partition data, based on groups of users who access it; partition applications into

groups that access the same data. Also consider geographic partitioning or

partitioning by location.

Vertical Partitioning
With vertical partitioning, many tasks can run on a large number of resources

without much synchronization. Figure 2–5 illustrates vertical partitioning.

Guidelines for Effective Partitioning

Implementing Parallel Processing 2-11

Figure 2–5 Vertical Partitioning

Here, a company’s accounts payable and accounts receivable functions have been

partitioned by users, application, and data. They have been placed on two separate

nodes. Here, most synchronization occurs on the same node; this is very efficient.

The cost of synchronization on the local node is cheaper than the cost of

synchronization between nodes.

Partition tasks on a subset of resources to reduce synchronization. When you

partition, a smaller set of tasks will require access to shared resources.

Users

Accounts
Payable

Database

Users

Accounts
Receivable

Synchronization layer (RDBMS)

Node 1 Node 2

AP Table AR Table

Common Parallel Processing Misconceptions

2-12 Oracle8i Parallel Server Concepts and Administration

Horizontal Partitioning
To illustrate the concept of horizontal partitioning, Figure 2–6 represents the rows of

a stock table. If OPS has four instances, each on its own node, then partition them so

that each instance accesses only a subset of the data.

Figure 2–6 Horizontal Partitioning

In this example, very little synchronization is necessary because the instances access

different sets of rows. Similarly, users partitioned by location can often run almost

independently. Very little synchronization is needed if users do not access the same

data.

Common Parallel Processing Misconceptions
Various mistaken notions can lead to unrealistic expectations about parallel

processing. Consider the following:

■ Do not assume that when switching to parallel processing it will automatically

work the way you expect. A good deal of database design and application

tuning is required to make parallel processing successful.

■ Scalability is not determined just by the number of nodes or CPUs involved, but

also by the interconnect’s bandwidth and latency, and by the amount and cost

of synchronization.

In some applications, a single synchronization (hotshot) may be so expensive as

to constitute a problem; in other applications, many synchronizations on less

contentious data may be perfectly acceptable.

■ Just having parallel processing does not automatically mean higher availability:

higher availability depends on your system architecture.

See Also: For more information on partitioning, please refer to

Oracle8i Tuning.

1 10 11 20 21 30 31 40

Rows Rows Rows Rows

Through Through Through Through

Node 1 Node 2 Node 3 Node 4

Common Parallel Processing Misconceptions

Implementing Parallel Processing 2-13

For example, on some MPP systems if one CPU dies, the entire machine dies.

On a cluster, by contrast, if one node dies other nodes survive. The same is also

true for MPP systems.

■ All applications may not have been designed to scale effectively.

Common Parallel Processing Misconceptions

2-14 Oracle8i Parallel Server Concepts and Administration

Parallel Hardware Architecture 3-1

3
Parallel Hardware Architecture

You can deploy Oracle Parallel Server (OPS) on various architectures. This chapter

describes hardware implementations that accommodate the parallel server and

explains their advantages and disadvantages.

■ Overview

■ Required Hardware and Operating System Software

■ Shared Memory Systems

■ Shared Disk Systems

■ Shared Nothing Systems

■ Shared Nothing /Shared Disk Combined Systems

Overview
This section covers the following topics:

■ Parallel Processing Hardware Implementations

■ Application Profiles

Oracle configurations support parallel processing within a machine, between

machines, and between nodes. There is no advantage to running OPS on a single

node with a single instance; you would incur overhead without receiving benefits.

With standard Oracle you do not have to do anything special on shared memory

configurations to take advantage of some parallel processing capabilities.

Although this manual focuses on OPS on a shared nothing/shared disk

architecture, the application design issues discussed in this book may also be

relevant to standard Oracle systems.

Overview

3-2 Oracle8i Parallel Server Concepts and Administration

Parallel Processing Hardware Implementations
We often categorize parallel processing hardware implementations according to the

particular resources that are shared. This chapter describes these categories:

■ Shared memory systems

■ Shared disk systems

■ Shared nothing systems

These implementations can also be described as "tightly coupled" or "loosely

coupled", according to the way the nodes communicate.

Oracle supports all these implementations of parallel processing, assuming that in a

shared nothing system the software enables a node to access a disk from another

node. For example, the IBM SP2 features a virtual shared disk: the disk is shared

through software.

Application Profiles
Online transaction processing (OLTP) applications tend to perform best on

symmetric multiprocessors; they perform well on clusters and MPP systems if they

can be well partitioned. Decision support (DSS) applications tend to perform well

on SMPs, clusters, and massively parallel systems. Select the implementation

providing the power you need for the application(s) you require.

Note: Support for any given Oracle configuration is

platform-dependent; check whether your platform supports your

desired configuration.

Shared Memory Systems

Parallel Hardware Architecture 3-3

Required Hardware and Operating System Software
Each hardware vendor implements parallel processing in its own way, but the

following common elements are required for OPS:

■ High Speed Interconnect

■ Globally Accessible Disk or Shared Disk Subsystem

High Speed Interconnect
This is a high bandwidth, low latency communication facility among nodes for lock

manager and cluster manager traffic. The interconnect can be Ethernet, FDDI, or

some other proprietary interconnect method. If the primary interconnect fails, a

back-up interconnect is usually available. The back-up interconnect ensures high

availability, and prevents single points of failure.

Globally Accessible Disk or Shared Disk Subsystem
All nodes in loosely coupled or massively parallel systems have simultaneous

access to shared disks. This gives multiple instances of Oracle8 concurrent access to

the same database. These shared disk subsystems are most often implemented by

way of shared SCSI or twin-tailed SCSI (common in UNIX) connections to a disk

farm. On some MPP platforms, such as IBM SP, disks are associated to nodes and a

virtual shared disk software layer enables global access to all nodes.

Shared Memory Systems
Tightly coupled shared memory systems, illustrated in Figure 3–1, have the

following characteristics:

■ Multiple CPUs share memory

■ Each CPU has full access to all shared memory through a common bus

■ Communication among nodes occurs by way of shared memory

■ Performance is limited by memory bus bandwidth

Note: The Integrated Distributed Lock Manager (IDLM)

coordinates modifications of data blocks, maintenance of cache

consistency, recovery of failed nodes, transaction locks, dictionary

locks, and SCN locks.

Shared Memory Systems

3-4 Oracle8i Parallel Server Concepts and Administration

Figure 3–1 Tightly Coupled Shared Memory System

Symmetric multiprocessor (SMP) machines are often comprised of nodes in a

cluster. You can install multiple SMP nodes with OPS in a tightly coupled system

where memory is shared among the multiple CPUs, and is accessible by all the

CPUs through a memory bus. Examples of tightly coupled systems include the

Pyramid, Sequent, and Sun SparcServer.

It does not make sense to run OPS on a single SMP machine, because the system

would incur a great deal of unnecessary overhead from IDLM accesses.

Performance is potentially limited in a tightly coupled system by a number of

factors. These include various system components such as the memory bandwidth,

CPU-to-CPU communication bandwidth, the memory available on the system, the

I/O bandwidth, and the common bus bandwidth.

Parallel processing advantages of shared memory systems are these:

■ Memory access is less expensive than inter-node communication: this means

internal synchronization is faster than using the Lock Manager

■ Shared memory systems are easier to administer than a cluster

A disadvantage of shared memory systems for parallel processing is:

■ Scalability is limited by bus bandwidth and latency, and by available memory

CPU 2

Shared

CPU 3 CPU 1

Memory

Common
Bus

Shared
Disks

Shared Disk Systems

Parallel Hardware Architecture 3-5

Shared Disk Systems
Shared disk systems are typically loosely coupled. Such systems, illustrated in

Figure 3–2, have the following characteristics:

■ Each node consists of one or more CPUs and associated memory

■ Memory is not shared among nodes

■ Communication occurs over a common high-speed bus

■ Each node has access to the same disks and other resources

■ A node can be an SMP if the hardware supports it

■ Bandwidth of the high-speed bus limits the number of nodes (scalability) of the

system

Figure 3–2 Loosely Coupled Shared Disk System

The cluster illustrated in Figure 3–2 is composed of multiple, tightly coupled nodes.

The IDLM is required. Examples of loosely coupled systems are VAX clusters or Sun

clusters.

Since memory is not shared among the nodes, each node has its own data cache.

Cache consistency must be maintained across the nodes and a lock manager is

Shared
Disks

Node 1

CPU CPU CPU

Shared Memory

Node 2

CPU CPU CPU

Shared Memory

Node 3

CPU CPU CPU

Shared Memory

Node 4

CPU CPU CPU

Shared Memory

Node 5

CPU CPU CPU

Shared Memory

Common High-speed Bus

Shared Nothing Systems

3-6 Oracle8i Parallel Server Concepts and Administration

needed to maintain the consistency. Additionally, instance locks using the IDLM on

the Oracle level must be maintained to ensure all nodes in the cluster see identical

data.

There is additional overhead in maintaining the locks and ensuring data cache

consistency. The effect on performance is dependent on the hardware and software

components, such as the high-speed bus bandwidth through which the nodes

communicate, and IDLM performance.

Parallel processing advantages of shared disk systems are:

■ Shared disk systems permit high availability. All data is accessible even if one

node dies.

■ These systems have the concept of "one database", which is an advantage over

shared nothing systems.

■ Shared disk systems provide for incremental growth.

Parallel processing disadvantages of shared disk systems are:

■ Inter-node synchronization is required, involving IDLM overhead and greater

dependency on high-speed interconnect.

■ If the workload is not partitioned well, there may be high synchronization

overhead.

■ There is operating system overhead of running shared disk software.

Shared Nothing Systems
Shared nothing systems are typically loosely coupled. This section describes:

■ Overview of Shared Nothing Systems

■ Massively Parallel Systems

■ Summary of Shared Nothing Systems

Note: Memory mapped hardware available in late 1998 will

provide functionality to copy buffers directly from one user address

on one node to another user address on another node.

Shared Nothing Systems

Parallel Hardware Architecture 3-7

Overview of Shared Nothing Systems
In shared nothing systems, only one CPU is connected to a given disk. If a table or

database is located on that disk, access depends entirely on the CPU that owns it.

Figure 3–3 illustrates shared nothing systems:

Figure 3–3 Shared Nothing System

Shared nothing systems are concerned with access to disks, not access to memory.

Nonetheless, adding more CPUs and disks can improve scaleup. OPS can access the

disks on a shared nothing system as long as the operating system provides

transparent disk access, but this access is expensive in terms of latency.

Massively Parallel Systems
Massively parallel (MPP) systems have these characteristics:

■ MPP systems can range in size from only a few nodes to up to thousands of

nodes

■ The cost per processor may be extremely low because each node is an

inexpensive processor

■ Each node has associated non-shared memory

■ Each node may have its own devices, but during failures other nodes can access

the devices of the failed node

■ Nodes are organized in a grid, mesh, or hypercube arrangement

■ Oracle instances can potentially reside on any or all nodes

CPU

Memory

CPU

Disk

MemoryMemoryMemory

Disk Disk Disk

CPU CPU

Shared Nothing Systems

3-8 Oracle8i Parallel Server Concepts and Administration

As mentioned, an MPP system can have as many as several thousand nodes. Each

node may have its own Oracle instance with all the standard facilities of an

instance. (An Oracle instance comprises the System Global Area and all the

background processes.)

An MPP has access to a huge amount of real memory for all database operations

(such as sorts or the buffer cache), since each node has its own associated memory.

To avoid disk I/O, this advantage is important to long running queries and sorts.

This is not possible for 32-bit machines which have 2GB addressing limits; total

memory on MPP systems may be over 2GB. As with loosely coupled systems, cache

consistency on MPPs must still be maintained across all nodes in the system. Thus,

the overhead for cache management is still present. Examples of MPP systems are

the nCUBE2 Scalar Supercomputer, the Unisys OPUS, Amdahl, Meiko, Pyramid,

Smile, and the IBM SP.

Summary of Shared Nothing Systems
Shared nothing systems have advantages and disadvantages for parallel processing:

Advantages

■ Shared nothing systems provide incremental growth

■ System growth is practically unlimited

■ MPPs are generally good for read-only, DSS applications

■ Failure is local: if one node fails, the others stay up

Disadvantages

■ More coordination is required

■ More overhead is required for processes working on a disk belonging to

another node

■ If there is a heavy workload of updates or inserts, as in online transaction

processing systems, it may be worthwhile to consider data-dependent routing

to reduce contention.

Shared Nothing /Shared Disk Combined Systems

Parallel Hardware Architecture 3-9

Shared Nothing /Shared Disk Combined Systems
A combined system can be very advantageous. This unites advantages of shared

nothing and shared disk, while overcoming their respective limitations. Figure 3–4

illustrates a combined system:

Figure 3–4 Two Shared Disk Systems Forming a Shared Nothing System

Here, two shared disk systems are linked to form a system with the same hardware

redundancies as a shared nothing system. If one CPU fails, the other CPUs can still

access all disks.

CPU CPU

Memory

CPUCPU

MemoryMemoryMemory

Shared
Disks

Shared
Disks

Shared Nothing /Shared Disk Combined Systems

3-10 Oracle8i Parallel Server Concepts and Administration

Part II
 Oracle Parallel Server Concepts

How Oracle Implements Parallel Processing 4-1

4
How Oracle Implements Parallel Processing

This chapter gives a high-level view of how the Oracle Parallel Server (OPS)

provides high performance parallel processing. Key issues include:

■ Enabling and Disabling Parallel Server

■ Synchronization

■ High Performance Features

■ Cache Coherency

Enabling and Disabling Parallel Server
OPS can be enabled or disabled:

When parallel server is disabled, only one Oracle instance can mount or open the

database. This mode is necessary to create and completely recover a database. It is

useful to install OPS and disable it if standard Oracle functionality meets your

needs. You can later enable OPS.

When OPS is enabled, one or more instances of a parallel server mount the same

database. All instances mount the database and read from and write to the same

See Also: Chapter 7, "Overview of Locking Mechanisms" for an

understanding of the lock hierarchy within Oracle.

Oracle + Option
Parallel Server

Disabled

Parallel Server Enabled

Single Node Multiple Nodes

OPS not installed Yes: default No No

OPS installed Yes: default Yes: Single Shared Yes: Multiple Shared

Enabling and Disabling Parallel Server

4-2 Oracle8i Parallel Server Concepts and Administration

datafiles. Single shared mode describes an OPS configuration with only one instance.

Global operations exist, but are not needed at the moment. The instance operates as

though it is in a cluster with Integrated Distributed Lock Manager (IDLM)

overhead, and so on, although there is no contention for resources. Multiple shared
mode describes an OPS configuration with multiple instances running.

Figure 4–1 illustrates a typical OPS configuration with three instances on separate

nodes accessing the same database.

Figure 4–1 Shared Mode Sharing Disks

Note: Each instance can access the redo log files of the other

instances.

High–speed bus

Instance X
SGA and

Background
processes

Node 1

Instance Y
SGA and

Background
processes

Node 2

Instance Z
SGA and

Background
processes

Node 3

Redo
Log
Files

Redo
Log
Files

Redo
Log
Files

Control
Files

&
Data
Files Shared Disks

Synchronization

How Oracle Implements Parallel Processing 4-3

Synchronization
Inter-node synchronization is an issue that does not need to be addressed in

standard Oracle. But with OPS you must have a broad understanding of the

dimensions in which synchronization must occur. Some of these include:

■ Block Level Locking

■ Row Level Locking

■ Space Management

■ System Change Number

In OPS exclusive mode, all synchronization is done within the instance. In shared

mode, synchronization is accomplished with the help of the IDLM component.

Block Level Locking
Block access between instances is done on a per-block level. When an instance locks

a block in exclusive mode, other instances cannot access the block. Every time

Oracle tries to read a block from the database it needs to obtain an instance lock.

Ownership of the lock is thus assigned to the instance.

Since OPS runs in environments with multiple memories, there can be multiple

copies of the same data block in each instance’s memory. Internode synchronization

using the IDLM ensures the validity of all copies of the block: these block-level

locks are the buffer cache locks.

Block level locking occurs only when OPS is enabled. It is transparent to the user

and to the application. (Row level locking also operates, whether OPS is enabled or

disabled.)

See Also: "Enabling Parallel Server and Starting Instances" on

page 18-13.

See Also: Chapter 9, "Parallel Cache Management Instance

Locks".

Synchronization

4-4 Oracle8i Parallel Server Concepts and Administration

Row Level Locking
OPS, as well as single-instance Oracle, provides row level locking in addition to

block level locking in the buffer cache. In fact, row level locks are stored within the

block.

Consider the following example: Instance 1 reads file 2, block 10 to update row 1.

Instance 2 also reads file 2, block 10, to update row 2. Here, instance 1 obtains an

instance lock on block 10, then locks and updates row 1. (The row lock is implicit

because of the UPDATE statement.)

Instance 2 then forces instance 1 to write the updated block to disk, and instance 1

relinquishes ownership of the lock on block 10 so instance 2 can assume ownership

of it. Instance 2 then locks row 2 and performs an UPDATE.

Space Management
Free lists and free list groups optimize space management in OPS.

The problem of allocating space for inserts illustrates space management issues.

When a table uses more space, how can you ensure no one else uses the same

space? How can you ensure two nodes are not inserting into the same space on the

same disk in the same file?

Consider the following example: Instance 1 reads file 2, block 10 to insert a row.

Instance 2 reads file 3, block 20, to insert another row. Each instance proceeds to

insert rows. If one block were responsible for assigning space for all these inserts,

that block would constantly ping between the instances. Instance 1 would lose

block ownership when instance 2 needs to insert, and so on. The situation involves

a great deal of contention and performance suffers.

By contrast, free list groups make good space management possible. If two

instances insert into the same object (such as a table), but each instance has its own

set of free lists for that object, then contention for a single block is avoided. Each

instance inserts into a different block belonging to the object.

System Change Number
In standard Oracle, the system change number (SCN) is maintained and

incremented in the SGA by an exclusive mode instance. In OPS shared mode, the

SCN must be maintained globally. Its implementation may vary from platform to

platform. The SCN may be handled by the IDLM, by the Lamport SCN scheme, or

by using a hardware clock or dedicated SCN server.

High Performance Features

How Oracle Implements Parallel Processing 4-5

High Performance Features
OPS takes advantage of systems of linked processors sharing resources without

sacrificing transaction processing features. The following sections discuss in more

detail certain features that optimize performance on OPS.

■ Fast Commits, Group Commits, and Deferred Writes

■ Row Locking and Multiversion Read Consistency

■ Online Backup and Archiving

■ Sequence Number Generators

■ Lamport SCN Generation

■ Free Lists

■ Free List Groups

■ Disk Affinity

Within a single instance, Oracle uses a buffer cache in memory to reduce the

amount of disk I/O necessary for database operations. Since each node in the

parallel server has its own memory that is not shared with other nodes, OPS must

coordinate the buffer caches of different nodes while minimizing additional disk

I/O that could reduce performance. The Oracle parallel cache management

technology maintains the high-performance features of Oracle while coordinating

multiple buffer caches.

Fast Commits, Group Commits, and Deferred Writes
Fast commits, group commits, and deferred writes operate on a per-instance basis

in Oracle and work the same whether in exclusive or shared mode.

Oracle only reads data blocks from disk if they are not already in the buffer cache of

the instance requesting the data. Because data block writes are deferred, they often

contain modifications from multiple transactions.

See Also: "Lamport SCN Generation" on page 4-7, "System

Change Number (SC)" on page 10-4, and your Oracle

system-specific documentation.

See Also: Oracle8i Concepts for more information about each of

these high-performance features.

High Performance Features

4-6 Oracle8i Parallel Server Concepts and Administration

Optimally, Oracle writes modified data blocks to disk only when necessary:

■ When the blocks have not been used recently and new data requires buffer

cache space (in shared or exclusive mode)

■ During checkpoints (shared or exclusive mode)

■ When another instance needs the blocks (only in shared mode)

Oracle may also perform unnecessary writes to disk caused by forced reads or

forced writes.

Row Locking and Multiversion Read Consistency
The Oracle row locking feature allows multiple transactions on separate nodes to

lock and update different rows of the same data block, without any of the

transactions waiting for the others to commit. If a row has been modified but not

yet committed, the original row values are available to all instances for read access.

This is called multiversion read consistency.

Online Backup and Archiving
OPS supports all Oracle backup features in exclusive mode, including both online

and offline backups of either an entire database or individual tablespaces.

If you operate Oracle in ARCHIVELOG mode, online redo log files are archived

before they can be overwritten. In OPS, each instance can automatically archive its

own redo log files or one or more instances can manually archive the redo log files

for all instances.

In ARCHIVELOG mode, you can make both online and offline backups. If you

operate Oracle in NOARCHIVELOG mode, you can only make offline backups. We

strongly recommend operating production databases in ARCHIVELOG mode.

Cache Fusion
Cache Fusion improves inter-instance communication and reduces pinging for

reader/writer cache coherency conflicts. When an instance requests a block for

updating and another instance holds the block, Cache Fusion prepares a consistent

read copy of the block and sends it directly to the requesting instance without

pinging. Cache Fusion does this by copying blocks directly from the holding

instance’s memory cache to the requesting instance’s memory cache.

See Also: "Detecting False Pinging" on page 15-14.

High Performance Features

How Oracle Implements Parallel Processing 4-7

Sequence Number Generators
OPS allows users on multiple instances to generate unique sequence numbers with

minimal cooperation and contention among instances.

The sequence number generator allows multiple instances to access and increment a

sequence without contention among instances for sequence numbers and without

waiting for transactions to commit. Each instance can have its own sequence cache

for faster access to sequence numbers. IDLM locks coordinate sequences across

instances in OPS.

Lamport SCN Generation
The System Change Number (SCN) is a logical timestamp Oracle uses to order

events within a single instance and across all instances. For example, Oracle assigns

an SCN to each transaction. Conceptually, there is a global serial point that

generates SCNs. In practice, however, SCNs can be read and generated in parallel.

One of the SCN generation schemes is called the Lamport SCN generation scheme.

The Lamport SCN generation scheme is fast and scalable because it generates SCNs

in parallel on all instances. In this scheme, all messages across instances, including

lock messages, piggyback SCNs. Piggybacked SCNs propagate causalities within

Oracle. As long as causalities are respected in this way, multiple instances can

generate SCNs in parallel, with no need for extra communication among these

instances.

On most platforms, Oracle uses the Lamport SCN generation scheme when the

MAX_COMMIT_PROPAGATION_DELAY is larger than a platform-specific

threshold. This is generally the default. This value is typically set to 7 seconds. You

can examine the alert log after instance startup to see whether the Lamport SCN

generation scheme is in use.

See Also: For more information about the Cache Fusion

architecture, please refer to "Cache Fusion Processing and the Block

Server Process" on page 5-7. For information on locking

mechanisms used in Cache Fusion, please refer to "The Role of

Cache Fusion in Resolving Cache Coherency Conflicts" on

page 20-2.

See Also: Your Oracle system-specific documentation.

High Performance Features

4-8 Oracle8i Parallel Server Concepts and Administration

Free Lists
Standard Oracle can use multiple free lists as a way to reduce contention on blocks.

A free list is a list of data blocks, located in extents, that have free space. These

blocks with free space are used when inserts or updates are made to a database

object such as a table or a cluster. No contention among instances occurs when

different instances’ transactions insert data into the same table. This is achieved by

locating free space for the new rows using free space lists that are associated with one

or more instances. The free list may be from a common pool of blocks, or multiple

free lists may be partitioned so specific extents in files are allocated to objects.

With a single free list when multiple inserts are taking place, single threading occurs

as these processes attempt to allocate space from the free list. The advantage of

using multiple free lists is that it allows processes to search a specific pool of blocks

when space is needed. This reduces contention among users for free space.

Free List Groups
OPS can use free list groups to eliminate contention among instances for access to a

single block containing free lists. By default, only one free list group is available.

This means all free lists for an object reside in the segment header block.

Therefore, if multiple free lists reside in a single block in an OPS environment the

block with the free lists could have pinging, or forced reads/writes among all the

instances. To avoid this problem, free lists can be grouped, with one group assigned

to each instance. Each instance then has its own block containing free lists. Since

each instance uses its own free lists, there is no contention among instances to

access the same block containing free lists.

Disk Affinity
Disk affinity determines the instance that will perform parallelized DML or query

operations. Affinity is especially important for parallel DML in OPS configurations.

Affinity information that is consistent across statements improves buffer cache hit

ratios and reduces forced reads/writes.

See Also: Chapter 11, "Space Management and Free List Groups".

See Also: Chapter 17, "Using Free List Groups to Partition Data"

regarding proper use of free lists to achieve optimal performance in

an OPS environment. Also read "Backing Up the Database" on

page 21-12.

High Performance Features

How Oracle Implements Parallel Processing 4-9

The granularity of parallelism for most PDML operations is by partition. For

parallel query, however, granularity is by rowid. Parallel DML operations need a

partition-to-instance mapping to implement affinity. The segment header of the

partition is used to determine the affinity of the partition for MPP systems. You can

achieve improved performance by having nodes access local devices. This provides

a better buffer cache hit ratio for every node.

For other OPS configurations, a deterministic mapping of partitions to instances is

used. Partition-to-instance affinity information is used to determine process

allocation and work assignments for all OPS/MPP configurations.

Job and Instance Affinity
Use this feature to control which instances process which jobs. Using the package

DBMS_JOB, you can distribute jobs across a cluster in a manner that makes the

most sense given each job’s functions. This improves load balancing and limits

block contention since only the SNP processes of the selected instance can execute

the job.

As an example, simultaneously using OPS and replication often results in pinging

on the deferred transaction queue if all instances in a clustered environment

propagate transactions from the deferred transaction queue. To limit activity against

tables to only one instance, use DBMS_JOB to assign the work of processing jobs in

the queue to a particular OPS instance.

Although the following examples use replication to illustrate job affinity, you can

use this feature for other scenarios.

Using the DBMS_JOB Package
For this example, a constant in DBMS_JOB indicates "no mapping" among jobs and

instances, that is, jobs can be executed by any instance.

DBMS_JOB.SUBMIT To submit a job to the job queue, use the following syntax:

 DBMS_JOB.SUBMIT(JOB OUT BINARY_INTEGER,
 WHAT IN VARCHAR2, NEXT_DATE IN DATE DEFAULTSYSDATE,
 INTERVAL IN VARCHAR2 DEFAULT ’NULL’,

See Also: Oracle8i Concepts describes at length the concepts of

Parallel Data Manipulation Language (PDML) and degree of

parallelism. For a discussion of PDML tuning and optimizer hints,

please see Oracle8i Tuning. Also refer to each installation and

configuration guide for port-specific information on disk affinity.

High Performance Features

4-10 Oracle8i Parallel Server Concepts and Administration

 NO_PARSE IN BOOLEAN DEFAULT FALSE,
 INSTANCE IN BINARY_INTEGER DEFAULT ANY_INSTANCE,
 FORCE IN BOOLEAN DEFAULT FALSE)

Use the parameters INSTANCE and FORCE to control job and instance affinity. The

default value of INSTANCE is 0 (zero) to indicate that any instance can execute the

job. To run the job on a certain instance, specify the INSTANCE value. Oracle

displays error ORA-23319 if the INSTANCE value is a negative number or a NULL.

The FORCE parameter defaults to FALSE. If force is TRUE, any positive integer is

acceptable as the job instance. If FORCE is FALSE, the specified instance must be

running, or Oracle displays error number ORA-23428.

DBMS_JOB.INSTANCE To assign a particular instance to execute a job, use the

following syntax:

 DBMS_JOB.INSTANCE(JOB IN BINARY_INTEGER,
 INSTANCE IN BINARY_INTEGER,
 FORCE IN BOOLEAN DEFAULT FALSE)

The FORCE parameter in this example defaults to FALSE. If the instance value is 0

(zero), job affinity is altered and any available instance can execute the job despite

the value of force. If the INSTANCE value is positive and the FORCE parameter is

FALSE, job affinity is altered only if the specified instance is running, or Oracle

displays error ORA-23428.

If the FORCE parameter is TRUE, any positive integer is acceptable as the job

instance and the job affinity is altered. Oracle displays error ORA-23319 if the

INSTANCE value is negative or NULL.

DBMS_JOB.CHANGE To alter user-definable parameters associated with a job, use the

following syntax:

 DBMS_JOB.CHANGE(JOB IN BINARY_INTEGER,
 WHAT IN VARCHAR2 DEFAULT NULL,
 NEXT_DATE IN DATE DEFAULT NULL,
 INTERVAL IN VARCHAR2 DEFAULT NULL,
 INSTANCE IN BINARY_INTEGER DEFAULT NULL,
 FORCE IN BOOLEAN DEFAULT FALSE)

Two parameters, INSTANCE and FORCE, appear in this example. The default value

of INSTANCE is NULL indicating that job affinity will not change.

High Performance Features

How Oracle Implements Parallel Processing 4-11

The default value of FORCE is FALSE. Oracle displays error ORA-23428 if the

specified instance is not running and error ORA-23319 if the INSTANCE number is

negative.

DBMS_JOB.RUN The FORCE parameter for DBMS_JOB.RUN defaults to FALSE. If

force is TRUE, instance affinity is irrelevant for running jobs in the foreground

process. If force is FALSE, the job can run in the foreground only in the specified

instance. Oracle displays error ORA-23428 if force is FALSE and the connected

instance is the incorrect instance.

 DBMS_JOB.RUN(JOB IN BINARY_INTEGER,
 FORCE IN BOOLEAN DEFAULT FALSE)

Transparent Application Failover
Application failover enables an application to automatically reconnect to a database

if the connection is broken. Active transactions roll back, but the new database

connection is identical to the original one. This is true regardless of how the

connection was lost.

With transparent application failover, a client sees no loss of connection as long as

there is one instance left serving the application. The DBA controls which

applications run on which instances and also creates a failover order for each

application.

See Also: For details about DBMS_JOB, please refer to the
Oracle8i Administrator’s Guide and the Oracle8i Supplied Packages
Reference.

See Also: "Connection Load Balancing" on page 18-32 and
"Recovery from Instance Failure" on page 22-2 and Oracle8i Tuning.

Cache Coherency

4-12 Oracle8i Parallel Server Concepts and Administration

Cache Coherency
Cache coherency is the technique of keeping multiple copies of an object consistent.

This section describes:

■ Parallel Cache Management Issues

■ Non-PCM Cache Management Issues

Parallel Cache Management Issues
With OPS, separate Oracle instances run simultaneously on one or more nodes

using a technology called parallel cache management (PCM).

PCM uses IDLM locks (IDLM) to coordinate access to resources required by the

instances of OPS. Rollback segments, dictionary entries, and data blocks are

examples of database resources. The most often required database resources are

data blocks.

Cache coherency is provided by the Parallel Cache Manager for the buffer caches of

instances located on separate nodes. The set of global constant (GC_*) initialization

parameters associated with PCM buffer cache locks are not the same locks as those

used with the dictionary cache, library cache, and so on.

PCM ensures that a master copy data block in an SGA has identical copies in other

SGAs requiring a copy of the master. Thus, the most recent copy of the block in all

SGAs contains all changes made to that block by all instances, regardless of whether

any transactions on those instances have committed.

If a data block is modified in one buffer cache, then all existing copies in other

buffer caches are no longer current. New copies can be obtained after the

modification operation completes.

PCM enforces cache coherency while minimizing I/O and use of the IDLM. I/O

and lock operations for cache coherency are only done when the current version of

a data block is in one instance’s buffer cache and another instance requests that

block for update.

Multiple transactions running on a single OPS instance can share access to a set of

data blocks for reading purposes without additional instance lock operations. In

this case, there is no contention or conflict. This remains true as long as the blocks

are not needed for writing by transactions running on other instances.

In shared mode, the IDLM maintains instance lock status. In exclusive mode, all

locks are local and the IDLM does not coordinate database resources.

Cache Coherency

How Oracle Implements Parallel Processing 4-13

Instances use instance locks to indicate ownership of a resource master copy. When

an instance becomes a database resource master or "owner", it also inherently

becomes owner of the instance lock covering the resource, with fixed locking.

However, releasable locks are, of course, released.

A master copy indicates it is an updatable copy of the resource. The instance only

gives up the instance lock when another instance requests the resource for update.

Once another instance owns the master copy of the resource, it becomes the owner

of the instance lock.

Example Consider the following example and the illustrations in Figure 4–2. This

example assumes one PCM lock covers one block, although many blocks could be

covered.

■ Instance X becomes the owner of a PCM lock covering data block n containing

row 1 and updates the row

■ Instance Y requests the block to update row 4

■ Instance X writes the data block to disk and releases the PCM lock

■ Instance Y becomes the owner of the block and the PCM lock and then updates

row 4

■ Instance X requests the block to update row 7

■ Instance Y writes the data block to disk and releases the block and the PCM

lock

■ Instance X becomes the owner of the block and PCM lock and updates row 7

■ Instance X commits its transaction and still owns the PCM lock and the master

copy of the block until another instance requests the block

Note: Transactions and parallel cache management are

autonomous mechanisms in Oracle. PCM locks function

independently of any form of transaction lock.

See Also: "How Buffer State and Lock Mode Change" on

page 9-10.

Cache Coherency

4-14 Oracle8i Parallel Server Concepts and Administration

Figure 4–2 Multiple Instances Updating the Same Data Block

Instance X
SGA Buffer Cache

Node 1

PCM
Lock

Instance Y
SGA Buffer Cache

Node 2

Time 0

Data Block n Data Block n

Instance X
SGA Buffer Cache

Node 1

Instance Y
SGA Buffer Cache

Node 2

Time 1

Data Block n Data Block n

Instance X
SGA Buffer Cache

Node 1

PCM
Lock

Instance Y
SGA Buffer Cache

Node 2

Time 2

Data Block n Data Block n Data Block n

PCM
Lock

Cache Coherency

How Oracle Implements Parallel Processing 4-15

PCM Lock and Row Lock Independence
PCM locks and row locks operate independently. An instance can disown a PCM

lock without affecting row locks held in the set of blocks covered by the PCM lock.

A row lock is acquired during a transaction. A database resource such as a data

block acquires a PCM lock when it is read for update by an instance. During a

transaction, a PCM lock can therefore be disowned and owned many times if the

blocks are needed by other instances.

In contrast, transactions do not release row locks until changes to the rows are

either committed or rolled back. Oracle uses internal mechanisms for concurrency

control to isolate transactions so modifications to data made by one transaction are

not visible to other transactions until the transaction modifying the data commits.

The row lock concurrency control mechanisms are independent of parallel cache

management: concurrency control does not require PCM locks, and PCM lock

operations do not depend on individual transactions committing or rolling back.

Instance Lock Modes
An instance can acquire the instance lock that covers a set of data blocks in either

shared or exclusive mode, depending on the access type required.

■ Exclusive lock mode allows the instance to update a set of blocks.

If one instance needs to update a data block and a second instance already

owns the instance lock covering the block, the first instance uses the IDLM to

request that the second instance disown the instance lock, writing the block(s)

to disk if necessary.

■ Read lock mode only allows the instance to read blocks.

Multiple instances can own an instance lock in shared mode as long as they

only intend to read, not modify, blocks covered by that instance lock. Thus, all

instances can be sure that their memory-resident copies of the block are current,

or that they can read a current copy from disk without any instance lock

operations to request the block from another instance. This means instances do

not have to disown instance locks for the portion of a database accessed for

read-only use, which may be a substantial portion of the time in many

applications.

■ Null lock mode allows instances to keep a lock without any permissions on the

block(s).

This mode is used so that locks need not be continually obtained and released.

Locks are simply converted from one mode to another.

Cache Coherency

4-16 Oracle8i Parallel Server Concepts and Administration

Non-PCM Cache Management Issues
OPS ensures that all standard Oracle caches are synchronized across instances.

Changing a block on one node, and its ramifications for the other nodes, is a

familiar example of synchronization. However, synchronization has broader

implications.

Understanding how OPS synchronizes caches across instances can help you

understand the overhead affecting system performance. Consider a five-node

parallel server where a user drops a table on one of the nodes. Since each of the five

dictionary caches has a copy of the definition of the dropped table, the node

dropping the table from its cache must also cause the other four dictionary caches to

drop their copies of the dropped table. OPS handles this automatically through the

IDLM. Users on the other nodes are notified of the change in lock status.

There are significant advantages to having each node store library and table

information. Occasionally, the DROP TABLE command forces other caches to be

flushed, but the brief effect this has on performance does not necessarily diminish

the advantage of having multiple caches.

See Also: Chapter 15, "Allocating PCM Instance Locks", for a

detailed description of allocating PCM locks for datafiles.

See Also: "Space Management" on page 4-4, and "System Change

Number" on page 4-4 for additional examples of non-PCM cache

management issues.

Oracle Instance Architecture for Oracle Parallel Server 5-1

5
Oracle Instance Architecture for Oracle

Parallel Server

[Architecture] is music in space, as if it were a frozen music...

— Schelling, Philosophie der Kunst

This chapter explains features of the Oracle Parallel Server (OPS) architecture that

differ from an Oracle server in exclusive mode.

■ Overview

■ Characteristics of OPS Multi-instance Architecture

■ System Global Area

■ Background Processes

■ Configuration Guidelines for Oracle Parallel Server

Overview
Each Oracle instance in an OPS architecture has its own:

■ System global area (SGA)

■ Background processes

■ ORACLE_SID (can be the same for each instance).

■ Set of redo logs

All instances in an OPS environment share or need to access the same sets of:

■ Data files

Overview

5-2 Oracle8i Parallel Server Concepts and Administration

■ Control files

■ Redo logs

The OPS instance contains:

■ An additional PCM lock area in its SGA to coordinate shared resource or "lock

element" use

■ The Integrated Distributed Lock Manager (IDLM) component, an area for

global locks and resources

■ Additional background processes LCKn to coordinate shared resource locking

among multiple instances in a parallel server

■ Additional background processes LMON and LMD0 to manage global locks

and resources

The basic OPS components appear in Figure 5–1. DBWR processes are shown

writing data, users are reading data. The background processes LMD and LCK, as

well as foreground (FG) processes, communicate directly from one instance to

another by way of the interconnect.

Overview

Oracle Instance Architecture for Oracle Parallel Server 5-3

Figure 5–1 Basic Elements of Oracle Parallel Server

See Also: "Memory Structures and Processes" in Oracle8i Concepts.

Instance X Instance Y

Interprocess Communication (IPC)

Redo
Log

Buffer

Instance Z

Redo
Log
Files

Redo
Log
Files

Redo
Log
Files

Users Users

LCK

BSP BSP BSP

LMD

Data
Files

Redo
Log

Buffer

Redo
Log

Buffer

DBWRLGWRLMON LCKLMD DBWRLGWRLMON LCKLMD DBWRLGWRLMON

Variable
Part of
SGA

Users

Data
Files &
Control

Files

Variable
Part of
SGA

Variable
Part of
SGA

Database
Buffer
Cache

Database
Buffer
Cache

Database
Buffer
Cache

Characteristics of OPS Multi-instance Architecture

5-4 Oracle8i Parallel Server Concepts and Administration

Characteristics of OPS Multi-instance Architecture
The characteristics of OPS can be summarized as:

■ An Oracle instance can be started on one or more nodes in the network

■ Each instance has a separate System Global Area (SGA) and set of background

processes

■ All instances share the same datafiles and control file

■ Each instance has its own set of redo log files

■ Archived logs are private, but must be accessible to all instances for media

recovery

■ All instances can execute transactions concurrently against the same database,

and each instance can have multiple users executing transactions

■ Row level locking is preserved

A parallel server is administered in the same manner as a non-parallel server,

except that you must connect to a particular instance to perform certain

administrative tasks. For example, creating users or objects can be done from any

single instance.

Applications accessing the database can run on the same nodes as instances of a

parallel server or on separate nodes, using the client-server architecture. A parallel

server can be part of a distributed database system. Distributed transactions access

data in a remote database in the same manner, regardless of whether the datafiles

are owned by a standard Oracle Server in exclusive mode or by a parallel server in

exclusive or shared mode.

Other non-Oracle processes can run on each node, or you can dedicate the entire

system or part of the system to Oracle. For example, a parallel server and its

applications might occupy three nodes of a five-node configuration, while the other

two nodes are used for non-Oracle applications.

Note: Redo logs must be accessible to all instances in case of

instance failure. On some MPP platforms, a redo server exists so

only one set of redo logs is necessary for the whole OPS system

Background Processes

Oracle Instance Architecture for Oracle Parallel Server 5-5

System Global Area
Each instance of a parallel server has its own System Global Area (SGA). The SGA

has the following memory structures:

■ Buffer cache for data blocks

■ Dictionary cache for data dictionary information

■ Redo log buffer for redo entries

■ Shared pool containing the shared SQL and shared PL/SQL areas

■ Instance lock area (only in a parallel server)

Data sharing among SGAs in OPS is controlled by parallel cache management using

parallel cache management (PCM) locks.

Copies of the same data block can be present in several SGAs at the same time.

PCM locks ensure that the database buffer cache is kept consistent for all instances.

It thus ensures readability by one instance of changes made by other instances.

Each instance has a shared pool that can only be used by the user applications

connected to that instance. If the same SQL statement is submitted by different

applications using the same instance, it is parsed and stored once in that instance’s

SGA. If that same SQL statement is also submitted by an application on another

instance, then the other instance also parses and stores the statement.

Background Processes
Each instance in OPS has its own set of background processes that are identical to

the background processes of a single server in exclusive mode. The DBWR, LGWR,

PMON, and SMON processes are present for every instance; the optional processes,

ARCH, CKPT, Dnnn and RECO, can be enabled by setting initialization parameters.

In addition to the standard background processes, each instance of OPS has at least

one lock process, LCK0. You can enable additional lock processes if needed.

In OPS, IDLM also uses the LMON and LMD0 processes. LMON manages instance

and failures and associated recovery for the IDLM. In particular, LMON handles the

part of recovery associated with global locks. LMD processes handle remote lock

requests such as those originating from other instances. LMD also handles deadlock

detection. The LCK process manages locks used by an instance and coordinates

requests from other instances for those locks.

See Also: Chapter 9, "Parallel Cache Management Instance

Locks".

Background Processes

5-6 Oracle8i Parallel Server Concepts and Administration

When an instance fails in shared mode, another instance’s SMON detects the failure

and recovers for the failed instance. The LCK process of the instance doing the

recovery cleans up outstanding PCM locks for the failed instance.

Foreground Lock Acquisition
Foreground processes communicate lock requests directly to remote LMD

processes. Foreground processes send request information such as the resource

name it is requesting a lock for and the mode in which it is needs the lock.

The IDLM processes the request asynchronously, so the foreground process waits

for the request to complete before closing the request.

See Also: "The LCK Process" on page 7-6 and "GC_* Initialization

Parameters" on page 9-13.

See Also: For more information about how these requests are

processed, please refer to "Asynchronous Traps (ASTs)

Communicate Lock Request Status" on page 8-2.

Cache Fusion Processing and the Block Server Process

Oracle Instance Architecture for Oracle Parallel Server 5-7

Cache Fusion Processing and the Block Server Process
Cache Fusion resolves cache coherency conflicts when one instance requests a block

held in exclusive mode by another instance. In such cases, Oracle transfers a

consistent-read version of the block directly from the memory cache of the holding

instance to the requesting instance. Oracle does this without writing the block to

disk.

Cache Fusion uses the Block Server Process (BSP) to roll back uncommitted

transactions. BSP then sends the consistent read block directly to the requestor. The

state of the block is consistent as of the point in time at which the request was made

by the requesting instance. Figure 5–2 illustrates this process.

Cache Fusion does this only for consistent read, reader/writer requests. This greatly

reduces the number of lock downgrades and the volume of inter-instance

communication. It also increases the scalability of certain applications that

previously were not likely OPS candidates, such as OLTP and hybrid applications.

Figure 5–2 Consistent Read Server Processing

1. The requestor’s FG (foreground) process sends a lock request message to the

master node. The requesting node, the holding node, or an entirely separate

node can serve as the master node.

IDLM

Instance A

LMD

IDLM

Instance B

Requesting Instance Holding Instance

IDLM

Master

LMD

LMD

BSPFG

1 2

4

3

Cache Fusion Processing and the Block Server Process

5-8 Oracle8i Parallel Server Concepts and Administration

2. The LMD process of the master node forwards the lock request to the LMD

process of the holding node that has an exclusive lock on the requested block.

3. The holding node’s LMD process handles the in-coming message and requests

the holding instance’s BSP to prepare a consistent read copy of the requested

block.

4. BSP prepares and sends the requested block to the requestor’s FG process.

Configuration Guidelines for Oracle Parallel Server

Oracle Instance Architecture for Oracle Parallel Server 5-9

Configuration Guidelines for Oracle Parallel Server
When setting up OPS, observe the guidelines in Table 5–1:

Table 5–1 Parallel Server Configuration Guidelines

Configuration Issue Guidelines

Version Ensure that the same Oracle version exists on all the nodes.

Links UNIX soft or hard inks ("aliases") to executables are not recommended for OPS. If
the single node containing the executables fails, none of the nodes can operate.

Initialization parameters Keep initialization parameters in a single file. These parameters should be identical
across all OPS instances. Include this file in the individual initialization files of the
different instances using the IFILE option.

You should keep instance specific parameters such as ROLLBACK SEGMENTS,
THREAD INSTANCE, and so on, in the local instance parameter file that also
contains the IFILE. The IFILE points to the larger common file that contains all
other parameters that should remain identical.

Control files Must be accessible from all instances.

Data files Must be accessible from all instances.

Log files Must be located on the same set of disks as control files and data files. Although the
redo log files are independent for each instance, each log file must still be accessible
by all instances to allow recovery.

NFS You can use NFS to enable access to Oracle executables, but not access to
database files or log files. If you are using NFS, the serving node is a single point of
failure.

Archived redo log files Must be accessible from all instances.

Configuration Guidelines for Oracle Parallel Server

5-10 Oracle8i Parallel Server Concepts and Administration

Oracle Database Architecture for the Parallel Server 6-1

6
Oracle Database Architecture for the

Parallel Server

This chapter describes features of the Oracle database architecture pertaining to

multiple instances of OPS.

■ File Structures

■ The Data Dictionary

■ The Sequence Generator

■ Rollback Segments

File Structures
The following sections describe the features of control files, datafiles, and redo log

files that apply to OPS.

■ Control Files

■ Datafiles

■ Redo Log Files

Control Files
All OPS instances access the same control files. The control files hold values of global
constant initialization parameters, such as GC_FILES_TO_LOCKS, some of which

must be identical for all instances running concurrently. As each instance starts,

Oracle compares the global constant initialization values in a common parameter

file (or in parameter files for each instance) with those in the control file, and

generates a message if the values are different.

File Structures

6-2 Oracle8i Parallel Server Concepts and Administration

Datafiles
All OPS instances access the same datafiles. Database files are the same for Oracle in

parallel mode as in exclusive mode. You do not have to change the datafiles to start

Oracle in exclusive or parallel mode.

To improve performance, you can control the physical placement of data so that the

instances use separate sets of data blocks. Free lists, for example, enable you to

allocate space for inserts to particular instances.

Whenever an instance starts up, it verifies access to all online datafiles. The first

OPS instance to start must verify access to all online files so it can determine if

media recovery is required. Additional instances can operate without access to all of

the online datafiles, but any attempt to use an unverified file fails and a message is

generated.

When an instance adds a datafile or brings an offline datafile online, all instances

verify access to the file. If an instance adds a new datafile on a disk that other

instances cannot access, verification fails, but the instances continue running.

Verification can also fail if instances access different copies of the same datafile.

If verification fails for any instance, diagnose and fix the problem, then use the

ALTER SYSTEM CHECK DATAFILES statement to verify access. This statement has

a GLOBAL option, which is the default, that makes all instances verify access to

online datafiles. It also has a LOCAL option that makes the current instance verify

access.

ALTER SYSTEM CHECK DATAFILES makes the online datafiles available to the

instance or instances for which access is verified.

Oracle cannot recover from instance failure or media failure unless the instance that

performs recovery can verify access to all required online datafiles.

Note: There is only one control file per cluster. However, the

control file might be mirrored across other instances so each

instance accesses a copy of the same control file.

See Also: For more information on parameters, please see

"Parameters that Must Be Identical on All Instances" on page 18-11,

and "Initialization Parameters" in Appendix A. Also see Oracle8i
Concepts.

File Structures

Oracle Database Architecture for the Parallel Server 6-3

Oracle automatically maps absolute file numbers to relative file numbers. Use of

OPS does not affect these values. Query the V$DATAFILE view to see both numbers

for your datafiles.

Redo Log Files
In OPS, each instance writes to its own set of online redo log files. The redo written

by a single instance is called a thread of redo. Each online redo log file is associated

with a particular thread number. When an online redo log is archived, Oracle

records its thread number to identify it during recovery.

A private thread is a redo log created using the ALTER DATABASE ADD LOGFILE

command with the THREAD clause. A public thread is a redo log created using the

ALTER DATABASE ADD LOGFILE but without specifying a THREAD clause.

If the THREAD initialization parameter is specified, the instance starting up

acquires the thread identified by that value as a private thread. If THREAD has the

default of zero, the instance acquires a public thread. Once acquired, the acquiring

instance uses the redo thread exclusively.

Online redo log files can be multiplexed, or "mirrored". A multiplexed redo log

consists of two or more groups of files and all members of a group are written to

concurrently when that group is active. Figure 6–1 shows the threads of redo for

three instances of OPS.

See Also: For more information, please see Chapter 17, "Using

Free List Groups to Partition Data", "Access to Datafiles for Instance

Recovery" on page 22-4, and "Setting GC_FILES_TO_LOCKS: PCM

Locks for Each Datafile" on page 15-6. For more information about

relative file numbers, see Oracle8i Concepts.

File Structures

6-4 Oracle8i Parallel Server Concepts and Administration

Figure 6–1 Threads of Redo

■ Instance X uses thread 1, which contains three groups of online redo log files,

groups 1, 2, and 3. Thread 1 is multiplexed, that is, each group has two copies,

or members, of the redo log file.

■ Instance Y uses thread 2, which contains two groups of online redo log files,

groups 4 and 5. Thread 2 is multiplexed, with three members per group.

■ Instance Z uses thread 3, which contains three groups of online redo log files,

groups 6, 7, and 8, that are not multiplexed.

Group
1

Group
6

Group
7

Group
8

Group
2

Group
3

Thread 1 Thread 2 Thread 3

Instance X Instance Y Instance Z

Group
4

Group
5

not mirroredmirrored
3 members per group

mirrored
2 members per group

File Structures

Oracle Database Architecture for the Parallel Server 6-5

Group numbers must be unique within the database, therefore they are not unique

within a thread. However, the order of assigning groups to threads, and threads to

instances is arbitrary.

For example, although in Figure 6–1 thread 1 contains groups 1, 2, and 3 while

thread 2 contains groups 4 and 5, you could instead assign groups 2, 4, and 5 to

thread 1 while assigning groups 1 and 3 to thread 2. The V$LOGFILE view displays

the group number associated with each redo log file.

Although it is possible to have different numbers of groups and members per

thread, we recommend that all threads be configured to a common standard to

facilitate administration.

Different instances of OPS can have different degrees of mirroring, or different

numbers of members per group. The different instances can also have different

numbers of groups. For example, one instance could have three groups with two

members per group, a second instance could have four non-multiplexed log files,

and a third instance could have two groups with four members per group. While

such a configuration may be inconvenient to administer, it may be necessary to

achieve the full potential of the system.

Each instance must have at least two groups of online redo log files. When the

current group fills, an instance begins writing to the next log file group. At a log

switch, information is written to the control file that can be used to identify the

filled group and its thread number after it has been archived.

The number of redo log files about which the control file can keep information is

limited by the value of the MAXLOGHISTORY option of the CREATE DATABASE

statement. Only one member per group is needed. In OPS, set the value of

MAXLOGHISTORY higher than you normally would in single instance Oracle. This

is because in OPS, the history of multiple redo log files must be tracked.

Note: MAXLOGHISTORY is useful for sites with very demanding

availability requirements. This option can help you administer

recovery, especially when there are many instances and many log

files.

See Also: For more information, see "Recovery Structures" in

Oracle8i Concepts for a full description of multiplexed redo log files,

"Archiving the Redo Log Files" and "Checkpoints and Log

Switches" on page 21-2, and "Recovery from Media Failure" on

page 22-6.

The Data Dictionary

6-6 Oracle8i Parallel Server Concepts and Administration

The Data Dictionary
Each instance of OPS has a dictionary cache, or row cache, containing data

dictionary information in its SGA. The data dictionary structure is the same for

Oracle instances in OPS as for instances in exclusive mode. Instance locks

coordinate the data dictionary activity of multiple instances.

The Sequence Generator
This section describes the CREATE SEQUENCE statement and its options.

■ The CREATE SEQUENCE Statement

■ The CACHE Option

■ The ORDER Option

The CREATE SEQUENCE Statement
The SQL statement CREATE SEQUENCE establishes a database object from which

multiple users can generate unique integers without waiting for other users to

commit transactions to access the same sequence number generator.

OPS allows users on multiple instances to generate unique sequence numbers with

minimal cooperation or contention among instances. Instance locks coordinate

sequences across instances in OPS.

Sequence numbers are always unique, unless you use the CYCLE option. However,

you can assign sequence numbers out of order if you use the CACHE option

without the ORDER option, as described in the following section.

The CACHE Option
The CACHE option of CREATE SEQUENCE pre-allocates sequence numbers and

retains them in an instance’s SGA for faster access. You can specify the number of

sequence numbers cached as an argument to the CACHE option. The default value

is 20.

Caching sequence numbers significantly improves performance but can cause the

loss of some numbers in the sequence. Losing sequence numbers is unimportant in

some applications, such as when sequences are used to generate unique numbers

for primary keys.

See Also: For more information about the CREATE SEQUENCE

and CYCLE options, please refer to the Oracle8i SQL Reference.

Rollback Segments

Oracle Database Architecture for the Parallel Server 6-7

A cache for a given sequence is populated at the first request for a number from that

sequence. After the last number in that cached set of numbers is assigned, the cache

is repopulated with another set of numbers.

Each instance keeps its own cache of sequence numbers in memory. When an

instance shuts down, cached sequence values that have not been used in committed

DML statements can be lost. The potential number of lost values can be as great as

the value of the CACHE option multiplied by the number of instances shutting

down. Cached sequence numbers can be lost even when an instance shuts down

normally.

The ORDER Option
The ORDER option of CREATE SEQUENCE guarantees that sequence numbers are

generated in the order of the requests. You can use the ORDER option for time-

stamp numbers and other sequences that must indicate the request order across

multiple processes and instances.

If you do not need Oracle to issue sequence numbers in order, the NOORDER

option of CREATE SEQUENCE can significantly reduce overhead in an OPS

environment.

Rollback Segments
This section describes rollback segments as they relate to OPS.

■ Rollback Segments in OPS

■ Parameters Controlling Rollback Segments

■ Public and Private Rollback Segments

■ How Instances Acquire Rollback Segments

Note: OPS does not support the CACHE option with the ORDER

option of CREATE SEQUENCE when the database is mounted in

parallel mode. Oracle cannot guarantee an order if each instance

has some sequence values cached. Therefore, if you should create

sequences with both the CACHE and ORDER options, they will be

ordered but not cached.

Rollback Segments

6-8 Oracle8i Parallel Server Concepts and Administration

Rollback Segments in OPS
Rollback segments contain information that Oracle requires to maintain read

consistency and to be able to undo changes made by transactions that roll back or

abort. Each instance in OPS shares use of the SYSTEM rollback segment and

requires at least one dedicated rollback segment per instance.

Both private and public rollback segments can be acquired at instance startup and

used exclusively by the acquiring instance until taken offline or when the acquiring

instance is shutdown as specified in the rollback segment parameter. Private

rollback segments are unique to a particular instance; other instances cannot use

them. A public rollback segment is offline and not used by any instance until an

instance that needs an extra rollback segment starts up, acquires it, and brings it

online. Once online, the acquiring instance uses the public rollback segment in

exclusive mode.

Only one instance writes to a given rollback segment (except for the SYSTEM

rollback segment). However, other instances can read from it to create

read-consistent snapshots or to perform instance recovery.

OPS needs at least as many rollback segments as the maximum number of

concurrent instances plus one; the extra one is for the SYSTEM rollback segment.

An instance cannot start up shared without exclusive access to at least one rollback

segment, whether it is public or private.

You can create new rollback segments in any tablespace. To reduce contention

between rollback data and table data, partition your rollback segments in a separate

tablespace. This also facilitates taking tablespaces offline because a tablespace

cannot be taken offline if it contains active rollback segments.

In general, make all rollback segment extents the same size by specifying identical

values for the storage parameters INITIAL and NEXT.

The data dictionary view DBA_ROLLBACK_SEGS shows each rollback segment’s

name, segment ID number, and owner (PUBLIC or other).

See Also: "Creating Additional Rollback Segments" on page 14-5

for information about the rollback segments that are required when

you create a database and the Oracle8i Administrator’s Guide for

information about contention for a rollback segment and the

performance implications of adding rollback segments.

Rollback Segments

Oracle Database Architecture for the Parallel Server 6-9

Parameters Controlling Rollback Segments
These initialization parameters control rollback segment use:

Public and Private Rollback Segments
Public and private rollback segments do not have performance differences.

However, private rollback segments provide more control over the matching of

instances with rollback segments. This allows you to locate the rollback segments

for different instances on different disks to improve performance. Therefore, use

private rollback segments to reduce disk contention in high-performance systems.

Public rollback segments form a pool of rollback segments that can be acquired by

any instance needing an additional rollback segment. Using public rollback

segments can be disadvantageous, however, when instances are shutdown and

started up at the same time. For example, instance X shuts down and releases public

rollback segments. Instance Y starts up and acquires the released rollback segments.

Finally, instance X starts up and cannot acquire its original rollback segments.

Acquiring a public rollback segment can also be made at startup if

TRANSACTIONS and TRANSACTIONS_PER_RBS are not properly set.

You can use public rollback segments to improve space utilization. If you create

only one large public rollback segment for long-running transactions that run on

different instances each month, the rollback segment can be taken offline and

brought back online or "moved" from one instance to another to better serve

instances with the heavier workloads.

By default a rollback segment is private and is used by the instance specifying it in

the parameter file. Specify private rollback segments using the parameter

ROLLBACK_SEGMENTS.

Once a public rollback segment is acquired by an instance, it is then used

exclusively by that instance.

ROLLBACK_SEGMENTS specifies the names of rollback segments that the instance
acquires at startup.

GC_ROLLBACK_LOCKS reserves additional instance locks to reduce contention for
blocks containing rollback entries. In particular, it reserves
instance locks for deferred rollback segments, that contain
rollback entries for transactions in tablespaces that were
taken offline.

See Also: Please see "Monitoring Rollback Segments" on

page 14-6 and the discussion on "Data Blocks, Extents, and

Segments" in Oracle8i Concepts for more information.

Rollback Segments

6-10 Oracle8i Parallel Server Concepts and Administration

Once created, both public and private rollback segments can be brought online

using the ALTER ROLLBACK SEGMENT command.

How Instances Acquire Rollback Segments
When an instance starts, it uses the TRANSACTIONS and

TRANSACTIONS_PER_ROLLBACK initialization parameters to determine how

many rollback segments to acquire as shown in the following equation:

The total_rollback_segments_required number is rounded up.

At startup, an instance attempts to acquire rollback segments by:

■ First acquiring any private rollback segments specified by the

ROLLBACK_SEGMENTS initialization parameter. If the

total_private_rollback_segments number is more than the

total_rollback_segments_required, then no further action is taken to acquire

rollback segments.

■ If the initialization file does not specify private rollback segments, the instance

attempts to acquire public rollback segments.

■ If the total_private_rollback_segments falls short of the

total_rollback_segments_required, then the instance attempts to make up the

difference by acquiring public rollback segments.

■ If only one private rollback segment is specified and acquired, or one public

rollback segment is acquired, the instance starts up, even if one rollback

segment is below the total_rollback_segments_ required. In this case, Oracle

generates a message.

■ If a private rollback segment cannot be brought online at instance startup, the

startup fails and Oracle generates a message.

Note: An instance needs at least one rollback segment or it will

not be able to start.

= total_rollback_segments_required
TRANSACTIONS

TRANSACTIONS_PER_ROLLBACK

Rollback Segments

Oracle Database Architecture for the Parallel Server 6-11

See Also: For more information, please see "Monitoring Rollback

Segments" on page 14-6 and the Oracle8i SQL Reference.

Rollback Segments

6-12 Oracle8i Parallel Server Concepts and Administration

Overview of Locking Mechanisms 7-1

7
Overview of Locking Mechanisms

This chapter provides an overview of Oracle Parallel Server’s (OPS) internal locking

mechanisms by covering the following topics:

■ Differentiating Oracle Locking Mechanisms

■ Cost of Locks

■ Oracle Lock Names

■ Coordination of Locking Mechanisms by the IDLM

Differentiating Oracle Locking Mechanisms
This section covers the following topics:

■ Overview

■ Local Locks

■ Instance Locks

■ The LCK Process

■ The LMON and LMD0 Processes

Overview
You must understand locking mechanisms to effectively harness parallel processing

and parallel database capabilities. You can influence each type of locking by setting

initialization parameters, administering the system, and by designing efficient

applications. Not using locks effectively causes your system to spend so much time

synchronizing shared resources that you do not achieve speedup and scaleup. Your

parallel system could even suffer performance degradation.

Differentiating Oracle Locking Mechanisms

7-2 Oracle8i Parallel Server Concepts and Administration

OPS uses locks for two primary purposes:

■ Transaction isolation

■ Cache coherency

Transaction locks implement row level locking for transaction consistency. Row level

locking is supported in both single instance Oracle and OPS.

Instance locks (also commonly known as distributed locks) guarantee cache coherency.

They ensure the consistency of data and other resources distributed among multiple

instances belonging to the same database. Instance locks include PCM and

non-PCM locks.

Local Locks
Figure 7–1 shows latches and enqueues: locking mechanisms that are synchronized

within a single instance. These are used in single instance Oracle and in OPS

whether parallel server is enabled or disabled.

Figure 7–1 Locking Mechanisms: Oracle and OPS Disabled

* The mount lock is obtained if the Parallel Server Option has been linked in to your

Oracle executable.

See Also: For more information about Oracle locks, please refer to

Chapter 8, "Integrated Distributed Lock Manager" and to Oracle8i
Concepts.

Instance Locks: Synchronized between instances

Local Locks: Synchronized within the instance

Non–PCM Locks

TX/DMI/SCN/and so on

Mount lock (OPS exclusive)*

Local Enqueues

Local Latches

Differentiating Oracle Locking Mechanisms

Overview of Locking Mechanisms 7-3

Latches
Latches are simple, low level serialization mechanisms that protect in-memory data

structures in the SGA. Latches do not protect datafiles. They are entirely automatic

and are held for a very short time in exclusive mode. Being local to the node,

internal locks and latches do not provide internode synchronization.

Enqueues
Enqueues are shared memory structures that serialize access to database resources.

These locks can be local to one instance or global to a database. They are associated

with a session or transaction and can be in any mode:

■ Shared

■ Exclusive

■ Protected read

■ Protected write

■ Concurrent read

■ Concurrent write

■ Null

Enqueues are held longer than latches, have more granularity and more modes, and

protect more database resources. For example, if you request a table lock, or a DML

lock, you receive an "enqueue".

Certain enqueues are local to single instances when OPS is disabled. But with OPS

enabled, enqueues must be maintained on a system-wide level. Enqueues are

managed by the Integrated Distributed Lock Manager (IDLM).

When OPS is enabled, most local enqueues become global enqueues. This is

reflected in Figure 7–1 and Figure 7–2. They appear as enqueues in the fixed

tables—no distinction is made between local and global enqueues. Global enqueues

are handled in a distributed fashion.

Note: Transaction locks are simply a subset of enqueues.

Differentiating Oracle Locking Mechanisms

7-4 Oracle8i Parallel Server Concepts and Administration

Instance Locks
Figure 7–2 illustrates the instance locks used by OPS. In OPS implementations, the

status of all Oracle locking mechanisms is tracked and coordinated by the IDLM.

Figure 7–2 Locking Mechanisms: Parallel Server Enabled

Instance locks (other than the mount lock) only come into existence if you start an

Oracle instance with OPS enabled. They synchronize between instances,

communicating the current status of a resource among the instances of OPS.

Instance locks are held by background processes of instances rather than by

transactions. An instance owns an instance lock that protects a resource, such as a

data block or data dictionary entry, when the resource enters its SGA.

To ensure cache coherency, the IDLM handles locking only for resources accessed by

more than one instance of OPS. The IDLM communicates requests for instance locks

and the status of the locks between lock processes of each instance. There are

several views associated with the IDLM as described in Table 7–1.

Local Enqueues

Local Latches

Instance Locks: Synchronized between instances

Local Locks: Synchronized within the instance

PCM Locks

(Hashed implementation
and/or
Fine–grain DBA lock
implementation)

Global Enqueues

TX

DML/Table locks

SCN

Mount lock

Global Locks

Differentiating Oracle Locking Mechanisms

Overview of Locking Mechanisms 7-5

There are two type of Instance locks: Parallel Cache Management (PCM) and

Non-PCM locks.

PCM Locks
PCM locks are instance locks covering one or more data blocks (table or index

blocks) in the buffer cache. PCM locks do not lock rows for transactions and are

implemented in two ways:

With hashed locking, an instance never disowns a PCM lock unless another instance

asks for it. This minimizes the overhead of instance lock operations in systems with

relatively low contention for resources. With fine grain locking, once the block is

released, the lock is released. Non-PCM locks are disowned.

Non-PCM Locks
There are many different types of non-PCM locks. These control access to data and

control files, control library and dictionary caches, and perform various types of

communication between instances. These locks do not protect datafile blocks.

Examples are DML enqueues (table locks), transaction enqueues, and DDL or

dictionary locks. The System Change Number (SCN), and the mount lock are global

locks, not enqueues.

Table 7–1 IDLM Views

IDLM View Name Content

V$DLM_LOCKS Lists information on blocking and blocked locks currently
known to the IDLM.

V$DLM_ALL_LOCKS Shows all locks and their states.

V$DLM_RESS Shows all resources and their states.

Fine grain locking This is the default implementation where PCM locks

are assigned to blocks on a dynamic basis.

Hashed locking This is where PCM locks are statically assigned to

blocks in the datafiles.

Differentiating Oracle Locking Mechanisms

7-6 Oracle8i Parallel Server Concepts and Administration

Many More PCM Locks Than Non-PCM Locks
PCM locks are typically more numerous than non-PCM locks. However, there are

still enough non-PCM locks for which you must carefully plan adequate IDLM

capacity. Typically 5% to 10% of locks are non-PCM. Non-PCM locks do not grow in

volume the way PCM locks do.

You can control PCM locks in detail by setting initialization parameters to allocate

the number desired. However, you have almost no control over non-PCM locks.

You can attempt to eliminate the need for table locks by setting DML_LOCKS = 0 or

by using the ALTER TABLE ENABLE/DISABLE TABLE LOCK command, but

other non-PCM locks will still persist.

The LCK Process
In OPS, the LCK process provides inter-instance locking. LCK manages most locks

used by an instance and coordinates requests for those locks by other instances.

LCK maintains all PCM locks, hashed or fine grain, and some of the non-PCM

locks, such as row cache or library cache locks. LCK handles PCM as well as

non-PCM locks.

Although instance locks are mainly handled by LCK, some instance locks are

directly acquired by other background or shadow foreground processes. In general,

if a background process such as LCK owns an instance lock, it is for the entire

instance. If a foreground process owns an instance lock, it is just for that particular

process. For example, the log writer (LGWR) obtains the SCN instance lock, the

database writer (DBWR) obtains the media recovery lock. The bulk of these locks,

however, are handled by LCK.

Foreground processes obtain transaction locks, LCK does not. Transaction locks are

associated with the session/transaction unit, not with the process.

Note: The context of OPS causes most local enqueues to become

global; they can still be seen in the fixed tables and views that show

enqueues, such as V$LOCK. The V$LOCK table does not, however,

show instance locks, such as SCN locks, mount locks, and PCM

locks.

See Also: For more information, please see Chapter 16, "Ensuring

IDLM Capacity for Resources and Locks".

Cost of Locks

Overview of Locking Mechanisms 7-7

The LMON and LMD0 Processes
The LMON and LMD0 processes implement the global lock management

subsystem of OPS. LMON performs lock cleanup and lock invalidation after the

death of an Oracle shadow process or another Oracle instance. It also reconfigures

and redistributes the global locks as OPS instances are started and stopped.

The LMD0 process handles remote lock requests for global locks, that is, lock

requests originating from another instance for a lock owned by the current instance.

All global lock messages directed to an OPS instance are handled by the LMD0

process of that instance.

Cost of Locks
To effectively implement locks, carefully evaluate their relative expense. As a

rule-of-thumb:

■ Latches are inexpensive

■ Local enqueues are more expensive

■ Instance locks and global enqueues are quite expensive

In general, instance locks and global enqueues have an equivalent effect on

performance. When OPS is disabled, all enqueues are local. When OPS is enabled,

most enqueues are global.

Table 7–2 dramatizes the relative expense of latches, enqueues, and instance locks.

The elapsed time required per lock varies by system. Values used in the "Actual

Time Required" column of this table are only examples.

See Also: For more information about LCK, please refer to

Oracle8i Concepts.

Table 7–2 Comparing the Relative Cost of Locks

Class of Lock Actual Time Required Relative Time Required

Latches 1 microsecond 1 minute

Local Enqueues 1 millisecond 1000 minutes (16 hours)

Instance Locks
(or Global Enqueues)

1/10 second 100,000 minutes (69 days)

Oracle Lock Names

7-8 Oracle8i Parallel Server Concepts and Administration

Microseconds, milliseconds, and tenths of a second may seem like negligible units

of time. However, imagine the cost of locks using grossly exaggerated values such as

those listed in the "Relative Time Required" column. This should make the need to

carefully calibrate lock use in your systems and applications more obvious. In a

large OLTP implementation, for example, you should avoid unregulated instance

lock use. Imagine waiting hours or days to complete a transaction!

Stored procedures are available for analyzing the number of PCM locks an

application uses if it performs particular functions. You can set values for your

initialization parameters and then call the stored procedure to see the projected

expenditure in terms of locks.

Oracle Lock Names
This section covers the following topics:

■ Lock Name Format

■ PCM Lock Names

■ Non-PCM Lock Names

Lock Name Format
All Oracle enqueues and instance locks are named using one of the following

formats:

type ID1 ID2

or type, ID1, ID2

or type (ID1, ID2)

See Also: For more information, please refer to Chapter 15,

"Allocating PCM Instance Locks" and Chapter 16, "Ensuring IDLM

Capacity for Resources and Locks".

Oracle Lock Names

Overview of Locking Mechanisms 7-9

Where:

For example, a space management lock might be named ST 1 0. A PCM lock might

be named BL 1 900.

The V$LOCK table lists local and global Oracle enqueues currently held or

requested by the local instance. The "lock name" is actually the name of the

resource; locks are taken out against the resource.

PCM Lock Names
All PCM locks are Buffer Cache Management locks.

The syntax of PCM lock names is type ID1 ID2, where:

Sample PCM lock names are:

type A two-character type name for the lock type, as described in

the V$LOCK table, and listed in Table 7–3 and Table 7–4.

ID1 The first lock identifier, used by the IDLM. The convention for

this identifier differs from one lock type to another.

ID2 The second lock identifier, used by the IDLM. The convention

for this identifier differs from one lock type to another.

Table 7–3 PCM Lock Type and Name

Type Lock Name

BL Buffer Cache Management

type Is always BL because PCM locks are buffer locks.

ID1 Is the block class.

ID2 For fixed locks, ID2 is the lock element (LE) index number

obtained by hashing the block address (see the

V$LOCK_ELEMENT fixed view). For releasable locks, ID2 is

the database address of the block.

BL (1, 100) This is a data block with lock element 100.

BL (4, 1000) This is a segment header block with lock element 1000.

Oracle Lock Names

7-10 Oracle8i Parallel Server Concepts and Administration

Non-PCM Lock Names
Non-PCM locks have many different names.

BL (27, 1) This is an undo segment header with rollback segment #10. The

formula for the rollback segment is 7 + (10 * 2).

Table 7–4 Non-PCM Lock Types and Names

Type Lock Name

CF Controlfile Transaction.

CI Cross-Instance Call Invocation.

DF Datafile.

DL Direct Loader Index Creation.

DM Database Mount.

DX Distributed Recovery.

FS File Set.

KK Redo Log "Kick".

IN Instance Number.

IR Instance Recovery.

IS Instance State.

MM Mount Definition.

MR Media Recovery.

IV Library Cache Invalidation.

L[A-P] Library Cache Lock.

N[A-Z] Library Cache Pin.

Q[A-Z] Row Cache.

PF Password File.

PR Process Startup.

PS Parallel Slave Synchronization.

RT Redo Thread.

SC System Commit Number.

Oracle Lock Names

Overview of Locking Mechanisms 7-11

SM SMON.

SN Sequence Number.

SQ Sequence Number Enqueue.

SV Sequence Number Value.

ST Space Management Transaction.

TA Transaction Recovery.

TM DML Enqueue.

TS Temporary Segment (also Table-Space).

TT Temporary Table.

TX Transaction.

UL User-Defined Locks.

UN User Name.

WL Begin written Redo Log.

XA Instance Registration Attribute Lock.

XI Instance Registration Lock.

See Also: Please refer to the Oracle8i Reference for descriptions of

non-PCM locks.

Table 7–4 Non-PCM Lock Types and Names

Type Lock Name

Coordination of Locking Mechanisms by the IDLM

7-12 Oracle8i Parallel Server Concepts and Administration

Coordination of Locking Mechanisms by the IDLM
The IDLM component is a distributed resource manager that is internal to OPS. This

section explains how the IDLM coordinates locking mechanisms that are internal to
Oracle. Chapter 8, "Integrated Distributed Lock Manager" presents a detailed

description of IDLM features and functions.

This section covers the following topics:

■ The IDLM Tracks Lock Modes

■ The Instance Maps Database Resources to IDLM Resources

■ How IDLM Locks and Instance Locks Relate

■ The IDLM Provides One Lock Per Instance on a Resource

The IDLM Tracks Lock Modes
In OPS implementations, the IDLM facility maintains an inventory of Oracle

instance locks and global enqueues held against system resources. The IDLM acts as

a referee when conflicting lock requests arise.

In Figure 7–3 the IDLM is represented as an inventory sheet listing resources and

the current status of locks on each resource across OPS. Locks are represented as

follows: S for shared mode, N for null mode, X for exclusive mode.

Coordination of Locking Mechanisms by the IDLM

Overview of Locking Mechanisms 7-13

Figure 7–3 The IDLM Inventory of Oracle Resources and Locks

This inventory includes all instances. For example, resource BL 1, 101 is held by

three instances with shared locks and three instances with null locks. Since the table

reflects up to 6 locks on one resource, at least 6 instances are evidently running on

this system.

The Instance Maps Database Resources to IDLM Resources
Oracle database resources are mapped to IDLM resources, with the necessary

mapping performed by the instance. For example, a hashed lock on an Oracle

database block with a given data block address (such as file 2 block 10) becomes

translated as a BL resource with the class of the block and the lock element number

(such as BL 9 1). The data block address (DBA) is translated from the Oracle

resource level to the IDLM resource level; the hashing function used is dependent

on GC_* parameter settings. The IDLM resource name identifies the physical

resource in views such as V$LOCK.

Note: For DBA fine grain locking, the database address is used as

the second identifier, rather than the lock element number.

BL 1, 100

BL 1, 101

BL 4, 3000

BL 4, 3001

BL 6, 100

BL 6, 101

BL 8, 3000

BL 8, 3001

BL 9, 4000

S

SSSNNN

X

SSS

NNN

X

X

N

N

Integrated DLM

LocksResource

Coordination of Locking Mechanisms by the IDLM

7-14 Oracle8i Parallel Server Concepts and Administration

Figure 7–4 Database Resource Names Corresponding to IDLM Resource Names

How IDLM Locks and Instance Locks Relate
Figure 7–5 illustrates how IDLM locks and PCM locks relate. To allow instance B to

read the value of data at data block address x, instance B must first check for locks

on that data. The instance translates the block’s database resource name to the

IDLM resource name, and asks the IDLM for a shared lock in order to read the data.

As illustrated in the following conceptual diagram, the IDLM checks outstanding

locks on the granted queue and determines there are already two shared locks on

resource BL1,441. Since shared locks are compatible with read-only requests, the

IDLM grants a shared lock to instance B. The instance then proceeds to query the

database to read the data at data block address x. The database returns the data.

fileid,blockno

BL 1xy

BLclass LEInstance
translates

Database Resource Name LM Resource Name

Coordination of Locking Mechanisms by the IDLM

Overview of Locking Mechanisms 7-15

Figure 7–5 The IDLM Checks Status of Locks

If the required block already had an exclusive lock on it from another instance, then

instance B would have to wait for this to be released. The IDLM would place the

shared lock request from instance B on the convert queue. The IDLM would then

notify the instance when the exclusive lock was removed and grant its request for a

shared lock.

The term IDLM lock refers simply to the IDLM’s notations for tracking and

coordinating the outstanding locks on a resource.

Note: The global lock space is cooperatively managed in

distributed fashion by the LMDs of all instances.

Instances

A

B

C

D
DBAx

Global Lock Space

BL1,106 S

BL1,532 X

BL1,441 S, S

BL1,302 N

Database

Check status of locks

Shared lock granted

Read request

Data

1

2

3

4

Coordination of Locking Mechanisms by the IDLM

7-16 Oracle8i Parallel Server Concepts and Administration

The IDLM Provides One Lock Per Instance on a Resource
The IDLM provides one lock per instance on a PCM resource. As illustrated in

Figure 7–6, if you have a four-instance system and require a buffer lock on a single

resource, you actually have four locks—one per instance.

Figure 7–6 Resources Have One Lock Per Instance

The number of non-PCM locks may depend on the type of lock.

See Also: For more information, please see Chapter 10,

"Non-PCM Instance Locks".

Instance Instance Instance
2 3 4

Instance

Resource

N S S N

1

Integrated Distributed Lock Manager 8-1

8
Integrated Distributed Lock Manager

This chapter explains the role of the Integrated Distributed Lock Manager (IDLM)

in controlling access to Oracle Parallel Server (OPS) resources by covering the

following topics:

■ What Is the Integrated Distributed Lock Manager?

■ The IDLM Grants and Coordinates Resource Lock Requests

■ IDLM Lock Modes: Resource Access Rights

■ IDLM Features

What Is the Integrated Distributed Lock Manager?
The IDLM component of Oracle8 maintains a list of system resources and provides

locking mechanisms to control allocation and modification of Oracle resources.

IDLM resources are logical concepts; structures of data. The IDLM does not control

access to tables or objects in the database itself. Every process interested in a

database resource protected by the IDLM must open a lock on the resource.

OPS uses the IDLM to coordinate concurrent access across multiple instances to

resources such as data blocks and rollback segments.

The IDLM Grants and Coordinates Resource Lock Requests
This section explains how the IDLM coordinates resource lock requests by

explaining the following topics:

■ Lock Requests Are Queued

■ Asynchronous Traps (ASTs) Communicate Lock Request Status

The IDLM Grants and Coordinates Resource Lock Requests

8-2 Oracle8i Parallel Server Concepts and Administration

■ Lock Requests Are Converted and Granted

The IDLM coordinates lock requests, ensuring compatibility of resource access

rights. In this process the IDLM tracks all lock requests. Requests for available

resources are granted and access rights granted are tracked. Requests for resources

not currently available are tracked, and access rights are granted when these

resources later become available. The IDLM inventories these lock requests and

communicates their statuses to users and processes involved.

Lock Requests Are Queued
The IDLM maintains two queues for lock requests:

Asynchronous Traps (ASTs) Communicate Lock Request Status
To communicate the status of lock requests, the IDLM uses two types of

asynchronous traps (ASTs) or interrupts:

Convert queue If the IDLM cannot immediately grant a lock request be, it is

placed in the convert queue where waiting lock requests are

tracked.

Granted queue The IDLM tracks lock requests that have been granted in the

granted queue.

Acquisition AST When the lock is obtained in the requested mode, an

acquisition AST (a "wakeup call") is sent to tell the requestor

that the lock is granted.

Blocking AST When a process requests a certain mode of lock on a

resource, the IDLM sends a blocking AST to notify processes

currently owning locks on that resource in incompatible

modes. (Shared and exclusive modes, for example, are

incompatible.) Upon notification, owners of locks can

relinquish them to permit access by the requestor.

The IDLM Grants and Coordinates Resource Lock Requests

Integrated Distributed Lock Manager 8-3

Lock Requests Are Converted and Granted
The following figures show how the IDLM handles lock requests.

In Figure 8–1, shared lock request 1 has been granted on the resource to process 1,

and shared lock request 2 has been granted to process 2. As mentioned, IDLM

tracks the locks in the granted queue. When a request for an exclusive lock is made

by process 2, it must wait in the convert queue.

Figure 8–1 The IDLM Granted and Convert Queues

In Figure 8–2, the IDLM sends a blocking AST to Process 1, the owner of the shared

lock, notifying it that a request for an exclusive lock is waiting. When the shared

lock is relinquished by Process 1, it is converted to a null mode lock or released.

IDLM

Process
1

Process
2

Resource

Granted queue Convert queue

Lock1

Lock2

Shared, process 1

Shared, process 2

The IDLM Grants and Coordinates Resource Lock Requests

8-4 Oracle8i Parallel Server Concepts and Administration

Figure 8–2 Blocking AST

An acquisition AST is then sent to wake up Process 2, the requestor of the exclusive

lock. The IDLM grants the exclusive lock and converts it to the granted queue. This

is illustrated below in Figure 8–3.

IDLM

Process
1

Process
2

Resource

Granted queue Convert queue

Lock2Lock1

Shared Null Shared Exclusive

BAST

The IDLM Grants and Coordinates Resource Lock Requests

Integrated Distributed Lock Manager 8-5

Figure 8–3 Acquisition AST

Process
1

Process
2

Resource

Granted queue Convert queue

IDLM

Lock2

Lock1

Exclusive, process 2

Null, process 1

AAST

IDLM Lock Modes: Resource Access Rights

8-6 Oracle8i Parallel Server Concepts and Administration

IDLM Lock Modes: Resource Access Rights
Instances use locks to obtain various rights to a resource. A lock may be initially

created on a resource with no access rights granted. Later, a process converts the

lock to obtain new access rights.

Figure 8–4 illustrates the levels of access rights or "lock modes" available through

the IDLM.

Figure 8–4 IDLM Lock Modes: Levels of Access

Highest level

Lowest level

X

SSX

SX S

SS

NULL

IDLM Lock Modes: Resource Access Rights

Integrated Distributed Lock Manager 8-7

Table 8–1 Lock Mode Names

Oracle Mode Summary Description

NULL Null mode. No lock is on
the resource.

Holding a lock at this level conveys no access
rights. Typically, a lock is held at this level to
indicate that a process is interested in a resource.
Or it is used as a place holder.

Once created, null locks ensure the requestor
always has a lock on the resource; there is no
need for the IDLM to constantly create and
destroy locks when ongoing access is needed.

SS Sub-shared mode
(concurrent read). Read;
there may be writers and
other readers.

When a lock is held at this level, the associated
resource can be read in an unprotected fashion:
other processes can read and write the associated
resource.

SX Shared exclusive mode
(concurrent write). Write;
there may be other
readers and writers.

When a lock is held at this level, the associated
resource can be read or written in an unprotected
fashion: other processes can both read and write
the resource.

S Shared mode (protected
read).

Read; no writers are
allowed.

When a lock is held at this level, a process cannot
write the associated resource. Multiple processes
can read the resource. This is the traditional
shared lock.

In shared mode, any number of users can have
simultaneous read access to the resource. Shared
access is appropriate for read operations.

SSX Sub-shared exclusive
mode (protected write).
One writer only; there
may be readers

Only one process can hold a lock at this level.
This allows a process to modify a resource
without allowing other processes to
simultaneously modify the resource at the same
time. Other processes can perform unprotected
reads. The traditional update lock.

X Exclusive mode.

Write; no other access is
allowed

When a lock is held at this level, it grants the
holding process exclusive access to the resource.
Other processes cannot read or write the
resource. This is the traditional exclusive lock.

IDLM Features

8-8 Oracle8i Parallel Server Concepts and Administration

IDLM Features
This section describes the following features of the IDLM:

■ Distributed Architecture

■ Fault Tolerance

■ Lock Mastering

■ Deadlock Detection

■ Lamport SCN Generation

■ Group-owned Locks

■ Persistent Resources

■ Memory Requirements

■ Support for MTS and XA

■ Views to Monitor IDLM Statistics

Distributed Architecture
The IDLM maintains a database of resources and locks held on these resources in

different modes. This lock database resides in volatile memory and is distributed.

The IDLM has a distributed architecture. In the distributed architecture each node

in the cluster (or each OPS instance of an Oracle database) participates in global

lock management and manages a piece of the global lock database. The lock

database is distributed among all participants. This distributed lock management

scheme provides fault tolerance and enhanced runtime performance.

Fault Tolerance
The IDLM is fault tolerant in that it provides continual service and maintains the

integrity of the lock database in the event of multiple node and OPS instance

failures. A database is accessible as long as at least one OPS instance is active on

that database after recovery completes.

Fault tolerance also enables OPS instances to be started and stopped at any time, in

any order. However, instance reconfiguration may cause a brief delay.

IDLM Features

Integrated Distributed Lock Manager 8-9

Lock Mastering
The IDLM maintains information about locks on all nodes that need access to a

particular resource. The IDLM usually nominates one node to manage all relevant

information about a resource and its locks. This is node called the "master node".

OPS uses a static hashing lock mastering scheme. This mastering process hashes the

resource name to one of the OPS instances that acts as the master for the resource.

This results in an even, arbitrary distribution of resources across all available nodes.

Every resource is associated with a master node.

The IDLM optimizes the method of lock mastering used in each situation. The

method of lock mastering affects system performance during normal runtime

activity as well as during instance startup. Performance is optimized when a

resource is mastered locally.

When a resource is mastered remotely, all conflicting accesses to this resource result

in the transmission of messages to the master node for this resource. This increases

internode message traffic and affects system performance.

Deadlock Detection
IDLM performs deadlock detection to all deadlock sensitive locks and resources.

Lamport SCN Generation
OPS uses the fast and scalable Lamport SCN generation scheme that can generate

SCNs in parallel on all instances.

Group-owned Locks
Group-based locking provides dynamic ownership: a single lock can be shared by

two or more processes belonging to the same group. Processes in the same group

can share and/or touch the lock without opening or converting a new and different

lock.

See Also: "Lamport SCN Generation" on page 4-7.

See Also: "Support for MTS and XA" on page 8-10.

IDLM Features

8-10 Oracle8i Parallel Server Concepts and Administration

Persistent Resources
The IDLM provides persistent resources. Resources maintain their state even if all

processes or groups holding a lock on it have died abnormally.

Memory Requirements
The user-level IDLM can normally allocate as many resources as you request; your

process size, however, will increase accordingly. This is because you are mapping

the shared memory where locks and resources reside into your address space. Thus,

the process address space can become very large.

Make sure that the IDLM is configured to support all resources your application

requires.

Support for MTS and XA
OPS uses two forms of lock ownership:

Group-based locking is an important IDLM feature for Oracle multi-threaded server

(MTS) and XA library functionality.

See Also: "Lock Requests Are Converted and Granted" on

page 8-3.

Per-process ownership Locks are commonly process-owned: that is, if one

process owns a lock exclusively, then no other process

can touch the lock.

Group-based ownership With group-based locking, ownership becomes

dynamic: a single lock can be exchanged by two or

more processes belonging to the same group.

Processes in the same group can exchange and/or

touch the lock without going to the IDLM grant and

convert queues.

MTS Group-based locking is used for Oracle MTS

configurations. Without it, sessions could not migrate

between shared server processes. In addition, load

balancing may be affected, especially with long

running transactions.

IDLM Features

Integrated Distributed Lock Manager 8-11

Views to Monitor IDLM Statistics
Table 8–2 describes six dynamic performance views you can use to monitor IDLM

statistics.

XA libraries With Oracle XA libraries, multiple sessions or

processes can work on the transaction; they therefore

need to exchange the same locks, even in exclusive

mode. With group-based lock ownership, processes

can exchange access to an exclusive resource.

Table 8–2 Views to Monitor IDLM Statistics

View Description

V$DLM_CONVERT_LOCAL Shows the convert time for local lock convert operations.
Enabled by Event 29700.

V$DLM_CONVERT_REMOTE Shows the convert time for remote lock convert
operations. Enabled by event 29700.

V$DLM_LOCKS Contains debugging information about all locks currently
known to the IDLM that are being blocked or are blocking
others.

V$DLM_ALL_LOCKS Contains debugging information about all locks currently
known to the IDLM.

V$DLM_RESS Contains statistics about resources being used by all locks.

V$DLM_MISC Contains various IDLM statistics.

See Also: Please refer to the Oracle8 Reference for a complete

description of these dynamic performance views.

IDLM Features

8-12 Oracle8i Parallel Server Concepts and Administration

Parallel Cache Management Instance Locks 9-1

9
Parallel Cache Management Instance Locks

The planning and allocation of PCM locks is one of the most complex tasks facing

the Oracle Parallel Server (OPS) database administrator. This chapter provides a

conceptual overview of PCM locks by covering the following topics:

■ PCM Locks and How They Work

■ How Initialization Parameters Control Blocks and PCM Locks

■ Two Methods of PCM Locking: Fixed and Releasable

■ How Oracle Assigns Locks to Blocks

■ Examples: Mapping Blocks to PCM Locks

PCM Locks and How They Work
This section covers the following topics:

■ What PCM Locks Are

■ Allocation and Release of PCM Locks

■ How PCM Locks Operate

■ Number of Blocks per PCM Lock

■ Pinging: Signaling the Need to Update

■ Lock Mode and Buffer State

See Also: Chapter 15, "Allocating PCM Instance Locks", for

details on how to plan and assign these locks and Chapter 8,

"Integrated Distributed Lock Manager" for more information about

the IDLM facility.

PCM Locks and How They Work

9-2 Oracle8i Parallel Server Concepts and Administration

Figure 9–1 highlights PCM locks in relation to other locks used in Oracle.

Figure 9–1 Oracle Locking Mechanisms: PCM Locks

What PCM Locks Are
Parallel cache management locks, or PCM locks, are instance locks that manage

datafile block locking. PCM locks can cover one or more blocks of any class: data

blocks, index blocks, undo blocks, segment headers, and so on. Though there are

several types of instance locks, they all serve the same purpose.

OPS uses instance locks to coordinate access to shared resources and the IDLM

maintains the statuses of instance locks.

PCM locks ensure cache coherency by forcing requesting instances to acquire locks

from holding instances before modifying or reading database blocks. PCM locks

allow only one instance at a time to modify a block. If a block is modified by an

instance, the block must first be written to disk before another instance can acquire

the PCM lock and modify the block.

PCM locks use the minimum amount of communication to ensure cache coherency.

The amount of cross-instance activity—and the corresponding performance of

OPS—is evaluated in terms of pings. A ping occurs each time a block must be

written to disk by one instance so that another instance can read it.

Instance Locks

Local Locks

Local Enqueues

Local Latches

Global Enqueues

TX

DML/Table locks

SCN

Mount lock

Global Locks

PCM Locks

PCM Locks and How They Work

Parallel Cache Management Instance Locks 9-3

Busy systems can have a great deal of locking activity, but do not necessarily have

pinging. If data is well partitioned, then the locking will be local to each

node—therefore pinging will not occur.

Allocation and Release of PCM Locks
For optimal performance, the OPS administrator must allocate PCM locks to

datafiles. You do this by specifying values for initialization parameters which are

read at startup of the database. Chapter 15, "Allocating PCM Instance Locks"

describes this procedure in detail.

You use the initialization parameter GC_FILES_TO_LOCKS to specify the number

of PCM locks which cover the data blocks in a data file or set of data files. The

smallest granularity is one PCM lock per datablock; this is the default. PCM locks

usually account for the greatest proportion of instance locks in OPS.

Four types of PCM locks can be allocated. They differ in the method by which they

are allocated, and in whether or not they are released.

Allocation of Releasable Fine Grain Locks
Fine grain PCM locks are acquired and released as needed. Since they are allocated

only as required, the instance can start up much faster than with hashed locks. An

IDLM resource is created and an IDLM lock is obtained only when a user actually

requests a block. Once a fine grain lock has been created, it can be converted to

various modes as required by various instances.

Fine grain locks are releasable: an instance can give up all references to the resource

name during normal operation. The IDLM resource is released when it is required

for reuse for a different block. This means that sometimes no instance holds a lock

on a given resource.

Allocation of Fixed Hashed Locks
Hashed locks are pre-allocated and statically hashed to blocks at startup time. The

first instance which starts up creates an IDLM resource and an IDLM lock (in null

mode) on the IDLM resource for each hashed PCM lock. The first instance initializes

each lock. The instance then proceeds to convert IDLM locks to other modes as

required. When a second instance requires a particular IDLM lock, it waits until the

lock is available and then converts the lock to the mode required.

By default, hashed PCM locks are never released; each remains in the mode in

which it was last requested. If the lock is required by another instance, it is

converted to null mode. These locks are de-allocated only at instance shutdown.

PCM Locks and How They Work

9-4 Oracle8i Parallel Server Concepts and Administration

Allocation of Releasable Hashed Locks
You can specify releasable hashed PCM locks by using the R option with the

GC_FILES_TO_LOCKS parameter. Releasable hashed PCM locks are taken from the

pool of GC_RELEASABLE_LOCKS.

Allocation of Fixed Fine Grain Locks
You can also allocate fixed locks in a fine grained manner. For example, you could

set 50,000 PCM locks for a particular file and thus provide 1 fixed lock for each

block.

How PCM Locks Operate
Fixed PCM locks are initially acquired in null mode. All specified hashed locks are

allocated at instance startup, and de-allocated at instance shutdown. Because of

this, hashed locks entail more overhead and longer startup time than fine grain

locks. The advantage of fixed hashed PCM locks, however, is that they do not need

to be continually acquired and released.

Releasable PCM locking is more dynamic than fixed hashed locking. For example, if

you set GC_RELEASABLE_LOCKS to 10000 you can obtain up to ten thousand fine

grain PCM locks. However, locks are allocated only as needed by the IDLM. At

startup Oracle allocates lock elements that are obtained directly in the requested

mode (normally shared or exclusive mode).

Figure 9–2 illustrates how PCM locks work. When instance A reads the black block

for modification, it obtains the PCM lock for block. The same scenario occurs with

the shaded block and Instance B. If instance B requires the black block, the block

must be written to disk because instance A has modified it. The Oracle process

communicates with the LMD processes to obtain the instance lock from the IDLM.

See Also: "GC_FILES_TO_LOCKS Syntax" on page 15-7 for a

detailed explanation of how to set the GC_FILES_TO_LOCKS

parameter.

PCM Locks and How They Work

Parallel Cache Management Instance Locks 9-5

Figure 9–2 How PCM Locks Work

PCM Locks Are Owned by Instance LCK Processes
Each instance has at least one LCK background process. If multiple LCK processes

exist within the same instance, the PCM locks are divided among the LCK

processes. This means that each LCK process is only responsible for a subset of the

PCM locks.

Locks Convert from One Mode to Another
A PCM lock is "owned" or controlled by an instance when a block covered by that

lock (in shared or exclusive mode) enters the buffer cache belonging to the instance.

Multiple Instances Can Own the Same Locks
A PCM lock owned in shared mode is not disowned by an instance if another

instance also requests the PCM lock in shared mode. Thus, two instances may have

the same data block in their buffer caches because the copies are shared (no writes

IDLM

IDLM

Instance A

SGA

Buffer
Cache

LMD0

LMD0

Instance B

SGA

Buffer
Cache

ORACLE

ORACLE

PCM Locks and How They Work

9-6 Oracle8i Parallel Server Concepts and Administration

occur). Different data blocks covered by the same PCM lock can be contained in the

buffer caches of separate instances. This can occur if all the different instances

request the PCM lock in shared mode.

Number of Blocks per PCM Lock
The number of PCM locks assigned to datafiles and the number of data blocks in

those datafiles determines the number of data blocks covered by a single PCM lock.

■ If GC_FILES_TO_LOCKS is not set for a file, then releasable locks are used with

one lock for each block.

■ If GC_FILES_TO_LOCKS is set for a file, then the number of blocks per PCM

lock can be expressed as follows on a per file level. This example assumes

values of GC_FILES_TO_LOCKS = 1:300,2:200,3-5:100.

)

If the size of each file, in blocks, is a multiple of the number of PCM locks assigned

to it, then each hashed PCM lock covers exactly the number of data blocks given by

the equation.

If the file size is not a multiple of the number of PCM locks, then the number of data

blocks per hashed PCM lock can vary by one for that datafile. For example, if you

assign 400 PCM locks to a datafile which contains 2,500 data blocks, then 100 PCM

locks cover 7 data blocks each and 300 PCM locks cover 6 blocks. Any datafiles not

specified in the GC_FILES_TO_LOCKS initialization parameter use the remaining

PCM locks.

If n files share the same hashed PCM locks, then the number of blocks per lock can

vary by as much as n. If you assign locks to individual files, either with separate

File 1:
file1 blocks

300 locks

File 2:
file2 blocks

200 locks

File 3:
sum (file3, file4, file5 blocks)

100 locks

PCM Locks and How They Work

Parallel Cache Management Instance Locks 9-7

clauses of GC_FILES_TO_LOCKS or by using the keyword EACH, then the number

of blocks per lock does not vary by more than one.

If you assign hashed PCM locks to a set of datafiles collectively, then each lock

usually covers one or more blocks in each file. Exceptions can occur when you

specify contiguous blocks (using the "!blocks" option) or when a file contains fewer

blocks than the number of locks assigned to the set of files.

Example
The following example illustrates how hashed PCM locks can cover multiple blocks

in different files. Figure 9–3 assumes 44 PCM locks assigned to 2 files which have a

total of 44 blocks. GC_FILES_TO_LOCKS is set to A,B:44

Block 1 of a file does not necessarily begin with lock 1; a hashing function

determines which lock a file begins with. In file A, which has 24 blocks, block 1

hashes to lock 32. In file B, which has 20 blocks, block 1 hashes to lock 28.

Figure 9–3 Hashed PCM Locks Covering Blocks in Multiple Files

In Figure 9–3, locks 32 through 44 and 1 through 3 are used to cover 2 blocks each.

Locks 4 through 11 and 28 through 31 cover 1 block each; and locks 12 through 27

cover no blocks at all!

In a worst case scenario, if two files hash to the same lock as a starting point, then

all the common locks will cover two blocks each. If your files are large and have

multiple blocks per lock (on the order of 100 blocks per lock), then this is not an

important issue.

32 33 34 35

36 37 38 39

40 41 42 43

44 1 2 3

32 33 34 35

36 37 38 39

40 41 42 43

44 1 2 3

File A File B

Y

1 block per lock

2 blocks per lock

4 5

8 9 10 11

6 7

28 29 30 31

X

PCM Locks and How They Work

9-8 Oracle8i Parallel Server Concepts and Administration

Periodicity of Hashed PCM Locks
You should also consider the periodicity of PCM locks. Figure 9–4 shows a file of 30

blocks which is covered by 6 PCM locks. This file has hashed to begin with lock

number 5. As suggested by the shaded blocks covered by PCM lock number 4, use

of each lock forms a pattern over the blocks of the file.

Figure 9–4 Periodicity of Hashed PCM Locks

Pinging: Signaling the Need to Update
In OPS, a particular data block can only be modified by one instance at a time. If

one instance modifies a data block that another instance needs, whether pinging is

required depends on the type of request the requesting instance submits for the

block.

If the requesting instance wants the block for modification, then the holding

instance’s locks on the data block must be converted accordingly. The first instance

must write the block to disk before the requesting instance can read it. This is

known as pinging a block.

BSP (Block Server Process) uses the IDLM facility to signal a need between the two

instances. If the requesting instance only wants the block in CR mode, the BSP of

the holding instance transmits a CR version of the block to the requesting instance

by way of the interconnect. In this scenario, pinging is unnecessary.

Data blocks are only pinged when a block held in exclusive current (XCUR) state in

the buffer cache of one instance is needed by a different instance for modification. If

an instance has a block in SHARE mode, it will be pinged if another instance needs

it XCUR. In some cases, therefore, the number of PCM locks covering data blocks

may have little effect on whether a block gets pinged.

5 6 1 2

4 5 6 1

3 4 5 6

2 3 4 5

1 2 3 4

6 1 2 3

3

2

1

6

5

4

PCM Locks and How They Work

Parallel Cache Management Instance Locks 9-9

An instance can relinquish an exclusive lock on a block and still have a row lock on

it: pinging is independent of whether a commit has occurred. You can modify a

block, but whether it is pinged is independent of whether you have made the

commit.

Partitioning to Avoid Pinging
If you have partitioned data across instances and are doing updates, you can have a

million blocks on each of the different instances. Each block is covered by one PCM

lock yet there are no forced reads or forced writes.

As shown in Figure 9–5, assume a single PCM lock covers one million data blocks in

a table and the blocks in that table are read from or written into the SGA of instance

X. Assume another single PCM lock covers another million data blocks in the table

that are read or written into the SGA of instance Y. Regardless of the number of

updates, there will be no forced reads or writes on data blocks between instance X

and instance Y.

Figure 9–5 Partitioning Data to Avoid Pinging

With read-only data, both instance X and instance Y can hold the PCM lock in

shared mode without causing pinging. This scenario is illustrated in Figure 9–6.

1 million
data blocks

1 million
data blocks

PCM Lock 1

PCM Lock 2

read/write

read/write

Instance Y

Instance X

PCM Locks and How They Work

9-10 Oracle8i Parallel Server Concepts and Administration

Figure 9–6 No Pinging of Read-only Data

Lock Mode and Buffer State
The state of a block in the buffer cache relates directly to the mode of the lock held

upon it. For example, if a buffer is in exclusive current (XCUR) state, you know that

an instance owns the PCM lock in exclusive mode. There can be only one XCUR

version of a block in the database, but there can be multiple SCUR versions. To

perform a modification, a process must get the block in XCUR mode.

Finding the State of a Buffer
To learn the state of a buffer, check the STATUS column of the V$BH dynamic

performance table. This table provides information about each buffer header.

How Buffer State and Lock Mode Change
Figure 9–7 shows how buffer state and lock mode change as instances perform

various operations on a given buffer. Lock mode is shown in parentheses.

Table 9–1 PCM Lock Mode and Buffer State

PCM Lock Mode Buffer State Name Description

X XCUR Instance has an EXCLUSIVE lock for this
buffer.

S SCUR Instance has a SHARED lock for this buffer.

N CR Instance has a NULL lock for this buffer.

read only

read only

Instance Y

Instance X

PCM Lock 1
2 million

data blocks

PCM Locks and How They Work

Parallel Cache Management Instance Locks 9-11

Figure 9–7 How State of Buffer and Lock Mode Change

In Figure 9–7, the three instances start out with blocks in shared current mode, and

shared locks. When Instance 1 performs an update on the block, its lock mode on

the block changes to exclusive mode (X). The shared locks owned by Instance 2 and

Instance 3 convert to null mode (N). Meanwhile, the block state in Instance 1

becomes XCUR, and in Instance 2 and Instance 3 becomes CR. These lock modes are

compatible. Similar conversions of lock mode and block state occur when Instance 2

performs a SELECT operation on the block, and when Instance 3 performs a

SELECT operation on it.

Lock Modes May Be Compatible or Incompatible
When one process owns a lock in a given mode, another process requesting a lock

in any particular mode succeeds or fails as shown in Table 9–2.

Instance 1 Instance 2 Instance 3

SCUR (S) SCUR (S) SCUR (S)

XCUR (X) CR (N) CR (N)

SCUR (S) SCUR (S) CR (N)

SCUR (S) SCUR (S) SCUR (S)

UPDATE

SELECT

SELECT

PCM Locks and How They Work

9-12 Oracle8i Parallel Server Concepts and Administration

Table 9–2 Lock Mode Compatibility

Lock
Requested:

Lock Owned

Null SS SX S SSX X

NULL SUCCEED SUCCEED SUCCEED SUCCEED SUCCEED SUCCEED

SS SUCCEED SUCCEED SUCCEED SUCCEED SUCCEED FAIL

SX SUCCEED SUCCEED SUCCEED FAIL FAIL FAIL

S SUCCEED SUCCEED FAIL SUCCEED FAIL FAIL

SSX SUCCEED SUCCEED FAIL FAIL FAIL FAIL

X SUCCEED FAIL FAIL FAIL FAIL FAIL

How Initialization Parameters Control Blocks and PCM Locks

Parallel Cache Management Instance Locks 9-13

How Initialization Parameters Control Blocks and PCM Locks
This section explains how certain initialization parameters control blocks and PCM

locks.

■ GC_* Initialization Parameters

■ Handling Data Blocks

GC_* Initialization Parameters
PCM locks are controlled by the initialization parameters listed in Table 9–3. Be sure

to set all of these parameters for your application.

How Initialization Parameters Control Blocks and PCM Locks

9-14 Oracle8i Parallel Server Concepts and Administration

Table 9–3 Parameters Which Control PCM Locks

Parameter Description Value

GC_FILES_TO_LOCKS Gives the mapping of hashed and
releasable locks to blocks within each
datafile.

The meaning of this parameter has
changed. Previously, files not
mentioned in this parameter (or files
added later) were assigned the
remaining hashed locks. Files not
mentioned in this parameter use
releasable locks. You can now have
multiple entries of
GC_FILES_TO_LOCKS.

The configuration string for
GC_FILES_TO_LOCKS now includes a
value of zero for the number of locks.
This indicates that the blocks are
protected by fine grain locks.

Instances must have identical values.

GC_RELEASABLE_LOCKS Sets the number of locks which will
be used for DBA locks.

Defaults to the value of
DB_BLOCK_BUFFERS. Normally this
value is optimal, and you should not
change it.

In versions prior to Oracle8, setting this
parameter to a value less than
DB_BLOCK_BUFFERS was ineffective:
the value was automatically returned to
this default. In Oracle8, lower settings are
valid. If you have migrated from an
earlier version, check the setting of this
parameter to avoid negative effects on
performance.

GC_ROLLBACK_LOCKS For each rollback segment, specifies
the number of instance locks
available for simultaneously
modified rollback segment blocks.

The default value is to use releasable
locks for each rollback segment.

See Also: Oracle8i Reference for complete specifications for these

parameters and Chapter 15, "Allocating PCM Instance Locks",

provides information on how to set these parameters.

Two Methods of PCM Locking: Fixed and Releasable

Parallel Cache Management Instance Locks 9-15

Handling Data Blocks
Do not allocate PCM locks for files that only contain the following, because class 1

blocks are not used for these files:

■ Temporary tables for internal sorts. These are class 2 blocks.

■ Rollback segments. These are protected by GC_ROLLBACK_LOCKS.

Two Methods of PCM Locking: Fixed and Releasable
This section compares the two methods for PCM locking: fixed (hashed) and

releasable locking. You can use either or both types of PCM locks to protect datafile

blocks.

■ IDLM Lock Elements and PCM Locks

■ Number of Blocks per PCM Lock

■ Fine Grain Locking: Locks for One or More Blocks

■ How Fine Grain Locking Works

■ Performance Effects of Releasable Locking

■ Applying Fine Grain and Hashed Locking to Different Files

IDLM Lock Elements and PCM Locks
Figure 9–8 illustrates the correspondence of lock elements to blocks in hashed and

fine grain locking. A lock element (LE) is an Oracle-specific data structure that

represents an IDLM lock. There is a one-to-one correspondence between a lock

element and a PCM lock in the IDLM.

Two Methods of PCM Locking: Fixed and Releasable

9-16 Oracle8i Parallel Server Concepts and Administration

Figure 9–8 Hashed Locking and DBA Fine Grain Locking

Lock Elements for Fixed PCM Locks
For both fixed PCM locks and fine grain locks, you can specify more than 1 block

per lock element. The difference is that by default fixed PCM locks are not

releasable; the lock element name is "fixed".

When the lock element is pinged, other modified blocks owned by that lock element

are written along with the needed one. For example, in Figure 9–8, if LE is pinged

when block DBA2 is needed, blocks DBA1, DBA3, DBA4, and DBA5 are all written

to disk as well—if they have been modified.

Lock Elements for Fine Grain PCM Locks
In fine grain locking, the name of the lock element is the name of the resource inside

the IDLM.

Although a fixed number of lock elements cover potentially millions of blocks, the

lock element names change over and over again as they are associated with specific

blocks that are requested. The lock element name (for example, LE7,1) contains the

database block address (7) and class (1) of the block it covers. Before a lock element

can be reused, the IDLM lock must be released. You can then rename and reuse the

lock element, creating a new resource in the IDLM if necessary.

When using fine grain locking, you can set your system with many more potential

lock names, since they do not need to be held concurrently. However, the number of

blocks mapped to each lock is configurable in the same way as hashed locking.

LE

DBA1 DBA2 DBA3

LE1,1 LE2, 1 LE3,1

DBA1 DBA2 DBA3

DBA4 DBA5

LE4,1 LE5,1

DBA4 DBA5

DBA Fine Grain Locking: 1 Block per Lock

Hashed Locking, or Fine Grain Locking with > 1 Block per Lock

Two Methods of PCM Locking: Fixed and Releasable

Parallel Cache Management Instance Locks 9-17

Lock Elements for DBA Fine Grain PCM Locks
In fine grain locking you can set a one-to-one relationship between lock elements

and blocks. Such an arrangement, illustrated in Figure 9–8, is called DBA locking.

Thus if LE2,1 is pinged, only block DBA2 is written to disk.

Number of Blocks per PCM Lock
This section explains the ways in which hashed locks and fine grain locks can differ

in lock granularity.

Fixed Locks for Multiple Blocks
Fixed PCM locks can protect more than one Oracle database block. The mapping of

PCM locks to blocks in the database is determined on a file-by-file basis using

initialization parameters specified when the first OPS instance is started. The

parameters can specify that the PCM lock protects a range of contiguous blocks

within the file.

Hashed locks are useful in the following situations:

:

Hashed locks may cause extra cross-instance lock activity since conflicts may occur

between instances that modify different database blocks. Resolution of this false

conflict ("false pinging") may require writing several blocks from the cache of the

instance that currently owns the lock.

Table 9–4 When to Use Hashed PCM Locks

Situation Reason

When the data is mostly read-only. A few hashed locks can cover many blocks without
requiring frequent lock operations. These locks are
released only when another instance needs to modify
the data. Hashed locking can perform up to 100%
faster than fine grain locking on read-only data with
the Parallel Query Option.
If the data is strictly read-only, consider designating
the tablespace itself as read-only. The tablespace will
not then require any PCM locks.

When the data can be partitioned
according to the instance which is
likely to modify it.

Hashed locks which are defined to match this
partitioning allow instances to hold disjoint IDLM
lock sets, reducing the need for IDLM operations.

When a large amount of data is
modified by a relatively small set of
instances.

Hashed locks permit access to a new database block
to proceed without IDLM activity, if the lock is
already held by the requesting instance.

Two Methods of PCM Locking: Fixed and Releasable

9-18 Oracle8i Parallel Server Concepts and Administration

Fine Grain Locking: Locks for One or More Blocks
A fine grain lock can protect one or more Oracle database blocks. If you create a

one-to-one correspondence between PCM locks and datablocks, then contention

will occur only when instances need data from the same block. This level of fine

grain locking is known as DBA locking. (A DBA is the data block address of a single

block of data.) If you assign more than one block per lock, then contention will

occur as in hashed locking.

On most systems an instance could not possibly hold a lock for each block of a

database since SGA memory or IDLM locking capabilities would be exceeded.

Therefore, instances acquire and release fine grain locks as required. Since fine grain

locks, lock elements, and resources are renamed in the IDLM and reused, a system

can employ fewer of them. The value of DB_BLOCK_BUFFERS is the recommended

minimum number of releasable locks you should allocate.

DBA fine grain locks are useful when a database object is updated frequently by

several instances. This advantage is gained as follows:

■ Conflicts occur only when the same block is needed by the two instances

■ Only the required block is written to disk by the instance currently owning the

PCM lock in exclusive mode

A disadvantage of fine grain locking is that overhead is incurred for each block

read, and performance will be affected accordingly. (Acquiring a new lock and

releasing it each time causes more overhead through the IDLM than converting the

mode of an existing lock from null mode to exclusive mode and back, as is done in

hashed locking.)

See Also: "Releasable Lock Example" on page 15-9.

Two Methods of PCM Locking: Fixed and Releasable

Parallel Cache Management Instance Locks 9-19

How Fine Grain Locking Works
Figure 9–9 shows how fine grain locking operates.

Figure 9–9 Lock Elements Coordinate Blocks (by Fine Grain Locking)

The foreground process checks in the SGA to see if the instance owns a lock on the

block.

■ If the lock is not owned does not exist, the foreground process creates one by

releasing another lock.

■ If the instance does own the lock, but in the wrong mode, then the foreground

process converts the lock (for example, from shared to exclusive mode).

A lock element is created in either of two modes: fixed or releasable

Buffer Cache

LELELELE

Lock Manager

Instance 1

Buffer Cache

LM Locks LM Locks

c g

Resource LMD0. . .

SGA SGA LELELELE

Lock Manager

Instance 2

LMD0

Two Methods of PCM Locking: Fixed and Releasable

9-20 Oracle8i Parallel Server Concepts and Administration

■ Fixed locks (whether hashed or fine grain) create a lock element in fixed mode,

which is always valid. This mode is static; lock elements stay the same, once

allocated.

■ Releasable locks (whether fine grain or hashed) create a lock element in

non-fixed mode; these lock element names can change, and the block or blocks

covered can change. Lock elements in non-fixed mode can be valid, old, or free.

If the valid bit is set then a lock is owned on the resource in the IDLM. If not set,

there is no lock. If it is free, then there is a lock but we have unlinked the buffer

from the lock element, so it is on the least recently used list of free lock

elements.

The V$LOCK_ELEMENT view shows the status of the lock elements.

Performance Effects of Releasable Locking
Releasable locking may affect performance of OPS. Since releasable locks are more

expensive (since they may cause a release lock and get lock on a buffer get), some

operations may show a decreased level of performance when run in this mode.

However, other types of access to the database will improve with releasable fine

grain locks. Fine grain locking may have the following results:

■ Read-only scans of tables may require more lock operations. If this happens,

you can use hashed locking.

■ There may be a reduction of false conflicts on high-contention blocks or objects.

If this happens, fine grain locking is a good choice.

■ The system has more expensive lock operations and a lower false conflict rate

for low concurrency data blocks. If this happens you must examine your

priorities and decide whether this is a reasonable trade-off for your application.

■ Grouping with fine grain locks might be good for table scans.

Note: Valid lock elements have a lock in the IDLM; invalid lock

elements do not. A free lock element indicates that a lock exists in

the IDLM which is not currently linked to this buffer; it is waiting

on the LRU list. If a lock element is old, then there is a valid lock

handle for the old name. It must be given a new name before

Oracle can use it.

Two Methods of PCM Locking: Fixed and Releasable

Parallel Cache Management Instance Locks 9-21

Applying Fine Grain and Hashed Locking to Different Files
Each datafile can use one or the other method of locking. For best results, you may

need to use hashed locks on some datafiles, and fine grain locking on other

datafiles.

You can selectively apply hashed and fine grain locking on different files. For

example, you could apply locks as follows on a set of files:

GC_FILES_TO_LOCKS = "1=100:2=0:3=1000:4-5=0EACH"

GC_RELEASABLE_LOCKS=10000

Table 9–5 Selective Application of Hashed and Fine Grain Locking

File Number Locking Mode Value in GC_FILES_TO_LOCKS

1 Hashed 100

2 Fine grain 0

3 Hashed 1000

4 Fine grain 0

5 Fine grain 0

How Oracle Assigns Locks to Blocks

9-22 Oracle8i Parallel Server Concepts and Administration

How Oracle Assigns Locks to Blocks
This section explains how hashed locks and fine grain locks are assigned to blocks.

(DBA locks, of course, have a one-to-one correspondence to blocks.)

■ File to Lock Mapping

■ Number of Locks per Block Class

■ Lock Element Number

File to Lock Mapping
Two data structures in the SGA control file to lock mapping. The first structure

maps each file (DB_FILES) to a bucket (index) in the second structure. This structure

contains information on the number of locks allocated to this bucket, base lock

number and grouping factor. To find the number of locks for a tablespace, you must

count the number of actual fixed locks which protect the different files. If files share

locks, you count the shared locks only once.

1. To find the number of locks for a tablespace, begin by performing a select from

the FILE_LOCK data dictionary table:

SELECT * FROM FILE_LOCK ORDER BY FILE_ID;

For example, Oracle would respond with something similar to the following if

you had set GC_FILES_TO_LOCKS="1=500:5=200":

FILE_ID FILE_NAME TS_NAME START_LK NLOCKS BLOCKING
------- --------------- -------------- ---------- ---------- ----------
 1 \\.\OPS_SYS01 SYSTEM 100 1500 1
 2 \\.\OPS_USR01 USER_DATA 1600 3000 1
 3 \\.\OPS_RBS01 ROLLBACK_DATA 0 100 1
 4 \\.\OPS_TMP01 TEMPORARY_DATA 0 100 1
 5 \\.\OPS_USR03 TRAVEL_DEMO 4600 4000 1
 6 \\.\PROBLEM_REP PROBLEM_REP 0 100 1

6 rows selected.

2. Count the number of locks in the tablespace by summing the number of locks

(value of the NLOCKS column) only for rows with different values in the
START_LCK column.

In this example, both file1 and file5 have different values for START_LCK. You

therefore sum their NLOCKS values for a total of 700 locks.

How Oracle Assigns Locks to Blocks

Parallel Cache Management Instance Locks 9-23

If, however, you had set GC_FILES_TO_LOCKS="1-2=500:5=200", your results

would look like the following:

FILE_ID FILE_NAME TABLESPACE_NAME START_LK NLOCKS BLOCKING
1 file1 system 1 500 1
1 file2 system 1 500 1
1 file3 system 0
1 file4 system 0
1 file5 system 501 200 1

This time, file1 and file 2 have the same value for START_LCK; this indicates that

they share the locks in question. File5 has a different value for START_LCK. You

therefore count once the 500 locks shared by files 1 and 2, and add an additional 200

locks for file 5, for a total of 700.

Number of Locks per Block Class
You need only concern yourself with the number of blocks in the data and undo

block classes. Data blocks (class 1) contain data from indexes or tables. System undo

header blocks (class 10) are also known as the rollback segment headers or

transaction tables. System undo blocks (class 11) are part of the rollback segment

and provide storage for undo records.

User undo segment n header blocks are identified as class 10 + (n*2), where n
represents the rollback segment number. A value of n = 0 indicates a system

rollback segment; a value of n > 0 indicates a non-system rollback segment.

Similarly, user undo segment n header blocks are identified as class 10 + ((n*2) + 1).

The following query shows the number of locks allocated per class:

 SELECT CLASS, COUNT(*)
 FROM V$LOCK_ELEMENT
 GROUP BY CLASS
 ORDER BY CLASS;

The following query shows the number of fixed (non-releasable) PCM locks:

 SELECT COUNT(*)
 FROM V$LOCK_ELEMENT
 WHERE bitand(flag, 4)!=0;

The following query shows the number of fine grain PCM locks:

 SELECT COUNT(*)
 FROM V$LOCK_ELEMENT
 WHERE bitand(flag, 4)=0;

Examples: Mapping Blocks to PCM Locks

9-24 Oracle8i Parallel Server Concepts and Administration

Lock Element Number
For a data class block the file number is determined from the data block address

(DBA). The bucket is found through the X$KCLFI dynamic performance table. Data

class blocks are hashed to lock element numbers as follows:

Other block classes are hashed to lock element numbers as follows:

(DBA) modulo (locks_in_class)

Examples: Mapping Blocks to PCM Locks
■ Setting GC_FILES_ TO_LOCKS

■ More Sample Hashed Settings of GC_FILES_TO_LOCKS

■ Sample Fine Grain Setting of GC_FILES_TO_LOCKS

Setting GC_FILES_ TO_LOCKS
The following examples show different ways of mapping blocks to PCM locks, and

how the same locks are used on multiple datafiles.

Note: These examples discuss very small sample files to illustrate

important concepts. The actual files you manage will be

significantly larger.

modulo (locks) + (start)
DBA

grouping_factor

Examples: Mapping Blocks to PCM Locks

Parallel Cache Management Instance Locks 9-25

Figure 9–10 Mapping PCM Locks to Data Blocks

Example 1 Figure 9–10 shows an example of mapping blocks to PCM locks for the

parameter value GC_FILES_TO_LOCKS = "1=60:2-3=40:4=140:5=30".

In datafile 1 shown in Figure 9–10, 60 PCM locks map to 120 blocks, which is a

multiple of 60. Each PCM lock therefore covers two data blocks.

In datafiles 2 and 3, 40 PCM locks map to a total of 160 blocks. A PCM lock can

cover either one or two data blocks in datafile 2, and two or three data blocks in

datafile 3. Thus, one PCM lock may cover three, four, or five data blocks across both

datafiles.

In datafile 4, each PCM lock maps exactly to a single data block, since there is the

same number of PCM locks as data blocks.

In datafile 5, 30 PCM locks map to 170 blocks, which is not a multiple of 30. Each

PCM lock therefore covers five or six data blocks.

Each of the PCM locks illustrated in Figure 9–10 can be held in either read-lock

mode or read-exclusive mode.

Data
File 4

Data
File 5

140 blocks 170 blocks 120 blocks

Data
File 1

Data
File 2

Data
File 3

60 blocks 100 blocks

PCM Locks
241 to 270

PCM Locks
101 to 240

PCM Locks
61 to 100

PCM Locks
1 to 60

5 or 6 blocks
per lock

1 block
per lock

3, 4, or 5
blocks per lock

2 blocks
per lock

Examples: Mapping Blocks to PCM Locks

9-26 Oracle8i Parallel Server Concepts and Administration

Example 2 The following parameter value allocates 500 PCM locks to datafile 1; 400

PCM locks each to files 2, 3, 4, 10, 11, and 12; 150 PCM locks to file 5; 250 PCM locks

to file 6; and 300 PCM locks collectively to files 7 through 9:

GC_FILES_TO_LOCKS = "1=500:2-4,10-12=400EACH:5=150:6=250:7-9=300"

This example assigns a total of (500 + (6*400) + 150 + 250 + 300) = 3600 PCM locks.

You may specify more than this number of PCM locks if you intend to add more

datafiles later.

Example 3 In Example 2, 300 PCM locks are allocated to datafiles 7, 8, and 9

collectively with the clause "7-9=300". The keyword EACH is omitted. If each of

these datafiles contains 900 data blocks, for a total of 2700 data blocks, then each

PCM lock covers 9 data blocks. Because the datafiles are multiples of 300, the 9 data

blocks covered by the PCM lock are spread across the 3 datafiles; that is, one PCM

lock covers 3 data blocks in each datafile.

Example 4 The following parameter value allocates 200 PCM locks each to files 1

through 3; 50 PCM locks to datafile 4; 100 PCM locks collectively to datafiles 5, 6, 7,

and 9; and 20 data locks in contiguous 50-block groups to datafiles 8 and 10

combined:

GC_FILES_TO_LOCKS = "1-3=200EACH 4=50:5-7,9=100:8,10=20!50"

In this example, a PCM lock assigned to the combined datafiles 5, 6, 7, and 9 covers

one or more data blocks in each datafile, unless a datafile contains fewer than 100

data blocks. If datafiles 5 to 7 contain 500 data blocks each and datafile 9 contains

100 data blocks, then each PCM lock covers 16 data blocks: one in datafile 9 and five

each in the other datafiles. Alternatively, if datafile 9 contained 50 data blocks, half

of the PCM locks would cover 16 data blocks (one in datafile 9); the other half of the

PCM locks would only cover 15 data blocks (none in datafile 9).

The 20 PCM locks assigned collectively to datafiles 8 and 10 cover contiguous

groups of 50 data blocks. If the datafiles contain multiples of 50 data blocks and the

total number of data blocks is not greater than 20 times 50 (that is, 1000), then each

PCM lock covers data blocks in either datafile 8 or datafile 10, but not in both. This

is because each of these PCM locks covers 50 contiguous data blocks. If the size of

datafile 8 is not a multiple of 50 data blocks, then one PCM lock must cover data

blocks in both files. If the sizes of datafiles 8 and 10 exceed 1000 data blocks, then

some PCM locks must cover more than one group of 50 data blocks, and the groups

might be in different files.

Examples: Mapping Blocks to PCM Locks

Parallel Cache Management Instance Locks 9-27

More Sample Hashed Settings of GC_FILES_TO_LOCKS
Examples 5, 6, and 7 show the results of specifying various values of

GC_FILES_TO_LOCKS. In the examples, files 1 and 2 each have 16 blocks of data.

Example 5 GC_FILES_TO_LOCKS="1-2=4"

In this example four locks are specified for files 1 and 2. Therefore, the number of

blocks covered by each lock is 8 ((16+16)/4). The blocks are not contiguous.

Figure 9–11 GC_FILES_TO_LOCKS Example 5

Example 6 GC_FILES_TO_LOCKS="1-2=4!8"

In this example four locks are specified for files 1 and 2. However, the locks must

cover 8 contiguous blocks.

Figure 9–12 GC_FILES_TO_LOCKS Example 6������������
File 2

File 1

Lock 1

Lock 2

Lock 3

Lock 4

��
File 2

File 1

Lock 1

Lock 2

Lock 3

Lock 4

�����������

Examples: Mapping Blocks to PCM Locks

9-28 Oracle8i Parallel Server Concepts and Administration

Example 7 GC_FILES_TO_LOCKS="1-2=4!4EACH"

In this example four locks are specified for file 1 and four for file 2. The locks must

cover 4 contiguous blocks.

Figure 9–13 GC_FILES_TO_LOCKS Example 7

Sample Fine Grain Setting of GC_FILES_TO_LOCKS
The following example shows fine grain locking mixed with hashed locking.

Example 8 GC_FILES_TO_LOCKS="1=4:2=0"

File 1 has hashed PCM locking with 4 locks. On file 2, fine grain locks are allocated

on demand—none are initially allocated.

Figure 9–14 GC_FILES_TO_LOCKS Example 8

��
�
���������������

������
File 2

File 1 Lock 1

Lock 2

Lock 3

Lock 4

Lock 5

Lock 6

Lock 7

Lock 8

�������������
File 2

File 1

Lock 1

Lock 2

Lock 3

Lock 4

Non-PCM Instance Locks 10-1

10
Non-PCM Instance Locks

This chapter describes some of the most common non-PCM instance locks. It covers

the following information:

■ Overview

■ Transaction Locks (TX)

■ Table Locks (TM)

■ System Change Number (SC)

■ Library Cache Locks (N[A-Z])

■ Dictionary Cache Locks (Q[A-Z])

■ Database Mount Lock (DM)

Overview
This chapter explains how Oracle uses non-PCM locks to manage locks for

transactions, tables, and other entities within an Oracle environment. Prefixes for

each type of lock, such as "TX" for transaction locks and "TM" for table locks, refer

to the naming scheme Oracle uses to identify them.

Figure 10–1 highlights non-PCM locks in relation to other locks used in Oracle.

See Also: Chapter 16, "Ensuring IDLM Capacity for Resources

and Locks", for details on how to calculate the number of non-PCM

resources and locks to configure in the Integrated Distributed Lock

Manager (IDLM).

Overview

10-2 Oracle8i Parallel Server Concepts and Administration

Figure 10–1 Oracle Locking Mechanisms: Non-PCM Locks

Whereas PCM locks are static (you allocate them when you design your

application), non-PCM locks are very dynamic. Their number and corresponding

space requirements will change as your system’s initialization parameter values

change.

See Also: Oracle8i Reference for descriptions of all non-PCM locks.

Local Enqueues

Local Latches

Instance Locks

Local Locks

Global Enqueues

TX

DML/Table locks

SCN

Mount lock

Global

PCM Locks

Table Locks (TM)

Non-PCM Instance Locks 10-3

Transaction Locks (TX)
Row locks are locks that protect selected rows. A transaction acquires a global

enqueue and an exclusive lock for each individual row modified by one of the

following statements:

■ INSERT

■ UPDATE

■ DELETE

■ SELECT with the FOR UPDATE clause

These locks are stored in the block, and each lock refers to the global transaction

enqueue.

A transaction lock is acquired in exclusive mode when a transaction initiates its first

change. It is held until the transaction does a COMMIT or ROLLBACK. SMON also

acquires it in exclusive mode when recovering (undo) a transaction. Transaction

locks are used as a queuing mechanism for processes awaiting the release of an

object locked by a transaction in progress.

Table Locks (TM)
Table locks are DML locks that protect entire tables. A transaction acquires a table

lock when a table is modified by one of the following statements: INSERT,

UPDATE, DELETE, SELECT with the FOR UPDATE clause, and LOCK TABLE. A

table lock can be held in any of several modes: null (N), row share (RS), row

exclusive (RX), share lock (S), share row exclusive (SRX), and exclusive (X).

When an instance attempts to mount the database, a table lock is used to ensure that

all participating instances either have DML_LOCKS = 0 or DML_LOCKS != 0. If

they do not, than error ORA-61 is returned and the mount attempt fails. Table locks

are acquired during the execution of a transaction when referencing a table with a

DML statement so that the object is not dropped or altered during the execution of

the transaction. This occurs if and only if the DML_LOCKS parameter is non-zero.

You can also selectively turn table locks on or off for a particular table, using the

statement:

 ALTER TABLE tablename DISABLE|ENABLE TABLE LOCK

If DML_LOCKS is set to zero, then no DDL operations are allowed. The same is true

for tables which have disabled table locks.

System Change Number (SC)

10-4 Oracle8i Parallel Server Concepts and Administration

System Change Number (SC)
The System Change Number (SCN) is a logical timestamp Oracle uses to order

events within a single instance, and across all instances. One of the schemes Oracle

uses to generate SCNs is the lock scheme.

The lock SCN scheme keeps the global SCN in the value block of the SCN lock. This

value is incremented in response to many database events, most notably COMMIT

WORK. A process incrementing the global SCN will get the SCN lock in exclusive

mode, increment the SCN, write the lock value block, and downgrade the lock.

Access to the SCN lock value is batched. Oracle keeps a cache copy of the global

SCN in memory. A process may get an SCN without any communication overhead

by reading the SCN fetched by other processes.

The SCN implementation can differ from platform to platform. On most platforms,

Oracle uses the lock SCN scheme when the

MAX_COMMIT_PROPAGATION_DELAY initialization parameter is smaller than a

platform-specific threshold (typically 7). Oracle uses the Lamport SCN scheme

when MAX_COMMIT_PROPAGATION_DELAY is larger than the threshold.You

can examine the alert log after an instance is started to see which SCN generation

scheme has been picked.

Library Cache Locks (N[A-Z])
When a database object (table, view, procedure, function, package, package body,

trigger, index, cluster, synonym) is referenced during parsing or compiling of a SQL

(DML/DDL) or PL/SQL statement, the process parsing or compiling the statement

acquires the library cache lock in the correct mode. In Oracle8 the lock is held only

until the parse or compilation completes (for the duration of the parse call).

See Also: "Minimizing Table Locks to Optimize Performance" on

page 16-6 to consider disabling table locks for improved

performance.

See Also: Your Oracle system-specific documentation for

information about the SCN implementation.

Database Mount Lock (DM)

Non-PCM Instance Locks 10-5

Dictionary Cache Locks (Q[A-Z])
The data dictionary cache contains information from the data dictionary, the

meta-data store. This cache provides efficient access to the data dictionary.

Creating a new table, for example, causes the meta-data of that table to be cached in

the data dictionary. If a table is dropped, the meta-data needs to be removed from

the data dictionary cache. To synchronize access to the data dictionary cache, latches

are used in exclusive mode and in single shared mode. Instance locks are used in

multiple shared (parallel) mode.

In Oracle Parallel Server (OPS), the data dictionary cache on all nodes may contain

the meta-data of a table that gets dropped on one instance. The meta-data for this

table needs to be flushed from the data dictionary cache of every instance. This is

performed and synchronized by instance locks.

Database Mount Lock (DM)
The mount lock shows whether or not any instance has mounted a particular

database. This lock is only used with OPS. It is the only multi-instance lock used by

OPS in exclusive mode, where it prevents another instance from mounting the

database in shared mode.

In OPS single shared mode, this lock is held in shared mode. Another instance can

successfully mount the same database in shared mode. In OPS exclusive mode,

however, another instance will not able to get the lock.

Database Mount Lock (DM)

10-6 Oracle8i Parallel Server Concepts and Administration

Space Management and Free List Groups 11-1

11
Space Management and Free List Groups

Thus would I double my life’s fading space;
For he that runs it well, runs twice his race.

Abraham Cowley, Discourse xi, Of Myself

This chapter explains space management concepts:

■ How Oracle Handles Free Space

■ SQL Options for Managing Free Space

■ Managing Free Space on Multiple Instances

■ Free Lists Associated with Instances, Users, and Locks

■ Controlling Extent Allocation

How Oracle Handles Free Space
This section provides an overview of how Oracle handles free space. It contains the

following sections:

■ Overview

■ Database Storage Structures

■ Structures for Managing Free Space

■ Example: Free List Groups

See Also: Chapter 17, "Using Free List Groups to Partition Data",

for a description of space management procedures.

How Oracle Handles Free Space

11-2 Oracle8i Parallel Server Concepts and Administration

Overview
Oracle Parallel Server (OPS) enables transactions running on separate instances to

insert and update data in the same table concurrently, without contention to locate

free space for new records.

Figure 11–1 Instances Concurrently Inserting to a Table

To take advantage of this capability, you must actively manage free space in your

database using several structures which are defined in this chapter.

For each database object such as a table, cluster, or index, Oracle keeps track of

blocks with space available for inserts, or for updates which may cause rows to

exceed the space available in their original block. A user process that needs free

space can look in the master free list of blocks that contain free space. If the master

free list does not contain a block with enough space to accommodate the user

process, Oracle allocates a new extent.

New extents that are automatically allocated to a table add their blocks to the

master free list. This can eventually result in contention for free space among

multiple instances on a parallel server because the free space contained in

automatically allocated extents cannot be reallocated to any group of free lists. You

can have more control over free space if you specifically allocate extents to

instances; in this way you can minimize contention for free space.

Database Storage Structures
This section describes basic structures of database storage:

■ Segments and Extents

■ High Water Mark

Instance InstanceX Y

Table 1

How Oracle Handles Free Space

Space Management and Free List Groups 11-3

Segments and Extents
A segment is a unit of logical database storage. Oracle allocates space for segments

in smaller units called extents. An extent is a specific number of contiguous data

blocks allocated for storing a specific type of information.

A segment thus comprises a set of extents allocated for a specific type of data

structure. For example, each table’s data is stored in its own data segment, while

each index’s data is stored in its own index segment.

A segment’s extents are stored in the same tablespace. However, they may or may

not be contiguous on disk. The segments can span files, but individual extents

cannot.

Although you can allocate additional extents, the blocks themselves are allocated

separately. If you allocate an extent to a specific instance, the blocks are immediately

allocated to the free list. However, if the extent is not allocated to a specific instance,

then the blocks themselves are allocated only when the high water mark moves.

High Water Mark
The high water mark is the boundary between used and unused space in a segment.

As requests are received for new free blocks (which cannot be satisfied by existing

free lists), the block to which the high water mark points becomes a used block, and

the high water mark is advanced to the next block. In other words, the segment

space to the left of the high water mark is used, and the space to the right of it is

unused.

Figure 11–2 shows a segment consisting of three extents containing 10K, 20K, and

30K of space, respectively. The high water mark is in the middle of the second

extent. Thus, the segment contains 20K of used space to the left of the high water

mark, and 40K of unused space to the right of the high water mark.

How Oracle Handles Free Space

11-4 Oracle8i Parallel Server Concepts and Administration

Figure 11–2 High Water Mark

Structures for Managing Free Space
Oracle uses the following structures to manage free space:

■ Transaction Free Lists

■ Process Free Lists

■ Free List Groups

■ The Master Free List

Process free lists relieve contention for free space among processes inside the

instance, even if multiple instances can hash to a single free list group. Free list

groups relieve forced reads/writes between instances. Process free lists and free list

groups are supported on all database objects alike: tables, indexes, and clusters.

Transaction Free Lists
A transaction free list is a list of blocks freed by uncommitted transactions. They exist

by default. When transactions are committed, the freed blocks eventually go to the

master free list as described under the following heading.

See Also: Oracle8i Concepts for more information about segments

and extents.

Extent 1 Extent 3

10K 30K

UNUSED SPACE = 40K

High
Water
Mark

Segment

20K

Extent 2

How Oracle Handles Free Space

Space Management and Free List Groups 11-5

Process Free Lists
A process free list, also termed simply a "free list", is a list of free data blocks that can

be drawn from a number of different extents within the segment.

Blocks in free lists contain free space greater than PCTFREE. This is the percentage

of a block to be reserved for updates to existing rows. In general, blocks included in

process free lists for a database object must satisfy the PCTFREE and PCTUSED

constraints described in the chapter "Data Blocks, Extents, and Segments" in

Oracle8i Concepts.

Process free lists must be specifically enabled by the user. You can specify the

number of process free lists desired by setting the FREELISTS parameter when you

create a table, index or cluster. The maximum value of the FREELISTS parameter

depends on the Oracle block size on your system. In addition, for each free list, you

need to store a certain number of bytes in a block to handle overhead.

Free List Groups
A free list group is a set of free lists you can specify for use by one or more particular

instances. Each free list group provides free data blocks to accommodate inserts or

updates on tables and clusters, and is associated with instance(s) at startup.

A parallel server has multiple instances, and process free lists alone cannot solve the

problem of contention. Free list groups, however, effectively reduce pinging

between instances.

When enabled, free list groups divide the set of free lists into subsets. Descriptions

of process free lists are stored in separate blocks for the different free list groups.

Each free list group block points to the same free lists, except that every instance

gets its own. (Or, in the case of more instances than free list groups, multiple

instances hash into the same free list group.) This ensures that the instances do not

compete for the same blocks.

Note: The reserved area and the number of bytes required per free

list depend upon your platform. For more information, see your

Oracle system-specific documentation.

Note: In OPS, always use free list groups along with process free

lists.

How Oracle Handles Free Space

11-6 Oracle8i Parallel Server Concepts and Administration

The Master Free List
The master free list is a repository of blocks which contain available space, drawn

from any extent in the table. It exists by default, and includes:

■ Blocks which were made free by a committed transaction. These go on the

master free list when there is a need for free blocks.

■ Subsequent space allocations not specifically associated with any free list group.

When the high water mark moves, then blocks go on the master free list.

If free list groups exist, each group has its own master free list. There is, in addition,

a central master free list which is mostly used for parallel operations.

Avoiding Contention for the Segment Header and Master Free LIst
A highly concurrent environment has potential contention for the segment header,

which contains the master free list.

■ If free list groups exist, then the segment header only points to the central master

free list. In addition, every free list group block contains pointers to its own

master free list, transaction free lists, and process free lists.

■ If free list groups do not exist, then the segment header contains pointers to the

master free list, transaction free lists, and process free lists.

In a single instance environment, multiple process free lists help to solve the

problem of many users seeking free data blocks by easing contention on segment

header blocks.

In a multi-instance environment, as illustrated in Figure 11–3, process free lists

provide free data blocks from available extents to different instances. You can

partition multiple free lists so that extents are allocated to specific database

instances. Each instance hashes to one or more free list groups, and each group’s

header block points to process free lists.

If no free list groups are allocated, however, the segment header block of a file

points to the process free lists. Without free list groups, every instance must read the

segment header block in order to access the free lists.

How Oracle Handles Free Space

Space Management and Free List Groups 11-7

Figure 11–3 Contention for the Segment Header

Figure 11–4 shows the blocks of a file in which the master free list is stored in the

segment header block. Three instances are forced to read this block to obtain free

space. Because there is only one free list, there is only one insertion point. Process

free lists help reduce contention by spreading this insertion point over multiple

blocks, each of which will be accessed less often.

Instance InstanceX Y

O/S
Header

Oracle File
Header

0 1 2 3 4 5 6
DataDataDataData

Data Segment

Segment
Header

Free
List
1

Free
List
2

How Oracle Handles Free Space

11-8 Oracle8i Parallel Server Concepts and Administration

Figure 11–4 Contention for Master Free List

Example: Free List Groups

A Simple Case
Figure 11–5 illustrates the division of free space for a table into a master free list and

two free list groups, each of which contains three free lists. This example concerns a

well-partitioned application in which deletes occur. The master free list pictured is

the master free list for this particular free list group.

The table was created with one initial extent, after which extents 2 and 5 were

allocated to instance X, extents 3 and 4 were allocated to instance Y, and extent 6

was allocated automatically, but not to a particular instance. Notice the following:

■ The dark shaded blocks in the initial allocation and extent 6 represent the

master free list of free blocks.

■ The light gray blocks represent available free space in free list group X.

■ The medium gray blocks represent the available free space in free list group Y.

■ Extent 5 is newly allocated, thus all of its blocks are in free list group X.

■ Solid black blocks represent space freed by deletions, which returns to free list

groups X and Y.

Instance Instance InstanceX Y Z

O/S
Header

Oracle File
Header

Segment
Header

(Master
Free List)

0 1 2 3 4 5 6 7
DataDataDataDataData

Data Segment

How Oracle Handles Free Space

Space Management and Free List Groups 11-9

■ Unshaded blocks do not contain enough free space for inserts.

Each user process running on instance X uses one of the free lists in group X, and

each user process on instance Y uses one of the free lists in group Y. If more

instances start up, their user processes share free lists with instance X or Y.

A More Complicated Case
The simple case in Figure 11–5 becomes more complicated when you consider that

extents are not allocated to instances permanently, and that space allocated to one

instance cannot be used by another instance. Each free list group has its own master

free list. After allocation, some blocks go onto the master free list for the group,

some go to a process free list, and some do not belong to a free list at all. If the

application is totally partitioned, then once blocks are allocated to a given instance,

they stay with that instance. However, blocks can move from one instance to

another if the application is not totally partitioned.

Consider a situation where instance Y fills a block, takes it off the free list, and then

instance X frees the block. The block then goes to the free list of instance X, the

instance that freed it. If instance Y needs space, it cannot reclaim this block. Instance

Y can only obtain free space from its own free list group.

How Oracle Handles Free Space

11-10 Oracle8i Parallel Server Concepts and Administration

Figure 11–5 Groups of Free Lists for a Table

Free List Group YFree List Group X

New space

Freed space

Initial
Allocation

Allocated
to instance X

Allocated
to instance Y

Allocated
to instance X

Allocated
Automatically

Allocated
to instance Y

Extent 1 Extent 2 Extent 3 Extent 4 Extent 5 Extent 6

Instance Y
User Processes

Instance X
User processes

Free
List 1

Free
List 2

Free
List 3

Free
List 1

Free
List 2

Free
List 3

Common pool of free space from:

Initial allocation (MINEXTENTS)
automatic allocations

.

.

Managing Free Space on Multiple Instances

Space Management and Free List Groups 11-11

SQL Options for Managing Free Space
Several SQL options enable you to allocate process free lists and free list groups for

tables, clusters, and indexes. You can explicitly specify that new space for an object

be taken from a specific datafile. You can also associate free space with particular

free list groups, that can then be associated with particular instances.

The SQL statements include:

 CREATE TABLE [CLUSTER, INDEX]
 STORAGE
 FREELISTS
 FREELIST GROUPS
 ALTER TABLE [CLUSTER, INDEX]
 ALLOCATE EXTENT
 SIZE
 DATAFILE
 INSTANCE

You can use these SQL options with the initialization parameter

INSTANCE_NUMBER to associate data blocks with instances.

Managing Free Space on Multiple Instances
This section describes:

■ Partitioning Free Space into Multiple Free Lists

■ Partitioning Data with Free List Groups

■ How Free Lists and Free List Groups Are Assigned to Instances

Partitioning Free Space into Multiple Free Lists
You can partition free space for individual tables, clusters (other than hash clusters),

and indexes into multiple process free lists. Multiple free lists allow a process to

search a specific pool of blocks when space is needed, thus reducing contention

among users for free space. Within an instance, using free lists can reduce

contention if multiple processes are inserting into the same table.

See Also: Oracle8i SQL Reference for complete syntax of these

statements.

Managing Free Space on Multiple Instances

11-12 Oracle8i Parallel Server Concepts and Administration

Each table has a master free list of blocks with available space, and can also contain

multiple free lists. Before looking in the master free list, a user process scans the

appropriate free list to locate a block that contains enough space.

Partitioning Data with Free List Groups
The separation of free space into groups can improve performance by reducing

contention for free data blocks during concurrent inserting by multiple instances on

OPS. You can thus create groups of process free lists for OPS, each of which can

contain multiple free lists for a table, index, or cluster. You can use free list groups to

partition data by allocating extents to particular instances.

In general, all tables should have the same number of free list groups, but the

number of free lists within a group may vary, depending on the type and amount of

activity of each table.

Partitioning free space can particularly improve the performance of applications

that have a high volume of concurrent inserts, or updates requiring new space, from

multiple instances. Performance improvements also depend, of course, on your

operating system, hardware, data block size, and so on.

In a multi-instance environment, information about multiple free lists and free list

groups is not preserved upon import. If you use Export and Import to back up and

restore your data, it will be difficult to import the data so that it is partitioned again.

See Also: "Free Lists with Import and Export Utilities" and

Chapter 12, "Application Analysis" for more information on

partitioning data. Also see Oracle8i Tuning.

Managing Free Space on Multiple Instances

Space Management and Free List Groups 11-13

How Free Lists and Free List Groups Are Assigned to Instances
Figure 11–6 illustrates how free lists and free list groups are assigned to instances.

Figure 11–6 How Free Lists and Free List Groups Are Assigned

Using the statement ALTER SESSION INSTANCE_NUMBER, you can alter the

instance number to be larger than the value of MAXINSTANCES. Figure 11–6

shows how this possibility is taken into account: for the purposes of the internal

calculation whereby free list groups are assigned, the instance number is brought

back within the boundaries of MAXINSTANCES.

* Free lists are partitioned as follows: If there are 3 instances and 35 free list groups,

then instance 1 will handle the first twelve free list groups, instance 2 the next

twelve, and instance 3 the remaining eleven. The actual free list group block is

determined by hashing oracle_pid by the number of free list groups.

Yes No

Is INSTANCE_NUMBER

Yes No

Free lists are partitioned

INSTANCE_NUMBER =
(INSTANCE_NUMBER modulo MAXINSTANCES)

MAXINSTANCES?

INSTANCE_NUMBER-1
PARALLEL_SERVER=TRUE?

MAXINSTANCES = FREELIST_GROUPS?

(INSTANCE_NUMBER modulo FREELIST_GROUPS)+1

(oracle_pid Modulo FREELIST_GROUPS)+1

No

Yes

over the instances*

>

 > =

Free Lists Associated with Instances, Users, and Locks

11-14 Oracle8i Parallel Server Concepts and Administration

Free Lists Associated with Instances, Users, and Locks
This section describes:

■ Associating Instances with Free Lists

■ Associating User Processes with Free Lists

■ Associating PCM Locks with Free Lists

Associating Instances with Free Lists
A table can have separate groups of process free lists assigned to particular

instances. Each group of free lists can be associated with a single instance, or several

instances can share one group of free lists. All instances also have access to the

master free list of available space.

Groups of free lists allow you to associate instances with different sets of data

blocks for concurrent inserts and updates requiring new space. This reduces

contention for the segment header block, which contains information about the

master free list of free blocks. For tables that do not have multiple free list groups,

the segment header also contains information about free lists for user processes. You

can use free list groups to locate the data that an instance inserts and accesses

frequently in extents allocated to that instance.

Data partitioning can reduce contention for data blocks. Often the PCM locks that

cover blocks in one free list group tend to be held primarily by the instance using

that free list group. This is because an instance that modifies data is usually more

likely to reuse that data than other instances. However, if multiple instances take

free space from the same extent, they are more likely to contend for blocks in that

extent if they subsequently modify the data that they inserted.

Assignment of New Instances to Existing Free List Groups
If MAXINSTANCES is greater than the number of free list groups in the table or

cluster, then an instance number maps to the free list group associated with:

instance_number modulo number_of_free_list_groups

"Modulo" (or "rem" for "remainder") is a formula for determining which free list

group should be used by calculating a remainder value. In the following example

there are 2 free list groups and 10 instances. To determine which free list group

Free Lists Associated with Instances, Users, and Locks

Space Management and Free List Groups 11-15

instance 6 will use, the formula would read 6 modulo 2 = 0. Six divided by 2 is 3

with zero remainder, so instance 6 will use free list group 0. Similarly, instance 5

would use free list group 1 because 5 modulo 2 = 1. Five is divisible by 2 with a

remainder of 1.

If there are more free list groups than MAXINSTANCES, then a different hashing

mechanism is used.

If multiple instances share one free list group, they share access to every extent

specifically allocated to any instance sharing that free list group.

FREELIST GROUPS and MAXINSTANCES
In a system with relatively few nodes, such as a clustered system, the FREELIST

GROUPS option for a table should generally have the same value as the

MAXINSTANCES option of CREATE DATABASE, which limits the number of

instances that can access a database concurrently.

In a massively parallel system, however, MAXINSTANCES could be many times

larger than FREELIST GROUPS so that many instances share one group of free lists.

Associating User Processes with Free Lists
User processes associate with process free lists based on their Oracle process IDs.

Each user process has access to only one free list in the free list group for the

instance on which it is running. Every user process also has access to the master free

list of free blocks.

If a table has multiple free lists but does not have multiple free list groups, or has

fewer free list groups than the number of instances, then each free list is shared by

user processes from different instances.

Associating PCM Locks with Free Lists
If each extent in the table is in a separate datafile, you can use the

GC_FILES_TO_LOCKS parameter to allocate specific ranges of PCM locks to each

extent, so that each set of PCM locks is associated with only one group of free lists.

Figure 11–7 shows multiple extents in separate files. The GC_FILES_TO_LOCKS

parameter allocates 10 locks to files 8 and 10, and 10 locks to files 9 and 11. Extents

A and C are in the same free list group, and extents B and D are in another free list

See Also: "Associating Instances, Users, and Locks with Free List

Groups" on page 17-9.

Free Lists Associated with Instances, Users, and Locks

11-16 Oracle8i Parallel Server Concepts and Administration

group. One set of PCM locks is associated with files 8 and 10, and a different set of

PCM locks is associated with files 9 and 11. You do not need separate locks for files

that are in the same free list group, such as files 8 and 10, or files 9 and 11.

Figure 11–7 Extents and Free List Groups

This example assumes total partitioning for reads as well as writes. If more than one

instance is to update blocks, then it would still be desirable to have more than one

lock per file to minimize forced reads and writes. This is because even with a shared

lock, all blocks held by a lock are subject to forced reads when another instance tries

to read even one of the locked blocks.

See Also: "Setting GC_FILES_TO_LOCKS: PCM Locks for Each

Datafile" on page 15-6.

������
������������������������
������������������

File 8, Extent A

File 9, Extent B

File 10, Extent C

File 11, Extent D

Free List Group 1

Free List Group 2

GC_FILES_TO_LOCKS = 8, 10:10; 9, 11:10

Controlling Extent Allocation

Space Management and Free List Groups 11-17

Controlling Extent Allocation
This section covers the following topics:

■ Automatic Allocation of New Extents

■ Pre-allocation of New Extents

■ Dynamic Allocation of Blocks on Lock Boundaries

When a row is inserted into a table and new extents need to be allocated, a certain

number of contiguous blocks, as specified by !blocks in the GC_FILES_TO_LOCKS

parameter, is allocated to the free list group associated with an instance. Extents

allocated when the table or cluster is first created and new extents that are

automatically allocated add their blocks to the master free list, or, to the space above

the high water mark.

Automatic Allocation of New Extents
When you explicitly allocate an extent without specifying an instance, or when an

extent is automatically allocated to a segment because the system is running out of

space (the high water mark cannot be advanced any more), the new extent becomes

part of the unused space. It is placed at the end of the extent map, which means that

the current high water mark is now in an extent "to the left" of the new one. The

new extent is thus added "above" the high water mark.

Pre-allocation of New Extents
You have two options for controlling the allocation of new extents.

■ Pre-allocating Extents to Free List Groups

■ Dynamic Allocation of Blocks on Lock Boundaries

Pre-allocating Extents to Free List Groups
Pre-allocating extents is a static approach to the problem of preventing automatic

allocation of extents by Oracle. You can pre-allocate extents to tables that have free

list groups. This means that all free blocks are formatted into free lists, which will

reside in the free list group of the instance to which you are pre-allocating the

extent. This approach is useful if you need to partition data so as to greatly reduce

all pinging on insert, or if you need to accommodate objects that you expect will

grow in size.

Controlling Extent Allocation

11-18 Oracle8i Parallel Server Concepts and Administration

Dynamic Allocation of Blocks on Lock Boundaries
If you primarily need to accommodate growth, the strategy of dynamically

allocating blocks to free list groups would be more effective than pre-allocation of

extents. You can use the !blocks option of GC_FILES_TO_LOCKS to dynamically

allocate blocks to a free list from the high water mark within a lock boundary. This

method does not eliminate all pinging on the segment header. Instead, this method

allocates blocks as needed so you do not have to pre-allocate extents.

Remember that locks are owned by instances. Blocks are allocated on a per-instance

basis--and that is why they are allocated to free list groups. Within an instance,

blocks can be allocated to different free lists.

Using this method, you can either explicitly allocate the !blocks value, or leave the

balance of new blocks still covered by the existing PCM lock. If you choose the

latter, remember there still may be contention for the existing PCM lock by

allocation to other instances. If the PCM lock covers multiple groups of blocks, there

may still be unnecessary forced reads and writes of all the blocks covered by the

lock.

Moving the High Water Mark of a Segment
A segment’s high water mark is the current limit to the number of blocks that have

been allocated within the segment. If you are allocating extents dynamically, the

high water mark is also the lock boundary. The lock boundary and the number of

blocks that will be allocated at one time within an extent must coincide. This value

must be the same for all instances.

Consider the following example in which there are 4 blocks per lock (!4). Locks have

been allocated before the block content has been entered. If we have filled

datablock D2, held by Lock 2, and then allocate another range of 4 blocks, only the

number of blocks fitting within the lock boundary are actually allocated. In this

case, this includes blocks 7 and 8. Both of these are protected by your current lock.

With the high water mark at 8, when instance 2 allocates a range of blocks, all four

blocks 9 to 12 are allocated, covered by lock 3. The next time instance 1 allocates

blocks it will get blocks 13 to 16, covered by lock 4.

Note: You cannot completely eliminate false pinging.

See Also: "Pre-allocating Extents (Optional)" on page 17-11.

See Also: "Dynamically Allocating Extents" on page 17-15.

Controlling Extent Allocation

Space Management and Free List Groups 11-19

Figure 11–8 A File with High Water Mark Moving as Blocks Are Allocated

Example The example in this section assumes that GC_FILES_TO_LOCKS has the

following setting for both instances:

GC_FILES_TO_LOCKS = "1000!5"

With the EACH option specified, each file in file_list is allocated #locks number of

PCM locks. Within each file, !blocks specifies the number of contiguous data blocks

to be covered by each lock.

Figure 11–9 shows the incremental process by which the segment grows:

■ Stage 1 shows an extent in which instance 1 allocates 5 data blocks, which are

protected by Lock 2.

■ Stage 2 shows instance 2 allocating 5 more data blocks, protected by Lock 3.

■ Stage 3 shows instance 1 once more allocating 5 data blocks, protected by

Lock 4.

In this way, if user A on Instance 1 is working on block 10, no one else from either

instance can work on any block in the range of blocks covered by Lock 2. This

includes blocks 6 through 10.

File
Header

Segment
Header

Free
List

1 2 3 4 5 6 7 8
DataDataDataDataFree

Lock 1 Lock 2

Group
1

List
Group
2

9 10 11 12
DataDataDataData

Lock 3

Shifted high
water mark

Initial high
water mark

Controlling Extent Allocation

11-20 Oracle8i Parallel Server Concepts and Administration

Figure 11–9 Allocating Blocks within an Extent

Instance 1 Instance 2Segment A

Instance 1 Instance 2

Freelist
Freelist

Allocation B:

Segment A

High water

Instance 1 Instance 2Segment A

Freelist

2

1

3

group 2

5 Blocks

Allocation C:
5 Blocks

group 1

group 1

Mark 2

High water
Mark 3

High
Mark 2

Allocation A:
5 Blocks

Freelist
group 1

Freelist
group 2

Freelist
group 2

PCM
Lock 1

PCM
Lock 2

Application Analysis 12-1

12
Application Analysis

This chapter provides a conceptual framework for optimizing Oracle Parallel Server

(OPS) application design. It includes the following sections:

■ How Detailed Must Your Analysis Be?

■ Understanding Your Application Profile

■ Partitioning Guidelines

How Detailed Must Your Analysis Be?
The level of detail to which you must analyze an application depends on your goals

for the use of OPS. If you need OPS to improve overall database throughput, then a

detailed analysis of the database design and application workload profile will be

necessary. This ensures that the additional CPU power provided by each node of

OPS is fully used for application processing. Even if you are using OPS primarily to

provide high availability, careful analysis will enable you to predict the required

resources.

Experience gained over many benchmarks and real applications shows that for

optimal performance, OPS systems must minimize the computing resources used

for parallel cache management. This means minimizing the number of instance lock

operations. A successful OPS implementation ensures each node performs very few

instance lock operations and subsequently the machine-to-machine high speed

interconnect traffic is within the design limitations of the cluster.

You cannot successfully minimize the number of PCM lock operations during the

final fine tuning phase of the database lifetime. Rather, you must plan this early in

the physical database design process.

See Also: Oracle8i Tuning for a discussion of performance tuning

principles and tuning methods.

Understanding Your Application Profile

12-2 Oracle8i Parallel Server Concepts and Administration

Understanding Your Application Profile
To understand your application profile you must classify tables according to

application functions and access patterns. This section describes:

■ Analyzing Application Functions and Table Access Patterns

■ Read-only Tables

■ Random SELECT and UPDATE Tables

■ INSERT, UPDATE, or DELETE Tables

■ Planning the Implementation

The following comments apply equally to clustered tables or non-clustered tables.

Analyzing Application Functions and Table Access Patterns
Beyond performing the usual application and data analysis phases, a database

designer for OPS must anticipate the types of transactions or business functions that

may cause excessive lock conversion rates. You must cross reference the core

application tables and their access patterns with the application functions.

Read-only Tables
With tables that are predominantly read-only, all OPS nodes quickly initialize the

PCM locks to shared mode and very little lock activity takes place. Read-only tables

and their associated index structures require the allocation of very few PCM locks.

With this table type you can expect good performance and scalability with OPS.

Also consider putting tables in read-only tablespaces, using the SQL statement

ALTER TABLESPACE READ ONLY. This has several advantages: it speeds up

access of the particular tablespace and overall recovery, PCM locks are not required,

and you only need to back up a tablespace once after you make it made read-only.

Scalability of parallel query in OPS is subject to the interconnect speed between the

nodes. You may need to run high levels of parallelism just to keep the processors

See Also: Chapter 13, "Designing Databases for Parallel Server",

for a case study showing how to design applications to take

advantage of OPS.

See Also: Chapter 13, "Designing Databases for Parallel Server",

for worksheets you can use to analyze table access patterns.

Understanding Your Application Profile

Application Analysis 12-3

busy. It is not unusual to run a degree of parallelism three times the number of

nodes (or processors).

These files should have their own PCM lock as specified in the

GC_FILES_TO_LOCKS parameter, even if the application is read-only. Large sorts,

such as queries using SORT MERGE JOINs, or sorts with GROUP-BYs and

ORDER-BYs, can update the data dictionary in the SYSTEM tablespace.

Random SELECT and UPDATE Tables
Random SELECT and UPDATE tables, or non-partitioned tables, have transactions

that may read and then update any of the rows in a table. This type of access

requires many lock conversions. First, the instance executing the transaction must

obtain a shared PCM lock on the data block. This lock request may cause a lock

downgrade operation on another node. The instance executing the transaction must

finally obtain an exclusive mode PCM lock when the UPDATE is actually

performed.

If user transactions on different nodes modify data blocks locked by the same PCM

lock concurrently, there will be a noticeable performance penalty. In some cases you

can reduce contention by creating additional hashed PCM locks. In large tables,

however, hardware and practical limitations may mean that the number of hashed

PCM locks you can effectively use may be limited. For example, to reduce false

contention you would need millions of hashed PCM locks. However, memory

limitations and startup time make this impossible. In these cases, fine grained or

releasable hashed locks may be a good alternative.

For this type of table, if none of the table’s index keys are updated, then the index’s

PCM locks are only converted to shared mode and thus require few PCM locks.

See Also: "The Four Levels of Scalability" on 2 - 1 and "Setting the

Degree of Parallelism" in Oracle8i Tuning.

See Also: For more information, please refer to "Implement

Hashed or Fine Grain Locking" on page 13-17.

Understanding Your Application Profile

12-4 Oracle8i Parallel Server Concepts and Administration

INSERT, UPDATE, or DELETE Tables
Transactions on random INSERT, UPDATE and DELETE tables require reading a

number of data blocks and then modifying some or all of the data blocks read. This

process for each of the data blocks specified again requires converting the PCM lock

to shared mode and then converting it to exclusive mode upon block modification.

This process has the same performance issues as random SELECT and UPDATE

tables.

For this type of table more performance issues exist for two main reasons: index

data blocks are changed, and contention occurs for data blocks on the table’s free

list.

In INSERT, DELETE and UPDATE transactions that modify indexed keys, you need

to maintain the table’s indexes. This process requires the modification of additional

index blocks--and so the number of potential lock converts increases. In addition,

index blocks probably require additional lock converts since users on other nodes

will be using the index to access other data. This applies particularly to the initial

root components of the index where block splitting may be taking place. This causes

more lock converts from null to exclusive and vice versa on all nodes within the

cluster.

If the INSERT and DELETE operations are subject to long-running transactions,

then there is a high chance that another instance will require read consistency

information to complete its transactions. This process forces yet more lock

conversions as rollback segment data blocks are flushed to disk and are made

available to other instances.

Index block contention involving high lock convert rates must be avoided at all

costs if performance is a critical issue in your OPS implementation.

Index block contention can be made more extreme when using a sequence number

generator to generate unique keys for a table from multiple OPS nodes. When

generating unique keys, make the instance number part of the primary key so each

instance performs INSERTs into a different part of the index. Spreading the INSERT

load over the full width of the index can improve both single and multiple instance

performance. Do this using reverse key indexes.

In INSERT operations, allocation of free space within an extent may also cause high

lock convert rates. This is because multiple instances may wish to insert new rows

into the same data blocks, or into data blocks that are close together. Contention

occurs if these data blocks are managed by the same PCM lock. To avoid this, either

partition the tables and indexes so different instances use them, or create tables to

allow use of multiple free lists and multiple free list groups.

Partitioning Guidelines

Application Analysis 12-5

Planning the Implementation
Having analyzed the application workload, you can now plan the application’s OPS

implementation. Using the access profile you can see which transactions will run

well over multiple nodes, and which transactions should be executed within a

single node. In many cases compromises and trade-offs are required to ensure that

the application performs as needed.

Partitioning Guidelines
This section covers the following topics:

■ Overview

■ Application Partitioning

■ Data Partitioning

Overview
The database designer must clearly understand the system performance

implications and design trade-offs made by application partitioning. Always bear in

mind that your goal is to minimize synchronization: this will result in optimized

performance.

As noted earlier, if you minimize the number of lock conversions, OPS’

performance will be predictable and scalable. By partitioning the application

and/or data, you can create and maintain cache affinities of database data with

respect to specific nodes of a cluster. A partitioned application ensures that a

minimum number of lock conversions are performed, thus pings and Integrated

Distributed Lock Manager (IDLM) activity should be very minimal. If excessive

IDLM lock activity occurs in a partitioned application, your partitioning strategy

may be inappropriate, or the database creation and tuning process was incorrect.

See Also: Chapter 17, "Using Free List Groups to Partition Data"

and Oracle8i Concepts.

Note: Load balancing between nodes should not be the main

objective. Whereas load balancing is useful in benchmarking

situations, it may not be useful in a real-world application.

Partitioning is the key to performance in OPS.

Partitioning Guidelines

12-6 Oracle8i Parallel Server Concepts and Administration

Application Partitioning
Many partitioning techniques exist to achieve high system performance. One of the

simplest ways to break up or partition the load upon the database is to run different

applications that access the same database on different nodes of the cluster. For

example, one application may only reference a fixed set of tables that reside in one

set of datafiles, and another application may reference a different set of tables

residing in a different set of datafiles. These applications can be run on different

nodes of a cluster and should yield good performance if the datafiles are assigned

different PCM locks. There will be no conflict for the same database objects (since

they are in different files) and hence no conflict for the same database blocks.

This scenario is particularly applicable to applications that during the day support

many users and high OLTP workloads, and during the night run high batch and

decision support workloads. In this case, you can partition applications among the

cluster nodes to sustain good OLTP performance during the day.

This model is similar to a distributed database model, where tables that are

accessed together are stored together. At night, when it is necessary to access tables

that may be partitioned for OLTP purposes, you still can exploit the advantages of a

single database: all the data is stored effectively within a single database. This

should provide improved batch and decision support, better query performance,

reduced network traffic, and fewer data replication issues.

With this approach, you must ensure that each application’s tables and indexes are

stored such that one PCM lock does not cover any data blocks used by both

applications. Should this happen the benefit of partitioning would be lost. To correct

the situation, store each application’s table and index data in separate datafiles.

Applications sharing a set of SQL statements perform best when they run on the

same instance. Because shared SQL areas are not shared across instances, similar

sets of SQL statements should run on one instance to improve memory usage and

reduce parsing.

Partitioning Guidelines

Application Analysis 12-7

Data Partitioning
Sometimes the partitioning of applications between nodes may not be possible. As

an alternative approach, you can partition the database objects themselves. To do

this effectively, you must analyze the application profile in depth. You may or may

not need to split a table into multiple tables. In OPS, the partitioning process can

involve horizontal partitioning of the table between predefined key ranges.

In addition to partitioning and splitting database objects, ensure that each user

transaction is executed by the correct OPS instance. The correct node for execution

of the transaction is a function of the actual data values being used in the

transaction. This process is more commonly known as data-dependent routing.

The process of partitioning a table for purposes of increasing parallel server

performance brings with it various development and administration implications.

From a development perspective, as soon as the table is partitioned, the quantity

and complexity of application code increases. In addition, partitioning a table may

compromise the performance of other application functions, such as batch and

decision support queries.

You can accomplish data-dependent routing in one of two ways: if the partitioning

of the tables fits well within actual partition usage patterns, in other words, you

partitioned the table by state or call center, and users are similarly partitionable,

then you can accomplish manual routing by having users connect to the correct

instance. Otherwise, the administration of data-dependent routing may be complex

and can involve additional application code.

You can simplify the process if the application uses a transaction processing

monitor (TPM) or RPC mechanism. It is possible to code into the configuration of

the TPM a data-dependent routing strategy based on the input RPC arguments.

Similarly, this process could be coded into procedural code using a case statement

to determine which instance should execute the transaction.

See Also: "Client-Server Systems" on page 1-20 and Oracle8i
Tuning for more information about partitioning.

Partitioning Guidelines

12-8 Oracle8i Parallel Server Concepts and Administration

Part III
 Oracle Parallel Server Development

Procedures

Designing Databases for Parallel Server 13-1

13
Designing Databases for Parallel Server

This chapter prescribes a general methodology for designing systems optimized for

Oracle Parallel Server (OPS).

■ Overview

■ Case Study: From Initial Database Design to OPS

■ Analyze Access to Tables

■ Analyze Transaction Volume by Users

■ Partition Users and Data

■ Partition Indexes

■ Implement Hashed or Fine Grain Locking

■ Implement and Tune Your Design

Overview
This chapter provides techniques for designing new applications for use with OPS.

You can also use these analytical techniques to evaluate existing applications and

see how well suited they are for migration to a parallel server.

Note: Always remember that your goal is to minimize contention:

doing so results in optimized performance.

Case Study: From Initial Database Design to OPS

13-2 Oracle8i Parallel Server Concepts and Administration

This chapter assumes you have made an initial database design. To optimize your

design for OPS, follow the methodology suggested here.

1. Develop an initial database design.

2. Analyze access to tables.

3. Analyze transaction volume.

4. Decide how to partition users and data.

5. Decide how to partition indexes, if necessary.

6. Choose hashed or fine grain locking.

7. Implement and tune your design.

Case Study: From Initial Database Design to OPS
A case study is used is this chapter to demonstrate analytical techniques in practice.

Although your applications will differ, this example helps you to understand the

process.

■ "Eddie Bean" Catalog Sales

■ Tables

■ Users

■ Application Profile

"Eddie Bean" Catalog Sales
The case study concerns the "Eddie Bean" catalog sales company, which has many

order entry clerks processing telephone orders for various products. Shipping clerks

fill orders and accounts receivable clerks handle billing. Accounts payable clerks

handle orders for supplies and services the company requires internally. Sales

managers and financial analysts run reports on the data. This company’s financial

application has three business processes operating on a single database:

■ Order entry

■ Accounts payable

■ Accounts receivable

Case Study: From Initial Database Design to OPS

Designing Databases for Parallel Server 13-3

Tables
Tables from the Eddie Bean database include:

Users
Various application users access the database to perform different functions:

■ Order entry clerks

■ Accounts payable clerks

■ Accounts receivable clerks

■ Shipping clerks

■ Sales manager

■ Financial analyst

Application Profile
Operation of the Eddie Bean application is fairly consistent throughout the day:

order entry, order processing, and shipping are performed all day. These functions

are not for example, segregated into separate one-hour time slots.

About 500 orders are entered per day. Each order header is updated about 4 times

during its lifetime. So we expect about 4 times as many updates as inserts. There are

many selects, because many employees are querying order headers: people doing

sales work, financial work, shipping, tracing the status of orders, and so on.

There are on average 4 items per order. Order items are never updated: an item may

be deleted and another item entered.

Table 13–1 "Eddie Bean" Sample Tables

Table Contents

ORDER_HEADER Order number, customer name and address.

ORDER_ITEMS Products ordered, quantity, and price.

ORGANIZATIONS Names, addresses, phone numbers of customers and suppliers.

ACCOUNTS_PAYABLE Tracks the company’s internal purchase orders and payments
for supplies and services.

BUDGET Balance sheet of the company’s expenses and income.

FORECASTS Projects future sales and records current performance.

Analyze Access to Tables

13-4 Oracle8i Parallel Server Concepts and Administration

The ORDER_HEADER table has four indexes. Each of the other tables has a

primary key index only.

Budget and Forecast activity has a much lower volume than the order tables. They

are read frequently, but modified infrequently. Forecasts are updated more often

than Budget, and are deleted once they go into actuals.

The vast bulk of the deletes are performed as a nightly batch job. This maintenance

activity does not, therefore, need to be included in the analysis of normal

functioning of the application.

Analyze Access to Tables
Begin by analyzing the existing (or expected) access patterns for tables in your

database. Then decide how to partition the tables and group them according to

access pattern.

■ Table Access Analysis Worksheet

■ Case Study: Table Access Analysis

Table Access Analysis Worksheet
List all your high-activity database tables in a worksheet like the one shown in

Table 13–2:

To complete this worksheet, estimate the volume of each type of operations. Then

calculate the number of reads and writes (I/Os) the operations entail.

Table 13–2 Table Access Analysis Worksheet

Table Name

Daily Access Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Analyze Access to Tables

Designing Databases for Parallel Server 13-5

Estimating Volume of Operations
For each type of operation to be performed on a table, enter a value reflecting the
normal volume you would expect in the course of a day.

Calculating I/Os per Operation
For each value in the Operations column, calculate the number of I/Os that will be

generated using a worst-case scenario.

The SELECT operation involves read access, and the INSERT, UPDATE and

DELETE operations involve both read and write access. These operations access not

only data blocks, but also any related index blocks.

For example, Figure 13–1 illustrates read and write access to data in a large table in

which two levels of the index are not in the buffer cache and only a high level index

is cached in the SGA.

Note: The emphasis throughout this analysis is on relative
values—gross figures describing the normal use of an application.

Even if an application does not yet exist, you can project the types

of users and estimate relative levels of activity. Maintenance

activity on the tables is not generally relevant to this analysis.

Note: The number of I/Os generated per operation changes by
table depending on the access path of the table, and the table’s size.

It also changes depending on the number of indexes a table has. A

small index, for example, may have only a single index branch

block.

Analyze Access to Tables

13-6 Oracle8i Parallel Server Concepts and Administration

Figure 13–1 Number of I/So per SELECT or INSERT Operation

In this example, assuming that you are accessing data by way of the primary key, a

SELECT entails three I/Os:

1. One I/O to read the first lower level index block.

2. One I/O to read the second lower level index block.

3. One I/O to read the data block.

An INSERT or DELETE statement entails at least five I/Os:

1. One I/O to read the data block.

2. One I/O to write the data block.

3. Three I/Os per index: 2 to read the index entries and 1 to write the index.

One UPDATE in this example entails seven I/Os:

1. One I/O to read the first lower level index block.

2. One I/O to read the second lower level index block.

Note: If all of the root and branch blocks are in the SGA, a

SELECT may entail only two I/Os: read leaf index block, read data

block.

Lower Level
Index Branch

Index
Leaf Block

Data
Block

Cached

Not Cached

Index
Root

Index
Branch

INSERTSELECT

Read

Read

Read

Read

Read/Write

Read/Write

Analyze Access to Tables

Designing Databases for Parallel Server 13-7

3. One I/O to read the data block.

4. One I/O to write the data block.

5. One I/O to read the first lower level index block again.

6. One I/O to read the second lower level index block again.

7. One I/O to write the index block.

I/Os per Operation for Sample Tables
In the case study, the number of I/Os per operation differs from table to table

because the number of indexes differs from table to table.

Table 13–3 shows how many I/Os are generated by each type of operation on the

ORDER_HEADER table. It assumes that the ORDER_HEADER table has four

indexes.

Table 13–4 shows how many I/Os generated per operation for each of the other

tables in the case study, assuming each of them has a primary key index only.

Note: An INSERT or DELETE affects all indexes, but an UPDATE

sometimes may affect only one index. Check the number of changed

index keys.

Table 13–3 Number of I/Os per Operation: Sample ORDER_HEADER Table

Operation SELECT INSERT UPDATE DELETE

Type of Access read read/write read/write read/write

Number of I/Os 3 14 7 14

Note: You must adjust these figures depending upon the actual

number of indexes and access path for each table in your database.

Table 13–4 Number of I/Os per Operation: Other Sample Tables

Operation SELECT INSERT UPDATE DELETE

Type of Access read read/write read/write read/write

Number of I/Os 3 5 7 5

Analyze Access to Tables

13-8 Oracle8i Parallel Server Concepts and Administration

For the purposes of this analysis, you can disregard the fact that changes made to

data also generate rollback segments, entailing additional I/Os. These I/Os are

instance-based. Therefore, they should not cause problems with your OPS

application.

Case Study: Table Access Analysis
Table 13–5 shows rough figures reflecting normal use of the application in the case

study.

The following conclusions can be drawn from this table:

■ Only the ORDER_HEADER and ORDER_ITEM tables have significant levels of

write access.

■ ORGANIZATIONS, by contrast, is predominantly a read-only table. While a

certain number of INSERT, UPDATE, and DELETE operations will maintain it,

its normal use is SELECT-only.

See Also: Oracle8i Concepts for more information about indexes.

Table 13–5 Case Study: Table Access Analysis Worksheet

Table Name

Daily Access Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

ORDER_HEADER 20,000 60,000 500 7,000 2,000 14,000 1,000 14,000

ORDER_ITEM 60,000 180,000 2,000 10,000 0 0 4,030 20,150

ORGANIZATIONS 40,000 120,000 10 50 100 700 0 0

BUDGET 300 900 1 5 2 14 0 0

FORECASTS 500 1,500 1 5 10 70 2 10

ACCOUNTS_PAYABLE 230 690 50 250 20 140 0 0

Analyze Transaction Volume by Users

Designing Databases for Parallel Server 13-9

Analyze Transaction Volume by Users
Begin by analyzing the existing (or expected) access patterns for tables in your

database. Then decide how to partition the tables and group them according to

access pattern.

■ Transaction Volume Analysis Worksheet

■ Case Study: Transaction Volume Analysis

Transaction Volume Analysis Worksheet
For each table with a high volume of write access, analyze the transaction volume

per day for each type of user.

Use worksheets like the one in Table 13–6:

Begin by estimating the volume of transactions by each type of user and then

calculate the number of I/Os entailed.

Note: For read-only tables, you do not need to analyze transaction

volume by user type.

Table 13–6 Transaction Volume Analysis Worksheet

Table Name:

Type of User No.Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Analyze Transaction Volume by Users

13-10 Oracle8i Parallel Server Concepts and Administration

Case Study: Transaction Volume Analysis
The following tables show transaction volume analysis of the three tables in the case

study that have a high level of write access: ORDER_HEADER, ORDER_ITEMS,

and ACCOUNTS_PAYABLE.

ORDER_HEADER Table
Table 13–7 shows rough estimates for values in the ORDER_HEADER table in the

case study.

The following conclusions can be drawn from this table:

■ Order entry clerks perform all inserts on this table.

■ Accounts receivable and shipping clerks perform all updates.

■ Sales managers and financial analysts only perform select operations.

■ Accounts payable clerks never use the table.

Deletes are performed as a maintenance operation, so you do not need to consider

them in this analysis. Furthermore, the application developers realize that sales

managers normally access data for the current month, whereas financial analysts

access mostly historical data.

Table 13–7 Case Study: Transaction Volume Analysis: ORDER_HEADER Table

Table Name: ORDER_HEADER

Type of

User

No.

Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Order entry clerk 25 5,000 15,000 500 7,000 0 0 0 0

Accounts payable
clerk

5 0 0 0 0 0 0 0 0

Accounts
receivable clerk

5 6,000 18,000 0 0 1,000 7,000 0 0

Shipping clerk 4 4,000 12,000 0 0 1,000 7,000 0 0

Sales manager 2 3,000 9,000 0 0 0 0 0 0

Financial analyst 2 2,000 6,000 0 0 0 0 0 0

Analyze Transaction Volume by Users

Designing Databases for Parallel Server 13-11

ORDER_ITEMS Table
Table 13–8 shows rough estimates for values in the ORDER_ITEMS table in the case

study.

The following conclusions can be drawn from this table:

■ Order entry clerks perform all inserts on this table.

■ Updates are rarely performed

■ Accounts receivable clerks, shipping clerks, sales managers and financial

analysts perform a heavy volume of select operations on the table.

■ Accounts payable clerks never use the table.

The ORDER_HEADER table has more writes than ORDER_ITEMS because the

order header tends to require more changes of status, such as address changes, than

the list of available products. The ORDER_ITEM table is seldom updated because

new items are listed as journal entries.

Table 13–8 Case Study: Transaction Volume Analysis: ORDER_ITEMS Table

Table Name: ORDER_ITEMS

Type of

User

No.

Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operatio
ns I/Os Operations I/Os Operations I/Os Operations I/Os

Order entry clerk 25 15,000 45,000 2,000 10,000 0 0 20 100

Accounts payable
clerk

5 0 0 0 0 0 0 0 0

Accounts
receivable clerk

5 18,000 54,000 0 0 0 0 10 50

Shipping clerk 4 12,000 36,000 0 0 0 0 0 0

Sales manager 2 9,000 27,000 0 0 0 0 0 0

Financial analyst 2 6,000 18,000 0 0 0 0 0 0

Analyze Transaction Volume by Users

13-12 Oracle8i Parallel Server Concepts and Administration

ACCOUNTS_PAYABLE Table
Table 13–9 shows rough figures for the ACCOUNTS_PAYABLE table in the case

study. Although this table does not have a particularly high level of write access, we

have analyzed it because it contains the main operation that the accounts payable

clerks perform.

The following conclusions can be drawn from this table:

■ Accounts payable clerks send about 50 purchase orders per day to suppliers.

These clerks are the only users who change the data in this table.

■ Financial analysts occasionally study the information.

Deletes are performed as a maintenance operation, so you do not need to consider

them in this analysis.

Table 13–9 Case Study: Transaction Volume Analysis: ACCOUNTS_PAYABLE Table

Table Name: ACCOUNTS_PAYABLE

Type of

User

No.

Users

Daily Transaction Volume

Read Access Write Access

Select Insert Update Delete

Operations I/Os Operations I/Os Operations I/Os Operations I/Os

Order
entry
clerk

25 0 0 0 0 0 0 0 0

Accounts
payable
clerk

5 200 600 50 250 20 140 0 0

Accounts
receivable
clerk

5 0 0 0 0 0 0 0 0

Shipping
clerk

4 0 0 0 0 0 0 0 0

Sales
manager

2 0 0 0 0 0 0 0 0

Financial
analyst

2 30 90 0 0 0 0 0 0

Partition Users and Data

Designing Databases for Parallel Server 13-13

Partition Users and Data
Your goal is to partition applications across instances. This can involve separating

types of users across instances and partitioning data that needs to be written only

by certain types of users. This minimizes the amount of contention on your system.

This section covers:

■ Case Study: Initial Partitioning Plan

■ Case Study: Further Partitioning Plans

Case Study: Initial Partitioning Plan
In the case study, for example, the large number of order entry clerks doing heavy

insert activity on the ORDER_HEADER and ORDER_ITEM tables should not be

separated across machines. You should concentrate these users on one node along

with the two tables they use most. A good starting point, then, would be to set aside

one node for the OE clerks, and one node for all other users as illustrated in

Figure 13–2.

Partition Users and Data

13-14 Oracle8i Parallel Server Concepts and Administration

Figure 13–2 Case Study: Partitioning Users and Data

This system is probably well balanced across nodes. The database intensive

reporting done by financial analysts takes a good deal of system resources, whereas

the transactions run by the order entry clerks are relatively simple.

The load balancing by manipulating the number of users across the system is

typically useful, but not always critical. Load balancing has a lower priority for

tuning than reducing contention.

Case Study: Further Partitioning Plans
In the case study it is also clear that accounts payable data is written exclusively by

accounts payable clerks. You can thus effectively partition this data the set of users

onto a separate instance as shown in Figure 13–3.

Partitioning
Users

Partitioning
Data

Instance 2Instance 1

OE Clerks

O
R

D
E

R
_H

E
A

D
E

R

O
R

D
E

R
_IT

E
M

A
C

C
O

U
N

T
S

_P
A

Y
A

B
LE

O
R

G
A

N
IZ

A
T

IO
N

S

B
U

D
G

E
T

AP Clerks
AR Clerks

Shipping Clerks
Sales Managers

Financial Analysts

F
O

R
E

C
A

S
T

S

Partition Users and Data

Designing Databases for Parallel Server 13-15

Figure 13–3 Case Study: Partitioning Users and Data: Design Option 1

When all users needing write access to a certain part of the data are concentrated on

one node, the PCM locks all reside on that node. In this way, lock ownership is not

switching back and forth between instances.

Based on this analysis, you primarily have two design options.

Design Option 1
You can set up your as shown above with all order entry clerks on one instance to

minimize contention for exclusive PCM locks on the table. This allows sales

managers and financial analysts to get up-to-the-minute information. Since they do

want data that is predominantly historical, there should not be too much contention

for current records.

Design Option 2
Alternatively, you could implement a separate temporary table for ORDER_ITEM/

ORDER_HEADER. This table is only for recording new order information.

Overnight, you could incorporate changes into the main table against which all

queries are performed. This solution would work well if it is not vitally important

that financial analysis have current data. This is probably true only if they are

primarily interested in looking at historical data. This would not be appropriate if

the financial analysts needed up-to-the-minute data.

Partitioning
Users

Partitioning
Data

Instance 3Instance 1

OE Clerks

O
R

D
E

R
_IT

E
M

Instance 2

A
C

C
O

U
N

T
S

_P
A

Y
A

B
LE

AP Clerks

O
R

G
A

N
IZ

A
T

IO
N

S

B
U

D
G

E
T

F
O

R
E

C
A

S
T

S

AR Clerks
Shipping Clerks
Sales Manager

Financial Analysts

O
R

D
E

R
_H

E
A

D
E

R

Partition Indexes

13-16 Oracle8i Parallel Server Concepts and Administration

Figure 13–4 Case Study: Partitioning Users and Data: Design Option 2

Partition Indexes
You need to consider index partitioning if multiple nodes in your system are

inserting into the same index. In this situation, you must ensure that different

instances insert into different points within the index.

Note: This problem is avoided in the Eddie Bean case study

because application and data usage are partitioned.

See Also: "Creating Free Lists for Indexes" on page 17-8 for tips

on using free lists, free list groups, and sequence numbers to avoid

contention on indexes. For more information about indexes as a

point of contention, please see "Locating Lock Contention within

Applications" on page 19-4. Also refer to Oracle8i Concepts for tips

on how to physically partition a table and an instance to avoid the

use of free list groups.

Partitioning
Users

Partitioning
Data

Instance 3Instance 1

OE Clerks

O
R

D
E

R
_H

E
A

D
E

R
_T

E
M

P

O
R

D
E

R
_IT

E
M

_T
E

M
P

Instance 2

AR Clerks
Shipping Clerks

Sales Mangagers
Financial Analysts

O
R

D
E

R
_H

E
A

D
E

R

O
R

D
E

R
_IT

E
M

O
R

G
A

N
IZ

A
T

IO
N

S

A
C

C
O

U
N

T
S

_P
A

Y
A

B
LE

AP Clerks

B
U

D
G

E
T

F
O

R
E

C
A

S
T

S

Implement Hashed or Fine Grain Locking

Designing Databases for Parallel Server 13-17

Implement Hashed or Fine Grain Locking
For many applications, the DBA needs to decide whether to use hashed or fine

grain locking for particular database files.

You should design for the worst case scenario that would use hashed locking. Then,

in the design or monitoring phases, if you discover a situation where you have too

many locks, or if you suspect false pings, you should try fine grain locking.

Begin with an analysis at the database level. You can use a worksheet like the one

shown in Table 13–10:

Next, list the files and database objects in a worksheet like the one shown in

Table 13–11. Decide which locking mode to use for each file.

Table 13–10 Worksheet: Database Analysis for Hashed or Fine Grain Locking

Block Class Relevant Parameter(s) Use Fine Grain or Hashed Locking?

Table 13–11 Worksheet: When to Use Hashed or Fine Grain Locking

Filename Objects Contained Use Fine Grain or Hashed Locking?

See Also: "Applying Fine Grain and Hashed Locking to Different

Files" on page 9-21.

Implement and Tune Your Design

13-18 Oracle8i Parallel Server Concepts and Administration

Implement and Tune Your Design
Up to this point, you conducted an analysis using estimated figures. To finalize

your design you must now either prototype the application or actually implement it

and get it running. By observing the actual system, you can tune it further.

To do this, try the following techniques:

■ Identify blocks that are being pinged and determine where contention exists.

■ Consider moving users from one instance to another to reduce the amount of

pinging and false pinging.

■ If you detect a high level of false pinging, consider increasing the granularity of

the locks by placing more locks on each file.

■ If there is pinging on inserts, adjust the free lists or use multiple sequence

number generators so that inserts occur in different parts of the index.

See Also: Chapter 19, "Tuning to Optimize Performance" in

Oracle8i Tuning.

Creating a Database and Objects for Multiple Instances 14-1

14
Creating a Database and Objects for

Multiple Instances

This chapter describes:

■ Creating a Database for a Multi-instance Environment

■ Creating Database Objects to Support Multiple Instances

■ Changing the Value of CREATE DATABASE Options

Creating a Database for a Multi-instance Environment
This section covers aspects of database creation specific to OPS:

■ Summary of Tasks

■ Setting Initialization Parameters for Database Creation

■ Database Creation and Start Up

■ Setting CREATE DATABASE Options

Summary of Tasks
Database creation tasks specific to OPS can be summarized as follows:

1. Set initialization parameters for every instance, including log archiving.

2. With parallel server disabled, enter the CREATE DATABASE statement, setting

MAXINSTANCES and other important options specific to OPS.

3. Create rollback segments for each node.

Creating a Database for a Multi-instance Environment

14-2 Oracle8i Parallel Server Concepts and Administration

4. Dismount the database then remount it with the parameter setting

PARALLEL_SERVER=TRUE in the initialization file. Then start up the parallel

server.

Setting Initialization Parameters for Database Creation
Certain initialization parameters critical at database creation or that affect certain

database operations must have the same value for every instance in OPS. Be sure

these are identical across all instances before creating a database for a multi-instance

environment.

Using ARCHIVELOG Mode
To enable the ARCH process while creating a database, set the initialization

parameter LOG_ARCHIVE_START to TRUE. Then change the mode to

ARCHIVELOG with the ALTER DATABASE statement before starting up the

instance that creates the database.

Alternatively, you can reduce overhead by creating the database in

NOARCHIVELOG mode. This is the default. Then change to ARHIVELOG mode.

You cannot use the STARTUP command to change the database archiving mode.

After creating a database, use the following Server Manager commands to change

to archiving mode and reopen the database with parallel server enabled:

 ALTER DATABASE CLOSE;
 ALTER DATABASE ARCHIVELOG;
 SHUTDOWN;
 STARTUP;

See Also: "Creating a Database" in the Oracle8i Administrator’s
Guide.

See Also: "Archiving the Redo Log Files" on page 21-2 and

"Parameters that Must Be Identical on All Instances" on page 18-11.

Creating a Database for a Multi-instance Environment

Creating a Database and Objects for Multiple Instances 14-3

Database Creation and Start Up
Use the standard procedure to create a database.

1. Start Server Manager.

2. Connect with SYSDBA privileges.

3. Start up an instance with the NOMOUNT option.

4. Issue the CREATE DATABASE statement.

5. Create additional rollback segments and threads, as needed.

6. Close and dismount the database.

SHUTDOWN

7. Update the initialization files to be sure they point to the proper rollback

segments and threads,

8. Make sure parallel server is enabled.

9. Remount the database.

STARTUP [OPEN databasename]

Setting CREATE DATABASE Options
This section describes CREATE DATABASE options specific to OPS.

Setting MAXINSTANCES
The MAXINSTANCES option of CREATE DATABASE limits the number of

instances that can access a database concurrently. MAXINSTANCES defaults to the

maximum value specific to your operating system; on most systems the default is

two.

Note: The CREATE DATABASE statement mounts and opens the

newly created database, leaving the parallel server disabled. You

must close and dismount the database, then remount it with

parallel server enabled.

See Also: "Starting Instances" on page 18-13.

Creating a Database for a Multi-instance Environment

14-4 Oracle8i Parallel Server Concepts and Administration

For OPS, set MAXINSTANCES to a value greater than the maximum number of

instances you expect to run concurrently. This way, if instance A fails and is being

recovered by instance B, you will be able to start instance C before instance A is

fully recovered.

Setting MAXLOGFILES and MAXLOGMEMBERS
The MAXLOGFILES option of CREATE DATABASE specifies the maximum

number of redo log groups that can be created for the database, and the

MAXLOGMEMBERS option specifies the maximum number of members or copies

per group.

For OPS, set MAXLOGFILES to the maximum number of threads possible,

multiplied by the maximum anticipated number of groups per thread.

Setting MAXLOGHISTORY
The MAXLOGHISTORY option of CREATE DATABASE specifies the maximum

number of redo log files that can be recorded in the log history of the control file.

The log history is used for automatic media recovery of OPS.

For OPS, you should set MAXLOGHISTORY to a large value, such as 1000. The

control files can then only store information about this number of redo log files.

When the log history exceeds this limit, old history entries are overwritten. The

default for MAXLOGHISTORY is zero, which disables the log history.

Setting MAXDATAFILES
The MAXDATAFILES option is generic, but OPS tends to have more data files and

log files than standard systems. On your platform the default value of this option

may be too low.

See Also: Oracle8i SQL Reference for complete descriptions of the

SQL statements CREATE DATABASE and ALTER DATABASE.

Also see your Oracle operating system-specific documentation for

information on default values of CREATE DATABASE options. For

more information about redo log groups and members, see "Redo

Log Files" on page 6-3. Also see "Redo Log History in the Control

File" on page 21-6 for more information on MAXLOGHISTORY.

Creating Database Objects to Support Multiple Instances

Creating a Database and Objects for Multiple Instances 14-5

Creating Database Objects to Support Multiple Instances
To prepare a new database for OPS, create and configure the following additional

database objects.

■ Creating Additional Rollback Segments

■ Configuring the Online Redo Log for OPS

■ Providing Locks for Added Datafiles

Creating Additional Rollback Segments
You must create at least one rollback segment for each instance of a parallel server.

To avoid contention, create these rollback segments in a tablespace other than the

SYSTEM tablespace.

You must create and bring online one additional rollback segment in the SYSTEM

tablespace before creating rollback segments in other tablespaces. The instance that

creates the database can create this additional rollback segment and new

tablespaces, but it cannot create database objects in non-SYSTEM tablespaces until

you bring the additional rollback segment online.

Using Private Rollback Segments
To allocate a private rollback segment to one instance, follow these steps:

1. Create the rollback segment with the SQL statement CREATE ROLLBACK

SEGMENT, omitting the keyword PUBLIC. Optionally, before creating the

rollback segment you can create a tablespace for it.

2. Specify the rollback segment in the instance’s parameter file by naming it as a

value for the parameter. This reserves the rollback segment for that instance.

3. Use ALTER ROLLBACK SEGMENT to bring the rollback segment online. You

can also restart the instance to use the reserved rollback segment.

A private rollback segment should be specified in only one parameter file so that it

is associated with only one instance. If an instance attempts to acquire a private

rollback segment that another instance has already acquired, Oracle generates a

message and prevents the instance from starting up.

Using Public Rollback Segments
Any instance can create a public rollback segment that can then be claimed by any

instance when it starts up. Once a rollback segment has been claimed, it is only used

Creating Database Objects to Support Multiple Instances

14-6 Oracle8i Parallel Server Concepts and Administration

by the instance that claimed it until the instance shuts down, releasing the rollback

segment for use by another instance.

To create a public rollback segment, use the SQL statement CREATE PUBLIC

ROLLBACK SEGMENT.

Typically, the parameter file for any particular instance does not specify public

rollback segments because they are assumed to be available to any instance needing

them. However, if another instance is not already using it, you can name a public

rollback segment as a value of the ROLLBACK_SEGMENTS parameter.

Public rollback segments are identified as having the owner PUBLIC in the data

dictionary view DBA_ROLLBACK_SEGS.

If the parameter file omits the ROLLBACK_SEGMENTS initialization parameter,

the instance uses public rollback segments by default.

A public rollback segment is brought online when an instance requiring public

rollback segments starts up and acquires it. However, starting an instance using

public rollback segments does not ensure that any particular public rollback

segment comes online unless the instance acquires all available public rollback

segments. Once acquired, a public rollback segment is used exclusively by the

acquiring instance.

Bringing online, taking offline, creating, and dropping rollback segments, whether

private or public, is the same whether OPS is enabled or disabled.

Private rollback segments stay offline until brought online or until the owning

instance restarts. A public rollback segment stays offline until brought online for a

specific instance or until an instance requiring a public rollback segment starts up

and acquires it.

If you need to keep a public rollback segment offline and do not want to drop it and

re-create it, you must prevent other instances that require public rollback segments

from starting up.

Monitoring Rollback Segments
You can use the Server Manager command MONITOR ROLLBACK to display

information about the status of the rollback segments that the current instance uses.

Alternatively, you can query the dynamic performance views V$ROLLNAME and

V$ROLLSTAT for information about the current instance’s rollback segments.

Use the Server Manager command CONNECT @instance-path to change the current

instance before using the MONITOR command or querying the V$ views. You must

Creating Database Objects to Support Multiple Instances

Creating a Database and Objects for Multiple Instances 14-7

have Net8 installed to use the CONNECT command for an instance on a remote

node.

You can also query the data dictionary views DBA_ROLLBACK_SEGS and

DBA_SEGMENTS for information about the current status of all rollback segments

in your database.

For example, to list the current rollback segments, you can query

DBA_ROLLBACK_SEGS with the following statement:

 SELECT segment_name, segment_id, owner, status
 FROM dba_rollback_segs

This query displays the rollback segment’s name, ID number, owner, and whether it

is in use, as shown in the following example:

SEGMENT_NAME SEGMENT_ID OWNER STATUS
------------------------ ---------- ------ ------------
SYSTEM 0 SYS ONLINE
PUBLIC_RS 1 PUBLIC ONLINE
USERS1_RS 2 SYS ONLINE
USERS2_RS 3 SYS OFFLINE
USERS3_RS 4 SYS ONLINE
USERS4_RS 5 SYS ONLINE
PUBLIC2_RS 6 PUBLIC OFFLINE

In this example, rollback segments identified as owned by user SYS are private

rollback segments; the rollback segments identified as owned by user PUBLIC are

public rollback segments.

The view DBA_ROLLBACK_SEGS also includes information (not shown) about the

tablespace containing the rollback segment, the datafile containing the segment

header, and the extent sizes. The view DBA_SEGMENTS includes additional

information about the number of extents in each rollback segment and the segment

size.

See Also: The Oracle8i Administrator’s Guide for more information

about rollback segments, and about connecting to a database. For

the format of the connect string in instance-path see Net8
Administrator’s Guide and your Oracle system-specific

documentation. For a description of DBA_ROLLBACK_SEGS and

DBA_SEGMENTS, and other dynamic performance views please

see the Oracle8i Reference.

Creating Database Objects to Support Multiple Instances

14-8 Oracle8i Parallel Server Concepts and Administration

Configuring the Online Redo Log for OPS
Each database instance has its own "thread" of online redo, consisting of its own

online redo log groups. When running OPS, two or more instances concurrently

access a single database and each instance must have its own thread. This section

explains how to configure these online redo threads for multiple instances with

OPS.

You must create each thread with at least two redo log files (or multiplexed groups),

and you must enable the thread before an instance can use it.

The CREATE DATABASE statement creates thread number 1 as a public thread and

enables it automatically. You must use the ALTER DATABASE statement to create

and enable subsequent threads.

Creating Threads
Threads can be either public or private. The initialization parameter THREAD

assigns a unique thread number to the instance. If THREAD is zero, which is the

default, the instance acquires an available public thread.

Each thread must be created with at least two redo log files or multiplexed groups.

You must also enable each thread before an instance can use it.

The CREATE DATABASE statement creates thread number 1 as a public thread and

enables it automatically. Subsequent threads must be created and enabled with the

ALTER DATABASE statement. For example, the following statements create thread

2 with two groups of three members each, as shown in Figure 6–1 on page 6-4:

 ALTER DATABASE ADD LOGFILE THREAD 2
 GROUP 4 (disk1_file4, disk2_file4, disk3_file4) SIZE 1M REUSE
 GROUP 5 (disk1_file5, disk2_file5, disk3_file5) SIZE 1M REUSE;
 ALTER DATABASE ENABLE PUBLIC THREAD 2;

If you omit the keyword PUBLIC when you enable the thread, it will be a private

thread that cannot be acquired by default. Only one thread number may be

specified in the ALTER DATABASE ADD LOGFILE statement, and the THREAD

clause must be specified if the thread number of the current instance was chosen by

default.

Disabling Threads
You can disable a public or private thread with the statement ALTER DATABASE

DISABLE THREAD. You cannot disable a thread if an instance using the thread has

the database mounted. To change a thread from public to private, or vice versa, you

Creating Database Objects to Support Multiple Instances

Creating a Database and Objects for Multiple Instances 14-9

must disable the thread and then enable it again. An instance cannot disable its own

thread. The database must be open when you disable or enable a thread.

When you disable a thread, Oracle marks its current redo log file as needing to be

archived. If you want to drop that file, you might need to first archive it manually.

An error or failure while a thread is being enabled can result in a thread that has a

current set of log files but is not enabled. These log files cannot be dropped or

archived. In this case, you should disable the thread, even though it is already

disabled, then enable it.

Setting the Log’s Mode
The mode of using the redo log, ARCHIVELOG or NOARCHIVELOG, is set at

database creation. Although rarely necessary, the archive mode can be changed by

the SQL statement ALTER DATABASE. When archiving is enabled, online redo log

files cannot be reused until they are archived. To switch archiving modes, the

database must be mounted with OPS disabled, but the database cannot be open.

The redo log mode is associated with the database rather than with individual

instances. For most purposes, all instances should use the same archiving method,

either automatic or manual, if the redo log is being used in ARCHIVELOG mode.

Changing the Redo Log
You can change the configuration of the redo log, such as adding, dropping, or

renaming a log file or log file member, while the database is mounted with OPS

either enabled or disabled. The only restrictions are that you cannot drop or rename

a log file or log file member currently in use by any thread. Moreover, you cannot

drop a log file if that would reduce the number of log groups to less than two for

the thread it is in.

Any instance can add or rename redo log files, or members, of any group for any

other instance. As long as there are more than two groups for an instance, a redo log

group can be dropped from that instance by any other instance. Changes to redo log

files and log members take effect on the next log switch.

See Also: "Archiving the Redo Log Files" on page 21-2.

Changing the Value of CREATE DATABASE Options

14-10 Oracle8i Parallel Server Concepts and Administration

Providing Locks for Added Datafiles
If datafiles are added while OPS is running, evaluate whether enough locks are

available to cover the new files.

Added datafiles use the unassigned locks created when the value for

GC_FILES_TO_LOCKS was set. If the remaining locks are not adequate to protect

the new files and avoid contention, provide more locks by adjusting the GC*

parameters. Performance problems are likely if you neglect to make these

adjustments.

In a read-only database, extra locks are not necessary even if you added many new

datafiles. In a database heavily used for inserts, however, you might need to

provide more locks.

If you determine you need more locks, do the following:

1. Shut down your system.

2. Modify the GC_FILES_TO_LOCKS initialization parameter to provide enough

locks for the additional datafiles.

3. Restart the system.

Changing the Value of CREATE DATABASE Options
You can use the CREATE CONTROLFILE statement to change the value of the

following database parameters for an existing database:

■ MAXINSTANCES

■ MAXLOGFILES

■ MAXLOGMEMBERS

■ MAXLOGHISTORY

■ MAXDATAFILES

See Also: Oracle8i SQL Reference for a description of the

statements CREATE CONTROLFILE and ALTER DATABASE

BACKUP CONTROLFILE TO TRACE.

Allocating PCM Instance Locks 15-1

15
Allocating PCM Instance Locks

This chapter explains the init.ora parameters you must set to allocate PCM locks to

datafiles for an OPS instance.

■ Planning the Use and Maintenance of PCM Locks

■ Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

■ Tips for Setting GC_FILES_TO_LOCKS

■ Setting Other GC_* Parameters

■ Tuning PCM Locks

Note: Tuning PCM locks may not be enough to properly scale

your application. For more information, please refer to Chapter 12,

"Application Analysis"and Chapter 13, "Designing Databases for

Parallel Server".

See Also: Chapter 9, "Parallel Cache Management Instance

Locks", for a conceptual discussion of PCM locks and GC_*

parameters and Oracle8i Reference for descriptions of initialization

parameters used to allocate locks for OPS.

Planning the Use and Maintenance of PCM Locks

15-2 Oracle8i Parallel Server Concepts and Administration

Planning the Use and Maintenance of PCM Locks
This section describes planning the use and maintenance of PCM locks. It covers:

■ Planning and Maintaining Instance Locks

■ Key to Allocating PCM Locks

■ Examining Datafiles and Data Blocks

■ Using Worksheets to Analyze PCM Lock Needs

■ Mapping Fixed PCM Locks to Data Blocks

■ Partitioning PCM Locks Among Instances

Planning and Maintaining Instance Locks
The IDLM allows you to allocate only a finite number of locks. For this reason you

need to analyze and plan for the number of locks your application requires. You

also need to know how much memory locks and resources require. Consider these

ramifications:

■ If you attempt to use more locks than the number configured in the IDLM

facility, Oracle will display an error message and shut down the instance.

■ If you change Oracle GC_* or LM_* initialization parameters to specify large

numbers of locks, this affects the amount of memory used or available in the

SGA.

■ The number of instances also affects the memory requirements and number of

locks needed by your system.

Key to Allocating PCM Locks
The key to assigning locks is to analyze how often data is changed using the INSERT,

UPDATE, and DELETE commands. You can then determine how to group objects

into files based on whether they should be read-only or read/write. Finally, assign

locks based on the groupings you have made. In general, follow these guidelines:

■ Allocate only a few locks to read-only files.

■ Allocate more locks to read/write intensive files.

■ If the whole tablespace is read-only, you can simply assign it a single lock. If

you did not assign locks to the tablespace, the system would attempt to use

spare locks. This can cause contention since the tablespace would contend with

Planning the Use and Maintenance of PCM Locks

Allocating PCM Instance Locks 15-3

other tablespaces for the spare locks. This can generate unnecessary forced

reads/writes.

They key distinction is not between types of objects (index or table), but between

operations being performed on an object. The operation dictates the quantity of locks

needed.

Examining Datafiles and Data Blocks
You must allocate locks at various levels:

■ Specify the maximum number of PCM locks to allocate for all datafiles

■ Specify how many locks to allocate to blocks in each datafile

■ Specify particular locks to cover particular classes of datablocks in a given file

Begin by getting to know your datafiles and the blocks they contain.

How to Determine File ID, Tablespace Name, and Number of Blocks
Use the following command to determine the file ID, file name, tablespace name,

and number of blocks for all databases.

 SELECT FILE_NAME, FILE_ID, TABLESPACE_NAME, BLOCKS
 FROM DBA_DATA_FILES;

Results are displayed as in the following example:

FILE_NAME FILE_ID TABLESPACE_NAME BLOCKS

/v7/data/data01.dbf 1 SYSTEM 200
/v7/data/data02.dbf 2 ROLLBACK 1600
. . .

How Many Locks Do You Need?
Use the following approach to estimate the number of locks required for particular

uses.

■ Consider the nature of the data and the application.

Many locks are needed on heavily used, concurrently updated datafiles. But a

query-only application does not need many locks; a single lock on the datafile

suffices.

See Also: Chapter 12, "Application Analysis".

Planning the Use and Maintenance of PCM Locks

15-4 Oracle8i Parallel Server Concepts and Administration

■ Assign many locks to files that many instances modify concurrently.

This reduces lock contention, minimizes I/O activity, and increases accessibility

of the data in the files.

■ Assign fewer locks to files that multiple instances do not need to concurrently

access.

This avoids unnecessary lock management overhead.

■ Examine the objects in your files, and consider the operations used on them.

■ Group read-only objects in read-only tablespace(s).

Using Worksheets to Analyze PCM Lock Needs
On large applications, carefully study the business processes involved. Worksheets

similar to those in this section may be useful.

Determine the types of operations your system performs on a daily basis. The

distinction between operations needing X locks and those needing S locks is the key.

Every time you have to go from one mode to the other, you need locks. Take into

consideration the interaction of different instances on a table. Also take into

consideration the number of rows in a block, the number of rows in a table, and the

growth rate. Based on this analysis, group your objects into files, and assign free list

groups.

Figure 15–1 PCM Lock Worksheet 1

Object Operations needing X mode: Writes
OPS needing S
mode: Reads TS/Datafile

INSERTS UPDATES DELETES SELECTS

A 80% 20%

Full table scan?

Single row?

B 100%

C

D

Planning the Use and Maintenance of PCM Locks

Allocating PCM Instance Locks 15-5

Mapping Fixed PCM Locks to Data Blocks
In many cases, you need relatively few PCM locks to cover read-only data

compared to data that is updated frequently. This is because read-only data can be

shared by all instances of a parallel server. Data that is never updated can be

covered by a single PCM lock. Data that is not read-only should be covered by more

than a single PCM lock.

If data is read-only, then once an instance owns the PCM locks for the read-only

tablespace, the instance never disowns them.The Integrated Distributed Lock

Manager (IDLM) operations are not required after the initial lock acquisition.

For best results, partition your read-only tablespace so it is covered by its own set of

PCM locks. Do this by placing read-only data in a tablespace that does not have

writable data. Then allocate PCM locks to the datafiles in the tablespace using the

GC_FILES_TO_LOCKS parameter.

Figure 15–2 PCM Lock Worksheet 2

Object Instance 1 Instance 2 Instance 3

D INSERT

UPDATE

DELETE

SELECT

E

F

Figure 15–3 PCM Lock Worksheet 3

Table Name TS to put it in Row Size Number of Columns

Note: Do not put read-only data and writable data in the same

tablespace.

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

15-6 Oracle8i Parallel Server Concepts and Administration

Partitioning PCM Locks Among Instances
You can map PCM locks to particular data blocks to partition PCM locks among

instances based on the data each instance accesses.

This technique minimizes unnecessary distributed lock management. Likewise, it

minimizes the disk I/O caused by an instance having to write out data blocks

because a requested data block was covered by a PCM lock owned by another

instance.

For example, if Instance X primarily updates data in datafiles 1, 2, and 3, while

Instance Y primarily updates data in datafiles 4 and 5, you can assign one set of

PCM locks to files 1, 2, and 3 and another set to files 4 and 5. Then each instance

acquires ownership of the PCM locks for the data it updates. One instance disowns

the PCM locks only if the other instance needs access to the same data.

By contrast, if you assign one set of PCM locks to datafiles 3 and 4, I/O increases.

This is because both instances regularly use the same set of PCM locks.

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile
Set the GC_FILES_TO_LOCKS initialization parameter to specify the number of

PCM locks covering data blocks in a datafile or set of datafiles. This section covers:

■ GC_FILES_TO_LOCKS Syntax

■ Fixed Lock Examples

■ Releasable Lock Example

■ Guidelines

Note: Whenever you add or resize a datafile, create a tablespace,

or drop a tablespace and its datafiles, adjust the value of

GC_FILES_TO_LOCKS before restarting Oracle with OPS enabled.

See Also: Chapter 9, "Parallel Cache Management Instance

Locks", to understand how the number of data blocks covered by a

single PCM lock is determined.

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

Allocating PCM Instance Locks 15-7

GC_FILES_TO_LOCKS Syntax
The syntax for setting the GC_FILES_TO_LOCKS parameter specifies the

translation between the database address and class of a database block, and the lock

name protecting it. You cannot specify this translation for files not mentioned in the

GC_FILES_TO_LOCKS parameter.

The syntax for setting this parameter is:

GC_FILES_TO_LOCKS="{file_list=#locks[!blocks][R][EACH][:]} . . ."

Where:

Spaces are not permitted within the quotation marks of the GC_FILES_TO_LOCKS

parameter.

In addition to controlling the mapping of PCM locks to datafiles,

GC_FILES_TO_LOCKS controls the number of locks in the default bucket. The

default bucket is used for all files not explicitly mentioned in

GC_FILES_TO_LOCKS. A value of zero can be used and the default is "0=0". For

example, "0=100", "0=100R", "0-9=100EACH". By default, locks in this bucket are

releasable; you can however, set these locks to be fixed.

file_list file_list specifies a single file, range of files, or list of files and

ranges as follows: fileidA[-fileidC][,fileidE[-fileidG]] ...

Query the data dictionary view DBA_DATA_FILES to find the

correspondence between file names and file ID numbers.

#locks Sets the number of PCM locks to assign to file_list. A value of

zero (0) for #locks means that fine grain locks will be used

instead of hashed locks.

!blocks Specifies the number of contiguous data blocks to be covered

by each lock.

EACH Specifies #locks as the number of locks to be allocated to each file

in file_list.

R Specifies that the hashed locks are releasable: they may be

released by the instance when no longer needed. Releasable

hashed PCM locks are taken from the pool

GC_RELEASABLE_LOCKS.

Note: GC_ROLLBACK_LOCKS uses the same syntax.

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

15-8 Oracle8i Parallel Server Concepts and Administration

You can specify releasable hashed PCM locks by using the R option with the

GC_FILES_TO_LOCKS parameter. Releasable hashed PCM locks are taken from the

pool of GC_RELEASABLE_LOCKS

REACH is a keyword that combines "R" and "EACH". For example,

GC_FILES_TO_LOCKS="0-9=100REACH". EACHR is not a valid keyword.

Omitting EACH and "!blocks" means that #locks PCM locks are allocated collectively

to file_list and individual PCM locks cover data blocks for every file in file_list.
However, if any datafile contains fewer data blocks than the number of PCM locks,

some PCM locks will not cover a data block in that datafile.

The default value for !blocks is 1. When specified, blocks contiguous data blocks are

covered by each one of the #locks PCM locks. To specify a value for blocks, you must

use the "!" separator. You would primarily specify blocks, and not specify the EACH

keyword, to allocate sets of PCM locks to cover multiple datafiles. You can use

blocks to allocate a set of PCM locks to cover a single datafile where PCM lock

contention on that datafile is minimal, thus reducing PCM lock management.

Always set the !blocks value to avoid breaking data partitioning gained by using free

list groups. Normally you do not need to pre-allocate disk space. When a row is

inserted into a table and new extents need to be allocated, contiguous blocks

specified with !blocks in GC_FILES_TO_LOCKS are allocated to the free list group

associated with an instance.

Fixed Lock Examples
For example, you can assign 300 locks to file 1 and 100 locks to file 2 by adding the

following line to the parameter file of an instance:

 GC_FILES_TO_LOCKS = "1=300:2=100"

The following entry specifies a total of 1500 locks; 500 each for files 1, 2, and 3:

 GC_FILES_TO_LOCKS = "1-3=500EACH"

By contrast, the following entry specifies a total of only 500 locks spread across the

three files:

 GC_FILES_TO_LOCKS = "1-3=500"

The following entry indicates that 1000 distinct locks should be used to protect

file 1. The data in the files is protected in groups of 25 blocks.

 GC_FILES_TO_LOCKS = "1=1000!25"

Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile

Allocating PCM Instance Locks 15-9

The following entry indicates that the 1000 hashed locks protecting file 1 in groups

of 25 blocks may be released by the instance when no longer needed.

 GC_FILES_TO_LOCKS = "1=1000!25R"

Releasable Lock Example
 To specify fine grain locks for data blocks with a group factor, specify the following

in the parameter file of an instance:

 GC_FILES_TO_LOCKS="1=0!4"

This specifies fine grain locks with a group factor of 4 for file 1.

Guidelines
Use the following guidelines to set the GC_FILES_TO_LOCKS parameter:

■ Always specify all datafiles in GC_FILES_TO_LOCKS.

■ Assign the same value to GC_FILES_TO_LOCKS for each instance accessing the

same database.

■ The number of PCM locks you specify for a datafile should never exceed the

number of blocks in the datafile. This ensures that if a datafile increases in size,

the new blocks can be covered by the extra PCM locks.

If a datafile is defined with the AUTOEXTEND clause or you issue the ALTER

DATABASE ... DATAFILE ... RESIZE command, you should regularly monitor

the datafile for an increase in size. If the datafile’s size is increasing, update the

parameter GC_FILES_TO_LOCKS as soon as possible, then shut down and

restart your parallel server.

If the number of PCM locks specified for file_list is less than the actual number

of data blocks in the datafiles, then the IDLM uses some PCM locks to cover

more datablocks than specified. This can hurt performance, so you should

always ensure that sufficient PCM locks are available.

■ When you add new datafiles, always specify their locks in

GC_FILES_TO_LOCKS to avoid automatic allocation of the "spare" PCM locks.

Note: Restarting OPS is not required. But if you do not shut down

and restart, the locks will cover more blocks.

Tips for Setting GC_FILES_TO_LOCKS

15-10 Oracle8i Parallel Server Concepts and Administration

At some point, you may need to add a datafile using the ALTER TABLESPACE

... ADD DATAFILE command, with OPS running. If you do this, then you

should update GC_FILES_TO_LOCKS as soon as possible, then shut down and

restart your parallel server.

■ To reduce resource contention by creating disjoint data to be accessed by

different instances, you should place datafiles on different disks. Use

GC_FILES_TO_LOCKS to allocate PCM locks to cover the data blocks in the

separate datafiles.

■ Specify relatively fewer PCM locks for blocks containing infrequently modified

index data. Place indexes in their own tablespace or in their own datafiles

within a tablespace so a separate set of PCM locks can be assigned to them. For

a read-only index, only one PCM lock is needed.

■ Files not mentioned in GC_FILES_TO_LOCKS use DBA fine-grained locking.

Tips for Setting GC_FILES_TO_LOCKS
Setting GC_FILES_TO_LOCKS is an important tuning task in OPS. This section

covers some simple checks to help ensure your parameter settings are providing the

best performance. This section covers:

■ Providing Room for Growth

■ Checking for Valid Number of Locks

■ Checking for Valid Lock Assignments

■ Setting Tablespaces to Read-only

■ Checking File Validity

■ Adding Datafiles without Changing Parameter Values

Providing Room for Growth
Sites that run continuously cannot afford to shut down to permit adjustment of

parameter values. Therefore, when you size these parameters, remember to provide

room for growth, or room for files to extend.

Additionally, whenever you add or resize a datafile, create a tablespace, or drop a

tablespace and its datafiles, adjust the value of GC_FILES_TO_LOCKS before

restarting Oracle with OPS enabled.

Tips for Setting GC_FILES_TO_LOCKS

Allocating PCM Instance Locks 15-11

Checking for Valid Number of Locks
Check that the number of locks allocated is not larger than the number of data

blocks allocated.

Check the FILE_LOCK data dictionary view to see the number of locks allocated

per file. Check V$DATAFILE to see the maximum size of the data file.

Checking for Valid Lock Assignments
To avoid lock assignment problems, check the following:

■ Do not assign locks to files that only hold rollback segments.

■ Do not assign locks to files that only hold temporary data for internal

temporary tables.

■ Group read-only objects together and assign one lock only to that file. This only

works if there is absolutely no writing done to the file or even changes to the

blocks, such as block clean out, and so on. If possible, make these tablespaces

read-only.

Setting Tablespaces to Read-only
If a tablespace is actually read-only, consider setting it to read-only in Oracle. This

ensures that no write to the database occurs and no PCM locks are used. The

exception to this is a single lock you can assign to ensure the tablespace will not

have to contend for spare locks.

Note: Blocks currently allocated may be zero if you are about to

insert into a table.

See Also: Oracle8i Reference for more information about

FILE_LOCK and V$DATAFILE.

Setting Other GC_* Parameters

15-12 Oracle8i Parallel Server Concepts and Administration

Checking File Validity
Count the number of objects in each file, as follows:

 SELECT E.FILE_ID FILE_ID,
 COUNT(DISTINCT OWNER||NAME) OBJS
 FROM DBA_EXTENTS E,
 EXT_TO_OBJ V
 WHERE E.FILE_ID = FILE#
 AND E.BLOCK_ID >= LOWB
 AND E.BLOCK_ID <= HIGHB
 AND KIND != ’FREE EXTENT’
 AND KIND != ’UNDO’
 GROUP BY E.FILE_ID;

Examine the files storing multiple objects. Run CATPARR.SQL to use the

EXT_TO_OBJ view. Make sure the objects can coexist in the same file. That is, make

sure the GC_FILES_TO_LOCKS settings are compatible.

Adding Datafiles without Changing Parameter Values
Consider the consequences for PCM lock distribution if you add a datafile to the

database. You cannot assign locks to this file without shutting down the instance,

changing the GC_FILES_TO_LOCKS parameter, and restarting the database. This

may not be possible for a production database.

In this case, the datafile will be assigned to the pool of remaining locks and the file

must contend with all files not mentioned in the GC_FILES_TO_LOCKS parameter.

Setting Other GC_* Parameters
This section describes how to set two additional GC_* parameters:

■ Setting GC_RELEASABLE_ LOCKS

■ Setting GC_ROLLBACK_ LOCKS

Setting Other GC_* Parameters

Allocating PCM Instance Locks 15-13

Setting GC_RELEASABLE_ LOCKS
For GC_RELEASABLE_LOCKS, Oracle recommends the default setting. This is the

value of DB_BLOCK_BUFFERS. This recommendation generally provides optimal

performance. However, you can set GC_RELEASABLE_LOCKS to less than the

default to save memory, or more than the default to get a possible reduction in

locking activity. Too low a value for GC_RELEASABLE_LOCKS could adversely

affect performance.

The statistic "releasable freelist waits" in the V$SYSSTAT view tracks the number of

times the system runs out of releasable locks. If this condition occurs, as indicated

by a non-zero value for releasable freelist waits, you must increase the value of

GC_RELEASABLE_LOCKS.

Setting GC_ROLLBACK_ LOCKS
If you are using fixed locks, it is wise to check that the number of locks allocated is

not larger than the number of data blocks allocated. Blocks currently allocated may

be zero if you are about to insert into a table. Find the number of blocks allocated to

a rollback segment by entering:

 SELECT S.SEGMENT_NAME NAME,
 SUM(RBLOCKS) BLOCKS
 FROM DBA_SEGMENTS S,
 DBA_EXTENTS R
 WHERE S.SEGMENT_TYPE = ’ROLLBACK’
 AND S.SEGMENT_NAME = R.SEGMENT_NAME
 GROUP BY S.SEGMENT_NAME;

This query displays the number of blocks allocated to each rollback segment. When

there are many unnecessary forced reads/writes on the undo blocks, try using

releasable locks. By default, all rollback segments are protected by releasable locks.

The parameter GC_ROLLBACK_LOCKS takes arguments much like the

GC_FILES_TO_LOCKS parameter, for example:

GC_ROLLBACK_LOCKS="0=100:1-10=10EACH:11-20=20EACH"

In this example rollback segment 0, the system rollback segment, has 100 locks.

Rollback segments 1 through 10 have 10 locks each, and rollback segments 11

through 20 have 20 locks each.

Tuning PCM Locks

15-14 Oracle8i Parallel Server Concepts and Administration

Invalid: GC_ROLLBACK_LOCKS="1-10=100".

Valid: GC_ROLLBACK_LOCKS="1-10=100EACH".

Tuning PCM Locks
This section discusses several issues to consider before tuning PCM locks:

■ Detecting False Pinging

■ How Much Time Do PCM Lock Conversions Take?

■ Which Sessions Are Waiting for PCM Lock Conversions to Complete?

■ What Is the Total Number of PCM Locks and Resources Needed?

Detecting False Pinging
False pinging occurs when you down-convert a lock element protecting two or

more blocks that are concurrently updated from different nodes. Assume that each

node is updating a different block covered by the same lock. In this event, each

node must ping both blocks, even though the node is updating only one of them.

This is necessary because the same lock covers both blocks.

No statistics are available to show false pinging activity. To asses false pinging, you

can only consider circumstantial evidence. This section describes activity you

should look for.

The following SQL statement shows the number of lock operations causing a write,

and the number of blocks actually written:

 SELECT VALUE/(A.COUNTER + B.COUNTER + C.COUNTER) "PING RATE"
 FROM V$SYSSTAT,
 V$LOCK_ACTIVITY A,
 V$LOCK_ACTIVITY B,
 V$LOCK_ACTIVITY C
 WHERE A.FROM_VAL = ’X’
 AND A.TO_VAL = ’NULL’
 AND B.FROM_VAL = ’X’

Note: You cannot use GC_ROLLBACK_LOCKS to make undo

segments share locks. The first example below is invalid, but the

second is valid, since each of the undo segments has 100 locks to

itself:

Tuning PCM Locks

Allocating PCM Instance Locks 15-15

 AND B.TO_VAL = ’S’
 AND C.FROM_VAL = ’X’
 AND C.TO_VAL = ’SSX’
 AND NAME = ’DBWR cross instance writes’;

Table 15–1 shows how to interpret the ping rate.

Use this formula to calculate the percentage of pings that are definitely false:

Then check the total number of writes and calculate the number due to false pings:

 SELECT Y.VALUE "ALL WRITES",
 Z.VALUE "PING WRITES",
 Z.VALUE * pingrate "FALSE PINGS",
 FROM V$SYSSTAT Z,
 V$SYSSTAT Y,
 WHERE Z.NAME = ’DBWR cross instance writes’
 AND Y.NAME = ’physical writes’;

Table 15–1 Interpreting the Ping Rate

Ping Rate Meaning

< 1 False pings may be occurring, but there are more lock operations than

writes for pings. DBWR is writing out blocks fast enough, causing no
write for a lock activity. This is also known as a "soft ping", meaning
I/O activity is not required for the ping, only lock activity.

= 1 Each lock activity involving a potential write causes the write to
happen. False pinging may be occurring.

> 1 False pings are definitely occurring.

* 100
(ping_rate - 1)

ping_rate

Tuning PCM Locks

15-16 Oracle8i Parallel Server Concepts and Administration

Here, ping_rate is given by the following SQL statement:

 CREATE OR REPLACE VIEW PING_RATE AS
 SELECT ((VALUE/(A.COUNTER+B.COUNTER+C.COUNTER))-1)/
 (VALUE/(A.COUNTER+B.COUNTER+C.COUNTER)) RATE
 FROM V$SYSSTAT,
 V$LOCK_ACTIVITY A,
 V$LOCK_ACTIVITY B,
 V$LOCK_ACTIVITY C
 WHERE A.FROM_VAL = ’X’
 AND A.TO_VAL = ’NULL’
 AND B.FROM_VAL = ’X’
 AND B.TO_VAL = ’S’
 AND C.FROM_VAL = ’X’
 AND C.TO_VAL = ’SSX’
 AND NAME = ’DBWR cross instance writes’;

Needless to say, the goal is not only to reduce overall pinging, but also to reduce

false pinging. To do this, look at the distribution of instance locks in

GC_FILES_TO_LOCKS and check the data in the files.

How Much Time Do PCM Lock Conversions Take?
Be sure to check the amount of time needed for a PCM lock to convert. This time

differs across systems. Enter the following SQL statement to find the lock

conversion duration:

 SELECT *
 FROM V$SYSTEM_EVENT
 WHERE EVENT = ’lock element cleanup’

This SQL statement displays a table similar to the following:

 TOTAL_ TOTAL_ TIME_ AVERAGE_
EVENT WAITS TIMEOUTS WAITED WAIT
-------------------- ------ ------- ------ ----------
lock element cleanup 32709 44 685660 20.9624262

This means that a lock conversion took 20.9 hundredths of a second (0.209 seconds).

Tuning PCM Locks

Allocating PCM Instance Locks 15-17

Which Sessions Are Waiting for PCM Lock Conversions to Complete?
Enter the following SQL statement to see which sessions are currently waiting, and

which have just waited for a PCM lock conversion to complete:

 SELECT *
 FROM V$SESSION_WAIT
 WHERE EVENT = ’lock element cleanup’

What Is the Total Number of PCM Locks and Resources Needed?
This section explains how to determine the number of PCM locks and resources

your system requires. This is the value you need to set for the LM_LOCKS and

LM_RESS parameters.

Formula for PCM Locks and Resources
To find this value, add the number of fixed (non-releasable) locks set per instance (the

sum of GC_FILES_TO_LOCKS and GC_ROLLBACK_LOCKS—fixed locks only) to

the total number of releasable locks (the value of GC_RELEASABLE_LOCKS), and

multiply by two.

2 *(GC_FILES_TO_LOCKS + GC_ROLLBACK_LOCKSfixed + GC_RELEASABLE_LOCKS)

This figure represents the maximum number of PCM locks and resources your

system requires. This calculation is independent of the number of instances.

Also consider the following:

■ GC_FILES_TO_LOCKS: the default value is releasable; all instances must have

the same setting

■ GC_ROLLBACK_LOCKS: the default is releasable; all instances must have the

same setting

■ GC_RELEASABLE_LOCKS: the default is releasable, set to value of

DB_BLOCK_BUFFERS

Calculating PCM Locks and Resources: Example
Assume your system has the following settings for each instance:

GC_FILES_TO_LOCKS="1=100:2-5=1000:6-10=1000EACH:11=100R"

GC_ROLLBACK_LOCKS="1-10=10EACH:11-20=20EACH"

GC_RELEASABLE_LOCKS=50,000

Tuning PCM Locks

15-18 Oracle8i Parallel Server Concepts and Administration

Add the GC_FILES_TO_LOCKS values as follows: File 1 has 100 fixed locks. Files 2,

3, 4, and 5 share 1000 locks. File 6 has 1000 fixed locks, file 7 has 1000 fixed locks, file

8 has 1000 fixed locks, file 9 has 1000 fixed locks, and file 10 has 1000 fixed locks.

File 11 does not have fixed locks. Hence there is a total of 6,100 fixed locks set by

GC_FILES_TO_LOCKS.

Add the GC_ROLLBACK_LOCKS values as follows: Files 1 through 10 have 10

fixed locks each, and Files 11 through 20 have 20 fixed locks each, for a total of 300

fixed locks.

Entering these figures into the formula, calculate the following:

2 * (6,100 + 300 + 50,000) = 112,800

You would thus set the LM_LOCKS and LM_RESS parameters to 112,800.

Note: Use the above equation only to calculate PCM resources.

See Also: For the complete equation to calculate locks and

resources, please refer to "Determining the Amount of Locks

Needed and Setting LM_* Parameters" on page 18-12. Also refer to

"GC_FILES_TO_LOCKS Syntax" on page 15-7 to see details about

the syntax of using this parameter.

Ensuring IDLM Capacity for Resources and Locks 16-1

16
Ensuring IDLM Capacity for Resources and

Locks

To reduce contention for shared resources and gain maximum Oracle Parallel Server

(OPS) performance, ensure that the Integrated Distributed Lock Manager (IDLM) is

adequately configured for all locks and resources your system requires. This chapter

covers the following topics:

■ Overview

■ Planning IDLM Capacity

■ Calculating the Number of Non-PCM Resources

■ Adjusting Oracle Initialization Parameters

■ Minimizing Table Locks to Optimize Performance

Overview
Planning PCM locks alone is not sufficient to manage locks on your system. Besides

explicitly allocating parallel cache management locks, you must actively ensure

IDLM is adequately configured, on each node, for all required PCM and non-PCM

locks and resources. Consider also that larger databases and higher degrees of

parallelism require increased demands for many resources.

Many different types of non-PCM lock exist, and each is handled differently.

Although you cannot directly adjust their number, you can estimate the overall

number of non-PCM resources and locks required, and adjust the LM_* or GC_*

See Also: Chapter 10, "Non-PCM Instance Locks" for a

conceptual overview.

Planning IDLM Capacity

16-2 Oracle8i Parallel Server Concepts and Administration

initialization parameters (or both) to guarantee adequate space. You also have the

option of minimizing table locks to optimize performance.

Planning IDLM Capacity
Carefully plan and configure the number of resources and locks to be managed by

the IDLM. Allocate these locks and resources using the initialization parameters

LM_LOCKS and LM_RESS. Although additional locks and resources can be

allocated dynamically, you should avoid this.

Avoiding Dynamic Allocation of Resources and Locks
If the number of locks or resources required becomes greater than the amount you

have allocated, additional locks or resources will be allocated from the SGA shared

pool. This feature prevents the instance from stopping.

Dynamic allocation causes Oracle to write a message to the alert file indicating that

you should recompute and adjust the initialization parameters for the next time the

database is started. Since performance and memory usage may be adversely

affected by dynamic allocation, it is highly recommended that you correctly

compute your lock and resource needs.

Recommended SHARED_POOL_SIZE Settings
The recommended default value for SHARED_POOL_SIZE is 16MB for 64-bit

applications, and 8MB for 32-bit applications.

Computing Lock and Resource Needs
Use the following approach to carefully plan IDLM capacity, on a per node basis,

for the total number of PCM and non-PCM resources and locks needed.

1. Consider failover requirements.

In case of failover, you need enough resources configured on the remaining

instances so the system can continue operating. Thus, if resources are shared by

10 instances and 5 instances fail, the system must be able to run on the

remaining 5 instances. To do this, you must somewhat over estimate system

resources by accounting for overhead. In other words, set large enough values

for the Oracle initialization parameters determining IDLM locks and resources

for each instance.

Planning IDLM Capacity

Ensuring IDLM Capacity for Resources and Locks 16-3

2. Consider the sizing of each instance on each node: number of users, volume of

transactions, and so on. Determine the values you will assign to each instance’s

initialization parameters.

3. Calculate the number of non-PCM resources and locks required, by filling in the

worksheets provided in this chapter.

4. Calculate the number of PCM resources and locks required, by using the script

in "What Is the Total Number of PCM Locks and Resources Needed?" on

page 15-17.

5. Configure the IDLM to accommodate the required number of:

■ Non-PCM resources

■ Non-PCM locks

■ PCM resources

■ PCM locks

Monitoring Resource Utilization
The V$RESOURCE_LIMIT view provides information about global resource use for

some system resources. Using this view to monitor the current and maximum

resource use. It is important to notice when the values approach the limits. With this

information you can make better decisions when choosing values for resource

limit-controlling parameters.

See Also: "Determining the Amount of Locks Needed and Setting

LM_* Parameters" on page 18-12. Also refer to the Oracle8i
Reference regarding V$RESOURCE_LIMIT, and to Oracle8i Tuning
for a complete discussion of resource limits.

Calculating the Number of Non-PCM Resources

16-4 Oracle8i Parallel Server Concepts and Administration

Calculating the Number of Non-PCM Resources
Use the following worksheet to analyze your system resources.

1. In the following worksheet, enter values for the PROCESSES, DML_LOCKS,

TRANSACTIONS, and ENQUEUE_RESOURCES initialization parameters for

each instance.

2. For each instance, enter the value of the DB_FILES parameter. This is the same

for all instances.

3. Enter values for Enqueue Locks for each instance. For each instance, you can

calculate this value as follows:

Enqueue Locks = 20 + (10 * SESSIONS) + DB_FILES + 1 + (2 * PROCESSES) +

(DB_BLOCK_BUFFERS/64)

4. For each instance, enter values for parallel query overhead to cover

inter-instance communication. For individual instances, you can calculate this

value as follows:

PQ Overhead = 7 + (MAXINSTANCES * PARALLEL_MAX_SERVERS) +

PARALLEL_MAX_SERVERS + MAXINSTANCES

5. Add the entries horizontally to obtain the Subtotals: # of Non-PCM Resources

per Instance.

6. Add the per-instance subtotals to obtain the Total Number of Non-PCM

Resources System-Wide.

Table 16–1 Worksheet: Calculating Non-PCM Resources

Inst.
No.

PRO-
CESSES

DML_
LOCKS

TRANS-
ACTIONS

ENQUEUE_
RESOURCES

DB_FILES
(on one or
more
instances
)

Enqueue
Locks

PQ
Over
head

Over-
head

Subtotals:
Non-PCM
Resources
per
Instance

1 200

2 200

3 200

4 200

Total Number of Non-PCM Resources System-Wide:

Calculating the Number of Non-PCM Resources

Ensuring IDLM Capacity for Resources and Locks 16-5

7. Finally, use the figures derived from this worksheet to ensure that LM_RESS is

set to accommodate all non-PCM resources (see step 6 on on page 16-4).

Table 16–2 shows sample values for a system with four instances, and with

PARALLEL_MAX_SERVERS set to 8 for instances 1 and 3, and set to 4 for instances

2 and 4. The buffer cache size is assumed to be 10K.

Note: The worksheet incorporates a standard overhead value of

200 for each instance.

Table 16–2 Calculating Non-PCM Resources (Example)

Inst.
No.

PRO-
CESSES

DML_
LOCKS

TRANS-
ACTIONS

ENQUEUE_
RESOURCES

DB_FILES
(on one or
more
instances)

Enqueue
Locks

PQ
Over-
head

Over
head

Subtotals:
Non-PCM
Resources
per
Instance

1 200 500 50 800 30 2808 51 200 4,639

2 350 600 100 1,000 -- 4128 31 200 6,409

3 175 400 75 800 -- 2453 51 200 4,154

4 225 350 125 1,200 -- 3103 31 200 5,234

Total Number of Non-PCM Resources System-Wide: 20,436

Adjusting Oracle Initialization Parameters

16-6 Oracle8i Parallel Server Concepts and Administration

Adjusting Oracle Initialization Parameters
Another way to ensure your system has enough space for the required non-PCM

locks and resources is to adjust the values of the following Oracle initialization

parameters:

■ DB_BLOCK_BUFFERS

■ DB_FILES

■ DML_LOCKS

■ PARALLEL_MAX_SERVERS

■ PROCESSES

■ SESSIONS

■ TRANSACTIONS

Begin by experimenting with these values in the worksheets supplied in this chapter.

You could artificially inflate parameter values in the worksheets to see the IDLM

ramifications of providing extra room for failover.

Do not, however, specify actual parameter values considerably greater than needed

for each instance. Setting these parameters unnecessarily high entails overhead in a

parallel server environment.

Minimizing Table Locks to Optimize Performance
This section describes two strategies for improving performance by minimizing

table locks:

■ Setting DML_LOCKS to Zero

■ Disabling Table Locks

Obtaining table locks (DML locks) for inserts, deletes, and updates can hurt

performance in OPS. Locking a table in OPS is very undesirable because all

instances holding locks on the table must release those locks. Consider disabling

these locks entirely.

Note: If you use either of these strategies, you cannot perform

DDL commands against either the instance or the table.

Minimizing Table Locks to Optimize Performance

Ensuring IDLM Capacity for Resources and Locks 16-7

Setting DML_LOCKS to Zero
Table locks are set with the initialization parameter DML_LOCKS. If the DROP

TABLE, CREATE INDEX, and LOCK TABLE commands are not needed, set

DML_LOCKS to zero to minimize lock conversions and gain maximum

performance.

Disabling Table Locks
To prevent users from acquiring table locks, use the following command:

 ALTER TABLE table_name DISABLE TABLE LOCK

Users attempting to lock a table when its table lock is disabled will receive an error.

To re-enable table locking, use the following command:

 ALTER TABLE table_name ENABLE TABLE LOCK

The above command waits until all currently executing transactions commit before

enabling the table lock. The command does not need to wait for new transactions

starting after issuing the ENABLE command.

To determine whether a table has its table lock enabled or disabled, query the

column TABLE_LOCK in the data dictionary table USER_TABLES. If you have

select privilege on DBA_TABLES or ALL_TABLES, you can query the table lock

state of other users tables.

Note: If DML_LOCKS is set to zero on one instance, it must be set

to zero on all instances. With other values, this parameter need not
be identical on all instances.

Minimizing Table Locks to Optimize Performance

16-8 Oracle8i Parallel Server Concepts and Administration

Using Free List Groups to Partition Data 17-1

17
Using Free List Groups to Partition Data

This chapter explains how to allocate free lists and free list groups to partition data.

By doing this, you can minimize contention for free space when using multiple

instances.

The chapter describes:

■ Overview

■ Deciding How to Partition Free Space for Database Objects

■ Setting FREELISTS and FREELIST GROUPS in the CREATE Statement

■ Associating Instances, Users, and Locks with Free List Groups

■ Pre-allocating Extents (Optional)

■ Dynamically Allocating Extents

■ Identifying and Deallocating Unused Space

Note: You should only use free list groups to partition data when

your application constraints do not allow you to partition the

tables. It is much simpler to use partitioned tables and indexes to

accomplish the same thing that free list groups accomplish.

See Also: Chapter 11, "Space Management and Free List Groups"

for a conceptual overview and Oracle8i Concepts.

Overview

17-2 Oracle8i Parallel Server Concepts and Administration

Overview
Use the following procedure to manage free space for multiple instances:

1. Analyze your database objects and decide how to partition free space and data.

2. Set FREELISTS and FREELIST GROUPS in the CREATE statement for each

table, cluster, and index.

3. Associate instances, users, and locks with free lists.

4. Allocate blocks to free lists.

5. Pre-allocate extents, if desired.

By effectively managing free space, you may improve performance of an

application configuration that is not ideally suited to OPS.

Deciding How to Partition Free Space for Database Objects
This section provides a worksheet to help you analyze database objects and decide

how to partition free space and data for optimal performance.

■ Database Object Characteristics

■ Free Space Worksheet

Database Object Characteristics
Analyze the database objects you create and sort them into the categories as

described in this section.

Objects in a Static Table
If a table does not have high insert activity, it does not need free lists or free list

groups.

Note: For optimal system performance, use care in setting the

FREELIST and FREELIST GROUPS options; these values cannot be

reset.

Deciding How to Partition Free Space for Database Objects

Using Free List Groups to Partition Data 17-3

Figure 17–1 Database Objects in a Static Table

Objects in a Partitioned Application
With proper partitioning of certain applications, only one node needs to insert into

the table or segment. In such cases, free lists may be necessary if there are a large

number of users, but free list groups are not necessary.

Figure 17–2 Database Objects in a Partitioned Application

Objects Relating to Partitioned Data
Multiple free lists and free list groups are not necessary for objects with partitioned

data.

Segment

Instance Instance Instance1 2 3

Segment

Deciding How to Partition Free Space for Database Objects

17-4 Oracle8i Parallel Server Concepts and Administration

Figure 17–3 Database Objects Relating to Partitioned Data

Objects in a Table with Random Inserts
Free lists and free list groups are needed when random inserts from multiple

instances occur in a table. All instances writing to the segment must check the

master free list to determine where to write. There would thus be contention for the

segment header containing the master free list.

Figure 17–4 Database Objects in a Table with Random Inserts

Instance Instance Instance1 2 3

Segment Segment Segment

0 1 2

Instance Instance Instance1 2 3

Segment

Deciding How to Partition Free Space for Database Objects

Using Free List Groups to Partition Data 17-5

Free Space Worksheet
List each of your database objects, such as tables, clusters, and indexes, in a

worksheet like the following, and plan free lists and free list groups for each.

Table 17–1 Free Space Worksheet for Database Objects

Database Object Characteristics Free List Groups Free Lists

 Objects in Static Tables NA NA

NA NA

NA NA

NA NA

 Objects in Partitioned Applications NA

NA

NA

NA

 Objects Related to Partitioned Data NA NA

NA NA

NA NA

NA NA

 Objects in Table w/Random Inserts

Note: Do not confuse partitioned data with Oracle8i partitions

that may or may not be in use.

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement

17-6 Oracle8i Parallel Server Concepts and Administration

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement
This section covers the following topics:

■ FREELISTS Option

■ FREELIST GROUPS Option

■ Creating Free Lists for Clusters

■ Creating Free Lists for Indexes

Create free lists and free list groups by specifying the FREELISTS and FREELIST

GROUPS storage options in CREATE TABLE, CLUSTER or INDEX statements. You

can do this while accessing the database in either exclusive or shared mode.

FREELISTS Option
FREELISTS specifies the number of free lists in each free list group. The default

value of FREELISTS is 1. This is the minimum value. The maximum value depends

on the data block size. If you specify a value that is too large, an error message

informs you of the maximum value. The optimal value of FREELISTS depends on

the expected number of concurrent inserts per free list group for this table.

FREELIST GROUPS Option
Each free list group is associated with one or more instances at startup. The default

value of FREELIST GROUPS is 1, which means that the table’s free lists, if any, are

available to all instances. Typically, you should set FREELIST GROUPS to the

number of instances in OPS. Using free list groups also partitions data. Blocks

allocated to one instance, freed by another instance, are no longer available to the

first instance.

Note: Once you have set these storage options you cannot change

their values with the ALTER TABLE, CLUSTER, or INDEX

statements.

See Also: The STORAGE clause in Oracle8i SQL Reference for

the syntax of these options.

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement

Using Free List Groups to Partition Data 17-7

Example The following statement creates a table named DEPT that has seven free

list groups, each of which contains four free lists:

 CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13))
 STORAGE (INITIAL 100K NEXT 50K
 MAXEXTENTS 10 PCTINCREASE 5
 FREELIST GROUPS 7 FREELISTS 4);

Creating Free Lists for Clusters
You cannot specify FREELISTS and FREELIST GROUPS storage options in the

CREATE TABLE statement for a clustered table. You must specify free list options

for the whole cluster rather than for individual tables. This is because the tables in a

cluster use the storage parameters of the CREATE CLUSTER statement.

Clusters are an optional method of storing data in groups of tables having common

columns. Related rows of two or more tables in a cluster are physically stored

together within the database to improve access time. OPS allows clusters (other

than hash clusters) to use multiple free lists and free list groups.

Some hash clusters can also use multiple free lists and free list groups if you created

them with a user-defined key for the hashing function and the key is partitioned by

instance.

Note: Even in a non-shared environment, multiple free list groups

can improve performance. With multiple free list groups, the free

list structure is detached from the segment header, thereby

reducing contention for the segment header. This is very useful

when there is a high volume of UPDATE and INSERT transactions.

Setting FREELISTS and FREELIST GROUPS in the CREATE Statement

17-8 Oracle8i Parallel Server Concepts and Administration

Creating Free Lists for Indexes
You can use the FREELISTS and FREELIST GROUPS storage options of the

CREATE INDEX statement to create multiple free space lists for concurrent user

processes. Use these options in the same manner as described for tables.

When multiple instances concurrently insert rows into a table having an index,

contention for index blocks decreases performance unless index values can be

separated by instance. Figure 17–5 illustrates a situation where all instances are

trying to insert into the same index leaf block (n).

Figure 17–5 Contention for One Index Block

1 2 3 4 5 6 7 8 n

Index Root

Index Branch

Index Leaf

Contention on a
single index block

Associating Instances, Users, and Locks with Free List Groups

Using Free List Groups to Partition Data 17-9

To avoid this problem, have each instance insert into its own tree, as illustrated in

Figure 17–6.

Figure 17–6 No Index Contention

Compute the index value with an algorithm such as:

instance_number * (100000000) + sequence_number

Associating Instances, Users, and Locks with Free List Groups
This section explains how you can associate the following with free list groups:

■ Associating Instances with Free List Groups

■ Associating User Processes with Free List Groups

■ Associating PCM Locks with Free List Groups

301 . . .201 . . .101 . . .

Index Root

Index Branch

Index Leaf

No contention

Associating Instances, Users, and Locks with Free List Groups

17-10 Oracle8i Parallel Server Concepts and Administration

Associating Instances with Free List Groups
You can associate an instance with extents or free list groups as follows:

The SET INSTANCE feature is useful when an instance fails and users connect to

other instances. For example, consider a database where space is pre-allocated to

the free list groups in a table. With users distributed across instances and the data

well partitioned, minimal pinging of data blocks occurs. If an instance fails, moving

all users to other instances does not disrupt the data partitioning because each new

session can use the original free list group associated with the failed instance.

Associating User Processes with Free List Groups
User processes are automatically associated with free lists based on the Oracle

process ID of the process in which they are running, as follows:

(oracle_pid modulo #free_lists_for_object) + 1

You can use the ALTER SESSION SET INSTANCE statement if you wish to use the

free list group associated with a particular instance.

INSTANCE_NUMBER

parameter

You can use various SQL options with the

INSTANCE_NUMBER initialization parameter to

associate extents of data blocks with instances.

SET INSTANCE option You can use the SET INSTANCE option of the ALTER

SESSION command to ensure a session uses the free

list group associated with a particular instance

regardless of the instance to which the session is

connected. For example:

ALTER SESSION SET INSTANCE = inst_no

Pre-allocating Extents (Optional)

Using Free List Groups to Partition Data 17-11

Associating PCM Locks with Free List Groups
If each extent in the table is in a separate datafile, use the GC_FILES_TO_LOCKS

parameter to allocate specific ranges of PCM locks to each extent, so each set of

PCM locks is associated with only one group of free lists.

Pre-allocating Extents (Optional)
This section explains how to pre-allocate extents. This method is useful but a static

approach to extent allocation requires a certain amount of database administration

overhead.

■ The ALLOCATE EXTENT Option

■ Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters

■ Setting the INSTANCE_NUMBER Parameter

■ Examples of Extent Pre-allocation

The ALLOCATE EXTENT Option
The ALLOCATE EXTENT option of the ALTER TABLE or ALTER CLUSTER

statement enables you to pre-allocate an extent to a table, index or cluster with

options to specify the extent size, datafile, and a group of free lists.

The syntax of the ALLOCATE EXTENT option is given in the descriptions of the

ALTER TABLE and ALTER CLUSTER statements in Oracle8 SQL Reference.

Exclusive and Shared Modes. You can use the ALTER TABLE (or CLUSTER)

ALLOCATE EXTENT statement while the database is running in exclusive mode, as

well as in shared mode. When an instance is running in exclusive mode, it still

follows the same rules for locating space. A transaction can use the master free list

or the specific free list group for that instance.

The SIZE Option. This option of the ALLOCATE EXTENT clause is the extent size

in bytes, rounded up to a multiple of the block size. If you do not specify SIZE, the

extent size is calculated according to the values of storage parameters NEXT and

PCTINCREASE.

The value of SIZE is not used as a basis for calculating subsequent extent

allocations, which are determined by NEXT and PCTINCREASE.

See Also: "Free Lists Associated with Instances, Users, and Locks"

on page 11-14.

Pre-allocating Extents (Optional)

17-12 Oracle8i Parallel Server Concepts and Administration

The DATAFILE Option. This option specifies the datafile from which to take space

for the extent. If you omit this option, space is allocated from any accessible datafile

in the tablespace containing the table.

The filename must exactly match the string stored in the control file, even with

respect to the case of letters. You can check the DBA_DATA_FILES data dictionary

view for this string.

The INSTANCE Option. This option assigns the new space to the free list group

associated with instance number integer. Each instance acquires a unique instance

number at startup that maps it to a group of free lists. The lowest instance number

is 1, not 0; the maximum value is operating system specific. The syntax is as follows:

ALTER TABLE tablename ALLOCATE EXTENT (... INSTANCE n)

where n will map to the free list group with the same number. If the instance

number is greater than the number of free list groups, then it is hashed as follows to

determine the free list group to which it should be assigned:

modulo(n,#_freelistgroups) + 1

If you do not specify the INSTANCE option, the new space is assigned to the table

but not allocated to any group of free lists. Such space is included in the master free

list of free blocks as needed when no other space is available.

Note: Use a value for INSTANCE which corresponds to the

number of the free list group you wish to use—rather than the

actual instance number.

See Also: "Instance Numbers and Startup Sequence" on

page 18-16.

Pre-allocating Extents (Optional)

Using Free List Groups to Partition Data 17-13

Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters
You can prevent automatic allocations by pre-allocating extents to free list groups

associated with particular instances, and setting MAXEXTENTS to the current

number of extents (pre-allocated extents plus MINEXTENTS). You can minimize the

initial allocation when you create the table or cluster by setting MINEXTENTS to 1

(the default) and setting INITIAL to its minimum value (two data blocks, or 10 K

for a block size of 2048 bytes).

To minimize contention among instances for data blocks, you can create multiple

datafiles for each table and associate each instance with a different file.

If you expect to increase the number of nodes in your loosely coupled system at a

future time, you can allow for additional instances by creating tables or clusters

with more free list groups than the current number of instances. You do not have to

allocate any space to those free list groups until they are needed. Only the master

free list of free blocks has space allocated to it automatically.

For a data block to be associated with a free list group, either it must be brought

below PCTUSED by a process running on an instance using that free list group or it

must be specifically allocated to that free list group. Therefore, a free list group that

is never used does not leave unused free data blocks.

Setting the INSTANCE_NUMBER Parameter
The INSTANCE_NUMBER initialization parameter allows you to start up an

instance and ensure that it uses the extents allocated to it for inserts and updates.

This will ensure that it does not use space allocated for other instances. The instance

cannot use data blocks in another free list unless the instance is restarted with that

INSTANCE_NUMBER.

You can also override the instance number during a session by using an ALTER

SESSION statement.

Pre-allocating Extents (Optional)

17-14 Oracle8i Parallel Server Concepts and Administration

Examples of Extent Pre-allocation
This section provides examples in which extents are pre-allocated.

Example 1 The following statement allocates an extent for table DEPT from the

datafile DEPT_FILE7 to instance number 7:

 ALTER TABLE dept
 ALLOCATE EXTENT (SIZE 20K
 DATAFILE ’dept_file7’
 INSTANCE 7);

Example 2 The following SQL statement creates a table with three free list groups,

each containing ten free lists:

 CREATE TABLE table1 ... STORAGE (FREELIST GROUPS 3 FREELISTS 10);

The following SQL statement then allocates new space, dividing the allocated

blocks among the free lists in the second free list group:

 ALTER TABLE table1 ALLOCATE EXTENT (SIZE 50K INSTANCE 2);

In a parallel server running more instances than the value of the FREELIST

GROUPS storage option, multiple instances share the new space allocation. In this

example, every third instance to start up is associated with the same group of free

lists.

Example 3 The following CREATE TABLE statement creates a table named EMP

with one initial extent and three groups of free lists, and the three ALTER TABLE

statements allocate one new extent to each group of free lists:

 CREATE TABLE emp ...
 STORAGE (INITIAL 4096
 MINEXTENTS 1
 MAXEXTENTS 4
 FREELIST GROUPS 3);
 ALTER TABLE emp
 ALLOCATE EXTENT (SIZE 100K DATAFILE ’empfile1’ INSTANCE 1)
 ALLOCATE EXTENT (SIZE 100K DATAFILE ’empfile2’ INSTANCE 2)
 ALLOCATE EXTENT (SIZE 100K DATAFILE ’empfile3’ INSTANCE 3);

MAXEXTENTS is set to 4, the sum of the values of MINEXTENTS and FREELIST

GROUPS, to prevent automatic allocations.

When you need additional space beyond this allocation, use ALTER TABLE to

increase MAXEXTENTS before allocating the additional extents. For example, if the

Dynamically Allocating Extents

Using Free List Groups to Partition Data 17-15

second group of free lists requires additional free space for inserts and updates, you

could set MAXEXTENTS to 5 and allocate another extent for that free list group:

 ALTER TABLE emp ...
 STORAGE (MAXEXTENTS 5)
 ALLOCATE EXTENT (SIZE 100K DATAFILE ’empfile2’ INSTANCE 2);

Dynamically Allocating Extents
This section explains how to use the !blocks option of GC_FILES_TO_LOCKS to

dynamically allocate blocks to a free list from the high water mark within a lock

boundary. It covers:

■ Translation of Block Database Address to Lock Name

■ !blocks with ALLOCATE EXTENT Syntax

Translation of Block Database Address to Lock Name
As described in the "Allocating PCM Instance Locks" chapter, the syntax for setting

the GC_FILES_TO_LOCKS parameter specifies the translation between the

database address of a block, and the lock name that will protect it. Briefly, the

syntax is:

GC_FILES_TO_LOCKS = "{ file_list=#locks [!blocks] [EACH] [:] } ..."

The following entry indicates that 1000 distinct lock names should be used to

protect the files in this bucket. The data in the files is protected in groups of 25 blocks.

 GC_FILES_TO_LOCKS = "1000!25"

!blocks with ALLOCATE EXTENT Syntax
Similarly, the !blocks parameter enables you to control the number of blocks which

are available for use within an extent. (To be available, blocks must be put onto a

free list.). You can use !blocks to specify the rate at which blocks are allocated within

an extent, up to 255 blocks at a time. Thus,

 GC_FILES_TO_LOCKS = 1000!10

means 10 blocks will be made available each time an instance requires the allocation

of blocks.

See Also: Chapter 15, "Allocating PCM Instance Locks".

Identifying and Deallocating Unused Space

17-16 Oracle8i Parallel Server Concepts and Administration

Identifying and Deallocating Unused Space
This section covers:

■ How to Determine Unused Space

■ Deallocating Unused Space

■ Space Freed by Deletions or Updates

How to Determine Unused Space
The DBMS_SPACE package contains procedures by which you can determine the

amount of used and unused space in the free list groups in a table. In this way you

can determine which instance needs to start allocating space again. The package is

created using the DBMSUTIL.SQL script as described in the Oracle8i Reference.

Deallocating Unused Space
Unused space you have allocated to an instance using the ALLOCATE EXTENT

command cannot be deallocated, because it exists below the high water mark.

Unused space can be deallocated from the segment, however, if the space exists

within an extent that was allocated dynamically above the high water mark. You

can use DEALLOCATE UNUSED with ALTER TABLE or ALTER INDEX command

in order to trim the segment back to the high water mark.

Space Freed by Deletions or Updates
Blocks freed by deletions or by updates that shrank rows will go to the free list and

free list group of the process that deletes them.

Part IV
 Oracle Parallel Server System

Maintenance Procedures

Administering Multiple Instances 18-1

18
Administering Multiple Instances

Justice is a machine that, when someone has once given it the starting push, rolls on of itself.

John Galsworthy: Justice. Act II.

This chapter describes how to administer instances of a parallel server. It includes

the following topics:

■ Overview

■ Oracle Parallel Server Management

■ Defining Multiple Instances with Parameter Files

■ Setting Initialization Parameters for Multiple Instances

■ Determining the Amount of Locks Needed and Setting LM_* Parameters

■ Creating Database Objects for Multiple Instances

■ Starting Instances

■ Specifying Instances

■ Shutting Down Instances

■ Limiting Instances for Parallel Query

Overview

18-2 Oracle8i Parallel Server Concepts and Administration

Overview
This chapter explains how to configure and start up instances for OPS using the

following procedure:

1. Define multiple instances by setting up parameter files.

2. Set initialization parameters for multiple instances.

3. Determine how many PCM and non-PCM lock you require and set the LM_*

parameters.

4. Create database objects for multiple instances.

5. Starting instances.

The details of this procedure appear after a brief explanation of Oracle Parallel

Server Management.

Oracle Parallel Server Management
Oracle Parallel Server Management (OPSM) is a comprehensive and integrated

system management solution for OPS. OPSM allows you to configure and manage

multi-instance databases running in heterogeneous environments through an open

client-server architecture.

In addition to managing parallel databases, OPSM allows you to schedule jobs,

perform event management, monitor performance, and obtain statistics to tune

parallel databases.

For more information about OPSM, refer to the Oracle Parallel Server Management
Configuration Guide for UNIX and the Oracle Parallel Server Setup and Configuration
Guide. For installation instructions, please refer to your platform-specific installation

guide.

See Also: "Starting Up and Shutting Down" in the Oracle8i
Administrator’s Guide.

Defining Multiple Instances with Parameter Files

Administering Multiple Instances 18-3

Defining Multiple Instances with Parameter Files
When an instance starts, Oracle uses values in an initialization parameter file to

create the System Global Area (SGA) for that instance. You use parameter files in

various ways to define multiple instances:

■ Using a Common Parameter File for Multiple Instances.

■ Using Individual Parameter Files for Multiple Instances.

■ Embedding a Parameter File Using IFILE

■ Specifying a Non-default Parameter File with PFILE

Using a Common Parameter File for Multiple Instances
A common parameter file for all instances, as shown in Figure 18–1, can simplify

administration. If file systems are shared among nodes, you can update all instances

by making a change in only one place.

Figure 18–1 Instances with a Common Parameter File

Most clustering systems, however, do not share file systems. In such cases, make a

separate physical copy of the common file for each node.

Instance Instance InstanceA B C

initX.ora

Defining Multiple Instances with Parameter Files

18-4 Oracle8i Parallel Server Concepts and Administration

Using Individual Parameter Files for Multiple Instances
Individual parameter files are useful when many parameters differ from instance to

instance. For example, initialization parameters to create different sized SGAs for

different sized machines may improve performance dramatically.

Figure 18–2 Instances with Individual Parameter Files

Instance Instance InstanceA B C

initB.ora initC.orainitA.ora

Defining Multiple Instances with Parameter Files

Administering Multiple Instances 18-5

Embedding a Parameter File Using IFILE
By setting the IFILE parameter, each individual parameter file can embed an

additional parameter file containing common values. This approach is illustrated in

Figure 18–3.

Figure 18–3 Instances with Individual Parameter Files and IFILE

In Oracle Parallel Server (OPS), some initialization parameters must have the same

values for every instance, whether individual or common parameter files are used.

By referencing the same file using the IFILE parameter, instances can use their

unique parameter files and also ensure they have the correct values for parameters

that must be identical across all instances.

Instances must use individual parameter files in the following cases:

■ Every instance using private rollback segments must have its own parameter

file. However, instances only using public rollback segments can all use the

same parameter file.

■ Every instance specifying an INSTANCE_NUMBER or THREAD parameter

must have its own parameter file.

IFILE

Instance Instance InstanceA B C

initB.ora initC.orainitA.ora

Defining Multiple Instances with Parameter Files

18-6 Oracle8i Parallel Server Concepts and Administration

Example
For example, a Server Manager session on the local node can start two instances on

remote nodes using individual parameter files named INIT_OPS1.ORA and

INIT_OPS2.ORA:

 SET INSTANCE INSTANCE1;
 STARTUP PFILE=INIT_A.ORA;
 SET INSTANCE INSTANCE2;
 STARTUP PFILE=INIT_B.ORA;

Here, "INSTANCE1" and "INSTANCE2" are Net8 aliases for the two respective

instances. These aliases are defined in TNSNAMES.ORA.

Both individual parameter files can use the IFILE parameter to include parameter

values from the file INIT_COMMON.ORA. They can reference this file as follows:

INIT_OPS1.ORA:

 IFILE=INIT_COMMON.ORA
 INSTANCE_NAME=OPS1
 INSTANCE_NUMBER=1
 THREAD=1

INIT_OPS2.ORA:

 IFILE=INIT_COMMON.ORA
 INSTANCE_NAME=OPS2
 INSTANCE_NUMBER=2
 THREAD=2

Note: Oracle recommends making INSTANCE NAME identical to

SID.

Defining Multiple Instances with Parameter Files

Administering Multiple Instances 18-7

The INIT_COMMON.ORA file can contain the following parameter settings that

must be identical on both instances.

 DB_NAME=DB1
 SERVICE_NAMES=DB1
 CONTROL_FILES=(CTRL_1,CTRL_2,CTRL_3)
 GC_FILES_TO_LOCKS="1=600:2-4,9=500EACH:5-8=800"
 GC_ROLLBACK_SEGMENTS=10
 GC_SEGMENTS=10
 LOG_ARCHIVE_START=TRUE
 PARALLEL_SERVER=TRUE

Each parameter file must contain identical values for the CONTROL_FILES

parameter, for example, because all instances share the control files.

To change the value of a common initialization parameter, modify the

INIT_COMMON.ORA file rather than changing both individual parameter files.

IFILE Use
When you specify parameters having identical values in a common parameter file

referred to by IFILE, you can omit parameters for which you are using the default

values.

If you use multiple Server Manager sessions on separate nodes to start up the

instances, each node must have its own copy of the common parameter file unless

the file systems are shared.

If a parameter is duplicated in an instance-specific file and in the common file, or

within one file, the last value specified overrides earlier values. You can therefore

ensure the use of common parameter values by placing the IFILE parameter at the

end of an individual parameter file. Placing IFILE at the beginning of the individual

file allows you to override the common values.

You can specify IFILE more than once in a parameter file to include multiple

common parameter files. Unlike the other initialization parameters, IFILE does not

override previous values. For example, an individual parameter file might include

an INIT_COMMON.ORA file and separate command files for the LOG_* and GC_*
parameters:

Note: Oracle recommends that you set SERVICE_NAMES to be

identical to DBNAME.

Setting Initialization Parameters for Multiple Instances

18-8 Oracle8i Parallel Server Concepts and Administration

 IFILE=INIT_COMMON.ORA
 IFILE=INIT_LOG.ORA
 IFILE=INIT_GC.ORA
 LOG_ARCHIVE_START=FALSE
 THREAD=3
 ROLLBACK_SEGMENTS=(RB_C1,RB_C2,RB_C3)

The individual value of LOG_ARCHIVE_START overrides the value specified in

INIT_LOG.ORA, because the statement IFILE = INIT_LOG.ORA appears before the

LOG_ARCHIVE_START parameter specification. The individual GC_* values

specified in INIT_GC.ORA override values specified in INIT_COMMON.ORA

because IFILE = INIT_GC.ORA comes after IFILE = INIT_COMMON.ORA.

Specifying a Non-default Parameter File with PFILE
Use the PFILE option of the STARTUP command to specify a parameter file other

than the default file when you start up an instance. The parameter file specified by

PFILE must be on a disk accessible to the local node, even for an instance on a

remote node.

Setting Initialization Parameters for Multiple Instances
This section discusses important OPS initialization parameters for multiple

instances.

■ GC_* Global Cache Parameters

■ Parameter Notes for Multiple Instances

■ Parameters that Must Be Identical on All Instances

See Also: "Instance Numbers and Startup Sequence" on

page 18-16, "Redo Log Files" on page 6-3, and "Parameters that

Must Be Identical on All Instances" on page 18-11.

See Also: Oracle8i Reference for details about other Oracle

initialization parameters.

Setting Initialization Parameters for Multiple Instances

Administering Multiple Instances 18-9

GC_* Global Cache Parameters
Initialization parameters with the prefix GC (Global Cache) are relevant only for

OPS. The settings of these parameters determine the size of the collection of global

locks that protect the database buffers on all instances. The settings you choose

affect use of certain operating system resources.

The first instance to start up in shared mode determines the values of the global

cache parameters for all instances. The control file records the values of the GC_*
parameters when the first instance starts up.

When another instance attempts to start up in shared mode, Oracle compares the

values of the global cache parameters in its parameter file with those already in use

and issues a message if any values are incompatible. The instance cannot mount the

database unless it has correct values for its global cache parameters.

The global cache parameters for OPS are:

GC_FILES_TO_LOCKS Controls data block locks.

GC_ROLLBACK_LOCKS Controls undo block locks.

GC_RELEASABLE_LOCKS Controls the number of locks.

See Also: Chapter 15, "Allocating PCM Instance Locks".

Setting Initialization Parameters for Multiple Instances

18-10 Oracle8i Parallel Server Concepts and Administration

Parameter Notes for Multiple Instances
Table 18–1 summarizes multi-instance issues concerning initialization parameters.

Table 18–1 Initialization Parameter Notes for Multiple Instances

Parameter Parallel Server Notes

CHECKPOINT_PROCESS In OPS, your database may have more datafiles than in a
single-instance environment. To speed up checkpoints, enable
the CHECKPOINT_PROCESS parameter.

DELAYED_LOGGING_BLOCK_ CLEANOUTS The default value TRUE reduces pinging between instances.

DML_LOCKS Must be identical on all instances only if set to zero.

INSTANCE_NUMBER If specified, this parameter must have unique values for
different instances.

LOG_ARCHIVE_FORMAT You must include thread number.

MAX_COMMIT_PROPAGATION_ DELAY If you want commits to be seen immediately on remote
instances, you may need to change the value of this
parameter.

NLS_* parameters Can have different values for different instances.

PARALLEL_SERVER To enable OPS, this parameter must be set to TRUE in the
initialization file. It defaults to FALSE.

PROCESSES This parameter must have a value large enough to
accommodate all background and user processes. Some
operating systems can have additional DBWR processes.

Defaults for the SESSIONS and TRANSACTIONS parameters
are derived directly or indirectly from the value of the
PROCESSES parameter.

If you do not use defaults, you may want to increase the
values for some of the above parameters to allow for LCKn
and other optional background processes.

RECOVERY_PARALLELISM To speed up the roll forward or cache recovery phase, you
may want to set this parameter.

ROLLBACK_SEGMENTS Specify the private rollback segments for each instance.

THREAD If specified, this parameter must have unique values for
different instances.

See Also: Oracle8i Reference for details about each parameter.

Setting Initialization Parameters for Multiple Instances

Administering Multiple Instances 18-11

Parameters that Must Be Identical on All Instances
Certain initialization parameters that are critical at database creation or that affect

certain database operations must have the same value for every instance in OPS.

For example, the values of DB_BLOCK_SIZE and CONTROL_FILES must be

identical for every instance. Other parameters can have different values for different

instances. The following initialization parameters must have identical values for

every instance in a parallel server:

CONTROL_FILES

CPU_COUNT

DB_BLOCK_SIZE

DB_FILES

DB_NAME

DB_DOMAIN

SERVICE_NAMES

DML_LOCKS (must be identical only if set to zero)

GC_FILES_TO_LOCKS

GC_ROLLBACK_LOCKS

LM_LOCKS (identical values recommended)

LM_PROCS (identical values recommended)

LM_RESS (identical values recommended)

MAX_COMMIT_PROPAGATION_DELAY

PARALLEL_DEFAULT_MAX_SCANS

ROLLBACK_SEGMENTS

ROW_LOCKING

See Also: Oracle8i Reference for details about each parameter.

Determining the Amount of Locks Needed and Setting LM_* Parameters

18-12 Oracle8i Parallel Server Concepts and Administration

Determining the Amount of Locks Needed and Setting LM_* Parameters
Set values for the LM_* initialization parameters. Resources, locks and process

configurations are per OPS instance. For ease of administration, these parameters

should be consistent for all instances.

Used increased values if you plan to use parallel DML or DML performed on

partitioned objects.

Creating Database Objects for Multiple Instances
Creating a database automatically starts a single instance with OPS disabled. Before

you can start multiple instances, however, you must perform certain administrative

operations. These tasks may include:

■ Creating extra rollback segments for each additional instance,

■ Adding and enabling a thread for each additional instance, and

■ Providing locks for added datafiles.

You can perform these operations with a single instance in either exclusive or

shared mode.

LM_RESS This parameter controls the number of resources that can

be locked by the Integrated Distributed Lock Manager

(IDLM). This parameter includes non-PCM resources such

as the number of lock resources allocated for DML, DDL

(data dictionary locks), and data dictionary cache locks

plus file and log management locks. Derive a value for

LM_RESS by adding the number of PCM and non-PCM

resources as calculated in Chapter 15, "Allocating PCM

Instance Locks" and Chapter 16, "Ensuring IDLM Capacity

for Resources and Locks" respectively.

LM_LOCKS Number of locks. Where N is the total number of nodes:

LM_LOCKS = LM_RESS + (LM_RESS * (N - 1))/N

LM_PROCS Number of processes. The value of the PROCESSES

initialization parameter multiplied by the number of nodes.

See Also: "Creating Additional Rollback Segments" on page 14-5,

"Redo Log Files" on page 6-3, and "What Is the Total Number of

PCM Locks and Resources Needed?" on page 15-17.

Starting Instances

Administering Multiple Instances 18-13

Starting Instances
An Oracle instance can start with OPS enabled or disabled. This section explains the

procedures on how to do this:

■ Enabling Parallel Server and Starting Instances

■ Starting with OPS Disabled

■ Starting in Shared Mode

Enabling Parallel Server and Starting Instances

Starting an Instance Using SQL
1. To enable OPS in Oracle8, set the PARALLEL_SERVER parameter to TRUE in

the initialization file. It defaults to FALSE.

2. Start any required operating system specific processes.

For more information about these, please see your Oracle system-specific

documentation.

3. Ensure your Cluster Manager software is running.

See "The Cluster Manager" on page 18-22 for more information.

4. Connect with SYSDBA or SYSOPER privileges.

 CONNECTusername/password AS SYSDBA

5. Make sure the PARALLEL_SERVER initialization parameter is set to TRUE if

you wish to run with OPS enabled, or to FALSE to run with OPS disabled.

6. Start an instance.

 STARTUP NOMOUNT

7. Mount a database.

 ALTER DATABASE database_nameMOUNT

Note: In Oracle8 the keywords SHARED, EXCLUSIVE, and

PARALLEL are obsolete in the STARTUP and ALTER DATABASE

MOUNT statements.

Starting Instances

18-14 Oracle8i Parallel Server Concepts and Administration

8. Open the database.

 ALTER DATABASE OPEN

Starting an Instance Using Server Manager

1. Start any required operating system specific processes.

For more information, please see your Oracle system-specific documentation.

2. Set the PARALLEL_SERVER initialization parameter to TRUE to run with OPS

enabled, or to FALSE to run with OPS disabled.

3. Ensure your Cluster Manager software is running.

See "The Cluster Manager" on page 18-22 for more information.

4. Start Server Manager.

5. Start up an instance with the OPEN option:

STARTUP OPEN database_name

Starting with OPS Disabled
OPS must be disabled whenever you change the archiving mode (ARCHIVELOG or

NOARCHIVELOG). To change the archiving mode, the database must be mounted

but not open.

If an instance mounts a database with PARALLEL_SERVER set to FALSE, no other

instance can mount the database.

Before you can start an instance in exclusive mode, shut down all instances running

in shared mode. A single instance running in shared mode is not the same as an

instance running in exclusive mode, and the last instance running in shared mode

does not automatically revert to exclusive mode.

An instance starting with OPS disabled can specify an instance number with the

INSTANCE_NUMBER parameter. This is only necessary if the instance performs

inserts and updates and if the tables in your database use the FREELIST GROUPS

storage option to allocate free space to instances. If you start an instance just to

Note: The Server Manager command STARTUP with the OPEN

option performs steps 4, 5, and 6 of the procedure given above.

Starting Instances

Administering Multiple Instances 18-15

perform administrative operations with OPS disabled, omit the

INSTANCE_NUMBER parameter from the parameter file.

An instance starting with OPS disabled can also specify a thread other than 1 to use

the online redo log files associated with that thread.

Starting in Shared Mode
In OPS, each instance must mount the database in shared mode. Each initialization

parameter file for each instance must have the SINGLE_PROCESS parameter set to

FALSE and the PARALLEL_SERVER parameter set to TRUE. Before you start up

multiple instances in shared mode, create at least one rollback segment for each

instance sharing the same database and enable a thread containing at least two

groups of redo log files for each additional instance.

If one instance mounts a database in shared mode, other instances can also mount

the database in shared mode, but not in exclusive mode.

If PARALLEL_SERVER is set to FALSE, the instance tries to start with OPS disabled

by default.

Retrying to Mount a Database in Shared Mode
If you attempt to start an instance and mount a database in shared mode while

another instance is currently recovering the same database, your new instance

cannot mount the database until the recovery is complete.

Rather than repeatedly attempting to start the instance, you can use the STARTUP

RETRY statement. This causes the new instance to retry every five seconds to mount

the database until it succeeds or has reached the retry limit. For example:

 STARTUP OPEN MAILDB RETRY

To set the maximum number of times the instance attempts to mount the database,

use the Server Manager SET command with the RETRY option; you can specify

either an integer (such as 10) or the keyword INFINITE.

If the database can only be opened by being recovered by another instance, then the

RETRY will not repeat. For example, if the database was mounted in exclusive

mode by one instance, then trying the STARTUP RETRY command in shared mode

does not work for another instance.

See Also: Chapter 17, "Using Free List Groups to Partition Data".

Starting Instances

18-16 Oracle8i Parallel Server Concepts and Administration

Instance Numbers and Startup Sequence
When an instance starts up, it acquires an instance number that maps the instance

to one group of free lists for each table created with the FREELIST GROUPS storage

option.

An instance can specify its instance number explicitly by using the initialization

parameter INSTANCE_NUMBER when it starts up with OPS enabled or disabled. If

an instance does not specify the INSTANCE_NUMBER parameter, it automatically

acquires the lowest available number.

Startup order determines the instance numbers for instances that do not specify the

INSTANCE_NUMBER parameter. Startup numbers are difficult to control if

instances start up in parallel, and they can change after instances shut down and

restart.

Instances using the INSTANCE_NUMBER parameter must specify different

numbers. The Server Manager command SHOW PARAMETERS

INSTANCE_NUMBER shows the current instance number each instance is using.

This command displays a null value if an instance number was assigned based on

startup order.

After an instance shuts down, its instance number becomes available again. If a

second instance starts up before the first instance restarts, the second instance can

acquire the instance number previously used by the first instance.

Instance numbers based on startup order are independent of instance numbers

specified with the INSTANCE_NUMBER parameter. After an instance acquires an

instance number by one of these methods, either with or without

INSTANCE_NUMBER, another instance cannot acquire the same number by the

other method. All numbers are unique, regardless of the method by which they are

acquired.

Always use the INSTANCE_NUMBER parameter if you need a consistent allocation

of extents to instances for inserts and updates. This allows you to maintain data

partitioning among instances.

See Also: "Rollback Segments" on page 6-7, "Creating Additional

Rollback Segments" on page 14-5, "Redo Log Files" on page 6-3, and

Chapter 17, "Using Free List Groups to Partition Data" for

information about allocating free space for inserts and updates.

Specifying Instances

Administering Multiple Instances 18-17

Specifying Instances
When performing administrative operations in a multi-instance environment, be

sure you specify the correct instance. This section includes the following topics

related to instance-specific administration:

■ Differentiating Between Current and Default Instance

■ How SQL Statements Apply to Instances

■ How Server Manager Commands Apply to Instances

■ Specifying Instance Groups

■ Using a Password File to Authenticate Users on Multiple Instances

Differentiating Between Current and Default Instance
Some Server Manager commands apply to the instance to which Server Manager is

currently connected and others apply to the default instance.

The current instance can be different from the default instance if you specify a

connect string in the CONNECT command.

Net8 must be installed to use the SET INSTANCE or CONNECT command for an

instance running on a remote node.

Default instance. The default instance is on the machine where you initiate

Server Manager. Server Manager commands that cannot be

used while you are connected to an instance, such as

executing a host command, apply to the default instance.

Current instance. The current instance is determined by the CONNECT

command. Server Manager commands that can be used

while you are connected to an instance apply to the current

instance.

See Also: Your platform-specific Oracle documentation, for more

information about installing Net8 and the exact format required for

the connect string used in the SET INSTANCE and CONNECT

commands.

Specifying Instances

18-18 Oracle8i Parallel Server Concepts and Administration

How SQL Statements Apply to Instances
Instance-specific SQL statements apply to the current instance. For example, the

statement ALTER DATABASE ADD LOGFILE only applies to the instance to which

you are currently connected, rather than the default instance or all instances.

ALTER SYSTEM CHECKPOINT LOCAL applies to the current instance. By

contrast, ALTER SYSTEM CHECKPOINT or ALTER SYSTEM CHECKPOINT

GLOBAL applies to all instances.

ALTER SYSTEM SWITCH LOGFILE applies only to the current instance. To force a

global log switch, you can use ALTER SYSTEM ARCHIVE LOG CURRENT. The

THREAD option of ALTER SYSTEM ARCHIVE LOG allows you to archive online

redo log files for a specific instance.

How Server Manager Commands Apply to Instances
When you initiate Server Manager, the commands you enter are relevant to the

default instance, which is also the current instance.

This is true until you use the SET INSTANCE command to set the current instance.

From that point, all Server Manager commands operate on the current instance.

Table 18–2 describes how these commands relate to instances.

Specifying Instances

Administering Multiple Instances 18-19

The SET INSTANCE and SHOW INSTANCE Commands
You can change the default instance with the Server Manager statement:

 SET INSTANCE instance_path

where instance_path is a valid Net8 connect string without a user ID/password. If

you are connected to an instance, you must disconnect before using SET

Table 18–2 How Server Manager Commands Apply to Instances

Server Manager Command Associated Instance

ARCHIVE LOG Always applies to the current instance.

CONNECT Uses the default instance if no instance is specified in the
CONNECT command.

HOST Applies to the node running the Server Manager session,
regardless of the location of the current and default instances.

MONITOR MONITOR display screens identify the current instance, not
the default instance, in the upper left corner.

RECOVER Does not apply to any particular instance, but rather to the
database.

SHOW INSTANCE Displays information about the default instance, which can
be different from the current instance.

SHOW PARAMETERS Displays information about the current instance.

SHOW SGA Displays information about the current instance.

SHUTDOWN Always applies to the current instance. A privileged Server
Manager command.

STARTUP Always applies to the current instance. A privileged Server
Manager command.

Note: The security mechanism invoked when you use privileged

Server Manager commands depends on your operating system.

Most operating systems have a secure authentication mechanism

when logging onto the operating system. On these systems, your

default operating system privileges usually determine whether you

can use STARTUP and SHUTDOWN. For more information, see

your Oracle system-specific documentation.

Specifying Instances

18-20 Oracle8i Parallel Server Concepts and Administration

INSTANCE. Alternatively, if you do not wish to disconnect from the current

instance, you may use the CONNECT command with instance_path.

You can use the SET INSTANCE command to specify an instance on a remote node

for the commands STARTUP and SHUTDOWN. The parameter file for a remote

instance must be on the local node.

The SHOW INSTANCE command displays the connect string for the default

instance. SHOW INSTANCE returns the value local if you have not used SET

INSTANCE during the Server Manager session.

To reset to the default instance, use SET INSTANCE without specifying a connect

string or specify LOCAL (but not DEFAULT, which would indicate a connect string

for an instance named "DEFAULT").

The following Server Manager line mode examples illustrate the relationship

between SHOW INSTANCE and SET INSTANCE:

 SHOW INSTANCE
 INSTANCE LOCAL

 SET INSTANCE node1
 Oracle8 Server Release 8.1 - Production
 With the distributed, parallel query and Parallel Server options
 PL/SQL V8.1 - Production

 SHOW INSTANCE
 Instance node2

 SET INSTANCE
 ORACLE8 Server Release 8.1 - Production
 With the procedural, distributed, and Parallel Server options
 PL/SQL V8.1 - Production

 SHOW INSTANCE
 INSTANCE LOCAL

 SET INSTANCE DEFAULT
 ORA-06030: NETDNT: connect failed, unrecognized node name

Specifying Instances

Administering Multiple Instances 18-21

The CONNECT Command
The CONNECT command associates Server Manager with either the default

instance or an instance you explicitly specify. The instance to which Server Manager

connects becomes the current instance.

The CONNECT command has the following syntax:

where instance-path is a valid Net8 connect string. CONNECT without the argument

@instance-path connects to the default instance (which may have been set previously

with SET INSTANCE).

Connecting as SYSOPER or SYSDBA allows you to perform privileged operations,

such as instance startup and shutdown.

Multiple Server Manager sessions can connect to the same instance at the same

time. When you are connected to one instance, you can connect to a different

instance without using the DISCONNECT command. Server Manager disconnects

you from the first instance automatically whenever you connect to another one.

The CONNECT @instance-path command allows you to specify an instance before

using the Server Manager commands MONITOR, STARTUP, SHUTDOWN, SHOW

SGA, and SHOW PARAMETERS.

See Also: Oracle Server Manager User’s Guide for syntax of Server

Manager commands, the Net8 Administrator’s Guide for the proper

specification of instance_path, and the Oracle8i Administrator’s Guide
for information on connecting with SYSDBA or SYSOPER

privileges.

CONNECT

SYS

username

/password

/ @instance_path
AS

SYSOPER

SYSDBA

The Cluster Manager

18-22 Oracle8i Parallel Server Concepts and Administration

The Cluster Manager
To achieve high availability, OPS cooperates with a platform-specific software

component known as the Cluster Manager (CM). Hardware vendors usually

provide this component.

CM monitors the status of various resources in a cluster including nodes,

interconnect hardware and software, shared disks, and Oracle instances. CM

automatically starts and stops when the instance starts and stops.

The CM informs clients and the Oracle server when the statuses of resources

change. The Oracle server must know when another database instance registers

with the CM or disconnects from it. Database instances register with the CM during

the mount phase of startup.

A CM disconnect occurs for any of three reasons: the client disconnects voluntarily,

the client’s process terminates, or the client’s node shuts down or crashes. An

important feature of CM is that it provides a global view of the cluster, even during

failures. This ensures the integrity of OPS databases, as each instance must be aware

of all other instances to coordinate access to shared disks.

Oracle accesses CM through an interface called the "Node Monitor API". This

interface provides an abstract link to process groups whose members may be

arbitrarily distributed throughout the cluster. When an OPS instance is mounted,

the LMON process joins one of these groups. Any instances of the same database

that were already running are informed of the new OPS instance. All instances then

synchronize to ensure they have the same view of active instances. The CM then

informs the IDLM layer about any new instances; the CM also initiates an IDLM

reconfiguration. If an instance shuts down or terminates abnormally, CM informs

the remaining instances. Again, the CM synchronizes the instances informs the

IDLM.

OPS Cluster Administration
When starting an OPS instance, first ensure your CM software is running. Detailed

instructions on CM administration appear in platform-specific documentation. If

the CM is not available or if Oracle has a problem communicating with it, Oracle

displays error ORA-29701: "Unable to connect to Cluster Manager".

Multiple Version Compatibility on Clusters
As long as your Oracle version numbers are greater than 8.1, they can co-exist on

the same cluster. This also means you cannot have different versions of Oracle older

The Cluster Manager

Administering Multiple Instances 18-23

than 8.1 on the same cluster. For example, an 8.0 and an 8.1 OPS database are not

compatible on the same cluster.

Specifying Instance Groups
For ease of administration, logically group different instances and perform parallel

operations on all associated instances at once. You can define an instance group as a

set of instances used for a specific purpose, such as resource allocation, parallel

query or other parallel operations. They thus enable you to partition your resources

effectively.

Sometimes, for example, a DBA may wish to prevent users or query processes from

obtaining resources on all instances. The DBA may want to keep certain instances

available only for users running OLTP processes, and restrict users running parallel

queries only to a particular set of instances.

For example, you might create instance groups such that between 9 AM and 5 PM

users can use group B, but after 5 PM they can use group D. Or, you might use

group C for normal OLTP inserts and updates but use group D for large parallel

tasks to avoid interfering with OLTP performance.

■ Define all potentially desirable group configurations during startup since you

cannot add and delete instances from groups dynamically while the instance is

up.

■ One instance can be a member of more than one group at any given time.

Groups may overlap one another.

■ You can define as many groups as you wish, but only use them as needed.

Instance groups do not incur much overhead and you are not required to refer

to them, once they are defined.

If you simply set the degree of parallelism, the system chooses which specific

instances to use given disk affinity, and the number of instances actually running.

By specifying instance groups, you can directly specify the instances for parallel

operations.

The instance from which you initiate a query need not be a member of the group of

instances that perform the query. The parallel coordinator does run on the current

instance.

The Cluster Manager

18-24 Oracle8i Parallel Server Concepts and Administration

How to Specify Instance Groups
To specify instance groups, set the INSTANCE_GROUPS initialization parameter

within the parameter file of each instance you wish to associate to the group. This

parameter at once defines a group and adds the current instance to the group.

For example, instance 1 could set the parameter as follows:

 INSTANCE_GROUPS = GROUPB, GROUPD

Instance 3 could set it as follows:

 INSTANCE_GROUPS = GROUPA, GROUPD

As a result, instances 1 and 3 would both belong to instance group D, but would

also belong to other groups as well.

You cannot dynamically change INSTANCE_GROUPS.

How to Use Instance Groups
You can use instance groups to identify a group to be used for a parallel operation

with PARALLEL_INSTANCE_GROUP

The default for PARALLEL_INSTANCE_GROUP is a group consisting of all

currently running instances.

To use a particular instance group for a given parallel operation, specify the

following parameter in the initialization parameter file:

 PARALLEL_INSTANCE_GROUP = GROUPNAME

All parallel operations initiated from that instance spawn processes only within that

group, using the same algorithm as before either randomly or with disk affinity.

PARALLEL_INSTANCE_GROUP is a dynamic parameter that you change using an

ALTER SESSION or ALTER SYSTEM statement. You can use it to refer to only one
instance group; by default it is set to a default group that includes all currently

active instances. The instance upon which you are running need not be a part of the

instance group you are going to use for a particular operation.

See Also: The Oracle8i Reference for complete information about

initialization parameters and views.

The Cluster Manager

Administering Multiple Instances 18-25

How to List Members of Instance Groups
To see the members of different instance groups, query the GV$ global dynamic

performance view GV$PARAMETER. Look at all entries for the

INSTANCE_GROUPS parameter name.

Instance Group Example
In this example, instance 1 has the following settings in its initialization parameter

file:

 INSTANCE_GROUPS = GA, GB
 PARALLEL_INSTANCE_GROUP GB

Instance 2 has the following settings in its initialization parameter file:

 INSTANCE_GROUPS = GB, GC
 PARALLEL_INSTANCE_GROUP = GC

On instance 1, if you enter the following statements, the instances in Gb is used.

Two server processes spawn on instance 1, and 2 server processes on instance 2.

 ALTER TABLE TABLE PARALLEL (DEGREE 2 INSTANCES 2);
 SELECT COUNT(*) FROM TABLE;

If you enter the following statements on instance 1, Gc will be used. Two server

processes will be spawned on instance 2 only.

 ALTER SESSION SET PARALLEL_INSTANCE_GROUP = ’GC’;
 SELECT COUNT (*) FROM TABLE;

If you enter the following statements on instance 1, the default instance group (all

currently running instances) is used. Two server processes spawn on instance 1, and

2 server processes on instance 2.

 ALTER SESSION SET PARALLEL_INSTANCE_GROUP = ’’;
 SELECT COUNT(*) FROM TABLE;

Shutting Down Instances

18-26 Oracle8i Parallel Server Concepts and Administration

Using a Password File to Authenticate Users on Multiple Instances
You can use a password file to authenticate users performing database

administration when running multiple instances on OPS. In this case, the

environment variable for each instance must point to the same password file.

Similarly, the REMOTE_LOGIN_PASSWORDFILE initialization parameter for each

instance must be set to the appropriate, identical value.

Shutting Down Instances
Use the following procedure to shut down an instance:

1. Connect with SYSDBA.

CONNECT username/password AS SYSDBA

2. Close the database.

ALTER DATABASE database_name CLOSE

3. Dismount the database.

ALTER DATABASE database_name DISMOUNT

Alternatively, you can use the Server Manager command SHUTDOWN, which

performs all three of these steps for the current instance.

In OPS, shutting down one instance does not interfere with the operations of any

instances still running.

To shut down a database mounted in shared mode, shut down every instance in the

parallel server. OPS allows you to shut down instances in parallel from different

nodes. When an instance shuts down abnormally, Oracle forces all user processes

running in that instance to log off the database. If a user process is currently

accessing the database, Oracle terminates that access and returns the message

"ORA-1092: Oracle instance terminated. Disconnection forced". If a user process is

not currently accessing the database when the instance shuts down, Oracle returns

the message "ORA-1012: Not logged on" upon the next call or request made to

Oracle.

See Also: The Oracle8i Administrator’s Guide for information about

the REMOTE_LOGIN_PASSWORDFILE parameter. For more

information on the exact name of the password file, or for the name

of the environment variable used to specify this name for your

operating system, see your Oracle system-specific documentation.

Limiting Instances for Parallel Query

Administering Multiple Instances 18-27

After a NORMAL or IMMEDIATE shutdown, instance recovery is not required.

Recovery is required, however, after the SHUTDOWN ABORT command or after an

instance terminates abnormally. The SMON process of an instance that is still

running performs instance recovery for the instance that shut down. If no other

instances are running, the next instance to open the database performs instance

recovery for any instances that need it.

If multiple Server Manager sessions are connected to the same instance

simultaneously, all but one must disconnect before the instance can be shut down

normally. You can use the IMMEDIATE or ABORT option of the SHUTDOWN

command to shut down an instance when multiple Server Manager sessions (or any

other sessions) are connected to it.

Limiting Instances for Parallel Query
Although the parallel query feature does not require OPS, some aspects of parallel

query apply only to a parallel server.

The INSTANCES keyword of the PARALLEL clause of the CREATE TABLE, ALTER

TABLE, CREATE CLUSTER, and ALTER CLUSTER commands allows you to

specify that a table or cluster is split up among the buffer caches of all available

instances of OPS when the table is scanned in a parallel query.

If you do not want tables to be dynamically partitioned among all available

instances, specify the number of instances that can participate in scanning or

caching with the ALTER SYSTEM command.

To specify the number of instances to participate in parallel query processing at

startup time, specify a value for the initialization parameter

PARALLEL_MAX_INSTANCES.

To dynamically limit the number of instances available for parallel query

processing, use the ALTER SYSTEM command. For example, if your parallel server

has ten instances running but you want only eight to be involved in parallel query

processing, while the remaining two instances are dedicated for other use issue the

following command:

 ALTER SYSTEM SET SCAN_INSTANCES = 8;

Thereafter, if a table’s definition has a value of ten specified for the INSTANCES

keyword, the table is scanned by query servers on only eight of the ten instances.

See Also: "Starting Up and Shutting Down" in Oracle8i
Administrator’s Guide for options of the SHUTDOWN command.

Instance Registration and Client/Service Connections

18-28 Oracle8i Parallel Server Concepts and Administration

Oracle selects the first eight instances in this example. You can set the

PARALLEL_MAX_SERVERS initialization parameter to zero on instances that you

do not want to have participating in parallel query processing.

If you wish to limit the number of instances that cache a table, issue the following

command:

 ALTER SYSTEM SET CACHE_INSTANCES = 8;

Thereafter, if a table definition has 10 specified for the INSTANCES keyword and

the CACHE keyword was specified, the table is divided evenly among eight of the

ten available instances’ buffer caches.

PARALLEL_SERVER_INSTANCES
The parameter PARALLEL_SERVER_INSTANCES specifies the number of instances

configured in an OPS environment. Use this parameter to provide information to

Oracle to manage the size of SGA structures that depend on the number of

instances. When you set this parameter, the system makes better use of available

memory.

Instance Registration and Client/Service Connections
Instance registration involves three separate processes. These processes are

registration of:

■ Service handlers by PMON

■ Dedicated server handlers

■ Instance registration

PMON performs service handler registration by registering MTS dispatchers with

TNS listeners. PMON also registers dedicated server handlers by dynamically

communicating with the TNS listener. PMON can also dynamically register

dedicated server handlers by telling the TNS listener how to start new dedicated

processes.

Registering dedicated server handlers is where TNS listeners of an instance only

create dedicated servers if the instance has been registered. This is part of the

See Also: "Specifying Instance Groups" on page 18-23 and the

Oracle8i Reference for more information about parameters. For more

information on parallel query or parallel execution, please refer to

Oracle8i Tuning.

Instance Registration and Client/Service Connections

Administering Multiple Instances 18-29

process of connect time failover. The processes spawned are then available to

handle dedicated client server connections.

Instance registration refers to the recording of instance-specific information among

all related listener processes. Most importantly, information about the load for a

given instance is recorded among other listener processes within the same service.

How Clients Access Services
Clients connect to services by contacting the listeners as specified in the

TNSNAMES.ORA file. The client passes the CONNECT_DATA from the

TNSNAMES.ORA to the listener. This information tells the listener the service that

the client wants to connect to. The listener then redirects the client to an appropriate

handler or the listener creates a new dedicated server for the client.

Instance Registration and Client/Service Connections

18-30 Oracle8i Parallel Server Concepts and Administration

Figure 18–4 Client-Service Connections

Dispatcher A

MTS_DISPATCHERS= n
(LIST=all_listeners
(Address_list:
address=
address=

server init.ora

Dispatcher B

Dispatcher C

"SALES"

Instance 1

Client

SERVICE_NAME=sales.us.oracle.com
tnsnames.ora

Database

Listener

Port 1521
1

Dispatcher A

MTS_DISPATCHERS= n
(LIST=all_listeners
(Address_list:
address=
address=

server init.ora

Dispatcher B

Dispatcher C

"SALES"

Instance 2

Listener

Port 1521
2

Instance Registration and Client/Service Connections

Administering Multiple Instances 18-31

Configuring Client-to-service Connections
To configure client-to-service connections, or "client-to-instance" connections, make

INIT.ORA entries as described in this section. This section also describes entries to

TNSNAMES.ORA. For more information about configuring TNSNAMES.ORA,

please refer to the Net8 Administrator’s Guide.

This section explains how entries in these files influence the following OPS features:

■ Database Instance Registration

■ Connect Time Failover

■ Client Load Balancing

■ Connection Load Balancing

Database Instance Registration
Database instance registration is the process by which an instance "registers" with a

listener. You can configure instances to register with local and remote listeners of

the same service. To set up registration, configure the following INIT.ORA

parameters:

 SERVICE_NAMES = SALE.US.ORACLE.COM
 LOCAL_LISTENER = protocol address
 MTS_DISPATCHERS = (LIST = ...)
 INSTANCE_NAME = instance name

For SERVICE_NAMES, enter a fully qualified service name as in this example. The

value you enter for SERVICE_NAMES in INIT.ORA should be the same as the entry

in TNSNAMES.ORA.

Note: There are alternate settings you can use instead of setting

the SERVICE_NAMES parameter. For more information on these,

please refer to the Net8 Administrator’s Guide.

Instance Registration and Client/Service Connections

18-32 Oracle8i Parallel Server Concepts and Administration

Connect Time Failover
Connect time failover refers to a client attempting to connect to a second listener

when the attempt to connect to the first listener fails. You control how the client

executes these connection attempts by the way you enter listener addresses in the

address list within TNSNAMES.ORA.

To do this, enter listener addresses in TNSNAMES.ORA in the order in which you

want the client to attempt to make client-to-service connections. Also set the

TNSNAMES.ORA parameter FAILOVER to ON.

Connect time failover continues until the client successfully connects to a listener.

Client Load Balancing
Client load balancing refers to the balancing of client connections among all

listeners servicing a database. Enable this feature by setting the LOAD_BALANCE

parameter in TNSNAMES.ORA to ON.

Client Load Balancing is not the same as "Parallel Query Load Balancing" which

refers to dispersing server processes across instances to balance processing loads.

Parallel query load balancing is described in more detail on page 18-33 under the

heading "Parallel Execution Load Balancing".

Connection Load Balancing
Connection load balancing attempts to evenly distribute client connections among

all available nodes, instances, and their dispatchers. The distribution of connections

is based on each node’s processing load and the number of active connections on

each instance and on each dispatcher. Connection load balancing is automatically

enabled when you configure the multi-threaded server.

Note: Implementing connect time failover does not allow use of

static service configuration parameters. Therefore, you cannot

simultaneously implement Oracle Enterprise Manager (OEM) and

connect time failover. OEM’s Dynamic Discovery feature searches

within a service for active connections using static configuration

parameters.

See Also: For more information on Transparent Application

Failover, please refer to Oracle8i Tuning.

Managed Standby and Standby Databases

Administering Multiple Instances 18-33

Parallel Execution Load Balancing
Parallel execution load balancing feature spreads server processes across instances

to balance loads. This improves load balances for parallel execution and PDML

operations on multiple instances.

Although you cannot tune this particular aspect of the automated degree of

parallelism, you can adjust the database scheduler values to influence the load

balancing algorithm of automated parallel query.

On MPP systems, Oracle first populates affinity nodes before populating

non-affinity nodes. Generally, affinity nodes have loads that are about 10-15 percent

higher than non-affinity nodes.

The load balancing feature uses your vendor-specific cluster manager software to

communicate among instances.

Managed Standby and Standby Databases
You can protect OPS systems against disasters by using standby databases. To

simplify the adminstration of standby databases, consider using the Managed

Standby feature as described in the Oracle8i Backup and Recovery Guide.

Note: This feature is only available when you enable the

Multi-threaded Server.

See Also: For more information about degree of parallelism and

its use, refer to Oracle8i Tuning.

Managed Standby and Standby Databases

18-34 Oracle8i Parallel Server Concepts and Administration

Tuning to Optimize Performance 19-1

19
Tuning to Optimize Performance

Last of the gods, Contention ends her tale.

Aeschylus, Antigone

This chapter provides an overview of Oracle Parallel Server (OPS) tuning issues. It

covers the following topics:

■ General Guidelines

■ Contention

■ Tuning for High Availability

General Guidelines
This section covers the following topics:

■ Overview

■ Keep Statistics for All Instances

■ Statistics to Keep

■ Change One Parameter at a Time

See Also: "Oracle Parallel Server Management" on page 18-2 for

more information about using OPSM to administer multiple

instances.

General Guidelines

19-2 Oracle8i Parallel Server Concepts and Administration

Overview
With experience, you can anticipate most OPS application problems prior to rollout

and testing of the application. Do this using the methods described in this chapter.

In addition, a number of tunable parameters can enhance system performance.

Tuning parameters can improve system performance, but they cannot overcome

problems caused by poor analysis of potential Integrated Distributed Lock Manager

(IDLM) lock contention.

Techniques you might use for single-instance applications are also valid in tuning

OPS applications. It is still important, however, that you effectively tune the buffer

cache, shared pool and all disk subsystems. OPS introduces additional parameters

you must understand as well as OPS-specific statistics you must collect.

When collecting statistics to monitor OPS performance, the following general

guidelines simplify and enhance the accuracy of your system debugging and

monitoring efforts.

Keep Statistics for All Instances
It is important to monitor all instances in the same way but keep separate statistics

for each instance. This is particularly true if the partitioning strategy results in a

highly asymmetrical solution. Monitoring each instance reveals the most heavily

loaded nodes and tests the performance of the system’s partitioning.

Statistics to Keep
The best statistics to monitor within the database are those kept within the SGA, for

example, the "V$" and "X$" tables. It is best to "snapshot" these views over a period

of time. In addition you should maintain an accurate history of operating system

statistics to assist the monitoring and debugging processes. The most important of

Note: Locks are mastered and remastered dynamically, so the

instances do not need to be started in any particular order.

See Also: For more information on mastering, please refer to

"Lock Mastering" on page 8-9.

See Also: For more information on maintaining statistics, please
refer to Oracle8i Tuning.

Contention

Tuning to Optimize Performance 19-3

these statistics are CPU usage, disk I/O, virtual memory use, network use and lock

manager statistics.

Change One Parameter at a Time
In benchmarking or capacity planning exercises it is important that you effectively

manage changes to the system setup. By documenting each change and effectively

quantifying its effect, you can profile and understand the mechanics of the system

and its applications. This is particularly important when debugging a system or

determining whether more hardware resources are required. You must adopt a

systematic approach for the measurement and tuning phases of a performance

project. Although this approach may seem time consuming, it will save time and

system resources in the long term.

Contention
This section covers the following topics:

■ Detecting Lock Conversions

■ Locating Lock Contention within Applications

Detecting Lock Conversions
To detect whether a large number of lock conversions is taking place, examine the

"V$" tables that enable you to see locks the system is up- or and downgrading. The

best views for initially determining whether lock contention problems exist are

V$LOCK_ACTIVITY and V$SYSSTAT.

To determine the number of lock converts over a period of time, query the

V$LOCK_ACTIVITY table. From this you can determine whether you have reached

the maximum lock convert rate for the IDLM. If this is the case, you must

repartition the application to remove the bottleneck. In this situation, adding more

hardware resources such as CPUs, disk drives, and memory is unlikely to

significantly improve system performance.

Note: The maximum lock convert rate depends on you platform’s

IPC mechanism implementation.

Contention

19-4 Oracle8i Parallel Server Concepts and Administration

To determine whether there are too many lock conversions, calculate how often the

transaction requires a lock conversion operation when a data block is accessed for

either a read or a modification. To see this, query the V$SYSSTAT table.

In this way you can calculate a lock hit ratio that may be compared to the cache hit

ratio. The value calculated is the number of times data block accesses occur that do

not require lock converts, compared to the total number of data block accesses. The

lock hit ratio is computed as:

A SQL statement to compute this ratio is:

 SELECT (b1.value - b2.value) / b1.value ops_ratio
 FROM V$SYSSTAT b1, V$SYSSTAT b2
 WHERE b1.name = ’consistent gets’
 AND b2.name = ’global lock converts (async)’;

If this ratio drops below 95%, you may not achieve optimal performance scaling as

you add additional nodes.

Another indication of too many PCM lock conversions is the ping/write ratio,

which is determined as follows:

Locating Lock Contention within Applications
If an application shows performance problems and you determine that excessive

lock conversion operations are the major problem, identify the transactions and

SQL statements causing problems. When excessive lock contention occurs it is likely

caused by one of three problem areas when setting up OPS. These areas are:

■ Contention for a common resource

See Also: "Tuning PCM Locks" on page 15-14.

consistent_gets - global_lock_converts_(async)

consistent_gets

ping_write_ratio =
DBWR_cross_instance_writes

physical_writes

Contention

Tuning to Optimize Performance 19-5

■ Lack of locks

■ Constraints

Excessive Lock Convert Rates: Contention for Common Resources
This section describes excessive lock conversion rates associated with contention for

common resources.

In some cases within OPS, the system may not be performing as anticipated. This

may be because the database setup or application design process overlooked some

blocks that all instances must access for the entire time that the application runs.

This forces the entire system to effectively "single thread" with respect to this

resource.

This problem can also occur in single instance cases where all users require

exclusive access to a single resource. In an inventory system, for example, all users

may wish to modify a common stock level.

In OPS applications, the most common points for contention are associated with

contention for a common set of database blocks. To determine whether this is

happening, you can query an additional set of V$ tables. These are the V$BH,

V$CACHE and V$PING tables.

These tables yield basically the same data, but V$CACHE and V$PING have been

created as views joining additional data dictionary tables to make them easier to

use. These tables and views examine the status of the current data blocks within an

instance’s SGA. They also enable you to construct queries to see how many times a

block has been pinged between nodes and how many versions of the same data

block exist within an SGA. You can use both of these features to determine whether

excessive single threading upon a single database block is occurring.

The most common areas of excessive block contention tend to be:

■ Free list contention by INSERT statements requiring more free space to insert
into a table. Often you can recognize this by querying V$PING and noticing

that a single block has multiple copies in the SGA. If this is the second block in

the file, free list contention is probably occurring. This problem may actually be

solved using free list groups and multiple free lists. Free list contention may

also occur on single-instance systems, especially SMP machines with a large

Note: The GVBH, GVCACHE, and GV$PING views are also

available, enabling you to query across all instances.

Contention

19-6 Oracle8i Parallel Server Concepts and Administration

number of CPUs. This problem can be determined by querying the

V$WAITSTAT table.

■ Segment header contention for transactions sharing the same space header
management block. This is likely to occur during parallel index creates when

parallel query slaves allocate sorting space from the temporary tablespace. Each

segment undergoing simultaneous space management in OPS requires

approximately 9 distributed locks dedicated to coordinating space management

activities.

■ Index contention by INSERT and DELETE statements that operate upon an
indexed table. By querying V$PING you can see that a number of data blocks

within the first extent of the index have both multiple copies in the SGA and

experience a high number of block pings. You cannot solve this problem by

tuning. Instead, localize all access to this index to a single instance. This

includes both read and write access.

This involves routing transactions altering this table to a single instance and

running the system asymmetrically. If you cannot do this, consider partitioning

the table and using a data dependent routing strategy.

Excessive Lock Convert Rates through Lack of Locks
In tables with random access for SELECT, UPDATE and DELETE statements, each

node needs to perform a number of PCM lock up- and downgrades. If these lock

conversion operations require disk I/O, they will be particularly expensive and

adversely affect performance.

If, however, many of the lock converts can be satisfied by just converting the lock

without a disk I/O, a performance improvement can be made. This is often referred

to as an I/O-less ping, or a ping not requiring I/O. The reason the lock convert can

be achieved without I/O is that the database is able to age data blocks out of the

SGA using DBWR as it would with a single instance. This is only likely when the

table is very large compared to the size of the SGA. Small tables are likely to require

disk I/O, since they are unlikely to age out of the SGA.

With small tables where random access occurs you can still achieve performance

improvements by using aggressive checkpointing. To do this, reduce the number of

rows stored in a data block by increasing the table PCTFREE value and by reducing

the number of data blocks managed by a PCM lock. The process of adjusting the

number of rows managed per PCM lock can be performed until lock converts are

minimized or the hardware configuration runs out of PCM locks.

The number of PCM locks managed by the IDLM is not an infinite resource. Each

lock requires memory on each OPS node, and this resource may be quickly be

Tuning for High Availability

Tuning to Optimize Performance 19-7

exhausted. Within an OPS environment, the addition of more PCM locks lengthens

the time taken to restart or recover an OPS instance. In environments where high

availability is required, the time taken to restart or recover an instance may

determine the maximum number of PCM locks you can practically allocate.

Excessive Lock Convert Rates Due to Constraints
In certain situations, excessive lock conversion rates cannot be reduced due to

certain constraints. In large tables, clusters, or indexes many gigabytes in size, it

becomes impossible to allocate enough PCM locks to prevent high lock convert

rates even if these are all false pings. This is mainly due to the physical limitations

of allocating enough locks. In this situation, a single PCM lock may effectively

manage more than a thousand data blocks.

Where random access is taking place, lock converts are performed even if there is

no contention for the same data block. In this situation, tuning the number of locks

is unlikely to enhance performance since the number of locks required is far in

excess of what can actually be created by the IDLM.

In such cases you must either restrict access to these database objects or else

develop a partitioned solution.

Tuning for High Availability
Failure of an Oracle instance on one OPS node may be caused by problems that may

or may not require rebooting the failed node. If the node fails and requires a reboot

or restart, the recovery process on remaining nodes will take longer. Assuming a

full recovery is required, the recovery process will be performed in three discreet

phases:

■ Detection of Error

■ Recovery and Re-mastering of IDLM Locks

■ Recovery of Failed Instance

Tuning for High Availability

19-8 Oracle8i Parallel Server Concepts and Administration

Detection of Error
The first phase of recovery is to detect that either a node or an OPS instance has

failed. Complete node failure or failure of an Oracle instance is detected through the

operating system node management facility.

Recovery and Re-mastering of IDLM Locks
If a complete node failure has occurred, the remaining nodes must remaster locks

held by the failed node. On non-failed instances, all database processing stops until

recovery has completed. To speed IDLM processing it is important to have the

minimum number of PCM locks. This will eventually be reflected in a trade-off

between database performance and availability requirements.

Recovery of Failed Instance
Once the IDLM has recovered all lock information, one of the remaining nodes can

get an exclusive lock on the failed instance’s IDLM instance lock. This node enables

the failed instance to provide roll forward/roll backward recovery of the failed

instance’s redo logs. This is performed by the SMON background process. The time

needed to perform this process depends upon the number of redo logs to be

recovered. This is a function of how often the system was checkpointed at runtime.

Again, this is a trade-off between system runtime performance, which favors a

minimum of checkpoints, and system availability requirements.

See Also: "Phases of Oracle Instance Recovery" on page 22-5.

Cache Fusion and Inter-instance Performance 20-1

20
Cache Fusion and Inter-instance

Performance

This chapter explains how Cache Fusion resolves reader/writer conflicts in Oracle

Parallel Server. It describes Cache Fusion and its benefits in general terms that

apply to most types of systems and applications. The chapter also describes OPS-

and Cache Fusion-related statistics and provides many procedures that explain how

to use these statistics to monitor and tune performance.

The topics in this chapter are:

■ The Role of Cache Fusion in Resolving Cache Coherency Conflicts

■ How Cache Fusion Produces Consistent Read Blocks

■ Improved Scalability with Cache Fusion

■ The Interconnect and Interconnect Protocols for OPS

■ Performance Expectations

■ Monitoring Cache Fusion and Inter-instance Performance

Note: For an overview of Cache Fusion processing, please refer to

"Cache Fusion Processing and the Block Server Process" on

page 5-6.

The Role of Cache Fusion in Resolving Cache Coherency Conflicts

20-2 Oracle8i Parallel Server Concepts and Administration

The Role of Cache Fusion in Resolving Cache Coherency Conflicts
Inter-instance contention for data blocks and the resulting cache coherency issues

are the main performance problems of OPS. In most cases, proper partitioning

resolves most contention problems.

In reality, however, most packaged applications are not effectively partitioned, or

are partitioned only to a limited extent. Such applications experience 3 types of

inter-instance contention:

■ Reader/Reader

■ Reader/Writer

■ Writer/Writer

Reader/writer contention occurs when one instance needs to read a data block in

consistent mode and the correct version of the block does not exist in the instance’s

cache. OPS easily resolves this type of contention because multiple instances can

share the same blocks for read access without cache coherency conflicts. The other

types of contention, however, are more complex from a cache coherency

point-of-view.

In the case of inserts into tables, for example, writer/writer conflicts are partially

addressed by free list groups. In other cases, however, the only alternative is to

address writer/writer cache coherency issues by isolating hot blocks using locking,

by implementing deferred pinging, or by application partitioning. Reader/writer

conflicts, on the other hand, are more prevalent and easier to resolve.

Reader/writer contention is the most common type of contention in OLTP and

hybrid applications. The ability to combine DSS and OLTP processing in a typical

application depends on OPS’ efficiency in resolving such conflicts.

For the "reader" part of reader/writer conflicts there are two subcategories: the

contention caused by current readers and contention caused by consistent read

readers. Of these two, consistent read readers are typically more prevalent and

Cache Fusion directly addresses these.

How Cache Fusion Produces Consistent Read Blocks
If a data block requested by one instance is in the memory cache of a remote

instance, Cache Fusion resolves the conflict using remote memory access, not disk

access. The requesting instance sends a request for a consistent-read copy of the

block to the holding instance. The BSP (Block Server Process) on the holding

instance transmits the consistent-read image of the requested block directly from

How Cache Fusion Produces Consistent Read Blocks

Cache Fusion and Inter-instance Performance 20-3

the holding instance’s buffer cache to the requesting instance’s buffer cache across a

high speed interconnect.

As Figure 21–1 illustrates, Cache Fusion enables the buffer cache of one node to ship

data blocks directly to the buffer cache of another node by way of low latency, high

bandwidth interconnects. This reduces the need for expensive disk I/O in parallel

cache management.

Cache Fusion also leverages new interconnect technologies for low latency,

user-space based, interprocessor communication. This drastically lowers CPU usage

by reducing operating system context switches for inter-node messages.

Figure 20–1 Cache Fusion Ships Blocks from Cache to Cache Across the
Interconnect

Oracle manages write/write contention using conventional disk-based PCM

(Parallel Cache Management). A later version of Oracle will use Cache Fusion to

provide faster writer/writer contention resolution.

Shared
servers

DLM

LCK0

Node 1

SGA Cache Fusion

Shared
servers

DLM

LCK0

Node 2

SGA

Database
Files

Database
Files

Database
Files Redo

Logs (2)
Redo

Logs (2)

Shared Disk Subsystem

LGWR LGWRDBWR DBWR

Improved Scalability with Cache Fusion

20-4 Oracle8i Parallel Server Concepts and Administration

Partitioning Data to Improve Write/write Conflict Resolution
Cache Fusion only solves part of the block conflict resolution issue by providing

improved scalability for applications that experience high levels of reader/writer

contention. For applications with high writer/writer contention levels, you also

need to accurately partition your application’s tables to reduce the potential for

writer/writer conflicts.

Improved Scalability with Cache Fusion
Cache Fusion improves application transaction throughput and scalability by

providing:

■ Greatly reduced operating system context switches, and hence reduced CPU

utilization, during reader/writer cache coherency conflicts

■ Further reduced CPU utilization for user-mode IPC platforms

■ Reduced I/O for block pinging and reduced X-to-S lock conversions

■ Consistent-read block transfers by way of high speed interconnects

Applications demonstrating high reader/writer conflict rates under disk-based

PCM benefit the most from Cache Fusion.

Packaged applications also scale more effectively as a result of Cache Fusion.

Applications in which OLTP and reporting functions execute on separate nodes

may also benefit from Cache Fusion. Reporting functions that access data from

Note: Cache Fusion is always enabled.

See Also: For more information on partitioning, please refer to
Oracle8i Concepts

See Also: For more information on partitioning, please refer to
Oracle8i Tuning and Oracle8i Concepts.

Note: If 20% or more of your application’s inter-instance activity

was due to reader/writer contention, you will likely see significant

performance gains from Cache Fusion.

Improved Scalability with Cache Fusion

Cache Fusion and Inter-instance Performance 20-5

tables modified by OLTP functions receive their versions of data blocks by way of

high-speed interconnects. This reduces the ’pinging’ of data blocks to disk.

Performance gains are derived primarily from reduced X-to-S lock conversions and

the corresponding reduction in disk I/O for X-to-S lock conversions.

The direct mapping of data buffers across instances during inter-processor

communication also avoids having to copy memory from one address space to

another. This shortened execution path reduces CPU requirements and increases the

communications bandwidth as explained under the following headings.

Reduced Context Switches and CPU Utilization
Cache Fusion dramatically reduces operating system context switches. This results

in reduced CPU utilization and frees CPU cycles for applications processing.

Reduced CPU Utilization with User-mode IPCs
Cache Fusion reduces CPU utilization by taking advantage of user-mode IPCs, also

known as "memory-mapped IPCs", for both Unix- and NT-based platforms. If the

appropriate hardware support is available, operating system context switches are

minimized beyond the basic reductions achieved with Cache Fusion alone. This also

eliminates costly data copying and system calls.

User-mode IPCs reduce CPU utilization because user processes can communicate

without using the operating system kernel. In other words, there is no need to

switch from user execution mode to kernel execution mode.

Note: All applications achieve some performance gains from

Cache Fusion. The degree of improvement depends upon the

operating system, the application workload, and the overall system

configuration.

The Interconnect and Interconnect Protocols for OPS

20-6 Oracle8i Parallel Server Concepts and Administration

Reduced I/O for Block Pinging and Reduced X-to-S Lock Conversions
Cache Fusion reduces expensive lock operations and disk I/O for data and undo

segment blocks by transmitting consistent-read blocks directly from one instance’s

buffer cache to another. This can reduce the latency required to resolve

reader/writer conflicts by as much as 90%.

Disk-based PCM may require as much as 80ms (milliseconds) to resolve

reader/writer conflicts. This involves disk I/O for the requested block as well as

I/O to write rollback segment blocks to disk.

Cache Fusion resolves reader/writer conflicts with approximately 1/10th the

processing effort required by disk-based PCM using little or no disk I/O. To do this,

Cache Fusion only incurs overhead for processing the consistent-read request and

for constructing a consistent-read copy of the requested block in memory and

transferring it to the requesting instance. On some platforms this can take less than

1ms.

Consistent-read Block Transfers by way of High Speed Interconnects
Because Cache Fusion exploits high speed IPCs, OPS benefits from the performance

gains of the latest technologies for low latency communication across cluster

interconnects. Further performance gains can be expected with even more efficient

protocols, such as VIA and user-mode IPCs.

The Interconnect and Interconnect Protocols for OPS
The primary components affecting Cache Fusion performance are the interconnect

and the protocols that process inter-node communication. The interconnect

bandwidth, its latency, and the efficiency of the IPC protocol determine the speed

with which Cache Fusion processes consistent-read block requests.

Influencing Interconnect Processing
Once your interconnect is operative, you cannot significantly influence its

performance. However, you can influence a protocol’s efficiency by adjusting the

IPC buffer sizes.

See Also: For more information, consult your vendor-specific

interconnect documentation.

Performance Expectations

Cache Fusion and Inter-instance Performance 20-7

Supported Interconnect Software
Interconnects supporting OPS and Cache Fusion use one of these protocols:

■ TCP/IP (Transmission Control Protocol/Interconnect Protocol)

■ UDP (User Datagram Protocol)

■ VIA (Virtual Interconnect Architecture)

■ Other proprietary protocols that are hardware vendor-specific

OPS can use any interconnect product that supports these protocols. The

interconnect product must also be certified for OPS hardware cluster platforms.

Performance Expectations
Cache Fusion performance levels may vary in terms of latency and throughput

from application to application. Performance is further influenced by the type and

mixture of transactions your system processes.

The performance gains from Cache Fusion also vary with each workload. The

hardware, the interconnect protocol specifications, and the operating system

resource usage also affect performance.

As mentioned earlier, if your application did not demonstrate a significant amount

of consistent-read contention prior to Cache Fusion, your performance with Cache

Fusion will likely remain unchanged. However, if your application experienced

numerous lock conversions and heavy disk I/O as a result of consistent-read

conflicts, your performance with Cache Fusion should improve dramatically.

As an example, query statistics in V$SYSSTAT and you should observe that your

system’s processing with Cache Fusion has fewer X-to-S lock converts. The fewer

X-to-S lock conversions your application generates, the less disk I/O your system

requires. The following section, "Monitoring Cache Fusion and Inter-instance

Performance" on page 21-9, describes how to evaluate Cache Fusion performance in

more detail.

See Also: For more information on lock types, please refer to

Chapter 7, "Overview of Locking Mechanisms".

Performance Expectations

20-8 Oracle8i Parallel Server Concepts and Administration

Cache Fusion Block Request Latencies
Block request latencies in Cache Fusion can vary according to the protocol in use.

With TCP/UDP, the latency can range from 5 to 50ms. The performance statistics

achieved with TCP/UDP protocols, however, vary from system to system.

With VIA, which is only available on NT, the latency can be less than 1ms.

Performance statistics for the VIA protocol do not vary significantly because VIA

uses fewer context switches. Fewer context switches mean reduced overhead.

Goals of Monitoring Cache Fusion and OPS Performance

Cache Fusion and Inter-instance Performance 20-9

Monitoring Cache Fusion and Inter-instance Performance
This section describes how to obtain and analyze OPS and Cache Fusion statistics to

monitor inter-instance performance. Topics in this section include:

■ Goals of Monitoring Cache Fusion and OPS Performance

■ Statistics for Monitoring OPS and Cache Fusion

■ Using V$SYSTEM_EVENTS to Identify Performance Problems

Goals of Monitoring Cache Fusion and OPS Performance
The main goal of monitoring Cache Fusion and OPS performance is to examine the

latency and fine-tune your system’s processing by observing trends over time. Do

this by analyzing the performance statistics from several views as described in the

following sections. Use these monitoring procedures on an on-going basis to

observe processing trends and to maintain processing at optimal levels.

Latency Statistics in OPS
The procedures in the following sections describe performance issues in terms of

latency. The procedures also describe how to analyze other performance-related

issues such as Integrated Distributed Lock Manager (IDLM) resource use and the

status of general system events.

The Role of Latency in OPS Processing
Latency is the most important aspect of OPS and Cache Fusion performance.

Latency is the amount of time required to complete a request for a consistent-read

block. Latency is influenced by the type of requests and responses involved in

consistent-read operations. Each type of request may have a different outcome as

described in the following:

■ When an instance needs a consistent-read version of a data block, it sends a lock

request to the IDLM to determine which instance is currently modifying the

data block. This request is typically for a shared lock. If a data block is currently

being modified by another instance, the IDLM forwards the consistent-read

request to the owner of the X lock for that block. If the block is not being

modified by an instance, the IDLM grants an S lock to the requesting instance

and the requesting instance reads the block from disk.

■ The BSP on the instance holding the lock for the requested block uses

messaging to prepare and transfer a consistent-read version of the block to the

Goals of Monitoring Cache Fusion and OPS Performance

20-10 Oracle8i Parallel Server Concepts and Administration

requesting node. BSP first looks for the version of the requested block in its

cache. If the correct version is not there, the holding instance builds the version

using rollback segment information from the local cache. This avoids disk I/O.

■ The holding instance may respond to a requesting instance with a message

granting the requestor permission to read the block from disk when the

requested block is no longer in the holding instance’s cache. In other words,

while most consistent-read requests are filled without disk I/O, some

transactions may require the requestor to read the block from disk.

Statistics for Monitoring OPS and Cache Fusion

Cache Fusion and Inter-instance Performance 20-11

Statistics for Monitoring OPS and Cache Fusion
Oracle collects Cache Fusion-related performance statistics from the buffer cache

and IDLM layers. Oracle also collects general OPS statistics for lock requests and

lock waits. You can use several views to examine these statistics.

Maintaining an adequate history of system performance helps you more easily

identify trends as these statistics change. This is especially important for identifying

increasing latencies and adverse workload changes.

Procedures in this section use statistics that are grouped according to the following

topics:

■ Analyzing Global Cache and Cache Fusion Statistics

■ Analyzing Global Lock Statistics

■ Analyzing IDLM Resource, Lock, Message, and Memory Resource Statistics

■ Analyzing OPS I/O Statistics

■ Analyzing Lock Conversions by Type

■ Analyzing Latch, OPS, and IDLM-related Statistics

In many cases, resolving performance issues requires that you first identify a

problem using the specific procedures in each statistics group. You then use the

V$SYSTEM_EVENT view to pinpoint the cause as described on page 21-33 under

the heading, "Events in V$SYSTEM_EVENTS Specifically Related to OPS".

You must set the parameter TIMED_STATISTICS to TRUE for Oracle to collect

statistics for most views discussed in the procedures in this section. The timed

statistics from views discussed in this chapter are displayed in units of 1/100ths of a

second.

Note: You must also run CATPARR.SQL to create OPS-related

views and tables for storing and viewing statistics as described

under the next heading.

Creating OPS Data Dictionary Views with CATPARR.SQL

20-12 Oracle8i Parallel Server Concepts and Administration

Creating OPS Data Dictionary Views with CATPARR.SQL
The SQL script CATPARR.SQL creates parallel server data dictionary views. To run

this script, you must have SYSDBA privileges.

CATALOG.SQL creates the standard V$ dynamic views, as described in the Oracle8i
Reference, as well as:

■ GV$CACHE

■ GV$PING

■ GV$CLASS_PING

■ GV$FILE_PING

You can rerun CATPARR.SQL if you want the EXT_TO_OBJ table to contain the

latest information after you add extents. If you drop objects without rerunning

CATPARR.SQL, EXT_TO_OBJ may display misleading information.

Global Dynamic Performance Views
Tuning and performance information for the Oracle database is stored in a set of

dynamic performance tables known as the "V$ fixed views". Each active instance

has its own set of fixed views. In OPS, you can query a global dynamic performance

(GV$) view to retrieve the V$ view information from all qualified instances. A

global fixed view is available for all of the existing dynamic performance views

except for V$ROLLNAME, V$CACHE_LOCK, V$LOCK_ACTIVITY, and

V$LOCKS_WITH_COLLISIONS.

The global view contains all the columns from the local view, with an additional

column, INST_ID (datatype INTEGER). This column displays the instance number

from which the associated V$ information was obtained. You can use the INST_ID

column as a filter to retrieve V$ information from a subset of available instances.

For example, the query:

 SELECT * FROM GV$LOCK WHERE INST_ID = 2 or INST_ID = 5;

Retrieves information from the V$ views on instances 2 and 5.

Each global view contains a GLOBAL hint that creates a parallel query to retrieve

the contents of the local view on each instance.

See Also: Oracle8i Reference for more information on dynamic

views and monitoring your database.

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-13

If you have reached the limit of PARALLEL_MAX_SERVERS on an instance and

you attempt to query a GV$ view, one additional parallel server process will be

spawned for this purpose. The extra process is not available for parallel operations

other than GV$ queries.

If you have reached the limit of PARALLEL_MAX_SERVERS on an instance and

issue multiple GV$ queries, all but the first query will fail. In most parallel queries,

if a server process could not be allocated this would result in either an error or a

sequential execution of the query by the query coordinator.

For global views, it may be acceptable to continue running the query in parallel and

return the data from the instances that could allocate servers for the query. If it is

acceptable to retrieve results only from instances where server allocation succeeded,

set the value to TRUE.

Note: If PARALLEL_MAX_SERVERS is set to zero for an instance,

additional parallel server processes do not spawn to accommodate

a GV$ query.

See Also: "Specifying Instance Groups" on page 18-23 and

Oracle8i Reference for restrictions on GV$ views and complete

descriptions of all related parameters and V$ dynamic performance

views.

Creating OPS Data Dictionary Views with CATPARR.SQL

20-14 Oracle8i Parallel Server Concepts and Administration

Analyzing Global Cache and Cache Fusion Statistics
Oracle collects global cache statistics at the buffer cache layer within an instance.

These statistics include counts and timings of requests for global resources.

Requests for global locks on data blocks originate in the buffer cache of the

requesting instance. Before a request enters the IDLM, Oracle allocates data

structures in the SGA to track the state of the request. These structures are called

"lock elements".

To monitor global cache statistics, query the V$SYSSTAT view and analyze its

output as described in the following procedures.

Procedures for Monitoring Global Cache Statistics
Complete the following steps to analyze global cache statistics.

1. Use this syntax to query V$SYSSTAT:

 SELECT * FROM V$SYSSTAT WHERE NAME LIKE ’global cache’;

Oracle responds with output similar to:

NAME VALUE
-- ----------
global cache gets 12480
global cache get time 996
global cache converts 21
global cache convert time 48
global cache cr blocks received 1
global cache cr block receive time 1
global cache cr read from disk 0
global cache freelist waits 0
global cache defers 0
global cache convert timeouts 0
global cache cr timeouts 0
global cache fairness down converts 0

Use your V$SYSSTAT output to perform the calculations and analyses described in

the remaining procedures for this statistics group.

Procedures 2 and 3 use the following Cache Fusion statistics from V$SYSSTAT:

■ global cache cr blocks received

■ global cache cr blocks receive time

■ global cache cr read from disk

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-15

■ global cache cr timeouts

■ global cache fairness down converts

2. Calculate the latency for Cache Fusion requests using this formula:

The result, which typically varies from 5 to 40ms depending on your system

configuration and volume, is the average latency of a consistent-read request round

trip from requesting instance, to holding instance, and back to the requesting

instance. If your CPU has limited idle time and your system typically processes

long-running queries, the latency may be higher. However, it is possible to have an

average latency of less than 1ms if your interconnect protocol is user-mode IPC.

Consistent-read server request latency can also be influenced by a high value for the

DB_MULTI_BLOCK_READ_COUNT parameter. This is because a requesting

process may issue more than one request for a block depending on the setting of

this parameter. Correspondingly, the requesting process may wait longer.

3. Calculate the total number of consistent-read requests using this formula:

A high proportion of read permissions from disk indicates that blocks are rapidly

aging out of the buffer cache of the holding instance. To resolve this, increase the

size of your buffer cache.

Procedures 4 and 5 require that you take snapshots of your statistics, for example,

by using UTLBSTAT and UTLESTAT.

See Also: For more information on UTLBSTAT and UTLESTAT,

please refer to Oracle8i Tuning.

global cache cr block receive time

global cache cr blocks received

global cache cr block received + global cache cr blocks read from disk

Creating OPS Data Dictionary Views with CATPARR.SQL

20-16 Oracle8i Parallel Server Concepts and Administration

Procedure 4 uses the following global cache statistics from V$SYSSTAT:

■ global cache convert time

■ global cache converts

■ global cache get time

■ global cache gets

4. Calculate the average convert times and average get times using one of these

formulas:

If the average convert or get time is high, there is excessive contention. Another

cause may be that latencies for lock operations are high due to overall system

workload or system problems. A reasonable value for a cache gets is 20-30ms while

converts should take 10-20ms on average.

Oracle increments global cache gets when a new lock on a resource is opened. A

convert is counted when there is already an open lock and Oracle converts it to

another mode.

The elapsed time for a get thus includes the allocation and initialization of new

locks. If the average cache get or average convert times are excessive, your system

may be experiencing timeouts.

If the global cache convert times or global cache get times are high, refer to statistics

in the V$SYSTEM_EVENTS view to identify events with a high value for

TIME_WAITED statistics.

5. Analyze lock convert timeouts by examining the value for ’global cache convert

timeouts’. If your V$SYSSTAT output shows a value other than zero (0) for this

statistic, check your system for congestion or high contention. In general,

convert timeouts should not occur; their existence indicates serious

performance problems.

6. Analyze the global cache consistent-read timeouts by examining the value for

this statistic in your V$SYSSTAT output. Oracle increments this statistic after

the system waits too long for the completion of a consistent-read request. If this

statistic shows a value other than zero (0), too much time has elapsed after the

global cache convert time

global cache converts

global cache get time

global cache gets
or

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-17

initiation of a consistent-read request and a timeout has occurred. If this

happens, you will also usually find that the average time for consistent-read

request completions has increased. If you have timeouts and the latency is high,

your system may have an excessive workload or there may be excessive

contention for data blocks.

Creating OPS Data Dictionary Views with CATPARR.SQL

20-18 Oracle8i Parallel Server Concepts and Administration

Analyzing Global Lock Statistics
Global lock statistics provide counts and timings for both PCM and non-PCM lock

activity. Oracle collects global lock statistics from the IDLM API layer. All Oracle

clients to the IDLM, of which the buffer cache is only one, make their requests to the

IDLM through this layer. Thus, global lock statistics include lock requests

originating from all layers of the kernel, while global lock statistics relate to buffer

cache OPS activity.

Use procedures in this section to monitor data from V$SYSSTAT to derive averages,

latencies, and counts. This establishes a rough indicator of the OPS workload

generated by an instance.

Procedures for Analyzing Global Lock Statistics
Use the following procedures to view and analyze statistics from V$SYSSTAT for

global lock processing.

1. Use this syntax to query V$SYSSTAT:

 SELECT * FROM V$SYSSTAT WHERE NAME LIKE ’global lock’;

Oracle responds with output similar to:

NAME VALUE
-- ----------
global lock sync gets 703
global lock async gets 12748
global lock get time 1071
global lock sync converts 303
global lock async converts 41
global lock convert time 93
global lock releases 573

Use your V$SYSSTAT output to perform the calculations and analyses described in

the remaining procedures in this statistics group.

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-19

2. Calculate the average global lock gets using this formula:

If the result is more than 20 or 30ms, query the TIME_WAITED column in

V$SYSTEM_EVENTS using the DESCEND keyword to identify which lock events

are waited for most frequently using this query:

 SELECT EVENT_TIME_WAITED, AVERAGE_WAIT
 FROM V$SYSTEM_EVENTS
 ORDER BY TIME_WAITED DESCEND;

Oracle increments global lock gets when a new lock on a resource is opened. A

convert is counted when there is already an open lock and Oracle converts it to

another mode.

The elapsed time for a get thus includes the allocation and initialization of new

locks. If the average lock get or average lock convert times are excessive, your

system may be experiencing timeouts.

If the global lock convert times or global lock get times are high, refer to statistics in

the V$SYSTEM_EVENTS view to identify events with a high value for

TIME_WAITED statistics.

3. Calculate the average global lock convert time using this formula:

If the result is more than 20ms, query the TIME_WAITED column in

V$SYSTEM_EVENTS using the DESCEND keyword to identify the event causing

the delay.

4. Analyze the V$LIBRARYCACHE and V$ROWCACHE views to observe IDLM

activity on non-PCM resources. These views have IDLM-specific columns that

identify IDLM resource use. Do this if you have frequent and extended waits

for library cache pins, enqueues, or DFS lock handles.

global lock get time

(global lock sync gets + global lock async gets)

global lock convert time

(global lock sync converts + global lock async converts)

Creating OPS Data Dictionary Views with CATPARR.SQL

20-20 Oracle8i Parallel Server Concepts and Administration

Analyzing IDLM Resource, Lock, Message, and Memory Resource Statistics
Oracle collects IDLM resource, lock, and message statistics at the IDLM level. Use

these statistics to monitor IDLM latency and workloads. These statistics appear in

the V$DLM_CONVERT_LOCAL and V$DLM_CONVERT_REMOTE views.

These views record average convert times, count information, and timed statistics

for each type of lock request. V$DLM_CONVERT_LOCAL shows statistics for local

lock operations. V$DLM_CONVERT_REMOTE shows values for remote

conversions. The average convert times in these views are in 100ths of a second.

How IDLM Workloads Affect Performance
The IDLM workload is an important aspect of OPS and Cache Fusion performance

because each consistent-read request results in a lock request. High IDLM

workloads as a result of heavy request rates can adversely affect performance.

The IDLM performs local lock operations entirely within the local node, or in other

words, without sending messages. Remote lock operations require sending

messages to and waiting for responses from other nodes. Most down-converts,

however, are local operations for the IDLM.

The following procedures for analyzing IDLM resource, locks, and message

statistics appear in two groups. The first group of procedures explains how to

monitor IDLM resources and locks. The second group explains how to monitor

message statistics.

Procedures for Analyzing IDLM Resource and Lock Statistics
Use the following procedures to obtain and analyze statistics from

V$DLM_CONVERT_LOCAL and V$DLM_CONVERT_REMOTE for DLM resource

processing.

You must enable event 29700 to populate the V$DLM_CONVERT_LOCAL and

V$DLM_CONVERT_REMOTE views. Do this by entering this syntax:

 EVENT="29700 TRACE NAME CONTEXT FOREVER"

Note: Count information in these views is cumulative for the life

of an instance.

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-21

1. Use this syntax to query V$DLM_CONVERT_LOCAL:

 SELECT CONVERT_TYPE,
 AVERAGE_CONVERT_TIME,
 CONVERT_COUNT
 FROM V$DLM_CONVERT_LOCAL;

Oracle responds with output similar to:

CONVERT_TYPE AVERAGE_CONVERT_TIME CONVERT_COUNT
-------------------------------------- -------------------- -------------
NULL -> SS 0 0
NULL -> SX 0 0
NULL -> S 1 146
NULL -> SSX 0 0
NULL -> X 1 92
SS -> SX 0 0
SS -> S 0 0
SS -> SSX 0 0
SS -> X 0 0
SX -> S 0 0
SX -> SSX 0 0
SX -> X 0 0
S -> SX 0 0
S -> SSX 0 0
S -> X 3 46
SSX -> X 0 0
16 rows selected.

2. Use this syntax to query V$DLM_CONVERT_REMOTE:

 SELECT * FROM V$DLM_CONVERT_REMOTE;

Oracle responds with output identical in format to the output for

V$DLM_CONVERT_LOCAL.

Use your output from V$DLM_CONVERT_LOCAL and

V$DLM_CONVERT_REMOTE to perform the calculation described in the

following procedure.

3. Calculate the ratio of local-to-remote lock operations using this query:

 SELECT r.CONVERT_TYPE,
 r.AVERAGE_CONVERT_TIME,
 l.AVERAGE_CONVERT_TIME,
 r.CONVERT_COUNT,
 l.CONVERT_COUNT,

Creating OPS Data Dictionary Views with CATPARR.SQL

20-22 Oracle8i Parallel Server Concepts and Administration

 FROM V$DLM_CONVERT_LOCAL l, V$DLM_CONVERT_REMOTE r
 GROUP BY r.CONVERT_TYPE;

4. It is useful to maintain a history of workloads and latencies for lock converts.

Changes in request rates for lock operations without increases in average

latencies usually results from changing application workload patterns.

Deterioration of both request rates and latencies usually indicates an increased

rate of lock conflicts or an increased workload due to message latencies, system

problems, or timeouts. If the LMD process shows high CPU consumption, or

consumption that is greater than 20% of the CPU, while overall system resource

consumption is normal, consider binding the LMD process to a specific

processor if the system has more than one CPU.

If latencies increase, also examine CPU data and other operating system

statistics that you can obtain using utilities such as "sar," "vmstat" and "netstat".

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-23

IDLM Message Statistics
The IDLM sends messages either directly or by using flow control. For both

methods, the IDLM attaches markers known as "tickets" to each message. The

allotment of tickets for each IDLM is limited. However, the IDLM can re-use tickets

indefinitely.

IDLMs send messages directly until no more tickets are available. When an IDLM

runs out of tickets, messages must wait in a flow control queue until outstanding

messages finish processing and more tickets are available. Flow-controlled

messaging is managed by the LMD process.

The rationing of tickets prevents one node from sending an excessive amount of

messages to another node during periods of heavy inter-instance communication.

This also prevents one node with heavy remote consistent-read block requirements

from assuming control of messaging resources throughout a cluster at the expense

of other, less-busy nodes.

The V$DLM_MISC view contains the following statistics about message activity:

■ DLM messages sent directly

■ DLM messages flow controlled

■ DLM messages received

■ DLM total incoming message queue length

Creating OPS Data Dictionary Views with CATPARR.SQL

20-24 Oracle8i Parallel Server Concepts and Administration

Procedures for Analyzing IDLM Message Statistics
Use the following procedures to obtain and analyze message statistics in

V$DLM_MISC.

1. Use this syntax to query V$DLM_MISC:

 SELECT NAME, VALUE FROM V$DLM_MISC;

Oracle responds with output similar to:

STATISTIC# NAME
---------- -------------------------------------VALUE-----
 0 dlm messages sent directly 29520

 1 dlm messages flow controlled 1851

 2 dlm messages received 29668

 3 dlm total incoming msg queue length 297

4 rows selected.

Use your output from V$DLM_MISC to perform the following procedure.

2. Calculate the average receive queue length between two snapshots using this

equation:

Oracle increments the value for ’total incoming message queue length’ whenever a

new request enters the LMD process’ message queue. When messages leave the

LMD queue to begin processing, Oracle increments the value for ’messages

received’.

Note: Oracle support may request information from your

V$DLM_MISC output for debugging purposes.

total incoming message queue length

messages received

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-25

The size of the queue may increase if a large number of requests simultaneously

arrives at the LMD. This can occur when the volume of locking activity is high or

when the LMD processes a large quantity of consistent-read requests. Typically, the

average receive queue length is less than 10.

Creating OPS Data Dictionary Views with CATPARR.SQL

20-26 Oracle8i Parallel Server Concepts and Administration

Analyzing OPS I/O Statistics
In addition to the global cache and global lock statistics that were previously

discussed, you can also use statistics in V$SYSSTAT to measure the I/O workload

related to global conflict resolution. There are three important sets of statistics in

V$SYSSTAT for this purpose:

■ DBWR forced writes

■ Remote instance undo header writes

■ Remote instance undo block writes

DBWR forced writes occur when Oracle resolves inter-instance data block

contention by writing the requested block to disk before the requesting node can

use it.

If a consistent-read request requires information from another instance’s cache to

roll back a block and make it read consistent, Oracle must also write rollback

segment headers and rollback segment blocks to disk. One instance must write the

undo blocks and undo headers to disk while another instance reads them.

Cache Fusion minimizes the disk I/O for consistent-reads. This can lead to a

substantial reduction in physical writes performed by each instance. Before Cache

Fusion, a consistent-read involving data from a remote instance required up to 3

writes, 3 reads, a rollback segment header, an undo segment block, and multiple

lock converts for one requested block.

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-27

Procedures for Analyzing OPS I/O Statistics
Use the following procedures to obtain and analyze message statistics in

V$SYSSTAT.

1. Use this syntax to query V$SYSSTAT:

 SELECT NAME, VALUE FROM V$SYSSTAT
 WHERE NAME IN (’DBWR forced writes’,
 ’remote instance undo block writes’,
 ’remote instance undo header writes’,
 ’physical writes’);.

Oracle responds with output similar to:

NAME VALUE
--- ----------
physical writes 41802
DBWR forced writes 5403
remote instance undo block writes 0
remote instance undo header writes 2
4 rows selected.

Use your V$SYSSTAT output to perform the following calculations.

2. Calculate the ratio of OPS-related I/O to overall physical I/O using this

equation:

You should see a noticeable decrease in this ratio between this calculation and

pre-Cache Fusion statistics.

DBWR forced writes

physical writes

Creating OPS Data Dictionary Views with CATPARR.SQL

20-28 Oracle8i Parallel Server Concepts and Administration

3. Calculate how many writes to rollback segments occur when a remote instance

needs to read from rollback segments that are in use by a local instance using

this equation:

The ratio shows how much disk I/O is related to writes to rollback segments. With

Cache Fusion, this ratio should be very low.

(remote instance undo header writes+
remote instance undo block writes)

DBWR forced writes

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-29

Analyzing Lock Conversions by Type
This section describes how to analyze output from three views to quantify lock

conversions by type. The tasks and the views discussed in this section are:

■ Using V$LOCK_ACTIVITY to Analyze Lock Conversions

■ Using V$CLASS_PING to Identify Pinging by Block Class

■ Using V$PING to Identify Hot Objects

Using V$LOCK_ACTIVITY to Analyze Lock Conversions
V$LOCK_ACTIVITY summarizes how many lock up- and down-converts have

occurred during an instance’s lifetime. X-to-N down-converts denote the number of

times a lock was down-converted because another instance wanted to modify a

resource.

The other major type of down-convert is X-to-S. This type of down-convert occurs

when an instance reads a resource that was last modified by a local instance. Both

types of lock conversions involve I/O. However, Cache Fusion should reduce

X-to-S down-converts because they are not needed for buffer locks.

Using V$CLASS_PING to Identify Pinging by Block Class
V$CLASS_PING summarizes lock conversion activity by showing whether disk

I/O is occurring on the following classes of blocks:

■ Data blocks

■ Segment headers

■ Extent headers

■ Undo blocks

All X_2_NULL_FORCED_WRITE and X_2_S_FORCED_WRITE conversions

involve write I/O. In other words, values in the columns for each block class

provide an indicator of the cause of the disk I/O.

Using V$PING to Identify Hot Objects
V$PING helps identify "hot" blocks and "hot" objects. The sum of the columns

FORCED_READS and FORCED_WRITES indicates the actual pinging activity on a

particular block or object.

See Also: For more information about lock conversions, please

refer to Chapter 8, "Integrated Distributed Lock Manager".

Creating OPS Data Dictionary Views with CATPARR.SQL

20-30 Oracle8i Parallel Server Concepts and Administration

All three views provide different levels of detail. If you suspect that pinging or OPS

itself is the cause of a performance problem, monitor V$LOCK_ACTIVITY to

generate an overall OPS workload profile. Use information from

V$LOCK_ACTIVITY to record the rate at which lock conversions occur.

For more details, use V$CLASS_PING to identify the type of block on which lock

conversions and pinging are occurring. Once you have identified the class, use

V$PING to obtain details about a particular table or index and the file and block

numbers on which there is significant lock conversion activity.

See Also: For more information about V$PING, please refer to

"Querying the V$PING View to Detect Pinging" on page 20-10.

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-31

Analyzing Latch, OPS, and IDLM-related Statistics
Latches are low level locking mechanisms that protect SGA data structures.

Excessive contention for latches degrades performance.

Use V$DLM_LATCH and V$LATCH_MISSES to monitor latch contention within

the IDLM. These views show information about a particular latch, its statistics, and

the location in the code from where the latch is acquired.

Procedures for Analyzing Latch, OPS, and IDLM-related Statistics
Use the following procedures to analyze latch, OPS, and IDLM-related statistics.

1. Query V$LATCH using this syntax:

 SELECT * FROM V$LATCH;

Oracle responds with output similar to:

cache buffer handle 46184 1 1 0 0

cache buffers chained 84139946 296547 .996 29899 .101

cache buffers lru 4760378 11718 .998 227 .019

channel handle pool 1 0 1 0 0

channel operations 1 0 1 0 0

dlm ast latch 542776 494 .999 1658 3.356

dlm cr bast queue 37194 1 1 0 0

dlm deadlock list 32839 0 1 0 0

dlm domain lock la 1 0 1 0 0

dlm domain lock ta 49164 1 1 0 0

dlm group lock lat 1 0 1 0 0

dlm group lock tab 25239 1 1 0 0

dlm lock table fre 325306 270 .999 327 1.211

dlm process hash l 6346 0 1 0 0

dlm process table 2 0 1 0 0

dlm recovery domai 2014 0 1 0 0

dlm resource hash 683031 1709 .997 41342 24.191

dlm resource scan 188 0 1 0 0

dlm resource table 182093 70 1 2 .029

dlm shared communication 190766 211 .999 313 1.483

dlm timeout list 113294 40 0 3 .075

dml lock allocation 261 0 1 0 0

22 rows selected.

Creating OPS Data Dictionary Views with CATPARR.SQL

20-32 Oracle8i Parallel Server Concepts and Administration

2. If the output from the previous procedure reveals a high ratio of

sleeps-to-misses, attempt to determine where the sleeps occur. To do this,

execute this query on the V$LATCH_MISSES view:

 SELECT PARENT_NAME, "WHERE", SLEEP_COUNT
 FROM V$LATCH_MISSES
 ORDER BY SLEEP_COUNT DESCENDING;

Oracle responds with output similar to:

Use your V$LATCH and V$LATCH_MISSES output to perform the following

procedures.

3. Calculate the ratio of gets to misses using your V$LATCH output from the first

procedure in this group on page 21-30 in this formula:

High numbers for misses usually indicate contention for the same resources and

locks. Acceptable ratios range from 90 to 95%.

Note: The content of the five columns in this output example from

left to right are: gets, hits, misses, sleeps, and the sleeps-to-misses

ratio.

PARENT_NAME WHERE SLEEP_COUNT

------------------------ ---------------------- --------------

dlm resource hash list kjrrmas1: lookup master n 39392

cache buffers chains kcbgtcr: kslbegin 27738

library cache kglhdgn: child: 15408

shared pool kghfnd: min scan 6876

cache buffers chains kcbrls: kslbegin 2124

shared pool kghalo 1667

dlm ast latch kjucll: delete lock from 1464

7 rows selected.

gets

misses

Creating OPS Data Dictionary Views with CATPARR.SQL

Cache Fusion and Inter-instance Performance 20-33

4. Analyze the ratio of sleeps to misses using your V$LATCH_MISSES output

from procedure 2 on page 21-31. This ratio determines how often a process

sleeps when it cannot immediately get a latch but wants to wait for the latch.

A ratio of 2 means that for each miss, a process attempts to get a latch twice

before acquiring it. A high number of sleeps-to-misses usually indicates process

scheduling delays or high operating system workloads. It can also indicate

internal inefficiencies or high concurrency on one resource. For example, when

many locks are opened simultaneously on the same resource, then processes

might have to wait for a resource latch.

In V$LATCH_MISSES, the WHERE column shows the function in which the

latch is acquired. This information is useful in determining internal

performance problems. Usually, the latch slept on for long periods shows up in

V$SESSION_WAIT or V$SYSTEM_EVENT under the ’latch free’ wait event

category.

The following section describes how to use V$SYSTEM_EVENTS in more detail.

Using V$SYSTEM_EVENTS to Identify Performance Problems

20-34 Oracle8i Parallel Server Concepts and Administration

Using V$SYSTEM_EVENTS to Identify Performance Problems
Data about Cache Fusion and OPS events appears in the V$SYSTEM_EVENT view.

To identify events for which processes have waited the longest, query

V$SYSTEM_EVENT on the TIME_WAITED column using the DESCENDING

keyword. The TIME_WAITED column shows the total wait time for each system

event listed. For an example of how to query V$SYSTEM_EVENTS, refer to Step 2

on page 21-17.

By generating an ordered list of event waits, you can easily locate performance

bottlenecks. Each COUNT represents a voluntary context switch. The TIME_WAIT

value is the cumulative time that processes waited for particular system events. The

values in the TOTAL_TIMEOUT and AVERAGE_WAIT columns provide additional

information about system efficiency.

Events in V$SYSTEM_EVENTS Specifically Related to OPS
The following events appearing in V$SYSTEM_EVENT output represent waits for

OPS events:

■ Global cache cr request

■ Library cache pin

■ Buffer busy due to global cache

■ Global cache lock busy

■ Global cache lock open x

■ Global cache lock open s

■ Global cache lock null to x

■ Global cache lock s to x

■ Global cache lock null to s

Events Related to Non-PCM Resources
You can monitor other events in addition to those listed under the previous heading

because performance problems may be related to OPS. These events are:

■ Row cache locks

■ Enqueues

■ Library cache pins

Using V$SYSTEM_EVENTS to Identify Performance Problems

Cache Fusion and Inter-instance Performance 20-35

■ DFS lock handle

General Observations
If the time waited for global cache events is high relative to other waits, look for

increased latencies, contention, or excessive system workloads using V$SYSSTAT

statistics and operating system performance monitors. A high number of global

cache busy or buffer busy waits indicates increased contention in the buffer cache.

In OLTP systems with data block address locking and a high degree of contention, it

is not unusual when the global cache wait events represent a high proportion of the

sum of the total time waited.

If a lot of wait time is used by waits for non-buffer cache resources as indicated by

statistics in the rows ’row cache lock’, ’enqueues’, and ’library cache pin’, monitor

the V$ROWCACHE and V$LIBRARYCACHE views for OPS-related issues.

Specifically, observe values in the IDLM columns of each of these views.

Common OPS problems arise from poorly managed space parameters or sequences

that are not cached. In such cases, processes wait for row cache locks and enqueues

and V$ROWCACHE will show a high number of conflicts for certain dictionary

caches.

Using V$SYSTEM_EVENTS to Identify Performance Problems

20-36 Oracle8i Parallel Server Concepts and Administration

Backing Up the Database 21-1

21
Backing Up the Database

Those behind cried "Forward!"
And those before cried "Back!"

Thomas Babington, Lord Macaulay: On Frederic The Great

To protect your data, archive the online redo log files and periodically back up the

datafiles. Also back up the control file for your database and the parameter files for

each instance. This chapter discusses how to devise a strategy for performing these

tasks by explaining:

■ Choosing a Backup Method

■ Archiving the Redo Log Files

■ Checkpoints and Log Switches

■ Backing Up the Database

Oracle Parallel Server (OPS) supports all Oracle backup features in exclusive mode,

including both open and closed backup of either an entire database or individual

tablespaces.

Choosing a Backup Method

21-2 Oracle8i Parallel Server Concepts and Administration

Choosing a Backup Method
You can perform backup and recovery operations using two methods:

■ Using Recovery Manager

■ Using the operating system

The information provided in this chapter is true for both methods, unless specified

otherwise.

Archiving the Redo Log Files
This section explains how to archive the redo log files for each instance of a parallel

server:

■ Archiving Mode

■ Automatic or Manual Archiving

■ Archive File Format and Destination

■ Redo Log History in the Control File

■ Backing Up the Archive Logs

Note: To avoid confusion between online and offline datafiles and

tablespaces, this chapter uses the terms "open" and "closed" to

indicate whether a database is available or unavailable during a

backup. The term "whole backup" or "database backup" indicates

that all datafiles and control files have been backed up. "Full" and

"incremental" backups refer only to particular types of backups

provided by Recovery Manager.

See Also: The Oracle8i Backup and Recovery Guide for a complete

discussion of backup and recovery operations and terminology.

Archiving the Redo Log Files

Backing Up the Database 21-3

Archiving Mode
Oracle provides two archiving modes: ARCHIVELOG mode and

NOARCHIVELOG mode. With Oracle in ARCHIVELOG mode, the instance must

archive its redo logs as they are filled—before they can be overwritten. Oracle can

then recover the log files in the event of media failure. In ARCHIVELOG mode, you

can produce both open and closed backups. In NOARCHIVELOG mode, you can

only make closed backups.

■ Each instance on a parallel server can archive its own redo log files

■ Alternatively, one or more instances can archive the redo log files manually for

all instances, as described in the following section

Automatic or Manual Archiving
Archiving can be performed automatically or manually for a given instance,

depending on the value you set for the LOG_ARCHIVE_START initialization

parameter.

■ With LOG_ARCHIVE_START set to TRUE, Oracle automatically archives redo

logs as they fill

■ With LOG_ARCHIVE_START set to FALSE, Oracle waits until you instruct it to

archive

You can set LOG_ARCHIVE_START differently for each OPS instance. For example,

you can manually use SQL commands or Server Manager to have instance 1 archive

the redo log files of instance 2, if instance 2 has LOG_ARCHIVE_START set to

FALSE.

Automatic Archiving
The ARCH background process performs automatic archiving upon instance

startup when LOG_ARCHIVE_START is set to TRUE. With automatic archiving,

online redo log files are copied only for the instance performing the archiving.

Note: Archiving is a per-instance operation that can be handled in

one of two ways:

See Also: "Open and Closed Database Backups" on page 21-12.

Archiving the Redo Log Files

21-4 Oracle8i Parallel Server Concepts and Administration

In the case of a closed thread, the archiving process in the active instance performs

the log switch and archiving for the closed thread. This is done when log switches

are forced on all threads to maintain roughly the same range of SCNs in the

archived logs of all enabled threads.

Manual Archiving
When LOG_ARCHIVE_START is set to FALSE, you can perform manual archiving

in one of the following ways:

■ Use the ARCHIVE LOG clause of the SQL command ALTER SYSTEM

■ Enable automatic archiving using the SQL command ALTER SYSTEM

ARCHIVE LOG START, or using Server Manager

Manual archiving is performed by the user process issuing the archiving command;

it is not performed by the instance’s ARCH process.

ALTER SYSTEM ARCHIVE LOG Options for Manual Archiving
ALTER SYSTEM ARCHIVE LOG manual archiving options include:

You can use the THREAD option of ALTER SYSTEM ARCHIVE LOG to archive

redo log files in a thread associated with an instance other than the current instance.

ALL All online redo log files that are full but have not been

archived.

CHANGE The lowest system change number (SCN) in the online

redo log file.

CURRENT The current redo log of every enabled thread.

GROUP integer The group number of an online redo log.

LOGFILE ’filename’ The filename of an online redo log file in the thread.

NEXT The next full redo log file that needs to be archived.

SEQ integer The log sequence number of an online redo log file.

THREAD integer The thread containing the redo log file to archive

(defaults to the thread number assigned to the current

instance).

Archiving the Redo Log Files

Backing Up the Database 21-5

Monitoring the Archiving Process
The GV$ARCHIVE_PROCESSES and V$ARCHIVE_PROCESSES views provide

information about the state of the various ARCH processes on the database and

instance respectively. The GV$ARCHIVE_PROCESSES view displays 10*n rows,

where ’n’ is the number of open instances for the database. The

V$ARCHIVE_PROCESSES view displays 10 rows, 1 row for each possible ARCH

process.

Archive File Format and Destination
Archived redo logs are uniquely named as specified by the

LOG_ARCHIVE_FORMAT parameter. This operating-system specific format can

include text strings, one or more variables, and a filename extension.

LOG_ARCHIVE_FORMAT can have variables as shown in Table 21–1. Examples in

this table assume that LOG_ARCHIVE_FORMAT= arch%parameter, and the upper

bound for all parameters is 10 characters.

The thread parameters %t and %T are used only with OPS. For example, if the

instance associated with redo thread number 7 sets LOG_ARCHIVE_FORMAT to

LOG_%s_T%t.ARC, then its archived redo log files are named:

See Also: "Forcing a Log Switch" on page 21-10 regarding threads

and log switches. Refer to the Oracle8i Reference for information

about the syntax of the ALTER SYSTEM ARCHIVE LOG statement.

Also see the Oracle8i Backup and Recovery Guide as well as the

"Archiving Redo Information" chapter in the Oracle8i
Administrator’s Guide for more information about manual and

automatic archiving.

See Also: For more information about these views, please refer to

the Oracle8i Reference.

Table 21–1 Archived Redo Log Filename Format Parameters

Parameter Description Example

%T Thread number, left-zero-padded arch0000000001

%t Thread number, not padded arch1

%S Log sequence number, left-zero-padded arch0000000251

%s Log sequence number, not padded arch251

Archiving the Redo Log Files

21-6 Oracle8i Parallel Server Concepts and Administration

LOG_1_T7.ARC
LOG_2_T7.ARC
LOG_3_T7.ARC
...

Redo Log History in the Control File
You can use the MAXLOGHISTORY clause of the CREATE DATABASE or CREATE

CONTROLFILE command to enable the control file to keep a history of redo log

files that a parallel server has filled. After creating the database, it is only possible to

increase or decrease the log history by creating a new control file. Using CREATE

CONTROLFILE destroys all log history in the current control file.

The MAXLOGHISTORY option specifies how many entries can be recorded in the

archive history. Its default value is operating-system specific. If MAXLOGHISTORY

is set to a value greater than zero, then whenever an instance switches from one

online redo log file to another, its LGWR process writes the following data to the

control file.

■ Thread number

■ Log sequence number

■ Low system change number (SCN)

■ Low SCN timestamp

■ Next SCN (that is, the low SCN of the next log in sequence)

Note: Always specify thread and sequence number in archive log

file format for easy identification of the redo log file.

See Also: The "Archiving Redo Information" chapter in the

Oracle8i Administrator’s Guide for information about specifying the

archived redo log filename format and destination. Also refer to the

"Recovery Structures" chapter in Oracle8i Concepts. Your Oracle

system-specific documentation also contains information about the

default log archive format and destination.

Note: LGWR writes log history data to the control file during a

log switch, not when a redo log file is archived.

Archiving the Redo Log Files

Backing Up the Database 21-7

Log history records are small and are overwritten in a circular fashion when the log

history exceeds the limit set by MAXLOGHISTORY.

During recovery, Server Manager prompts for the appropriate file names. Recovery

Manager automatically restores the redo logs it requires. You can use the log history

to reconstruct archived log file names from an SCN and thread number, for

automatic media recovery of a parallel server that has multiple redo threads. An

Oracle instance accessing the database in exclusive mode with only one thread

enabled does not need the log history. However, the log history is useful when

multiple threads are enabled even if only one thread is open.

You can query the log history information from the V$LOG_HISTORY view. When

using Server Manager, V$RECOVERY_LOG also displays information about

archived logs needed to complete media recovery. This information is derived from

log history records.

Multiplexed redo log files do not require multiple entries in the log history. Each

entry identifies a group of multiplexed redo log files, not a particular filename.

Backing Up the Archive Logs
Archive logs are generally only accessible by the node on which they were created.

In OPS you have two backup options:

■ Have each node back up its own archive logs

■ Move the archive logs to one node, and then back them up

Use O/S utilities to manually implement either solution.

Node to Log Affinity
Optionally, you can set up each node to backup its own logs by running multiple

copies of RMAN, one on each node. The new OEM (Oracle Enterprise Manager)

architecture allows you to construct a single backup job and have it submitted to

multiple nodes at times you specify.

Backing Up Archive Logs with Recovery Manager
Recovery Manager can automatically enable each node to back up its own archive

logs. However, to move the logs you must do so manually and then use the

See Also: "Restoring and Recovering Redo Log Files" on

page 22-9 for Server Manager prompts that appear during recovery.

Your Oracle system-specific documentation also has information

about the default MAXLOGHISTORY value.

Archiving the Redo Log Files

21-8 Oracle8i Parallel Server Concepts and Administration

appropriate RMAN catalog and change commands to reflect the movement of files.

Once Recovery Manager has been informed of the changes you have made, it can

back up archive logs from the single node.

If you are using multiple nodes to back up your archive logs, when Recovery

Manager compiles the list of logs to be archived, it must be able to check that the

archived logs exist. To do this it must be able to read the headers of all archived logs

on all nodes.

Each node can then back up the archived logs it has created. In the example below,

because the initial target database is node 1 (on the RMAN command line), you

must ensure that node 1 is able to read the headers of the archived logs (even those

produced by node 2).

 RMAN TARGET INTERNAL/KNL@NODE1 RCVCAT RMAN/RMAN@RCAT

 RUN {
 ALLOCATE CHANNEL T1 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE1';
 ALLOCATE CHANNEL T2 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE2';
 BACKUP
 FILESPERSET 10
 FORMAT 'AL_%T_%S_%P'
 (ARCHIVELOG UNTIL TIME 'SYSDATE' THREAD 1 DELETE INPUT CHANNEL T1)
 (ARCHIVELOG UNTIL TIME 'SYSDATE' THREAD 2 DELETE INPUT CHANNEL T2);
)

Restoring Archive Logs with Recovery Manager
By default, RMAN restores archive logs to the log_archive_dest of the instances it

connects to. If you are using multiple nodes to restore and recover, the archive logs

may be restored to any of the nodes doing the restore/recover. The node actually

reading the restored logs and performing the roll-forward is the target node initially

connected to. To make recovery use these logs, ensure that the logs are readable

from that node.

Using the CONNECT Option of the ALLOCATE CHANNEL Command
The CONNECT option of the RMAN ALLOCATE CHANNEL command allows

you to allocate channels on any node of an OPS cluster. If you allocate channels on

more than one node in the cluster, RMAN automatically distributes backup

processing among those nodes.

On AIX and Pyramid Mesh clusters, RMAN also automatically detects disk-to-node

affinity and backs up datafiles onto nodes that can most quickly access those

datafiles.

Checkpoints and Log Switches

Backing Up the Database 21-9

Creating backups on multiple OPS nodes requires the following support from your

media manager:

■ The media manager must have a central catalog that any nodes can access.

■ You must either have tape drives on every node you use, or the media manager

must support backup/restore over the network.

Checkpoints and Log Switches
This section discusses:

■ Checkpoints

■ Forcing a Checkpoint

■ Forcing a Log Switch

■ Forcing a Log Switch on a Closed Thread

Checkpoints
Oracle8i performs checkpointing automatically on a consistent basis. Checkpointing

requires that Oracle write all dirty buffers to disk and advance the checkpoint.

Forcing a Checkpoint
The SQL statement ALTER SYSTEM CHECKPOINT explicitly forces Oracle to

perform a checkpoint for either the current instance or all instances. Forcing a

checkpoint ensures that all changes to the database buffers are written to the

datafiles on disk.

The GLOBAL option of ALTER SYSTEM CHECKPOINT is the default. It forces all

instances that have opened the database to perform a checkpoint. The LOCAL

option forces a checkpoint by the current instance.

A global checkpoint is not finished until all instances that require recovery have

been recovered. If any instance fails during the global checkpoint, however, the

checkpoint might complete before that instance has been recovered.

To force a checkpoint on an instance running on a remote node, you can change the

current instance with the Server Manager command CONNECT.

See Also: For more information about checkpoints and how to

control Oracle’s checkpointing process, please refer to Oracle8i
Tuning.

Checkpoints and Log Switches

21-10 Oracle8i Parallel Server Concepts and Administration

Forcing a Log Switch
A parallel server can force a log switch for any instance that fails to archive its

online redo log files for some period of time, either because the instance has not

generated many redo entries or because the instance has shut down. This prevents

an instance’s redo log, known as a thread of redo, from remaining unarchived for too

long. If media recovery is necessary, the redo entries used for recovery are always

reasonably recent.

For example, after an instance has shut down, another instance can force a log

switch for that instance so its current redo log file can be archived.

The SQL statement ALTER SYSTEM SWITCH LOGFILE forces the current instance

to begin writing to a new redo log file, regardless of whether the current redo log

file is full.

Forcing all instances to perform log switches is known as a global log switch. To do

this, use the SQL statement ALTER SYSTEM ARCHIVE LOG CURRENT and omit

the THREAD keyword. After issuing this statement, Oracle waits until all online

redo log files are archived before returning control to you. Use this statement to

force a single instance to perform a log switch and archive its online redo log files

by specifying the THREAD keyword.

In Server Manager, use the Instance Force Log Switch option for the current

instance only. There is no global option for forcing a log switch in Server Manager.

You may want to force a log switch so that you can archive, drop, or rename the

current redo log file.

Note: You need the ALTER SYSTEM privilege to force a

checkpoint.

See Also: "Specifying Instances" on page 18-17 for information on

specifying a remote node.

Note: You need the ALTER SYSTEM privilege to force a log

switch.

See Also: "Redo Log Files" on page 6-3 for more information

about threads.

Checkpoints and Log Switches

Backing Up the Database 21-11

Forcing a Log Switch on a Closed Thread
You can force a closed thread to complete a log switch while the database is open.

This is useful if you want to drop the current log of the thread. This procedure does

not work on an open thread, including the current thread, even if the instance that

had the thread open is shut down. For example, if an instance aborted while the

thread was open, you could not force the thread’s log to switch.

To force a log switch on a closed thread, manually archive the thread, using the

Begin Manual Archive dialog box of Server Manager or the SQL command ALTER

SYSTEM with the ARCHIVE LOG option. For example:

 ALTER SYSTEM ARCHIVE LOG GROUP 2;

To archive a closed redo log group manually that will force it to log switch, you

must connect with SYSOPER or SYSDBA privileges.

See Also: The Oracle8i Administrator’s Guide for information on

connecting with SYSDBA or SYSOPER privileges.

Backing Up the Database

21-12 Oracle8i Parallel Server Concepts and Administration

Backing Up the Database
This section covers backup operation issues in OPS. It covers the following topics:

■ Open and Closed Database Backups

■ Recovery Manager Backup Issues

■ Operating System Backup Issues

Open and Closed Database Backups
All backup operations can be performed from any node of a parallel server. Open

backups allow you to back up all or part of the database while it is running. Users

can access the database and update data in any part of the database during an open

backup. With a parallel server you can make open backups of multiple tablespaces

simultaneously from different nodes. An open backup includes copies of one or

more datafiles and the current control file. Subsequent archived redo log files or

incremental backups are also necessary to allow recovery up to the time of a media

failure.

When using the operating system, closed backups are taken while the database is

closed. When using Recovery Manager, an instance must be started and mounted,

but not open, to do a closed backup. Before making a closed backup, shut down all
instances of a parallel server. While the database is closed, you can back up its files

in parallel from different nodes. A closed whole database backup includes copies of

all datafiles and the current control file.

If you archive redo log files, a closed backup allows recovery up to the time of a

media failure. In NOARCHIVELOG mode, full recovery is not possible since a

closed backup only allows restoration of the database to the point in time of the

backup.

Warning: Do not use operating-system utilities to back up the control file in

ARCHIVELOG mode unless you are performing a whole, closed backup.

Never erase, reuse, or destroy archived redo log files until completing another

whole backup, or preferably two whole backups, either open or closed.

See Also: The Oracle8i Backup and Recovery Guide and the chapters

"Database Backup" and "Database Recovery" in Oracle8i Concepts.

Backing Up the Database

Backing Up the Database 21-13

Recovery Manager Backup Issues

Preparing for Snapshot Control Files in Recovery Manager
In OPS, you must prepare for snapshot control files before you perform a backup

using Recovery Manager.

Any node making a backup may need to create a snapshot control file. Therefore, on

all nodes used for backup, you must ensure the existence of the directory to which

such a snapshot control file will be written.

For example, to specify that the snapshot control file should be written to the file

/oracle/db_files/snapshot/snap_prod.cf, you would enter:

 SET SNAPSHOT CONTROLFILE TO ’/ORACLE/DB_FILES/SNAPSHOT/SNAP_PROD.CF’;

You must then ensure that the directory /oracle/db_files/snapshot exists on all

nodes from which you perform backups.

It is also possible to specify a raw device destination for a snapshot control file,

which like other datafiles in OPS will be shared across all nodes in the cluster.

Performing an Open Backup Using Recovery Manager
See the Oracle8i Backup and Recovery Guide for complete information on open

backups using Recovery Manager.

If you are also backing up archive logs, then issue an ALTER SYSTEM ARCHIVE

LOG CURRENT statement after the backup has completed. This ensures that you

have all redo to make the files in this backup consistent.

The following sample script distributes datafile and archive log backups across two

instances in a parallel server environment. It assumes:

■ There are more than 20 files in the database

■ 4 tape drives available, two on each node

■ The archive log files produced by thread 2 are readable by node1

The sample script is as follows:

 RUN {
 ALLOCATE CHANNEL NODE1_T1 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE1';
 ALLOCATE CHANNEL NODE1_T2 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE1';
 ALLOCATE CHANNEL NODE2_T3 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE2';
 ALLOCATE CHANNEL NODE2_T4 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE2';
 BACKUP

Backing Up the Database

21-14 Oracle8i Parallel Server Concepts and Administration

 FILESPERSET 6
 FORMAT 'DF_%T_%S_%P'
 (DATABASE);
 SQL 'ALTER SYSTEM ARCHIVE LOG CURRENT';
 BACKUP
 FILESPERSET 10
 FORMAT 'AL_%T_%S_%P'
 (ARCHIVELOG UNTIL TIME ’SYSDATE’ LIKE ’node1_archivelog_dest%’ DELETE
 INPUT CHANNEL NODE1_T1)
 (ARCHIVELOG UNTIL TIME ’SYSDATE’ LIKE ’node2_archivelog_dest%’ DELETE
 INPUT CHANNEL NODE2_T3);

Node Affinity Awareness
On some cluster platforms, certain nodes of the cluster have faster access to some

datafiles than to other datafiles. RMAN automatically detects such affinity. When

deciding which channel will back up a particular datafile, RMAN gives preference

to channels allocated at nodes with affinity to that datafile. To use this feature,

allocate RMAN channels at the various nodes of the cluster that have affinity to the

datafiles being backed up.

For example:

 RUN
 {
 ALLOCATE CHANNEL CH1 TYPE ’SBT_TAPE’ CONNECT ’@INST1’;
 ALLOCATE CHANNEL CH2 TYPE ’SBT_TAPE’ CONNECT ’@INST2’;
 ...
 }

Note: For more information about the CONNECT operand of the

ALLOCATE command, please see the Oracle8i Backup and Recovery
Guide.

Backing Up the Database

Backing Up the Database 21-15

Operating System Backup Issues
This section discusses the following backup issues:

■ Beginning and Ending an Open Backup Using Operating System Utilities

■ Performing an Open Backup Using Operating System Utilities

Beginning and Ending an Open Backup Using Operating System Utilities
When using the operating system method, you can begin an open backup of a

tablespace at one instance and end the backup at the same instance or another

instance. For example:

 ALTER TABLESPACE TABLESPACE BEGIN BACKUP;/* INSTANCE X */
 Statement processed.

 OPERATING SYSTEM COMMANDS TO COPY DATAFILES...
 COPY COMPLETED...

 ALTER TABLESPACE TABLESPACE END BACKUP;/* INSTANCE Y */
 Statement processed.

It does not matter which instance issues each of these statements, but they must be

issued whenever you make an open backup. The BEGIN BACKUP option has no

effect on users’ access to the tablespace.

For an open backup to be usable for complete or incomplete media recovery, you

must retain all archived redo logs spanning the period of time between the

execution of the BEGIN BACKUP command and the recovery end-point.

After making an open backup, you can force a global log switch by using ALTER

SYSTEM ARCHIVE LOG CURRENT. This statement archives all online redo log

files that need to be archived, including the current online redo log files of all

Note: If the ALTER TABLESPACE ... BEGIN BACKUP command

is not issued or does not complete before an operating system
backup of the tablespace is started, then the backed up datafiles
are not useful for subsequent recovery operations. Attempting to
recover such a backup is risky and can cause errors resulting in
inconsistent data.

Backing Up the Database

21-16 Oracle8i Parallel Server Concepts and Administration

enabled threads and closed threads of any instance that shut down without

archiving its current redo log file.

Performing an Open Backup Using Operating System Utilities
The following steps are recommended if you are using operating system utilities to

perform an open backup in OPS.

1. Before starting the open backup, issue the ALTER SYSTEM ARCHIVE LOG

CURRENT command.

This switches and archives the current redo log file for all threads in OPS, even

threads that are not currently up.

2. Issue the ALTER TABLESPACE tablespace BEGIN BACKUP command.

3. Wait for the ALTER TABLESPACE command to successfully complete.

4. In the operating-system environment, issue the appropriate commands to back

up the datafiles for the tablespace.

5. Wait for the operating-system backup to successfully complete.

6. Issue the ALTER TABLESPACE tablespace END BACKUP command.

7. Back up the control files with ALTER DATABASE BACKUP CONTROLFILE TO

filename.

For an added measure of safety, back up the control file to a trace file with the

ALTER DATABASE BACKUP CONTROLFILE TO TRACE NORESETLOGS

command, then identify and back up that trace file.

If you are also backing up archive logs, then issue an ALTER SYSTEM ARCHIVE

LOG CURRENT statement after END BACKUP. This ensures that you have all redo

to roll to the end backup marker.

See Also: The Oracle8i SQL Reference for a description of the

BEGIN BACKUP and END BACKUP clauses of the ALTER

TABLESPACE command.

Recovering the Database 22-1

22
Recovering the Database

This chapter describes Oracle recovery features on a parallel server. It covers the

following topics:

■ Overview

■ Recovery from Instance Failure

■ Recovery from Media Failure

■ Parallel Recovery

Overview
This chapter discusses three types of recovery:

Table 22–1 Types of Recovery

Type of Recovery Definition

Instance failure. Occurs when a software or hardware problem prevents an
instance from continuing work.

Media failure. Occurs when the storage medium for Oracle files is damaged.
This usually prevents Oracle from reading or writing data.

Parallel recovery. For Recovery Manager, the restore and application of
incremental backups are parallelized using channel
allocation.

Application of redo (whether it is done by Recovery Manager
or by Server Manager) is determined by the
RECOVERY_PARALLELISM parameter.

Recovery from Instance Failure

22-2 Oracle8i Parallel Server Concepts and Administration

Recovery from Instance Failure
The following sections describe the recovery performed after failure of instances

accessing the database in shared mode.

■ Single-node Failure

■ Multiple-node Failure

■ Fast-Start Checkpointing

■ Fast-Start Roll Back

■ Access to Datafiles for Instance Recovery

■ Freezing the Database for Instance Recovery

■ Phases of Oracle Instance Recovery

After instance failure, Oracle uses the online redo log files to perform automatic

recovery of the database. For a single instance running in exclusive mode, instance

recovery occurs as soon as the instance starts up again after it has failed or shut

down abnormally.

When instances accessing the database in shared mode fail, online instance recovery

is performed automatically. Instances that continue running on other nodes are not

affected as long as they are reading from the buffer cache. If instances attempt to

write, the transaction stops. All operations to the database are suspended until

cache recovery of the failed instance is complete.

Single-node Failure
Oracle Parallel Server (OPS) performs instance recovery by coordinating recovery

operations through the SMON processes of the other running instances. If one

instance fails, the SMON process of another instance notices the failure and

automatically performs instance recovery for the failed instance.

Instance recovery does not include restarting the failed instance or any applications

that were running on that instance. Applications that were running may continue

by failover, as described in "Recovery from Instance Failure" on page 22-2.

When one instance performs recovery for another failed instance, the surviving

instance reads redo log entries generated by the failed instance and uses that

information to ensure all committed transactions are reflected in the database. Data

from committed transactions is not lost. The instance performing recovery rolls

See Also: The Oracle8i Backup and Recovery Guide.

Recovery from Instance Failure

Recovering the Database 22-3

back any transactions that were active at the time of the failure and releases

resources being used by those transactions.

Multiple-node Failure
As long as one instance continues running, its SMON process performs instance

recovery for any other instances that fail in a parallel server.

If all instances of a parallel server fail, instance recovery is performed automatically

the next time an instance opens the database. The instance does not have to be one

of the instances that failed, and it can mount the database in either shared or

exclusive mode from any node of the parallel server. This recovery procedure is the

same for Oracle running in shared mode as it is for Oracle in exclusive mode, except

that one instance performs instance recovery for all failed instances.

Fast-Start Checkpointing
Fast-start checkpointing is the basis for Fast-start fault recovery in Oracle8i.
Fast-start checkpointing occurs continuously, advancing the checkpoint as Oracle

write blocks to disk. Fast-start checkpointing always writes the oldest modified

block first, ensuring that every write allows the checkpoint time to be advanced.

This eliminates bulk writes and the resulting I/O spikes that occur with

conventional checkpointing, yielding smooth and efficient on-going performance.

You can specify a limit on how long the roll forward phase of Fast-start

checkpointing takes. Oracle automatically adjusts the checkpoint write rate to meet

the specified roll-forward limit while issuing the minimum number of writes. For

details on how to do this, please refer to Oracle8i Tuning.

Fast-Start Roll Back
The rollback phase of system fault recovery in Oracle8i uses "non-blocking" rollback

technology. This means new transactions can begin immediately after roll forward

completes. When a new transaction accesses a row locked by a dead transaction, the

new transaction rolls back only the changes that prevent the transaction’s progress.

New transactions do not have to wait for Oracle to roll back the entire dead

transaction, so long-running transactions no longer affect recovery time. The

Fast-start technology maximizes data availability and ensures predictable recovery

time.

In addition, the database server can roll back dead transactions in parallel. This

technique is used against rows not blocking new transactions, and only when the

Recovery from Instance Failure

22-4 Oracle8i Parallel Server Concepts and Administration

cost of performing dead transaction roll back in parallel is less than performing it

serially.

Access to Datafiles for Instance Recovery
An instance performing recovery for another instance must have access to all online

datafiles that the failed instance was accessing. When instance recovery fails

because a datafile fails verification, the instance that attempted to perform recovery

does not fail but a message is written to the ALERT file.

After you correct the problem that prevented access to the database files, use the

SQL statement ALTER SYSTEM CHECK DATAFILES to make the files available to

the instance.

Freezing the Database for Instance Recovery
With OPS, you can use the dynamic parameter

FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY to control freezing of the

database during instance recovery. All instances must have the same value for this

parameter.

When this parameter is set to TRUE, Oracle freezes the entire database during

instance recovery. The advantage of freezing the entire database is to stop other disk

activities except those for instance recovery. Instance recovery may thus complete

sooner. The drawback of freezing the entire database is that it becomes unavailable

during instance recovery.

When this parameter is set to FALSE, Oracle does not freeze the database, thus part

of the unaffected database is accessible during instance recovery.

The system attempts to intelligently select an appropriate default.

■ If all online datafiles use hash locks, the default value of this parameter is

FALSE. This is because when hash locks are used most parts of the database can

be accessed by users during instance recovery.

■ If data files use fine grain locks, the default is TRUE. When fine grain locks are

used an instance death may affect a larger portion of the database. Affected

data will be accessible only after instance recovery. In this case, setting this

parameter to TRUE can potentially make those parts of the database available

sooner.

See Also: Oracle8i Concepts.

See Also: "Datafiles" on page 6-2.

Recovery from Instance Failure

Recovering the Database 22-5

To see the number of times the entire database is frozen for instance recovery after

this instance has started up, check the "instance recovery database freeze count"

statistic in V$SYSSTAT.

Phases of Oracle Instance Recovery
Figure 22–1 illustrates the degree of database availability during each phase of

Oracle instance recovery.

Figure 22–1 Phases of Oracle Instance Recovery

Phases of recovery are these:

1. OPS is running on multiple nodes.

2. Node failure is detected.

3. The LM is reconfigured; resource and lock management is redistributed onto

the set of surviving nodes. One call gets persistent resources. Lock value block

is marked as dubious for locks held in exclusive or protected write mode. Lock

requests are queued.

4. LCKn processes build a list of all invalid lock elements.

5. Roll forward. Redo logs of the dead thread(s) are applied to the database.

6. LCKn processes make all invalid lock elements valid.

See Also: The Oracle8i Reference.

D
at

ab
as

e
A

va
ila

b
ili

ty

Elapsed Time

None

Partial

Full 1

2

3 4 5 6

8

7

Recovery from Media Failure

22-6 Oracle8i Parallel Server Concepts and Administration

7. Roll back. Rollback segments are applied to the database for all uncommitted

transactions.

8. Instance recovery is complete, and all data is accessible.

During phase 5, forward application of the redo log, database access is limited by

the transitional state of the buffer cache. The following data access restrictions exist

for all user data in all datafiles, regardless of whether you are using hashed or fine

grain locking, or any particular features:

■ No writes to surviving buffer caches can succeed while the access is limited.

■ No disk I/O of any sort by way of the buffer cache and direct path can be done

from any of the surviving instances.

■ No lock requests are made to the IDLM for user data.

Reads of buffers already in the cache with the correct global lock can be done, since

they do not involve any I/O or lock operations.

The transitional state of the buffer cache begins at the conclusion of the initial lock

scan phase when instance recovery is first started by scanning for dead redo

threads. Subsequent lock scans are made if new "dead" threads are discovered. This

state lasts while the redo log is applied (cache recovery) and ends when the redo

logs have been applied and the file headers have been updated. Cache recovery

operations conclude with validation of the invalid locks, which occurs after the

buffer cache state is normalized.

Recovery from Media Failure
After a media failure resulting in the loss of one or more database files, use backups

of the datafiles to recover the database.

If you are using Recovery Manager, you might also need to apply incremental

backups, archived redo log files and a backup of the control file.

If you are using operating system utilities, you might need to apply archived redo

log files to the database and use a backup of the control file.

This section describes:

■ Complete Media Recovery

■ Incomplete Media Recovery

■ Restoring and Recovering Redo Log Files

■ Disaster Recovery

Recovery from Media Failure

Recovering the Database 22-7

Complete Media Recovery
You can perform complete media recovery in either exclusive or shared mode.

Table 22–2 shows the status of the database that is required to recover particular

database objects.

You can recover multiple datafiles or tablespaces on multiple instances

simultaneously.

Complete Media Recovery Using Operating System Utilities
With operating system utilities you can perform open database recovery of

tablespaces or datafiles in shared mode. Do this using the Server Manager

command RECOVER TABLESPACE or RECOVER DATAFILE.

You can use the Server Manager RECOVER DATABASE command to recover a

database that is mounted in shared mode, but not open. Only one instance can issue

this command in OPS.

See Also: The Oracle8i Backup and Recovery Guide for procedures

to recover from various types of media failure.

Table 22–2 Database Status for Media Recovery

To Recover Database Status

An entire database or
the SYSTEM
tablespace.

The database must be mounted but not opened by any
instance.

A tablespace other
than the SYSTEM
tablespace.

The database must be opened by the instance performing
the recovery and the tablespace must be offline.

A datafile. The database can be open with the datafile offline, or the
database can be mounted but not opened by any instance.
(For a datafile in the SYSTEM tablespace, the database
must be mounted but not open.)

Note: The recommended method of recovering a database is to

use Server Manager. We do not recommend direct use of the SQL

command ALTER DATABASE RECOVER.

Recovery from Media Failure

22-8 Oracle8i Parallel Server Concepts and Administration

Complete Media Recovery Using Recovery Manager
With Recovery Manager you can issue the following statements to restore and

recover the files:

■ RESTORE DATABASE

■ RESTORE TABLESPACE

■ RESTORE DATAFILE

■ RECOVER DATABASE

■ RECOVER TABLESPACE

■ RECOVER DATAFILE

The commands you use in Recovery Manager for OPS are the same as those you use

to recover single instance environments.

Incomplete Media Recovery
Incomplete media recovery can be performed while the database is mounted in

shared or exclusive mode but not opened by any instance. Do this using the

following database recovery options:

With Recovery Manager use one of the following options with the SET command

prior to restoring and recovering:

■ UNTIL CHANGE integer

■ UNTIL TIME date

■ UNTIL LOGSEQ integer THREAD integer

With operating system utilities restore your appropriate backups and then use one

of the following options with the RECOVER DATABASE command:

■ UNTIL CANCEL

■ UNTIL CHANGE integer

■ UNTIL TIME date

See Also: For more information refer to the Oracle8i Backup and
Recovery Guide.

See Also: The Oracle8i Backup and Recovery Guide.

Recovery from Media Failure

Recovering the Database 22-9

Restoring and Recovering Redo Log Files
Media recovery of a database accessed by OPS may require multiple archived log

files to be open at the same time. Because each instance writes redo log data to a

separate redo thread, recovery may require as many as one archived log file per

thread.

However, if a thread’s online redo log contains enough recovery information,

restoring archived log files for that thread is unnecessary.

Recovery Using Recovery Manager
Recovery Manager automatically restores and applies the archive logs required. By

default, Recovery Manager restores archive logs to the LOG_ARCHIVE_DEST

directory of the instances to which it connects. If you are using multiple nodes to

restore and recover, this means that the archive logs may be restored to any of the

nodes performing the restore/recover.

The node that actually reads the restored logs and performs the roll forward is the

target node to which the connection was initially made. You must ensure that the

logs are readable from that node.

Recovery Using Operating System Utilities
During recovery, Oracle prompts you for the archived log files as they are needed.

Messages supply information about the required files and Oracle prompts you for

the filenames.

For example, if the log history is enabled and the filename format is

LOG_T%t_SEQ%s, where %t is the thread and %s is the log sequence number, then

you might receive these messages to begin recovery with SCN 9523 in thread 8:

ORA-00279: Change 9523 generated at 27/09/91 11:42:54 needed for thread 8
ORA-00289: Suggestion : LOG_T8_SEQ438
ORA-00280: Change 9523 for thread 8 is in sequence 438
Specify log: {<RET> = suggested | filename | AUTO | FROM | CANCEL}

If you use the ALTER DATABASE statement with the RECOVER clause instead of

Server Manager, you receive these messages but not the prompt. Redo log files may

be required for each enabled thread in OPS. Oracle issues a message when a log file

See Also: The Oracle8i Backup and Recovery Guide for information

about overriding the location to which Recovery Manager restores

archive logs.

Recovery from Media Failure

22-10 Oracle8i Parallel Server Concepts and Administration

is no longer needed. The next log file for that thread is then requested, unless the

thread was disabled or recovery is finished.

If recovery reaches a time when an additional thread was enabled, Oracle simply

requests the archived log file for that thread. Whenever an instance enables a

thread, it writes a redo entry that records the change; therefore, all necessary

information about threads is available from the redo log files during recovery.

If recovery reaches a time when a thread was disabled, Oracle informs you that the

log file for that thread is no longer needed and does not request further log files for

the thread.

Disaster Recovery
This section describes disaster recovery using Recovery Manager and operating

system utilities. Disaster recovery is used when a failure makes an entire site

unavailable. In this case, you can recover at an alternate site using open or closed

database backups.

Disaster Recovery Using Recovery Manager
The following scenario assumes:

■ You have lost the entire database, all control files and the online redo log

■ You will be distributing your restore over 2 nodes

■ There are 4 tape drives (two on each node)

Note: If Oracle reconstructs the names of archived redo log files,

the format that LOG_ARCHIVE_FORMAT specifies for the instance

doing recovery must be the same as the format specified for the

instances that archived the files. All instances should use the same

value of LOG_ARCHIVE_FORMAT in OPS, and the instance

performing recovery should also use that value. You can specify a

different value of LOG_ARCHIVE_DEST during recovery if the

archived redo log files are not at their original archive destinations.

Note: To recover up to the latest point in time, all logs must be

available at a remote site; otherwise some committed transactions

may be lost.

Recovery from Media Failure

Recovering the Database 22-11

■ You are using a recovery catalog

The SET UNTIL command is used in case the database structure has changed in the

most recent backups and you wish to recover to that point in time. In this way,

Recovery Manager restores the database to the same structure the database had at

the specified time.

Before You Begin: Before beginning the database restore, you must:

■ Restore your initialization file and your recovery catalog from your most recent

backup

■ Catalog archive logs, datafile copies, or backup sets that are on disk but are not

registered in the recovery catalog

The archive logs up to the logseq number being restored must be cataloged in

the recovery catalog, or Recovery Manager will not know where to find them.

If you resynchronize the recovery catalog frequently, and have an up-to-date

copy from which you have restored, there should not be many archive logs that

need cataloging.

What the Sample Script Does: The following script restores and recovers the

database to the most recently available archived log, which is log 124 thread 1. It

does the following:

■ Starts the database NOMOUNT and restricts connections to DBA-only users.

Note: It is highly advisable to back up the database immediately

after opening the database reset logs, since all previous backups are

invalidated. This step is not shown in this example.

Note: You only have to perform this step if you lose your recovery

catalog and have already restored and performed point-in-time

recovery on it. This is not necessary if the recovery catalog is still

intact. You might, however, need to catalog a few archived logs,

even with an intact catalog, but you only need to recreate the ones

that were created since the last "catalog resync". A "catalog resync"

is the process by which rman copies information about backups,

copies, and archivelogs from the target database control file to the

recovery catalog.

Recovery from Media Failure

22-12 Oracle8i Parallel Server Concepts and Administration

■ Restores the control file to the location specified.

■ Copies (or replicates) this control file to all the other locations specified by the

CONTROL_FILES initialization parameter.

■ Mounts the control file.

■ Catalogs any archive logs not in the recovery catalog.

■ Restores the database files (to the original locations).

If volume names have changed, you must use the statement SET NEWNAME

FOR... before the restore, then perform a switch after the restore. This updates

the control file with the datafiles’ new locations.

■ Recovers the datafiles by either using a combination of incremental backups

and redo, or just redo.

Recovery Manager completes the recovery when it reaches the log sequence

number specified.

■ Opens the database resetlogs.

■ Oracle recommends you back up your database after the resetlogs. This is not

shown in the example.

Restore/Recover Sample Script:

The DBA starts Server Manager as follows:

 CONNECT SCOTT/TIGER AS SYSDBA

Oracle responds with:

 Connected.

Then enter the following STARTUP syntax:

 STARTUP NOMOUNT RESTRICT

The DBA starts Recovery Manager and runs the script.

Note: Only complete the following step if you are certain there are

no other archived logs to apply.

Recovery from Media Failure

Recovering the Database 22-13

 RMAN TARGET SCOTT/TIGER@NODE1 RCVCAT RMAN/RMAN@RCAT
 RUN {
 SET UNTIL LOGSEQ 124 THREAD 1;
 ALLOCATE CHANNEL T1 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE1';
 ALLOCATE CHANNEL T2 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE1';
 ALLOCATE CHANNEL T3 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE2';
 ALLOCATE CHANNEL T4 TYPE 'SBT_TAPE' CONNECT 'INTERNAL/KNL@NODE2';
 ALLOCATE CHANNEL D1 TYPE DISK;
 RESTORE CONTROLFILE;
 ALTER DATABASE MOUNT;
 CATALOG ARCHIVELOG '/ORACLE/DB_FILES/NODE1/ARCH/ARCH_1_123.RDO';
 CATALOG ARCHIVELOG '/ORACLE/DB_FILES/NODE1/ARCH/ARCH_1_124.RDO';
 RESTORE DATABASE;
 RECOVER DATABASE;
 SQL 'ALTER DATABASE OPEN RESETLOGS';
 }

Disaster Recovery Using Operating System Utilities
To do this, use the following procedure:

1. Restore the last full backup at the alternate site as described in the Oracle8i
Backup and Recovery Guide.

2. Start Server Manager.

3. Connect as SYSDBA.

4. Start and mount the database with the STARTUP MOUNT statement.

5. Initiate an incomplete recovery using the RECOVER command with the

appropriate UNTIL option.

The following command is an example:

RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL

6. When prompted with a suggested redo log file name for a specific thread, use

that filename.

Note: The user specified in the target parameter must have

SYSDBA privilege.

Parallel Recovery

22-14 Oracle8i Parallel Server Concepts and Administration

If the suggested archive log is not in the archive directory, specify where the file

can be found. If redo information is needed for a thread and a file name is not

suggested, try using archive log files for the thread in question.

7. Repeat step 6 until all archive log files have been applied.

8. Stop the recovery operation using the CANCEL command.

9. Issue the ALTER DATABASE OPEN RESETLOGS statement.

Parallel Recovery
The goal of the parallel recovery feature is to use compute and I/O parallelism to

reduce the elapsed time required to perform crash recovery, single-instance

recovery, or media recovery. Parallel recovery is most effective at reducing recovery

time when several datafiles on several disks are being recovered concurrently.

Parallel Recovery Using Recovery Manager
With Recovery Manager’s RESTORE and RECOVER commands Oracle can

automatically parallelize all three stages of recovery.

Restoring Data Files: When restoring data files, the number of channels you

allocate in the Recovery Manager recover script effectively sets the parallelism

Recovery Manager uses. For example, if you allocate 5 channels, you can have up to

5 parallel streams restoring data files.

Applying Incremental Backups: Similarly, when you are applying incremental

backups, the number of channels you allocate determines the potential parallelism.

Applying Redo Logs: Oracle applies the redo logs in parallel as determined by the

RECOVERY_PARALLELISM parameter.

The RECOVERY_PARALLELISM initialization parameter specifies the number of

redo application server processes participating in instance or media recovery. One

process reads the log files sequentially and dispatches redo information to several

recovery processes that apply the changes from the log files to the datafiles. A value

of 0 or 1 indicates recovery is to be performed serially by one process. The value of

Note: If any distributed database actions are used, check to see

whether your recovery procedures require coordinated distributed

database recovery. Otherwise, you may cause logical corruption to

the distributed data.

Parallel Recovery

Recovering the Database 22-15

this parameter cannot exceed the value of the PARALLEL_MAX_SERVERS

parameter.

Parallel Recovery Using Operating System Utilities
You can parallelize instance and media recovery two ways:

■ Setting the RECOVERY_ PARALLELISM Parameter

■ Specifying RECOVER Command Options

The Oracle Server can use one process to read the log files sequentially and dispatch

redo information to several recovery processes to apply the changes from the log

files to the datafiles. Oracle automatically starts the recovery processes, so you do

not need to use more than one session to perform recovery.

Setting the RECOVERY_ PARALLELISM Parameter
The RECOVERY_PARALLELISM initialization parameter specifies the number of

redo application server processes participating in instance or media recovery. One

process reads the log files sequentially and dispatches redo information to several

recovery processes. The recovery processes then apply the changes from the log files

to the datafiles. A value of 0 or 1 indicates that recovery is performed serially by one

process. The value of this parameter cannot exceed the value of the

PARALLEL_MAX_SERVERS parameter.

Specifying RECOVER Command Options
When you use the RECOVER command to parallelize instance and media recovery,

the allocation of recovery processes to instances is operating system specific. The

DEGREE keyword of the PARALLEL clause can either signify the number of

processes on each instance of a parallel server or the number of processes to spread

across all instances.

See Also: Oracle8i Concepts for more information on Fast-start

Parallel Rollback and your Oracle system-specific documentation

for more information on the allocation of recovery processes to

instances.

Managed Standby and Standby Databases

22-16 Oracle8i Parallel Server Concepts and Administration

Fast-start Parallel Rollback in OPS
Setting the INIT.ORA parameter FAST_START_PARALLEL_ROLLBACK to LOW or

HIGH enables Fast-start Parallel Rollback. This parameter helps determine the

maximum number of server processes that participate in Fast-start parallel rollback.

If the value is FALSE, Fast-start parallel rollback is disabled.

If the value for FAST_START_PARALLEL_ROLLBACK is LOW, the number of

processes used for Fast-start rollback is 2 times the value for CPU_COUNT. If the

value is HIGH, at most 4 times the value of CPU_COUNT is the number of rollback

servers used for Fast-start parallel rollback.

In OPS, multiple parallel recovery processes are owned by and operated only

within the instance that generated them. To determine an accurate setting for

FAST_START_PARALLEL_ROLLBACK, examine the contents of

V$FAST_START_SERVERS and V$FAST_START_TRANSACTIONS.

Fast-start Parallel Rollback does not perform cross-instance rollback. However, it

can improve the processing of rollback segments for a single database with multiple

instances since each instance can spawn its own group of recovery processes.

Managed Standby and Standby Databases
You can protect OPS systems against disasters by using standby databases. To

simplify the adminstration of standby databases, consider using the Managed

Standby feature. Please refer to the Oracle8i Backup and Recovery Guide for details

about the Managed Standby Database feature.

Migrating from a Single Instance to Parallel Server 23-1

23
Migrating from a Single Instance to Parallel

Server

This chapter describes database conversion: how to convert from a single instance

Oracle database to a multi-instance Oracle database using the Oracle Parallel Server

(OPS) option.

The chapter is organized as follows:

■ Overview

■ Deciding to Convert

■ Preparing to Convert

■ Converting the Database from Single- to Multi-instance

■ Troubleshooting the Conversion

Overview
This chapter explains how to enable your database structure to support multiple

instances. It also explains how to begin a project with a single instance Oracle

database even though you intend to migrate to the multi-instance parallel server. In

addition, this chapter can help you extend an existing OPS configuration to

additional nodes.

Note: Before using this chapter to convert to a multi-instance

database, use the Oracle8i Migration manual to perform any

necessary upgrade of the Oracle Server. That manual also provides

information on upgrading and downgrading in replicated systems.

Deciding to Convert

23-2 Oracle8i Parallel Server Concepts and Administration

Deciding to Convert
This section describes:

■ Reasons to Convert

■ Reasons Not to Convert

Reasons to Convert
You may decide to convert to a multi-instance database for the following reason:

■ To move from a single node to a cluster (when you have designed your

application with OPS in mind).

In addition, your application may have been designed for OPS but you need more

instances to take advantage of your current database design. Or you may have

enough nodes but need to bring offline nodes online. You might even already be

using OPS but want to add more nodes.

Reasons Not to Convert
Do not convert to OPS in the following situations:

■ You are using a file system that is not shared.

■ Your application was not designed for parallel processing; you need to examine

your application more.

■ You are not using a supported configuration (of shared disks, and so on).

Preparing to Convert
This section describes:

■ Hardware and Software Requirements

■ Converting the Application from Single- to Multi-instance

■ Administrative Issues

Preparing to Convert

Migrating from a Single Instance to Parallel Server 23-3

Hardware and Software Requirements
To convert to OPS you must have:

■ A supported hardware and OS software configuration

■ A license for the Oracle Parallel Server

■ Oracle Server running on all nodes

■ OPS linked to your system

Converting the Application from Single- to Multi-instance
Making your database run in parallel does not automatically mean you have

effectively implemented OPS. Besides migrating your existing database from single

instance Oracle to multi-instance Oracle, you must also migrate existing

applications that were designed for single-instance Oracle. Preparing an application

for use with a multi-instance database may require application partitioning and

physical schema changes.

Administrative Issues
Note the following administrative issues of conversion:

■ Your backup procedures should be in place before converting from

single-instance Oracle to the Oracle Parallel Server.

■ Additional archiving considerations apply in an OPS environment. In

particular, the archive file format needs the thread number. Furthermore,

archived logs from all nodes are needed for media recovery. If you archive to a

file, then on systems where file systems cannot be shared, some method of

accessing the archive logs is required.

See Also: Chapter 12, "Application Analysis" for a full discussion

of this topic.

See Also: Chapter 21, "Backing Up the Database".

Converting the Database from Single- to Multi-instance

23-4 Oracle8i Parallel Server Concepts and Administration

Converting the Database from Single- to Multi-instance
The following procedure explains how to migrate an existing database from

single-instance Oracle to multi-instance Oracle. Remember that you must also

migrate the application from single- to multi-instance.

1. Modify your application to make it OPS-ready.

2. Make sure all necessary files are shared among the nodes.

OPS assumes disks are shared among instances such that each instance can

access all log files, control files, and database files. These files should normally

be on raw devices, since the disks are shared through raw devices on most

clusters.

3. Check MAXINSTANCES on the single instance.

The MAXINSTANCES parameter was set at database creation, usually to its

default value of 1. With MAXINSTANCES set to 1, only one instance can run on

database, and the database cannot run in parallel server mode. The number of

rows in V$THREAD is one per created thread. The MAXINSTANCES value

may be much higher. You can check V$ACTIVE_INSTANCES to find this value.

To check the value of MAXINSTANCES query V$ACTIVE_INSTANCES.

Alternatively, you can dump the control file to a trace file by entering:

 ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

The trace file may look like this:

Dump file /mf1/qjones/qj1/rdbms/log/ora_20016.trc
Oracle8 Server Release 8.0.3
With the distributed, replication, parallel query and
 Parallel Server options
PL/SQL Release 3.0
ORACLE_HOME = /mf1/qjones/qj1
ORACLE_SID = mf1qj1
Oracle process number: 19 Unix process id: 20016
System name: mf1seq

Note: You cannot use NFS to share files for OPS. NFS does not

provide adequate availability: if the node goes down, NFS goes

down and the files cannot be reached. Moreover, NFS does not

provide adequate consistency: a write may be cached and not

written to disk immediately.

Converting the Database from Single- to Multi-instance

Migrating from a Single Instance to Parallel Server 23-5

Node name: mf1seq
Release: 3.2.0
Version: V2.1.1
Machine: i386
Wed Feb 22 14:30:22 1997
Wed Feb 22 14:30:23 1997
*** SESSION ID:(18.1)
The following commands will create a new control file and
use it to open the database.
No data other than log history will be lost. Additional logs
may be required for media recovery of offline data files.
Use this only if the current version of all online logs are
available.
STARTUP NOMOUNT
CREATE CONTROLFILE REUSE DATABASE "TPCC" NORESETLOGS
NOARCHIVELOG
 MAXLOGFILES 16
 MAXLOGMEMBERS 2
 MAXDATAFILES 62
 MAXINSTANCES 1
 MAXLOGHISTORY 100
LOGFILE
 GROUP 1 ’/dev/rvol/v-qj80W-log11’ SIZE 200M,
 GROUP 2 ’/dev/rvol/v-qj80W-log12’ SIZE 200M
DATAFILE
 ’/dev/rvol/v-qj80W-sys’,
 ’/dev/rvol/v-qj80W-temp’,
 ’/dev/rvol/v-qj80W-cust1’,
.
.
.
;
Recovery is required if any of the datafiles are restored
backups, or if the last shutdown was not normal or
immediate.
RECOVER DATABASE
Database can now be opened normally.
ALTER DATABASE OPEN;

4. Edit the control file script to include a larger MAXINSTANCES value.

Edit the trace file so it only contains SQL commands to generate the CREATE

CONTROLFILE statement. Then make the following changes:

■ Set PFILE to point to the correct initialization file.

Converting the Database from Single- to Multi-instance

23-6 Oracle8i Parallel Server Concepts and Administration

■ Increase the MAXINSTANCES parameter to the number of Oracle instances

you want to support.

■ Use a large value for the MAXLOGHISTORY parameter.

The resulting control file is a script that recovers and reopens your database if

necessary.

Before running the SQL file, make sure the current control file(s) are in the

backup directory.

A sample script follows:

STARTUP NOMOUNT PFILE=$HOME/perf/tkvc/admin/tkvcrun.ora
CREATE CONTROLFILE REUSE DATABASE "TPCC" NORESETLOGS
NOARCHIVELOG
 MAXLOGFILES 16
 MAXLOGMEMBERS 2
 MAXDATAFILES 62
 MAXINSTANCES 1
 MAXLOGHISTORY 100
LOGFILE
 GROUP 1 ’/dev/rvol/v-qj80W-log11’ SIZE 200M,
 GROUP 2 ’/dev/rvol/v-qj80W-log12’ SIZE 200M
DATAFILE
 ’/dev/rvol/v-qj80W-sys’,
 ’/dev/rvol/v-qj80W-temp’,
 ’/dev/rvol/v-qj80W-cust1’,
.
.
.
;
Recovery is required if any of the datafiles are restored
backups, or if the last shutdown was not normal or
immediate.
RECOVER DATABASE
Database can now be opened normally.
ALTER DATABASE OPEN;

5. Back up the new control file immediately after conversion. We also recommend

beginning your backup procedures for the database.

6. Decide how to administer the initialization parameter file(s).

Each instance has private initialization parameters. However, some of the

parameters need to have the same value on each instance. There are two ways

of administering this.

Converting the Database from Single- to Multi-instance

Migrating from a Single Instance to Parallel Server 23-7

One approach is for each instance to have a private parameter file that includes

the common parameter file shared between the instances. The common

parameter file must be on a shared device accessible by all nodes. This way,

when you need to make a generic change to one of the common initialization

parameters, you need only make the change on one node rather than on all

nodes.

Alternatively, you can make multiple copies of the parameter file and place one

on the private disk of each node of your OPS environment. In this case, you

must update all parameter files each time you make a generic change.

7. Edit the following parameters in the instance-specific initialization parameter

file:

a. Specify an INSTANCE_NUMBER for this instance. Each instance will be

numbered at startup time. The instance number is used in the free list

group assignment. If you do not specify the INSTANCE_NUMBER, Oracle

assigns a number based on start up order.

b. Specify ROLLBACK_SEGMENTS. Each instance should have a set of

private rollback segments.

c. Specify the THREAD parameter in the initialization parameter file so the

instance always starts with the same set of redo log files. A thread number

is assigned at startup time to associate an instance with the log files of that

thread. By default this value is 0; you can set it to 1 for the first instance.

d. Add the DB_NAME parameter to the initialization parameter file.

8. Make sure the following common initialization parameters have identical

values for all instances:

CONTROL_FILES

DB_BLOCK_SIZE

DB_FILES

DB_NAME

GC_FILES_TO_LOCKS

GC_ROLLBACK_LOCKS

LM_LOCKS (identical values recommended)

LM_PROCS (identical values recommended)

LM_RESS (identical values recommended)

MAX_COMMIT_PROPAGATION_DELAY

ROW_LOCKING

SINGLE_PROCESS

Converting the Database from Single- to Multi-instance

23-8 Oracle8i Parallel Server Concepts and Administration

9. Make sure the Oracle executable is linked with the OPS option and that each

node is running the same versions of the executable. The banner you see upon

connection should display the words "Parallel Server".

10. Perform a normal shutdown of the database.

11. Back up the control files using operating system commands.

12. Remove the control files but retain backups of them.

13. Run the new script you built that recreates the old control files with new

data—larger structures for some of the database objects.

14. Add rollback segments.

15. Add additional threads.

16. Shut down the database.

17. Start up the database in shared mode. The first instance will be started.

18. Add the second instance in shared mode, using the standard procedure

described in "Starting in Shared Mode" on page 18-15. (Note that the second

instance only succeeds if the first instance is in shared mode.) Add redo log

files, rollback segments, and so on.

19. Tune the GC_* and LM_* parameters for optimal performance.

Note: Corruption may occur if one node opens the database in

shared mode and another node opens it in exclusive mode.

Troubleshooting the Conversion

Migrating from a Single Instance to Parallel Server 23-9

Troubleshooting the Conversion
This section explains how to resolve common errors:

■ Database Recovery After Conversion

■ Loss of Rollback Segment Tablespace

■ Inadvisable NFS Mounting of Parameter File

Database Recovery After Conversion
If you should lose your database and Oracle8 files after converting from

single-instance Oracle to OPS, restore your cold backup and then apply all changes

from the redo logs. In this case, your old control file would be used as though you

had never done the conversion. You would have to recreate the new control file if

you migrate to OPS.

Loss of Rollback Segment Tablespace
The following problem may occur if a user has created tablespaces for private

rollback segments and allocated them to specific instances at startup. It may also

occur if files containing rollback segments are lost.

If you lose one rollback segment tablespace or file containing rollback segments due

to media failure, all instances will fail. To recover, shut down all instances. All other

rollback segments must remain offline so you can bring the one you want to recover

off line.

Inadvisable NFS Mounting of Parameter File
As mentioned earlier, it is not advisable to access a common parameter file (or any

Oracle file or executable) over NFS. If the NFS disk were to go down, no other

instance could start. Access to control files and data files is not supported over NFS.

Troubleshooting the Conversion

23-10 Oracle8i Parallel Server Concepts and Administration

Part V
 Reference

Differences Among Versions A-1

A
Differences Among Versions

This appendix describes differences in the Oracle Parallel Server Option from

release to release.

■ Differences Between 8.0.4 and 8.1

■ Differences Between Release 8.0.3 and Release 8.0.4

■ Differences Between Release 7.3 and Release 8.0.3

■ Differences Between Release 7.2 and Release 7.3

■ Differences Between Release 7.1 and Release 7.2

■ Differences Between Release 7.0 and Release 7.1

■ Differences Between Version 6 and Release 7.0

Differences Between 8.0.4 and 8.1

Cache Fusion Architecture Changes
When one instance requests a consistent-read (CR) on a block held by another

instance, Cache Fusion processing sends a CR copy of the requested block directly

to the requesting instance by way of the interconnect. This greatly reduces cache

coherency contention among instances during read/write conflicts.

Implementation of Cache Fusion requires that some background and foreground

processes, namely LMON and LCK, now communicate directly from one instance

to another over the interconnect. A new process, the Block Server Process (BSP),

See Also: Oracle8i Migration for instructions on upgrading your

database.

Differences Between 8.0.4 and 8.1

A-2 Oracle8i Parallel Server Concepts and Administration

rolls back uncommitted transactions and copies CR server blocks for transmission

to requesting instances. This reduces the pinging required to maintain cache

coherency, thereby greatly improving performance.

Cache Fusion makes deployment of OPS on OLTP and hybrid applications more

feasible. Historically, databases that experienced random changes were not

considered good parallel server candidates. With the advent of Cache Fusion and

advanced cross-instance interconnect technology, OLTP and hybrid applications are

becoming more scalable. This is particularly true if, for example, a table is modified

on one instance and then another instance reads the table.

New Views
V$DLM_ALL_LOCKS view is new and shows statistics on locks whether they are

blocking or blocked locks as well as all other lock types.

V$DLM_RESS view is new and shows all resources associated with a lock according

to lock type.

V$DLM_CONVERT_LOCAL view is new and shows lock conversion statistics for

locks opened on the local node.

V$DLM_CONVERT_REMOTE view is new and shows lock conversion statistics for

locks opened on remote nodes.

V$DLM_MISC view is new and shows DLM message information.

Removal of GMS
For 8.1, the functionality of the GMS (Group Membership Services) has been moved

from the GMS module to the vendor-specific Cluster Managers (CM) and the Oracle

database kernel. In 8.1, a discrete GMS module is no longer visible to the Oracle

user.

This change greatly improves vendor hardware compatibility with Oracle. From the

user point-of-view, it also simplifies CM use and maintenance. The CM now starts

automatically upon instance startup; you no longer need to manually startup and

shut down member services.

Parallel Transaction Recovery is now "Fast-Start Parallel Rollback"
The name of the feature "Parallel Transaction Recovery" is now called "Fast-Start

Parallel Rolback." In addition to the name change, in 8.0, SMON serially processed

rollback segment recovery. This lead to extended rollback recovery periods. In 8.1,

Differences Between 8.0.4 and 8.1

Differences Among Versions A-3

Fast-start parallel rollback reduces recovery time thus making the database

available sooner. Parallel rollback uses multiple processes to recover rollback

segments when the value for the parameter FAST_START_PARALLEL_

ROLLBACK, previously known as PARALLEL_TRANSACTION_RECOVERY, is

greater than one.

The default for this parameter is LOW, implying that parallel recovery will use no

more than 2 time the CPU_COUNT number of processes, in addition to SMON, to

do parallel recovery.

To determine a more accurate setting, examine the contents of two new tables,

V$FAST_START_SERVERS and V$FAST_START_TRANSACTIONS. Also consider

the average time required to recover a transaction and your desired recovery period

duration. When you set FAST_START_PARALLEL_ROLLBACK to a value greater

than one, SMON starts multiple recovery processes to accommodate the amount of

unrecovered rollback segments in the rollback file. The quantity of processes SMON

starts is limited by the value for FAST_START_PARALLEL_ROLLBACK.

Changes to Instance Registration
The single name previously used to identify a service (SID) is replaced by three

levels of addressing. The new parameters for instance registration are:

Clients can connect to the service without specification of which handler or instance

they require, thus allowing automatic load balancing to select the optimal handler

in the optimal instance. Load balancing is discussed under the following heading.

Listener Load Balancing
The TNS listener now performs load balancing over distributed services spanning

multiple nodes. The service, instance, and handler names are used to determine the

load balancing behavior.

1. A client program specifies the name of the service it wants to connect to.

2. The listener finds the least loaded instance in the service.

SERVICE_NAME Name of highest level view of the service, specified in

TNSNAMES.ORA. May span instances or nodes.

SERVICE_NAMES Instance name of the service that can span several nodes.

This parameter is specified in INIT.ORA

INSTANCE_NAME Name of mid-level tier of the service. Corresponds to the

ORACLE_SID of an instance.

Differences Between 8.0.4 and 8.1

A-4 Oracle8i Parallel Server Concepts and Administration

3. The listener finds the least loaded handler in the instance.

4. The listener redirects the client to the optimal handler.

Diagnostic Enhancements
Oradebug is a utility used by consulting and support personnel to diagnose and

troubleshoot problematic systems at runtime. Oradebug functionality is extended

for the Oracle Parallel Server.

Oracle Parallel Server Management (OPSM)
OPSM is an option that simplifies parallel server administration. OPSM’s 8.1

enhancements provide a single generic interface for administering parallel servers

on any platform.

For more information about OPSM, see the Oracle Parallel Server Management Users
Guide.

Parallel Server Installation and Database Configuration
The Oracle Universal Installer and Oracle Database Configuration Assistant are

both cluster aware. In release 8.1, only a single installer session is required to install

OPS. The installer collects node information from the user, distributes the required

Oracle products to the specified nodes, and invokes the OPS Assistant to set up the

instances and create the database.

When OPS Assistant is done with this process, the parallel server is available on all

nodes and the parallel server configuration information is saved so that OPSM can

use it to manage the new parallel server.

Instance Affinity for Jobs
Instance affinity for jobs is the association of jobs to an instance. Using the new

DBMS_JOB package, you can indicate whether a particular instance, or any

instance, can execute a user submitted job in the OPS environment.

Use this release 8.1 feature to improve load balancing and limit block pinging. For

instance, using OPS and replication at the same time may result in block pinging

problems on the deferred transactions queue if all instances in a clustered

environment decide to propagate transactions from the deferred transaction queue.

By limiting activity against tables to only one instance within a parallel server

Differences Between Release 8.0.3 and Release 8.0.4

Differences Among Versions A-5

cluster, you can limit pinging. For more information, also see the Oracle8i Supplied
Packages Reference.

Obsolete Parameters
The following parameters are obsolete as of release 8.1:

GC_LCK_PROCS

GC_LATCHES

PARALLEL_DEFAULT_MAX_INSTANCES

LOG_FILES

OPS_ADMIN_GROUP

CACHE_SIZE_THRESHOLD

OGMS_HOME

ALLOW_PARTIAL_SN_RESULTS

SEQUENCE_CACHE_ENTRIES

Differences Between Release 8.0.3 and Release 8.0.4

New Initialization Parameters
The following initialization parameters were added specifically for Oracle Parallel

Server:

OGMS_HOME

GC_LATCHES

PARALLEL_SERVER

Obsolete Initialization Parameters
The following initialization parameters are obsolete:

MTS_LISTENER_ADDRESS

MTS_MULTIPLE_LISTENERS

Differences Between Release 7.3 and Release 8.0.3

A-6 Oracle8i Parallel Server Concepts and Administration

Obsolete Startup Parameters
PARALLEL

EXCLUSIVE

Dynamic Performance Views
The following views changed:

V$DLM_LOCKS

Group Membership Services
A new option has been added for the OGMSCTL command.

Differences Between Release 7.3 and Release 8.0.3

New Initialization Parameters
The following parameters were added specifically for Oracle Parallel Server:

FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY

LM_LOCKS

LM_PROCS

LM_RESS

INSTANCE_GROUPS

PARALLEL_INSTANCE_GROUP

OPS_ADMIN_GROUP

ALLOW_PARTIAL_SN_RESULTS

Obsolete GC_* Parameters
The following global cache lock initialization parameters are obsolete:

GC_DB_LOCKS parameter

GC_FREELIST_GROUPS parameter

GC_ROLLBACK_SEGMENTS parameter

GC_SAVE_ROLLBACK_LOCKS parameter

GC_SEGMENTS parameter

See Also: "Determining the Amount of Locks Needed and Setting

LM_* Parameters" on page 18-12.

Differences Between Release 7.3 and Release 8.0.3

Differences Among Versions A-7

GC_TABLESPACES parameter

Changed GC_* Parameters
The values set by the GC_* parameters are not adjusted to prime numbers, but

rather are left exactly as entered.

The following parameters have changed:

GC_FILES_TO_LOCKS

GC_ROLLBACK_LOCKS

GC_RELEASABLE_LOCKS

Dynamic Performance Views
The following new views were added:

V$RESOURCE_LIMIT

V$DLM_CONVERT_LOCAL

V$DLM_CONVERT_REMOTE

V$DLM_LATCH

V$DLM_MISC

V$FILE_PING

V$CLASS_PING

The following views changed:

V$BH

V$SESSIONS

V$SYSSTAT

Global Dynamic Performance Views
Global dynamic performance views (GV$ fixed views) were added, corresponding

to each of the V$ views except for V$ROLLNAME.

See Also: "GC_* Global Cache Parameters" on page 18-9.

See Also: "GC_* Initialization Parameters" on page 9-13.

See Also: "Global Dynamic Performance Views" on page 20-12.

Differences Between Release 7.3 and Release 8.0.3

A-8 Oracle8i Parallel Server Concepts and Administration

Integrated Distributed Lock Manager
Oracle Parallel Server release 8.0 is not dependent on an external Distributed Lock

Manager. The lock management facility is now internal to Oracle. The Integrated

Distributed Lock Manager is dependent on an external node monitor.

LMON and LMDn processes have been added.

Instance Groups
The ability to logically group instances together and perform operations upon all of

the associated instances was added.

Group Membership Services
Group Membership Services (GMS) is used by the Lock Manager (LM) and other

Oracle components for inter-instance initialization and coordination.

Fine Grain Locking
In Oracle Parallel Server release 8.0, fine grain locking is available on all platforms.

It is enabled by default.

Client-side Application Failover
Oracle8 supports the ability of the application to automatically reconnect if the

connection to the database is broken.

Recovery Manager
Recovery Manager is now the preferred method of recovery from media failure.

See Also: Chapter 8, "Integrated Distributed Lock Manager".

See Also: "Specifying Instance Groups" on page 18-23.

See Also: "The Cluster Manager" on page 18-22.

See Also: "Recovery from Instance Failure" on page 22-2.

See Also: "Recovery from Media Failure" on page 22-6.

Differences Between Release 7.2 and Release 7.3

Differences Among Versions A-9

Differences Between Release 7.2 and Release 7.3

Initialization Parameters
The following initialization parameters were added specifically for the Parallel

Server Option:

CLEANUP_ROLLBACK_ENTRIES

DELAYED_LOGGING_BLOCK_CLEANOUTS

GC_FREELIST_GROUPS

GC_RELEASABLE_LOCKS

Data Dictionary Views
The following view was added specifically for the Parallel Server Option:

FILE_LOCK

Dynamic Performance Views
The following view changed:

V$BH

The following views were added:

V$SORT_SEGMENT

V$ACTIVE_INSTANCES

Free List Groups
You can now set free list groups for indexes, as well as for tables and clusters.

Fine Grain Locking
In Oracle Parallel Server release 7.3, PCM locks have additional options for

configuration using fine grain locking. The changes affect the interpretation of the

various parameters that determine the locks used to protect the database blocks in

the distributed parallel server cache.

Fine grain locking is a more efficient method for providing locking in a multinode

configuration. It provides a reduced rate of lock collision, and reduced space

requirements for managing locks, particularly in MPP systems. This feature relies

Differences Between Release 7.2 and Release 7.3

A-10 Oracle8i Parallel Server Concepts and Administration

on facilities provided by the hardware and operating system platform, and may not

be available on all platforms.

Fine grain locking is discussed in the section "Two Methods of PCM Locking: Fixed

and Releasable" on page 9-15.

Instance Registration
This feature enables each instance to register itself and certain of its attributes, and

to establish contact with any other instance. Instance registration is transparent to

the user, except in the case of parallel query failure on remote instances of a parallel

server. If a parallel query dies due to an error on a remote instance, the failed

instance is now identified in the error message.

Sort Improvements
This release offers a more efficient way of allocating sort temporary space, which

reduces serialization and cross-instance pinging. If you set up this capability

correctly, it can particularly benefit OPS performance in parallel mode.

For best results, try to establish stable sort space. Remember that sort space is

cached in the instance. One instance does not release the space unless another

instance runs out of space and issues a call to the first one to do so. This is an

expensive, serialized process which hurts performance. If your system permanently

deviates from stable sort space, it is better to over-allocate space, or simply not to

use temporary tablespaces.

To determine the stability of your sort space, you can check the V$SORT_

SEGMENT view. This new view shows every instance’s history of sorting. If the

FREED_EXTENTS and ADDED_EXTENTS columns show excessive

allocation/deallocation activity, you should consider adding more space to the

corresponding tablespace. Check also the FREE_REQUESTS value to determine if

there is inter-instance conflict over sort space.

Another reason for excessive allocation and deallocation may be that some sorts are

just too large. It may be worthwhile to assign a different temporary tablespace for

the operations which require huge sorts. The MAX_SORT_SIZE value may help you

to determine whether these large sorts have indeed occurred.

See Also: Oracle8i Tuning for more information on sort

enhancements.

Differences Between Release 7.2 and Release 7.3

Differences Among Versions A-11

XA Performance Improvements
Various scalability and throughput improvements have been made that affect XA

transactions. These changes have no visible impact, other than improved

performance.

The following three latches perform much better, and so enhance scalability:

■ Global transaction mapping table latch.

■ Enqueues latch.

■ Session switching latch.

Transaction throughput is enhanced because most of the common XA calls have

reduced code path and reduced round-trips to the database.

XA Recovery Enhancements
Recovery of distributed transactions submitted through a TP monitor using the XA

interface is now fully supported in OPS.

The XA_RECOVER call has been enhanced, ensuring correct and complete recovery

of one instance from transactions that have failed in another instance.

An option has been added to make the XA_RECOVER call wait for instance

recovery. This feature enables one Oracle instance to do recovery on behalf of a

failed Oracle instance, when both are part of the same OPS cluster.

The XA_INFO string has a new clause called OPS_FAILOVER. If this is set to true

for a given XA resource manager connection, any XA_RECOVER call issued from

that connection will wait for any needed instance recovery to complete. The syntax

is as follows:

OPS_FAILOVER=T

Upper- or lowercase (T or t) can be used. The default value of OPS_FAILOVER is

false (F or f).

Previously, there was no guarantee that an XA_RECOVER call would return the list

of in-doubt transactions from the failed instance. Setting OPS_FAILOVER=T

ensures that this will happen.

When OPS_FAILOVER is set to true, the XA_RECOVER call will wait until SMON

has finished cache recovery, has identified the in-doubt transactions, and added

them to the PENDING_TRANS$ table that has a list of in-doubt transactions.

Differences Between Release 7.2 and Release 7.3

A-12 Oracle8i Parallel Server Concepts and Administration

Deferred Transaction Recovery
Transaction recovery behavior has changed to allow:

■ Greater database availability during startup.

■ Transactions to be recovered in parallel, if needed.

■ Recovery of long transactions without interfering with recovery of short

transactions.

Fast Warmstart
In previous releases, the database could not be opened until complete transaction

recovery was performed after a failure. As of release 7.3, the database is opened for

connections as soon as cache recovery is completed. (This only applies when

opening the database, as opposed to doing failover in an OPS environment.) In case

of an instance failure, the database is available for connections through other

running instances.

This means that active transactions as of the time of the failure are not yet rolled

back; they appear active (holding row locks) to users of the system. Furthermore, all

transactions system-wide that were active as of the time of failure are marked

DEAD and the rollback segments containing these transactions are marked

PARTIALLY AVAILABLE. These transactions are recovered as part of SMON

recovery in the background, or by foreground processes that may encounter them,

as described in the next section. The rollback segment is available for onlining.

Transaction Recovery
Given fast warmstart capability, the time needed to recover all transactions does not

limit the general availability of the database. All data except the part locked by

unrecovered transactions is now available to users. Given an OLTP workload,

however, all the requests that were active when the database or instance went down

will probably be resubmitted immediately. They will very likely encounter the locks

held by the unrecovered transactions. The time needed to recover these transactions

is thus still critical for access to the locked data. To alleviate this problem,

transactions can now be recovered in parallel, if needed. Recovery can be done by

the following operations.

Recovery by Foreground Processes. Rows may be locked by a transaction that has

not yet been recovered. Any foreground process that encounters such a row can

itself recover the transaction. The current recovery by SMON will still happen--so

the entire transaction recovery will complete eventually. But if any foreground

process runs into a row lock, it can quickly recover the transaction holding the lock,

Differences Between Release 7.2 and Release 7.3

Differences Among Versions A-13

and continue. In this way recovery operations are parallelized on a need basis: dead

transactions will not hold up active transactions. Previously, active transactions had

to wait for SMON to recover the dead transactions.

Recovery is done on a per-rollback segment basis. This prevents multiple

foreground processes in different instances from recovering transactions in the same

rollback segment, which would cause pinging. The foreground process fully

recovers the transaction that it would otherwise have waited for. In addition, it

makes a pass over the entire rollback segment and partially recovers all

unrecovered transactions. It applies a configurable number of changes (undo

records) to each transaction. This allows short transactions to be recovered quickly;

without waiting for long transactions to be recovered. The initialization parameter

CLEANUP_ROLLBACK_ENTRIES specifies the number of changes to apply.

Recovery by SMON. SMON transaction recovery operations are mostly

unchanged. SMON is responsible for recovering transactions marked DEAD within

its instance, transaction recovery during startup, and instance recovery. The only

change is that it will make multiple passes over all the transactions that need

recovery and apply only the specified number of undo records per transaction per

pass. This prevents short transactions from waiting for recovery of a long

transaction.

Recovery by Onlining Rollback Segment. Onlining a rollback segment now causes

complete recovery of all transactions it contains. Previously, the onlining process

posted SMON to do the recovery. Note that implicit onlining of rollback segments

as part of warmstart or instance startup does not recover all transactions but instead

marks them DEAD.

Load Balancing at Connect
In standard Oracle, load balancing now allows multiple listeners and multiple

instances to be balanced at SQL*Net connect time. Multiple listeners can now listen

on one Oracle instance, and the Oracle dispatcher will register with multiple

listeners. The SQL*Net client layer will randomize multiple listeners via the

DESCRIPTION_LIST feature.

For more information about load balancing at connect, please see the SQL*Net

documentation for Oracle7 Server release 7.3.

Differences Between Release 7.2 and Release 7.3

A-14 Oracle8i Parallel Server Concepts and Administration

Bypassing Cache for Sort Operations
The default value for the SORT_DIRECT_WRITES initialization parameter is now

AUTO; it will turn itself on if your sort area is a certain size or greater. This will

improve performance. For more information, see the Oracle8i Tuning.

Delayed-Logging Block Cleanout
In Oracle7 Server release 7.3, the performance of delayed block cleanout is

improved and related pinging is reduced. These enhancements are particularly

beneficial for the Oracle Parallel Server.

Oracle7 Server release 7.3 provides a new initialization parameter, DELAYED_

LOGGING_BLOCK_CLEANOUTS, which is TRUE by default.

When Oracle commits a transaction, each block that the transaction changed is not

immediately marked with the commit time. This is done later, upon demand--when

the block is read or updated. This is called block cleanout. When block cleanout is

done during an update to a current block, the cleanout changes and the redo

records of the update are piggybacked with those of the update. In previous

releases, when block cleanout was needed during a read to a current block, extra

cleanout redo records were generated and the block was dirtied. This has been

changed.

As of release 7.3, when a transaction commits, all blocks in the cache changed by the

transaction are cleaned out immediately. This cleanout performed at commit time is

a "fast version" which does not generate redo log records and does not repin the

block. Most blocks will be cleaned out in this way, with the exception of blocks

changed by long running transactions.

During queries, therefore, the data block’s transaction information is normally

up-to-date and the frequency with which block cleanout is needed is much reduced.

Regular block cleanouts are still needed when querying a block where the

transactions are still truly active, or when querying a block which was not cleaned

out during commit.

During changes (INSERT, DELETE, UPDATE), the cleanout redo log records are

generated and piggyback with the redo of the changes.

Differences Between Release 7.1 and Release 7.2

Differences Among Versions A-15

Parallel Query Processor Affinity
Oracle7 Server release 7.3 provides improved defaults in the method by which

servers are allocated among instances for the parallel query option. As a result,

users can now specify parallelism without giving any hints.

Parallel query slaves are now assigned based on disk transfer rates and CPU

processing rates for user queries. Work is assigned to query slaves that have

preferred access to local disks versus remote disks, which is more costly. In this way

data locality will improve parallel query performance.

For best results, you should evenly divide data among the parallel server instances

and nodes--particularly for moderate to large size tables that substantially dominate

the processing. Data should be fairly evenly distributed on various disks, or across

all the nodes. For very small tables, this is not necessary.

For example, if you have two nodes, a table should not be divided in an unbalanced

way such that 90% resides on one node and 10% on the other node. Similarly, if you

have four disks, one should not contain 90% of the data and the others contain only

10%. Rather, data should be spread evenly across available nodes and disks. This

happens automatically if you use disk striping. If you do not use disk striping, you

must manually ensure that this happens, if you desire optimum performance.

Differences Between Release 7.1 and Release 7.2

Pre-allocating Space Unnecessary
For most parallel server configurations it is no longer necessary to pre-allocate data

blocks to retain partitioning of data across free list groups. When a row is inserted, a

group of data blocks is allocated to the appropriate free list group for an instance.

Data Dictionary Views
The following views were added specifically for the Parallel Server Option:

FILE_LOCK

FILE_PING

Differences Between Release 7.1 and Release 7.2

A-16 Oracle8i Parallel Server Concepts and Administration

Dynamic Performance Views
The following views changed:

V$BH

V$CACHE

V$PING

V$LOCK_ACTIVITY

The following views were added:

V$FALSE_PING

V$LOCKS_WITH_COLLISIONS

V$LOCK_ELEMENT

Free List Groups
It is now possible to specify a particular instance, and hence the free list group, from

a session, using the command:

ALTER SESSION SET INSTANCE = instance_number

Table Locks
It is now possible to disable the ability for a user to lock a table using the command:

ALTER TABLE table_name DISABLE TABLE LOCK

Re-enabling table locks is accomplished using the following command:

ALTER TABLE table_name ENABLE TABLE LOCK

Lock Processes
The PCM locks held by a failing instance are now recovered by the lock processes of

the instance recovering for the failed instance.

Differences Between Version 6 and Release 7.0

Differences Among Versions A-17

Differences Between Release 7.0 and Release 7.1

Initialization Parameters
CACHE_SIZE_THRESHOLD was added.

Dynamic Performance Views
The following views changed:

V$BH

V$CACHE

V$PING

V$LOCK_ACTIVITY

Differences Between Version 6 and Release 7.0
This section describes differences between Oracle Version 6 and Oracle7 Release 7.0.

Version Compatibility
The Parallel Server Option for Version 6 is upwardly compatible with Oracle7 with

one exception. In Version 6 all instances share the same set of redo log files, whereas

in Oracle7 each instance has its own set of redo log files. Oracle8i Migration gives full

details of migrating to Oracle7. After a database is upgraded to work with Oracle7

it cannot be started using a Oracle Version 6 server. Applications that run on

Oracle7 may not run on Oracle Version 6.

File Operations
While the database is mounted in parallel mode, Oracle7 supports the following file

operations that Oracle Version 6 only supported in exclusive mode:

■ Adding, renaming, or dropping a datafile

■ Taking a datafile offline or online

■ Creating, altering, or dropping a tablespace

■ Taking a tablespace offline or online

The instance that executes these operations may have the database open, as well as

mounted.

Differences Between Version 6 and Release 7.0

A-18 Oracle8i Parallel Server Concepts and Administration

Table A–1 shows the file operations and corresponding SQL statements that cannot

be performed in Oracle Version 6 with the database mounted in parallel mode.

Oracle7 allows all of the file operations listed above while the database is mounted

in shared mode.

A redo log file cannot be dropped when it is active, or when dropping it would

reduce the number of groups for that thread below two. When taking a datafile

online or offline in Oracle7, the instance can have the database either open or closed

and mounted. If any other instance has the database open, the instance taking the

file online or offline must also have the database open.

Table A–1 SQL Statements Now Supported in Oracle7

Operation SQL statement

Creating a tablespace CREATE TABLESPACE tablespace

Dropping a tablespace DROP TABLESPACE tablespace

Taking a tablespace offline or
online

ALTER TABLESPACE tablespace OFFLINE

ALTER TABLESPACE tablespace ONLINE

Adding a datafile ALTER TABLESPACE tablespace

ADD DATAFILE

Renaming a datafile ALTER TABLESPACE tablespace

RENAME DATAFILE

Renaming a datafile log file ALTER TABLESPACE tablespace RENAME FILE

Adding a redo log file ALTER DATABASE dbname ADD LOGFILE

Dropping a redo log file ALTER DATABASE dbname DROP LOGFILE

Taking a datafile offline or online ALTER DATABASE dbname DATAFILE OFFLINE
ALTER DATABASE dbname DATAFILE ONLINE

Note: Whenever you add a datafile, create a tablespace, or drop a
tablespace and its datafiles, you should adjust the values of GC_
FILES_TO_LOCKS and GC_DB_LOCKS, if necessary, before
restarting Oracle in parallel mode. Failure to do so may result in
an insufficient number of locks to cover the new file.

Differences Between Version 6 and Release 7.0

Differences Among Versions A-19

Deferred Rollback Segments
The global constant parameter GC_SAVE_ROLLBACK_LOCKS reserves distributed

locks for deferred rollback segments, which contain rollback entries for transactions

in tablespaces that were taken offline.

Version 6 does not support taking tablespaces offline in parallel mode, so the

initialization parameter GC_SAVE_ROLLBACK_LOCKS is not necessary in Oracle

Version 6. In Oracle7, this parameter is required for deferred rollback segments.

Redo Logs
In Oracle Version 6, all instances share the same set of online redo log files and each

instance writes to the space allocated to it within the current redo log file.

In Oracle7, each instance has its own set of redo log files. A set of redo log files is

called a thread of redo. Thread numbers are associated with redo log files when the

files are added to the database, and each instance acquires a thread number when it

starts up.

Log switches are performed on a per-instance basis in Oracle7; log switches in

Oracle Version 6 apply to all instances, because the instances share redo log files.

Oracle7 introduces mirroring of online redo log files. The degree of mirroring is

determined on a per-instance basis. This allows you to specify mirroring according

to the requirements of the applications that run on each instance.

ALTER SYSTEM SWITCH LOGFILE
In Oracle Version 6, all instances shared one set of online redo log files. Therefore,

the ALTER SYSTEM SWITCH LOGFILE statement forced all instances to do a log

switch to the new redo log file.

There is no global option for this SQL statement in Oracle7, but you can force all

instances to switch log files (and archive all online log files up to the switch) by

using the ALTER SYSTEM ARCHIVE LOG CURRENT statement.

Initialization Parameters
The LOG_ALLOCATION parameter of Oracle Version 6 is obsolete in Oracle7.

Oracle7 includes the new initialization parameter THREAD, which associates a set

of redo log files with a particular instance at startup.

Differences Between Version 6 and Release 7.0

A-20 Oracle8i Parallel Server Concepts and Administration

Free Space Lists
This section describes changes concerning free space lists.

Space Freed by Deletions and Updates
In Oracle Version 6, blocks freed by deletions or by updates that shrank rows are

added to the common pool of free space. In Oracle7, blocks will go to the free list

and free list group of the process that deletes them.

Free Lists for Clusters
In Oracle Version 6, the FREELISTS and FREELIST GROUPS storage options are not

available for the CREATE CLUSTER statement, and the ALLOCATE EXTENT

clause is not available for the ALTER CLUSTER statement.

In Oracle7, clusters (except for most hash clusters) can use multiple free lists by

specifying the FREELISTS and FREELIST GROUPS storage options of CREATE

CLUSTER and by assigning extents to instances with the statement ALTER

CLUSTER ALLOCATE EXTENT (INSTANCE n).

Hash clusters in Oracle7 can have free lists and free list groups if they are created

with a user-defined key for the hashing function and the key is partitioned by

instance.

Initialization Parameters
The FREELISTS and FREELIST GROUPS storage options replace the initialization

parameters FREE_LIST_INST and FREE_LIST_PROC of Oracle Version 6.

Import/Export
In Oracle Version 6, Export did not export free list information. In Oracle7, Export

and Import can handle FREELISTS and FREELIST GROUPS.

SQL*DBA
STARTUP and SHUTDOWN must be done while disconnected in Version 6. In

Oracle7, Release 7.0, STARTUP and SHUTDOWN must be issued while connected

as INTERNAL, or as SYSDBA or SYSOPER.

In Oracle7, operations can be performed using either commands or the SQL*DBA

menu interface, as described in Oracle8i Utilities.

Differences Between Version 6 and Release 7.0

Differences Among Versions A-21

Initialization Parameters
This section lists new parameters and obsolete parameters.

New Parameters
The new initialization parameter THREAD associates a set of redo log files with a

particular instance at startup.

For a complete list of new parameters, refer to the Oracle8i Reference.

Obsolete Parameters
The following initialization parameters used in earlier versions of the Parallel

Server Option are now obsolete in Oracle7.

ENQUEUE_DEBUG_MULTI_INSTANCE

FREE_LIST_INST

FREE_LIST_PROC

GC_SORT_LOCKS

INSTANCES

LANGUAGE

LOG_ALLOCATION

LOG_DEBUG_MULTI_INSTANCE

MI_BG_PROCS (renamed to GC_LCK_PROCS)

ROW_CACHE_ENQUEUE

ROW_CACHE_MULTI_INSTANCE

For a complete list of obsolete parameters, refer to Oracle8i Migration.

Archiving
In Oracle Version 6, each instance archives the online redo log files for the entire

parallel server because all instances share the same redo log files. You can therefore

have the instance with easiest access to the storage medium use automatic

archiving, while other instances archive manually.

In Oracle7, each instance has its own set of online redo log files so that automatic

archiving only archives for the current instance. Oracle7 can also archive closed

threads. Manual archiving allows you to archive online redo log files for all

instances. You can use the THREAD option of the ALTER SYSTEM ARCHIVE LOG

statement to archive redo log files for any specific instance.

Differences Between Version 6 and Release 7.0

A-22 Oracle8i Parallel Server Concepts and Administration

In Oracle7, the filenames of archived redo log files can include the thread number

and log sequence number.

A new initialization parameter, LOG_ARCHIVE_FORMAT, specifies the format for

the archived filename. A new database parameter, MAXLOGHISTORY, in the

CREATE DATABASE statement can be specified to keep an archive history in the

control file.

Media Recovery
Online recovery from media failure is supported in Oracle7 while the database is

mounted in either parallel or exclusive mode.

In either mode, the database or object being recovered cannot be in use during

recovery:

■ To recover an entire database, it must be mounted but not open.

■ To recover a tablespace, the database must be open and the tablespace must be

offline.

■ To recover datafiles (other than files in the SYSTEM tablespace), the database

must be closed or open with the data files offline.

Restrictions B-1

B
Restrictions

This appendix documents Oracle Parallel Server compatibility issues and

restrictions.

■ Compatibility

■ Restrictions

Compatibility
The following sections describe aspects of compatibility between shared and

exclusive modes on a parallel server:

■ The Export and Import Utilities

■ Compatibility Between Shared and Exclusive Modes

The Export and Import Utilities
The Export utility writes data from an Oracle database into operating system files,

and the Import utility reads data from those files back into an Oracle database. This

feature of Oracle is the same in shared or exclusive mode.

See Also: Oracle8i Utilities for more information about Import and Export.

Compatibility Between Shared and Exclusive Modes
OPS runs with any Oracle database created in exclusive mode. Each instance must

have its own set of redo logs.

Oracle in exclusive mode can access a database created or modified by OPS.

Restrictions

B-2 Oracle8i Parallel Server Concepts and Administration

If OPS allocates free space to a specific instance, that space may not be available for

inserts for a different instance in exclusive mode. Of course, all data in the allocated

extents is always available.

Restrictions
The following sections describe restrictions:

■ Maximum Number of Blocks Allocated at a Time

■ Restrictions in Shared Mode

Maximum Number of Blocks Allocated at a Time
The !blocks option of the GC_FILES_TO_LOCKS parameter enables you to control

the number of blocks available for use within a free list group. You can use !blocks to

specify the rate at which blocks are allocated within an extent, up to 255 blocks at a

time.

Restrictions in Shared Mode
Oracle running multiple instances in shared mode supports all the functionality of

Oracle in exclusive mode, except as noted under the following headings:

Restricted SQL Statements
In shared mode, the following operations are not supported:

■ Creating a database (CREATE DATABASE)

■ Creating a control file (CREATE CONTROLFILE)

■ Switching the database’s archiving mode (the ARCHIVELOG and

NOARCHIVELOG options of ALTER DATABASE)

To perform these operations, shut down all instances and start up one instance in

exclusive mode, as described in "Starting Instances" on page 18-13.

Maximum Number of Datafiles
The number of datafiles supported by Oracle is operating system specific. Within

this limit, the maximum number allowed depends on the values used in the

CREATE DATABASE command, which in turn is limited by the physical size of the

control file. This limit is the same in shared mode as in exclusive mode, but the

additional instances of OPS restrict the maximum number of files more than a

Restrictions

Restrictions B-3

single-instance system. For more details, see Oracle8 SQL Reference, and your Oracle

operating system specific documentation.

Sequence Number Generators
OPS does not support CACHE ORDER combination of options for sequence

number generators in shared mode. Sequences created with both of these options

are ordered but not cached when running in a parallel server.

Free Lists with Import and Export Utilities
The Export utility does not preserve information about multiple free lists and free

list groups. When you export data from multiple instances and then, from a single

node, import it into a file, the data may not end up distributed across extents in

exactly the same way it was initially. The meta-data of the table into which it is

imported contains the free list and free list group information that is henceforth

associated with the datablocks.

Therefore, if you use Export and Import to back up and restore your data, it will be

difficult to import the data so that it is partitioned again.

Restrictions

B-4 Oracle8i Parallel Server Concepts and Administration

Index-1

Index
A
absolute file number, 6-3

acquiring rollback segments, 14-5

initialization parameters, 6-9

acquisition AST, 8-2, 8-4

ADD LOGFILE clause

THREAD clause, 6-3

thread required, 14-8

ADDED_EXTENTS, A-10

adding a file, 14-9, 15-10, A-18

affinity

awareness, 21-14

disk, 4-8, 18-23

parallel processor, A-15

ALERT file, 6-2, 22-4

ALL option, 21-4

ALL_TABLES table, 16-7

ALLOCATE EXTENT option

DATAFILE option, 11-11, 17-12

in exclusive mode, 17-11

instance number, 11-15, 17-13

INSTANCE option, 11-11, 17-12

not available, A-20

pre-allocating extents, 17-14

SIZE option, 11-11, 17-11

allocation

automatic, 11-17, 17-13, 17-14

extents, 17-14, 17-15, 18-16

free space, 11-6, 11-11

of channels, 21-8

PCM locks, 9-6, 9-26, 11-15, 17-11

rollback segments, 14-5

sequence numbers, 6-6

ALLOW_PARTIAL_SN_RESULTS parameter

obsolete for 8.1, A-5

ALTER CLUSTER statement, A-20

ALLOCATE EXTENT option, 17-11

allocating extents, 17-14

ALTER DATABASE OPEN RESETLOGS

statement, 22-14

ALTER DATABASE statement

ADD LOGFILE, 6-3

adding or dropping log file, A-18

CLOSE option, 18-18

DATAFILE OFFLINE and ONLINE

options, A-18

DATFILE RESIZE, 15-9

DISABLE, 14-9

ENABLE THREAD, 14-8

MOUNT option, 18-13

OPEN option, 18-14

RECOVER, 22-7

RECOVER option, 22-7

renaming a file, A-18

setting the log mode, 14-2, 14-9, B-2

THREAD, 14-9

thread of redo, 14-9

ALTER INDEX statement

DEALLOCATE UNUSED option, 17-16

ALTER ROLLBACK SEGMENT command, 6-10

ALTER SESSION statement

SET INSTANCE option, 11-11, 17-10

ALTER SYSTEM

command, limiting instances for parallel

execution, 18-27

ALTER SYSTEM ARCHIVE LOG statement, 18-18,

21-16

Index-2

CURRENT option, 21-10, A-19

global log switch, 21-10, 21-16

THREAD option, 18-18, 21-4

ALTER SYSTEM CHECK DATAFILES

statement, 6-2

instance recovery, 22-4

ALTER SYSTEM CHECKPOINT statement, 21-9

global versus local, 18-18

specifying an instance, 18-18

ALTER SYSTEM privilege, 21-10

ALTER SYSTEM SWITCH LOGFILE

statement, 18-18, 21-10, A-19

DBA privilege, 21-10, A-19

ALTER TABLE statement

ALLOCATE EXTENT option, 17-11

allocating extents, 17-14, 17-15

DISABLE TABLE LOCK option, 7-6, 10-3, 16-7

ENABLE TABLE LOCK option, 7-6, 10-3, 16-7

MAXEXTENTS option, 17-15

ALTER TABLESPACE statement

ADD DATAFILE, 15-10

ADD DATAFILE option, A-18

BACKUP option, 21-15

OFFLINE and ONLINE options, A-18

READ ONLY option, 12-2

renaming a data file, A-18

applications

analysis of, 12-1

availability, 22-2

business functions, 12-2

compute-intensive, 1-21

converting to multi-instance, 23-3

departmentalized, 2-8

designing, 13-1

disjoint data, 1-17, 2-7

DSS, 1-5, 1-12, 1-21, 2-7

failover of, 4-11

insert-intensive, 11-12

node, 5-4

OLTP, 1-5, 1-12, 2-7

performance, 11-12

portability, 1-5

profile, 12-2

profiles, 3-2

query-intensive, 1-17, 2-7

random access, 2-8

redesigning for parallel processing, 1-16

scalability, 2-2, 2-6

tuning, 12-1

tuning performance, 1-15, 11-12

ARCH process, 5-5, 21-4

architecture

hardware, 3-1

multi-instance, 5-4

Oracle database, 6-1

Oracle instance, 5-1

archive log

backup, 21-7

ARCHIVE LOG clause

CURRENT option, 21-10, 21-16, A-19

global log switch, 21-10, 21-16

manual archiving, 21-4

specifying an instance, 18-21

THREAD option, 21-4

ARCHIVE LOG command, 21-3

ARCHIVELOG mode, 14-9

automatic archiving, 4-6, 21-3

changing mode, 14-2, 14-9, B-2

creating a database, 14-2

online and offline backups, 4-6, 21-3

archiving redo log files, 21-1

automatic versus manual, 21-3

conversion to multi-instance, 23-3

creating a database, 14-2

forcing a log switch, 21-10

history, 21-6

identified in control file, 6-5

log sequence number, 21-5

online archiving, 4-6, 21-3

AST, 8-2

asymmetrical multiprocessing, 2-5

asynchronous trap, 8-2, 8-3, 8-4

authentication

password file, 18-26

AUTOEXTEND, 15-9

automatic archiving, 21-3

automatic recovery, 21-7

availability, 12-1

and interconnect, 3-3

benefit of parallel databases, 1-14

Index-3

data files, 6-2, 22-4

multiple databases, 1-19

phases of recovery, 22-5

shared disk systems, 3-6

single-node failure, 2-12, 22-2

B
background process, 5-5

ARCH, 21-4

holding instance lock, 7-4, 7-6

instance, 5-4

LGWR, 21-6

optional, 5-5

parallel cache management, 4-12

SMON, 18-27, 22-2

backup, 21-1

archive log, 21-7

conversion to multi-instance, 23-3

export, B-1

files used in recovery, 22-7

offline, 4-6, 21-12

online, 4-6, 21-12, 21-16

parallel, 21-12

bandwidth, 1-11, 2-2, 2-12, 3-3, 3-4, 3-5, 3-6

batch applications, 1-12, 1-13

BEGIN BACKUP option, 21-15

block

allocating dynamically, 17-15

associated with instance, 11-11

cleanout, A-14

contention, 6-9, 11-15, 15-6, 17-11, 17-13

deferred rollback, 6-9, A-19

distributed lock, 5-5

free space, 11-2

instance lock, 4-12

multiple copies, 4-5, 4-12, 5-5

segment header, 11-14

when written to disk, 4-5, 9-8

Block Server Process

definition, 1-17, 5-7

blocking AST, 8-3

blocks

associated with instance, 22-3

BSP

definition, 1-17, 5-7

buffer cache, 5-5

coherency, 4-12

distributed locks, 2-7

instance recovery, 22-3

minimizing I/O, 4-5, 4-12

written to disk, 4-5

buffer state, 9-10

buffer, redo log, 5-5

C
cache

buffer cache, 4-5, 5-5

coherency, 4-12, 9-2

consistency, on MPPs, 3-8

dictionary cache, 4-12, 5-5, 6-6

flushing dictionary, 4-16

management issues, non-PCM, 4-16

parallel cache management, 4-12

recovery, 22-6

row cache, 6-6

sequence cache, 4-7, 6-7

Cache Fusion

and cache coherency conflicts, 20-2

architecture, 5-7

benefits, 20-4

change summary for 8.1, A-1

definition, 4-6, 5-7

description, 20-2

performance, 20-1

tuning, 20-1

CACHE keyword, 18-28

CACHE option, CREATE SEQUENCE, 6-6

CACHE_SIZE_THRESHOLD parameter, A-17

obsolete for 8.1, A-5

capacity planning, 19-3

CATPARR.SQL script, 15-12, 20-12

channels

allocating for backup and recovery, 21-8

CHECK DATAFILES clause, 6-2

instance recovery, 22-4

checkpoint

forcing, 21-9

CHECKPOINT_PROCESS parameter, 18-10

Index-4

CKPT process, 5-5

CLEANUP_ROLLBACK_ENTRIES

parameter, A-9, A-13

client connections to services, 18-28

client load balancing, 18-32

client-server configuration, 5-4

description, 1-20

Net8, 1-20

closed thread, 21-4, 21-16

cluster

allocating extents, 17-14

free list groups, 17-11

free lists, 11-12, 17-7

hash cluster, 11-12, 17-7, A-20

implementations, 2-3

performance, 3-2

version compatibility, 18-22

Cluster Manager (CM) software, 18-13, 18-14

purpose, 18-22

committed data

checkpoint, 21-9

instance failure, 22-2

sequence numbers, 6-7

compatibility

shared and exclusive modes, 6-2, 17-11

concurrency

inserts and updates, 11-14, 17-6

maximum number of instances, 11-15, 14-3

sequences, 6-7

shared mode, 4-2

transactions, 5-4, 11-2

configurations

change in redo log, 14-9

client-server, 1-20

guidelines for parallel server, 5-9

multi-instance database system, 1-16

overview of Oracle, 1-14, 1-15

single instance database system, 1-15

CONNECT

RMAN ALLOCATE CHANNEL

command, 21-8

CONNECT command, 14-7, 18-19, 18-21

forcing a checkpoint, 21-9

Net8, 18-17

SYSDBA option, 18-13, 18-26

connect string, 18-17, 18-20, 18-21

connect time failover, 18-32

connections

clients and services, 18-28

load balancing among nodes, 18-32

consistency

multiversion read, 4-6

rollback information, 6-8

contention

block, 6-9, 11-15, 15-6, 17-11, 17-13

disk, 6-2, 6-9

distributed lock, 15-6

free list, 19-5

free space, 4-8, 11-2, 11-14

index, 19-6

on single block or row, 2-9

rollback segment, 6-8, 6-9

segment header, 11-14, 19-6

sequence number, 4-7, 6-6

SYSTEM tablespace, 14-5

table data, 6-2, 6-8, 17-13

control file, 6-1

accessibility, 5-9

backing up, 21-1

conversion to multi-instance, 23-6

creating, 14-10

data files, 17-12

log history, 14-4, 21-6

MAXLOGHISTORY, 6-5

parameter values, 18-9

shared, 5-4, 18-7

CONTROL_FILES parameter, 18-11, 22-12

same for all instances, 18-7, 18-11

conversion

application, 23-3

database, 23-4

database, to multi-instance, 23-1

ramifications, 23-3

convert queue, 8-3

CPU usage, 19-3

CPU_COUNT parameter, 18-11

CR Server

change summary for 8.1, A-1

CREATE CLUSTER statement, 17-7, A-20

FREELIST GROUPS option, 17-6

Index-5

FREELISTS option, 17-6

CREATE CONTROLFILE statement

changing database options, 14-10

conversion to multi-instance, 23-5

exclusive mode, B-2

MAXLOGHISTORY, 21-6

CREATE DATABASE statement, 14-3

exclusive mode, B-2

MAXINSTANCES, 11-15, 14-3

MAXLOGFILES, 14-4

MAXLOGHISTORY, 6-5, 14-4, 21-6

MAXLOGMEMBERS, 14-4

options, 14-3

setting the log mode, 14-2, 14-9

thread number 1, 14-8

CREATE INDEX statement

FREELISTS option, 17-8

CREATE ROLLBACK SEGMENT statement, 14-5,

14-6

CREATE SEQUENCE statement, 6-7

CACHE option, 6-6, 6-7

CYCLE option, 6-6

description, 6-6

ORDER option, 6-6, 6-7

CREATE TABLE statement

clustered tables, 17-7

examples, 17-14

FREELIST GROUPS option, 11-11

FREELISTS option, 11-11, 17-6

initial storage, 17-13, 17-14

CREATE TABLESPACE statement, A-18

creating a rollback segment, 14-5, 14-6

creating a tablespace, A-18

current instance, 18-21

checkpoint, 21-9

log switch, 21-10

specifying, 18-17

CURRENT option, 21-4

checkpoints, 21-10

forcing a global log switch, 21-10

global log switch, 21-16

new in Oracle7, A-19

CYCLE option, CREATE SEQUENCE, 6-6

D
data block, 5-5

data dependent routing, 12-7, 19-6

data dictionary, 5-5

objects, 6-6

querying views, 20-12

row cache, 6-6

sequence cache, 6-7

views, 14-6

data warehousing, 2-7

database

archiving mode, 14-2, 14-9

backup, 4-6, 21-1

closing, 18-26

conversion to multi-instance, 23-1, 23-4

creation, 14-3

designing, 1-15, 13-1

dismounting, 18-26

export and import, B-1

migrating to multi-instance, 23-3

mounted but not open, 14-9

number of archived log files, 6-5, 21-6

number of instances, 11-15, 14-3

rollback segments, 14-5

scalability, 2-5

standby, 18-33, 22-16

starting NOMOUNT, 22-11

database administrator (DBA)

distributed database, 1-19

data-dependent routing, 3-8

datafile

accessibility, 5-9

adding, 15-6, 15-10, 15-12, A-18

allocating extents, 17-12

backing up, 21-1

disk contention, 6-2

dropping, A-18

file ID, 15-3

instance recovery, 6-2, 22-4

mapping locks to blocks, 9-6

maximum number, B-3

multiple files per table, 11-15, 17-11, 17-13

number of blocks, 15-3

parallel recovery, 22-7

Index-6

recovery, 22-7, A-22

renaming, A-18

shared, 5-4, 6-2

tablespace, A-18

tablespace name, 15-3

taking offline or online, A-18

unspecified for PCM locks, 9-6

validity, 15-12

DATAFILE option

table, 17-14

tablespace, A-18

DB_BLOCK_BUFFERS parameter, 9-18

ensuring LM lock capacity, 16-6

GC_RELEASABLE_LOCKS, 15-13

DB_BLOCK_SIZE parameter

same for all instances, 18-11

DB_FILES parameter

calculating non-PCM resources, 16-4

ensuring LM lock capacity, 16-6

same for all instances, 18-11

DB_NAME parameter

conversion to multi-instance, 23-7

same for all instances, 18-11

DBA_ROLLBACK_SEGS view, 6-8, 14-7

public rollback segments, 14-6

DBA_SEGMENTS view, 14-7

DBA_TABLES table, 16-7

DBMS_JOB package

and instance affinity, 4-9

DBMS_SPACE package, 17-16

DBMSUTIL.SQL script, 17-16

DBWR process, 5-5, 7-6

in parallel server, 5-2

DDL

commands, 16-6

lock, 7-5

deadlock detection, 8-9

deallocating unused space, 17-16

ded, vi

default instance, 18-17, 18-20

deferred rollback segment, A-19

DELAYED_LOGGING_BLOCK_CLEANOUTS

parameter, 18-10, A-9, A-14

departmentalized applications, 2-8

DESCRIPTION_LIST feature, A-13

dictionary cache, 4-12, 5-5, 6-6

lock, 10-5

dictionary cache lock, 10-5

DISABLE TABLE LOCK option, 16-7

DISABLE THREAD clause, 14-9

disabling the archive history, 14-4

disaster recovery, 22-10, 22-13

DISCONNECT command, 18-21

disconnecting from an instance, 18-20, 18-21

multiple sessions, 18-27

user process, 18-26

disjoint data

applications with, 1-17, 2-7

data files, 6-2

disk

access, 3-2, 3-3

affinity, 4-8, 18-23

contention, 6-2, 6-9

I/O statistics, 19-3, 19-6

media failure, 22-1

reading blocks, 4-5

rollback segments, 6-9

writing blocks, 4-5, 9-8

distributed lock

memory area, 5-5

rollback segment, 6-9

row cache, 6-6

sequence, 6-6

total number, 6-6

Distributed Lock Manager, A-8

DM, Database Mount, 10-5

DML lock, 7-3, 7-5

DML_LOCKS parameter, 7-6, 10-3, 18-10, 18-11

and performance, 16-7

calculating non-PCM resources, 16-4

ensuring IDLM lock capacity, 16-6

DROP TABLE command, 4-16

DROP TABLESPACE statement, A-18

dropping a database object

tablespace, 15-6, A-18

dropping a redo log file, A-18

log switch, 21-10

manual archiving, 14-9

restrictions, 14-9

DSS applications, 1-5, 1-12, 1-13, 1-21, 2-7, 3-2

Index-7

dual ported controllers, 2-3

dynamic performance view

creating, 20-12

dynamically allocating blocks, 11-17

E
ENABLE TABLE LOCK option, 16-7

END BACKUP option, 21-15

enqueue, 7-3

global, 7-3

in V$LOCK, 7-9

local, 7-3

OPS context, 7-6

enqueue locks

calculating non-PCM resources, 16-4

ENQUEUE_DEBUG_MULTI_INSTANCE

parameter (Oracle Version 6), A-21

ENQUEUE_RESOURCES parameter

calculating non-PCM resources, 16-4

error message

parameter values, 18-16

rollback segment, 14-5

storage options, 17-6

exclusive mode, 8-7, 18-12

compatibility, B-1

database access, 1-15, 4-1

free lists, 17-6, 17-11

MAXLOGHISTORY, 21-7

media recovery, 14-4

required for file operations, A-17, B-2

specifying instance number, 17-13

specifying thread number, 18-15

startup, 17-13, 18-12

switching archive log mode, 14-9

taking tablespace offline, A-18

EXCLUSIVE option, 18-13

EXCLUSIVE parameter

obsolete for 8.0.4, A-6

exclusive PCM lock, 4-15

Export utility

and free lists, 11-12, A-20, B-3

backing up data, B-1

compatibility, B-1

EXT_TO_OBJ table, 15-12, 20-12

extent

allocating PCM locks, 11-15, 17-11

allocating to instance, 17-10, 17-14, 18-16

definition, 11-3

initial allocation, 17-13

not allocated to instance, 11-6, 11-17, 17-12

rollback segment, 6-8, 14-7

size, 6-8, 14-7, 17-11

specifying a file, 17-12

F
failover, 4-11, 16-2, A-11

connect time, 18-32

failure

access to files, 22-4

ALERT file, 6-2

instance recovery, 22-4

media, 22-1, 22-7, A-22

MPP node, 3-7

node, 1-19, 22-2

false pings, 9-17, 15-15

FAST_START_PARALLEL_ROLLBACK, A-3

Fast-start Parallel Rollback

parallel rollback, Fast-start, 22-16

Fast-start Rollback, A-3

fault tolerance, 8-8

file

adding, A-18

ALERT, 6-2, 22-4

allocating extents, 17-12

archiving redo log, 4-6, 21-3, 21-4, 21-5

common parameter file, 18-6

control file, 6-1, 6-5, 21-6

datafile, 6-1

dropping, 14-9, 21-10, A-18

exported, B-1

maximum number, B-3

multiplexed, 21-7

number, absolute, 6-3

number, relative, 6-3

parameter, 18-3, 18-7

PFILE, 18-6, 18-8

redo log, 4-6, 6-3, 21-3, 21-5, 21-6, A-18

renaming, 14-9, 21-10, A-18

Index-8

restricted operations, 21-10, A-17

size, 9-6

used in recovery, 22-7

FILE_LOCK view, 9-22, 15-11, A-9

fine grain lock, 9-4, 9-6, 9-16, 9-18, 9-19, 9-20, 9-21

creation, 9-3

DBA lock, 9-17

group factor, 15-9

introduction, 7-5

one lock element to one block, 9-17

specifying, 15-9

fine grain locking, 2-8, A-9

fixed hashed PCM lock, 9-3

fixed mode, lock element, 9-20

flexibility of parallel database, 1-14

FORCE parameter

and job-to-instance affinity, 4-10

foreground process

instance shutdown, 18-26

format, lock name, 7-8

free list, 11-15

and Export utility, 11-12, B-3

assigned to instance, 11-13

cluster, 17-7, A-20

concurrent inserts, 4-8, 11-14

contention, 19-5

definition, 11-5

exclusive mode, B-2

extent, 11-12

hash cluster, 17-7

in exclusive mode, 17-6, 17-11

index, 17-8

list groups, 11-12

number of lists, 17-6

partitioning, 11-13

partitioning data, 11-12, 18-16

PCM locks, 11-15, 17-11

transaction, 11-4

unused space, 17-16

free list group

assigned to instance, 11-13, 11-14

assigning to session, 17-10

definition, 11-5

enhanced for release 7.3, A-9

high performance feature, 4-8

setting !blocks, 15-8

unused space, 17-16

used space, 17-16

FREE_LIST_INST parameter (Oracle Version

6), A-20, A-21

FREE_LIST_PROC parameter (Oracle Version

6), A-20, A-21

FREED_EXTENTS, A-10

FREELIST GROUPS storage option, 17-6, 17-14,

18-14

clustered tables, A-20

instance number, 11-15

FREELISTS

parameter, 11-5

storage option, 17-6

FREELISTS storage option

clustered tables, A-20

indexes, 17-8

maximum value, 17-6

FREEZE_DB_FOR_FAST_INSTANCE_RECOVERY

parameter, 22-4, A-6

G
GC_DB_LOCKS parameter, A-6

adjusting after file operations, A-18

GC_FILES_TO_LOCKS parameter, 9-3, 9-4, 9-6,

9-14, 9-24, 14-10, 15-17, 18-11

adding datafiles, 15-12

adjusting after file operations, 15-6, A-18

associating PCM locks with extents, 11-15, 17-11

default bucket, 15-7

fine grain examples, 15-9

guidelines, 15-9

hashed examples, 15-8

index data, 15-5

reducing false pings, 15-16

room for growth, 15-10

setting, 15-6

syntax, 15-7

GC_FREELIST_GROUPS parameter, A-6, A-9

GC_LATCHES parameter, A-5

obsolete for 8.1, A-5

GC_LCK_PROCS parameter

obsolete for 8.1, A-5

Index-9

GC_RELEASABLE_LOCKS parameter, 9-14, 15-17,

A-9

default, 15-13

GC_ROLLBACK_LOCKS parameter, 6-9, 9-14,

9-15, 15-7, 15-13, 15-17, 18-11

GC_ROLLBACK_SEGMENTS parameter, A-6

number of distributed locks, 6-9

GC_SAVE_ROLLBACK_LOCKS parameter, 6-9,

A-6, A-19

GC_SEGMENTS parameter, A-6

GC_SORT_LOCKS parameter, A-21

GC_TABLESPACES parameter, A-7

global constant parameter, 18-11

and non-PCM locks, 4-12

control file, 6-1

description, 9-13

list of, 18-9

rollback segments, 6-9

same for all instances, 18-9, 18-11

global dynamic performance view, 18-25, 20-12,

A-7

GLOBAL hint, 20-12

GLOBAL option

forcing a checkpoint, 18-18, 21-9

verifying access to files, 6-2

GMS

removed for 8.1, A-2

granted queue, 8-3, 8-4

group

free list, 11-12

MAXLOGFILES, 14-4

redo log files, 6-4, 14-4, 14-9

unique numbers, 6-5

V$LOGFILE, 6-5

Group Membership Services, A-8

removed for 8.1, A-2

GROUP option, 21-4

group-based locking, 8-9, 8-10

growth, room for, 15-10

GV$ view, 18-25, 20-12, A-7

GV$BH view, 19-5

GV$CACHE view, 19-5, 20-12

GV$CLASS_PING view, 20-12

GV$FILE_PING view, 20-12

GV$PARAMETER view, 18-25

GV$PING view, 19-5, 20-12

H
hardware

architecture, 3-1

requirements, 3-3

scalability, 2-2

hash cluster, 17-7

free lists, 11-12, A-20

hashed PCM lock, 9-4, 9-17, 9-21, 9-22

creation, 9-3

introduction, 7-5

releasable, 9-4, 15-7, 15-9

specifying, 15-8

hashing

static, lock mastering scheme, 8-9

header

rollback segment, 14-7

segment, 11-14, 14-7

high availability

benefit of parallel databases, 1-14

high speed interconnect, 12-1

high water mark, 11-17

definition, 11-3, 11-18

moving, 11-18, 11-19

high-speed bus, 3-5, 3-6

history, archive, 21-6, 22-9

horizontal partitioning, 2-12

HOST command, 18-19

host, IDLM, 9-8

I
identifier, lock, 7-8

IDLM, 8-1

IDLM parameters, 18-12

IFILE parameter, 18-5

multiple files, 18-7

overriding values, 18-7

specifying identical parameters, 18-6

Import utility

Compatibility, B-1

free lists, A-20

restoring data, B-1

Index-10

incremental growth, 17-13

index

contention, 19-6

creating, 17-8

data partitioning, 11-12, 15-5

FREELISTS option, 17-8

PCM locks, 15-5

INITIAL storage parameter

minimum value, 17-13

rollback segments, 6-8

initialization parameter

archiving, 21-3

control of blocks, 9-13

control of PCM locks, 9-13

displaying values, 18-16, 18-21

duplicate values, 18-7

global constant, 6-1, 18-9

guidelines, 5-9

identical for all instances, 18-11

Integrated Distributed Lock Manager, 18-12

MAX_DEFAULT_PROPAGATION_DELAY, 18

-11

obsolete, A-21

PARALLEL_DEFAULT_MAXSCANS, 18-11

planning LM capacity, 16-3, 16-6

using default value, 18-7

inserts

concurrent, 4-8, 11-14, 17-6

free lists, 11-14, 18-16

free space unavailable, 17-11

performance, 11-12

instance

adding instances, 14-4, 17-13, 23-2

affinity, for jobs, 4-9, A-4

associated with data block, 11-11

associated with data file, 17-13

associated with extent, 17-10

background processes, 4-12, 5-4, 5-5

changing current, 18-21

changing default, 18-20

current, 18-20, 18-21, 21-9

failure, 22-3

free list, 11-14, 17-11

groups, specifying, 18-23

groups, using, 18-24

instance number, 11-15, 17-13

maximum number, 6-8, 11-15, 14-3, 14-4

number, 17-10

ownership of PCM locks, 9-5

parallel server characteristics, 5-1

recovery, 14-4, 18-27, 22-2

remote, 18-6, 18-8, 18-20

rollback segment required, 6-8

startup order, 18-16

thread number, 6-3, 14-8, 18-15

instance lock, 7-2

acquired by background process, 7-6

acquired by foreground process, 7-6

definition, 7-2, 7-4

types, 7-5

INSTANCE NAME parameter, 18-6

instance number, 11-13

INSTANCE option

allocating, 17-14

SET INSTANCE command, 17-10, 18-17

SHOW INSTANCE command, 18-20

instance recovery

abnormal shutdown, 18-27

access to files, 6-2, 22-4

global checkpoint, 21-9

multiple failures, 22-3

rollback segments, 6-8

starting another instance, 14-4

instance registration, A-10

purpose, 18-28

INSTANCE_GROUPS parameter, 18-24

INSTANCE_ID column, 20-12

INSTANCE_NUMBER parameter, 17-10, 18-5

and SQL options, 11-11

assigning free lists to instances, 11-13

conversion to multi-instance, 23-7

exclusive mode, 18-14

exclusive or shared mode, 18-16

individual parameter files, 18-5

setting, 17-13

unique values for instances, 18-10, 18-16

unspecified, 18-16

INSTANCES keyword, 18-27

INSTANCES parameter (Oracle Version 6), A-21

Integrated Distributed Lock Manager

Index-11

capacity for locks and resources, 16-2

configuring, 16-3

definition, 1-11

distributed architecture, 8-8

failover requirements, 16-2

fault tolerant, 8-8

features, 8-8

group-based locking, 8-10

handling lock requests, 8-3

instance architecture, 5-2

internalized, A-8

LCKn process, 9-8

lock mastering, 8-9

minimizing use, 1-16, 4-12

non-PCM lock capacity, 7-6

queues, 8-2

recovery phases, 22-5

resource sharing, 9-8

integrated operations, 1-5

interconnect, 3-3

and scalability, 2-2

high-speed, 1-9

protocols for OPS, 20-6

INTERNAL option

instance shutdown, 18-26

inter-node communication, 1-9

I/O

and scalability, 2-3

disk contention, 4-5

interrupts, 2-5

minimizing, 1-16, 4-5, 4-12, 15-6

IPCs

and Cache Fusion, 20-6

J
jobs

and instance affinity, 4-9

L
Lamport SCN generation, 4-7

LANGUAGE parameter (Oracle Version 6), A-21

latch, 7-3, 10-5

latency, 1-11, 1-13, 2-2, 2-12, 3-3

LCKn process, 5-5, 9-5

on multi-instance database, 1-16

role in recovery, 22-5

LGWR process, 5-5, 7-6

log history, 21-6

library cache lock, 10-4

links, 5-9

listener

in instance registration, 18-31

load balancing, A-3

LM_LOCKS parameter, 15-17, 15-18, 16-2, 18-11,

18-12, A-6

LM_PROCS parameter, 18-11, 18-12, A-6

LM_RESS parameter, 15-17, 15-18, 16-2, 16-5,

18-11, 18-12, A-6

LMDn process, 5-5, A-8

definition, 7-7

LMON process, 5-5, A-8

definition, 7-7

load balancing, 12-5, A-13

client connections among listeners, 18-32

in parallel execution, 18-33

of connections among nodes, 18-32

LOAD_BALANCE parameter

configuring client load balancing, 18-32

local instance

node, 18-20

local I/O, 2-3

local lock, 7-2

LOCAL option

forcing a checkpoint, 18-18, 21-9

verifying access to files, 6-2

lock

boundary, 11-18

conversion, 8-4

cost of, 7-7

dictionary cache, 10-5

DML, 7-3, 10-3

enqueue, 7-3

fine grain, 7-5

global, 18-9

group-based, 8-9, 8-10

hashed, 7-5

identifier, 7-8

implementations, PCM, 7-5

Index-12

instance, 7-2, 7-4

latch, 7-3

library cache, 10-4

local, 7-2

mastering, 8-9, 19-8

mode compatibility, 9-11

mode, and buffer state, 9-10

mount lock, 7-2, 10-5

name format, 7-8

non-PCM, 7-3, 7-5

OPS exclusive mode, 7-2

OPS shared mode, 7-2

overview of locking mechanisms, 7-1

ownership by IDLM, 8-10

PCM lock, 9-3, 11-15, 17-11

process-owned, 8-10

request, handling by IDLM, 8-3

rollback segment, 6-9

row, 4-15, 10-3

row cache, 6-6

system change number, 10-4

table, 7-3, 7-5, 7-6, 10-3

transaction, 4-13, 7-2, 10-3

types of, 7-2

lock contention

detecting, 19-3

pinpointing, 19-4

lock conversion

detecting, 19-3

excessive rate, 19-7

lock element, 7-9

correspondence to locks, 9-15

creation, 9-19

free, 9-20

LRU list, 9-20

mode, 9-20

name, 9-16

non-fixed mode, 9-20

number, 9-24

valid bit, 9-20

lock operations

in Cache Fusion, 20-6

lock value block, 10-4

log file

accessibility, 5-9

redo log file, 21-1

log history, 14-4, 21-6, 22-9

log sequence number, 21-5, 21-6

log switch, 6-5

adding or dropping files, 14-9

closed thread, 21-11

forcing, 21-10, 21-11, 21-16, A-19

global, 21-16

log history, 21-6

LOG_ALLOCATION parameter (Oracle Version

6), A-19, A-21

LOG_ARCHIVE_DEST parameter, 22-9, 22-10

specifying for recovery, 22-10

LOG_ARCHIVE_FORMAT parameter, 18-10, 21-5,

22-10

same for all instances, 22-10

used in recovery, 22-10

LOG_ARCHIVE_START parameter

automatic archiving, 18-8, 21-3

creating a database, 14-2

LOG_CHECKPOINT_TIMEOUT parameter

inactive instance, 21-10

LOG_DEBUG_MULTI_INSTANCE parameter

(Oracle Version 6), A-21

LOG_FILES parameter

obsolete for 8.1, A-5

logical database, 1-18

loosely coupled system

cache consistency, 3-8

characteristics, 3-5

disk access, 3-3

hardware architecture, 3-2, 3-6

tightly coupled nodes, 3-5

LRU list

lock elements, 9-20

M
manual archiving, 21-3, 21-4

dropping a redo log file, 14-9

massively parallel system, 1-5, 11-15

application profile, 3-2

disk access, 3-3

hardware architecture, 3-7

master free list, 11-6

Index-13

master node, 8-9

mastering, lock, 8-9, 19-8

MAX_COMMIT_PROPAGATION_DELAY

parameter, 4-7, 10-4, 18-10, 18-11

MAX_SORT_SIZE, A-10

MAXDATAFILES option, 14-10

MAXEXTENTS storage parameter

automatic allocations, 11-17, 17-13

preallocating extents, 17-15

MAXINSTANCES option, 11-15, 14-3

changing, 14-10

MAXINSTANCES parameter, 11-13, 23-4

assigning free lists to instances, 11-13, 11-15

calculating non-PCM resources, 16-4

conversion to multi-instance, 23-4, 23-6

MAXLOGFILES option, 14-4, 14-10

MAXLOGHISTORY option, 6-5, 14-4, 21-7

changing, 14-10

CREATE CONTROLFILE, 21-6

log history, 21-6

MAXLOGHISTORY parameter, 23-6

MAXLOGMEMBERS

option, 14-4, 14-10

media failure, 22-1, 22-7, A-22

access to files, 6-2

automatic recovery, 21-7

recovery, A-22

media manager

requirements for creating backups, 21-9

media recovery, 22-7

incomplete, 22-8

log history, 14-4, 21-7, 22-9

O/S utilities, 22-8

member

MAXLOGMEMBERS, 14-4

memory

cache, 4-5

cached data, 4-5

distributed locks, 5-5

IDLM requirements, 8-10

SGA, 6-7

message

access to files, 6-2, 22-4

ALERT file, 6-2, 22-4

distributed lock manager, 9-8

instance shutdown, 18-26

parameter values, 6-1

messaging

in parallel processing, 1-11

migration

data migration, B-1

planning for future, 1-15

returning to exclusive mode, 17-11

MINEXTENTS storage parameter

automatic allocations, 11-17, 17-13, 17-14

default, 17-13

mode

archiving, 4-6, 14-2, 14-9, 21-3

database access, 4-1, 18-12, 18-15

incompatible, 8-2

lock compatibility, 9-11

lock element, 9-20

PCM lock, 4-15

modified data

instance recovery, 22-3

updates, 5-5

modulo, 11-13, 11-15, 17-10, 17-12

MONITOR command

default instance in display screen, 18-19

specifying an instance, 18-21

mount lock, 7-2, 10-5

MOUNT option, 18-13

MPP systems, 1-5

MTS_LISTENER_ADDRESS parameter

obsolete for 8.0.4, A-5

MTS_MULTIPLE_LISTENERS parameter

obsolete for 8.0.4, A-5

multi-instance database

converting application, 23-3

definition, 1-16

reasons not to convert to, 23-2

reasons to convert to, 23-2

requirements, 23-3

multiple shared mode, 4-2, 10-5

multiplexed redo log files, 6-3

example, 6-4

log history, 21-7

total number of files, 14-4

Multi-threaded Server, 8-10

for connection load balancing, 18-32

Index-14

multiversion read consistency, 4-6

N
Net8

client-server configuration, 1-20

connect string, 18-20, 18-21

distributed database system, 1-18

for CONNECT, 18-17

for SET INSTANCE, 18-17

network usage, 19-3

NEXT storage parameter, 6-8, 21-4

NFS, 5-9, 23-4, 23-9

NLS_* parameters, 18-10

NOARCHIVELOG mode, 14-9

changing mode, 14-2, 14-9, B-2

creating a database, 14-2, 14-9

offline backups, 4-6

requiring offline backups, 21-3

node

adding, 17-13, 23-2

affinity awareness, 21-14

cache coherency, 4-12

definition, 1-2

failure, 1-14, 1-19, 22-2

local, 18-6, 18-8

parallel backup, 21-12

parallel shutdown, 18-26

remote, 18-17, 18-20

single to cluster, 23-2

NOMOUNT option, 14-3, 22-11

non-fixed mode, lock element, 9-20

non-PCM lock

dictionary cache lock, 10-5

DML lock, 10-3

enqueue, 7-3

IDLM capacity, 7-6

library cache lock, 10-4

mount lock, 10-5

overview, 10-1

relative number, 7-6

system change number, 10-4

table lock, 10-3

transaction lock, 10-3

types, 7-5

user control, 7-6

non-PCM resources, 16-4

NOORDER option, CREATE SEQUENCE, 6-7

NSTANCE_GROUPS parameter, 18-25

null lock mode, 4-15

number generator, 6-6

O
obsolete parameters, A-20, A-21

offline backup, 4-6, 21-1

parallel, 21-12

redo log files, 21-12

offline datafile, A-18

offline tablespace

deferred rollback segments, A-19

restrictions, 6-8, A-18

OGMS_HOME parameter, A-5

obsolete for 8.1, A-5

OLTP applications, 1-3, 1-5, 1-8, 1-12, 1-13, 2-7, 2-8,

3-2, A-2

online backup, 4-6, 21-1

archiving log files, 21-16

parallel, 21-12

procedure, 21-16

redo log files, 21-12

online datafile

supported operations, A-18

online recovery, 6-2, 22-2, 22-4, 22-7, A-22

online redo log file

archive log mode, 14-9

archiving, 21-1, 21-6

log switch, 21-6, 21-10

thread of redo, 6-3, 18-15

online transaction processing, 1-3

OPEN option, 18-13, 18-14

operating system

exported files, B-1

Integrated Distributed Lock Manager, 9-8

privileges, 18-19

scalability, 2-5

OPS_ADMIN_GROUP parameter, A-6

obsolete for 8.1, A-5

OPS_FAILOVER clause, A-11

Oracle

Index-15

background processes, 5-5

backing up, 4-6, 21-1

compatibility, 17-11, B-2

configurations, 1-14

data dictionary, 6-6

datafile compatibility, 6-2

exclusive mode, 4-1, 18-13

executables, 23-8

free space unavailable, 17-11

instance recovery, 22-3

instances on MPP nodes, 3-8

migration, A-17

multi-instance, 7-3

obsolete parameters, A-21

performance features, 4-5

restrictions, 6-7, A-17, A-19

shared mode, 4-2

single-instance, 7-3

version on all nodes, 5-9

Oracle Parallel Server Management(OPSM), A-4

oracle_pid, 11-13

Oradebug, A-4

ORDER option, 6-6, 6-7

overhead

calculating non-PCM resources, 16-4

P
parallel backup, 21-12

parallel cache management, 4-12

parallel cache management lock

acquiring, 4-15

conversion, 9-5

definition, 7-5, 9-2

disowning, 4-15

exclusive, 4-15

how they work, 9-3

implementations, 7-5

minimizing number of, 12-1

null, 4-15

owned by instance LCK processes, 9-5

owned by multiple instances, 9-5

periodicity, 9-8

read, 4-15

relative number, 7-6

releasable hashed, 9-4, 15-7, 15-9

releasing, 4-15

sequence, 4-7

user control, 7-6

parallel database

and parallel execution, 1-21

availability, 1-14

benefits, 1-13

parallel execution

calculating overhead, 16-4

execution processing, 1-2, 1-21, 2-5

limiting instances, 18-27

load balancing, 18-33

processor affinity, A-15

scalability, 12-2

speedup and scaleup, 1-12

under Oracle Parallel Server, 1-21

parallel mode

file operation restrictions, A-17, A-19, B-2

recovery restrictions, A-22

sequence restrictions, 6-7, B-3

shutdown, 18-26

startup, 18-9

PARALLEL option, 18-13

PARALLEL parameter

obsolete for 8.0.4, A-6

parallel processing

benefits, 1-12

characteristics, 1-4

elements of, 1-6

for integrated operations, 1-5

for MPPs, 1-5

for SMPs, 1-5

hardware architecture, 3-2

implementations, 3-2

messaging, 1-11

misconceptions about, 2-12

Oracle configurations, 1-14

types of workload, 1-12

when advantageous, 2-7

when not advantageous, 2-9

parallel processor affinity, A-15

parallel recovery, 22-7, 22-14, 22-15

parallel server, A-4

database configuration, A-4

Index-16

definition, 1-6

installation, A-4

instance affinity for jobs, A-4

listener load balancing, A-3

Oradebug, A-4

startup and shutdown, 18-14, 18-26

parallel transaction recovery

changes for 8.1, A-3

PARALLEL_DEFAULT_MAX_INSTANCES

parameter

obsolete for 8.1, A-5

PARALLEL_DEFAULT_MAXSCANS

parameter, 18-11

PARALLEL_INSTANCE_GROUP

parameter, 18-24

PARALLEL_MAX_INSTANCES, initialization

parameter, 18-27

PARALLEL_MAX_SERVERS parameter, 18-28,

22-15

calculating non-PCM resources, 16-4

ensuring LM lock capacity, 16-6

PARALLEL_SERVER parameter, 18-10, 18-13,

18-14, 18-15

new for 8.0., A-5

PARALLEL_TRANSACTION_RECOVERY

parameter

changes for 8.1, A-3

parameter

controlling PCM locks, 9-13

database creation, 11-15, 14-3, 14-4

obsolete, A-21

storage, 6-8, 17-6, 17-8, 17-11

parameter file, 18-3

backing up, 21-1

common file, 18-5, 18-6, 23-7

conversion to multi-instance, 23-6

duplicate values, 18-7

identical parameters, 18-7

NFS access inadvisable, 23-9

PFILE, 18-6, 18-8, 23-5

remote instance, 18-6, 18-8, 18-20

partitioning

application, 12-6

data, 12-7

elements, 2-10

guidelines, 2-10

horizontal, 2-12

vertical, 2-10

partitioning data, 11-12

data files, 6-2, 17-13

free list, 18-16

free lists, 11-2, 11-15, 17-11

index data, 15-5

PCM locks, 11-15, 15-5, 15-6, 17-11

rollback segments, 6-8, 6-9

table data, 11-12, 11-15, 15-5, 17-11

PCM lock

adding datafiles, 15-12

allocating, 15-2

calculating, 15-17

checking for valid number, 15-11, 15-13

contention, 11-15, 15-5, 15-6, 17-11

conversion time, 15-16

estimating number needed, 15-3

exclusive, 9-25

fixed fine grain, 9-4

fixed hashed, 9-3

index data, 15-5

mapping blocks to, 9-6, 11-15, 17-11

planning, 15-2

releasable fine grain, 9-3

releasable hashed, 9-4

resources, 15-17

sessions waiting, 15-17

set of files, 9-7

shared, 9-25, 15-5

specifying total number, 14-10

valid lock assignments, 15-11

worksheets, 15-4

PCTFREE, 11-5, 19-6

PCTINCREASE parameter

table extents, 17-11

PCTUSED, 11-5

performance

and lock mastering, 8-9

application, 11-12

benefits of parallel database, 1-13

caching sequences, 6-7

fine grain locking, 9-20

inserts and updates, 11-12

Index-17

Oracle8 features, 4-5

rollback segments, 6-8, 6-9

sequence numbers, 6-7

shared resource system, 1-14

persistent resource, 8-10

PFILE option, 18-6, 18-8

conversion to multi-instance, 23-5

pinging, 9-8, 9-9, 15-14, 15-16

definition, 9-2

false, 9-17

rate, 15-15

ping/write ratio, 19-4

PL/SQL shared memory area, 5-5

PMON process, 5-5

pre-allocating extent, 11-17

prime number, A-7

private rollback segment

acquisition, 6-8

creating, 14-5

individual parameter file, 18-5

specifying, 6-9

private thread, 14-8

privilege

ALTER SYSTEM, 21-10

process free list

definition, 11-5

pinging of segment header, 11-6

PROCESSES parameter, 18-10

calculating non-PCM resources, 16-4

ensuring LM lock capacity, 16-6

processor affinity

parallel execution, A-15

protected write mode, 8-7

public rollback segment

bringing online, 14-6

common parameter file, 18-5

creating, 14-6

owner, 14-6

specifying, 14-6

using by default, 14-6

PUBLIC thread, 14-8

R
random access, 2-8

raw device, 23-4

read consistency

multiversion, 4-6

rollback information, 6-8

read lock mode, 4-15

reader/writer conflicts

and Cache Fusion, 20-1

read-only access, 4-6, 4-15

applications, 2-7

index data, 15-5

read PCM lock, 4-15

read-only tables, 12-2

RECO process, 1-18, 5-5

RECOVER command, 18-19, 22-7, 22-13, 22-15

RECOVER DATABASE statement, 22-7, 22-8

RECOVER DATAFILE statement, 22-7, 22-8

RECOVER TABLESPACE statement, 22-7, 22-8

recovery, 22-1

access to files, 6-2, 22-4

after SHUTDOWN ABORT, 18-27

archive history, 14-4

automatic, 21-7

conversion to multi-instance, 23-9

deferred transaction, A-12

definition, 22-1

detection of error, 19-8

disaster, 22-10, 22-13

FREEZE_DB_FOR_INSTANCE_RECOVERY, 2

2-4

from an offline backup, 22-10

from an online backup, 22-10

from multiple node failure, 22-3

from single-node failure, 22-2

global checkpoint, 21-9

incomplete media, 22-8

instance, 14-4, 18-27, 22-2

instance failure, 22-1

instance recovery, 22-1

log history, 21-7, 22-9

media failure, 6-2, 21-7, 21-10, 22-6, 22-7, A-22

online, 22-2

parallel, 22-14, 22-15

PARALLEL_MAX_SERVERS parameter, 22-15

phases, 22-5

Recovery Manager, 22-8

Index-18

recovery time, 21-10

restrictions, A-22

rolling back, 6-8

setting parallelism, 22-14, 22-15

starting another instance, 14-4

using redo log, 21-12

Recovery Manager, 22-6

archive log backup, 21-7

disaster recovery, 22-10

incomplete media recovery, 22-8

media recovery, 22-8

RECOVERY_PARALLELISM parameter, 18-10,

22-1, 22-14, 22-15

redo log

archiving mode, 21-3

instance recovery, 22-2

log history, 21-6

reconfiguring, 14-9

redo log buffer, 5-5

redo log file

accessibility, 5-9

adding, A-18

archiving, 4-6, 14-9, 21-1, 21-3, 21-10

backup, 21-12

dropping, 21-10, A-18

identified in control file, 6-5

log history, 21-6

log sequence number, 21-5

multiplexed, 21-7

overwriting, 4-6, 21-3

renaming, 21-10, A-18

thread of redo, 6-3

redo thread, 21-4

registration

of instances, 18-28

relative file number, 6-3

releasable freelist waits, 15-13

releasable hashed PCM lock, 9-4, 15-7, 15-9

remote databases, 1-18

remote instance, 18-6, 18-8, 18-20

remote I/O, 2-3

REMOTE_LOGIN_PASSWORDFILE

parameter, 18-26

renaming a file

log switch, 21-10

redo log file, A-18

RENAME FILE option, A-18

replicated systems, 23-1

resource

database, 4-12

operating system, 18-9

persistent, 8-10

releasing, 22-3

response time, 1-10

RESTORE DATABASE statement, 22-8

RESTORE DATAFILE statement, 22-8

RESTORE TABLESPACE statement, 22-8

restrictions

cached sequence, 6-7

changing the redo log, 14-9

deferred rollback segments, A-19

file operations, A-17, A-19, B-2

offline tablespace, 6-8, A-18

recovery, A-22

RETRY option, 18-15

STARTUP PARALLEL command, 18-15

RMAN

ALLOCATE CHANNEL command, 21-8

rollback segment, 14-5

contention, 6-8, 6-9, 14-5

deferred, 6-9, A-19

description, 6-8

distributed locks, 6-9

global constant parameters, 6-9

ID number, 14-5, 14-7

multiple, 6-8, 14-5, 18-15

name, 14-5, 14-7

online, 6-8, 14-7

onlining, A-13

private, 23-9

public, 14-6

public vs. private, 6-9, 14-6, 18-5

specifying, 14-5

SYSTEM, 6-8

tablespace, 6-8, 14-5, 14-7, 23-9

ROLLBACK_SEGMENTS parameter, 6-9, 6-10,

18-10, 18-11

conversion to multi-instance, 23-7

private and public segments, 14-5, 14-6

rolling back

Index-19

instance recovery, 22-3

rollback segments, 6-8

row locks, 4-15

routing, data-dependent, 12-7, 19-6

row cache, 6-6

row level locking, 7-2

DML locks, 10-3

independent of PCM locks, 4-15

resource sharing system, 4-6, 5-4

ROW_CACHE_MULTI_INSTANCE parameter

(Oracle Version 6), A-21

ROW_LOCKING parameter, 18-11

S
scalability

application, 2-6, 2-13

applications, 2-2

database, 2-5

definition, 1-8

determinants, 1-13

disk input and output, 2-3

enhancement for release 7.3, A-11

four levels of, 2-1

hardware, 2-2

network, 2-6

operating system, 2-5

potential, 1-12

relative, 2-8

shared memory system, 2-5

SCN, 4-4

System Change Number, 10-4

SCSI, 3-3

segment

definition, 11-3

header, 7-9

header block, 11-14, 14-7

header contention, 11-6, 19-6

header, contention, 11-6

ID number, 14-5, 14-7

name, 14-7

rollback segment, 6-8

size, 14-7

sequence

data dictionary cache, 4-7, 6-7

log sequence number, 21-5, 21-6

not cached, 6-7, B-3

timestamp, 6-7

sequence number generator

application scalability, 2-6

contention, 2-9

distributed locks, 6-6

LM locks, 4-7

on parallel server, 6-6

restriction, 6-7, B-3

skipping sequence numbers, 6-7

SEQUENCE_CACHE_ENTRIES parameter

obsolete for 8.1, A-5

sequential processing, 1-2, 1-4

SERIALIZABLE parameter, 18-11

Server Manager

privileged commands, 18-19

service connections

to clients, 18-28

SERVICE_NAMES parameter

in instance registration, 18-31

session

multiple, 18-7, 18-21, 18-27

waiting for PCM lock conversion, 15-17

SESSIONS parameter

ensuring LM lock capacity, 16-6

SET INSTANCE command, 18-6, 18-18, 18-20

instance startup, 18-6, 18-20

requires Net8, 18-17

SET UNTIL command, 22-11

shared disk system

advantages, 3-6

implementations, 3-3

scalability, 2-3

with shared nothing system, 3-9

shared exclusive mode, 8-7

shared memory system

scalability, 2-5

tightly coupled, 3-3

shared mode

database access, 4-2

datafiles, 6-2

file operation restrictions, A-18

instance number, 18-16

instance recovery, 22-2

Index-20

recovery restrictions, 22-7

startup, 18-15

shared nothing system

advantages, 3-8

disadvantages, 3-8

disk access, 3-2

massively parallel systems, 3-7

overview, 3-7

scalability, 2-3

with shared disk system, 3-9

SHARED option, 18-13

shared resource system, 17-13

shared SQL area, 5-5, 12-6

SHOW INSTANCE command, 18-19, 18-20

SHOW PARAMETERS command, 18-19, 18-21

instance number, 18-16

SHOW SGA command, 18-19, 18-21

SHUTDOWN command

ABORT option, 18-27

IMMEDIATE option, 18-27

specifying an instance, 18-20

shutting down an instance, 18-26

abnormal shutdown, 18-27

archiving redo log files, 21-10

changing startup order, 18-16

forcing a log switch, 21-10

lost sequence numbers, 6-7

unarchived log files, 21-4

SID parameter, 18-6

single instance database, 1-15

single shared mode, 4-2, 10-5

SINGLE_PROCESS parameter, 18-15

SIZE option

allocating extents, 17-14

SMON process, 5-6

instance recovery, 22-2, 22-3

recovery after SHUTDOWN ABORT, 18-27

transaction recovery, A-13

SMP, 1-15

sort enhancements, A-10

SORT MERGE JOIN, 12-3

sort space, A-10

SORT_DIRECT_WRITES parameter, A-14

space

allocating extents, 17-13

deallocating unused, 17-16

determining unused, 17-16

free blocks, 11-2, 11-17

free list, 11-2

not allocated to instance, 11-6, 17-12

SGA, 18-21

sources of free blocks, 11-6

unavailable in exclusive mode, 17-11

specialized servers, 1-5

speed-down, 1-8, 1-13

speedup

definition, 1-7

with batch processing, 1-13

SQL area

shared, 12-6

SQL statement

instance-specific, 18-18

restrictions, B-2

standby databases, 18-33, 22-16

starting up

after file operations, 15-6, A-18

creating database and, 14-3

during instance recovery, 14-4

exclusive mode, 17-13, 18-12

global constant parameters, 6-9, 18-9

remote instance, 18-6, 18-7, 18-8, 18-20

rollback segments, 6-8, 14-5

shared mode, 18-15, A-18

startup order, 18-16

verifying access to files, 6-2

STARTUP command, 14-3, 18-6, 18-13

MOUNT option, 22-13

OPEN option, 18-13

PFILE option, 18-6, 18-8

specifying an instance, 18-20

static hashing

lock mastering scheme, 8-9

statistics

tuning, 19-2

storage options

clustered tables, 17-6, A-20

extent size, 6-8, 17-11, 17-13, 17-14

index, 17-8

rollback segment, 6-8

table, 17-6

Index-21

stored procedures, 7-8

sub-shared exclusive mode, 8-7

sub-shared mode, 8-7

switch archiving mode, 14-2, 14-9, B-2

symmetric multiprocessor, 2-5, 3-2, 3-4

configuration, 1-15

in loosely coupled system, 3-5

parallel processing, 1-5

synchronization

cost of, 1-10, 1-17, 2-9, 2-11, 2-12

non-PCM, 4-16

overhead, 1-10

SYSDBA, 18-13, 18-21, 18-26, 21-11

SYSOPER, 18-13, 18-21, 18-26, 21-11

system change number (SCN), 10-4

archive file format, 21-5

archiving redo log files, 21-4

incrementation, 4-4

Lamport, 4-7

non-PCM lock, 7-5

redo log history, 21-6

System Global Area (SGA)

in parallel server, 5-5

instance, 5-4

parameter file, 18-3

row cache, 6-6

sequence cache, 6-6

SHOW SGA command, 18-21

statistics, 18-21

SYSTEM rollback segment, 6-8

SYSTEM tablespace, 14-5

system-specific Oracle documentation

archived redo log name, 21-5

client-server processing, 1-20

datafiles, maximum number, B-3

free list overhead, 11-5

instance number range, 17-12

MAXLOGHISTORY default, 21-6

Net8 connect string, 18-17

password file name, 18-26

recovery process allocation, 22-15

redo log archive destination, 21-6

redo log archive format, 21-6

supported Oracle configurations, 1-14

system change number

Lamport, 4-7

SCN, 4-5

T
table

access pattern, 12-2

allocating extents, 11-11, 17-14

cluster, 17-7

contention, 6-8, 17-13

free space unavailable, 17-11

initial storage, 11-17, 17-13

lock, 7-3, 7-6

multiple files, 11-12, 17-13

PCM locks, 11-15, 17-11

read-only, 12-2

tablespace, 6-8

table lock, 10-3

disabling, 16-7

minimizing, 16-6

TABLE_LOCK column, 16-7

tablespace

active rollback segments, 6-8

backup, 4-6, 21-1

creating, 15-6, A-18

data files, A-18

dropping, 15-6, A-18

index data, 15-5

offline, 6-8

online rollback segments, 14-5, 14-7

parallel backup, 21-12

parallel recovery, 22-7

read-only, 15-11

recovery, 22-7, A-22

rollback segment, 6-8, 14-5, 14-7

SYSTEM, 14-5

tables, 6-8

taking offline, 6-8, A-18, A-19

thread

archive file format, 21-5

archiving redo log files, 21-4, 21-10

associated with an instance, 14-8

closed, 21-16

disabled, 14-9

enabled, 21-7, 21-16, 22-10

Index-22

example, 6-3

exclusive mode, 18-15

forced log switch, 21-10

log history, 21-7

number of groups, 6-4

open, 21-7, 21-16

public, 14-8

single, 4-8

THREAD option, 18-18, 21-4, 21-10

creating private thread, 6-3

creating public thread, 6-3

disabling a thread, 14-9

when required, 14-8

THREAD parameter, 14-8, 18-5, 18-10

conversion to multi-instance, 23-7

individual parameter files, 18-5

instance acquiring thread, 6-3

tightly coupled system

hardware architecture, 3-3, 3-5

implementations, 3-2

in loosely coupled cluster, 3-5

performance, 3-4

TM, DML Enqueue, 10-3

TNSNAMES.ORA

configuring for instance registration, 18-29

TP monitor, A-11

trace file

conversion to multi-instance, 23-4

transaction

aborted, 6-8

committed data, 4-6, 21-9

concurrent, 4-6, 4-12, 5-4

free list, 11-4

inserts, 4-8, 11-2

instance failure, 22-3

isolation, 4-15

lock, 4-13, 7-2, 7-3, 7-5, 7-6, 10-3

offline tablespace, 6-9, A-19

recovery, A-12

rollback segments, 6-9, A-19

rolling back, 6-8, 22-3

row locking, 4-6, 4-15

sequence numbers, 6-6

updates, 4-6, 11-2

waiting for recovery, 22-3

transaction processing monitor, 12-7

TRANSACTIONS parameter, 6-10

calculating non-PCM resources, 16-4

ensuring LM lock capacity, 16-6

TRANSACTIONS_PER_ROLLBACK

parameter, 6-10

tuning, 19-2

two-phase commits, 1-19

TX, Transaction, 10-3

U
updates

at different times, 2-7

concurrent, 4-6, 11-14

free lists, 11-14, 18-16

instance lock, 9-8

PCM lock, 4-15

performance, 11-12

upgrade

Oracle, 23-1

replicated systems, 23-1

user

benefits of parallel database, 1-14

multiple, 5-4

name and password, 18-20

PUBLIC, 14-6, 14-7

SYS, 14-7

user process

free list, 11-2, 11-15, 17-8

instance shutdown errors, 18-26

manual archiving, 21-4

USER_TABLES table, 16-7

user-level IDLM, 8-10

user-mode IPCs

and Cache Fusion, 20-6

utilities, Oracle

Export, Import, B-1

V
V$ACTIVE_INSTANCES view, 23-4, A-9

V$BH view, 9-10, 19-5, A-7, A-9, A-17

V$CACHE view, 19-5, A-17

V$CACHE_LOCK view, 20-12

Index-23

V$CLASS_PING view, A-7

V$DATAFILE view, 6-3, 15-11

V$DLM_ALL_LOCKS

new view for 8.1, A-2

V$DLM_ALL_LOCKS view, 7-5, 8-11

V$DLM_CONVERT_LOCAL view, 8-11, A-7

V$DLM_CONVERT_REMOTE view, 8-11, A-7

V$DLM_LATCH view, A-7

V$DLM_LOCKS view, 7-5, 8-11

changed for 8.0.4, A-6

V$DLM_MISC view, 8-11, A-7

V$DLM_RESS

new view, A-2

V$DLM_RESS view, 7-5, 8-11

V$FAST_START_SERVERS

view, 22-16, A-3

V$FAST_START_TRANSACTIONS

view, 22-16, A-3

V$FILE_PING view, A-7

V$LE table, 9-20

V$LOCK view, 7-9

V$LOCK_ACTIVITY view, 20-12, A-17

detecting lock conversion, 19-3

V$LOCK_ELEMENT view, 7-9, 9-20

V$LOCKS_WITH_COLLISIONS view, 20-12, A-16

V$LOG_HISTORY view, 21-7

V$LOGFILE view, 6-5

V$PING view, 19-5, 19-6, A-17

V$RECOVERY_LOG view, 21-7

V$RESOURCE_LIMIT view, 16-3, A-7

V$ROLLNAME view, 20-12

V$SESSION_WAIT view, 15-17

V$SORT_SEGMENT view, A-9, A-10

V$SYSSTAT view, 15-13, 22-5, A-7

detecting lock conversion, 19-3

V$SYSTEM_EVENT view, 15-16

V$THREAD view, 23-4

V$WAITSTAT view, 19-6

valid bit, lock element, 9-20

version compatibility

on the same cluster, 18-22

versions, Oracle

compatibility, 17-11, A-17

upgrading, A-1

vertical partitioning, 2-10

VIA

interconnect protocol, 20-6

view

global, 18-25, 20-12

rollback segments, 14-6

virtual memory usage, 19-3

W
wait time, 1-4, 1-10

wait, session, 15-17

workloads

and scaleup, 1-13

balancing, 1-6

mixed, 1-5

partitioning, 1-21

type of, 1-5, 1-12

X
XA interface

library, 8-10

performance enhancement, A-11

recovery enhancement, A-11

XA_RECOVER call, A-11

Index-24

	PDF Directory
	Send Us Your Comments
	Preface
	Contents
	1�Parallel Processing and Parallel Databases
	What Is Parallel Processing? 1-1
	Parallel Processing Defined 1-2
	Problems of Parallel Processing 1-4
	Characteristics of a Parallel System 1-4
	Parallel Processing for SMPs and MPPs 1-5
	Parallel Processing for Integrated Operations 1-5

	What Is a Parallel Server? 1-6
	What Are the Key Elements of Parallel Processing? 1-6
	Speedup and Scaleup: the Goals of Parallel Processing 1-6
	Synchronization: A Critical Success Factor 1-9
	Locking 1-11
	Messaging 1-11

	What Are the Benefits of Parallel Processing? 1-12
	Enhanced Throughput: Scaleup 1-12
	Improved Response Time: Speedup 1-13

	What Are the Benefits of Parallel Databases? 1-13
	Higher Performance 1-13
	High Availability 1-14
	Greater Flexibility 1-14
	More Users 1-14

	Do You Need Parallel Server? 1-14
	Single Instance with Exclusive Access 1-15
	Multi-Instance Database Systems 1-16
	Distributed Database Systems 1-17
	Client-Server Systems 1-20

	What Is the Role of Parallel Execution? 1-21

	2� Implementing Parallel Processing
	The Four Levels of Scalability 2-1
	Scalability of Hardware and Network 2-2
	Scalability of Operating System 2-5
	Scalability of Database Management System 2-5
	Scalability of Application 2-6

	When Is Parallel Processing Advantageous? 2-7
	Data Warehousing Applications 2-7
	Applications Updating Different Data Blocks 2-7
	Failover and High Availability 2-8
	Summary 2-8

	When Is Parallel Processing Not Advantageous? 2-9
	Guidelines for Effective Partitioning 2-10
	Overview 2-10
	Vertical Partitioning 2-10
	Horizontal Partitioning 2-12

	Common Parallel Processing Misconceptions 2-12

	3�Parallel Hardware Architecture
	Overview 3-1
	Parallel Processing Hardware Implementations 3-2
	Application Profiles 3-2

	Required Hardware and Operating System Software 3-3
	High Speed Interconnect 3-3
	Globally Accessible Disk or Shared Disk Subsystem 3-3

	Shared Memory Systems 3-3
	Shared Disk Systems 3-5
	Shared Nothing Systems 3-6
	Overview of Shared Nothing Systems 3-7
	Massively Parallel Systems 3-7
	Summary of Shared Nothing Systems 3-8

	Shared Nothing /Shared Disk Combined Systems 3-9

	4�How Oracle Implements Parallel Processing
	Enabling and Disabling Parallel Server 4-1
	Synchronization 4-3
	Block Level Locking 4-3
	Row Level Locking 4-4
	Space Management 4-4
	System Change Number 4-4

	High Performance Features 4-5
	Fast Commits, Group Commits, and Deferred Writes 4-5
	Row Locking and Multiversion Read Consistency 4-6
	Online Backup and Archiving 4-6
	Cache Fusion 4-6
	Sequence Number Generators 4-7
	Lamport SCN Generation 4-7
	Free Lists 4-8
	Free List Groups 4-8
	Disk Affinity 4-8
	Job and Instance Affinity 4-9
	Transparent Application Failover 4-11

	Cache Coherency 4-12
	Parallel Cache Management Issues 4-12
	Non-PCM Cache Management Issues 4-16

	5�Oracle Instance Architecture for Oracle Parallel Server
	Overview 5-1
	Characteristics of OPS Multi-instance Architecture 5-4
	System Global Area 5-5
	Background Processes 5-5
	Foreground Lock Acquisition 5-6

	Cache Fusion Processing and the Block Server Process 5-7
	Configuration Guidelines for Oracle Parallel Server 5-9

	6�Oracle Database Architecture for the Parallel Server
	File Structures 6-1
	Control Files 6-1
	Datafiles 6-2
	Redo Log Files 6-3

	The Data Dictionary 6-6
	The Sequence Generator 6-6
	The CREATE SEQUENCE Statement 6-6
	The CACHE Option 6-6
	The ORDER Option 6-7

	Rollback Segments 6-7
	Rollback Segments in OPS 6-8
	Parameters Controlling Rollback Segments 6-9
	Public and Private Rollback Segments 6-9
	How Instances Acquire Rollback Segments 6-10

	7�Overview of Locking Mechanisms
	Differentiating Oracle Locking Mechanisms 7-1
	Overview 7-1
	Local Locks 7-2
	Instance Locks 7-4
	The LCK Process 7-6
	The LMON and LMD0 Processes 7-7

	Cost of Locks 7-7
	Oracle Lock Names 7-8
	Lock Name Format 7-8
	PCM Lock Names 7-9
	Non-PCM Lock Names 7-10

	Coordination of Locking Mechanisms by the IDLM 7-12
	The IDLM Tracks Lock Modes 7-12
	The Instance Maps Database Resources to IDLM Resources 7-13
	How IDLM Locks and Instance Locks Relate 7-14
	The IDLM Provides One Lock Per Instance on a Resource 7-16

	8� Integrated Distributed Lock Manager
	What Is the Integrated Distributed Lock Manager? 8-1
	The IDLM Grants and Coordinates Resource Lock Requests 8-1
	Lock Requests Are Queued 8-2
	Asynchronous Traps (ASTs) Communicate Lock Request Status 8-2
	Lock Requests Are Converted and Granted 8-3

	IDLM Lock Modes: Resource Access Rights 8-6
	IDLM Features 8-8
	Distributed Architecture 8-8
	Fault Tolerance 8-8
	Lock Mastering 8-9
	Deadlock Detection 8-9
	Lamport SCN Generation 8-9
	Group-owned Locks 8-9
	Persistent Resources 8-10
	Memory Requirements 8-10
	Support for MTS and XA 8-10
	Views to Monitor IDLM Statistics 8-11

	9�Parallel Cache Management Instance Locks
	PCM Locks and How They Work 9-1
	What PCM Locks Are 9-2
	Allocation and Release of PCM Locks 9-3
	How PCM Locks Operate 9-4
	Number of Blocks per PCM Lock 9-6
	Pinging: Signaling the Need to Update 9-8
	Partitioning to Avoid Pinging 9-9
	Lock Mode and Buffer State 9-10

	How Initialization Parameters Control Blocks and PCM Locks 9-13
	GC_* Initialization Parameters 9-13
	Handling Data Blocks 9-15

	Two Methods of PCM Locking: Fixed and Releasable 9-15
	IDLM Lock Elements and PCM Locks 9-15
	Number of Blocks per PCM Lock 9-17
	Fine Grain Locking: Locks for One or More Blocks 9-18
	How Fine Grain Locking Works 9-19
	Performance Effects of Releasable Locking 9-20
	Applying Fine Grain and Hashed Locking to Different Files 9-21

	How Oracle Assigns Locks to Blocks 9-22
	File to Lock Mapping 9-22
	Number of Locks per Block Class 9-23
	Lock Element Number 9-24

	Examples: Mapping Blocks to PCM Locks 9-24
	Setting GC_FILES_ TO_LOCKS 9-24
	More Sample Hashed Settings of GC_FILES_TO_LOCKS 9-27
	Sample Fine Grain Setting of GC_FILES_TO_LOCKS 9-28

	10�Non-PCM Instance Locks
	Overview 10-1
	Transaction Locks (TX) 10-3
	Table Locks (TM) 10-3
	System Change Number (SC) 10-4
	Library Cache Locks (N[A-Z]) 10-4
	Dictionary Cache Locks (Q[A-Z]) 10-5
	Database Mount Lock (DM) 10-5

	11�Space Management and Free List Groups
	How Oracle Handles Free Space 11-1
	Overview 11-2
	Database Storage Structures 11-2
	Structures for Managing Free Space 11-4
	Example: Free List Groups 11-8

	SQL Options for Managing Free Space 11-11
	Managing Free Space on Multiple Instances 11-11
	Partitioning Free Space into Multiple Free Lists 11-11
	Partitioning Data with Free List Groups 11-12
	How Free Lists and Free List Groups Are Assigned to Instances 11-13

	Free Lists Associated with Instances, Users, and Locks 11-14
	Associating Instances with Free Lists 11-14
	Associating User Processes with Free Lists 11-15
	Associating PCM Locks with Free Lists 11-15

	Controlling Extent Allocation 11-17
	Automatic Allocation of New Extents 11-17
	Pre-allocation of New Extents 11-17
	Moving the High Water Mark of a Segment 11-18

	12�Application Analysis
	How Detailed Must Your Analysis Be? 12-1
	Understanding Your Application Profile 12-2
	Analyzing Application Functions and Table Access Patterns 12-2
	Read-only Tables 12-2
	Random SELECT and UPDATE Tables 12-3
	INSERT, UPDATE, or DELETE Tables 12-4
	Planning the Implementation 12-5

	Partitioning Guidelines 12-5
	Overview 12-5
	Application Partitioning 12-6
	Data Partitioning 12-7

	13�Designing Databases for Parallel Server
	Overview 13-1
	Case Study: From Initial Database Design to OPS 13-2
	"Eddie Bean" Catalog Sales 13-2
	Tables 13-3
	Users 13-3
	Application Profile 13-3

	Analyze Access to Tables 13-4
	Table Access Analysis Worksheet 13-4
	Case Study: Table Access Analysis 13-8

	Analyze Transaction Volume by Users 13-9
	Transaction Volume Analysis Worksheet 13-9
	Case Study: Transaction Volume Analysis 13-10

	Partition Users and Data 13-13
	Case Study: Initial Partitioning Plan 13-13
	Case Study: Further Partitioning Plans 13-14

	Partition Indexes 13-16
	Implement Hashed or Fine Grain Locking 13-17
	Implement and Tune Your Design 13-18

	14�Creating a Database and Objects for Multiple Instances
	Creating a Database for a Multi-instance Environment 14-1
	Summary of Tasks 14-1
	Setting Initialization Parameters for Database Creation 14-2
	Database Creation and Start Up 14-3
	Setting CREATE DATABASE Options 14-3

	Creating Database Objects to Support Multiple Instances 14-5
	Creating Additional Rollback Segments 14-5
	Configuring the Online Redo Log for OPS 14-8
	Providing Locks for Added Datafiles 14-10

	Changing the Value of CREATE DATABASE Options 14-10

	15�Allocating PCM Instance Locks
	Planning the Use and Maintenance of PCM Locks 15-2
	Planning and Maintaining Instance Locks 15-2
	Key to Allocating PCM Locks 15-2
	Examining Datafiles and Data Blocks 15-3
	Using Worksheets to Analyze PCM Lock Needs 15-4
	Mapping Fixed PCM Locks to Data Blocks 15-5
	Partitioning PCM Locks Among Instances 15-6

	Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile 15-6
	GC_FILES_TO_LOCKS Syntax 15-7
	Fixed Lock Examples 15-8
	Releasable Lock Example 15-9
	Guidelines 15-9

	Tips for Setting GC_FILES_TO_LOCKS 15-10
	Providing Room for Growth 15-10
	Checking for Valid Number of Locks 15-11
	Checking for Valid Lock Assignments 15-11
	Setting Tablespaces to Read-only 15-11
	Checking File Validity 15-12
	Adding Datafiles without Changing Parameter Values 15-12

	Setting Other GC_* Parameters 15-12
	Setting GC_RELEASABLE_ LOCKS 15-13
	Setting GC_ROLLBACK_ LOCKS 15-13

	Tuning PCM Locks 15-14
	Detecting False Pinging 15-14
	How Much Time Do PCM Lock Conversions Take? 15-16
	Which Sessions Are Waiting for PCM Lock Conversions to Complete? 15-17
	What Is the Total Number of PCM Locks and Resources Needed? 15-17

	16�Ensuring IDLM Capacity for Resources and Locks
	Overview 16-1
	Planning IDLM Capacity 16-2
	Avoiding Dynamic Allocation of Resources and Locks 16-2
	Computing Lock and Resource Needs 16-2
	Monitoring Resource Utilization 16-3

	Calculating the Number of Non-PCM Resources 16-4
	Adjusting Oracle Initialization Parameters 16-6
	Minimizing Table Locks to Optimize Performance 16-6
	Setting DML_LOCKS to Zero 16-7
	Disabling Table Locks 16-7

	17�Using Free List Groups to Partition Data
	Overview 17-2
	Deciding How to Partition Free Space for Database Objects 17-2
	Database Object Characteristics 17-2
	Free Space Worksheet 17-5

	Setting FREELISTS and FREELIST GROUPS in the CREATE Statement 17-6
	FREELISTS Option 17-6
	FREELIST GROUPS Option 17-6
	Creating Free Lists for Clusters 17-7
	Creating Free Lists for Indexes 17-8

	Associating Instances, Users, and Locks with Free List Groups 17-9
	Associating Instances with Free List Groups 17-10
	Associating User Processes with Free List Groups 17-10
	Associating PCM Locks with Free List Groups 17-11

	Pre-allocating Extents (Optional) 17-11
	The ALLOCATE EXTENT Option 17-11
	Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters 17-13
	Setting the INSTANCE_NUMBER Parameter 17-13
	Examples of Extent Pre-allocation 17-14

	Dynamically Allocating Extents 17-15
	Translation of Block Database Address to Lock Name 17-15
	!blocks with ALLOCATE EXTENT Syntax 17-15

	Identifying and Deallocating Unused Space 17-16
	How to Determine Unused Space 17-16
	Deallocating Unused Space 17-16
	Space Freed by Deletions or Updates 17-16

	18�Administering Multiple Instances
	Overview 18-2
	Oracle Parallel Server Management 18-2
	Defining Multiple Instances with Parameter Files 18-3
	Using a Common Parameter File for Multiple Instances 18-3
	Using Individual Parameter Files for Multiple Instances 18-4
	Embedding a Parameter File Using IFILE 18-5
	Specifying a Non-default Parameter File with PFILE 18-8

	Setting Initialization Parameters for Multiple Instances 18-8
	GC_* Global Cache Parameters 18-9
	Parameter Notes for Multiple Instances 18-10
	Parameters that Must Be Identical on All Instances 18-11

	Determining the Amount of Locks Needed and Setting LM_* Parameters 18-12
	Creating Database Objects for Multiple Instances 18-12
	Starting Instances 18-13
	Enabling Parallel Server and Starting Instances 18-13
	Starting with OPS Disabled 18-14
	Starting in Shared Mode 18-15

	Specifying Instances 18-17
	Differentiating Between Current and Default Instance 18-17
	How SQL Statements Apply to Instances 18-18
	How Server Manager Commands Apply to Instances 18-18

	The Cluster Manager 18-22
	OPS Cluster Administration 18-22
	Specifying Instance Groups 18-23
	Using a Password File to Authenticate Users on Multiple Instances 18-26

	Shutting Down Instances 18-26
	Limiting Instances for Parallel Query 18-27
	PARALLEL_SERVER_INSTANCES 18-28

	Instance Registration and Client/Service Connections 18-28
	How Clients Access Services 18-29
	Configuring Client-to-service Connections 18-31
	Database Instance Registration 18-31
	Connect Time Failover 18-32
	Client Load Balancing 18-32
	Connection Load Balancing 18-32

	Parallel Execution Load Balancing 18-33
	Managed Standby and Standby Databases 18-33

	19�Tuning to Optimize Performance
	General Guidelines 19-1
	Overview 19-2
	Keep Statistics for All Instances 19-2
	Statistics to Keep 19-2
	Change One Parameter at a Time 19-3

	Contention 19-3
	Detecting Lock Conversions 19-3
	Locating Lock Contention within Applications 19-4

	Tuning for High Availability 19-7
	Detection of Error 19-8
	Recovery and Re-mastering of IDLM Locks 19-8
	Recovery of Failed Instance 19-8

	20� Cache Fusion and Inter-instance Performance
	The Role of Cache Fusion in Resolving Cache Coherency Conflicts 20-2
	How Cache Fusion Produces Consistent Read Blocks 20-2
	Partitioning Data to Improve Write/write Conflict Resolution 20-4

	Improved Scalability with Cache Fusion 20-4
	Reduced Context Switches and CPU Utilization 20-5
	Reduced CPU Utilization with User-mode IPCs 20-5
	Reduced I/O for Block Pinging and Reduced X-to-S Lock Conversions 20-6
	Consistent-read Block Transfers by way of High Speed Interconnects 20-6

	The Interconnect and Interconnect Protocols for OPS 20-6
	Influencing Interconnect Processing 20-6
	Supported Interconnect Software 20-7

	Performance Expectations 20-7
	Cache Fusion Block Request Latencies 20-8

	Monitoring Cache Fusion and Inter-instance Performance 20-9
	Goals of Monitoring Cache Fusion and OPS Performance 20-9
	Latency Statistics in OPS 20-9

	Statistics for Monitoring OPS and Cache Fusion 20-11
	Creating OPS Data Dictionary Views with CATPARR.SQL 20-12
	Global Dynamic Performance Views 20-12
	Analyzing Global Cache and Cache Fusion Statistics 20-14
	Analyzing Global Lock Statistics 20-18
	Analyzing IDLM Resource, Lock, Message, and Memory Resource Statistics 20-20
	IDLM Message Statistics 20-23
	Analyzing OPS I/O Statistics 20-26
	Analyzing Lock Conversions by Type 20-29
	Analyzing Latch, OPS, and IDLM-related Statistics 20-31

	Using V$SYSTEM_EVENTS to Identify Performance Problems 20-34
	Events in V$SYSTEM_EVENTS Specifically Related to OPS 20-34
	General Observations 20-35

	21�Backing Up the Database
	Choosing a Backup Method 21-2
	Archiving the Redo Log Files 21-2
	Archiving Mode 21-3
	Automatic or Manual Archiving 21-3
	Archive File Format and Destination 21-5
	Redo Log History in the Control File 21-6
	Backing Up the Archive Logs 21-7

	Checkpoints and Log Switches 21-9
	Checkpoints 21-9
	Forcing a Checkpoint 21-9
	Forcing a Log Switch 21-10
	Forcing a Log Switch on a Closed Thread 21-11

	Backing Up the Database 21-12
	Open and Closed Database Backups 21-12
	Recovery Manager Backup Issues 21-13
	Operating System Backup Issues 21-15

	22�Recovering the Database
	Overview 22-1
	Recovery from Instance Failure 22-2
	Single-node Failure 22-2
	Multiple-node Failure 22-3
	Fast-Start Checkpointing 22-3
	Fast-Start Roll Back 22-3
	Access to Datafiles for Instance Recovery 22-4
	Freezing the Database for Instance Recovery 22-4
	Phases of Oracle Instance Recovery 22-5

	Recovery from Media Failure 22-6
	Complete Media Recovery 22-7
	Incomplete Media Recovery 22-8
	Restoring and Recovering Redo Log Files 22-9
	Disaster Recovery 22-10

	Parallel Recovery 22-14
	Parallel Recovery Using Recovery Manager 22-14
	Parallel Recovery Using Operating System Utilities 22-15
	Fast-start Parallel Rollback in OPS 22-16

	Managed Standby and Standby Databases 22-16

	23�Migrating from a Single Instance to Parallel Server
	Overview 23-1
	Deciding to Convert 23-2
	Reasons to Convert 23-2
	Reasons Not to Convert 23-2

	Preparing to Convert 23-2
	Hardware and Software Requirements 23-3
	Converting the Application from Single- to Multi-instance 23-3
	Administrative Issues 23-3

	Converting the Database from Single- to Multi-instance 23-4
	Troubleshooting the Conversion 23-9
	Database Recovery After Conversion 23-9
	Loss of Rollback Segment Tablespace 23-9
	Inadvisable NFS Mounting of Parameter File 23-9

	Differences Between 8.0.4 and 8.1 A-1
	Cache Fusion Architecture Changes A-1
	New Views A-2
	Removal of GMS A-2
	Parallel Transaction Recovery is now "Fast-Start Parallel Rollback" A-2
	Changes to Instance Registration A-3
	Listener Load Balancing A-3
	Diagnostic Enhancements A-4
	Oracle Parallel Server Management (OPSM) A-4
	Parallel Server Installation and Database Configuration A-4
	Instance Affinity for Jobs A-4
	Obsolete Parameters A-5

	Differences Between Release 8.0.3 and Release 8.0.4 A-5
	New Initialization Parameters A-5
	Obsolete Initialization Parameters A-5
	Obsolete Startup Parameters A-6
	Dynamic Performance Views A-6
	Group Membership Services A-6

	Differences Between Release 7.3 and Release 8.0.3 A-6
	New Initialization Parameters A-6
	Obsolete GC_* Parameters A-6
	Changed GC_* Parameters A-7
	Dynamic Performance Views A-7
	Global Dynamic Performance Views A-7
	Integrated Distributed Lock Manager A-8
	Instance Groups A-8
	Group Membership Services A-8
	Fine Grain Locking A-8
	Client-side Application Failover A-8
	Recovery Manager A-8

	Differences Between Release 7.2 and Release 7.3 A-9
	Initialization Parameters A-9
	Data Dictionary Views A-9
	Dynamic Performance Views A-9
	Free List Groups A-9
	Fine Grain Locking A-9
	Instance Registration A-10
	Sort Improvements A-10
	XA Performance Improvements A-11
	XA Recovery Enhancements A-11
	Deferred Transaction Recovery A-12
	Load Balancing at Connect A-13
	Bypassing Cache for Sort Operations A-14
	Delayed-Logging Block Cleanout A-14
	Parallel Query Processor Affinity A-15

	Differences Between Release 7.1 and Release 7.2 A-15
	Pre-allocating Space Unnecessary A-15
	Data Dictionary Views A-15
	Dynamic Performance Views A-16
	Free List Groups A-16
	Table Locks A-16
	Lock Processes A-16

	Differences Between Release 7.0 and Release 7.1 A-17
	Initialization Parameters A-17
	Dynamic Performance Views A-17

	Differences Between Version 6 and Release 7.0 A-17
	Version Compatibility A-17
	File Operations A-17
	Deferred Rollback Segments A-19
	Redo Logs A-19
	Free Space Lists A-20
	SQL*DBA A-20
	Initialization Parameters A-21
	Archiving A-21
	Media Recovery A-22

	Compatibility B-1
	The Export and Import Utilities B-1
	Compatibility Between Shared and Exclusive Modes B-1

	Restrictions B-2
	Maximum Number of Blocks Allocated at a Time B-2
	Restrictions in Shared Mode B-2

	1 Parallel Processing and Parallel Databases
	What Is Parallel Processing?
	Parallel Processing Defined
	Problems of Parallel Processing
	Characteristics of a Parallel System
	Parallel Processing for SMPs and MPPs
	Parallel Processing for Integrated Operations

	What Is a Parallel Server?
	What Are the Key Elements of Parallel Processing?
	Speedup and Scaleup: the Goals of Parallel Processing
	Speedup
	Scaleup

	Synchronization: A Critical Success Factor
	Overhead
	Cost of Synchronization

	Locking
	Messaging

	What Are the Benefits of Parallel Processing?
	Enhanced Throughput: Scaleup
	Improved Response Time: Speedup

	What Are the Benefits of Parallel Databases?
	Higher Performance
	High Availability
	Greater Flexibility
	More Users

	Do You Need Parallel Server?
	Single Instance with Exclusive Access
	Multi-Instance Database Systems
	Distributed Database Systems
	Client-Server Systems

	What Is the Role of Parallel Execution?

	2 Implementing Parallel Processing
	The Four Levels of Scalability
	Scalability of Hardware and Network
	Bandwidth and Latency
	Disk Input and Output

	Scalability of Operating System
	Scalability of Database Management System
	Scalability of Application

	When Is Parallel Processing Advantageous?
	Data Warehousing Applications
	Applications Updating Different Data Blocks
	OLTP with Partitioned Data
	OLTP with Random Access to a Large Database
	Departmentalized Applications

	Failover and High Availability
	Summary

	When Is Parallel Processing Not Advantageous?
	Guidelines for Effective Partitioning
	Overview
	Vertical Partitioning
	Horizontal Partitioning

	Common Parallel Processing Misconceptions

	3 Parallel Hardware Architecture
	Overview
	Parallel Processing Hardware Implementations
	Application Profiles

	Required Hardware and Operating System Software
	High Speed Interconnect
	Globally Accessible Disk or Shared Disk Subsystem

	Shared Memory Systems
	Shared Disk Systems
	Shared Nothing Systems
	Overview of Shared Nothing Systems
	Massively Parallel Systems
	Summary of Shared Nothing Systems

	Shared Nothing /Shared Disk Combined Systems

	4 How Oracle Implements Parallel Processing
	Enabling and Disabling Parallel Server
	Synchronization
	Block Level Locking
	Row Level Locking
	Space Management
	System Change Number

	High Performance Features
	Fast Commits, Group Commits, and Deferred Writes
	Row Locking and Multiversion Read Consistency
	Online Backup and Archiving
	Cache Fusion
	Sequence Number Generators
	Lamport SCN Generation
	Free Lists
	Free List Groups
	Disk Affinity
	Job and Instance Affinity
	Using the DBMS_JOB Package

	Transparent Application Failover

	Cache Coherency
	Parallel Cache Management Issues
	PCM Lock and Row Lock Independence
	Instance Lock Modes

	Non-PCM Cache Management Issues

	5 Oracle Instance Architecture for Oracle Parallel Server
	Overview
	Characteristics of OPS Multi-instance Architecture
	System Global Area
	Background Processes
	Foreground Lock Acquisition

	Cache Fusion Processing and the Block Server Process
	Configuration Guidelines for Oracle Parallel Server

	6 Oracle Database Architecture for the Parallel Server
	File Structures
	Control Files
	Datafiles
	Redo Log Files

	The Data Dictionary
	The Sequence Generator
	The CREATE SEQUENCE Statement
	The CACHE Option
	The ORDER Option

	Rollback Segments
	Rollback Segments in OPS
	Parameters Controlling Rollback Segments
	Public and Private Rollback Segments
	How Instances Acquire Rollback Segments

	7 Overview of Locking Mechanisms
	Differentiating Oracle Locking Mechanisms
	Overview
	Local Locks
	Latches
	Enqueues

	Instance Locks
	PCM Locks
	Non-PCM Locks
	Many More PCM Locks Than Non-PCM Locks

	The LCK Process
	The LMON and LMD0 Processes

	Cost of Locks
	Oracle Lock Names
	Lock Name Format
	PCM Lock Names
	Non-PCM Lock Names

	Coordination of Locking Mechanisms by the IDLM
	The IDLM Tracks Lock Modes
	The Instance Maps Database Resources to IDLM Resources
	How IDLM Locks and Instance Locks Relate
	The IDLM Provides One Lock Per Instance on a Resource

	8 Integrated Distributed Lock Manager
	What Is the Integrated Distributed Lock Manager?
	The IDLM Grants and Coordinates Resource Lock Requests
	Lock Requests Are Queued
	Asynchronous Traps (ASTs) Communicate Lock Request Status
	Lock Requests Are Converted and Granted

	IDLM Lock Modes: Resource Access Rights
	IDLM Features
	Distributed Architecture
	Fault Tolerance
	Lock Mastering
	Deadlock Detection
	Lamport SCN Generation
	Group-owned Locks
	Persistent Resources
	Memory Requirements
	Support for MTS and XA
	Views to Monitor IDLM Statistics

	9 Parallel Cache Management Instance Locks
	PCM Locks and How They Work
	What PCM Locks Are
	Allocation and Release of PCM Locks
	Allocation of Releasable Fine Grain Locks
	Allocation of Fixed Hashed Locks
	Allocation of Releasable Hashed Locks
	Allocation of Fixed Fine Grain Locks

	How PCM Locks Operate
	PCM Locks Are Owned by Instance LCK Processes
	Locks Convert from One Mode to Another
	Multiple Instances Can Own the Same Locks

	Number of Blocks per PCM Lock
	Example
	Periodicity of Hashed PCM Locks

	Pinging: Signaling the Need to Update
	Partitioning to Avoid Pinging
	Lock Mode and Buffer State
	Finding the State of a Buffer
	How Buffer State and Lock Mode Change
	Lock Modes May Be Compatible or Incompatible

	How Initialization Parameters Control Blocks and PCM Locks
	GC_* Initialization Parameters
	Handling Data Blocks

	Two Methods of PCM Locking: Fixed and Releasable
	IDLM Lock Elements and PCM Locks
	Lock Elements for Fixed PCM Locks
	Lock Elements for Fine Grain PCM Locks
	Lock Elements for DBA Fine Grain PCM Locks

	Number of Blocks per PCM Lock
	Fixed Locks for Multiple Blocks

	Fine Grain Locking: Locks for One or More Blocks
	How Fine Grain Locking Works
	Performance Effects of Releasable Locking
	Applying Fine Grain and Hashed Locking to Different Files

	How Oracle Assigns Locks to Blocks
	File to Lock Mapping
	Number of Locks per Block Class
	Lock Element Number

	Examples: Mapping Blocks to PCM Locks
	Setting GC_FILES_ TO_LOCKS
	More Sample Hashed Settings of GC_FILES_TO_LOCKS
	Sample Fine Grain Setting of GC_FILES_TO_LOCKS

	10 Non-PCM Instance Locks
	Overview
	Transaction Locks (TX)
	Table Locks (TM)
	System Change Number (SC)
	Library Cache Locks (N[A-Z])
	Dictionary Cache Locks (Q[A-Z])
	Database Mount Lock (DM)

	11 Space Management and Free List Groups
	How Oracle Handles Free Space
	Overview
	Database Storage Structures
	Segments and Extents
	High Water Mark

	Structures for Managing Free Space
	Transaction Free Lists
	Process Free Lists
	Free List Groups
	The Master Free List
	Avoiding Contention for the Segment Header and Master Free LIst

	Example: Free List Groups
	A Simple Case
	A More Complicated Case

	SQL Options for Managing Free Space
	Managing Free Space on Multiple Instances
	Partitioning Free Space into Multiple Free Lists
	Partitioning Data with Free List Groups
	How Free Lists and Free List Groups Are Assigned to Instances

	Free Lists Associated with Instances, Users, and Locks
	Associating Instances with Free Lists
	Assignment of New Instances to Existing Free List Groups
	FREELIST GROUPS and MAXINSTANCES

	Associating User Processes with Free Lists
	Associating PCM Locks with Free Lists

	Controlling Extent Allocation
	Automatic Allocation of New Extents
	Pre-allocation of New Extents
	Pre-allocating Extents to Free List Groups
	Dynamic Allocation of Blocks on Lock Boundaries

	Moving the High Water Mark of a Segment

	12 Application Analysis
	How Detailed Must Your Analysis Be?
	Understanding Your Application Profile
	Analyzing Application Functions and Table Access Patterns
	Read-only Tables
	Random SELECT and UPDATE Tables
	INSERT, UPDATE, or DELETE Tables
	Planning the Implementation

	Partitioning Guidelines
	Overview
	Application Partitioning
	Data Partitioning

	13 Designing Databases for Parallel Server
	Overview
	Case Study: From Initial Database Design to OPS
	"Eddie Bean" Catalog Sales
	Tables
	Users
	Application Profile

	Analyze Access to Tables
	Table Access Analysis Worksheet
	Estimating Volume of Operations
	Calculating I/Os per Operation
	I/Os per Operation for Sample Tables

	Case Study: Table Access Analysis

	Analyze Transaction Volume by Users
	Transaction Volume Analysis Worksheet
	Case Study: Transaction Volume Analysis
	ORDER_HEADER Table
	ORDER_ITEMS Table
	ACCOUNTS_PAYABLE Table

	Partition Users and Data
	Case Study: Initial Partitioning Plan
	Case Study: Further Partitioning Plans
	Design Option 1
	Design Option 2

	Partition Indexes
	Implement Hashed or Fine Grain Locking
	Implement and Tune Your Design

	14 Creating a Database and Objects for Multiple Instances
	Creating a Database for a Multi-instance Environment
	Summary of Tasks
	Setting Initialization Parameters for Database Creation
	Using ARCHIVELOG Mode

	Database Creation and Start Up
	Setting CREATE DATABASE Options
	Setting MAXINSTANCES
	Setting MAXLOGFILES and MAXLOGMEMBERS
	Setting MAXLOGHISTORY
	Setting MAXDATAFILES

	Creating Database Objects to Support Multiple Instances
	Creating Additional Rollback Segments
	Using Private Rollback Segments
	Using Public Rollback Segments
	Monitoring Rollback Segments

	Configuring the Online Redo Log for OPS
	Creating Threads
	Disabling Threads
	Setting the Log’s Mode
	Changing the Redo Log

	Providing Locks for Added Datafiles

	Changing the Value of CREATE DATABASE Options

	15 Allocating PCM Instance Locks
	Planning the Use and Maintenance of PCM Locks
	Planning and Maintaining Instance Locks
	Key to Allocating PCM Locks
	Examining Datafiles and Data Blocks
	How to Determine File ID, Tablespace Name, and Number of Blocks
	How Many Locks Do You Need?

	Using Worksheets to Analyze PCM Lock Needs
	Mapping Fixed PCM Locks to Data Blocks
	Partitioning PCM Locks Among Instances

	Setting GC_FILES_TO_LOCKS: PCM Locks for Each Datafile
	GC_FILES_TO_LOCKS Syntax
	Fixed Lock Examples
	Releasable Lock Example
	Guidelines

	Tips for Setting GC_FILES_TO_LOCKS
	Providing Room for Growth
	Checking for Valid Number of Locks
	Checking for Valid Lock Assignments
	Setting Tablespaces to Read-only
	Checking File Validity
	Adding Datafiles without Changing Parameter Values

	Setting Other GC_* Parameters
	Setting GC_RELEASABLE_ LOCKS
	Setting GC_ROLLBACK_ LOCKS

	Tuning PCM Locks
	Detecting False Pinging
	How Much Time Do PCM Lock Conversions Take?
	Which Sessions Are Waiting for PCM Lock Conversions to Complete?
	What Is the Total Number of PCM Locks and Resources Needed?
	Formula for PCM Locks and Resources
	Calculating PCM Locks and Resources: Example

	16 Ensuring IDLM Capacity for Resources and Locks
	Overview
	Planning IDLM Capacity
	Avoiding Dynamic Allocation of Resources and Locks
	Recommended SHARED_POOL_SIZE Settings

	Computing Lock and Resource Needs
	Monitoring Resource Utilization

	Calculating the Number of Non-PCM Resources
	Adjusting Oracle Initialization Parameters
	Minimizing Table Locks to Optimize Performance
	Setting DML_LOCKS to Zero
	Disabling Table Locks

	17 Using Free List Groups to Partition Data
	Overview
	Deciding How to Partition Free Space for Database Objects
	Database Object Characteristics
	Objects in a Static Table
	Objects in a Partitioned Application
	Objects Relating to Partitioned Data
	Objects in a Table with Random Inserts

	Free Space Worksheet

	Setting FREELISTS and FREELIST GROUPS in the CREATE Statement
	FREELISTS Option
	FREELIST GROUPS Option
	Creating Free Lists for Clusters
	Creating Free Lists for Indexes

	Associating Instances, Users, and Locks with Free List Groups
	Associating Instances with Free List Groups
	Associating User Processes with Free List Groups
	Associating PCM Locks with Free List Groups

	Pre-allocating Extents (Optional)
	The ALLOCATE EXTENT Option
	Setting MAXEXTENTS, MINEXTENTS, and INITIAL Parameters
	Setting the INSTANCE_NUMBER Parameter
	Examples of Extent Pre-allocation

	Dynamically Allocating Extents
	Translation of Block Database Address to Lock Name
	!blocks with ALLOCATE EXTENT Syntax

	Identifying and Deallocating Unused Space
	How to Determine Unused Space
	Deallocating Unused Space
	Space Freed by Deletions or Updates

	18 Administering Multiple Instances
	Overview
	Oracle Parallel Server Management
	Defining Multiple Instances with Parameter Files
	Using a Common Parameter File for Multiple Instances
	Using Individual Parameter Files for Multiple Instances
	Embedding a Parameter File Using IFILE
	Example
	IFILE Use

	Specifying a Non-default Parameter File with PFILE

	Setting Initialization Parameters for Multiple Instances
	GC_* Global Cache Parameters
	Parameter Notes for Multiple Instances
	Parameters that Must Be Identical on All Instances

	Determining the Amount of Locks Needed and Setting LM_* Parameters
	Creating Database Objects for Multiple Instances
	Starting Instances
	Enabling Parallel Server and Starting Instances
	Starting an Instance Using SQL
	Starting an Instance Using Server Manager

	Starting with OPS Disabled
	Starting in Shared Mode
	Retrying to Mount a Database in Shared Mode
	Instance Numbers and Startup Sequence

	Specifying Instances
	Differentiating Between Current and Default Instance
	How SQL Statements Apply to Instances
	How Server Manager Commands Apply to Instances
	The SET INSTANCE and SHOW INSTANCE Commands
	The CONNECT Command

	The Cluster Manager
	OPS Cluster Administration
	Multiple Version Compatibility on Clusters

	Specifying Instance Groups
	How to Specify Instance Groups
	How to Use Instance Groups
	How to List Members of Instance Groups
	Instance Group Example

	Using a Password File to Authenticate Users on Multiple Instances

	Shutting Down Instances
	Limiting Instances for Parallel Query
	PARALLEL_SERVER_INSTANCES

	Instance Registration and Client/Service Connections
	How Clients Access Services
	Configuring Client-to-service Connections
	Database Instance Registration
	Connect Time Failover
	Client Load Balancing
	Connection Load Balancing

	Parallel Execution Load Balancing
	Managed Standby and Standby Databases

	19 Tuning to Optimize Performance
	General Guidelines
	Overview
	Keep Statistics for All Instances
	Statistics to Keep
	Change One Parameter at a Time

	Contention
	Detecting Lock Conversions
	Locating Lock Contention within Applications
	Excessive Lock Convert Rates: Contention for Common Resources
	Excessive Lock Convert Rates through Lack of Locks
	Excessive Lock Convert Rates Due to Constraints

	Tuning for High Availability
	Detection of Error
	Recovery and Re-mastering of IDLM Locks
	Recovery of Failed Instance

	20 Cache Fusion and Inter-instance Performance
	The Role of Cache Fusion in Resolving Cache Coherency Conflicts
	How Cache Fusion Produces Consistent Read Blocks
	Partitioning Data to Improve Write/write Conflict Resolution

	Improved Scalability with Cache Fusion
	Reduced Context Switches and CPU Utilization
	Reduced CPU Utilization with User-mode IPCs
	Reduced I/O for Block Pinging and Reduced X-to-S Lock Conversions
	Consistent-read Block Transfers by way of High Speed Interconnects

	The Interconnect and Interconnect Protocols for OPS
	Influencing Interconnect Processing
	Supported Interconnect Software

	Performance Expectations
	Cache Fusion Block Request Latencies

	Monitoring Cache Fusion and Inter-instance Performance
	Goals of Monitoring Cache Fusion and OPS Performance
	Latency Statistics in OPS
	The Role of Latency in OPS Processing

	Statistics for Monitoring OPS and Cache Fusion
	Creating OPS Data Dictionary Views with CATPARR.SQL
	Global Dynamic Performance Views
	Analyzing Global Cache and Cache Fusion Statistics
	Procedures for Monitoring Global Cache Statistics

	Analyzing Global Lock Statistics
	Procedures for Analyzing Global Lock Statistics

	Analyzing IDLM Resource, Lock, Message, and Memory Resource Statistics
	How IDLM Workloads Affect Performance
	Procedures for Analyzing IDLM Resource and Lock Statistics

	IDLM Message Statistics
	Procedures for Analyzing IDLM Message Statistics

	Analyzing OPS I/O Statistics
	Procedures for Analyzing OPS I/O Statistics

	Analyzing Lock Conversions by Type
	Using V$LOCK_ACTIVITY to Analyze Lock Conversions
	Using V$CLASS_PING to Identify Pinging by Block Class
	Using V$PING to Identify Hot Objects

	Analyzing Latch, OPS, and IDLM-related Statistics
	Procedures for Analyzing Latch, OPS, and IDLM-related Statistics

	Using V$SYSTEM_EVENTS to Identify Performance Problems
	Events in V$SYSTEM_EVENTS Specifically Related to OPS
	Events Related to Non-PCM Resources

	General Observations

	21 Backing Up the Database
	Choosing a Backup Method
	Archiving the Redo Log Files
	Archiving Mode
	Automatic or Manual Archiving
	Automatic Archiving
	Manual Archiving
	ALTER SYSTEM ARCHIVE LOG Options for Manual Archiving
	Monitoring the Archiving Process

	Archive File Format and Destination
	Redo Log History in the Control File
	Backing Up the Archive Logs
	Node to Log Affinity
	Backing Up Archive Logs with Recovery Manager
	Restoring Archive Logs with Recovery Manager
	Using the CONNECT Option of the ALLOCATE CHANNEL Command

	Checkpoints and Log Switches
	Checkpoints
	Forcing a Checkpoint
	Forcing a Log Switch
	Forcing a Log Switch on a Closed Thread

	Backing Up the Database
	Open and Closed Database Backups
	Recovery Manager Backup Issues
	Preparing for Snapshot Control Files in Recovery Manager
	Performing an Open Backup Using Recovery Manager
	Node Affinity Awareness

	Operating System Backup Issues
	Beginning and Ending an Open Backup Using Operating System Utilities
	Performing an Open Backup Using Operating System Utilities

	22 Recovering the Database
	Overview
	Recovery from Instance Failure
	Single-node Failure
	Multiple-node Failure
	Fast-Start Checkpointing
	Fast-Start Roll Back
	Access to Datafiles for Instance Recovery
	Freezing the Database for Instance Recovery
	Phases of Oracle Instance Recovery

	Recovery from Media Failure
	Complete Media Recovery
	Complete Media Recovery Using Operating System Utilities
	Complete Media Recovery Using Recovery Manager

	Incomplete Media Recovery
	Restoring and Recovering Redo Log Files
	Recovery Using Recovery Manager
	Recovery Using Operating System Utilities

	Disaster Recovery
	Disaster Recovery Using Recovery Manager
	Disaster Recovery Using Operating System Utilities

	Parallel Recovery
	Parallel Recovery Using Recovery Manager
	Parallel Recovery Using Operating System Utilities
	Setting the RECOVERY_ PARALLELISM Parameter
	Specifying RECOVER Command Options

	Fast-start Parallel Rollback in OPS

	Managed Standby and Standby Databases

	23 Migrating from a Single Instance to Parallel Server
	Overview
	Deciding to Convert
	Reasons to Convert
	Reasons Not to Convert

	Preparing to Convert
	Hardware and Software Requirements
	Converting the Application from Single- to Multi-instance
	Administrative Issues

	Converting the Database from Single- to Multi-instance
	Troubleshooting the Conversion
	Database Recovery After Conversion
	Loss of Rollback Segment Tablespace
	Inadvisable NFS Mounting of Parameter File

	A Differences Among Versions
	Differences Between 8.0.4 and 8.1
	Cache Fusion Architecture Changes
	New Views
	Removal of GMS
	Parallel Transaction Recovery is now "Fast-Start Parallel Rollback"
	Changes to Instance Registration
	Listener Load Balancing
	Diagnostic Enhancements
	Oracle Parallel Server Management (OPSM)
	Parallel Server Installation and Database Configuration
	Instance Affinity for Jobs
	Obsolete Parameters

	Differences Between Release 8.0.3 and Release 8.0.4
	New Initialization Parameters
	Obsolete Initialization Parameters
	Obsolete Startup Parameters
	Dynamic Performance Views
	Group Membership Services

	Differences Between Release 7.3 and Release 8.0.3
	New Initialization Parameters
	Obsolete GC_* Parameters
	Changed GC_* Parameters
	Dynamic Performance Views
	Global Dynamic Performance Views
	Integrated Distributed Lock Manager
	Instance Groups
	Group Membership Services
	Fine Grain Locking
	Client-side Application Failover
	Recovery Manager

	Differences Between Release 7.2 and Release 7.3
	Initialization Parameters
	Data Dictionary Views
	Dynamic Performance Views
	Free List Groups
	Fine Grain Locking
	Instance Registration
	Sort Improvements
	XA Performance Improvements
	XA Recovery Enhancements
	Deferred Transaction Recovery
	Fast Warmstart
	Transaction Recovery

	Load Balancing at Connect
	Bypassing Cache for Sort Operations
	Delayed-Logging Block Cleanout
	Parallel Query Processor Affinity

	Differences Between Release 7.1 and Release 7.2
	Pre-allocating Space Unnecessary
	Data Dictionary Views
	Dynamic Performance Views
	Free List Groups
	Table Locks
	Lock Processes

	Differences Between Release 7.0 and Release 7.1
	Initialization Parameters
	Dynamic Performance Views

	Differences Between Version 6 and Release 7.0
	Version Compatibility
	File Operations
	Deferred Rollback Segments
	Redo Logs
	ALTER SYSTEM SWITCH LOGFILE
	Initialization Parameters

	Free Space Lists
	Space Freed by Deletions and Updates
	Free Lists for Clusters
	Initialization Parameters
	Import/Export

	SQL*DBA
	Initialization Parameters
	New Parameters
	Obsolete Parameters

	Archiving
	Media Recovery

	B Restrictions
	Compatibility
	The Export and Import Utilities
	Compatibility Between Shared and Exclusive Modes

	Restrictions
	Maximum Number of Blocks Allocated at a Time
	Restrictions in Shared Mode
	Restricted SQL Statements
	Maximum Number of Datafiles
	Sequence Number Generators
	Free Lists with Import and Export Utilities

	Index

