
Oracle8 i

Application Developer’s Guide - Fundamentals

Release 8.1.5

February 1999

Part No. A68003-01

Application Developer’s Guide - Fundamentals, Release 8.1.5

Part No. A68003-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Denis Raphaely

Contributing Authors: M. Cyran, J. Gibb, V. Krishnamurthy, M. Krishnaprasad, J. Melnick, R. Smith, R.
Urbano

Contributors: D. Alpern, A. Amor, G. Arora, V.Arora, J. Basu, R. Baylis, E. Beldin, S. Chandrasekar, T.
Chang, A. Chaudry, W. Creekbaum, D. Das, M. Davidson, G. Doherty, J. Draaijer, B. Goyal, M. Hartstein,
J. Haydu, K. Jacobs, M. Jaganath, N. Jain, H. Jakobsson, A. Jasuja, R. Jenkins Jr., R. Kasamsetty, J. Klein,
R. Kooi, S. Krishnamurthy, R. Krishnan, S. Krishnaswamy, P. Lane, N. Le, C. Lei, L. Leverenz, J. Loaiza,
D. Lorentz, W. Maimone, D. McMahon, A. Mendelsohn, M. Moore, R. Murthy, K. Muthiah, K.
Muthukkaruppan, R. Narayaran, T. Nhu Bui, V. Nimani, T. Portfolio, M. Pratt, S. Puranik, T. Pystynen,
M. Ramacher, S. Samu, U. Sangam, A. Sethi, P. Shah, N. Shariatpanahy, T. Smith, J. Srinivasan, S.
Subramanian, U. Sundaram, D. Surber, S. Suri, N. Tang, J. Tsai, A. Tsukerman, S. Urman, P. Vasterd, G.
Viswana, W. Wang, D. Wong, B. Wright, R. Yaseen

Graphic Designer: V. Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle is a registerd trademark, and Pro*Ada, Pro*COBOL, Pro*FORTRAN, SQL*Loader, SQL*Net,
SQL*Plus, Designer/2000, Developer/2000, Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle8i,
Oracle Forms, Oracle Parallel Server, PL/SQL, Pro*C, Pro*C/C++ and Trusted Oracle are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used
for identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xxi

Preface .. xxiii

Information in This Guide.. xxiv
Audience ... xxiv
Feature Coverage and Availability ... xxiv
Other Guides ... xxv
How This Book Is Organized... xxvi
Conventions Used in This Guide .. xxix
Your Comments Are Welcome ... xxx

Part I Introduction To Working With The Server

1 Programmatic Environments

What Can PL/SQL Do?... 1 - 2
How Does PL/SQL Work?.. 1 - 2
What Advantages Does PL/SQL Offer? ... 1 - 3

Overview of OCI... 1 - 7
Advantages of OCI ... 1 - 8
Parts of the OCI... 1 - 8
Procedural and Non-Procedural Elements ... 1 - 9
Building an OCI Application .. 1 - 10

Overview of Oracle Objects for OLE .. 1 - 11
The OO4O Automation Server ... 1 - 12
iii

OO4O Object Model ... 1 - 13
Support for Oracle LOB and Object Datatypes .. 1 - 17
The Oracle Data Control .. 1 - 19
The Oracle Objects for OLE C++ Class Library.. 1 - 19
Additional Sources of Information... 1 - 19

Pro*C/C++... 1 - 20
How You Implement a Pro*C/C++ Application ... 1 - 20
Highlights of Pro*C/C++ Features .. 1 - 21
New Oracle8i Features Supported ... 1 - 22

Pro*COBOL .. 1 - 23
How You Implement a Pro*COBOL Application .. 1 - 23
Highlights of Pro*COBOL Features ... 1 - 24
New Oracle8i Features Supported ... 1 - 25

Oracle JDBC ... 1 - 26
JDBC Thin Driver.. 1 - 26
JDBC OCI Driver... 1 - 26
The JDBC Server Driver ... 1 - 27
Extensions of JDBC... 1 - 27
Sample Program for the JDBC Thin Driver .. 1 - 27
Java in the RDBMS.. 1 - 29
Why Use Stored Procedures?.. 1 - 29
JDBC in SQLJ Applications ... 1 - 30

Oracle SQLJ.. 1 - 31
SQLJ Tool ... 1 - 31
SQLJ Design Goals.. 1 - 32
Strengths of Oracle’s SQLJ Implementation ... 1 - 32
Comparison of SQLJ with JDBC ... 1 - 32
SQLJ Example for Object Types.. 1 - 34
SQLJ Stored Procedures in the Server ... 1 - 37

2 Visual Modelling for Software Development

Why Employ Visual Modelling?.. 2 - 2
Unified Modelling Language.. 2 - 2
Illustrations and Diagrams.. 2 - 2

Use Cases .. 2 - 5
iv

Use Case Diagrams... 2 - 6
State Diagrams .. 2 - 13

Part II Designing the Database

3 Managing Schema Objects

Managing Tables .. 3 - 2
Designing Tables .. 3 - 3
Creating Tables .. 3 - 4
Altering Tables ... 3 - 9
Dropping Tables .. 3 - 10

Managing Temporary Tables .. 3 - 12
Creating Temporary Tables .. 3 - 12
Using Temporary Tables ... 3 - 13
Examples: Using Temporary Tables .. 3 - 14

Managing Views ... 3 - 22
Creating Views .. 3 - 22
Replacing Views .. 3 - 24
Using Views .. 3 - 25
Dropping Views ... 3 - 27

Modifying a Join View ... 3 - 28
Key-Preserved Tables .. 3 - 29
Rule for DML Statements on Join Views .. 3 - 30
Using the UPDATABLE_COLUMNS Views.. 3 - 33
Outer Joins .. 3 - 33

Managing Sequences ... 3 - 36
Creating Sequences ... 3 - 36
Altering Sequences .. 3 - 37
Using Sequences ... 3 - 37
Dropping Sequences ... 3 - 41

Managing Synonyms ... 3 - 43
Creating Synonyms ... 3 - 43
Using Synonyms .. 3 - 43
Dropping Synonyms ... 3 - 44

Miscellaneous Management Topics for Schema Objects.. 3 - 45
v

Creating Multiple Tables and Views in One Operation ... 3 - 45
Naming Schema Objects .. 3 - 46
Name Resolution in SQL Statements .. 3 - 46
Renaming Schema Objects .. 3 - 48
Renaming the Schema ... 3 - 48
Listing Information about Schema Objects ... 3 - 50

4 Selecting a Datatype

Oracle Built-In Datatypes.. 4 - 2
Using Character Datatypes.. 4 - 5
Using the NUMBER Datatype .. 4 - 7
Using the DATE Datatype... 4 - 8
Establishing Year 2000 Compliance ... 4 - 9
Using the LONG Datatype .. 4 - 15
Using RAW and LONG RAW Datatypes.. 4 - 18
ROWIDs and the ROWID Datatype... 4 - 18

Trusted Oracle MLSLABEL Datatype ... 4 - 23
ANSI/ISO, DB2, and SQL/DS Datatypes ... 4 - 24
Data Conversion ... 4 - 25

Rule 1: Assignments ... 4 - 25
Rule 2: Expression Evaluation .. 4 - 27
Data Conversion for Trusted Oracle .. 4 - 28

5 Maintaining Data Integrity

Using Integrity Constraints... 5 - 2
When to Use Integrity Constraints .. 5 - 2
Taking Advantage of Integrity Constraints ... 5 - 3
Using NOT NULL Integrity Constraints .. 5 - 3
Setting Default Column Values ... 5 - 4
Choosing a Table’s Primary Key ... 5 - 5
Using UNIQUE Key Integrity Constraints .. 5 - 6

Using Referential Integrity Constraints ... 5 - 7
Nulls and Foreign Keys ... 5 - 7
Relationships Between Parent and Child Tables ... 5 - 9
Multiple FOREIGN KEY Constraints ... 5 - 10
vi

Concurrency Control, Indexes, and Foreign Keys... 5 - 10
Referential Integrity in a Distributed Database ... 5 - 14
Using CHECK Integrity Constraints... 5 - 15

Restrictions on CHECK Constraints ... 5 - 15
Designing CHECK Constraints ... 5 - 16
Multiple CHECK Constraints .. 5 - 16
CHECK and NOT NULL Integrity Constraints .. 5 - 16

Defining Integrity Constraints .. 5 - 18
The CREATE TABLE Command ... 5 - 18
The ALTER TABLE Command .. 5 - 18
Required Privileges ... 5 - 19
Naming Integrity Constraints .. 5 - 20
Enabling and Disabling Constraints Upon Definition ... 5 - 20
UNIQUE Key, PRIMARY KEY, and FOREIGN KEY.. 5 - 20

Enabling and Disabling Integrity Constraints ... 5 - 21
Why Enable or Disable Constraints? .. 5 - 21
Integrity Constraint Violations .. 5 - 21
On Definition .. 5 - 22
Enabling and Disabling Defined Integrity Constraints .. 5 - 23
Enabling and Disabling Key Integrity Constraints.. 5 - 24
Enabling Constraints after a Parallel Direct Path Load .. 5 - 24
Exception Reporting .. 5 - 25

Altering Integrity Constraints .. 5 - 27
Examples of MODIFY CONSTRAINT .. 5 - 27

Dropping Integrity Constraints ... 5 - 29
Managing FOREIGN KEY Integrity Constraints .. 5 - 30

Defining FOREIGN KEY Integrity Constraints ... 5 - 30
Enabling FOREIGN KEY Integrity Constraints .. 5 - 31

Listing Integrity Constraint Definitions ... 5 - 32
Examples.. 5 - 32

6 Selecting an Index Strategy

Managing Indexes .. 6 - 2
Creating Indexes .. 6 - 5
Dropping Indexes .. 6 - 6
vii

Function-Based Indexes ... 6 - 6
Using Function-Based Indexes.. 6 - 7
Example Function-Based Indexes... 6 - 11
Restrictions on Function-Based Indexes.. 6 - 12

Managing Clusters, Clustered Tables, and Cluster Indexes... 6 - 14
Guidelines for Creating Clusters .. 6 - 14
Performance Considerations .. 6 - 15
Creating Clusters, Clustered Tables, and Cluster Indexes ... 6 - 15
Manually Allocating Storage for a Cluster .. 6 - 17
Dropping Clusters, Clustered Tables, and Cluster Indexes .. 6 - 17

Managing Hash Clusters and Clustered Tables ... 6 - 20
Creating Hash Clusters and Clustered Tables ... 6 - 20
Controlling Space Usage Within a Hash Cluster ... 6 - 20
Dropping Hash Clusters ... 6 - 21
When to Use Hashing .. 6 - 21

7 Managing Index-Organized Tables

Overview of Index-Organized Tables ... 7 - 2
Index-Organized Tables versus Ordinary Tables .. 7 - 2
Advantages of Index-Organized Tables.. 7 - 2

Features of Index-Organized Tables.. 7 - 4
When to Use Index-Organized Tables .. 7 - 7
Example... 7 - 9

8 Processing SQL Statements

SQL Statement Execution ... 8 - 2
FIPS Flagging .. 8 - 2

Controlling Transactions ... 8 - 4
Improving Performance... 8 - 4
Committing a Transaction .. 8 - 5
Rolling Back a Transaction ... 8 - 6
Defining a Transaction Savepoint ... 8 - 6
Privileges Required for Transaction Management .. 8 - 7

Read-Only Transactions .. 8 - 8
Using Cursors ... 8 - 9
viii

Declaring and Opening Cursors .. 8 - 9
Using a Cursor to Re-Execute Statements... 8 - 9
Closing Cursors .. 8 - 10
Cancelling Cursors .. 8 - 10

Explicit Data Locking .. 8 - 11
Explicitly Acquiring Table Locks .. 8 - 12
Privileges Required ... 8 - 16

Explicitly Acquiring Row Locks ... 8 - 17
SERIALIZABLE and ROW_LOCKING Parameters .. 8 - 19

Summary of Non-Default Locking Options ... 8 - 19
User Locks .. 8 - 21

Creating User Locks .. 8 - 21
Sample User Locks ... 8 - 21
Viewing and Monitoring Locks.. 8 - 22

Concurrency Control Using Serializable Transactions .. 8 - 23
Serializable Transaction Interaction... 8 - 26
Setting the Isolation Level .. 8 - 26
Referential Integrity and Serializable Transactions... 8 - 27
READ COMMITTED and SERIALIZABLE Isolation.. 8 - 29
Application Tips ... 8 - 32

Autonomous Transactions... 8 - 33
Examples.. 8 - 36
Defining Autonomous Transactions.. 8 - 41

9 Dynamic SQL

What Is Dynamic SQL?.. 9 - 2
When to Use Dynamic SQL .. 9 - 3

To Execute Dynamic DML Statements.. 9 - 3
To Execute Statements Not Supported by Static SQL in PL/SQL 9 - 3
To Execute Dynamic Queries.. 9 - 4
To Reference Database Objects that Do Not Exist at Compilation...................................... 9 - 5
To Optimize Execution Dynamically .. 9 - 6
To Invoke Dynamic PL/SQL Blocks.. 9 - 7
To Perform Dynamic Operations Using Invoker-Rights .. 9 - 8

A Dynamic SQL Scenario Using Native Dynamic SQL ... 9 - 9
ix

Data Model .. 9 - 9
Sample DML Operation... 9 - 10
Sample DDL Operation.. 9 - 10
Sample Dynamic Single-Row Query ... 9 - 11
Sample Dynamic Multiple-Row Query... 9 - 12

Native Dynamic SQL vs. the DBMS_SQL Package ... 9 - 12
Advantages of Native Dynamic SQL... 9 - 13
Advantages of the DBMS_SQL Package ... 9 - 17
Examples of DBMS_SQL Package Code and Native Dynamic SQL Code....................... 9 - 19

Application Development Languages Other Than PL/SQL... 9 - 24

10 Using Procedures and Packages

PL/SQL Program Units .. 10 - 2
Anonymous Blocks .. 10 - 2
Stored Program Units (Procedures, Functions, and Packages) ... 10 - 5

Wrapping PL/SQL Code ... 10 - 27
Remote Dependencies .. 10 - 28

Timestamps... 10 - 28
Signatures ... 10 - 29
Controlling Remote Dependencies .. 10 - 35

Cursor Variables .. 10 - 38
Declaring and Opening Cursor Variables ... 10 - 38
Examples of Cursor Variables.. 10 - 38

Compile-Time Errors ... 10 - 42
Run-Time Error Handling .. 10 - 44

Declaring Exceptions and Exception Handling Routines ... 10 - 45
Unhandled Exceptions ... 10 - 46
Handling Errors in Distributed Queries .. 10 - 47
Handling Errors in Remote Procedures .. 10 - 47

Debugging .. 10 - 49
Calling Stored Procedures.. 10 - 50
Calling Remote Procedures ... 10 - 54

Synonyms for Procedures and Packages ... 10 - 56
Calling Stored Functions from SQL Expressions .. 10 - 57

Using PL/SQL Functions .. 10 - 57
x

Syntax ... 10 - 58
Naming Conventions ... 10 - 58
Meeting Basic Requirements... 10 - 60
Controlling Side Effects ... 10 - 61
Overloading... 10 - 69
Serially Reusable PL/SQL Packages.. 10 - 70

11 External Routines

The Need to Work with Multiple Languages.. 11 - 1
What is an External Routine? ... 11 - 3
The Call Specification .. 11 - 3
Loading External Routines.. 11 - 4

Loading Java Class Methods... 11 - 4
Loading External C Routines .. 11 - 5

Publishing an External Routine ... 11 - 7
The AS LANGUAGE Clause for Java Class Methods... 11 - 8
The AS LANGUAGE Clause for External C Routines .. 11 - 8

Publishing Java Class Methods ... 11 - 9
Publishing External C Routines... 11 - 10
Locations of Call Specifications ... 11 - 10
Passing Parameters to Java Class Methods with Call Specifications 11 - 14
Passing Parameters to External C Routines with Call Specifications................................. 11 - 14

Specifying Datatypes.. 11 - 16
External Datatype Mappings .. 11 - 18
BY VALUE/REFERENCE for IN and IN OUT Parameter Modes.................................. 11 - 19
The PARAMETERS Clause ... 11 - 20
Overriding Default Datatype Mapping... 11 - 21
Specifying Properties ... 11 - 21

Executing External Routines: the CALL Statement.. 11 - 29
Preliminaries ... 11 - 30
CALL Statement Syntax... 11 - 32
Calling Java Class Methods... 11 - 33
Calling External C Routines.. 11 - 33

Errors and Exceptions... 11 - 34
Generic Compile Time Call specification Errors.. 11 - 34
xi

Java Exception Handling .. 11 - 35
C Exception Handling... 11 - 35

Using Service Routines with External C Routines .. 11 - 35
Doing Callbacks with External C Routines .. 11 - 43

Object Support for OCI Callbacks ... 11 - 45
Restrictions on Callbacks .. 11 - 46
Debugging External Routines .. 11 - 47
Demo Program ... 11 - 48
Guidelines for External C Routines... 11 - 48
Restrictions on External C Routines.. 11 - 50

12 Establishing Security Policies

About Security Policies.. 12 - 2
Application Security... 12 - 3

Application Administrators ... 12 - 3
Roles and Application Privilege Management .. 12 - 3
Enabling Application Roles .. 12 - 4
Restricting Application Roles from Tool Users ... 12 - 7
Schemas.. 12 - 9
Managing Privileges and Roles .. 12 - 10

Application Context... 12 - 22
Features of Application Context.. 12 - 22
Using Application Context... 12 - 23

Fine-Grained Access Control ... 12 - 26
Features of Fine-Grained Access Control... 12 - 26
Example of a Dynamically Modified Statement ... 12 - 27

Using Application Context within a Fine-Grained Access Control Package 12 - 28
Examples .. 12 - 29

Example 1: Order Entry Application .. 12 - 29
Example 2: Human Resources Application #1 .. 12 - 33
Example 3: Human Resources Application #2 .. 12 - 35

Part III The Active Database
xii

13 Using Triggers

Designing Triggers ... 13 - 2
Creating Triggers .. 13 - 3

Prerequisites for Creating Triggers ... 13 - 4
Types of Triggers .. 13 - 4
Naming Triggers .. 13 - 5
Triggering Statement ... 13 - 5
BEFORE and AFTER Options .. 13 - 7
INSTEAD OF Triggers ... 13 - 7
FOR EACH ROW Option ... 13 - 12
WHEN Clause .. 13 - 13
The Trigger Body ... 13 - 14
Triggers and Handling Remote Exceptions ... 13 - 18
Restrictions on Creating Triggers .. 13 - 20
Who Is the Trigger User?... 13 - 25
Privileges.. 13 - 25

Compiling Triggers .. 13 - 27
Dependencies ... 13 - 27
Recompiling Triggers .. 13 - 28
Migration Issues ... 13 - 28

Modifying Triggers .. 13 - 29
Debugging Triggers .. 13 - 29

Enabling and Disabling Triggers... 13 - 30
Enabling Triggers .. 13 - 30
Disabling Triggers ... 13 - 30

Listing Information About Triggers ... 13 - 32
Examples of Trigger Applications .. 13 - 34
Triggering Event Publication ... 13 - 54

Publication Framework .. 13 - 54

14 Working With System Events

Event Attribute Functions ... 14 - 2
List of Events ... 14 - 4

Resource Manager Events ... 14 - 4
Client Events ... 14 - 5
xiii

15 Using Publish-Subscribe

Introduction to Publish-Subscribe .. 15 - 2
Publish-Subscribe Infrastructure .. 15 - 3
Publish-Subscribe Concepts ... 15 - 4
Examples ... 15 - 6

Part IV The Object-Relational Database Management System

16 User-Defined Datatypes

Introduction ... 16 - 2
A Purchase Order Example ... 16 - 3
Implementing the Application Under The Relational Model ... 16 - 4

Entities and Relationships ... 16 - 5
Creating Tables Under the Relational Model ... 16 - 5
Schema Plan Under the Relational Model .. 16 - 8
Inserting Values Under the Relational Model ... 16 - 10
Querying Data Under The Relational Model .. 16 - 11
Updating Data Under The Relational Model .. 16 - 12
Deleting Data Under The Relational Model .. 16 - 12
Limitations of a Purely Relational Model .. 16 - 13
The Evolution of the Object-Relational Database System.. 16 - 14

Implementing the Application Under The Object-Relational Model............................... 16 - 15
Defining Types ... 16 - 16
Method Definitions.. 16 - 23
Creating Object Tables .. 16 - 26
Object Datatypes as a Template for Object Tables.. 16 - 27
Object Identifiers and References .. 16 - 28
Object Tables with Embedded Objects ... 16 - 28

Partitioning Tables with Oracle Objects .. 16 - 41

17 Objects in Views

Introduction ... 17 - 2
Advantages of Using Views to Synthesize Objects ... 17 - 3
Fundamental Elements of Using Objects in Views.. 17 - 4
xiv

Objects in Columns .. 17 - 4
Collection Objects ... 17 - 6
Row Objects and Object Identifiers.. 17 - 7
Object References.. 17 - 8
Inverse Relationships ... 17 - 10
Mutating Objects and Validation ... 17 - 11

Extending the Purchase Order Example... 17 - 11
Stock Object View... 17 - 12
Customer Object View ... 17 - 12
Purchase order view... 17 - 12
Selecting ... 17 - 13
Updating Views .. 17 - 15
Inserting into the Nested Table .. 17 - 17
INSTEAD-OF Trigger for Customer_objview.. 17 - 18
INSTEAD-OF Trigger for Stock_objview.. 17 - 19
Inserting Values .. 17 - 20
Deleting .. 17 - 22

Using the OCI Object Cache... 17 - 23
Views on Remote Tables.. 17 - 25
Partitioning Tables with Objects .. 17 - 26
Parallel Query with Objects .. 17 - 26
Circular View References .. 17 - 27
 Creation of Tables and Types .. 17 - 28
View Creation ... 17 - 29

18 Design Considerations for Oracle Objects

Object Types .. 18 - 2
Column Objects vs. Row Objects.. 18 - 2
Comparing Objects... 18 - 8

REFs ... 18 - 9
Object Identifiers (OIDs).. 18 - 9
Storage of REFs ... 18 - 10
Constraints on REFs ... 18 - 10
WITH ROWID Option ... 18 - 11
Indexing REFs ... 18 - 12
xv

Collections ... 18 - 13
Unnesting Queries ... 18 - 13
Varrays .. 18 - 15
Nested Tables ... 18 - 16
Nesting Collections.. 18 - 22

Methods ... 18 - 27
Choosing a Language.. 18 - 27
Static Methods .. 18 - 29
Invoker and Definer Rights .. 18 - 30
Function-Based Indexes on the Return Values of Type Methods................................... 18 - 32

Other Considerations .. 18 - 33
New Object Format in Release 8.1... 18 - 33
Replication .. 18 - 33
Inheritance .. 18 - 33
Constraints on Objects .. 18 - 39
Type Evolution... 18 - 40
Performance Tuning.. 18 - 40
Parallel Query with Oracle Objects .. 18 - 41
Support for Exporting, Importing, and Loading Oracle Objects 18 - 41

19 Programmatic Environments for Oracle Objects

Oracle Call Interface (OCI) ... 19 - 2
Associative Access .. 19 - 2
Navigational Access ... 19 - 3
Building an OCI Program that Manipulates Objects... 19 - 4
OCI Tips and Techniques .. 19 - 5
Demonstration of OCI and Oracle Objects... 19 - 13

Pro*C/C++.. 19 - 14
Associative Access in Pro*C/C++... 19 - 14
Navigational Access in Pro*C/C++ .. 19 - 14
Converting Between Oracle Types and C Types .. 19 - 15

Oracle Objects For OLE .. 19 - 16
OraObject .. 19 - 17
OraRef.. 19 - 17
OraCollection.. 19 - 18
xvi

Java: JDBC and Oracle SQLJ .. 19 - 19
JDBC Access to Oracle Object Data.. 19 - 19
Support for Objects in Oracle SQLJ.. 19 - 19

Part V CUBE and ROLLUP Extensions to SQL

20 Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES

Overview of CUBE, ROLLUP, and Top-N Queries .. 20 - 2
Analyzing across Multiple Dimensions .. 20 - 2
Optimized Performance .. 20 - 4
A Scenario .. 20 - 5

ROLLUP.. 20 - 5
Syntax ... 20 - 6
Details... 20 - 6
Example.. 20 - 6
Interpreting “[NULL]” Values in Results ... 20 - 7
Calculating Subtotals without ROLLUP ... 20 - 8
When to Use ROLLUP ... 20 - 9

CUBE ... 20 - 9
Syntax ... 20 - 10
Details... 20 - 10
Example.. 20 - 10
Calculating subtotals without CUBE... 20 - 12
When to Use CUBE .. 20 - 12

Using Other Aggregate Functions with ROLLUP and CUBE .. 20 - 13
GROUPING Function.. 20 - 13

Syntax ... 20 - 13
Examples.. 20 - 13
When to Use GROUPING ... 20 - 16

Other Considerations when Using ROLLUP and CUBE .. 20 - 17
Hierarchy Handling in ROLLUP and CUBE.. 20 - 17
Column Capacity in ROLLUP and CUBE... 20 - 19
HAVING Clause Used with ROLLUP and CUBE... 20 - 19

Optimized "Top-N" Analysis.. 20 - 19
Details... 20 - 19
xvii

Examples ... 20 - 20
Reference ... 20 - 22

A Oracle XA

XA Library-Related Information... A - 2
General Information about the Oracle XA ... A - 2
README.doc ... A - 2

Changes from Release 8.0 to Release 8.1 ... A - 3
Changes from Release 7.3 to Release 8.0 ... A - 3

Session Caching Is No Longer Needed .. A - 3
Dynamic Registration Is Supported.. A - 4
Loosely Coupled Transaction Branches Are Supported.. A - 4
SQLLIB Is Not Needed for OCI Applications ... A - 4
No Installation Script Is Needed to Run XA.. A - 4
The XA Library Can Be Used with the Oracle Parallel Server Option on All Platforms A - 4
Transaction Recovery for Oracle Parallel Server Has Been Improved A - 4
Both Global and Local Transactions Are Possible .. A - 5
The xa_open String Has Been Modified... A - 6

General Issues and Restrictions .. A - 7
Database Links ... A - 7
Oracle Parallel Server Option .. A - 8
SQL-based Restrictions ... A - 8
Miscellaneous XA Issues... A - 9
Basic Architecture .. A - 10
X/Open Distributed Transaction Processing (DTP)... A - 11
Transaction Recovery Management.. A - 13
Oracle XA Library Interface Subroutines ... A - 13
XA Library Subroutines .. A - 14
Extensions to the XA Interface... A - 14
Transaction Processing Monitors (TPMs) .. A - 15
Required Public Information.. A - 15
Registration... A - 16

Developing and Installing Applications That Use the XA Libraries A - 17
Responsibilities of the DBA or System Administrator... A - 17
Responsibilities of the Application Developer .. A - 18
xviii

Defining the xa_open String .. A - 19
Syntax of the xa_open String ... A - 19
Required Fields .. A - 20
Optional Fields... A - 21

Interfacing to Precompilers and OCIs ... A - 25
Using Precompilers with the Oracle XA Library .. A - 25
Using OCI with the Oracle XA Library .. A - 27

Transaction Control ... A - 28
Examples of Precompiler Applications .. A - 29

Migrating Precompiler or OCI Applications to TPM Applications A - 31
XA Library Thread Safety .. A - 33

The Open String Specification ... A - 33
Restrictions ... A - 33

Troubleshooting ... A - 35
Trace Files ... A - 35
Trace File Examples... A - 36
In-doubt or Pending Transactions .. A - 36
Oracle Server SYS Account Tables .. A - 37

Index
xix

xx

Send Us Your Comments

Application Developer’s Guide - Fundamentals, Release 8.1.5

Part No. A68003-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail - infodev@us.oracle.com

■ FAX - (650) 506-7228 ATTN. Application Developer’s Guide - Fundamentals

■ Postal service:

Oracle Corporation

Oracle Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.
xxi

xxii

Preface

Application Developer’s Guide - Fundamentals describes features of application

development for the Oracle Server, Release 8.1.5. Information in this guide applies

to versions of the Oracle Server that run on all platforms, and does not include

system-specific information.

The Preface includes the following sections:

■ Information in This Guide

■ Audience

■ Feature Coverage and Availability

■ Other Guides

■ How This Book Is Organized

■ Conventions Used in This Guide

■ Your Comments Are Welcome
xxiii

Information in This Guide
As an application developer, you should learn about the many Oracle Server

features that can ease application development and improve performance. This

Guide describes Oracle Server features that relate to application development. It

does not cover the PL/SQL language, nor does it directly discuss application

development on the client side. The table of contents and the "How This Book Is

Organized" section has more information about the material covered. The "Other

Guides" section points to other Oracle documentation that contains related

information.

Audience
The Application Developer’s Guide - Fundamentals is intended for programmers

developing new applications or converting existing applications to run in the

Oracle environment. This Guide will also be valuable to systems analysts, project

managers, and others interested in the development of database applications.

This guide assumes that you have a working knowledge of application

programming, and that you are familiar with the use of Structured Query Language

(SQL) to access information in relational database systems.

Certain sections of this Guide also assume a knowledge of the basic concepts of

object oriented programming.

Feature Coverage and Availability
The Application Developer’s Guide - Fundamentals contains information that describes

the features and functionality of the Oracle8i and the Oracle8i Enterprise Edition

products. Oracle8i and Oracle8i Enterprise Edition have the same basic features.

However, several advanced features are available only with the Enterprise Edition,

and some of these are optional. For example, to use object functionality, you must

have the Enterprise Edition and the Objects Option.

For information about the differences between Oracle8i and the Oracle8i Enterprise

Edition and the features and options that are available to you, see Getting to Know
Oracle8i.
xxiv

Other Guides
Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete

description of this high-level programming language, which is Oracle Corporation’s

procedural extension to SQL.

The Oracle Call Interface (OCI) is described in Oracle Call Interface Programmer’s
Guide

You can use the OCI to build third-generation language (3GL) applications that

access the Oracle Server.

Oracle Corporation also provides the Pro* series of precompilers, which allow you

to embed SQL and PL/SQL in your application programs. If you write 3GL

application programs in Ada, C, C++, COBOL, or FORTRAN that incorporate

embedded SQL, then refer to the corresponding precompiler manual. For example,

if you program in C or C++, then refer to the Pro*C/C++ Precompiler Programmer’s
Guide.

Oracle Developer/2000 is a cooperative development environment that provides

several tools including a form builder, reporting tools, and a debugging

environment for PL/SQL. If you use Developer/2000, then refer to the appropriate

Oracle Tools documentation.

For SQL information, see the Oracle8i SQL Reference and Oracle8i Administrator’s
Guide. For basic Oracle concepts, see Oracle8i Concepts.
xxv

How This Book Is Organized
The Application Developer’s Guide - Fundamentals contains the following chapters.

This section includes a brief summary of what you will find in each chapter.

Part I: Introduction
Chapter 1, "Programmatic Environments"

This chapter presents brief introductions to these application development systems.

Chapter 2, "Visual Modelling for Software Development"

This chapter provides an overview of the Oracle Server application development

process.

Part II: Designing the Database
Chapter 3, "Managing Schema Objects"

This chapter explains the steps that the Oracle Server performs to process the

various types of SQL commands and PL/SQL statements.

Chapter 4, "Selecting a Datatype"

This chapter describes how to manage the objects that can be created in the

database domain of a specific user (schema), including tables, views, numeric

sequences, and synonyms. It also discusses performance enhancements to data

retrieval through the use of indexes and clusters.

Chapter 5, "Maintaining Data Integrity"

This chapter describes how to choose the correct Oracle datatype. The datatypes

described include fixed- and variable-length character strings, numeric data, dates,

raw binary data, and row identifiers (ROWIDs).

Chapter 6, "Selecting an Index Strategy"

This chapter describes the extended SQL commands and PL/SQL interface for the

LOB datatypes, which include BLOBs for unstructured binary data, CLOBs and

NCLOBs for character data, and BFILEs for data stored in an external file.

Chapter 7, "Managing Index-Organized Tables"

This chapter describes index-organized tables, including features of

index-organized tables, and when to use them.

Chapter 8, "Processing SQL Statements"
xxvi

This chapter describes how Oracle processes Structured Query Language (SQL)

statements.

Chapter 9, "Dynamic SQL"

This chapter describes dynamic SQL, native dynamic SQL vs. the DBMS_SQL

package, when to use dynamic SQL.

Chapter 10, "Using Procedures and Packages"

This chapter explains how to define and use object views.

Chapter 11, "External Routines"

This chapter describes how to use declarative integrity constraints to provide data

integrity within an Oracle database.

Chapter 12, "Establishing Security Policies"

This chapter describes how to create procedures that can be stored in the database

for continued use. Grouping these procedures into packages is also described in this

chapter.

Part III: The Active Database
Chapter 13, "Using Triggers"

This chapter describes how to use public and private pipes to allow sessions in the

same Oracle Server instance to communicate with one another or with a disk file.

Chapter 14, "Working With System Events"

This chapter describes how to use advanced queuing to defer or regulate the

execution of work in a client/server environment.

Chapter 15, "Using Publish-Subscribe"

This chapter describes how to create and debug database triggers. Numerous

examples are included.

Part IV: The Object-Relational Database Management System
Chapter 16, "User-Defined Datatypes"

This chapter describes how you can write stored procedures and anonymous

PL/SQL blocks using dynamic SQL.

Chapter 17, "Objects in Views"

This chapter contains an extended example of how to use object views.
xxvii

Chapter 18, "Design Considerations for Oracle Objects"

This chapter explains the implementation and performance characteristics of

Oracle’s object-relational model.

Chapter 19, "Programmatic Environments for Oracle Objects"

This chapter covers Oracle Call Interface (OCI); Pro*C/C++; Oracle Objects For

OLE; and Java, JDBC, and Oracle SQLJ.

Part V: CUBE and ROLLUP Extensions to SQL
Chapter 20, "Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES"

This chapter explains using CUBE, ROLLUP, and Top-N Queries.

Appendix
Appendix A, "Oracle XA"

The appendix describes how to use the Oracle XA library.
xxviii

Conventions Used in This Guide
The following notational and text formatting conventions are used in this guide:

[]
Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{ }
Braces enclose items of which only one is required.

|
A vertical bar separates items within braces, and may also be used to indicate that

multiple values are passed to a function parameter.

...
In code fragments, an ellipsis means that code not relevant to the discussion has

been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

UPPERCASE
Uppercase is used for SQL keywords, like SELECT or UPDATE.

This guide uses special text formatting to draw the reader’s attention to some

information. A paragraph that is indented and begins with a bold text label may

have special meaning. The following paragraphs describe the different types of

information that are flagged this way.

Note: The "Note" flag indicates that you should pay particular attention to the

information to avoid a common problem or to increase understanding of a

concept.

Warning: An item marked as "Warning" indicates something that an OCI

programmer must be careful to do, or not do, in order for an application to

work correctly.

See Also: Text marked "See Also" points you to another section of this guide, or

to other documentation, for additional information about the topic being

discussed.
xxix

Your Comments Are Welcome
We value and appreciate your comment as an Oracle user and reader of our

manuals. As we write, revise, and evaluate our documentation, your opinions are

the most important feedback we receive.

You can send comments and suggestions about this manual to the following e-mail

address:

infodev@us.oracle.com

If you prefer, then you can send letters or faxes containing your comments to the

following address:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7200
xxx

Part I

 Introduction To Working With The Server

Part I contains the following chapters:

■ Chapter 1, "Programmatic Environments"

■ Chapter 2, "Visual Modelling for Software Development"

Programmatic Environm
1

Programmatic Environments

This chapter presents brief introductions to these application development systems:

■ What Can PL/SQL Do?

■ Overview of OCI

■ Overview of Oracle Objects for OLE

■ Pro*C/C++

■ Pro*COBOL

■ Oracle JDBC

■ Oracle SQLJ
ents 1-1

What Can PL/SQL Do?
What Can PL/SQL Do?
PL/SQL is Oracle’s procedural extension to SQL, the standard database access

language. An advanced 4GL (fourth-generation programming language), PL/SQL

offers seamless SQL access, tight integration with the Oracle server and tools,

portability, security, and modern software engineering features such as data

encapsulation, overloading, exception handling, and information hiding.

With PL/SQL, you can use SQL statements to manipulate Oracle data and flow-of-

control statements to process the data. Moreover, you can declare constants and

variables, define procedures and functions, use collections and object types, and

trap run-time errors. Thus, PL/SQL combines the data manipulating power of SQL

with the data processing power of procedural languages.

Applications written using any of the Oracle programmatic interfaces (Oracle Call

Interface, Java, Pro*C/C++, or COBOL) can call PL/SQL stored procedures and

send anonymous blocks of PL/SQL code to the server for execution. 3GL

applications have full access to PL/SQL scalar and composite datatypes via host

variables and implicit datatype conversion.

PL/SQL’s tight integration with Oracle Developer lets you use one language to

develop the client and server components of your application, which can be

partitioned to achieve optimum performance and scalability. Also, Oracle’s Web

Forms allows you to deploy your applications in a multi-tier Internet or intranet

environment without modifying a single line of code.

How Does PL/SQL Work?
A good way to get acquainted with PL/SQL is to look at a sample program.

Consider the procedure below, which debits a bank account. When called,

procedure debit_account accepts an account number and a debit amount. It uses

the account number to select the account balance from the database table. Then, it

uses the debit amount to compute a new balance. If the new balance is less than

zero, an exception is raised; otherwise, the bank account is updated.

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
 old_balance REAL;
 new_balance REAL;
 overdrawn EXCEPTION;
BEGIN
 SELECT bal INTO old_balance FROM accts
 WHERE acct_no = acct_id;
 new_balance := old_balance - amount;
1-2 Application Developer’s Guide - Fundamentals

What Can PL/SQL Do?
 IF new_balance < 0 THEN
 RAISE overdrawn;
 ELSE
 UPDATE accts SET bal = new_balance
 WHERE acct_no = acct_id;
 END IF;
 COMMIT;
EXCEPTION
 WHEN overdrawn THEN
 -- handle the error
END debit_account;

What Advantages Does PL/SQL Offer?
PL/SQL is a completely portable, high-performance transaction processing

language that offers the following advantages:

Full Support for SQL
PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction

control commands, as well as all the SQL functions, operators, and pseudocolumns.

So, you can manipulate Oracle data flexibly and safely. Moreover, PL/SQL fully

supports SQL datatypes. That reduces the need to convert data passed between

your applications and the database.

PL/SQL also supports dynamic SQL, an advanced programming technique that

makes your applications more flexible and versatile. Your programs can build and

process SQL data definition, data control, and session control statements "on the fly"

at run time.

Tight Integration with Oracle
Both PL/SQL and Oracle are based on SQL. Moreover, PL/SQL supports all the

SQL datatypes. Combined with the direct access that SQL provides, these shared

datatypes integrate PL/SQL with the Oracle data dictionary.

The %TYPE and %ROWTYPE attributes further integrate PL/SQL with the data

dictionary. For example, you can use the %TYPE attribute to declare variables,

basing the declarations on the definitions of database columns. If a definition

changes, the variable declaration changes accordingly at run time. This provides

data independence, reduces maintenance costs, and allows programs to adapt as

the database changes to meet new business needs.
Programmatic Environments 1-3

What Can PL/SQL Do?
Better Performance
Without PL/SQL, Oracle must process SQL statements one at a time. Each SQL

statement results in another call to Oracle and higher performance overhead. In a

networked environment, the overhead can become significant. Every time a SQL

statement is issued, it must be sent over the network, creating more traffic.

However, with PL/SQL, an entire block of statements can be sent to Oracle at one

time. This can drastically reduce communication between your application and

Oracle. If your application is database intensive, you can use PL/SQL blocks to

group SQL statements before sending them to Oracle for execution.

PL/SQL stored procedures are compiled once and stored in executable form, so

procedure calls are quick and efficient. Also, stored procedures, which execute in

the server, can be invoked over slow network connections with a single call. This

reduces network traffic and improves round-trip response times. Executable code is

automatically cached and shared among users. That lowers memory requirements

and invocation overhead.

Higher Productivity
PL/SQL adds functionality to non-procedural tools such as Oracle Forms and

Oracle Reports. With PL/SQL in these tools, you can use familiar procedural

constructs to build applications. For example, you can use an entire PL/SQL block

in an Oracle Forms trigger. You need not use multiple trigger steps, macros, or user

exits. Thus, PL/SQL increases productivity by putting better tools in your hands.

Moreover, PL/SQL is the same in all environments. As soon as you master PL/SQL

with one Oracle tool, you can transfer your knowledge to other tools, and so

multiply the productivity gains. For example, scripts written with one tool can be

used by other tools.

Scalability
PL/SQL stored procedures increase scalability by isolating application processing

on the server. Also, automatic dependency tracking for stored procedures aids the

development of scalable applications.

The shared memory facilities of the Multithreaded Server (MTS) enable Oracle to

support 10,000+ concurrent users on a single node. For more scalability, you can use

the Net8 Connection Manager to multiplex Net8 connections.
1-4 Application Developer’s Guide - Fundamentals

What Can PL/SQL Do?
Maintainability
Once validated, a PL/SQL stored procedure can be used with confidence in any

number of applications. If its definition changes, only the procedure is affected, not

the applications that call it. This simplifies maintenance and enhancement. Also,

maintaining a procedure on the server is easier than maintaining copies on various

client machines.

Support for Object-Oriented Programming

Object Types An object type is a user-defined composite datatype that encapsulates a

data structure along with the functions and procedures needed to manipulate the

data. The variables that form the data structure are called attributes. The functions

and procedures that characterize the behavior of the object type are called methods,

which you can implement in PL/SQL.

Object types are an ideal object-oriented modeling tool, which you can use to

reduce the cost and time required to build complex applications. Besides allowing

you to create software components that are modular, maintainable, and reusable,

object types allow different teams of programmers to develop software components

concurrently.

Collections A collection is an ordered group of elements, all of the same type (for

example, the grades for a class of students). Each element has a unique subscript

that determines its position in the collection. PL/SQL offers two kinds of

collections: nested tables and VARRAYs (short for variable-size arrays).

Collections, which work like the arrays found in most third-generation

programming languages, can store instances of an object type and, conversely, can

be attributes of an object type. Also, collections can be passed as parameters. So,

you can use them to move columns of data into and out of database tables or

between client-side applications and stored subprograms. Furthermore, you can

define collection types in a PL/SQL package, then use them programmatically in

your applications.

Portability
Applications written in PL/SQL are portable to any operating system and platform

on which Oracle runs. In other words, PL/SQL programs can run anywhere Oracle

can run. You need not tailor them to each new environment. That means you can

write portable program libraries, which can be reused in different environments.
Programmatic Environments 1-5

What Can PL/SQL Do?
Security
PL/SQL stored procedures enable you to partition application logic between the

client and server. That way, you can prevent client applications from manipulating

sensitive Oracle data. Database triggers written in PL/SQL can disable application

updates selectively and do content-based auditing of user queries.

Furthermore, you can restrict access to Oracle data by allowing users to manipulate

it only through stored procedures that execute with their definer’s privileges. For

example, you can grant users access to a procedure that updates a table, but not

grant them access to the table itself.
1-6 Application Developer’s Guide - Fundamentals

Overview of OCI
Overview of OCI
The Oracle Call Interface (OCI) is an application programming interface (API) that

allows you to create applications that use a third-generation language’s native

procedures or function calls to access an Oracle database server and control all

phases of SQL statement execution. OCI provides:

■ Improved performance and scalability through the efficient use of system

memory and network connectivity

■ Consistent interfaces for dynamic session and transaction management in a

two-tier client-server or multi-tier environment

■ N-tiered authentication

■ Comprehensive support for application development using Oracle objects

■ Access to external databases

■ Ability to develop applications that service an increasing number of users and

requests without additional hardware investments

OCI allows you to manipulate data and schemas in an Oracle database using a host

programming language, such as C. It provides a library of standard database access

and retrieval functions in the form of a dynamic runtime library (OCILIB) that can

be linked in an application at runtime. This eliminates the need to embed SQL or

PL/SQL within 3GL programs.

OCI supports the datatypes, calling conventions, syntax, and semantics of a number

of third-generation languages including C, C++, COBOL and FORTRAN. Oracle is

also planning to provide support for Java.
Programmatic Environments 1-7

Overview of OCI
Advantages of OCI
OCI provides significant advantages over other methods of accessing an Oracle

database:

■ More fine-grained control over all aspects of the application design

■ High degree of control over program execution

■ Use of familiar 3GL programming techniques and application development

tools such as browsers and debuggers

■ Support of dynamic SQL (method 4)

■ Availability on the broadest range of platforms of all the Oracle Programmatic

Interfaces

■ Dynamic bind and define using callbacks

■ Describe functionality to expose layers of server metadata

■ Asynchronous event notification for registered client applications

■ Enhanced array data manipulation language (DML) capability for array

INSERTs, UPDATEs, and DELETEs

■ Ability to associate a commit request with an execute to reduce roundtrips

■ Optimization for queries using transparent prefetch buffers to reduce

roundtrips

■ Thread safety so you do not have to use mutual exclusive locks (mutex) on OCI

handles

Parts of the OCI
The OCI encompasses four main sets of functionality:

■ OCI relational functions, for managing database access and processing SQL

statements

■ OCI navigational functions, for manipulating objects retrieved from an Oracle

database server

■ OCI datatype mapping and manipulation functions, for manipulating data

attributes of Oracle types

■ OCI external procedure functions, for writing C callbacks from PL/SQL
1-8 Application Developer’s Guide - Fundamentals

Overview of OCI
Procedural and Non-Procedural Elements
The Oracle Call Interface (OCI) allows you to develop applications that combine the

non-procedural data access power of Structured Query Language (SQL) with the

procedural capabilities of most programming languages, such as C and C++.

■ In a non-procedural language program, the set of data to be operated on is

specified, but what operations will be performed, or how the operations are to

be carried out is not specified. The non-procedural nature of SQL makes it an

easy language to learn and to use to perform database transactions. It is also the

standard language used to access and manipulate data in modern relational and

object-relational database systems.

■ In a procedural language program, the execution of most statements depends

on previous or subsequent statements and on control structures, such as loops

or conditional branches, which are not available in SQL. The procedural nature

of these languages makes them more complex than SQL, but it also makes them

very flexible and powerful.

The combination of both non-procedural and procedural language elements in an

OCI program provides easy access to an Oracle database in a structured

programming environment.

The OCI supports all SQL data definition, data manipulation, query, and

transaction control facilities that are available through an Oracle database server.

For example, an OCI program can run a query against an Oracle database. The

queries can require the program to supply data to the database using input (bind)

variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber

In the above SQL statement,:empnumber is a placeholder for a value that will be

supplied by the application.

You can also use PL/SQL, Oracle’s procedural extension to SQL. The applications

you develop can be more powerful and flexible than applications written in SQL

alone. The OCI also provides facilities for accessing and manipulating objects in an

Oracle database server.
Programmatic Environments 1-9

Overview of OCI
Building an OCI Application
As Figure 1–1 shows, you compile and link an OCI program in the same way that

you compile and link a non-database application. There is no need for a separate

preprocessing or precompilation step.

Figure 1–1 The OCI Development Process

Note: On some platforms, it may be necessary to include other libraries, in

addition to the OCI library, to properly link your OCI programs. Check your

Oracle system-specific documentation for further information about extra

libraries that may be required.

Source Files

Host Language Compiler

Object Files

Host Linker

Application

OCI Library

Oracle
Server
1-10 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE
Overview of Oracle Objects for OLE
Oracle Objects for OLE (OO4O) is a product designed to allow easy access to data

stored in Oracle databases with any programming or scripting language that

supports the Microsoft COM Automation and ActiveX technology. This includes

Visual Basic, Visual C++, Visual Basic For Applications (VBA), IIS Active Server

Pages (VBScript and JavaScript), and others.

OO4O consists of the following software layers:

■ OO4O "In-Process" Automation Server

■ Oracle Data Control

■ Oracle Objects for OLE C++ Class Library

Figure 1–2, "Software Layers" illustrates the OO4O software components.

Figure 1–2 Software Layers

Note: See the OO4O online help for detailed information about using OO4O.

Data Aware
ActiveX
Controls

Oracle Data
Control

Oracle Client
Libraries

(OCI, CORE,
NLS)

Oracle
Database

OO4O
In-Process
Automation

Server

COM/DCOM

Automation
Controllers

(VB, Excel, ASP)
C++ Class
Libraries
Programmatic Environments 1-11

Overview of Oracle Objects for OLE
The OO4O Automation Server
The OO4O Automation Server is a set of COM Automation objects for connecting to

Oracle database servers, executing SQL statements and PL/SQL blocks, and

accessing the results.

Unlike other COM-based database connectivity APIs, such as Microsoft ADO, the

OO4O Automation Server has been developed and evolved specifically for use with

Oracle database servers.

It provides an optimized API for accessing features that are unique to Oracle and

are otherwise cumbersome or inefficient to use from ODBC or OLE

database-specific components.

OO4O provides key features for accessing Oracle databases efficiently and easily in

environments ranging from the typical two-tier client/server applications, such as

those developed in Visual Basic or Excel, to application servers deployed in

multi-tiered application server environments such as web server applications in

Microsoft Internet Information Server (IIS) or Microsoft Transaction Server (MTS).

Features include:

■ Support for execution of PL/SQL anonymous blocks and stored procedures.

This includes support for Oracle datatypes allowed for input/output

parameters of PL/SQL stored procedures including PL/SQL cursors. See

"Support for Oracle LOB and Object Datatypes" on page 1-17.

■ Support for scrollable and updateable cursors for easy and efficient access to

result sets of queries.

■ Thread-safe objects and Connection Pool Management Facility for developing

efficient web server applications.

■ Full support for Oracle8i Object-Relational and LOB datatypes.

■ Full support for Advanced Queuing in Oracle8i

■ Support for array inserts and updates.

■ Support for Microsoft Transaction Server (MTS).
1-12 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE
OO4O Object Model
The Oracle Objects for OLE object model is illustrated in Figure 1–3, "Objects and

Their Relation".

Figure 1–3 Objects and Their Relation

OraSession
An OraSession object manages collections of OraDatabase, OraConnection, and

OraDynaset objects used within an application.

Typically, a single OraSession object is created for each application, but you can

create named OraSession objects for shared use within and between applications.

The OraSession object is the top-most level object for an application. It is the only

object created by the CreateObject VB/VBA API and not by an Oracle Objects for

OLE method. The following code fragment shows how to create an OraSession

object:

Dim OraSession as Object

OraField

OraParameter

OraMDAttribute

OraSQLStmt

OraDynaset

OraParameters

OraParameterArray

OraSession

OraServer

OraDatabase

OraMetaData

OraAQ OraAQMsg
Programmatic Environments 1-13

Overview of Oracle Objects for OLE
Set OraSession = CreateObject("OracleInProcServer.XOraSession")

OraServer
OraServer represents a physical network connection to an Oracle database server.

The OraServer interface is introduced to expose the connection multiplexing feature

provided in the Oracle Call Interface. After an OraServer object is created, multiple

user sessions (OraDatabase) can be attached to it by invoking the OpenDatabase

method. This feature is particularly useful for application components, such as

Internet Information Server (IIS), that use Oracle Objects for OLE in an n-tier

distributed environments.

The use of connection multiplexing when accessing Oracle severs with a large

number of user sessions active can help reduce server processing and resource

requirements while improving the server scalability.

OraDatabase
An OraDatabase interface in the Oracle8i release adds additional methods for

controlling transactions and creating interfaces representing of Oracle object types.

Attributes of schema objects can be retrieved using the Describe method of the

OraDatabase interface.

In previous releases, an OraDatabase object is created by invoking the

OpenDatabase method of an OraSession interface. The Net8 alias, user name, and

password are passed as arguments to this method. In the Oracle8i release,

invocation of this method results in implicit creation of an OraServer object.

As described in the OraServer interface description, an OraDatabase object can also

be created using the OpenDatabase method of the OraServer interface.

Transaction control methods are available at the OraDatabase (user session) level.

Transactions may be started as Read-Write (default), Serializable, or Read-only.

These include:

■ BeginTrans

■ CommitTrans

■ RollbackTrans

For example:

UserSession.BeginTrans(OO4O_TXN_READ_WRITE)
UserSession.ExecuteSQL("delete emp where empno = 1234")
UserSession.CommitTrans
1-14 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE
OraDynaset
An OraDynaset object permits browsing and updating of data created from a SQL

SELECT statement.

The OraDynaset object can be thought of as a cursor, although in actuality several

real cursors may be used to implement the OraDynaset's semantics. An OraDynaset

automatically maintains a local cache of data fetched from the server and

transparently implements scrollable cursors within the browse data. Large queries

may require significant local disk space; application implementers are encouraged

to refine queries to limit disk usage.

OraField
An OraField object represents a single column or data item within a row of a

dynaset.

If the current row is being updated, then the OraField object represents the

currently updated value, although the value may not yet have been committed to

the database.

Assignment to the Value property of a field is permitted only if a record is being

edited (using Edit) or a new record is being added (using AddNew). Other attempts

to assign data to a field's Value property results in an error.

OraMetaData
An OraMetaData object is a collection of OraMDAttribute objects that represent the

description information about a particular schema object in the database.

The OraMetaData object can be visualized as a table with three columns:

■ Metadata Attribute Name

■ Metadata Attribute Value

■ Flag specifying whether the Value is another OraMetaData Object

The OraMDAttribute objects contained in the OraMetaData object can be accessed

by subscripting using ordinal integers or by using the name of the property.

Referencing a subscript that is not in the collection (0 to Count-1) results in the

return of a NULL OraMDAttribute object.

OraParameter
An OraParameter object represents a bind variable in a SQL statement or PL/SQL

block.
Programmatic Environments 1-15

Overview of Oracle Objects for OLE
OraParameter objects are created, accessed, and removed indirectly through the

OraParameters collection of an OraDatabase object. Each parameter has an

identifying name and an associated value. You can automatically bind a parameter

to SQL and PL/SQL statements of other objects (as noted in the objects’

descriptions), by using the parameter’s name as a placeholder in the SQL or

PL/SQL statement. Such use of parameters can simplify dynamic queries and

increase program performance.

OraParamArray
An OraParamArray object represents an "array" type bind variable in a SQL

statement or PL/SQL block as opposed to a "scalar" type bind variable represented

by the OraParameter object.

OraParamArray objects are created, accessed, and removed indirectly through the

OraParameters collection of an OraDatabase object. Each parameter has an

identifying name and an associated value.

OraSQLStmt
An OraSQLStmt Object represents a single SQL statement. Use the CreateSQL

method to create the OraSQLStmt object from an OraDatabase.

During create and refresh, OraSQLStmt objects automatically bind all relevant,

enabled input parameters to the specified SQL statement, using the parameter

names as placeholders in the SQL statement. This can improve the performance of

SQL statement execution without re-parsing the SQL statement.

SQLStmt
The SQLStmt object (updateStmt) can be later used to execute the same query using

a different value for the :SALARY placeholder. This is done as follows:

OraDatabase.Parameters("SALARY").value = 200000
updateStmt.Parameters("ENAME").value = "KING"
updateStmt.Refresh

OraAQ
An OraAQ object is instantiated by invoking the CreateAQ method of the

OraDatabase interface. It represents a queue that is present in the database.

Oracle Objects for OLE provides interfaces for accessing Oracle’s Advanced

Queuing (AQ) Feature. It makes AQ accessible from popular COM-based
1-16 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE
development environments such as Visual Basic. For a detailed description of

Oracle AQ, please refer to Oracle8i Application Developer’s Guide - Advanced Queuing.

OraAQMsg
The OraAQMsg object encapsulates the message to be enqueued or dequeued. The

message can be of any user-defined or raw type.

For a detailed description of Oracle AQ, please refer to Oracle8i Application
Developer’s Guide - Advanced Queuing.

OraAQAgent
The OraAQAgent object represents a message recipient and is only valid for queues

which allow multiple consumers.

The OraAQAgent object represents a message recipient and is only valid for queues

which allow multiple consumers.

An OraAQAgent object can be instantiated by invoking the AQAgent method. For

example:

Set agent = qMsg.AQAgent(name)

An OraAQAgent object can also be instantiated by invoking the AddRecipient

method. For example:

Set agent = qMsg.AddRecipient(name, address, protocol).

Support for Oracle LOB and Object Datatypes
Oracle Objects for OLE provides full support for accessing and manipulating

instances of object datatypes and LOBs in an Oracle database server. Figure 1–4,

"Supported Oracle Datatypes" illustrates the datatypes supported by OO4O.

For a discussion of support for object datatypes, see "Oracle Objects For OLE" on

page 19-16.

Instances of these types can be fetched from the database or passed as input or

output variables to SQL statements and PL/SQL blocks, including stored

procedures and functions. All instances are mapped to COM Automation Interfaces

that provide methods for dynamic attribute access and manipulation. These

interfaces may be obtained from:
Programmatic Environments 1-17

Overview of Oracle Objects for OLE
Figure 1–4 Supported Oracle Datatypes

OraBLOB and OraCLOB
The OraBlob and OraClob interfaces in OO4O provide methods for performing

operations on large objects in the database of data types BLOB, CLOB, and NCLOB.

In this help file BLOB, CLOB, and NCLOB datatypes are also referred to as LOB

datatypes.

LOB data is accessed using Read and the CopyToFile methods.

LOB data is modified using Write, Append, Erase, Trim, Copy, CopyFromFile, and

CopyFromBFile methods. Before modifying the content of a LOB column in a row, a

row lock must be obtained. If the LOB column is a field of an OraDynaset, then the

lock is obtained by invoking the Edit method.

OraBFILE
The OraBFile interface in OO4O provides methods for performing operations on

large objects BFILE data type in the database.

The BFILEs are large binary data objects stored in operating system files (external)

outside of the database tablespaces.

OraAttribute

OraAttribute

Element Values

OraObject

OraRef

OraCollection

OraField

OraParameter

OraBLOB

OraCLOB

OraBFILE

Value of all other scalar types
1-18 Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE
The Oracle Data Control
The Oracle Data Control (ODC) is an ActiveX Control that is designed to simplify

the exchange of data between an Oracle database and visual controls such edit, text,

list, and grid controls in Visual Basic and other development tools that support

custom controls.

ODC acts an agent to handle the flow of information from an Oracle database and a

visual data-aware control, such as a grid control, that is bound to it. The data

control manages various user interface (UI) tasks such as displaying and editing

data. It also executes and manages the results of database queries.

The Oracle Data Control is compatible with the Microsoft data control included

with Visual Basic. If you are familiar with the Visual Basic data control, learning to

use the Oracle Data Control is quick and easy. Communication between data-aware

controls and a Data Control is governed by a protocol that has been specified by

Microsoft.

The Oracle Objects for OLE C++ Class Library
The Oracle Objects for OLE C++ Class Library is a collection of C++ classes that

provide programmatic access to the Oracle Object Server. Although the class library

is implemented using OLE Automation, neither the OLE development kit nor any

OLE development knowledge is necessary to use it. This library helps C++

developers avoid the chore of writing COM client code for accessing the OO4O

interfaces.

Additional Sources of Information
For detailed information about Oracle Objects for OLE refer to the online help that

is provided with the OO4O product:

■ Oracle Objects for OLE Help

■ Oracle Objects for OLE C++ Class Library Help

To view examples of the use of Oracle Object for OLE, see the samples located in the

ORACLE_HOME\OO4O directory of the Oracle installation. Additional OO4O

examples can be found in the following Oracle publications, including:

■ Oracle8i Application Developer’s Guide - Large Objects (LOBs)

■ Oracle8i Application Developer’s Guide - Advanced Queuing

■ Oracle8i Supplied Packages Reference
Programmatic Environments 1-19

Pro*C/C++
Pro*C/C++
The Pro*C/C++ precompiler is a software tool that allows the programmer to

embed SQL statements in a C or C++ source file. Pro*C/C++ reads the source file as

input and outputs a C or C++ source file that replaces the embedded SQL

statements with Oracle runtime library calls, and is then compiled by the C or C++

compiler.

When there are errors found during the precompilation or the subsequent

compilation, modify your precompiler input file and re-run the two steps.

How You Implement a Pro*C/C++ Application
Here is a simple code fragment from a C source file that queries the table EMPwhich

is in the schema SCOTT:

...
#define UNAME_LEN 10
...
int emp_number;
/* Define a host structure for the output values of a SELECT statement. */
/* No declare section needed if precompiler option MODE=ORACLE */
struct {
 VARCHAR emp_name[UNAME_LEN];
 float salary;
 float commission;
} emprec;
/* Define an indicator structure to correspond to the host output structure. */
struct {
 short emp_name_ind;
 short sal_ind;
 short comm_ind;
} emprec_ind;
...
/* Select columns ename, sal, and comm given the user’s input for empno. */
 EXEC SQL SELECT ename, sal, comm
 INTO :emprec INDICATOR :emprec_ind
 FROM emp
 WHERE empno = :emp_number;
...

The embedded SELECT statement is only slightly different from an interactive

(SQL*Plus) version. Every embedded SQL statement begins with EXEC SQL. The

colon, ":", precedes every host (C) variable. The returned values of data and

indicators (set when the data value is NULL or character columns have been
1-20 Application Developer’s Guide - Fundamentals

Pro*C/C++
truncated) can be stored in structs (such as in the above code fragment), in arrays,

or in arrays of structs. Multiple result set values are handled very simply in a

manner that resembles the case shown, where there is only one result, because of

the unique employee number. You use the actual names of columns and tables in

embedded SQL.

Use the default precompiler option values, or you can enter values which give you

control over the use of resources, how errors are reported, the formatting of output,

and how cursors (which correspond to a particular connection, a SQL statement,

etc.) are managed. Cursors are used when there are multiple result set values.

Enter the options either in a configuration file, on the command line, or inline inside

your source code with a special statement that begins with EXEC ORACLE. If there

are no errors found, you can then compile, link, and execute the output source file,

like any other C program that you write.

Use the precompiler to create server database access from clients that can be on

many different platforms. Pro*C/C++ allows you the freedom to design your own

user interfaces and to add database access to existing applications.

Before writing your embedded SQL statements, you may want to test interactive

versions of the SQL in SQL*Plus. You then make only minor changes to start testing

your embedded SQL application.

Highlights of Pro*C/C++ Features
The following is a short subset of the capabilities of Pro*C/C++. For complete

details, see the Pro*C/C++ Precompiler Programmer’s Guide.

You can write your application in either C or C++.

You can write multi-threaded programs if your platform supports a threads

package. Concurrent connections are supported in either single-threaded or

multi-threaded applications.

You can improve performance by embedding PL/SQL blocks. These blocks can call

functions or procedures written by you or provided in Oracle packages, in either

Java or PL/SQL.

Using precompiler options, you can check the syntax and semantics of your SQL or

PL/SQL statements during precompilation, as well as at runtime.

You can call stored PL/SQL and Java subprograms. Modules written in COBOL or

in C can be called from Pro*C/C++. External C procedures in shared libraries are

callable by your program.
Programmatic Environments 1-21

Pro*C/C++
You can conditionally precompile sections of your code so that they can execute in

different environments.

Use arrays, or structures, or arrays of structures as host and indicator variables in

your code to improve performance.

You can deal with errors and warnings so that data integrity is guaranteed. As a

programmer, you control how errors are handled.

Your program can convert between internal datatypes and C language datatypes.

The Oracle Call Interface (OCI), a lower-level C interface, is available for use in your

precompiler source.

Pro*C/C++ supports dynamic SQL, a technique that allows users to input variable

values and statement syntax.

New Oracle8 i Features Supported
Pro*C/C++ can use special SQL statements to manipulate tables containing

user-defined object types. An Object Type Translator (OTT) will map the object

types and named collection types in your database to structures and headers that

you will then include in your source.

Two kinds of collection types, nested tables and VARRAYs, are supported with a set

of SQL statements that allow a high degree of control over data.

Large Objects (LOBs, CLOBs, NCLOBs, and external files known as BFILEs) are

accessed by another set of SQL statements.

A new ANSI SQL standard for dynamic SQL is supported for new applications, so

that you can execute SQL statements with a varying number of host variables. An

older technique for dynamic SQL is still usable by pre-existing applications.

National Language Support for multi-byte characters and UCS2 Unicode support

are provided.
1-22 Application Developer’s Guide - Fundamentals

Pro*COBOL
Pro*COBOL
The Pro*COBOL precompiler is a software tool that allows the programmer to

embed SQL statements in a COBOL source code file. Pro*COBOL reads the source

file as input and outputs a COBOL source file that replaces the embedded SQL

statements with Oracle runtime library calls, and is then compiled by the COBOL

compiler.

When there are errors found during the precompilation or the subsequent

compilation, modify your precompiler input file and re-run the two steps.

How You Implement a Pro*COBOL Application
Here is a simple code fragment from a source file that queries the table EMPwhich is

in the schema SCOTT:

...
 WORKING-STORAGE SECTION.
*
* DEFINE HOST INPUT AND OUTPUT HOST AND INDICATOR VARIABLES.
* NO DECLARE SECTION NEEDED IF MODE=ORACLE.
*
 01 EMP-REC-VARS.
 05 EMP-NAME PIC X(10) VARYING.
 05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
 05 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
 05 COMM-IND PIC S9(4) COMP VALUE ZERO.
...
 PROCEDURE DIVISION.
...
 EXEC SQL
 SELECT ENAME, SAL, COMM
 INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
 FROM EMP
 WHERE EMPNO = :EMP_NUMBE
 END-EXEC.
...

The embedded SELECT statement is only slightly different from an interactive

(SQL*Plus) version. Every embedded SQL statement begins with EXEC SQL. The

colon, ":", precedes every host (COBOL) variable. The SQL statement is terminated

by END-EXEC. The returned values of data and indicators (set when the data value

is NULL or character columns have been truncated) can be stored in group items
Programmatic Environments 1-23

Pro*COBOL
(such as in the above code fragment), in tables, or in tables of group items. Multiple

result set values are handled very simply in a manner that resembles the case

shown, where there is only one result, given the unique employee number. You use

the actual names of columns and tables in embedded SQL.

Use the default precompiler option values, or you can enter values which give you

control over the use of resources, how errors are reported, the formatting of output,

and how cursors (which correspond to a particular connection, a SQL statement,

etc.) are managed.

Enter the options either in a configuration file, on the command line, or inline inside

your source code with a special statement that begins with EXEC ORACLE. If there

are no errors found, you can then compile, link, and execute the output source file,

like any other COBOL program that you write.

Use the precompiler to create server database access from clients that can be on

many different platforms. Pro*COBOL allows you the freedom to design your own

user interfaces and to add database access to existing COBOL applications.

The embedded SQL statements available conform to an ANSI standard, so that you

can access data from many databases in a program, including remote servers,

networked through Net8.

Before writing your embedded SQL statements, you may want to test interactive

versions of the SQL in SQL*Plus. You then make only minor changes to start testing

your embedded SQL application.

Highlights of Pro*COBOL Features
The following is a short subset of the capabilities of Pro*COBOL. For complete

details, see the Pro*COBOL Precompiler Programmer’s Guide.

You can call stored PL/SQL or Java subprograms. You can improve performance by

embedding PL/SQL blocks. These blocks can call PL/SQL functions or procedures

written by you or provided in Oracle packages.

Precompiler options allow you to define how cursors, errors, syntax-checking, file

formats, etc., are handled.

Using precompiler options, you can check the syntax and semantics of your SQL or

PL/SQL statements during precompilation, as well as at runtime.

You can conditionally precompile sections of your code so that they can execute in

different environments.
1-24 Application Developer’s Guide - Fundamentals

Pro*COBOL
Use tables, or group items, or tables of group items as host and indicator variables

in your code to improve performance.

You can program how errors and warnings are handled, so that data integrity is

guaranteed.

Pro*COBOL supports dynamic SQL, a technique that allows users to input variable

values and statement syntax.

New Oracle8 i Features Supported
Large Objects (LOBs, CLOBs, NCLOBs, and external files known as BFILEs) are

accessed by another set of SQL statements.

A new ANSI SQL standard for dynamic SQL is supported for new applications, so

that you can execute SQL statements with a varying number of host variables. An

older technique for dynamic SQL is still usable by pre-existing applications.

Pro*COBOL has many features that are compatible with DB2, for easier migration.
Programmatic Environments 1-25

Oracle JDBC
Oracle JDBC
JDBC (Java Database Connectivity) is an API (Applications Programming Interface)

which allows Java to send SQL statements to an object-relational database such as

Oracle8i.

The JDBC standard defines four types of JDBC drivers:

■ Type 1. A JDBC-ODBC bridge. Software must be installed on client systems.

■ Type 2. Has Native methods (calls C or C++) and Java methods. Software must

be installed on the client.

■ Type 3. Pure Java. The client uses sockets to call middleware on the server.

■ Type 4. The most pure Java solution. Talks directly to the database using Java

sockets.

JDBC is based on the X/Open SQL Call Level Interface, and complies with the

SQL92 Entry Level standard.

Use JDBC to do dynamic SQL. Dynamic SQL means that the embedded SQL

statement to be executed is not known before the application is run, and requires

input to build the statement.

The drivers that are implemented by Oracle have extensions to the capabilities in

the JDBC standard that was defined by Sun Microsystems. Oracle’s

implementations of JDBC drivers are described next:

JDBC Thin Driver
The JDBC Thin driver is a Type 4 (100% pure Java) driver that uses Java sockets to

connect directly to a database server. It has its own implementation of a TTC, a

lightweight implementation of a TCP/IP version of Oracle’s Net8. It is written

entirely in Java and is therefore platform-independent.

The Thin driver does not require Oracle software on the client side. It does need a

TCP/IP listener on the server side. Use this driver in Java applets that are

downloaded into a Web browser. The Thin driver is self-contained, but it opens a

Java socket, and thus can only run in a browser that supports sockets.

JDBC OCI Driver
The OCI driver is a Type 2 JDBC driver. It makes calls to the OCI (Oracle Call

Interface) which is written in C, to interact with an Oracle database server, thus

using native and Java methods.
1-26 Application Developer’s Guide - Fundamentals

Oracle JDBC
Because it uses native methods (a combination of Java and C) the OCI driver is

platform-specific. It requires a client Oracle8i installation including Net8, OCI

libraries, CORE libraries, and all other dependent files. The OCI driver usually

executes faster than the thin driver.

The OCI driver is not appropriate for Java applets, because it uses a C library that is

platform-specific and cannot be downloaded into a Web browser. It is usable in the

Oracle Web Application Server which is a collection of middleware services and

tools that supports access from and to applications from browsers and CORBA

(Common Object Request Broker Architecture) clients.

The JDBC Server Driver
The JDBC server driver is a Type 2 driver that runs inside the database server and

therefore reduces the number of round-trips needed to access large amounts of

data. The driver, the Java server VM, the database, the NCOMP native compiler

which speeds execution by as much as 10 times, and the SQL engine all run within

the same address space.

This driver provides server-side support for any Java program used in the database:

SQLJ stored procedures, functions, and triggers, Java stored procedures, CORBA

objects, and EJB (Enterprise Java Beans). You can also call PL/SQL stored

procedures, functions, and triggers.

The server driver fully supports the same features and extensions as the client-side

drivers.

Extensions of JDBC
Among the Oracle extensions to the JDBC 1.22 standard are:

■ Support for Oracle datatypes

■ Performance enhancement by row prefetching

■ Performance enhancement by execution batching

■ Specification of query column types to save round-trips

■ Control of DatabaseMetaData calls

Sample Program for the JDBC Thin Driver
The following source code registers an Oracle JDBC Thin driver, connects to the

database, creates a Statement object, executes a query, and processes the result set.
Programmatic Environments 1-27

Oracle JDBC
The SELECT statement retrieves and lists the contents of the ENAME column of the

EMPtable.

import java.sql.*
import java.math.*
import java.io.*
import java.awt.*

class JdbcTest {
 public static void main (String args []) throws SQLException {
 // Load Oracle driver
 DriverManager.registerDriver (new oracle.jdbc.dnlddriver.OracleDriver());

 // Connect to the local database
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:dnldthin:@myhost:1521:orcl",
 "scott", "tiger");

 // Query the employee names
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT ENAME FROM EMP");

 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));
 // Close the result set, statement, and the connection
 rset.close();
 stmt.close();
 conn.close();
 }
}

An Oracle extension to the JDBC drivers is a form of the getConnection()
method that uses a Properties object. The Properties object lets you specify

user, password, and database information as well as row prefetching and execution

batching.

To use the OCI driver in this code, replace the Connection statement with:

Connection conn = DriverManager.getConnection ("jdbc:oracle:oci8:@MyHostString",
 "scott", "tiger");

where MyHostString is an entry in the TNSNAMES.ORA file.

If you are creating an applet, the getConnection() and registerDriver()
strings will be different.
1-28 Application Developer’s Guide - Fundamentals

Oracle JDBC
Java in the RDBMS
The Oracle Database Server stores Java classes as well as PL/SQL subprograms.

Except for GUI methods, any Java method can run in the RDBMS as a stored

procedure. The following database constructs are supported:

Functions and Procedures
You write these named blocks and then define them using the loadjava, SQL
CREATE FUNCTION, CREATE PROCEDURE, and/or CREATE PACKAGE statements.

These Java methods can accept arguments and are callable from:

■ SQL CALL statements.

■ Embedded SQL CALL statements.

■ PL/SQL blocks, subprograms and packages.

■ DML statements (INSERT, UPDATE, DELETE, and SELECT).

■ Oracle development tools such as OCI, Pro*C/C++ and Oracle Developer.

■ Oracle Java interfaces such as JDBC, SQLJ statements, CORBA, and Enterprise

Java Beans.

Database Triggers
A database trigger is a stored procedure that Oracle invokes ("fires") automatically

whenever a given DML operation modifies the trigger’s table or schema. Triggers

allow you to enforce business rules, prevent invalid values from being stored, and

take many other actions without the need for you to explicitly call them.

Why Use Stored Procedures?
■ Stored procedures are compiled once, are easy to use and maintain, and require

less memory and computing overhead.

■ Network bottlenecks are avoided, and response time is improved. Distributed

applications are easier to build and use.

■ Computation-bound procedures run faster in the server.

■ Data access can be controlled by letting users only have stored procedures that

execute with their definer’s privileges instead of invoker’s rights.

■ PL/SQL and Java stored procedures can call each other.
Programmatic Environments 1-29

Oracle JDBC
■ Java in the server follows the Java language specification and can use the SQLJ

standard, so that non-Oracle databases are also supported.

■ Stored procedures can be reused in different applications as well as different

geographic sites.

JDBC in SQLJ Applications
JDBC code and SQLJ code (see "Oracle SQLJ" on page 1-31) interoperates, allowing

dynamic SQL statements in JDBC to be used with static SQL statements in SQLJ. A

SQLJ iterator class corresponds to the JDBC result set. For more information on

JDBC, see Oracle8i JDBC Developer’s Guide and Reference.
1-30 Application Developer’s Guide - Fundamentals

Oracle SQLJ
Oracle SQLJ
SQLJ is:

■ A language specification for embedding static SQL statements in Java source

code which has been agreed to by a consortium of database companies,

including Oracle, and by Sun, author of Java. The specification has been

accepted by ANSI as a software standard.

■ A software tool developed by Oracle to the standard, with extensions to the

standard to support Oracle8i features. That tool is the subject of this brief

overview.

SQLJ Tool
The Oracle software tool SQLJ has two parts: a translator and a runtime. You

execute on any Java VM with a JDBC driver and a SQLJ runtime library.

A SQLJ source file is a Java source file containing embedded static SQL statements.

The SQLJ translator is 100% Pure Java and is portable to any standard JDK 1.1 or

higher VM.

The Oracle8i SQLJ implementation runs in three steps:

■ Translates SQLJ source to Java code with calls to the SQLJ runtime. The SQLJ

translator converts the source code to pure Java source code, and can check the

syntax and semantics of static SQL statements against a database schema and

verify the type compatibility of host variables with SQL types.

■ Compiles using the Java compiler.

■ Customizes for the target database. SQLJ generates "profile" files with

Oracle-specific customizing.

Oracle8i supports SQLJ stored procedures, functions, and triggers which execute in

a Java VM integrated with the data server. SQLJ is integrated with Oracle’s

JDeveloper. Source-level debugging support is available in JDeveloper.

Here is an example of the simplest SQLJ executable statement, which returns one

value because empno is unique in the emp table:

String name;
#sql { SELECT ename INTO :name FROM emp WHERE empno=67890 };
System.out.println("Name is " + name + ", employee number = " + empno);

Each host variable (or qualified name or complex Java host expression) is preceded

by a colon (:). Other SQLJ statements are declarative (declares Java types) and allow
Programmatic Environments 1-31

Oracle SQLJ
you to declare an iterator (a construct related to a database cursor) for queries that

retrieve many values:

#sql iterator EmpIter (String EmpNam, int EmpNumb);

SQLJ Design Goals
The primary goal is to provide simple extensions to Java to allow rapid

development and easy maintenance of Java applications that use embedded SQL to

interact with databases.

Specific goals in support of the primary goal are:

■ Provide a concise, legible mechanism for database access via static SQL. Most

SQL in applications is static. SQLJ provides more concise and less error-prone

static SQL constructs than JDBC does.

■ Check static SQL at translate time.

■ Provide flexible deployment configurations. This makes it possible to

implement SQLJ on the client or database side or in the middle tier.

■ Support a software standard. SQLJ is an effort of a group of vendors and will be

supported by all of them. Applications can access multiple database vendors.

■ Provide source code portability. Executables can be used with all of the

vendors’ DBMSs presuming the code does not rely on any vendor-specific

features.

Strengths of Oracle’s SQLJ Implementation
■ Uniform programming style for the clients and the servers.

■ Integration of the SQLJ translator with JDeveloper, a graphical IDE that

provides SQLJ translation, Java compilation, profile customizing, and

debugging at the source code level, all in one step.

■ SQL Checker module for verification of syntax and semantics at translate-time.

■ Oracle type extensions. Datatypes supported are LOBs, ROWIDs, REF

CURSORs, VARRAYs, nested tables, user-defined object types, as well as other

datatypes such as RAW and NUMBER.

Comparison of SQLJ with JDBC
JDBC provides a complete dynamic SQL interface from Java to databases. SQLJ fills

a complementary role.
1-32 Application Developer’s Guide - Fundamentals

Oracle SQLJ
JDBC provides fine-grained control of the execution of dynamic SQL from Java,

while SQLJ provides a higher level static binding to SQL operations in a specific

database schema. Here are some differences:

■ SQLJ source code is more concise than equivalent JDBC source code.

■ SQLJ uses database connections to type-check static SQL code. JDBC, being a

completely dynamic API, does not.

■ SQLJ programs allow direct embedding of Java bind expressions within SQL

statements. JDBC requires a separate get and/or set call statement for each bind

variable and specifies the binding by position number.

■ SQLJ provides strong typing of query outputs and return parameters and

allows type-checking on calls. JDBC passes values to and from SQL without

compile-time type checking.

■ SQLJ provides simplified rules for calling SQL stored procedures and functions.

The JDBC specification requires a generic call to a stored procedure (or

function), fun, to have the following syntax (we show SQL92 and Oracle escape

syntaxes, which are both allowed):

prepStmt.prepareCall("{call fun(?,?)}"); //stored procedure SQL92

prepStmt.prepareCall("{? = call fun(?,?)}"); //stored function SQL92

prepStmt.prepareCall("begin fun(:1,:2);end;"); //stored procedure Oracle

 prepStmt.prepareCall("begin :1 := fun(:2,:3);end;");//stored func Oracle

SQLJ provides simplified notations:

#sql {call fun(param_list) }; //Stored procedure

// Declare x
...
#sql x = {VALUES(fun(param_list)) }; // Stored function
// where VALUES is the SQL construct

Here are similarities:

■ SQLJ source files can contain JDBC calls. SQLJ and JDBC are interoperable.

■ Oracle’s JPublisher tool generates custom Java classes to be used in your SQLJ

or JDBC application for mappings to Oracle object types and collections.

■ Java and PL/SQL stored procedures can be used interchangeably.
Programmatic Environments 1-33

Oracle SQLJ
SQLJ Example for Object Types
Here is a simple use of user-defined objects and object refs taken from Oracle8i SQLJ
Developer’s Guide and Reference , where more information on SQLJ is available:

The following items are created using the SQL script below:

■ Two object types, PERSON and ADDRESS

■ A typed table for PERSON objects

■ An EMPLOYEE table that includes an ADDRESS column and two columns of

PERSON references

SET ECHO ON;
/
/*** Clean up in preparation ***/
DROP TABLE EMPLOYEES
/
DROP TABLE PERSONS
/
DROP TYPE PERSON FORCE
/
DROP TYPE ADDRESS FORCE
/
/*** Create address UDT ***/
CREATE TYPE address AS OBJECT
(
 street VARCHAR(60),
 city VARCHAR(30),
 state CHAR(2),
 zip_code CHAR(5)
)
/
/*** Create person UDT containing an embedded address UDT ***/
CREATE TYPE person AS OBJECT
(
 name VARCHAR(30),
 ssn NUMBER,
 addr address
)
/
/*** Create a typed table for person objects ***/
CREATE TABLE persons OF person
/
/*** Create a relational table with two columns that are REFs
 to person objects, as well as a column which is an Address ADT. ***/
1-34 Application Developer’s Guide - Fundamentals

Oracle SQLJ
CREATE TABLE employees
(
 empnumber INTEGER PRIMARY KEY,
 person_data REF person,
 manager REF person,
 office_addr address,
 salary NUMBER
)
/*** Insert some data--2 objects into the persons typed table ***/
INSERT INTO persons VALUES (
 person('Wolfgang Amadeus Mozart', 123456,
 address('Am Berg 100', 'Salzburg', 'AT','10424')))
/
INSERT INTO persons VALUES (
 person('Ludwig van Beethoven', 234567,
 address('Rheinallee', 'Bonn', 'DE', '69234')))
/
/** Put a row in the employees table **/
INSERT INTO employees (empnumber, office_addr, salary) VALUES (
 1001,
 address('500 Oracle Parkway', 'Redwood Shores', 'CA', '94065'),
 50000)
/
/** Set the manager and person REFs for the employee **/
UPDATE employees
 SET manager =
 (SELECT REF(p) FROM persons p WHERE p.name = 'Wolfgang Amadeus Mozart')
/
UPDATE employees
 SET person_data =
 (SELECT REF(p) FROM persons p WHERE p.name = 'Ludwig van Beethoven')
/
COMMIT
/
QUIT

Next, JPublisher is used to generate the Address class for mapping to Oracle

ADDRESS objects. We omit the details.

The following SQLJ sample declares and sets an input host variable of Java type

Address to update an ADDRESS object in a column of the employees table. Both

before and after the update, the office address is selected into an output host

variable of type Address and printed for verification.

...
Programmatic Environments 1-35

Oracle SQLJ
// Updating an object

static void updateObject()
{

 Address addr;
 Address new_addr;
 int empno = 1001;

 try {
 #sql {
 SELECT office_addr
 INTO :addr
 FROM employees
 WHERE empnumber = :empno };
 System.out.println("Current office address of employee 1001:");

 printAddressDetails(addr);

 /* Now update the street of address */

 String street ="100 Oracle Parkway";
 addr.setStreet(street);

 /* Put updated object back into the database */

 try {
 #sql {
 UPDATE employees
 SET office_addr = :addr
 WHERE empnumber = :empno };
 System.out.println
 ("Updated employee 1001 to new address at Oracle Parkway.");

 /* Select new address to verify update */

 try {
 #sql {
 SELECT office_addr
 INTO :new_addr
 FROM employees
 WHERE empnumber = :empno };

 System.out.println("New office address of employee 1001:");
 printAddressDetails(new_addr);
1-36 Application Developer’s Guide - Fundamentals

Oracle SQLJ
 } catch (SQLException exn) {
 System.out.println("Verification SELECT failed with "+exn); }

 } catch (SQLException exn) {
 System.out.println("UPDATE failed with "+exn); }

 } catch (SQLException exn) {
 System.out.println("SELECT failed with "+exn); }
}
...

Note the use of the setStreet() accessor method of the Address instance.

Remember that JPublisher provides such accessor methods for all attributes in any

custom Java class that it produces.

SQLJ Stored Procedures in the Server
SQLJ applications can be stored and run in the server. You have the option of

translating, compiling, and customizing SQLJ source on a client and loading the

generated classes and resources into the server with the loadjava utility, typically

using a Java archive (.jar) file.

Or, you have a second option of loading SQLJ source code into the server, also using

loadjava , and having it translated and compiled by the server’s embedded

translator.
Programmatic Environments 1-37

Oracle SQLJ
1-38 Application Developer’s Guide - Fundamentals

Visual Modelling for Software Develop
2

Visual Modelling for Software Development

This chapter contains information on Unified Modelling Language notation and

diagrams. The topics include:

■ Why Employ Visual Modelling?

■ Use Cases
ment 2-1

Why Employ Visual Modelling?
Why Employ Visual Modelling?
When application developers gather together to discuss a project, it is only a matter

of minutes before someone starts sketching on a white board or pad in order to

describe the problems and outline solutions. They do so because they instinctively

recognize that a mixture of graphics and text is the fastest way to delineate the

complex relationships entailed in software development. Participants in these

meetings often end up copying down these sketches as a basis for later code

development.

Unified Modelling Language
One problem with this process is that whoever creates the diagrams has to invent a

notation to adequately represent the issues under discussion. Fortunately, many of

the types of problems are familiar, and everyone who is in the room can ask

questions about what is meant by the lines and edges. But this raises further

problems: What about members of a development team who are not present?

Indeed, even people who were there may later lose track of the logic underlying

their notes.

To counter these difficulties, this Application Developer’s documentation set uses a

graphic notation defined by the Unified Modelling Language (UML), an

industry-wide standard specifically created for modelling software systems.

Describing the UML in its entirety is beyond the scope of the book. However, we do

explain the small subset of the UML notation that we employ.

Illustrations and Diagrams
Software documentation has always contained figures. What, then, is the difference

between UML-based diagrams used for modelling software development and the

figures that have traditionally been used to illustrate different topics? We make a

distinction between two kinds of figures in this book:

■ Illustrations — used to describe technology to make it more understandable.

■ Diagrams — used for actual software modelling.

The two different types are always distinguished in the figure title. The term

diagram is always used for the following examples:
2-2 Application Developer’s Guide - Fundamentals

Why Employ Visual Modelling?
Example of an Illustration
Figure 2–1 illustrates the macro-steps entailed in creating a multimedia application.

While it may be useful in planning software development from an organizational

standpoint, it does not provide any help for the actual coding.

Figure 2–1 Example of an Illustration: The Multimedia Authoring Process

Story
Board

Development

Media
Content

Collection

Programming
the

Composition

Media
Experience
Visual Modelling for Software Development 2-3

Why Employ Visual Modelling?
Example of A Diagram
In contrast to Figure 2–1, Figure 2–2 describes what you must do to enqueue a

message using Oracle Advanced Queuing: You must specify a queue name, specify

the message properties, specify from among various options, and add the message

payload. This diagram is then complemented by further diagrams, as indicated by

the drop shadows around the latter three ellipses.

Figure 2–2 Use Case Diagram: Enqueue a Message

Operational Interface

User/
Program

specify
options

add
payload

specify
message
properties

specify
queue name

ENQUEUE
a message
2-4 Application Developer’s Guide - Fundamentals

Use Cases
Use Cases
The UML contains a number of different kinds of diagrams.This release of the

Application Developer’s documentation set introduces the UML into

documentation principally by way of use cases. Use cases are generally employed to

describe the set of activities that comprise the sum of the application scenarios.

Figure 2–3 Use Cases

The following section is a selection of UML elements that are used in this book.

Buy / Sell Securities

Agent

Customer

Stock
Exchange

Security
House

Confirm
Order

Cancel
Order

Complete
Order

Check Order
Status

Place
Order
Visual Modelling for Software Development 2-5

Use Cases
Use Case Diagrams

Graphic Element Description

This release of the documentation
introduces and makes heavy use of the
Use Case Diagram. Each primary use
case is instigated by an actor
(’stickman’) that could be a human
user, an application, or a sub-program.

The actor is connected to the primary
use case which is depicted as an oval
(bubble) enclosing the use case action.

The totality of primary use cases is
described by means of a Use Case
Model Diagram.

Primary use cases may require other
operations to complete them. In this
diagram fragment:

■ specify queue name

Is one of the sub-operations, or
secondary use cases, necessary to
complete

■ ENQUEUE a message

Has the downward lines from the
primary use case that lead to the other
required operations (not shown)

User/
Program

DELETE
the row

Operational Interface

User/
Program

specify
queue name

ENQUEUE
a message
2-6 Application Developer’s Guide - Fundamentals

Use Cases
Secondary use cases that have drop
shadows expand (they are described
by means of their own use case
diagrams). There are two reasons for
this:

(a) It makes it easier to understand the
logic of the operation.

 (b) It would not have been possible to
place all the operations and
sub-operations on the same page.

In this example, specify message
properties, specify options, and add
payload are all expanded in separate
use case diagrams.

This diagram fragment shows the use
case diagram expanded. While the
standard diagram has the actor as the
initiator), here the use case itself is the
point of departure for the
sub-operation.

In this example, the expanded view of
add payload represents a constituent
operation of ENQUEUE a message.

Graphic Element Description

Operational Interface

User/
Program

specify
options

add
payload

specify
message
properties

specify
queue name

ENQUEUE
a message

Operational Interface

add
payload

ENQUEUE
a message
Visual Modelling for Software Development 2-7

Use Cases
This convention (a, b, c) shows that
there are three different ways of
creating a table that contains LOBs.

This fragment shows use of a NOTE
box, here distinguishing which of the
three ways of creating a table
containing LOBs.

Graphic Element Description

b
c

a

Internal persistent LOBs

CREATE
a table
(LOB)

User/
Program

a CREATE table with one or more LOBs
CREATE

a table (LOB
columns)
2-8 Application Developer’s Guide - Fundamentals

Use Cases
Graphic Element

Description

This drawing shows two other common sees of NOTE boxes:

(a) A way of presenting an alternative name, as in this case the action SELECT propagation schedules in the
user schema is represented by the view USER_QUEUE_SCHEDULES

(b) The action list attribute names is qualified by the note to the user that you must list at least one attribute if
you elect not to list all the propagation schedule attributes.

Graphic Element Description

The dotted arrow in the use case
diagram indicates dependency. In
this example, free a temporary
LOBrequires that you first create a
temporary LOB.

This means that you should not
execute the free operation on a
LOB that is not temporary.

What you need to remember is
that the target of the arrow shows
the operation that must be
performed first.

User/
Program

OR

list
all propogation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names

User/
Program

create
a temporary

LOB

free
a temporary

LOB
Visual Modelling for Software Development 2-9

Use Cases
Use cases and their sub-operations
can be linked in complex
relationships.

In this example of a callback, you
must first REGISTER for
notification in order to later
receive a notification.

REGISTER
for

notification

receive
notification
2-10 Application Developer’s Guide - Fundamentals

Use Cases
Graphic Element

Description

In this case, the branching paths of an OR condition are shown. In invoking the view, you may either choose to
list all the attributes or to view one or more attributes. The fact that you can stipulate which of the attributes
you want made visible is indicated by the grayed arrow.

User/
Program

OR

list
all propogation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names
Visual Modelling for Software Development 2-11

Use Cases
Graphic Element

Description

Not all lined operations are mandatory. While the black dashed-line and arrow indicate that you must perform
the targeted operation to complete the use case, actions that are optional are shown by the grey dashed-line and
arrow.

In this example, executing WRITEAPPEND on a LOB requires that you first SELECT a LOB.

As a facilitating operations, you may choose to OPEN a LOB and/or GETCHUNKSIZE.

However, note that if you OPEN a LOB, you will later have to CLOSE it.

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

write
append
2-12 Application Developer’s Guide - Fundamentals

Use Cases
State Diagrams

Graphic Element

Description

All the previous notes have dealt with use case diagrams. Here we introduce the very basic application of a state
diagram that we utilize in this book to present the attributes of a view. In fact, attributes of a view have only two
states — visible or invisible.

We attempt to show what you might make visible in invoking the view. Accordingly, we have extended the
UML to join a partial state diagram onto a use case diagram to show the totality of attributes, and thereby all
the view sub-states of the view that you can see. We have demarcated the use case from the view state by
coloring the background of the state diagram grey.

In this example, the view AQ$<queue_table_name>_S allows you to query queue subscribers. You can
stipulate one, some combination, or all of the four attributes.

Administrative Interface

User/
Program

OR

list
all queue

subscriber
attributes

List at
least one
attribute

User view
AQ$<queue_table_name>_S

SELECT
queue

subscribers

list
attribute
names

NAMEQUEUE ADDRESS PROTOCOL
Visual Modelling for Software Development 2-13

Use Cases
Graphic Element Description

Use Case Model Diagrams summarize all
the use cases in a particular domain,
such as Internal temporary LOBs .
Often, these diagrams are too complex
to contain within a single page.

When that happens we resort to
dividing the diagram into two parts.
Please note that there is no sequence
implied in this division.

In some cases, we have had to split a
diagram simply because it is too long
for the page. In such cases, we have
included this marker.

Internal temporary LOBs (part 1 of 2)

continued on next page
2-14 Application Developer’s Guide - Fundamentals

Part II

 Designing the Database

Part II contains the following chapters:

■ Chapter 3, "Managing Schema Objects"

■ Chapter 4, "Selecting a Datatype"

■ Chapter 5, "Maintaining Data Integrity"

■ Chapter 6, "Selecting an Index Strategy"

■ Chapter 7, "Managing Index-Organized Tables"

■ Chapter 8, "Processing SQL Statements"

■ Chapter 9, "Dynamic SQL"

■ Chapter 10, "Using Procedures and Packages"

■ Chapter 11, "External Routines"

■ Chapter 12, "Establishing Security Policies"

Managing Schema O
3

Managing Schema Objects

This chapter discusses the procedures necessary to create and manage the different

types of objects contained in a user’s schema. The topics include:

■ Managing Tables

■ Managing Temporary Tables

■ Managing Views

■ Modifying a Join View

■ Managing Sequences

■ Managing Synonyms

■ Miscellaneous Management Topics for Schema Objects

See Also: Other information about managing schema objects can

be found in the following locations:

■ Indexes, clusters, and materialized views — Chapter 6

■ Procedures, functions, and packages — Chapter 10

■ Object types — Chapter 17

■ Dependency information — Chapter 10

■ If you use symmetric replication, then see Oracle8i Replication
for information on managing schema objects, such as

snapshots.

■ If you use Trusted Oracle, then there are additional privileges

required and issues to consider when managing schema

objects; see the Trusted Oracle documentation.
bjects 3-1

Managing Tables
Managing Tables
A table is the data structure that holds data in a relational database. A table is

composed of rows and columns.

A table can represent a single entity that you want to track within your system. This

type of a table could represent a list of the employees within your organization, or

the orders placed for your company’s products.

A table can also represent a relationship between two entities. This type of a table

could portray the association between employees and their job skills, or the

relationship of products to orders. Within the tables, foreign keys are used to

represent relationships.

Although some well designed tables could represent both an entity and describe the

relationship between that entity and another entity, most tables should represent

either an entity or a relationship. For example, the EMP_TAB table describes the

employees in a firm, but this table also includes a foreign key column, DEPTNO,
which represents the relationships of employees to departments.

The following sections explain how to create, alter, and drop tables. Some simple

guidelines to follow when managing tables in your database are included.

See Also: The Oracle8i Administrator’s Guide has more

suggestions. You should also refer to a text on relational database or

table design.
3-2 Application Developer’s Guide - Fundamentals

Managing Tables
Designing Tables
Consider the following guidelines when designing your tables:

■ Use descriptive names for tables, columns, indexes, and clusters.

■ Be consistent in abbreviations and in the use of singular and plural forms of

table names and columns.

■ Document the meaning of each table and its columns with the COMMENT
command.

■ Normalize each table.

■ Select the appropriate datatype for each column.

■ Define columns that allow nulls last, to conserve storage space.

■ Cluster tables whenever appropriate, to conserve storage space and optimize

performance of SQL statements.

Before creating a table, you should also determine whether to use integrity

constraints. Integrity constraints can be defined on the columns of a table to enforce

the business rules of your database automatically.

See Also: See Chapter 5, "Maintaining Data Integrity" for

guidelines.
Managing Schema Objects 3-3

Managing Tables
Creating Tables
To create a table, use the SQL command CREATE TABLE. For example, if the user

SCOTT issues the following statement, he creates a non-clustered table named Emp_
tab in his schema that is physically stored in the USERS tablespace. Notice that

integrity constraints are defined on several columns of the table.

CREATE TABLE Emp_tab (
 Empno NUMBER(5) PRIMARY KEY,
 Ename VARCHAR2(15) NOT NULL,
 Job VARCHAR2(10),
 Mgr NUMBER(5),
 Hiredate DATE DEFAULT (sysdate),
 Sal NUMBER(7,2),
 Comm NUMBER(7,2),
 Deptno NUMBER(3) NOT NULL,
 CONSTRAINT dept_afkey REFERENCES Dept_tab(Deptno))
 PCTFREE 10
 PCTUSED 40
 TABLESPACE users
 STORAGE (INITIAL 50K
 NEXT 50K
 MAXEXTENTS 10
 PCTINCREASE 25);

Managing the Space Usage of Data Blocks
The following sections explain how to use the PCTFREE and PCTUSED parameters

to do the following:

■ Increase the performance of writing and retrieving a data or index segment

■ Decrease the amount of unused space in data blocks

■ Decrease the amount of row chaining between data blocks

Specifying PCTFREE
The PCTFREE default is 10 percent; any integer from 0 to 99 is acceptable, as long as

the sum of PCTFREE and PCTUSED does not exceed 100. (If PCTFREE is set to 99,

then Oracle puts at least one row in each block, regardless of row size. If the rows

are very small and blocks very large, then even more than one row might fit.)

A lower PCTFREE:

■ Reserves less room for updates to existing table rows
3-4 Application Developer’s Guide - Fundamentals

Managing Tables
■ Allows inserts to fill the block more completely

■ Might save space, because the total data for a table or index is stored in fewer

blocks (more rows or entries per block)

■ Increases processing costs because blocks frequently need to be reorganized as

their free space area becomes filled with new or updated data

■ Potentially increases processing costs and space required if updates to rows or

index entries cause rows to grow and span blocks (because UPDATE, DELETE,
and SELECT statements might need to read more blocks for a given row and

because chained row pieces contain references to other pieces)

A higher PCTFREE:

■ Reserves more room for future updates to existing table rows

■ Might require more blocks for the same amount of inserted data (inserting

fewer rows per block)

■ Lessens processing costs, because blocks infrequently need reorganization of

their free space area

■ Might improve update performance, because Oracle must chain row pieces less

frequently, if ever

In setting PCTFREE, you should understand the nature of the table or index data.

Updates can cause rows to grow. When using NUMBER, VARCHAR2, LONG, or LONG
RAW, new values might not be the same size as values they replace. If there are many

updates in which data values get longer, then increase PCTFREE; if updates to rows

do not affect the total row width, then PCTFREE can be low.

Your goal is to find a satisfactory trade-off between densely packed data (low

PCTFREE, full blocks) and good update performance (high PCTFREE, less-full

blocks).

PCTFREE also affects the performance of a given user’s queries on tables with

uncommitted transactions belonging to other users. Assuring read consistency

might cause frequent reorganization of data in blocks that have little free space.

PCTFREE for Non-Clustered Tables If the data in the rows of a non-clustered table is

likely to increase in size over time, then reserve space for these updates. If you do

not reserve room for updates, then updated rows are likely to be chained between

blocks, reducing I/O performance associated with these rows.

PCTFREE for Clustered Tables The discussion for non-clustered tables also applies to

clustered tables. However, if PCTFREE is reached, then new rows from any table
Managing Schema Objects 3-5

Managing Tables
contained in the same cluster key go into a new data block chained to the existing

cluster key.

PCTFREE for Indexes Indexes infrequently require the use of free space for updates

to index data. Therefore, the PCTFREE value for index segment data blocks is

normally very low (for example, 5 or less).

Specifying PCTUSED
Once the percentage of free space in a data block reaches PCTFREE, no new rows

are inserted in that block until the percentage of space used falls below PCTUSED.
Oracle tries to keep a data block at least PCTUSED full. The percent is of block space

available for data after overhead is subtracted from total space.

The default for PCTUSED is 40 percent; any integer between 0 and 99, inclusive, is

acceptable as long as the sum of PCTUSED and PCTFREE does not exceed 100.

A lower PCTUSED:

■ Usually keeps blocks less full than a higher PCTUSED

■ Reduces processing costs incurred during UPDATE and DELETE statements for

moving a block to the free list when the block has fallen below that percentage

of usage

■ Increases the unused space in a database

 A higher PCTUSED:

■ Usually keeps blocks fuller than a lower PCTUSED

■ Improves space efficiency

■ Increases processing cost during INSERTs and UPDATEs

Choosing Associated PCTUSED and PCTFREE Values
If you decide not to use the default values for PCTFREE and PCTUSED, then use the

following guidelines.

■ The sum of PCTFREE and PCTUSED must be equal to or less than 100.

■ If the sum is less than 100, then the ideal compromise of space utilization and

I/O performance is a sum of PCTFREE and PCTUSED that differs from 100 by

the percentage of space in the available block that an average row occupies. For

example, assume that the data block size is 2048 bytes, minus 100 bytes of

overhead, leaving 1948 bytes available for data. If an average row requires 195
3-6 Application Developer’s Guide - Fundamentals

Managing Tables
bytes, or 10% of 1948, then an appropriate combination of PCTUSED and

PCTFREE that sums to 90% would make the best use of database space.

■ If the sum equals 100, then Oracle attempts to keep no more than PCTFREE free

space, and the processing costs are highest.

■ Fixed block overhead is not included in the computation of PCTUSED or

PCTFREE.

■ The smaller the difference between 100 and the sum of PCTFREE and PCTUSED
(as in PCTUSED of 75, PCTFREE of 20), the more efficient space usage is at some

performance cost.

Examples of Choosing PCTFREE and PCTUSED Values
The following examples illustrate correctly specifying values for PCTFREE and

PCTUSED in given scenarios.

Example1

Scenario: Common activity includes UPDATE statements that increase the size
of the rows. Performance is important.

Settings: PCTFREE = 20

PCTUSED = 40

Explanation: PCTFREE is set to 20 to allow enough room for rows that increase in
size as a result of updates. PCTUSED is set to 40 so that less
processing is done during high update activity, thus improving
performance.
Managing Schema Objects 3-7

Managing Tables
Example2

Example3

Privileges Required to Create a Table
To create a new table in your schema, you must have the CREATE TABLE system

privilege. To create a table in another user’s schema, you must have the CREATE
ANY TABLEsystem privilege. Additionally, the owner of the table must have a quota

for the tablespace that contains the table, or the UNLIMITED TABLESPACE system

privilege.

Scenario: Most activity includes INSERT and DELETEstatements, and UPDATE
statements that do not increase the size of affected rows.
Performance is important.

Settings: PCTFREE = 5

PCTUSED = 60

Explanation: PCTFREEis set to 5 because most UPDATEstatements do not increase
row sizes. PCTUSED is set to 60 so that space freed by DELETE
statements is used relatively soon, yet the amount of processing is
minimized.

Scenario: The table is very large; therefore, storage is a primary concern. Most
activity includes read-only transactions; therefore, query
performance is important.

Settings: PCTFREE = 5

PCTUSED = 90

Explanation: PCTFREE is set to 5, because UPDATE statements are rarely issued.
PCTUSED is set to 90, so that more space per block is used to store
table data. This setting for PCTUSED reduces the number of data
blocks required to store the table’s data and decreases the average
number of data blocks to scan for queries, thereby increasing the
performance of queries.
3-8 Application Developer’s Guide - Fundamentals

Managing Tables
Altering Tables
Alter a table in an Oracle database for any of the following reasons:

■ To add one or more new columns to the table

■ To add one or more integrity constraints to a table

■ To modify an existing column’s definition (datatype, length, default value, and

NOT NULL integrity constraint)

■ To modify data block space usage parameters (PCTFREE, PCTUSED)

■ To modify transaction entry settings (INITRANS , MAXTRANS)

■ To modify storage parameters (NEXT, PCTINCREASE, etc.)

■ To enable or disable integrity constraints associated with the table

■ To drop integrity constraints associated with the table

When altering the column definitions of a table, you can only increase the length of

an existing column, unless the table has no records. You can also decrease the length

of a column in an empty table. For columns of datatype CHAR, increasing the length

of a column might be a time consuming operation that requires substantial

additional storage, especially if the table contains many rows. This is because the

CHAR value in each row must be blank-padded to satisfy the new column length.

If you change the datatype (for example, from VARCHAR2 to CHAR), then the data in

the column does not change. However, the length of new CHAR columns might

change, due to blank-padding requirements.

Use the SQL command ALTER TABLE to alter a table. For example:

ALTER TABLE Emp_tab
 PCTFREE 30
 PCTUSED 60;

Altering a table has the following implications:

■ If a new column is added to a table, then the column is initially null. You can

add a column with a NOT NULL constraint to a table only if the table does not

contain any rows.

■ If a view or PL/SQL program unit depends on a base table, then the alteration

of the base table might affect the dependent object, and always invalidates the

dependent object.
Managing Schema Objects 3-9

Managing Tables
Privileges Required to Alter a Table
To alter a table, the table must be contained in your schema, or you must have

either the ALTER object privilege for the table or the ALTER ANY TABLE system

privilege.

Dropping Tables
Use the SQL command DROP TABLE to drop a table. For example, the following

statement drops the EMP_TAB table:

DROP TABLE Emp_tab;

If the table that you are dropping contains any primary or unique keys referenced

by foreign keys of other tables, and if you intend to drop the FOREIGN KEY
constraints of the child tables, then include the CASCADE option in the DROP TABLE
command. For example:

DROP TABLE Emp_tab CASCADE CONSTRAINTS;

Dropping a table has the following effects:

■ The table definition is removed from the data dictionary. All rows of the table

are then inaccessible.

■ All indexes and triggers associated with the table are dropped.

■ All views and PL/SQL program units that depend on a dropped table remain,

but become invalid (not usable).

■ All synonyms for a dropped table remain, but return an error when used.

■ All extents allocated for a non-clustered table that is dropped are returned to

the free space of the tablespace and can be used by any other object requiring

new extents.

■ All rows corresponding to a clustered table are deleted from the blocks of the

cluster.

■ If the table is a master table for snapshots, then Oracle does not drop the

snapshots, but does drop the snapshot log. The snapshots can still be used, but

they cannot be refreshed unless the table is re-created.

If you want to delete all of the rows of a table, but keep the table definition, then

you should use the TRUNCATE TABLE command.
3-10 Application Developer’s Guide - Fundamentals

Managing Tables
Privileges Required to Drop a Table
To drop a table, the table must be contained in your schema or you must have the

DROP ANY TABLE system privilege.

See Also: Oracle8i Administrator’s Guide.
Managing Schema Objects 3-11

Managing Temporary Tables
Managing Temporary Tables
A temporary table has a definition or structure that persists like that of a regular

table, but the data it contains exists only for the duration of a transaction or session.

Oracle8i allows you to create temporary tables to hold session-private data. You

specify whether the data is specific to a session or to a transaction.

Here are a few examples of when temporary tables can be useful:

■ A Web-based airlines reservations application allows you, as a customer, to

create several optional itineraries. As you develop each itinerary, the

application places the data in a row of a single temporary table. As you modify

each itinerary, the application updates that row accordingly. When you

ultimately decide which itinerary you want to use, the application moves the

row for that itinerary to a persistent table.

During your session, the data you enter is private. When you end your session,

the optional itineraries you developed are dropped.

■ Several sales agents for a large bookseller use a single temporary table

concurrently while taking customer orders over the phone. To enter and modify

customer orders, each agent accesses the table in a session that is unavailable to

the other agents. When the agent closes a session, the data from that session is

automatically dropped, but the table structure persists for the other agents to

use.

■ An administrator uses temporary tables to improve performance when running

an otherwise complex and expensive query. To do this, the administrator caches

the values from a more complex query in temporary tables, then runs SQL

statements, such as joins, against those temporary tables. For a thorough

explanation of how this can be done, see "Example 2: Using Temporary Tables

to Improve Performance" on page 3-14.

Creating Temporary Tables
You create a temporary table by using special ANSI keywords. You specify the data

as session-specific by using the ON COMMIT PRESERVE ROWS keywords. You specify

the data as transaction-specific by using the ON COMMIT DELETE ROWS keywords.

Example 3–1 Creating a Session-Specific Temporary Table

CREATE GLOBAL TEMPORARY TABLE ...
 [ON COMMIT PRESERVE ROWS]
3-12 Application Developer’s Guide - Fundamentals

Managing Temporary Tables
Example 3–2 Creating a Transaction-Specific Temporary Table

CREATE GLOBAL TEMPORARY TABLE ...
 [ON COMMIT DELETE ROWS]

Using Temporary Tables
You can create indexes on temporary tables as you would on permanent tables.

For a session-specific temporary table, a session gets bound to the temporary table

with the first insert in the table in the session. This binding goes away at the end of

the session or by issuing a TRUNCATE of the table in the session.

For a transaction-specific temporary table, a session gets bound to the temporary

table with the first insert in the table in the transaction. The binding goes away at

the end of the transaction.

DDL operations (except TRUNCATE) are allowed on an existing temporary table

only if no session is currently bound to that temporary table.

Unlike permanent tables, temporary tables and their indexes do not automatically

allocate a segment when they are created. Instead, segments are allocated when the

first INSERT (or CREATE TABLE AS SELECT) is performed. This means that if a

SELECT, UPDATE, or DELETE is performed before the first INSERT, the table

appears to be empty.

Temporary segments are deallocated at the end of the transaction for

transaction-specific temporary tables and at the end of the session for

session-specific temporary tables.

If you rollback a transaction, the data you entered is lost, although the table

definition persists.

You cannot create a table that is simultaneously both transaction- and

session-specific.

A transaction-specific temporary table allows only one transaction at a time. If there

are several autonomous transactions in a single transaction scope, each autonomous

transaction can use the table only as soon as the previous one commits.

Because the data in a temporary table is, by definition, temporary, backup and

recovery of a temporary table’s data is not available in the event of a system failure.

To prepare for such a failure, you should develop alternative methods for

preserving temporary table data.
Managing Schema Objects 3-13

Managing Temporary Tables
Examples: Using Temporary Tables

Example 1: A Session-specific Temporary Table
The following statement creates a session-specific temporary table, FLIGHT_
SCHEDULE, for use in an automated airline reservation scheduling system. Each

client has its own session and can store temporary schedules. The temporary

schedules are deleted at the end of the session.

CREATE GLOBAL TEMPORARY TABLE flight_schedule (
 startdate DATE,
 enddate DATE,
 cost NUMBER)
ON COMMIT PRESERVE ROWS;

Example 2: Using Temporary Tables to Improve Performance
This example shows how you can use temporary tables to improve performance

when you run complex queries. In this example, you create four conventional

tables, then run SQL statements against them. The example compares the way you

would conventionally run SQL statements on those tables with the way you could

run them using temporary tables. In the former case, the performance is relatively

slow because the process requires hitting the table multiple times for each row

returned. In the latter case, efficiency increases because you use temporary tables to

cache the values from a more complex query, then run SQL statements against those

temporary tables.

Create PROFILE_DEPARTMENTS table
CREATE TABLE Profile_departments
 (
 Department_id NUMBER(4) not null,
 Department_name VARCHAR2(20) not null,
 CONSTRAINT profile_departments_pk
 PRIMARY KEY (department_id)
);
CREATE UNIQUE INDEX Profile_departments_u1
 ON Profile_departments (Department_name);

INSERT INTO Profile_departments (Department_id, Department_name)
 VALUES (3001, 'Accounting');
INSERT INTO Profile_departments (Department_id, Department_name)
 VALUES (3002, 'Marketing');
COMMIT;
3-14 Application Developer’s Guide - Fundamentals

Managing Temporary Tables
The above script yields the following:

Create PROFILE_USERS table
CREATE TABLE Profile_users
 (
 User_id NUMBER(4) not null,
 User_name VARCHAR2(20) not null,
 Department_id NUMBER(4) not null,
 CONSTRAINT Profile_users_pk
 PRIMARY KEY (User_id)
);
CREATE UNIQUE INDEX Profile_users_u1
 ON Profile_users (User_name);

INSERT INTO Profile_users (User_id, User_name, Department_id)
 VALUES (2001, 'John Doe', 3001);
INSERT INTO Profile_users (User_id, User_name, Department_id)
 VALUES (2002, 'Jane Doe', 3002);
INSERT INTO Profile_users (User_id, User_name, Department_id)
 VALUES (2003, 'Bill Smith', 3002);
COMMIT;

The above script yields the following:

Create PROFILE_DEFINITIONS table
CREATE TABLE Profile_definitions
 (
 Profile_option_id NUMBER(4) Not Null,
 Profile_option_name VARCHAR2(20) not null,
 CONSTRAINT Profile_definitions_pk
 PRIMARY KEY (Profile_option_id)
);

DEPARTMENT_ID DEPARTMENT_NAME

3001 Accounting

3002 Marketing

User ID Name Department

2001 John Doe 3001 (Accounting)

2002 Jane Doe 3002 (Marketing)

2003 Bill Smith 3002 (Marketing)
Managing Schema Objects 3-15

Managing Temporary Tables
CREATE UNIQUE INDEX Profile_definitions_u1
 ON Profile_definitions (Profile_option_name);

INSERT INTO Profile_definitions (Profile_option_id, Profile_option_name)
 VALUES (1001, 'Printer');
INSERT INTO Profile_definitions (Profile_option_id, Profile_option_name)
 VALUES (1002, 'Mail Database');
COMMIT;

The above script yields the following:

Create PROFILE_VALUES table
CREATE TABLE Profile_values
 (
 Profile_option_id NUMBER(4) not null,
 Level_code VARCHAR2(10) not null,
 Level_id NUMBER(4) not null,
 Profile_option_value VARCHAR2(20) not null,
 CONSTRAINT profile_values_pk
 PRIMARY KEY (Profile_option_id,level_code,level_id),
 CONSTRAINT Profile_values_c1
 CHECK (Level_code IN ('USER','DEPARTMENT','SITE'))
) ORGANIZATION INDEX;

INSERT INTO Profile_values
 (Profile_option_id, Level_code, Level_id, Profile_option_value)
 VALUES (1001, 'DEPARTMENT', 3001, 'ACCT-LPT');
INSERT INTO Profile_values
 (Profile_option_id, Level_code, Level_id, Profile_option_value)
 VALUES (1001, 'DEPARTMENT', 3002, 'MKTG-LPT');
INSERT INTO Profile_values
 (Profile_option_id, Level_code, Level_id, Profile_option_value)
 VALUES (1001, 'USER', 2003, 'SMITH-LPT');
INSERT INTO Profile_values
 (Profile_option_id, Level_code, Level_id, Profile_option_value)
 VALUES (1002, 'SITE', 0, 'mail0');
INSERT INTO Profile_values
 (Profile_option_id, Level_code, Level_id, Profile_option_value)
 VALUES (1002, 'DEPARTMENT', 3001, 'mail1');

Profile Option Id Profile Option Name

1001 Printer

1002 Mail Database
3-16 Application Developer’s Guide - Fundamentals

Managing Temporary Tables
INSERT INTO Profile_values
 (Profile_option_id, Level_code, Level_id, Profile_option_value)
 VALUES (1002, 'USER', 2002, 'mail2');

COMMIT;

The above script creates the following table:

Query for Parameter Settings for John Doe, Jane Doe, and Bill Smith
SELECT d.Profile_option_name, Profile_option_value, Level_id, Level_code
 FROM Profile_definitions d, Profile_values v, Profile_users u
 WHERE d.Profile_option_id = v.Profile_option_id
 AND u.User_name = 'John Doe'
 AND ((Level_code = 'USER' and level_id = U.User_id) OR
 (Level_code = 'DEPARTMENT' and Level_id = U.Department_id) OR
 (Level_code = 'SITE'))
 ORDER BY D.Profile_option_name, INSTR('USERDEPARTMENTSITE', Level_code);

The above script yields the following table. Note that there are multiple possible

settings for the mail database, at different levels of the hierarchy.

PROFILE_
OPTION_ID

LEVEL_CODE LEVEL_ID PROFILE_OPTION
VALUE

1001 DEPARTMENT 3001 ACCT-LPT (Printer for Accounting is
"ACCT-LPT")

1001 DEPARTMENT 3002 MKTG-LPT (Printer for Marketing is
"ACCT-LPT")

1001 USER 2003 SMITH-LPT (Printer for Bill Smith is
"SMITH-LPT")

1002 SITE mail0 (Site-level mail database is
"mail0")

1002 DEPARTMENT 3001 mail1 (Mail database for Accounting
is "mail1")

1002 USER 2002 mail2 (Mail database for Jane Doe is
"mail2")

PROFILE_OPTION_NAME PROFILE_OPTION_VALUE LEVEL_ID LEVEL_CODE

Mail Database mail1 3001 DEPARTMENT

Mail Database mail0 0 SITE
Managing Schema Objects 3-17

Managing Temporary Tables
Similar queries (shown below) for Jane Doe and Bill Smith, respectively:

Each shows multiple possible values for any particular parameter at different

hierarchical levels.

SELECT d.Profile_option_name, Profile_option_value, Level_id, Level_code
 FROM Profile_definitions d, Profile_values v, Profile_users u
 WHERE d.Profile_option_id = v.Profile_option_id
 AND u.User_name = 'Jane Doe'
 AND ((Level_code = 'USER' and Level_id = u.User_id) OR
 (Level_code = 'DEPARTMENT' and Level_id = u.Department_id) OR
 (Level_code = 'SITE'))
 ORDER BY d.Profile_option_name, INSTR('USERDEPARTMENTSITE', Level_code);

SELECT d.Profile_option_name, Profile_option_value, Level_id, Level_code
 FROM PROFILE_DEFINITIONS D, PROFILE_VALUES V, PROFILE_USERS U
 WHERE D.PROFILE_OPTION_ID = V.PROFILE_OPTION_ID
 AND U.USER_NAME = 'Bill Smith'
 AND ((Level_code = 'USER' AND Level_id = u.User_id) OR
 (Level_code = 'DEPARTMENT' AND Level_id = u.Department_id) OR
 (Level_code = 'SITE'))
 ORDER BY D.Profile_option_name, instr('USERDEPARTMENTSITE', Level_code);

Printer ACCT-LPT 3001 DEPARTMENT

PROFILE_OPTION_NAME PROFILE_OPTION_VALUE LEVEL_ID LEVEL_CODE

Mail Database mail2 2002 USER USER

Mail Database mail0 0 SITE

Printer MKTG-LPT 3002 DEPARTMENT

PROFILE_OPTION_NAME PROFILE_OPTION_VALUE LEVEL_ID LEVEL_CODE

Mail Database mail0 0 SITE

Printer SMITH-LPT 2003 USER

Printer MKTG-LPT 3002 DEPARTMENT

PROFILE_OPTION_NAME PROFILE_OPTION_VALUE LEVEL_ID LEVEL_CODE
3-18 Application Developer’s Guide - Fundamentals

Managing Temporary Tables
Run a Conventional Query
To produce a query that shows only the relevant (lowest-level) setting requires a

complex sub-query. This sub-query reduces performance because it hits the table

multiple times for each row produced.

The following script creates a view that produces the correct output:

CREATE OR REPLACE VIEW Profile_values_view AS
SELECT d.Profile_option_name, d.Profile_option_id, Profile_option_value,
 u.User_name, Level_id, Level_code
 FROM Profile_definitions d, Profile_values v, Profile_users u
 WHERE d.Profile_option_id = v.Profile_option_id
 AND ((Level_code = 'USER' AND Level_id = U.User_id) OR
 (Level_code = 'DEPARTMENT' AND Level_id = U.Department_id) OR
 (Level_code = 'SITE'))
 AND NOT EXISTS (SELECT 1 FROM PROFILE_VALUES P
 WHERE P.PROFILE_OPTION_ID = V.PROFILE_OPTION_ID
 AND ((Level_code = 'USER' AND
 level_id = u.User_id) OR
 (Level_code = 'DEPARTMENT' AND
 level_id = u.Department_id) OR
 (Level_code = 'SITE'))
 AND INSTR('USERDEPARTMENTSITE', v.Level_code) >
 INSTR('USERDEPARTMENTSITE', p.Level_code));

You can see from the following query that the values for each parameter are found

at different levels of the hierarchy:

SELECT v.User_name, p.Profile_option_name,
 v.Profile_option_value, v.Level_code
 FROM Profile_definitions p, Profile_values_view v
 WHERE p.Profile_option_id = v.Profile_option_id
 ORDER BY v.User_name, p.Profile_option_name;

The above script yields the following:

USER_NAME PROFILE_OPTION_NAME PROFILE_OPTION_VALUE LEVEL_CODE

Bill Smith Mail Database mail0 SITE

Bill Smith Printer SMITH-LPT USER

Jane Doe Mail Database mail2 USER

Jane Doe Printer MKTG-LPT DEPARTMENT

John Doe Mail Database mail1 DEPARTMENT
Managing Schema Objects 3-19

Managing Temporary Tables
This view can be queried to find the values for a user, as in:

SELECT Profile_option_name, Profile_option_value
 FROM Profile_values_view
 WHERE User_name = 'John Doe'
 ORDER BY Profile_option_name;

The above query yields the following:

This would be inefficient and complex to use if, for example, the parameters are

used in other SQL statements; in effect, the data is re-calculated repeatedly rather

than being calculated once and cached.

Enhance Performance by Using Temporary Tables
A temporary table would allow us to run the computation once, and still use the

result in later SQL joins. For example:

DROP TABLE Profile_values_temp;
CREATE TABLE Profile_values_temp
 (
 Profile_option_id NUMBER(4) NOT NULL,
 Profile_option_value VARCHAR2(20) NOT NULL,
 Level_code VARCHAR2(10) ,
 Level_id NUMBER(4) ,
 CONSTRAINT Profile_values_temp_pk
 PRIMARY KEY (Profile_option_id)
) ORGANIZATION INDEX;

INSERT INTO Profile_values_temp
 (Profile_option_id, Profile_option_value, Level_code, Level_id)
SELECT Profile_option_id, Profile_option_value, Level_code, Level_id
 FROM Profile_values_view
 WHERE User_name = 'John Doe';
COMMIT;

John Doe Printer ACCT-LPT DEPARTMENT

PROFILE_OPTION_NAME PROFILE_OPTION_VALUE

Mail Database mail1

Printer ACCT-LPT

USER_NAME PROFILE_OPTION_NAME PROFILE_OPTION_VALUE LEVEL_CODE
3-20 Application Developer’s Guide - Fundamentals

Managing Temporary Tables
By doing this, the application has computed and cached the results of the complex

query into the temporary table.

Now the temporary table can be used in another SQL statement with high

performance, and the application programmer can be certain that the results cached

in the temporary table are freed automatically by the database when the session

ends.

SELECT p.Profile_option_name, t.Profile_option_value, t.Level_code,
 NVL(u.User_name,NVL(d.Department_name,'site')) Level_value
 FROM Profile_definitions p, Profile_values_temp t,
 Profile_departments d, Profile_users u
 WHERE P.PROFILE_OPTION_ID = T.PROFILE_OPTION_ID
 AND T.Level_id = d.Department_id(+)
 AND T.Level_id = u.User_id(+)
 ORDER BY Profile_option_name;
Managing Schema Objects 3-21

Managing Views
Managing Views
A view is a logical representation of another table or combination of tables. A view

derives its data from the tables on which it is based. These tables are called base
tables. Base tables might in turn be actual tables or might be views themselves.

All operations performed on a view actually affect the base table of the view. You

can use views in almost the same way as tables. You can query, update, insert into,

and delete from views, just as you can standard tables.

Views can provide a different representation (such as subsets or supersets) of the

data that resides within other tables and views. Views are very powerful because

they allow you to tailor the presentation of data to different types of users.

The following sections explain how to create, replace, and drop views using SQL

commands.

Creating Views
Use the SQL command CREATE VIEW to create a view. You can define views with

any query that references tables, snapshots, or other views; however, the query that

defines a view cannot contain the ORDER BY or FOR UPDATE clauses. For example,

the following statement creates a view on a subset of data in the EMP_TAB table:

CREATE VIEW Sales_staff AS
 SELECT Empno, Ename, Deptno
 FROM Emp_tab
 WHERE Deptno = 10
 WITH CHECK OPTION CONSTRAINT Sales_staff_cnst;

The query that defines the SALES_STAFF view references only rows in department

10. Furthermore, WITH CHECK OPTION creates the view with the constraint that

INSERT and UPDATE statements issued against the view are not allowed to create

or result in rows that the view cannot select.

Considering the example above, the following INSERT statement successfully

inserts a row into the EMP_TAB table via the SALES_STAFF view:

INSERT INTO Sales_staff VALUES (7584, ’OSTER’, 10);

However, the following INSERT statement is rolled back and returns an error

because it attempts to insert a row for department number 30, which could not be

selected using the SALES_STAFF view:

INSERT INTO Sales_staff VALUES (7591, ’WILLIAMS’, 30);
3-22 Application Developer’s Guide - Fundamentals

Managing Views
The following statement creates a view that joins data from the Emp_tab and

Dept_tab tables:

CREATE VIEW Division1_staff AS
 SELECT Ename, Empno, Job, Dname
 FROM Emp_tab, Dept_tab
 WHERE Emp_tab.Deptno IN (10, 30)
 AND Emp_tab.Deptno = Dept_tab.Deptno;

The Division1_staff view is defined by a query that joins information from the

Emp_tab and Dept_tab tables. The WITH CHECK OPTION is not specified in the

CREATE VIEW statement because rows cannot be inserted into or updated in a view

defined with a query that contains a join that uses the WITH CHECK OPTION.

Expansion of Defining Queries at View Creation Time
In accordance with the ANSI/ISO standard, Oracle expands any wildcard in a

top-level view query into a column list when a view is created and stores the

resulting query in the data dictionary; any subqueries are left intact. The column

names in an expanded column list are enclosed in quote marks to account for the

possibility that the columns of the base object were originally entered with quotes

and require them for the query to be syntactically correct.

As an example, assume that the Dept_view view is created as follows:

CREATE VIEW Dept_view AS SELECT * FROM scott.Dept_tab;

Oracle stores the defining query of the Dept_view view as

SELECT "DEPTNO", "DNAME", "LOC" FROM scott.Dept_tab;

Views created with errors do not have wildcards expanded. However, if the view is

eventually compiled without errors, then wildcards in the defining query are

expanded.

Creating Views with Errors
Assuming no syntax errors, a view can be created (with errors) even if the defining

query of the view cannot be executed. For example, if a view is created that refers to

a non-existent table or an invalid column of an existing table, or if the owner of the

view does not have the required privileges, then the view can still be created and

entered into the data dictionary.
Managing Schema Objects 3-23

Managing Views
You can only create a view with errors by using the FORCE option of the CREATE
VIEW command:

CREATE FORCE VIEW AS ...;

When a view is created with errors, Oracle returns a message that indicates the

view was created with errors. The status of such a view is left as INVALID . If

conditions later change so that the query of an invalid view can be executed, then

the view can be recompiled and become valid. Oracle dynamically compiles the

invalid view if you attempt to use it.

Privileges Required to Create a View
To create a view, you must have been granted the following privileges:

■ You must have the CREATE VIEW system privilege to create a view in your

schema, or the CREATE ANY VIEW system privilege to create a view in another

user’s schema. These privileges can be acquired explicitly or via a role.

■ The owner of the view must be explicitly granted the necessary privileges to

access all objects referenced within the definition of the view; the owner cannot

obtain the required privileges through roles. Also, the functionality of the view

is dependent on the privileges of the view’s owner. For example, if you (the

view owner) are granted only the INSERT privilege for Scott’s EMP_TAB table,

then you can create a view on his EMP_TAB table, but you can only use this

view to insert new rows into the EMP_TAB table.

■ If the view owner intends to grant access to the view to other users, then the

owner must receive the object privileges to the base objects with the GRANT
OPTION or the system privileges with the ADMIN OPTION; if not, then the view

owner has insufficient privileges to grant access to the view to other users.

Replacing Views
To alter the definition of a view, you must replace the view using one of the

following methods:

■ A view can be dropped and then re-created. When a view is dropped, all grants

of corresponding view privileges are revoked from roles and users. After the

view is re-created, necessary privileges must be regranted.

■ A view can be replaced by redefining it with a CREATE VIEW statement that

contains the OR REPLACEoption. This option replaces the current definition of a

view, but preserves the present security authorizations.
3-24 Application Developer’s Guide - Fundamentals

Managing Views
For example, assume that you create the SALES_STAFF view, as given in a

previous example. You also grant several object privileges to roles and other

users. However, now you realize that you must redefine the SALES_STAFF
view to correct the department number specified in the WHERE clause of the

defining query, because it should have been 30. To preserve the grants of object

privileges that you have made, you can replace the current version of the

SALES_STAFF view with the following statement:

CREATE OR REPLACE VIEW Sales_staff AS
 SELECT Empno, Ename, Deptno
 FROM Emp_tab
 WHERE Deptno = 30
 WITH CHECK OPTION CONSTRAINT Sales_staff_cnst;

Replacing a view has the following effects:

■ Replacing a view replaces the view’s definition in the data dictionary. All

underlying objects referenced by the view are not affected.

■ If previously defined but not included in the new view definition, then the

constraint associated with the WITH CHECK OPTION for a view’s definition is

dropped.

■ All views and PL/SQL program units dependent on a replaced view become

invalid.

Privileges Required to Replace a View
To replace a view, you must have all of the privileges necessary to drop the view, as

well as all of those required to create the view.

Using Views
Views can be queried in the same manner as tables. For example, to query the

Division1_staff view, enter a valid SELECT statement that references the view:

SELECT * FROM Division1_staff;

ENAME EMPNO JOB DNAME
--
CLARK 7782 MANAGER ACCOUNTING
KING 7839 PRESIDENT ACCOUNTING
MILLER 7934 CLERK ACCOUNTING
ALLEN 7499 SALESMAN SALES
WARD 7521 SALESMAN SALES
Managing Schema Objects 3-25

Managing Views
JAMES 7900 CLERK SALES
TURNER 7844 SALESMAN SALES
MARTIN 7654 SALESMAN SALES
BLAKE 7698 MANAGER SALES

With some restrictions, rows can be inserted into, updated in, or deleted from a base

table using a view. The following statement inserts a new row into the EMP_TAB
table using the SALES_STAFF view:

INSERT INTO Sales_staff
 VALUES (7954, ’OSTER’, 30);

Restrictions on DML operations for views use the following criteria in the order

listed:

1. If a view is defined by a query that contains SET or DISTINCT operators, a

GROUP BY clause, or a group function, then rows cannot be inserted into,

updated in, or deleted from the base tables using the view.

2. If a view is defined with WITH CHECK OPTION, then a row cannot be inserted

into, or updated in, the base table (using the view), if the view cannot select the

row from the base table.

3. If a NOT NULL column that does not have a DEFAULT clause is omitted from the

view, then a row cannot be inserted into the base table using the view.

4. If the view was created by using an expression, such as DECODE(deptno, 10,

"SALES", ...), then rows cannot be inserted into or updated in the base table

using the view.

The constraint created by WITH CHECK OPTION of the SALES_STAFF view only

allows rows that have a department number of 10 to be inserted into, or updated in,

the EMP_TABtable. Alternatively, assume that the SALES_STAFFview is defined by

the following statement (that is, excluding the DEPTNO column):

CREATE VIEW Sales_staff AS
 SELECT Empno, Ename
 FROM Emp_tab
 WHERE Deptno = 10
 WITH CHECK OPTION CONSTRAINT Sales_staff_cnst;

Considering this view definition, you can update the EMPNO or ENAME fields of

existing records, but you cannot insert rows into the EMP_TAB table via the SALES_
STAFF view because the view does not let you alter the DEPTNO field. If you had

defined a DEFAULT value of 10 on the DEPTNO field, then you could perform

inserts.
3-26 Application Developer’s Guide - Fundamentals

Managing Views
Referencing Invalid Views When a user attempts to reference an invalid view, Oracle

returns an error message to the user:

ORA-04063: view ’ view_name ’ has errors

This error message is returned when a view exists but is unusable due to errors in

its query (whether it had errors when originally created or it was created

successfully but became unusable later because underlying objects were altered or

dropped).

Privileges Required to Use a View
To issue a query or an INSERT, UPDATE, or DELETE statement against a view, you

must have the SELECT, INSERT, UPDATE, or DELETE object privilege for the

view, respectively, either explicitly or via a role.

Dropping Views
Use the SQL command DROP VIEW to drop a view. For example:

DROP VIEW Sales_staff;

Privileges Required to Drop a View
You can drop any view contained in your schema. To drop a view in another user’s

schema, you must have the DROP ANY VIEW system privilege.
Managing Schema Objects 3-27

Modifying a Join View
Modifying a Join View
The Oracle Server allows you, with some restrictions, to modify views that involve

joins. Consider the following simple view:

CREATE VIEW Emp_view AS
 SELECT Ename, Empno, deptno FROM Emp_tab;

This view does not involve a join operation. If you issue the SQL statement:

UPDATE Emp_view SET Ename = ’CAESAR’ WHERE Empno = 7839;

then the EMP_TAB base table that underlies the view changes, and employee 7839’s

name changes from KING to CAESAR in the EMP_TAB table.

However, if you create a view that involves a join operation, such as:

CREATE VIEW Emp_dept_view AS
 SELECT e.Empno, e.Ename, e.Deptno, e.Sal, d.Dname, d.Loc
 FROM Emp_tab e, Dept_tab d /* JOIN operation */
 WHERE e.Deptno = d.Deptno
 AND d.Loc IN (’DALLAS’, ’NEW YORK’, ’BOSTON’);

then there are restrictions on modifying either the EMP_TAB or the DEPT_TAB base

table through this view, for example, using a statement such as:

UPDATE Emp_dept_view SET Ename = ’JOHNSON’
 WHERE Ename = ’SMITH’;

A modifiable join view is a view that contains more than one table in the top-level

FROM clause of the SELECT statement, and that does not contain any of the

following:

■ DISTINCT operator

■ Aggregate functions: AVG, COUNT, GLB, MAX, MIN, STDDEV, SUM, or VARIANCE

■ Set operations: UNION, UNION ALL, INTERSECT, MINUS

■ GROUP BY or HAVING clauses

■ START WITH or CONNECT BY clauses

■ ROWNUM pseudocolumn

A further restriction on which join views are modifiable is that if a view is a join on

other nested views, then the other nested views must be mergeable into the top

level view.
3-28 Application Developer’s Guide - Fundamentals

Modifying a Join View
Example Tables
The examples in this section use the EMP_TAB and DEPT_TAB tables. However, the

examples work only if you explicitly define the primary and foreign keys in these

tables, or define unique indexes. Here are the appropriately constrained table

definitions for EMP_TAB and DEPT_TAB:

CREATE TABLE Dept_tab (
 Deptno NUMBER(4) PRIMARY KEY,
 Dname VARCHAR2(14),
 Loc VARCHAR2(13));

CREATE TABLE Emp_tab (
 Empno NUMBER(4) PRIMARY KEY,
 Ename VARCHAR2(10),
 Job varchar2(9),
 Mgr NUMBER(4),
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(7,2),
 Deptno NUMBER(2),
FOREIGN KEY (Deptno) REFERENCES Dept_tab(Deptno));

You could also omit the primary and foreign key constraints listed above, and create

a UNIQUE INDEX on DEPT_TAB (DEPTNO) to make the following examples work.

Key-Preserved Tables
The concept of a key-preserved table is fundamental to understanding the restrictions

on modifying join views. A table is key preserved if every key of the table can also

be a key of the result of the join. So, a key-preserved table has its keys preserved

through a join.

See Also: See Oracle8i Concepts for more information about

mergeable views.
Managing Schema Objects 3-29

Modifying a Join View
If you SELECT all rows from EMP_DEPT_VIEW defined in the "Modifying a Join

View" section, then the results are:

EMPNO ENAME DEPTNO DNAME LOC

7782 CLARK 10 ACCOUNTING NEW YORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS
8 rows selected.

In this view, EMP_TAB is a key-preserved table, because EMPNO is a key of the EMP_
TAB table, and also a key of the result of the join. DEPT_TAB is not a key-preserved

table, because although DEPTNOis a key of the DEPT_TABtable, it is not a key of the

join.

Rule for DML Statements on Join Views
Any UPDATE, INSERT, or DELETE statement on a join view can modify only one
underlying base table.

UPDATE Statements
The following example shows an UPDATE statement that successfully modifies the

EMP_DEPT_VIEW view:

Note:

■ It is not necessary that the key or keys of a table be selected for

it to be key preserved. It is sufficient that if the key or keys were

selected, then they would also be key(s) of the result of the join.

■ The key-preserving property of a table does not depend on the

actual data in the table. It is, rather, a property of its schema

and not of the data in the table. For example, if in the EMP_TAB
table there was at most one employee in each department, then

DEPT_TAB.DEPTNO would be unique in the result of a join of

EMP_TAB and DEPT_TAB, but DEPT_TAB would still not be a

key-preserved table.
3-30 Application Developer’s Guide - Fundamentals

Modifying a Join View
UPDATE Emp_dept_view
 SET Sal = Sal * 1.10
 WHERE Deptno = 10;

The following UPDATE statement would be disallowed on the EMP_DEPT view:

UPDATE Emp_dept_view
 SET Loc = ’BOSTON’
 WHERE Ename = ’SMITH’;

This statement fails with an ORA-01779 error ("cannot modify a column which

maps to a non key-preserved table"), because it attempts to modify the underlying

DEPT_TAB table, and the DEPT_TAB table is not key preserved in the EMP_DEPT
view.

In general, all modifiable columns of a join view must map to columns of a

key-preserved table. If the view is defined using the WITH CHECK OPTION clause,

then all join columns and all columns of repeated tables are not modifiable.

So, for example, if the EMP_DEPT view were defined using WITH CHECK OPTION,
then the following UPDATE statement would fail:

UPDATE Emp_dept_view
 SET Deptno = 10
 WHERE Ename = ’SMITH’;

The statement fails because it is trying to update a join column.

DELETE Statements
You can delete from a join view provided there is one and only one key-preserved

table in the join.

The following DELETE statement works on the EMP_DEPT view:

DELETE FROM Emp_dept_view
 WHERE Ename = ’SMITH’;

This DELETE statement on the EMP_DEPT view is legal because it can be translated

to a DELETE operation on the base EMP_TAB table, and because the EMP_TAB table

is the only key-preserved table in the join.

In the following view, a DELETE operation cannot be performed on the view

because both E1 and E2 are key-preserved tables:

CREATE VIEW emp_emp AS
 SELECT e1.Ename, e2.Empno, e1.Deptno
Managing Schema Objects 3-31

Modifying a Join View
 FROM Emp_tab e1, Emp_tab e2
 WHERE e1.Empno = e2.Empno;
 WHERE e1.Empno = e2.Empno;

If a view is defined using the WITH CHECK OPTION clause and the key-preserved

table is repeated, then rows cannot be deleted from such a view. For example:

CREATE VIEW Emp_mgr AS
 SELECT e1.Ename, e2.Ename Mname
 FROM Emp_tab e1, Emp_tab e2
 WHERE e1.mgr = e2.Empno
 WITH CHECK OPTION;

No deletion can be performed on this view because the view involves a self-join of

the table that is key preserved.

INSERT Statements
The following INSERT statement on the EMP_DEPT view succeeds, because only

one key-preserved base table is being modified (EMP_TAB), and 40 is a valid

DEPTNO in the DEPT_TAB table (thus satisfying the FOREIGN KEY integrity

constraint on the EMP_TAB table).

INSERT INTO Emp_dept (Ename, Empno, Deptno)
 VALUES (’KURODA’, 9010, 40);

The following INSERT statement fails for the same reason: This UPDATEon the base

EMP_TAB table would fail: the FOREIGN KEY integrity constraint on the EMP_TAB
table is violated.

INSERT INTO Emp_dept (Ename, Empno, Deptno)
 VALUES (’KURODA’, 9010, 77);

The following INSERT statement fails with an ORA-01776 error ("cannot modify

more than one base table through a view").

INSERT INTO Emp_dept (Ename, Empno, Deptno)
 VALUES (9010, ’KURODA’, ’BOSTON’);

An INSERT cannot, implicitly or explicitly, refer to columns of a non-key-preserved

table. If the join view is defined using the WITH CHECK OPTION clause, then you

cannot perform an INSERT to it.
3-32 Application Developer’s Guide - Fundamentals

Modifying a Join View
Using the UPDATABLE_COLUMNS Views
Three views you can use for modifying join views are shown in Table 3–1.

Outer Joins
Views that involve outer joins are modifiable in some cases. For example:

CREATE VIEW Emp_dept_oj1 AS
 SELECT Empno, Ename, e.Deptno, Dname, Loc
 FROM Emp_tab e, Dept_tab d
 WHERE e.Deptno = d.Deptno (+);

The statement:

SELECT * FROM Emp_dept_oj1;

Results in:

EMPNO ENAME DEPTNO DNAME LOC
------- ---------- ------- -------------- -------------
7369 SMITH 40 OPERATIONS BOSTON
7499 ALLEN 30 SALES CHICAGO
7566 JONES 20 RESEARCH DALLAS
7654 MARTIN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7782 CLARK 10 ACCOUNTING NEW YORK
7788 SCOTT 20 RESEARCH DALLAS
7839 KING 10 ACCOUNTING NEW YORK
7844 TURNER 30 SALES CHICAGO
7876 ADAMS 20 RESEARCH DALLAS
7900 JAMES 30 SALES CHICAGO
7902 FORD 20 RESEARCH DALLAS
7934 MILLER 10 ACCOUNTING NEW YORK
7521 WARD 30 SALES CHICAGO

Table 3–1 UPDATABLE_COLUMNS Views

View Name Description

USER_UPDATABLE_COLUMNS Shows all columns in all tables and views in
the user’s schema that are modifiable

DBA_UPDATABLE_COLUMNS Shows all columns in all tables and views in
the DBA schema that are modifiable

ALL_UPDATABLE_VIEWS Shows all columns in all tables and views
that are modifiable
Managing Schema Objects 3-33

Modifying a Join View
14 rows selected.

Columns in the base EMP_TAB table of EMP_DEPT_OJ1 are modifiable through the

view, because EMP_TAB is a key-preserved table in the join.

The following view also contains an outer join:

CREATE VIEW Emp_dept_oj2 AS
SELECT e.Empno, e.Ename, e.Deptno, d.Dname, d.Loc
FROM Emp_tab e, Dept_tab d
WHERE e.Deptno (+) = d.Deptno;

The statement:

SELECT * FROM Emp_dept_oj2;

Results in:

EMPNO ENAME DEPTNO DNAME LOC
---------- ---------- --------- -------------- ----
7782 CLARK 10 ACCOUNTING NEW YORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS
7499 ALLEN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7654 MARTIN 30 SALES CHICAGO
7900 JAMES 30 SALES CHICAGO
7844 TURNER 30 SALES CHICAGO
7521 WARD 30 SALES CHICAGO
 OPERATIONS BOSTON
15 rows selected.

In this view, EMP_TAB is no longer a key-preserved table, because the EMPNO
column in the result of the join can have nulls (the last row in the SELECT above).

So, UPDATE, DELETE, and INSERT operations cannot be performed on this view.

In the case of views containing an outer join on other nested views, a table is key

preserved if the view or views containing the table are merged into their outer

views, all the way to the top. A view which is being outer-joined is currently

merged only if it is "simple." For example:

SELECT Col1, Col2, ... FROM T;
3-34 Application Developer’s Guide - Fundamentals

Modifying a Join View
The select list of the view has no expressions, and there is no WHERE clause.

Consider the following set of views:

CREATEVIEW Emp_v AS
SELECT Empno, Ename, Deptno

FROM Emp_tab;
CREATE VIEW Emp_dept_oj1 AS

SELECT e.*, Loc, d.Dname
FROM Emp_v e, Dept_tab d

WHERE e.Deptno = d.Deptno (+);

In these examples, EMP_V is merged into EMP_DEPT_OJ1 because EMP_V is a

simple view, and so EMP_TAB is a key-preserved table. But if EMP_V is changed as

follows:

CREATE VIEW Emp_v_2 AS
SELECT Empno, Ename, Deptno

FROM Emp_tab
WHERE Sal > 1000;

Then, because of the presence of the WHEREclause, EMP_V_2cannot be merged into

EMP_DEPT_OJ1, and hence EMP_TAB is no longer a key-preserved table.

If you are in doubt whether a view is modifiable, then you can SELECT from the

view USER_UPDATABLE_COLUMNS to see if it is. For example:

SELECT * FROM USER_UPDATABLE_COLUMNS WHERE TABLE_NAME = ’EMP_DEPT_VIEW’;

This might return:

OWNER TABLE_NAME COLUMN_NAM UPD
---------- ---------- ---------- ---
SCOTT EMP_DEPT_V EMPNO NO
SCOTT EMP_DEPT_V ENAME NO
SCOTT EMP_DEPT_V DEPTNO NO
SCOTT EMP_DEPT_V DNAME NO
SCOTT EMP_DEPT_V LOC NO
5 rows selected.
Managing Schema Objects 3-35

Managing Sequences
Managing Sequences
The sequence generator generates sequential numbers. Sequence number

generation is useful to generate unique primary keys for your data automatically,

and to coordinate keys across multiple rows or tables.

Without sequences, sequential values can only be produced programmatically. A

new primary key value can be obtained by selecting the most recently produced

value and incrementing it. This method requires a lock during the transaction and

causes multiple users to wait for the next value of the primary key; this waiting is

known as serialization. If you have such constructs in your applications, then you

should replace them with access to sequences. Sequences eliminate serialization and

improve the concurrency of your application.

The following sections explain how to create, alter, use, and drop sequences using

SQL commands.

Creating Sequences
Use the SQL command CREATE SEQUENCE to create a sequence. The following

statement creates a sequence used to generate employee numbers for the EMPNO
column of the EMP_TAB table:

CREATE SEQUENCE Emp_sequence
INCREMENT BY 1
START WITH 1
NOMAXVALUE
NOCYCLE
CACHE 10;

Notice that several parameters can be specified to control the function of sequences.

You can use these parameters to indicate whether the sequence is ascending or

descending, the starting point of the sequence, the minimum and maximum values,

and the interval between sequence values. The NOCYCLE option indicates that the

sequence cannot generate more values after reaching its maximum or minimum

value.

The CACHE option of the CREATE SEQUENCE command pre-allocates a set of

sequence numbers and keeps them in memory so that they can be accessed faster.

When the last of the sequence numbers in the cache have been used, another set of

numbers is read into the cache.
3-36 Application Developer’s Guide - Fundamentals

Managing Sequences
Privileges Required to Create a Sequence
To create a sequence in your schema, you must have the CREATE SEQUENCEsystem

privilege. To create a sequence in another user’s schema, you must have the

CREATE ANY SEQUENCE privilege.

Altering Sequences
You can change any of the parameters that define how corresponding sequence

numbers are generated; however, you cannot alter a sequence to change the starting

number of a sequence. To do this, the sequence must be dropped and re-created.

Use the SQL command ALTER SEQUENCE to alter a sequence. For example:

ALTER SEQUENCE Emp_sequence
INCREMENT BY 10
MAXVALUE 10000
CYCLE
CACHE 20;

Privileges Required to Alter a Sequence
To alter a sequence, your schema must contain the sequence, or you must have the

ALTER ANY SEQUENCE system privilege.

Using Sequences
The following sections provide some information on how to use a sequence once it

has been defined. Once defined, a sequence can be made available to many users. A

sequence can be accessed and incremented by multiple users with no waiting.

Oracle does not wait for a transaction that has incremented a sequence to complete

before that sequence can be incremented again.

The examples outlined in the following sections show how sequences can be used

in master/detail table relationships. Assume an order entry system is partially

comprised of two tables, ORDERS_TAB(master table) and LINE_ITEMS_TAB (detail

See Also: For additional implications for caching sequence

numbers when using the Oracle Parallel Server, see Oracle8i Parallel
Server Concepts and Administration.

General information about caching sequence numbers is included

in "Caching Sequence Numbers" on page 3-40.
Managing Schema Objects 3-37

Managing Sequences
table), that hold information about customer orders. A sequence named ORDER_
SEQ is defined by the following statement:

CREATE SEQUENCE Order_seq
START WITH 1
INCREMENT BY 1
NOMAXVALUE
NOCYCLE
CACHE 20;

Referencing a Sequence
A sequence is referenced in SQL statements with the NEXTVAL and CURRVAL
pseudocolumns; each new sequence number is generated by a reference to the

sequence’s pseudocolumn NEXTVAL, while the current sequence number can be

repeatedly referenced using the pseudo-column CURRVAL.

NEXTVAL and CURRVAL are not reserved words or keywords and can be used as

pseudo-column names in SQL statements such as SELECTs, INSERTs, or UPDATEs.

Generating Sequence Numbers with NEXTVAL To generate and use a sequence number,

reference seq_name.NEXTVAL. For example, assume a customer places an order. The

sequence number can be referenced in a values list. For example:

INSERT INTO Orders_tab (Orderno, Custno)
VALUES (Order_seq.NEXTVAL, 1032);

Or, the sequence number can be referenced in the SET clause of an UPDATE
statement. For example:

UPDATE Orders_tab
SET Orderno = Order_seq.NEXTVAL
WHERE Orderno = 10112;

The sequence number can also be referenced outermost SELECT of a query or

subquery. For example:

SELECT Order_seq.NEXTVAL FROM dual;

As defined, the first reference to ORDER_SEQ.NEXTVAL returns the value 1. Each

subsequent statement that references ORDER_SEQ.NEXTVAL generates the next

sequence number (2, 3, 4,. . .). The pseudo-column NEXTVALcan be used to generate

as many new sequence numbers as necessary. However, only a single sequence

number can be generated per row. In other words, if NEXTVAL is referenced more
3-38 Application Developer’s Guide - Fundamentals

Managing Sequences
than once in a single statement, then the first reference generates the next number,

and all subsequent references in the statement return the same number.

Once a sequence number is generated, the sequence number is available only to the

session that generated the number. Independent of transactions committing or

rolling back, other users referencing ORDER_SEQ.NEXTVALobtain unique values. If

two users are accessing the same sequence concurrently, then the sequence numbers

each user receives might have gaps because sequence numbers are also being

generated by the other user.

Using Sequence Numbers with CURRVAL To use or refer to the current sequence value

of your session, reference seq_name.CURRVAL. CURRVAL can only be used if seq_
name.NEXTVAL has been referenced in the current user session (in the current or a

previous transaction). CURRVAL can be referenced as many times as necessary,

including multiple times within the same statement. The next sequence number is

not generated until NEXTVAL is referenced. Continuing with the previous example,

you would finish placing the customer’s order by inserting the line items for the

order:

INSERT INTO Line_items_tab (Orderno, Partno, Quantity)
VALUES (Order_seq.CURRVAL, 20321, 3);

INSERT INTO Line_items_tab (Orderno, Partno, Quantity)
VALUES (Order_seq.CURRVAL, 29374, 1);

Assuming the INSERT statement given in the previous section generated a new

sequence number of 347, both rows inserted by the statements in this section insert

rows with order numbers of 347.

Uses and Restrictions of NEXTVAL and CURRVAL CURRVAL and NEXTVAL can be used

in the following places:

■ VALUES clause of INSERT statements

■ The SELECT list of a SELECT statement

■ The SET clause of an UPDATE statement

CURRVAL and NEXTVAL cannot be used in these places:

■ A subquery

■ A view’s query or snapshot’s query

■ A SELECT statement with the DISTINCT operator

■ A SELECT statement with a GROUP BY or ORDER BY clause
Managing Schema Objects 3-39

Managing Sequences
■ A SELECT statement that is combined with another SELECT statement with the

UNION, INTERSECT, or MINUS set operator

■ The WHERE clause of a SELECT statement

■ DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement

■ The condition of a CHECK constraint

Caching Sequence Numbers
Sequence numbers can be kept in the sequence cache in the System Global Area

(SGA). Sequence numbers can be accessed more quickly in the sequence cache than

they can be read from disk.

The sequence cache consists of entries. Each entry can hold many sequence

numbers for a single sequence.

Follow these guidelines for fast access to all sequence numbers:

■ Be sure the sequence cache can hold all the sequences used concurrently by

your applications.

■ Increase the number of values for each sequence held in the sequence cache.

The Number of Entries in the Sequence Cache When an application accesses a sequence

in the sequence cache, the sequence numbers are read quickly. However, if an

application accesses a sequence that is not in the cache, then the sequence must be

read from disk to the cache before the sequence numbers are used.

If your applications use many sequences concurrently, then your sequence cache

might not be large enough to hold all the sequences. In this case, access to sequence

numbers might often require disk reads. For fast access to all sequences, be sure

your cache has enough entries to hold all the sequences used concurrently by your

applications.

The number of entries in the sequence cache is determined by the initialization

parameter SEQUENCE_CACHE_ENTRIES. The default value for this parameter is 10

entries. Oracle creates and uses sequences internally for auditing, grants of system

privileges, grants of object privileges, profiles, debugging stored procedures, and

labels. Be sure your sequence cache has enough entries to hold these sequences as

well as sequences used by your applications.

If the value for your SEQUENCE_CACHE_ENTRIES parameter is too low, then it is

possible to skip sequence values. For example, assume that this parameter is set to

4, and that you currently have four cached sequences. If you create a fifth sequence,

then it will replace the least recently used sequence in the cache. All of the
3-40 Application Developer’s Guide - Fundamentals

Managing Sequences
remaining values in this displaced sequence are lost. In other words, if the displaced

sequence originally held 10 cached sequence values, and only one had been used,

then nine would be lost when the sequence was displaced.

The Number of Values in Each Sequence Cache Entry When a sequence is read into the

sequence cache, sequence values are generated and stored in a cache entry. These

values can then be accessed quickly. The number of sequence values stored in the

cache is determined by the CACHE parameter in the CREATE SEQUENCE statement.

The default value for this parameter is 20.

This CREATE SEQUENCE statement creates the SEQ2 sequence so that 50 values of

the sequence are stored in the SEQUENCE cache:

CREATE SEQUENCE Seq2
CACHE 50;

The first 50 values of SEQ2 can then be read from the cache. When the 51st value is

accessed, the next 50 values will be read from disk.

Choosing a high value for CACHE allows you to access more successive sequence

numbers with fewer reads from disk to the sequence cache. However, if there is an

instance failure, then all sequence values in the cache are lost. Cached sequence

numbers also could be skipped after an export and import if transactions continue

to access the sequence numbers while the export is running.

If you use the NOCACHEoption in the CREATE SEQUENCEstatement, then the values

of the sequence are not stored in the sequence cache. In this case, every access to the

sequence requires a disk read. Such disk reads slow access to the sequence. This

CREATE SEQUENCEstatement creates the SEQ3sequence so that its values are never

stored in the cache:

CREATE SEQUENCE Seq3
NOCACHE;

Privileges Required to Use a Sequence
To use a sequence, your schema must contain the sequence or you must have been

granted the SELECT object privilege for another user’s sequence.

Dropping Sequences
To drop a sequence, use the SQL command DROP SEQUENCE. For example, the

following statement drops the ORDER_SEQ sequence:

DROP SEQUENCE Order_seq;
Managing Schema Objects 3-41

Managing Sequences
When you drop a sequence, its definition is removed from the data dictionary. Any

synonyms for the sequence remain, but return an error when referenced.

Privileges Required to Drop a Sequence
You can drop any sequence in your schema. To drop a sequence in another schema,

you must have the DROP ANY SEQUENCE system privilege.
3-42 Application Developer’s Guide - Fundamentals

Managing Synonyms
Managing Synonyms
A synonym is an alias for a table, view, snapshot, sequence, procedure, function, or

package. The following sections explain how to create, use, and drop synonyms

using SQL commands.

Creating Synonyms
Use the SQL command CREATE SYNONYMto create a synonym. The following

statement creates a public synonym named PUBLIC_EMP on the EMP_TAB table

contained in the schema of JWARD:

CREATE PUBLIC SYNONYM Public_emp FOR jward.Emp_tab;

Privileges Required to Create a Synonym
You must have the CREATE SYNONYMsystem privilege to create a private synonym

in your schema, or the CREATE ANY SYNONYM system privilege to create a private

synonym in another user’s schema. To create a public synonym, you must have the

CREATE PUBLIC SYNONYM system privilege.

Using Synonyms
A synonym can be referenced in a SQL statement the same way that the underlying

object of the synonym can be referenced. For example, if a synonym named EMP_
TAB refers to a table or view, then the following statement is valid:

INSERT INTO Emp_tab (Empno, Ename, Job)
 VALUES (Emp_sequence.NEXTVAL, ’SMITH’, ’CLERK’);

If the synonym named FIRE_EMP refers to a stand-alone procedure or package

procedure, then you could execute it in SQL*Plus or Enterprise Manager with the

command

EXECUTE Fire_emp(7344);

Privileges Required to Use a Synonym
You can successfully use any private synonym contained in your schema or any

public synonym, assuming that you have the necessary privileges to access the

underlying object, either explicitly, from an enabled role, or from PUBLIC. You can

also reference any private synonym contained in another schema if you have been

granted the necessary object privileges for the private synonym. You can only

reference another user’s synonym using the object privileges that you have been
Managing Schema Objects 3-43

Managing Synonyms
granted. For example, if you have the SELECT privilege for the JWARD.EMP_TAB
synonym, then you can query the JWARD.EMP_TAB synonym, but you cannot insert

rows using the synonym for JWARD.EMP_TAB.

Dropping Synonyms
To drop a synonym, use the SQL command DROP SYNONYM. To drop a private

synonym, omit the PUBLIC keyword; to drop a public synonym, include the

PUBLIC keyword. The following statement drops the private synonym named

EMP_TAB:

DROP SYNONYM Emp_tab;

The following statement drops the public synonym named PUBLIC_EMP:

DROP PUBLIC SYNONYM Public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All

objects that reference a dropped synonym remain (for example, views and

procedures) but become invalid.

Privileges Required to Drop a Synonym
You can drop any private synonym in your own schema. To drop a private

synonym in another user’s schema, you must have the DROP ANY SYNONYM system

privilege. To drop a public synonym, you must have the DROP PUBLIC SYNONYM
system privilege.
3-44 Application Developer’s Guide - Fundamentals

Miscellaneous Management Topics for Schema Objects
Miscellaneous Management Topics for Schema Objects
The following sections explain miscellaneous topics regarding the management of

the various schema objects discussed in this chapter.

■ Creating Multiple Tables and Views in One Operation

■ Naming Schema Objects

■ Name Resolution in SQL Statements

■ Renaming Schema Objects

■ Listing Information about Schema Objects

Creating Multiple Tables and Views in One Operation
You can create several tables and views and grant privileges in one operation using

the SQL command CREATE SCHEMA. The CREATE SCHEMA command is useful if

you want to guarantee the creation of several tables and views and grants in one

operation; if an individual table or view creation fails or a grant fails, then the entire

statement is rolled back, and none of the objects are created or the privileges

granted.

For example, the following statement creates two tables and a view that joins data

from the two tables:

CREATE SCHEMA AUTHORIZATION scott
CREATE VIEW Sales_staff AS

SELECT Empno, Ename, Sal, Comm
FROM Emp_tab
WHERE Deptno = 30 WITH CHECK OPTION CONSTRAINT

 Sales_staff_cnst

CREATE TABLE Dept_tab (
Deptno NUMBER(3) PRIMARY KEY,
Dname VARCHAR2(15),
Loc VARCHAR2(25))

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY,
Ename VARCHAR2(15) NOT NULL,
Job VARCHAR2(10),
Mgr NUMBER(5),
Hiredate DATE DEFAULT (sysdate),
Sal NUMBER(7,2),
Comm NUMBER(7,2),
Managing Schema Objects 3-45

Miscellaneous Management Topics for Schema Objects
Deptno NUMBER(3) NOT NULL
 CONSTRAINT Dept_fkey REFERENCES Dept_tab(Deptno))

GRANT SELECT ON Sales_staff TO human_resources;

The CREATE SCHEMA command does not support Oracle extensions to the ANSI

CREATE TABLE and CREATE VIEW commands (for example, the STORAGE clause).

Privileges Required to Create Multiple Schema Objects
To create schema objects, such as multiple tables, using the CREATE SCHEMA
command, you must have the required privileges for any included operation.

Naming Schema Objects
You should decide when you want to use partial and complete global object names

in the definition of views, synonyms, and procedures. Keep in mind that database

names should be stable, and databases should not be unnecessarily moved within a

network.

In a distributed database system, each database should have a unique global name.

The global name is composed of the database name and the network domain that

contains the database. Each schema object in the database then has a global object

name consisting of the schema object name and the global database name.

Because Oracle ensures that the schema object name is unique within a database,

you can ensure that it is unique across all databases by assigning unique global

database names. You should coordinate with your database administrator on this

task, because it is usually the DBA who is responsible for assigning database names.

Name Resolution in SQL Statements
An object name takes the following form:

[schema.] name[@database]

Some examples include:

Emp_tab
Scott.Emp_tab
Scott.Emp_tab@Personnel

A session is established when a user logs onto a database. Object names are

resolved relative to the current user session. The username of the current user is the
3-46 Application Developer’s Guide - Fundamentals

Miscellaneous Management Topics for Schema Objects
default schema. The database to which the user has directly logged-on is the default

database.

Oracle has separate namespaces for different classes of objects. All objects in the

same namespace must have distinct names, but two objects in different namespaces

can have the same name. Tables, views, snapshots, sequences, synonyms,

procedures, functions, and packages are in a single namespace. Triggers, indexes,

and clusters each have their own individual namespace. For example, there can be a

table, trigger, and index all named SCOTT.EMP_TAB.

Based on the context of an object name, Oracle searches the appropriate namespace

when resolving the name to an object. For example, in the following statement:

DROP CLUSTER Test

Oracle looks up TEST in the cluster namespace.

Rather than supplying an object name directly, you can also refer to an object using

a synonym. A private synonym name has the same syntax as an ordinary object

name. A public synonym is implicitly in the PUBLIC schema, but users cannot

explicitly qualify a synonym with the schema PUBLIC.

Synonyms can only be used to reference objects in the same namespace as tables.

Due to the possibility of synonyms, the following rules are used to resolve a name

in a context that requires an object in the table namespace:

1. Look up the name in the table namespace.

2. If the name resolves to an object that is not a synonym, then no further work is

necessary.

3. If the name resolves to a private synonym, then replace the name with the

definition of the synonym and return to step 1.

4. If the name was originally qualified with a schema, then return an error;

otherwise, check if the name is a public synonym.

5. If the name is not a public synonym, return an error; otherwise, then replace the

name with the definition of the public synonym and return to step 1.

When global object names are used in a distributed database (either explicitly or

indirectly within a synonym), the local Oracle session resolves the reference as is

locally required (for example, resolving a synonym to a remote table’s global object

name). After the partially resolved statement is shipped to the remote database, the

remote Oracle session completes the resolution of the object as above.
Managing Schema Objects 3-47

Miscellaneous Management Topics for Schema Objects
Renaming Schema Objects
If necessary, you can rename some schema objects using two different methods:

drop and re-create the object, or rename the object using the SQL command

RENAME.

If you use the RENAME command to rename a table, view, sequence, or a private

synonym of a table, view, or sequence, then grants made for the object are carried

forward for the new name, and the next statement renames the SALES_STAFF
view:

RENAME Sales_staff TO Dept_30;

You cannot rename a stored PL/SQL program unit, public synonym, index, or

cluster. To rename such an object, you must drop and re-create it.

Renaming a schema object has the following effects:

■ All views and PL/SQL program units dependent on a renamed object become

invalid (must be recompiled before next use).

■ All synonyms for a renamed object return an error when used.

Privileges Required to Rename an Object
To rename an object, you must be the owner of the object.

Renaming the Schema
 The following statement sets the current schema of the session to the schema name

given in the statement.

ALTER SESSION SET CURRENT_SCHEMA = <schema name>

Any subsequent SQL statements will use this schema name for the schema qualifier

when the qualifier is missing. Note that the session still has only the privileges of

See Also: See Oracle8i Concepts for more information about name

resolution in a distributed database.

Note: If you drop an object and re-create it, then all privilege

grants for the object are lost when the object is dropped. Privileges

must be granted again when the object is re-created.
3-48 Application Developer’s Guide - Fundamentals

Miscellaneous Management Topics for Schema Objects
the current user and does not acquire any extra privileges by the above ALTER
SESSION statement.

For example:

CONNECT scott/tiger
ALTER SESSION SET CURRENT_SCHEMA = joe;
SELECT * FROM emp_tab;

Since emp_tab is not schema-qualified, the table name is resolved under schema

joe . But if scott does not have select privilege on table joe .emp_tab , then

scott cannot execute the SELECT statement.
Managing Schema Objects 3-49

Miscellaneous Management Topics for Schema Objects
Listing Information about Schema Objects
The data dictionary provides many views that provide information about schema

objects. The following is a summary of the views associated with schema objects:

■ ALL_OBJECTS, USER_OBJECTS

■ ALL_CATALOG, USER_CATALOG

■ ALL_TABLES, USER_TABLES

■ ALL_TAB_COLUMNS, USER_TAB_COLUMNS

■ ALL_TAB_COMMENTS, USER_TAB_COMMENTS

■ ALL_COL_COMMENTS, USER_COL_COMMENTS

■ ALL VIEWS , USER_VIEWS

■ ALL_INDEXES, USER_INDEXES

■ ALL_IND_COLUMNS, USER_IND_COLUMNS

■ USER_CLUSTERS

■ USER_CLU_COLUMNS

■ ALL_SEQUENCES, USER_SEQUENCES

■ ALL_SYNONYMS, USER_SYNONYMS

■ ALL_DEPENDENCIES, USER_DEPENDENCIES

Example 1: Listing Different Schema Objects by Type The following query lists all of the

objects owned by the user issuing the query:

SELECT Object_name, Object_type FROM User_objects;

The query above might return results similar to the following:

OBJECT_NAME OBJECT_TYPE
------------------------- -------------------
EMP_DEPT CLUSTER
EMP_TAB TABLE
DEPT_TAB TABLE
EMP_DEPT_INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW
3-50 Application Developer’s Guide - Fundamentals

Miscellaneous Management Topics for Schema Objects
Example 2: Listing Column Information Column information, such as name, datatype,

length, precision, scale, and default data values, can be listed using one of the views

ending with the _COLUMNS suffix. For example, the following query lists all of the

default column values for the EMP_TAB and DEPT_TAB tables:

SELECT Table_name, Column_name, Data_default
FROM User_tab_columns
WHERE Table_name = ’DEPT_TAB’ OR Table_name = ’EMP_TAB’;

Considering the example statements at the beginning of this section, a display

similar to the one below is displayed:

TABLE_NAME COLUMN_NAME DATA_DEFAULT
---------- --------------- --------------------
DEPT_TAB DEPTNO
DEPT_TAB DNAME
DEPT_TAB LOC (’NEW YORK’)
EMP_TAB EMPNO
EMP_TAB ENAME
EMP_TAB JOB
EMP_TAB MGR
EMP_TAB HIREDATE (sysdate)
EMP_TAB SAL
EMP_TAB COMM
EMP_TAB DEPTNO

Note: Not all columns have a user-specified default. These

columns assume NULL when rows that do not specify values for

these columns are inserted.
Managing Schema Objects 3-51

Miscellaneous Management Topics for Schema Objects
Example 3: Listing Dependencies of Views and Synonyms When you create a view or a

synonym, the view or synonym is based on its underlying base object. The _
DEPENDENCIES data dictionary views can be used to reveal the dependencies for a

view and the _SYNONYMSdata dictionary views can be used to list the base object of

a synonym. For example, the following query lists the base objects for the synonyms

created by the user JWARD:

SELECT Table_owner, Table_name
FROM All_synonyms
WHERE Owner = ’JWARD’;

This query could return information similar to the following:

TABLE_OWNER TABLE_NAME
------------------------------ ------------
SCOTT DEPT_TAB
SCOTT EMP_TAB
3-52 Application Developer’s Guide - Fundamentals

Selecting a Dat
4

Selecting a Datatype

This chapter discusses how to use Oracle built-in datatypes in applications. Topics

include:

■ Oracle Built-In Datatypes

■ Trusted Oracle MLSLABEL Datatype

■ ANSI/ISO, DB2, and SQL/DS Datatypes

■ Data Conversion

See Also: For information about user-defined datatypes, refer to

Oracle8i Concepts and to Chapter 16, "User-Defined Datatypes" in

this manual.
atype 4-1

Oracle Built-In Datatypes
Oracle Built-In Datatypes
A datatype associates a fixed set of properties with the values that can be used in a

column of a table or in an argument of a procedure or function. These properties

cause Oracle to treat values of one datatype differently from values of another

datatype. For example, Oracle can add values of NUMBER datatype, but not values

of RAW datatype.

Oracle supplies the following built-in datatypes:

■ Character datatypes

– CHAR

– NCHAR

– VARCHAR2 and VARCHAR

– NVARCHAR2

– CLOB

– NCLOB

– LONG

■ NUMBER datatype

■ DATE datatype

■ Binary datatypes

– BLOB

– BFILE

– RAW

– LONG RAW

Another datatype, ROWID, is used for values in the ROWID pseudocolumn, which

represents the unique address of each row in a table.

Table 4–1 summarizes the information about each Oracle built-in datatype.

See Also: See Oracle Call Interface Programmer’s Guide for general

descriptions of these datatypes, and see Oracle8i Application
Developer’s Guide - Large Objects (LOBs) for information about the

LOB datatypes.
4-2 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
Table 4–1 Summary of Oracle Built-In Datatypes

Datatype Description Column Length and Default

CHAR (size) Fixed-length character
data of length size bytes

Fixed for every row in the table (with trailing
blanks); maximum size is 2000 bytes per row,
default size is 1 byte per row. Consider the
character set (one-byte or multibyte) before
setting size.

VARCHAR2 (size) Variable-length
character data

Variable for each row, up to 4000 bytes per
row: Consider the character set (one-byte or
multibyte) before setting size: A maximum size
must be specified.

NCHAR (size) Fixed-length character
data of length size
characters or bytes,
depending on the
national character set

Fixed for every row in the table (with trailing
blanks). Column size is the number of
characters for a fixed-width national character
set or the number of bytes for a varying-width
national character set. Maximum size is
determined by the number of bytes required
to store one character, with an upper limit of
2000 bytes per row. Default is 1 character or 1
byte, depending on the character set.

NVARCHAR2 (size) Variable-length
character data of length
size characters or bytes,
depending on national
character set: A
maximum size must be
specified

Variable for each row. Column size is the
number of characters for a fixed-width
national character set or the number of bytes
for a varying-width national character set.
Maximum size is determined by the number of
bytes required to store one character, with an
upper limit of 4000 bytes per row. Default is 1
character or 1 byte, depending on the
character set.

CLOB Single-byte character
data

Up to 2^32 - 1 bytes, or 4 gigabytes.
Selecting a Datatype 4-3

Oracle Built-In Datatypes
NCLOB Single-byte or
fixed-length multibyte
national character set
(NCHAR) data

Up to 2^32 - 1 bytes, or 4 gigabytes.

LONG Variable-length
character data

Variable for each row in the table, up to 2^31 -
1 bytes, or 2 gigabytes, per row. Provided for
backward compatibility.

NUMBER (p, s) Variable-length
numeric data.:
Maximum precision p
and/or scale s is 38

Variable for each row. The maximum space
required for a given column is 21 bytes per
row.

DATE Fixed-length date and
time data, ranging
from Jan. 1, 4712 B.C.E.
to Dec. 31, 4712 C.E.

Fixed at 7 bytes for each row in the table.
Default format is a string (such as DD-MON-YY)
specified by NLS_DATE_FORMAT parameter.

BLOB Unstructured binary
data

Up to 2^32 - 1 bytes, or 4 gigabytes.

BFILE Binary data stored in
an external file

Up to 2^32 - 1 bytes, or 4 gigabytes.

RAW (size) Variable-length raw
binary data

Variable for each row in the table, up to 2000
bytes per row. A maximum size must be
specified. Provided for backward
compatibility.

LONG RAW Variable-length raw
binary data

Variable for each row in the table, up to 2^31 -
1 bytes, or 2 gigabytes, per row. Provided for
backward compatibility.

ROWID Binary data
representing row
addresses

Fixed at 10 bytes (extended ROWID) or 6 bytes
(restricted ROWID) for each row in the table.

MLSLABEL Trusted Oracle
datatype

See the Trusted Oracle documentation.

Table 4–1 Summary of Oracle Built-In Datatypes (Cont.)
4-4 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
Using Character Datatypes
Use the character datatypes to store alphanumeric data.

■ CHAR and NCHAR datatypes store fixed-length character strings.

■ VARCHAR2 and NVARCHAR2 datatypes store variable-length character strings.

(The VARCHAR datatype is synonymous with the VARCHAR2 datatype.)

■ CLOB and NCLOB datatypes store single-byte and multibyte character strings of

up to four gigabytes.

■ The LONGdatatype stores variable-length character strings containing up to two

gigabytes, but with many restrictions.

This datatype is provided for backward compatibility with existing

applications; in general, new applications should use CLOB and NCLOB
datatypes to store large amounts of character data.

When deciding which datatype to use for a column that will store alphanumeric

data in a table, consider the following points of distinction:

Space Usage
■ To store data more efficiently, use the VARCHAR2 datatype. The CHAR datatype

blank-pads and stores trailing blanks up to a fixed column length for all column

values, while the VARCHAR2 datatype does not blank-pad or store trailing

blanks for column values.

Comparison Semantics
■ Use the CHAR datatype when you require ANSI compatibility in comparison

semantics (when trailing blanks are not important in string comparisons). Use

the VARCHAR2 when trailing blanks are important in string comparisons.

Future Compatibility
■ The CHAR and VARCHAR2 datatypes are and will always be fully supported. At

this time, the VARCHAR datatype automatically corresponds to the VARCHAR2
datatype and is reserved for future use.

See Also: Oracle8i Application Developer’s Guide - Large Objects
(LOBs)

See Also: "Restrictions on LONG and LONG RAW Data"
Selecting a Datatype 4-5

Oracle Built-In Datatypes
CHAR, VARCHAR2, and LONG data is automatically converted from the database

character set to the character set defined for the user session by the NLS_LANGUAGE
parameter, where these are different.

Column Lengths for Single-Byte and Multibyte Character Sets
The lengths of CHAR and VARCHAR2 columns are specified in bytes rather than

characters, and are constrained as such. The lengths of NCHAR and NVARCHAR2
columns are specified either in bytes or in characters, depending on the national

character set being used.

When using a multibyte database character encoding scheme, consider carefully the

space required for tables with character columns. If the database character encoding

scheme is single-byte, then the number of bytes and the number of characters in a

column is the same. If it is multibyte, then there generally is no such

correspondence. A character might consist of one or more bytes depending upon

the specific multibyte encoding scheme, and whether shift-in/shift-out control

codes are present.

Comparison Semantics
Oracle compares CHAR and NCHAR values using blank-padded comparison semantics. If

two values have different lengths, then Oracle adds blanks at the end of the shorter

value, until the two values are the same length. Oracle then compares the values

character-by-character up to the first character that differs. The value with the

greater character in the first differing position is considered greater. Two values that

differ only in the number of trailing blanks are considered equal.

Oracle compares VARCHAR2 and NVARCHAR2 values using non-padded comparison
semantics. Two values are considered equal only if they have the same characters

and are of equal length. Oracle compares the values character-by-character up to the

first character that differs. The value with the greater character in that position is

considered greater.

Because Oracle blank-pads values stored in CHAR columns but not in VARCHAR2
columns, a value stored in a VARCHAR2 column may take up less space than if it

were stored in a CHAR column. For this reason, a full table scan on a large table

containing VARCHAR2 columns may read fewer data blocks than a full table scan on

a table containing the same data stored in CHAR columns. If your application often

performs full table scans on large tables containing character data, then you might

See Also: Oracle8i Reference for information about National

Language Support features of Oracle and support for different

character encoding schemes.
4-6 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
be able to improve performance by storing this data in VARCHAR2 columns rather

than in CHAR columns.

However, performance is not the only factor to consider when deciding which of

these datatypes to use. Oracle uses different semantics to compare values of each

datatype. You might choose one datatype over the other if your application is

sensitive to the differences between these semantics. For example, if you want

Oracle to ignore trailing blanks when comparing character values, then you must

store these values in CHAR columns.

Using the NUMBER Datatype
Use the NUMBER datatype to store real numbers in a fixed-point or floating-point

format. Numbers using this datatype are guaranteed to be portable among different

Oracle platforms, and offer up to 38 decimal digits of precision. You can store

positive and negative numbers of magnitude 1 x 10^-130 to 9.99...x10^125, as well

as zero, in a NUMBER column.

For numeric columns you can specify the column as a floating-point number:

Column_name NUMBER

Or, you can specify a precision (total number of digits) and scale (number of digits

to right of decimal point):

Column_name NUMBER (<precision>, <scale>)

Although not required, specifying the precision and scale for numeric fields

provides extra integrity checking on input. If a precision is not specified, then the

column stores values as given. Table 3–2 shows examples of how data would be

stored using different scale factors.

See Also: For more information on comparison semantics for

these datatypes, see the Oracle8i Reference.

Table 4–2 How Scale Factors Affect Numeric Data Storage

Input Data Stored As Specified As

7,456,123.89 NUMBER 7456123.89

7,456,123.89 NUMBER (9) 7456124

7,456,123.89 NUMBER (9,2) 7456123.89

7,456,123.89 NUMBER (9,1) 7456123.9
Selecting a Datatype 4-7

Oracle Built-In Datatypes
Using the DATE Datatype
Use the DATEdatatype to store point-in-time values (dates and times) in a table. The

DATE datatype stores the century, year, month, day, hours, minutes, and seconds.

Oracle uses its own internal format to store dates. Date data is stored in fixed-length

fields of seven bytes each, corresponding to century, year, month, day, hour, minute,

and second.

Date Format
For input and output of dates, the standard Oracle default date format is

DD-MON-YY. For example:

'13-NOV-92'

To change this default date format on an instance-wide basis, use the NLS_DATE_
FORMATparameter. To change the format during a session, use the ALTER SESSION
statement. To enter dates that are not in the current default date format, use the TO_
DATE function with a format mask. For example:

TO_DATE ('November 13, 1992', 'MONTH DD, YYYY')

If the date format DD-MON-YYis used, then YY indicates the year in the 20th century

(for example, 31-DEC-92 is December 31, 1992). If you want to indicate years in any

7,456,123.89 NUMBER (6) (not accepted, exceeds precision)

7,456,123.89 NUMBER (7, -2) 7456100

See Also: For information about the internal format for the

NUMBER datatype, see Oracle8i Concepts.

See Also: See the Oracle Call Interface Programmer’s Guide for a

complete description of the Oracle internal date format.

See Also: Oracle Julian dates might not be compatible with Julian

dates generated by other date algorithms. For information about

Julian dates, see Oracle8i Concepts.

Table 4–2 How Scale Factors Affect Numeric Data Storage

Input Data Stored As Specified As
4-8 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
century other than the 20th century, then use a different format mask, as shown

above.

Time Format
Time is stored in 24-hour format#HH:MM:SS. By default, the time in a date field is

12:00:00 A.M. (midnight) if no time portion is entered. In a time-only entry, the date

portion defaults to the first day of the current month. To enter the time portion of a

date, use the TO_DATE function with a format mask indicating the time portion, as

in:

INSERT INTO Birthdays_tab (bname, bday) VALUES
('ANNIE',TO_DATE('13-NOV-92 10:56 A.M.','DD-MON-YY HH:MI A.M.'));

To compare dates that have time data, use the SQL function TRUNC if you want to

ignore the time component. Use the SQL function SYSDATE to return the system

date and time. The FIXED_DATE initialization parameter allows you to set

SYSDATE to a constant; this can be useful for testing.

Establishing Year 2000 Compliance
An application must satisfy the following criteria to meet the requirements for Year

2000 (Y2K) compliance:

■ Process date information before, during, and after 1st January 2000 without

error. This entails accepting date input, providing date output, storing date

information and performing calculation on dates or portions of dates.

■ Provide services as published in its documentation before, during and after 1st

January 2000 without changes in operation resulting from the advent of the new

century.

■ Respond to two digit date input in a way that resolves ambiguity as to the

century in a clearly defined manner.

■ Manage the leap year occurring in the year 2000 according to the

quad-centennial rule.

Note: You may need to set up the following data structures for

certain examples to work:

CREATE TABLE Birthdays_tab (Bname VARCHAR2(20),Bday DATE)
Selecting a Datatype 4-9

Oracle Built-In Datatypes
These criteria are a superset of the Year 2000 conformance requirements set out by

the British Standards Institute in DISC PD-2000-1 A Definition of Year 2000

Conformity Requirements.

You can warrant your application as Y2K compliant only if you have validated its

conformance at all three of the following system levels:

■ Hardware

■ System software, including databases, transaction processors and operating

systems

■ Application software, from third parties or developed in-house

Oracle Server Year 2000 Compliance
The Oracle Server is Year 2000 compliant. No operational problems are expected

with the Oracle Server, networking and system management products. Oracle’s

Development Organization has conducted tests of various Year 2000 operational

scenarios to verify that there is no impact to users at the turn of the century. These

scenarios included tests of replication, point-in-time recovery, distributed

transactions. System management and networking features across time zones /

datelines / centuries have also been tested.

Please note that Oracle’s Year 2000 product compliance does not eliminate the need

for you to test your own applications. Most importantly, your application software

has to be tested on the Oracle Server to ensure that operations having to do with the

year 2000 perform as promised. This test is critical even if the application software

is certified to be Year 2000 compliant because there are no universal protocol

definitions that can guarantee conformance without such testing.

Centuries and the Year 2000
Oracle stores year data with the century information. For example, the Oracle

database stores 1996 or 2001, and not just 96 or 01. The DATEdatatype always stores

a four-digit year internally, and all other dates stored internally in the database have

four digit years. Oracle utilities such as import, export, and recovery also deal

properly with four-digit years.

Applications that use the Oracle RDBMS (Oracle7 and Oracle8 Server) and exploit

the DATE data type (for date and/or date with time values) need have no concerns

about their stored data when the year 2000 approaches. The Oracle7 and Oracle8

Server DATE data type stores date and time data to a precision that includes a four

digit year and a time component down to seconds (typically

‘YYYY:MM:DD:HH24:MI:SS’)
4-10 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
However, some applications might be written with an assumption about the year

(such as assuming that everything is 19xx). The application might hand over a

two-digit year to the database, and the procedures that Oracle uses for determining

the century could be different from what the programmer expects (see

"Programming Hints and Tips" on page 4-14). For this reason, you should review

and test your code with regard to the Year 2000.

The ’RR’ Date Format
The RR date format element of the TO_DATE and TO_CHAR functions allows a

database site to default the century to different values depending on the two-digit

year, so that years 50 to 99 default to 19xx and years 00 to 49 default to 20xx.

Therefore, regardless of the current century at the time the data is entered, the 'RR'

format will ensure that the year stored in the database is as follows:

■ If the current year is in the second half of the century (50 - 99), and a two-digit

year between ‘00’ and ‘49’ is entered, this will be stored as a ’next century’ year.

For example, ‘02’ entered in 1996 will be stored as ‘2002’.

■ If the current year is in the second half of the century (50 - 99), and a two-digit

year between ‘50’ and ‘99’ is entered, this will be stored as a ’current century’

year. For example, ‘97’ entered in 1996 will be stored as ‘1997’.

■ If the current year is in the first half of the century (00 - 49), and a two-digit year

between ‘00’ and ‘49’ is entered, this will be stored as a ’current century’ year.

For example, ‘02’ entered in 2001 will be stored as ‘2002’.

■ If the current year is in the first half of the century (00 - 49), and a two-digit year

between ‘50’ and ‘99’ is entered, this will be stored as a ’previous century’ year.

For example, ‘97’ entered in 2001 will be stored as ‘1997’.

The ‘RR’ date format is available for inserting and updating DATE data in the

database. It is not required for retrieval or query of data already stored in the

database as Oracle has always stored the YEAR component of a date in its four-digit

form.

Here is an example of the RR usage:

INSERT INTO emp (empno, deptno,hiredate) VALUES
 (9999, 20, TO_DATE('01-jan-03', 'DD-MON-RR'));

 INSERT INTO emp (empno, deptno,hiredate) VALUES
 (8888, 20, TO_DATE('01-jan-67', 'DD-MON-RR'));

SELECT empno, deptno,
 TO_CHAR(hiredate, 'DD-MON-YYYY') hiredate
Selecting a Datatype 4-11

Oracle Built-In Datatypes
FROM emp;

This produces the following data:

EMPNO DEPTNO HIREDATE

 ---------- ---------- -----------------

8888 20 01-JAN-1967

9999 20 01-JAN-2003

The ’CC’ Date Format
The CC date format element of the TO_CHAR function sets the century value to one

greater than the first two digits of a four-digit year (for example, '20' from '1900').

For years that are a multiple of 100, this is not the true century. Strictly speaking, the

century of '1900' is not the twentieth century (which began in 1901) but rather the

nineteenth century.

The following workaround computes the correct century for any Common Era (CE,

formerly known as AD) date. If userdate is a CE date for which you want the true

century, use the following expression:

SELECT DECODE (TO_CHAR (Hiredate, 'YY'),
'00', TO_CHAR (Hiredate - 366, 'CC'),
TO_CHAR (Hiredate, 'CC')) FROM Emp_tab;

This expression works as follows: Get the last two digits of the year. If it is '00', then

it is a year in which the Oracle century is one year too large, and compute a date in

the preceding year (whose Oracle century is the desired true century). Otherwise,

use the Oracle century.

Storing Dates in Character Data Types
Where applications store date values in CHAR or VARCHAR2 datatypes, and the

century information is not maintained, you will need to modify the application to

include routines which ensure that such dates are treated appropriately when

affected by the change in century. You can do this by changing the strings to

maintain century information or, with certain constraints, by using the ’RR’ date

format when interpreting the string as a date.

If you are creating a new application, or if you are modifying an application to

ensure that dates stored as character strings are Year 2000 compliant, we advise that

See Also: For more information about date format codes, see

Oracle8 SQL Reference.
4-12 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
you convert dates to use the Oracle DATE data type. If this is not feasible, store the

dates in a form which is language and format independent, and which handles full

years. For example, utilize ‘SYYYY/MM/DD’ plus the time element as

‘HH24:MI:SS’ if necessary. Note that dates stored in this form must be converted to

the correct external format whenever they are displayed or received from users or

other programs.

The format 'SYYYY/MM/DD HH24:MI:SS' has the following advantages:

■ It is language-independent in that the months are numeric.

■ It contains the full four-digit year so centuries are unambiguous.

■ The time is represented fully. Since the most significant elements occur first,

character-based sort operations will process the dates correctly.

The “S” format element prefixes BC dates with “-“.

Viewing Date Settings
The following views will enable you to verify what your settings are:

■ V$NLS_DATABASE_PARAMETERS — shows instance wide NLS parameters

whether explicitly declared in the INIT .ORA or defaulting.

■ NLS_SESSION_PARAMETERS — shows current session values which may

have been been changed by means of ALTER SESSION

A format model is a character that describes the format of DATE or NUMBER data

stored in a character string. You may use the format model as an argument of the

TO_CHAR or TO_DATE function for one of the following:

■ To specify the format for Oracle to use in returning a value from the database.

■ To specify the format for a value you have specified for Oracle to store in the

database.

Please note that the format does not change the internal representation of the value

in the database.

Altering Date Settings
You may set the date format in your environment or as the default for the entire

database. If you set this in your environment it will override the setting in the

initialization parameter.
Selecting a Datatype 4-13

Oracle Built-In Datatypes
■ To change the default date format for the entire database, change INIT .ORA to
include the following

NLS_DATE_FORMAT = DD-MON-RR

■ To change the date format for the session, issue the following SQL command:

 ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-RR'

Programming Hints and Tips
In this section we describe some common programming problems around Y2K

compliance. These problems may seem to derive from incorrect Year 2000

processing by the database engine, but on closer inspection are seen to arise from

incorrect use of Oracle technology.

Example 1
Your application may have defined the year of a date using a column of CHAR(2) or

NUMBER(2) in order to save disk space. This can lead to unpredictable results when

20xx dates are mixed with 19xx dates. To resolve this, modify your application to

use the full 4-digit year.

Example 2
You application may be designed to store a 4-digit year, but the code may allow for

the incorrect storage of 2-digit year rows with the 4-digit year rows. This will lead

to unpredictable results for queries by date if the date columns contains dates

earlier than 1900. To deal with this problem, have your application check for rows

which contain dates earlier than 1900, and then adjust for this.

Example 3
Examine your applications to determine if it processes dates prior to 1950 or later

than 2049, and store the year as 2-digits. If both conditions are met, your application

should not use the ’RR’ format but should instead expand the 2 digit year ‘YY ‘ into

a for digit year ‘YYYY’, and store the 4 digit number in the database.

Caution: Note that changing this parameter at the database level

will change all existing date fields as described above. We suggest

you make changes at the session level unless all the users and all

currently running applications process dates in the range

1950-2049.
4-14 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
Example 4
The following unusual error helps illuminate the interaction between NLS_DATE_
FORMAT and the Oracle ’RR’ format mask. The following is a syntactically correct

statement but contains a logical flaw:

SELECT TO_CHAR(TO_DATE(LAST_DAY(‘01-FEB-00’),’DD-MON-RR’),’MM/DD/RRRR’)
FROM DUAL;

The above query will return 02/28/2000. This is consistent with the defined

behavior of the ‘RR’ format element. However, since the year 2000 is a leap year,

this is incorrect.

The problems is that the operation is using the default NLS_DATE_FORMAT, which

is 'DD-MON-YY'. If the NLS_DATE_FORMAT is changed to 'DD-MON-RR', then the

same select returns 02/29/2000, which is the correct value.

Let us evaluate the query as the Oracle Server engine does. The first function

processed is the innermost function, LAST_DAY. Because NLS_DATE_FORMAT is YY,

this correctly returns 2/28, because it is using the year 1900 to evaluate the

expression. The value 2/28 is then returned to the next outer function. So, the TO_
DATE and TO_CHAR functions format the value 02/28/00 using the ’RR’ format

mask and display the result as 02/28/2000.

If SELECT LAST_DAY('01-FEB-00') FROM DUAL is issued, the result will change

depending on the NLS_DATE_FORMAT. With ’YY’, the LAST_DAY returned is

28-Feb-00 because the year is interpreted as 1900. With ’RR’, the LAST_DAY
returned is 29-Feb-00 because the year is interpreted as 2000. The year 1900 is not a

leap year whereas the year 2000 is a leap year.

Using the LONG Datatype

The LONG datatype can store variable-length character data containing up to two

gigabytes of information. The length of LONG values might be limited by the

memory available on your computer.

Note: The LONG datatype is provided for backward compatibility

with existing applications. For new applications, you should use

the CLOBand NCLOBdatatypes for large amounts of character data.

See Oracle8i Application Developer’s Guide - Large Objects (LOBs) for

information about the CLOB and NCLOB datatypes.
Selecting a Datatype 4-15

Oracle Built-In Datatypes
You can use columns defined as LONG in SELECT lists, SET clauses of UPDATE
statements, and VALUES clauses of INSERT statements. LONG columns have many

of the characteristics of VARCHAR2 columns.

Restrictions on LONG and LONG RAW Data
Although LONG (and LONG RAW; see below) columns have many uses, their use has

some restrictions:

■ Only one LONG column is allowed per table.

■ LONG columns cannot be indexed.

■ LONG columns cannot appear in integrity constraints.

■ LONG columns cannot be used in WHERE, GROUP BY, ORDER BY, or CONNECT
BY clauses or with the DISTINCT operator in SELECT statements.

■ LONG columns cannot be referenced by SQL functions (such as SUBSTR or

INSTR).

■ LONG columns cannot be used in the SELECT list of a subquery or queries

combined by set operators (UNION, UNION ALL, INTERSECT, or MINUS).

■ LONG columns cannot be used in SQL expressions.

■ LONG columns cannot be referenced when creating a table with a query

(CREATE TABLE... AS SELECT...) or when inserting into a table or view with a

query (INSERT INTO... SELECT...).

■ A variable or argument of a PL/SQL program unit cannot be declared using the

LONG datatype.

■ Variables in database triggers cannot be declared using the LONG or LONG RAW
datatypes.

■ References to :NEW and :OLD in database triggers cannot be used with LONG or

LONG RAW columns.

■ LONG and LONG RAW columns cannot be used in distributed SQL statements.

■ LONG and LONG RAW columns cannot be replicated.
4-16 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
Example of LONG Datatype
To store information on magazine articles, including the texts of each article, create

two tables. For example:

CREATE TABLE Article_header
(Id NUMBER PRIMARY KEY,
Title VARCHAR2(200),
First_author VARCHAR2(30),
Journal VARCHAR2(50),
Pub_date DATE);

CREATE TABLE article_text
(Id NUMBER
 REFERENCES
 Article_header,
Text LONG);

The ARTICLE_TEXT table stores only the text of each article. The ARTICLE_
HEADER table stores all other information about the article, including the title, first

author, and journal and date of publication. The two tables are related by the

referential integrity constraint on the ID column of each table.

This design allows SQL statements to query data other than the text of an article

without reading through the text. If you want to select all first authors published in

Nature magazine during July 1991, then you can issue this statement that queries

the ARTICLE_HEADER table:

SELECT First_author
FROM Article_header
WHERE Journal = 'NATURE'

AND TO_CHAR(Pub_date, 'MM YYYY') = '07 1991';

If the text of each article were stored in the same table with the first author,

publication, and publication date, then Oracle would need to read through the text

to perform this query.

Note: If you design tables containing LONG or LONG RAW data,

then you should place each LONG or LONG RAW column in a table

separate from any other data associated with it, rather than storing

the LONG or LONG RAW column and its associated data together in

the same table. You can then relate the two tables with a referential

integrity constraint. This design allows SQL statements that access

only the associated data to avoid reading through LONG or LONG
RAW data.
Selecting a Datatype 4-17

Oracle Built-In Datatypes
Using RAW and LONG RAW Datatypes

The RAW and LONG RAW datatypes store data that is not to be interpreted by Oracle

(that is, not to be converted when moving data between different systems). These

datatypes are intended for binary data and byte strings. For example, LONG RAWcan

be used to store graphics, sound, documents, and arrays of binary data; the

interpretation is dependent on the use.

Net8 and the Export and Import utilities do not perform character conversion when

transmitting RAW or LONG RAW data. When Oracle automatically converts RAW or

LONG RAW data to and from CHAR data (as is the case when entering RAW data as a

literal in an INSERT statement), the data is represented as one hexadecimal

character representing the bit pattern for every four bits of RAW data. For example,

one byte of RAW data with bits 11001011 is displayed and entered as 'CB'.

LONG RAW data cannot be indexed, but RAW data can be indexed.

ROWIDs and the ROWID Datatype
Every row in a nonclustered table of an Oracle database is assigned a unique ROWID
that corresponds to the physical address of a row's row piece (initial row piece if the

row is chained among multiple row pieces). In the case of clustered tables, rows in

different tables that are in the same data block can have the same ROWID.

Each table in an Oracle database internally has a pseudocolumn named ROWID.

Note: The RAW and LONG RAW datatypes are provided for

backward compatibility with existing applications. For new

applications, you should use the BLOB and BFILE datatypes for

large amounts of binary data.

See Also: See Oracle8i Application Developer’s Guide - Large Objects
(LOBs) for information about the BLOB and BFILE datatypes.

See Also: For more information about restrictions on LONG RAW
data, see "Restrictions on LONG and LONG RAW Data".
4-18 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
Extended ROWID Format
The Oracle Server uses an extended ROWID format, which supports features such as

table partitions, index partitions, and clusters.

The extended ROWID includes the following information:

■ Data object (segment) identifier

■ Datafile identifier

■ Block identifier

■ Row identifier

The data object identifier is an identification number that Oracle assigns to schema

objects in the database, such as nonpartitioned tables or partitions. For example:

SELECT DATA_OBJECT_ID FROM ALL_OBJECTS
 WHERE OWNER = ’SCOTT’ AND OBJECT_NAME = ’EMP_TAB’;

This query returns the data object identifier for the EMP_TAB table in the SCOTT
schema.

Different Forms of the ROWID
Oracle documentation uses the term ROWID in different ways, depending on

context. These uses are explained in this section.

Internal ROWID The internal ROWID format is an internal structure which holds

information that the server code needs to access a row. The restricted internal

ROWID is 6 bytes on most platforms; the extended ROWID is 10 bytes on these

platforms.

ROWID Pseudocolumn Each table and nonjoined view has a pseudocolumn called

ROWID. For example:

CREATE TABLE T_tab (col1 Rowid);

INSERT INTO T_tab SELECT Rowid FROM Emp_tab WHERE Empno = 7499;

See Also: Oracle8i Concepts for general information about the

ROWID pseudocolumn and the ROWID datatype.

See Also: Oracle8i Supplied Packages Reference for information

about other ways to get the data object identifier, using the DBMS_
ROWID package functions.
Selecting a Datatype 4-19

Oracle Built-In Datatypes
This command returns the ROWID pseudocolumn of the row of the EMP_TAB table

that satisfies the query, and inserts it into the T1 table.

External Character ROWID The extended ROWID pseudocolumn is returned to the

client in the form of an 18-character string (for example,

"AAAA8mAALAAAAQkAAA"), which represents a base 64 encoding of the

components of the extended ROWID in a four-piece format,

OOOOOOFFFBBBBBBRRR:

■ OOOOOO: The data object number identifies the database segment (AAAA8m

in the example). Schema objects in the same segment, such as a cluster of tables,

have the same data object number.

■ FFF: The datafile that contains the row (file AAL in the example). File numbers

are unique within a database.

■ BBBBBB: The data block that contains the row (block AAAAQk in the

example). Block numbers are relative to their datafile, not tablespace. Therefore,

two rows with identical block numbers could reside in two different datafiles of

the same tablespace.

■ RRR: The row in the block (row AAA in the example).

There is no need to decode the external ROWID; you can use the functions in the

DBMS_ROWID package to obtain the individual components of the extended ROWID.

The restricted ROWID pseudocolumn is returned to the client in the form of an

18-character string with a hexadecimal encoding of the datablock, row, and datafile

components of the ROWID.

External Binary ROWID Some client applications use a binary form of the ROWID. For

example, OCI and some precompiler applications can map the ROWID to a 3GL

structure on bind or define calls. The size of the binary ROWID is the same for

extended and restricted ROWIDs. The information for the extended ROWID is
included in an unused field of the restricted ROWID structure.

The format of the extended binary ROWID, expressed as a C struct, is:

struct riddef {
ub4 ridobjnum; /* data obj#--this field is
 unused in restricted ROWIDs */

See Also: Oracle8i Supplied Packages Reference for information

about the DBMS_ROWID package.
4-20 Application Developer’s Guide - Fundamentals

Oracle Built-In Datatypes
ub2 ridfilenum;
ub1 filler;
ub4 ridblocknum;
ub2 ridslotnum;

}

ROWID Migration and Compatibility Issues
For backward compatibility, the restricted form of the ROWID is still supported.

These ROWIDs exist in massive amounts of Oracle7 data, and the extended form of

the ROWID is required only in global indexes on partitioned tables. New tables

always get extended ROWIDs.

It is possible for an Oracle7 client to access an Oracle8 database. Similarly, an

Oracle8 client can access an Oracle7 Server. A client in this sense can include a

remote database accessing a server using database links, as well as a client 3GL or

4GL application accessing a server.

Accessing an Oracle7 Database from an Oracle8 Client The ROWID values that are

returned are always restricted ROWIDs. Also, Oracle8 uses restricted ROWIDs when

returning a ROWID value to an Oracle7 or earlier server.

The following ROWID functionality works when accessing an Oracle7 Server:

■ Selecting a ROWID and using the obtained value in a WHERE clause

■ WHERE CURRENT OF cursor operations

■ Storing ROWIDs in user columns of ROWID or CHAR type

■ Interpreting ROWIDs using the hexadecimal encoding (not recommended, use

the DBMS_ROWID functions)

Accessing an Oracle8 Database from an Oracle7 Client Oracle8 returns ROWIDs in the

extended format. This means that you can only:

■ Select a ROWID and use it in a WHERE clause

■ Use WHERE CURRENT OF cursor operations

See Also: Oracle8i Administrator’s Guide.

See Also: There is more information on the ROWID_TO_
EXTENDED function in Oracle8i Supplied Packages Reference and

Oracle8i Migration.
Selecting a Datatype 4-21

Oracle Built-In Datatypes
■ Store ROWIDs in user columns of CHAR(18) datatype

Import and Export It is not possible for an Oracle7 client to import an Oracle8 table

that has a ROWID column (not the ROWID pseudocolumn), if any row of the table

contains an extended ROWID value.
4-22 Application Developer’s Guide - Fundamentals

Trusted Oracle MLSLABEL Datatype
Trusted Oracle MLSLABEL Datatype
Trusted Oracle provides the MLSLABEL datatype, which stores Trusted Oracle’s

internal representation of labels generated by multilevel secure (MLS) operating

systems. Trusted Oracle uses labels to control database access.

You can define a column using the MLSLABEL datatype for compatibility with

Trusted Oracle applications, but the only valid value for the column in Oracle8 is

NULL.

When you create a table in Trusted Oracle, a column called ROWLABEL is
automatically appended to the table. This column contains a label of the MLSLABEL
datatype for every row in the table.

See Also: Trusted Oracle documentation for more information

about the MLSLABEL datatype, the ROWLABEL column, and Trusted

Oracle.
Selecting a Datatype 4-23

ANSI/ISO, DB2, and SQL/DS Datatypes
ANSI/ISO, DB2, and SQL/DS Datatypes
You can define columns of tables in an Oracle database using ANSI/ISO, DB2, and

SQL/DS datatypes. Oracle internally converts such datatypes to Oracle datatypes.

The ANSI datatype conversions to Oracle datatypes are shown in Table 4–3. The

ANSI/ISO datatypes NUMERIC, DECIMAL, and DEC can specify only fixed-point

numbers. For these datatypes, s defaults to 0.

The IBM products SQL/DS, and DB2 datatypes TIME, TIMESTAMP, GRAPHIC,
VARGRAPHIC, and LONG VARGRAPHIC have no corresponding Oracle datatype and

cannot be used. The TIME and TIMESTAMP datatypes are subcomponents of the

Oracle datatype DATE.

Table 4–4 shows the DB2 and SQL/DS conversions.

Table 4–3 ANSI Datatype Conversions to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

CHARACTER (n), CHAR (n) CHAR (n)

NUMERIC (p,s), DECIMAL (p,s), DEC (p,s) NUMBER (p,s)

INTEGER, INT, SMALLINT NUMBER (38)

FLOAT (p) FLOAT (p)

REAL FLOAT (63)

DOUBLE PRECISION FLOAT (126)

CHARACTER VARYING(n), CHAR VARYING(n) VARCHAR2 (n)

Table 4–4 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype

CHARACTER (n) CHAR (n)

VARCHAR (n) VARCHAR2 (n)

LONG VARCHAR LONG

DECIMAL (p,s) NUMBER (p,s)

INTEGER, SMALLINT NUMBER (38)

FLOAT (p) FLOAT (p)

DATE DATE
4-24 Application Developer’s Guide - Fundamentals

Data Conversion
Data Conversion
In some cases, Oracle allows data of one datatype where it expects data of a

different datatype. Generally, an expression cannot contain values with different

datatypes. However, Oracle can use the following functions to automatically

convert data to the expected datatype:

■ TO_NUMBER()

■ TO_CHAR()

■ TO_DATE()

■ HEXTORAW()

■ RAWTOHEX()

■ ROWIDTOCHAR()

■ CHARTOROWID()

Implicit datatype conversions work according to the rules explained below.

Rule 1: Assignments
For assignments, Oracle can automatically convert the following:

■ VARCHAR2 or CHAR to NUMBER

■ NUMBER to VARCHAR2

■ VARCHAR2 or CHAR to DATE

■ DATE to VARCHAR2

■ VARCHAR2 or CHAR to ROWID

■ ROWID to VARCHAR2

■ VARCHAR2 or CHAR to MLSLABEL

■ MLSLABEL to VARCHAR2

■ VARCHAR2 or CHAR to HEX

■ HEX to VARCHAR2

See Also: If you are using Trusted Oracle, see "Data Conversion

for Trusted Oracle" for information about data conversions and the

MLSLABEL datatype.
Selecting a Datatype 4-25

Data Conversion
The assignment succeeds if Oracle can convert the datatype of the value used in the

assignment to that of the assignment’s target.

For the examples in the following list, assume a package with a public variable and

a table declared as in the following statements:

■ variable := expression

The datatype of expression must be either the same as, or convertible to, the

datatype of variable. For example, Oracle automatically converts the data

provided in the following assignment within the body of a stored procedure:

VAR1 := 0;

■ INSERT INTO table VALUES (expression1 , expression2 , ...)

The datatypes of expression1, expression2, and so on, must be either the same as,

or convertible to, the datatypes of the corresponding columns in table. For

example, Oracle automatically converts the data provided in the following

INSERT statement for TABLE1 (see table definition above):

INSERT INTO Table1_tab VALUES (’19’);

■ UPDATEtable SET column = expression

The datatype of expression must be either the same as, or convertible to, the

datatype of column. For example, Oracle automatically converts the data

provided in the following UPDATE statement issued against TABLE1:

UPDATE Table1_tab SET col1 = ’30’;

■ SELECTcolumn INTO variable FROMtable

The datatype of column must be either the same as, or convertible to, the

datatype of variable. For example, Oracle automatically converts data selected

from the table before assigning it to the variable in the following statement:

SELECT Col1 INTO Var1 FROM Table1_tab WHERE Col1 = 30;

Note: You may need to set up the following data structures for

certain examples to work:

CREATE PACKAGE Test_Pack AS var1 CHAR(5); END;
CREATE TABLE Table1_tab (col1 NUMBER);
4-26 Application Developer’s Guide - Fundamentals

Data Conversion
Rule 2: Expression Evaluation

For expression evaluation, Oracle can automatically perform the same conversions

as for assignments. An expression is converted to a type based on its context. For

example, operands to arithmetic operators are converted to NUMBER and operands

to string functions are converted to VARCHAR2.

Oracle can automatically convert the following:

■ VARCHAR2 or CHAR to NUMBER

■ VARCHAR2 or CHAR to DATE

Character to NUMBER conversions succeed only if the character string represents a

valid number. Character to DATE conversions succeed only if the character string

satisfies the session default format, which is specified by the initialization parameter

NLS_DATE_FORMAT.

Some common types of expressions follow:

■ Simple expressions, such as:

Comm + '500'

■ Boolean expressions, such as:

Bonus > Sal / '10'

■ Function and procedure calls, such as:

MOD (Counter, '2')

■ WHERE clause conditions, such as:

WHERE Hiredate = TO_DATE('1997-01-01','yyyy-mm-dd')

■ WHERE clause conditions, such as:

WHERE Rowid = 'AAAAaoAATAAAADAAA'

In general, Oracle uses the rule for expression evaluation when a datatype

conversion is needed in places not covered by the rule for assignment conversions.

Caution: You may need to set up data structures for certain

examples to work:
Selecting a Datatype 4-27

Data Conversion
In assignments of the form:

variable := expression

Oracle first evaluates expression using the conversions covered by Rule 2; expression
can be as simple or complex as desired. If it succeeds, then the evaluation of

expression results in a single value and datatype. Then, Oracle tries to assign this

value to the assignment's target using Rule 1.

Data Conversion for Trusted Oracle
In Trusted Oracle, labels are stored internally as compact binary structures. Trusted

Oracle provides the TO_LABEL function that enables you to convert a label from its

internal binary format to an external character format. To convert a label from

character format to binary format in Trusted Oracle, you use the TO_CHAR function.

The TO_LABEL function is provided for compatibility with Trusted Oracle

applications. It returns the NULL value in Oracle8.

See Also: The Trusted Oracle documentation has more information

about using the TO_LABELand TO_CHARfunctions to convert label

formats.
4-28 Application Developer’s Guide - Fundamentals

Maintaining Data Int
5

Maintaining Data Integrity

This chapter explains how to enforce the business rules associated with your

database and prevent the entry of invalid information into tables by using integrity

constraints. Topics include the following:

■ Using Integrity Constraints

■ Using Referential Integrity Constraints

■ Referential Integrity in a Distributed Database

■ Using CHECK Integrity Constraints

■ Defining Integrity Constraints

■ Enabling and Disabling Integrity Constraints

■ Altering Integrity Constraints

■ Dropping Integrity Constraints

■ Managing FOREIGN KEY Integrity Constraints

■ Listing Integrity Constraint Definitions

See Also: Trusted Oracle documentation for additional

information about defining, enabling, disabling, and dropping

integrity constraints in Trusted Oracle.
egrity 5-1

Using Integrity Constraints
Using Integrity Constraints
You can define integrity constraints to enforce business rules on data in your tables.

Once an integrity constraint is enabled, all data in the table must conform to the

rule that it specifies. If you subsequently issue a SQL statement that modifies data

in the table, then Oracle ensures that the resulting data satisfies the integrity

constraint. Without integrity constraints, such business rules must be enforced

programmatically by your application.

When to Use Integrity Constraints
Enforcing rules with integrity constraints is less costly than enforcing the equivalent

rules by issuing SQL statements in your application. The semantics of integrity

constraints are very clearly defined, so the internal operations that Oracle performs

to enforce them are optimized beneath the level of SQL statements in Oracle.

Because your applications use SQL, they cannot achieve this level of optimization.

Enforcing business rules with SQL statements can be even more costly in a

networked environment because the SQL statements must be transmitted over a

network. In such cases, using integrity constraints eliminates the performance

overhead incurred by this transmission.

Example To ensure that each employee in the EMP_TAB table works for a

department that is listed in the DEPT_TAB table, first create a PRIMARY KEY
constraint on the DEPTNO column of the DEPT_TAB table with the following

statement:

ALTER TABLE Dept_tab
ADD PRIMARY KEY (Deptno);

Then create a referential integrity constraint on the DEPTNOcolumn of the EMP_TAB
table that references the primary key of the DEPT_TAB table. For example:

ALTER TABLE Emp_tab
ADD FOREIGN KEY (Deptno) REFERENCES Dept_tab(Deptno);

If you subsequently add a new employee record to the table, then Oracle

automatically ensures that its department number appears in the department table.

To enforce this rule without integrity constraints, your application must test each

new employee record to ensure that its department number belongs to an existing

department. This testing involves issuing a SELECT statement to query the DEPT_
TAB table.
5-2 Application Developer’s Guide - Fundamentals

Using Integrity Constraints
Taking Advantage of Integrity Constraints
For best performance, define and enable integrity constraints and develop your

applications to rely on them, rather than on SQL statements in your applications, to

enforce business rules.

However, in some cases, you might want to enforce business rules through your

application as well as through integrity constraints. Enforcing a business rule in

your application might provide faster feedback to the user than an integrity

constraint. For example, if your application accepts 20 values from the user and

then issues an INSERT statement containing these values, then you might want

your user to be notified immediately after entering a value that violates a business

rule.

Because integrity constraints are enforced only when a SQL statement is issued, an

integrity constraint can only notify the user of a bad value after the user has entered

all 20 values and the application has issued the INSERT statement. However, you

can design your application to verify the integrity of each value as it is entered, and

notify the user immediately in the event of a bad value.

Using NOT NULL Integrity Constraints
By default, all columns can contain nulls. Only define NOT NULL constraints for

columns of a table that absolutely require values at all times.

For example, in the EMP_TAB table, it might not be detrimental if an employee’s

manager or hire date were temporarily omitted. Also, some employees might not

have a commission. Therefore, these three columns would not be good candidates

for NOT NULL integrity constraints. However, it might not be permitted to have a

row that does not have an employee name. Therefore, this column is a good

candidate for the use of a NOT NULL integrity constraint.

NOT NULLconstraints are often combined with other types of integrity constraints to

further restrict the values that can exist in specific columns of a table. Use the

combination of NOT NULLand UNIQUEkey integrity constraints to force the input of

values in the UNIQUE key; this combination of data integrity rules eliminates the

possibility that any new row’s data will ever attempt to conflict with an existing

row’s data.

See Also: "Relationships Between Parent and Child Tables" on

page 5-9
Maintaining Data Integrity 5-3

Using Integrity Constraints
Figure 5–1 NOT NULL Integrity Constraints

Setting Default Column Values
Legal default values include any literal, or any expression that does not refer to a

column, LEVEL, ROWNUM, or PRIOR. Default values can include the expressions

SYSDATE, USER, USERENV, and UID . The datatype of the default literal or

expression must match or be convertible to the column datatype.

If you do not explicitly define a default value for a column, the default for the

column is implicitly set to NULL.

When to Use Default Values
Only assign default values to columns that contain a typical value. For example, in

the DEPT_TAB table, if most departments are located at one site, then the default

value for the LOC column can be set to this value (such as NEW YORK).

Defaults are also useful when you use a view to make a subset of a table’s columns

visible. For example, you might allow users to insert rows into a table through a

view. The view is defined to show all columns pertinent to end-user operations;

however, the base table might also have a column named INSERTER, not included

in the definition of the view, which logs the user that originally inserts each row of

the table. The column named INSERTERcan record the name of the user that inserts

a row by defining the column with the USER function. For example:

. . ., inserter VARCHAR2(30) DEFAULT USER, . . .

See Also: For another example of assigning a default column

value, refer to the section "Creating Tables".

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

NOT NULL Constraint
(no row may contain a null
value for this column)

Absence of NOT NULL Constraint
(any row can contain a null
for this column)

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30
5-4 Application Developer’s Guide - Fundamentals

Using Integrity Constraints
Figure 5–2 A UNIQUE Key Constraint

Choosing a Table’s Primary Key
Each table can have one primary key. A primary key allows each row in a table to

be uniquely identified and ensures that no duplicate rows exist. Use the following

guidelines when selecting a primary key:

■ Choose a column whose data values are unique.

The purpose of a table’s primary key is to uniquely identify each row of the

table. Therefore, the column or set of columns in the primary key must contain

unique values for each row.

■ Choose a column whose data values are never changed.

A primary key value is only used to identify a row in the table; primary key

values should never contain any data that is used for any other purpose.

Therefore, primary key values should rarely need to be changed.

INSERT
INTO

Table DEPT
DEPNO DNAME LOC

UNIQUE Key Constraint
(no row may duplicate a
value in the constraint's column)

This row violates the UNIQUE key constraint,
because "SALES" is already present in another
row; therefore, it is not allowed in the table.

This row is allowed because a null value is
 entered for the DNAME column; however, if a
NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

20
30
40

RESEARCH
SALES
MARKETING

DALLAS
NEW
BOSTON

50

60

SALES NEW YORK

BOSTON
Maintaining Data Integrity 5-5

Using Integrity Constraints
■ Choose a column that does not contain any nulls.

A PRIMARY KEY constraint, by definition, does not allow the input of any row

with a null in any column that is part of the primary key.

■ Choose a column that is short and numeric.

Short primary keys are easy to type. You can use sequence numbers to easily

generate numeric primary keys.

■ Avoid choosing composite primary keys.

Although composite primary keys are allowed, they do not satisfy the previous

recommendations. For example, composite primary key values are long and

cannot be assigned by sequence numbers.

Using UNIQUE Key Integrity Constraints
Choose unique keys carefully. In many situations, unique keys are incorrectly

comprised of columns that should be part of the table’s primary key (see the

previous section for more information about primary keys). When deciding

whether to use a UNIQUE key constraint, use the rule that a UNIQUE key constraint

is only required to prevent the duplication of the key values within the rows of the

table. The data in a unique key is such that it cannot be duplicated in the table.

Do not confuse the concept of a unique key with that of a primary key. Primary

keys are used to identify each row of the table uniquely. Therefore, unique keys

should not have the purpose of identifying rows in the table.

Some examples of good unique keys include

■ An employee’s social security number (the primary key is the employee

number)

■ A truck’s license plate number (the primary key is the truck number)

■ A customer’s phone number, consisting of the two columns AREA and PHONE
(the primary key is the customer number)

■ A department’s name and location (the primary key is the department number)

Note: Although UNIQUE key constraints allow the input of nulls,

because of the search mechanism for UNIQUE constraints on more

than one column, you cannot have identical values in the non-null

columns of a partially null composite UNIQUE key constraint.
5-6 Application Developer’s Guide - Fundamentals

Using Referential Integrity Constraints
Using Referential Integrity Constraints
Whenever two tables are related by a common column (or set of columns), define a

PRIMARY or UNIQUE key constraint on the column in the parent table, and define a

FOREIGN KEY constraint on the column in the child table, to maintain the relationship

between the two tables.

Figure 5–3 shows a foreign key defined on the DEPTNO column of the EMP_TAB
table. It guarantees that every value in this column must match a value in the

primary key of the DEPT_TAB table (the DEPTNO column); therefore, no erroneous

department numbers can exist in the DEPTNO column of the EMP_TAB table.

Foreign keys can be comprised of multiple columns. However, a composite foreign

key must reference a composite primary or unique key of the exact same structure

(the same number of columns and datatypes). Because composite primary and

unique keys are limited to 16 columns, a composite foreign key is also limited to 16

columns.

Nulls and Foreign Keys
By default (without any NOT NULL or CHECK clauses), and in accordance with the

ANSI/ISO standard, the FOREIGN KEY constraint enforces the "match none" rule

for composite foreign keys. The "full" and "partial" rules can also be enforced by

using CHECK and NOT NULL constraints, as follows:

■ To enforce the "match full" rule for nulls in composite foreign keys, which

requires that all components of the key be null or all be non-null, define a

CHECK constraint that allows only all nulls or all non-nulls in the composite

foreign key as follows, assuming a composite key comprised of columns A, B,

and C:

CHECK ((A IS NULL AND B IS NULL AND C IS NULL) OR
 (A IS NOT NULL AND B IS NOT NULL AND C IS NOT NULL))

■ In general, it is not possible to use declarative referential integrity to enforce the

"match partial" rule for nulls in composite foreign keys, which requires the

non-null portions of the key to appear in the corresponding portions in the

primary or unique key of a single row in the referenced table. You can often use

triggers to handle this case, as described in Chapter 13, "Using Triggers".

See Also: Depending on this relationship, you may want to define

additional integrity constraints including the foreign key, as listed in the

section "Relationships Between Parent and Child Tables" on page 5-9.
Maintaining Data Integrity 5-7

Using Referential Integrity Constraints
Figure 5–3 Referential Integrity Constraints

INSERT
INTO

Table DEPT
DEPNO DNAME LOC

Parent Key
Primary key of
referenced table

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Referenced or

Dependent or Child Table

Parent Table

Foreign Key
(values in dependent
table must match a value
in unique key or primary
key of referenced table)

This row violates
the referential
constraint
because "50"
is not present
in the referenced
table's primary
key; therefore,
the row is not
allowed in
the table.

This row is
allowed in the
table because a
null value is
entered in the
DEPTNO column;
however, if a not
null constraint is
also defined for
this column, this
row is not allowed.

20

40

RESEARCH

MARKETING

DALLAS
30 SALES NEW YORK

BOSTON

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
20

7571

7571

FORD

FORD

MANAGER

MANAGER

7499

7499

23–FEB–90

23–FEB–90

5,000.00

5,000.00

200.00

200.00

50
5-8 Application Developer’s Guide - Fundamentals

Using Referential Integrity Constraints
Relationships Between Parent and Child Tables
Several relationships between parent and child tables can be determined by the

other types of integrity constraints defined on the foreign key in the child table.

No Constraints on the Foreign Key When no other constraints are defined on the

foreign key, any number of rows in the child table can reference the same parent key

value. This model allows nulls in the foreign key.

This model establishes a "one-to-many" relationship between the parent and foreign

keys that allows undetermined values (nulls) in the foreign key. An example of such

a relationship is shown in Figure 4–3 on page 8 between EMP_TAB and DEPT_TAB;
each department (parent key) has many employees (foreign key), and some

employees might not be in a department (nulls in the foreign key).

NOT NULL Constraint on the Foreign Key When nulls are not allowed in a foreign key,

each row in the child table must explicitly reference a value in the parent key

because nulls are not allowed in the foreign key. However, any number of rows in

the child table can reference the same parent key value.

This model establishes a "one-to-many" relationship between the parent and foreign

keys. However, each row in the child table must have a reference to a parent key

value; the absence of a value (a null) in the foreign key is not allowed. The same

example in the previous section can be used to illustrate such a relationship.

However, in this case, employees must have a reference to a specific department.

UNIQUE Constraint on the Foreign Key When a UNIQUE constraint is defined on the

foreign key, one row in the child table can reference a parent key value. This model

allows nulls in the foreign key.

This model establishes a "one-to-one" relationship between the parent and foreign

keys that allows undetermined values (nulls) in the foreign key. For example,

assume that the EMP_TAB table had a column named MEMBERNO, referring to an

employee’s membership number in the company’s insurance plan. Also, a table

named INSURANCE has a primary key named MEMBERNO, and other columns of the

table keep respective information relating to an employee’s insurance policy. The

MEMBERNO in the EMP_TAB table should be both a foreign key and a unique key:

■ To enforce referential integrity rules between the EMP_TAB and INSURANCE
tables (the FOREIGN KEY constraint)

■ To guarantee that each employee has a unique membership number (the

UNIQUE key constraint)
Maintaining Data Integrity 5-9

Using Referential Integrity Constraints
UNIQUE and NOT NULL Constraints on the Foreign Key When both UNIQUE and NOT
NULL constraints are defined on the foreign key, only one row in the child table can

reference a parent key value. Because nulls are not allowed in the foreign key, each

row in the child table must explicitly reference a value in the parent key.

This model establishes a "one-to-one" relationship between the parent and foreign

keys that does not allow undetermined values (nulls) in the foreign key. If you

expand the previous example by adding a NOT NULL constraint on the MEMBERNO
column of the EMP_TAB table, in addition to guaranteeing that each employee has a

unique membership number, then you also ensure that no undetermined values

(nulls) are allowed in the MEMBERNO column of the EMP_TAB table.

Multiple FOREIGN KEY Constraints
Oracle allows a column to be referenced by multiple FOREIGN KEY constraints;

effectively, there is no limit on the number of dependent keys. This situation might

be present if a single column is part of two different composite foreign keys.

Concurrency Control, Indexes, and Foreign Keys
Oracle maximizes the concurrency control of parent keys in relation to dependent

foreign key values. You can control what concurrency mechanisms are used to

maintain these relationships, and, depending on the situation, this can be highly

beneficial. The following sections explain the possible situations and give

recommendations for each.

No Index on the Foreign Key Figure 5–4 illustrates the locking mechanisms used by

Oracle when no index is defined on the foreign key and when rows are being

updated or deleted in the parent table. Inserts into the parent table do not require

any locks on the child table.

Notice that a share lock of the entire child table is required until the transaction

containing the DELETE statement for the parent table is committed. If the foreign

key specifies ON DELETE CASCADE, then the DELETE statement results in a

table-level share-subexclusive lock on the child table. A share lock of the entire child

table is also required for an UPDATE statement on the parent table that affects any

columns referenced by the child table. Share locks allow reading only; therefore, no

INSERT, UPDATE, or DELETE statements can be issued on the child table until the

transaction containing the UPDATEor DELETEis committed. Queries are allowed on

the child table.

This situation is tolerable if updates and deletes can be avoided on the parent.
5-10 Application Developer’s Guide - Fundamentals

Using Referential Integrity Constraints
INSERT, UPDATE, and DELETE statements on the child table do not acquire any

locks on the parent table, although INSERT and UPDATE statements will wait for a

row-lock on the index of the parent table to clear.

Figure 5–4 Locking Mechanisms When No Index Is Defined on the Foreign Key

Index on the Foreign Key Figure 5–5 illustrates the locking mechanisms used by

Oracle when an index is defined on the foreign key, and new rows are inserted,

updated or deleted in the child table.

Notice that no table locks of any kind are acquired on the parent table or any of its

indexes as a result of the insert, update or delete. Therefore, any type of DML

Row 1 Key 1

Table Parent

Row 2 Key 2

Row 4 Key 4

Row 1 Key 1

Table Child

Row 2 Key 1

Row 3 Key 3

Row 4 Key 2

Key 1

Index

Key 2

Key 4

Exclusive row lock acquired

Newly updated row

Row 5 Key 2

Key 3Row 3 Key 3

Share lock acquired
Maintaining Data Integrity 5-11

Using Referential Integrity Constraints
statement can be issued on the parent table, including inserts, updates, deletes, and

queries.

This situation is preferable if there is any update or delete activity on the parent

table while update activity is taking place on the child table. Inserts, updates, and

deletes on the parent table do not require any locks on the child table, although

updates and deletes will wait for row-level locks on the indexes of the child table to

clear.

Figure 5–5 Locking Mechanisms When Index Is Defined on the Foreign Key

If the child table specifies ON DELETE CASCADE, then deletes from the parent table

may result in deletes from the child table. In this case, waiting and locking rules are

Row 1 Key 1

Table Parent

Row 2 Key 2

Row 3 Key 3

Row 4 Key 4

Row 1 Key 1

Table Child

Row 2 Key 1

Row 3 Key 3

Row 4 Key 2

Key 1

Index

Key 2

Key 3

Key 4

Key 1

Index

Key 1

Key 2

Key 3Row 5 Key 2

Key 2

Exclusive row lock acquired

Newly updated row
5-12 Application Developer’s Guide - Fundamentals

Using Referential Integrity Constraints
the same as if you deleted yourself from the child table after performing the delete

from the parent table.
Maintaining Data Integrity 5-13

Referential Integrity in a Distributed Database
Referential Integrity in a Distributed Database
Oracle does not permit declarative referential integrity constraints to be defined

across nodes of a distributed database (in other words, a declarative referential

integrity constraint on one table cannot specify a foreign key that references a

primary or unique key of a remote table).

However, parent/child table relationships across nodes can be maintained using

triggers.

See Also: For more information about triggers that enforce

referential integrity, refer to Chapter 13, "Using Triggers".

Using triggers to maintain referential integrity requires the

distributed option; for more information refer to Oracle8 Distributed
Database Systems

Note: If you decide to define referential integrity across the nodes

of a distributed database using triggers, then be aware that network

failures can limit the accessibility of not only the parent table, but

also the child table. For example, assume that the child table is in

the SALES database, and the parent table is in the HQ database.

If the network connection between the two databases fails, then

some DML statements against the child table (those that insert rows

into the child table or update a foreign key value in the child table)

cannot proceed, because the referential integrity triggers must have

access to the parent table in the HQ database.
5-14 Application Developer’s Guide - Fundamentals

Using CHECK Integrity Constraints
Using CHECK Integrity Constraints
Use CHECK constraints when you need to enforce integrity rules that can be

evaluated based on logical expressions. Never use CHECK constraints when any of

the other types of integrity constraints can provide the necessary checking.

Examples of appropriate CHECK constraints include the following:

■ A CHECK constraint on the SAL column of the EMP_TAB table so that no salary

value is greater than 10000

■ A CHECK constraint on the LOC column of the DEPT_TAB table so that only the

locations "BOSTON", "NEW YORK", and "DALLAS" are allowed

■ A CHECK constraint on the SAL and COMM columns to compare the SAL and

COMM values of a row and prevent the COMM value from being greater than the

SAL value

Restrictions on CHECK Constraints
A CHECKintegrity constraint requires that a condition be true or unknown for every

row of the table. If a statement causes the condition to evaluate to false, then the

statement is rolled back. The condition of a CHECK constraint has the following

limitations:

■ The condition must be a Boolean expression that can be evaluated using the

values in the row being inserted or updated.

■ The condition cannot contain subqueries or sequences.

■ The condition cannot include the SYSDATE, UID , USER, or USERENV SQL

functions.

■ The condition cannot contain the pseudocolumns LEVEL, PRIOR, or ROWNUM;

■ The condition cannot contain a user-defined SQL function.

See Also: "CHECK and NOT NULL Integrity Constraints" on

page 5-16

See Also: Oracle8i SQL Reference for an explanation of these

pseudocolumns.
Maintaining Data Integrity 5-15

Using CHECK Integrity Constraints
Designing CHECK Constraints
When using CHECKconstraints, consider the ANSI/ISO standard which states that a

CHECK constraint is violated only if the condition evaluates to false; true and

unknown values do not violate a check condition. Therefore, make sure that any

CHECK constraint that you define actually enforces the rule you need enforced.

For example, consider the following CHECK constraint:

CHECK (Sal > 0 OR Comm >= 0)

At first glance, this rule may be interpreted as "do not allow a row in the EMP_TAB
table unless the employee’s salary is greater than zero or the employee’s

commission is greater than or equal to zero." However, note that if a row is inserted

with a null salary and a negative commission, then the row does not violate the

CHECK constraint, because the entire check condition is evaluated as unknown. In

this particular case, you can account for such violations by placing NOT NULL
integrity constraints on both the SAL and COMM columns.

Multiple CHECK Constraints
A single column can have multiple CHECK constraints that reference the column in

its definition. There is no limit to the number of CHECK constraints that can be

defined that reference a column.

CHECK and NOT NULL Integrity Constraints
According to the ANSI/ISO standard, a NOT NULL integrity constraint is an

example of a CHECK integrity constraint, where the condition is the following:

CHECK (Column_name IS NOT NULL)

Therefore, NOT NULL integrity constraints for a single column can, in practice, be

written in two forms: using the NOT NULLconstraint or a CHECKconstraint. For ease

of use, you should always choose to define NOT NULL integrity constraints, instead

of CHECK constraints with the IS NOT NULL condition.

In the case where a composite key can allow only all nulls or all values, you must

use a CHECK integrity constraint. For example, the following expression of a CHECK

Note: If you are not sure when unknown values result in NULL
conditions, review the truth tables for the logical operators ANDand

OR in Oracle8i SQL Reference
5-16 Application Developer’s Guide - Fundamentals

Using CHECK Integrity Constraints
integrity constraint allows a key value in the composite key made up of columns C1
and C2 to contain either all nulls or all values:

CHECK ((C1 IS NULL AND C2 IS NULL) OR
(C1 IS NOT NULL AND C2 IS NOT NULL))
Maintaining Data Integrity 5-17

Defining Integrity Constraints
Defining Integrity Constraints
Define an integrity constraint using the constraint clause of the SQL commands

CREATE TABLE or ALTER TABLE. The next two sections describe how to use these

commands to define integrity constraints.

The CREATE TABLE Command
The following examples of CREATE TABLEstatements show the definition of several

integrity constraints:

CREATE TABLE Dept_tab (
Deptno NUMBER(3) PRIMARY KEY,
Dname VARCHAR2(15),
Loc VARCHAR2(15),
 CONSTRAINT Dname_ukey UNIQUE (Dname, Loc),
 CONSTRAINT Loc_check1
 CHECK (loc IN (’NEW YORK’, ’BOSTON’, ’CHICAGO’)));

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY,
Ename VARCHAR2(15) NOT NULL,
Job VARCHAR2(10),
Mgr NUMBER(5) CONSTRAINT Mgr_fkey
 REFERENCES Emp_tab,
Hiredate DATE,
Sal NUMBER(7,2),
Comm NUMBER(5,2),
Deptno NUMBER(3) NOT NULL
 CONSTRAINT dept_fkey

 REFERENCES Dept_tab ON DELETE CASCADE);

The ALTER TABLE Command
You can also define integrity constraints using the constraint clause of the ALTER
TABLEcommand. For example, the following examples of ALTER TABLEstatements

show the definition of several integrity constraints:

ALTER TABLE Dept_tab
ADD PRIMARY KEY (deptno);

Note: There are additional considerations if you are using Trusted

Oracle; see the Trusted Oracle for more information.
5-18 Application Developer’s Guide - Fundamentals

Defining Integrity Constraints
ALTER TABLE Emp_tab
ADD CONSTRAINT Dept_fkey FOREIGN KEY (Deptno) REFERENCES Dept_tab
MODIFY (Ename VARCHAR2(15) NOT NULL);

Restrictions with the ALTER TABLE Command
Because data is likely to be in the table at the time an ALTER TABLE statement is

issued, there are several restrictions to be aware of. Table 5–1 lists each type of

constraint and the associated restrictions with the ALTER TABLE command.

If you attempt to define a constraint with an ALTER TABLE statement and you

violate one of these restrictions, then the statement is rolled back, and an

informative error is returned explaining the violation.

Required Privileges
The creator of a constraint must have the ability to create tables (the CREATE TABLE
or CREATE ANY TABLE system privilege), or the ability to alter the table (the ALTER
object privilege for the table or the ALTER ANY TABLE system privilege) with the

constraint. Additionally, UNIQUE and PRIMARY KEY integrity constraints require

that the owner of the table have either a quota for the tablespace that contains the

associated index or the UNLIMITED TABLESPACE system privilege. FOREIGN KEY
integrity constraints also require some additional privileges.

Table 5–1 Restrictions for Defining Integrity Constraints with ALTER TABLE

Type of

Constraint

Added to Existing

Columns of the Table

Added with New

Columns to the Table

NOT NULL Cannot be defined if any row contains a null
value for this column*

Cannot be defined if the
table contains any rows

UNIQUE Cannot be defined if duplicate values exist in
the key*

Always OK

PRIMARY KEY Cannot be defined if duplicate or null values
exist in the key*

Cannot be defined if the
table contains any rows

FOREIGN KEY Cannot be defined if the foreign key has
values that do not reference a parent key
value*

Always OK

CHECK Cannot be defined if the volume has values
that do not comply with the check condition*

Always OK

* Assumes DISABLE clause not included in statement.
Maintaining Data Integrity 5-19

Defining Integrity Constraints
Naming Integrity Constraints
Assign names to NOT NULL, UNIQUE KEY, PRIMARY KEY, FOREIGN KEY, and

CHECK constraints using the CONSTRAINT option of the constraint clause. This

name must be unique with respect to other constraints that you own. If you do not

specify a constraint name, then one is assigned by Oracle.

See the previous examples of the CREATE TABLE and ALTER TABLE statements for

examples of the CONSTRAINT option of the constraint clause. Note that the

name of each constraint is included with other information about the constraint in

the data dictionary.

Enabling and Disabling Constraints Upon Definition
By default, whenever an integrity constraint is defined in a CREATE or ALTER
TABLE statement, the constraint is automatically enabled (enforced) by Oracle

unless it is specifically created in a disabled state using the DISABLE clause.

UNIQUE Key, PRIMARY KEY, and FOREIGN KEY
When defining UNIQUE, PRIMARY KEY, and FOREIGN KEYintegrity constraints, you

should be aware of several important issues and prerequisites.

See Also: "Privileges Required for FOREIGN KEY Integrity

Constraints" on page 5-30

See Also: "Listing Integrity Constraint Definitions" on page 5-32

for examples of data dictionary views.

See Also: "Enabling and Disabling Integrity Constraints" on

page 5-21 has more information about important issues for

enabling and disabling constraints.

See Also: For information about defining and managing

FOREIGN KEY constraints, see "Managing FOREIGN KEY Integrity

Constraints" on page 5-30.

UNIQUE key and PRIMARY KEY constraints are usually enabled by

the database administrator; see the Oracle8i Administrator’s Guide.
5-20 Application Developer’s Guide - Fundamentals

Enabling and Disabling Integrity Constraints
Enabling and Disabling Integrity Constraints
This section explains the mechanisms and procedures for manually enabling and

disabling integrity constraints.

In summary, an integrity constraint can be thought of as a statement about the data

in a database. This statement is always true when the constraint is enabled;

however, the statement may or may not be true when the constraint is disabled

because data in violation of the integrity constraint can be in the database.

Why Enable or Disable Constraints?
To enforce the rules defined by integrity constraints, the constraints should always

be enabled; however, in certain situations, it is desirable to disable the integrity

constraints of a table temporarily for performance reasons. For example:

■ When loading large amounts of data into a table using SQL*Loader

■ When performing batch operations that make massive changes to a table (such

as changing everyone’s employee number by adding 1000 to the existing

number)

■ When importing or exporting one table at a time

In cases such as these, integrity constraints may be temporarily turned off to

improve the performance of the operation.

Integrity Constraint Violations
If a row of a table does not adhere to an integrity constraint, then this row is said to

be in violation of the constraint and is known as an exception to the constraint. If any

exceptions exist, then the constraint cannot be enabled. The rows that violate the

constraint must be either updated or deleted in order for the constraint to be

enabled.

enabled constraint When a constraint is enabled, the rule defined by the

constraint is enforced on the data values in the columns that

define the constraint. The definition of the constraint is stored

in the data dictionary.

disabled

constraint

When a constraint is disabled, the rule defined by the

constraint is not enforced on the data values in the columns

included in the constraint; however, the definition of the

constraint is retained in the data dictionary.
Maintaining Data Integrity 5-21

Enabling and Disabling Integrity Constraints
Exceptions for a specific integrity constraint can be identified while attempting to

enable the constraint.

On Definition
When you define an integrity constraint in a CREATE TABLE or ALTER TABLE
statement, you can enable the constraint by including the ENABLE clause in its

definition or disable it by including the DISABLE clause in its definition. If neither

the ENABLE nor the DISABLE clause is included in a constraint’s definition, Oracle

automatically enables the constraint.

Enabling Constraints
The following CREATE TABLEand ALTER TABLEstatements both define and enable

integrity constraints:

CREATE TABLE Emp_tab (
 Empno NUMBER(5) PRIMARY KEY);
 ALTER TABLE Emp_tab
 ADD PRIMARY KEY (Empno);

An ALTER TABLE statement that defines and attempts to enable an integrity

constraint may fail because rows of the table may violate the integrity constraint. In

this case, the statement is rolled back and the constraint definition is not stored and

not enabled.

Disabling Constraints
The following CREATE TABLE and ALTER TABLE statements both define and

disable integrity constraints:

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY DISABLE);

ALTER TABLE Emp_tab
ADD PRIMARY KEY (Empno) DISABLE;

See Also: This procedure is discussed in the section "Exception

Reporting".

See Also: Refer to the section "Exception Reporting" on page 5-25

for more information about rows that violate integrity constraints.
5-22 Application Developer’s Guide - Fundamentals

Enabling and Disabling Integrity Constraints
An ALTER TABLE statement that defines and disables an integrity constraints never

fails. The definition of the constraint is always allowed because its rule is not

enforced.

Enabling and Disabling Defined Integrity Constraints
Use the ALTER TABLE command to

■ Enable a disabled constraint, using the ENABLE clause

■ Disable an enabled constraint, using the DISABLE clause

Enabling Disabled Constraints
The following statements are examples of statements that enable disabled integrity

constraints:

ALTER TABLE Dept_tab
ENABLE CONSTRAINT Dname_ukey;

ALTER TABLE Dept_tab
ENABLE PRIMARY KEY
ENABLE UNIQUE (Dname)
ENABLE UNIQUE (Loc);

An ALTER TABLE statement that attempts to enable an integrity constraint fails

when the rows of the table violate the integrity constraint. In this case, the statement

is rolled back and the constraint is not enabled.

Disabling Enabled Constraints
The following statements are examples of statements that disable enabled integrity

constraints:

ALTER TABLE Dept_tab
DISABLE CONSTRAINT Dname_ukey;

ALTER TABLE Dept_tab
DISABLE PRIMARY KEY
DISABLE UNIQUE (Dname)
DISABLE UNIQUE (Loc);

See Also: Refer to the section "Exception Reporting" on page 5-25

for more information about rows that violate integrity constraints.
Maintaining Data Integrity 5-23

Enabling and Disabling Integrity Constraints
Enabling and Disabling Key Integrity Constraints
When enabling or disabling UNIQUE, PRIMARY KEY, and FOREIGN KEY integrity

constraints, you should be aware of several important issues and prerequisites.

UNIQUE key and PRIMARY KEY constraints are usually managed by the database

administrator.

 .

Enabling Constraints after a Parallel Direct Path Load
SQL*Loader permits multiple concurrent sessions to perform a direct path load into

the same table. Because each SQL*Loader session can attempt to re-enable

constraints on a table after a direct path load, there is a danger that one session may

attempt to re-enable a constraint before another session is finished loading data. In

this case, the first session to complete the load will be unable to enable the

constraint because the remaining sessions possess share locks on the table.

Because there is a danger that some constraints might not be re-enabled after a

direct path load, you should check the status of the constraint after completing the

load to ensure that it was enabled properly.

PRIMARY and UNIQUE KEY constraints
PRIMARY KEY and UNIQUE key constraints create indexes on a table when they are

enabled, and subsequently can take a significantly long time to enable after a direct

path loading session if the table is very large.

Tip — Using the Data Dictionary for Reference: The example

statements in the previous sections require that you have some

information about a constraint to enable or disable it.

For example, the first statement of each section requires that you

know the constraint’s name, while the second statement of each

section requires that you know the unique key’s column list. If you

do not have such information, then you can query one of the data

dictionary views defined for constraints; for more information

about these views, see "Listing Integrity Constraint Definitions" on

page 5-32 and Oracle8i Reference.

See Also: "Managing FOREIGN KEY Integrity Constraints" on

page 5-30 and the Oracle8i Administrator’s Guide
5-24 Application Developer’s Guide - Fundamentals

Enabling and Disabling Integrity Constraints
You should consider enabling these constraints manually after a load (and not

specify the automatic enable feature). This allows you to manually create the

required indexes in parallel to save time before enabling the constraint.

Exception Reporting
If no exceptions are present when you issue a CREATE TABLE... ENABLE... or ALTER
TABLE... ENABLE... statement, then the integrity constraint is enabled and all

subsequent DML statements are subject to the enabled integrity constraints.

If exceptions exist when you enable a constraint, then an error is returned, and the

integrity constraint remains disabled. When a statement is not successfully executed

because integrity constraint exceptions exist, the statement is rolled back. If

exceptions exist, then you cannot enable the constraint until all exceptions to the

constraint are either updated or deleted.

To determine which rows violate the integrity constraint, include the EXCEPTIONS
option in the ENABLE clause of a CREATE TABLE or ALTER TABLE statement. The

EXCEPTIONS option places the ROWID, table owner, table name, and constraint

name of all exception rows into a specified table. For example, the following

statement attempts to enable the primary key of the DEPT_TAB table; if exceptions

exist, information is inserted into a table named EXCEPTIONS:

ALTER TABLE Dept_tab ENABLE PRIMARY KEY EXCEPTIONS INTO exceptions;

Create an appropriate exceptions report table to accept information from the

EXCEPTIONS option of the ENABLE clause. Create an exception table by submitting

the script UTLEXCPT.SQL. The script creates a tabled named EXCEPTIONS. You can

create additional exceptions tables with different names by modifying and

resubmitting the script.

If duplicate primary key values exist in the DEPT_TAB table and the name of the

PRIMARY KEY constraint on DEPT_TAB is SYS_C00301, the following rows might

be placed in the table EXCEPTIONS by the previous statement:

SELECT * FROM Exceptions;

See Also: Oracle8i Tuning for more information about creating

indexes in parallel.

Caution: You may need to set up data structures for certain

examples to work:
Maintaining Data Integrity 5-25

Enabling and Disabling Integrity Constraints
ROWID OWNER TABLE_NAME CONSTRAINT
------------------ ------ ------------ -----------
AAAA5bAADAAAAEQAAA SCOTT DEPT_TAB SYS_C00301
AAAA5bAADAAAAEQAAB SCOTT DEPT_TAB SYS_C00301

A more informative query would be to join the rows in an exception report table

and the master table to list the actual rows that violate a specific constraint. For

example:

SELECT Deptno, Dname, Loc FROM Dept_tab, Exceptions
WHERE Exceptions.Constraint = ’SYS_C00301’
AND Dept_tab.Rowid = Exceptions.Row_id;

DEPTNO DNAME LOC
---------- -------------- -------------
10 ACCOUNTING NEW YORK
10 RESEARCH DALLAS

Rows that violate a constraint must be either updated or deleted from the table that

contains the constraint. If updating exceptions, then you must change the value that

violates the constraint to a value consistent with the constraint or a null (if allowed).

After updating or deleting a row in the master table, delete the corresponding rows

for the exception in the exception report table to avoid confusion with later

exception reports. The statements that update the master table and the exception

report table should be in the same transaction to ensure transaction consistency.

For example, to correct the exceptions in the previous examples, the following

transaction might be issued:

UPDATE Dept_tab SET Deptno = 20 WHERE Dname = ’RESEARCH’;
DELETE FROM Exceptions WHERE Constraint = ’SYS_C00301’;
COMMIT;

When you manage exceptions, your goal should be to eliminate all exceptions in

your exception report table. After eliminating all exceptions, you must re-enable the

constraint; the constraint is not automatically enabled after the exceptions are

handled.

While you are correcting current exceptions for a table with the constraint disabled,

other users can issue statements creating new exceptions.
5-26 Application Developer’s Guide - Fundamentals

Altering Integrity Constraints
Altering Integrity Constraints
In Oracle 8.0, only certain constraint states could be changed using the ENABLE or

DISABLE clauses. With Oracle 8.1, there are expanded capabilities to alter the state

of an existing constraint with the MODIFY CONSTRAINT clause.

Examples of MODIFY CONSTRAINT

Modify Constraint Example #1
CREATE TABLE X1_tab (a1 NUMBER CONSTRAINT y CHECK (a1>3) DEFERRABLE
DISABLE);

ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrt ENABLE;
ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrt RELY;
ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrt INITIALLY DEFERRED;
ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrt ENABLE NOVALIDATE;

Modify Constraint Example #2
CREATE TABLE X1_tab (A1 NUMBER CONSTRAINT Y_cnstrt
NOT NULL DEFERRABLE INITIALLY DEFERRED NORELY DISABLE);

ALTER TABLE X1_tab ADD CONSTRAINT One_cnstrt UNIQUE(A1)
DEFERRABLE INITIALLY IMMEDIATE RELY USING INDEX PCTFREE = 30
ENABLE VALIDATE;

ALTER TABLE X1_tab MODIFY UNIQUE(A1)
INITIALLY DEFERRED NORELY USING INDEX PCTFREE = 40
ENABLE NOVALIDATE;

ALTER TABLE X1_tab MODIFY CONSTRAINT One_cnstrt
INITIALLY IMMEDIATE RELY;

Modify Constraint Example #3
CREATE TABLE T1_tab (A1 INT, B1 INT);
ALTER TABLE T1_tab add CONSTRAINT P1_cnstrt PRIMARY KEY(a1) DISABLE;
ALTER TABLE T1_tab MODIFY PRIMARY KEY INITIALLY IMMEDIATE
USING INDEX PCTFREE = 30 ENABLE NOVALIDATE;
ALTER TABLE T1_tab MODIFY PRIMARY KEY
USING INDEX PCTFREE = 35 ENABLE;

See Also: For information on the parameters you can modify, see

the ALTER TABLE section in Oracle8i SQL Reference.
Maintaining Data Integrity 5-27

Altering Integrity Constraints
ALTER TABLE T1_tab MODIFY PRIMARY KEY ENABLE NOVALIDATE;

Note: RELY and NORELY are new states that can be set or reset

when a constraint is created or modified.
5-28 Application Developer’s Guide - Fundamentals

Dropping Integrity Constraints
Dropping Integrity Constraints
Drop an integrity constraint if the rule that it enforces is no longer true or if the

constraint is no longer needed. Drop an integrity constraint using the ALTER
TABLE command and the DROP clause. For example, the following statements drop

integrity constraints:

ALTER TABLE Dept_tab
DROP UNIQUE (Dname);

ALTER TABLE Dept_tab
DROP UNIQUE (Loc);

ALTER TABLE Emp_tab
DROP PRIMARY KEY,
DROP CONSTRAINT Dept_fkey;

DROP TABLE Emp_tab CASCADE CONSTRAINTS;

When dropping UNIQUE, PRIMARY KEY, and FOREIGN KEY integrity constraints,

you should be aware of several important issues and prerequisites. UNIQUE and

PRIMARY KEY constraints are usually managed by the database administrator.

See Also: "Managing FOREIGN KEY Integrity Constraints" on

page 5-30 and the Oracle8i Administrator’s Guide.
Maintaining Data Integrity 5-29

Managing FOREIGN KEY Integrity Constraints
Managing FOREIGN KEY Integrity Constraints
General information about defining, enabling, disabling, and dropping all types of

integrity constraints is given in the previous sections. The following section

supplements this information, focusing specifically on issues regarding FOREIGN
KEY integrity constraints.

Defining FOREIGN KEY Integrity Constraints
The following topics are of interest when defining FOREIGN KEY integrity

constraints.

Matching of Datatypes
When defining referential integrity constraints, the corresponding column names of

the dependent and referenced tables do not need to match. However, they must be

of the same datatype.

Composite Foreign Keys
Because foreign keys reference primary and unique keys of the parent table, and

PRIMARY KEY and UNIQUE key constraints are enforced using indexes, composite

foreign keys are limited to 16 columns.

Implied Referencing of a Primary Key
If the column list is not included in the REFERENCES option when defining a

FOREIGN KEY constraint (single column or composite), then Oracle assumes that

you intend to reference the primary key of the specified table. Alternatively, you can

explicitly specify the column(s) to reference in the parent table within parentheses.

Oracle automatically checks to verify that this column list references a primary or

unique key of the parent table. If it does not, then an informative error is returned.

Privileges Required for FOREIGN KEY Integrity Constraints
To create a FOREIGN KEY constraint, the creator of the constraint must have

privileged access to both the parent and the child table.

■ The Parent Table The creator of the referential integrity constraint must own

the parent table or have REFERENCES object privileges on the columns that

constitute the parent key of the parent table.

■ The Child Table The creator of the referential integrity constraint must have the

ability to create tables (that is, the CREATE TABLE or CREATE ANY TABLE
5-30 Application Developer’s Guide - Fundamentals

Managing FOREIGN KEY Integrity Constraints
system privilege) or the ability to alter the child table (that is, the ALTER object

privilege for the child table or the ALTER ANY TABLE system privilege).

In both cases, necessary privileges cannot be obtained via a role; they must be

explicitly granted to the creator of the constraint.

These restrictions allow:

■ The owner of the child table to explicitly decide what constraints are enforced

on her or his tables and the other users that can create constraints on her or his

tables

■ The owner of the parent table to explicitly decide if foreign keys can depend on

the primary and unique keys in her tables

Specifying Referential Actions for Foreign Keys
Oracle allows two different types of referential integrity actions to be enforced, as

specified with the definition of a FOREIGN KEY constraint:

■ The UPDATE/DELETE No Action Restriction This action prevents the update

or deletion of a parent key if there is a row in the child table that references the

key. By default, all FOREIGN KEY constraints enforce the no action restriction;

no option needs to be specified when defining the constraint to enforce the no

action restriction. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab);

■ The ON DELETE CASCADE Action This action allows referenced data in the

parent key to be deleted (but not updated). If referenced data in the parent key

is deleted, all rows in the child table that depend on the deleted parent key

values are also deleted. To specify this referential action, include the ON DELETE
CASCADE option in the definition of the FOREIGN KEY constraint. For example:

CREATE TABLE Emp_tab (
 FOREIGN KEY (Deptno) REFERENCES Dept_tab
 ON DELETE CASCADE);

Enabling FOREIGN KEY Integrity Constraints
FOREIGN KEY integrity constraints cannot be enabled if the referenced primary or

unique key’s constraint is not present or not enabled.
Maintaining Data Integrity 5-31

Listing Integrity Constraint Definitions
Listing Integrity Constraint Definitions
The data dictionary contains the following views that relate to integrity constraints:

■ ALL_CONSTRAINTS

■ ALL_CONS_COLUMNS

■ CONSTRAINT_COLUMNS

■ CONSTRAINT_DEFS

■ USER_CONSTRAINTS

■ USER_CONS_COLUMNS

■ USER_CROSS_REFS

■ DBA_CONSTRAINTS

■ DBA_CONS_COLUMNS

■ DBA_CROSS_REFS

Examples
Consider the following CREATE TABLEstatements that define a number of integrity

constraints:

CREATE TABLE Dept_tab (
Deptno NUMBER(3) PRIMARY KEY,
Dname VARCHAR2(15),
Loc VARCHAR2(15),
CONSTRAINT Dname_ukey UNIQUE (Dname, Loc),
CONSTRAINT LOC_CHECK1

CHECK (Loc IN (’NEW YORK’, ’BOSTON’, ’CHICAGO’)));

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY,
Ename VARCHAR2(15) NOT NULL,
Job VARCHAR2(10),
Mgr NUMBER(5) CONSTRAINT Mgr_fkey

 REFERENCES Emp_tab ON DELETE CASCADE,
Hiredate DATE,
Sal NUMBER(7,2),
Comm NUMBER(5,2),

See Also: Refer to Oracle8i Reference for detailed information

about each view.
5-32 Application Developer’s Guide - Fundamentals

Listing Integrity Constraint Definitions
Deptno NUMBER(3) NOT NULL
CONSTRAINT Dept_fkey REFERENCES Dept_tab);

Example 1: Listing All of Your Accessible Constraints The following query lists all

constraints defined on all tables accessible to the user:

SELECT Constraint_name, Constraint_type, Table_name,
R_constraint_name

FROM User_constraints;

Considering the example statements at the beginning of this section, a list similar to

the one below is returned:

CONSTRAINT_NAME C TABLE_NAME R_CONSTRAINT_NAME
--------------- - ----------- ------------------
SYS_C00275 P DEPT_TAB
DNAME_UKEY U DEPT_TAB
LOC_CHECK1 C DEPT_TAB
SYS_C00278 C EMP_TAB
SYS_C00279 C EMP_TAB
SYS_C00280 P EMP_TAB
MGR_FKEY R EMP_TAB SYS_C00280
DEPT_FKEY R EMP_TAB SYS_C00275

Notice the following:

■ Some constraint names are user specified (such as DNAME_UKEY), while others

are system specified (such as SYS_C00275).

■ Each constraint type is denoted with a different character in the CONSTRAINT_
TYPE column. The table below summarizes the characters used for each

constraint type.

Constraint Type Character

PRIMARY KEY P

UNIQUE KEY U

FOREIGN KEY R

CHECK, NOT NULL C
Maintaining Data Integrity 5-33

Listing Integrity Constraint Definitions
Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints In the previous

example, several constraints are listed with a constraint type of "C". To distinguish

which constraints are NOT NULL constraints and which are CHECK constraints in the

EMP_TAB and DEPT_TAB tables, issue the following query:

SELECT Constraint_name, Search_condition
FROM User_constraints
WHERE (Table_name = ’DEPT_TAB’ OR Table_name = ’EMP_TAB’) AND

Constraint_type = ’C’;

Considering the example CREATE TABLE statements at the beginning of this

section, a list similar to the one below is returned:

CONSTRAINT_NAME SEARCH_CONDITION
--------------- --
LOC_CHECK1 loc IN (’NEW YORK’, ’BOSTON’, ’CHICAGO’)
SYS_C00278 ENAME IS NOT NULL
SYS_C00279 DEPTNO IS NOT NULL

Notice the following:

■ NOT NULLconstraints are clearly identified in the SEARCH_CONDITIONcolumn.

■ The conditions for user-defined CHECK constraints are explicitly listed in the

SEARCH_CONDITION column.

Example 3: Listing Column Names that Constitute an Integrity Constraint The following

query lists all columns that constitute the constraints defined on all tables accessible

to you, the user:

SELECT Constraint_name, Table_name, Column_name
 FROM User_cons_columns;

Considering the example statements at the beginning of this section, a list similar to

the one below is returned:

CONSTRAINT_NAME TABLE_NAME COLUMN_NAME
--------------- ----------- ---------------

Note: An additional constraint type is indicated by the character

"V" in the CONSTRAINT_TYPE column. This constraint type

corresponds to constraints created by the WITH CHECK OPTION for

views. See Chapter 3, "Managing Schema Objects" for more

information about views and the WITH CHECK OPTION.
5-34 Application Developer’s Guide - Fundamentals

Listing Integrity Constraint Definitions
DEPT_FKEY EMP_TAB DEPTNO
DNAME_UKEY DEPT_TAB DNAME
DNAME_UKEY DEPT_TAB LOC
LOC_CHECK1 DEPT_TAB LOC
MGR_FKEY EMP_TAB MGR
SYS_C00275 DEPT_TAB DEPTNO
SYS_C00278 EMP_TAB ENAME
SYS_C00279 EMP_TAB DEPTNO
SYS_C00280 EMP_TAB EMPNO
Maintaining Data Integrity 5-35

Listing Integrity Constraint Definitions
5-36 Application Developer’s Guide - Fundamentals

Selecting an Index Str
6

Selecting an Index Strategy

This chapter discusses the procedures necessary to create and manage the different

types of objects contained in a user’s schema. The topics include:

■ Managing Indexes

■ Function-Based Indexes

■ Managing Clusters, Clustered Tables, and Cluster Indexes

■ Managing Hash Clusters and Clustered Tables

See Also: Specific information is described in the following

locations:

■ Procedures, functions, and packages — Chapter 10

■ Object types — Chapter 16

■ Dependency information — Chapter 10

■ If you use symmetric replication, then see Oracle8i Replication
for information on managing schema objects, such as

snapshots.

■ If you use Trusted Oracle, then there are additional privileges

required and issues to consider when managing schema

objects; see the Trusted Oracle documentation.
ategy 6-1

Managing Indexes
Managing Indexes
Indexes are used in Oracle to provide quick access to rows in a table. Indexes

provide faster access to data for operations that return a small portion of a table’s

rows.

Oracle does not limit the number of indexes you can create on a table. However,

you should consider the performance benefits of indexes and the needs of your

database applications to determine which columns to index.

The following sections explain how to create, alter, and drop indexes using SQL

commands. Some simple guidelines to follow when managing indexes are included.

Create Indexes After Inserting Table Data
With one notable exception, you should usually create indexes after you have

inserted or loaded (using SQL*Loader or Import) data into a table. It is more

efficient to insert rows of data into a table that has no indexes and then to create the

indexes for subsequent queries, etc. If you create indexes before table data is loaded,

then every index must be updated every time you insert a row into the table. The

exception to this rule is that you must create an index for a cluster before you insert

any data into the cluster.

When you create an index on a table that already has data, Oracle must use sort

space to create the index. Oracle uses the sort space in memory allocated for the

creator of the index (the amount per user is determined by the initialization

parameter SORT_AREA_SIZE), but must also swap sort information to and from

temporary segments allocated on behalf of the index creation. If the index is

extremely large, it might be beneficial to complete the following steps:

1. Create a new temporary tablespace using the CREATE TABLESPACE command.

2. Use the TEMPORARY TABLESPACEoption of the ALTER USER command to

make this your new temporary tablespace.

3. Create the index using the CREATE INDEX command.

4. Drop this tablespace using the DROP TABLESPACE command. Then use the

ALTER USER command to reset your temporary tablespace to your original

temporary tablespace.

Under certain conditions, you can load data into a table with the SQL*Loader

"direct path load", and an index can be created as data is loaded.

See Also: See Oracle8i Tuning for performance implications of

index creation.
6-2 Application Developer’s Guide - Fundamentals

Managing Indexes
Index the Correct Tables and Columns Use the following guidelines for determining

when to create an index:

■ Create an index if you frequently want to retrieve less than 15% of the rows in a

large table. The percentage varies greatly according to the relative speed of a

table scan and how clustered the row data is about the index key. The faster the

table scan, the lower the percentage; the more clustered the row data, the higher

the percentage.

■ Index columns used for joins to improve performance on joins of multiple

tables.

■ Small tables do not require indexes; if a query is taking too long, then the table

might have grown from small to large.

Some columns are strong candidates for indexing. Columns with one or more of the

following characteristics are candidates for indexing:

■ Values are relatively unique in the column.

■ There is a wide range of values.

■ The column contains many nulls, but queries often select all rows having a

value. In this case, the following phrase:

WHERE COL_X > -9.99 *power(10,125)

is preferable to

WHERE COL_X IS NOT NULL

This is because the first uses an index on COL_X (assuming that COL_X is a

numeric column).

Columns with the following characteristics are less suitable for indexing:

■ The column has few distinct values (for example, a column for the sex of

employees).

■ There are many nulls in the column and you do not search on the non-null

values.

See Also: Oracle8i Utilities

See Also: Primary and unique keys automatically have indexes,

but you might want to create an index on a foreign key; see

Chapter 5, "Maintaining Data Integrity" for more information.
Selecting an Index Strategy 6-3

Managing Indexes
LONG and LONG RAW columns cannot be indexed.

The size of a single index entry cannot exceed roughly one-half (minus some

overhead) of the available space in the data block. Consult with the database

administrator for assistance in determining the space required by an index.

Limit the Number of Indexes per Table A table can have any number of indexes.

However, the more indexes, the more overhead is incurred as the table is altered.

When rows are inserted or deleted, all indexes on the table must be updated. When

a column is updated, all indexes on the column must be updated.

Thus, there is a trade-off between speed of retrieval for queries on a table and speed

of accomplishing updates on the table. For example, if a table is primarily read-only,

then more indexes might be useful; but, if a table is heavily updated, then fewer

indexes might be preferable.

Order Index Columns for Performance The order in which columns are named in the

CREATE INDEX command does not need to correspond to the order in which they

appear in the table. However, the order of columns in the CREATE INDEX statement

is significant because query performance can be affected by the order chosen. In

general, you should put the column expected to be used most often first in the

index.

For example, assume the columns of the VENDOR_PARTS table are as shown in

Figure 6–1.

Figure 6–1 The VENDOR_PARTS Table

Assume that there are five vendors, and each vendor has about 1000 parts.

Suppose that the VENDOR_PARTS table is commonly queried by SQL statements

such as the following:

VEND ID PART NO

Table VENDOR_PARTS

UNIT COST

1012
1012
1012
1010
1010
1220
1012
1292

10–440
10–441

457
10–440

457
08–300
08–300

457

.25

.39
4.95

.27
5.10
1.33
1.19
5.28
6-4 Application Developer’s Guide - Fundamentals

Managing Indexes
SELECT * FROM vendor_parts
WHERE part_no = 457 AND vendor_id = 1012;

To increase the performance of such queries, you might create a composite index

putting the most selective column first; that is, the column with the most values:

CREATE INDEX ind_vendor_id
ON vendor_parts (part_no, vendor_id);

Indexes speed retrieval on any query using the leading portion of the index. So in the

above example, queries with WHERE clauses using only the PART_NO column also

note a performance gain. Because there are only five distinct values, placing a

separate index on VENDOR_ID would serve no purpose.

Creating Indexes
You can create an index for a table to improve the performance of queries issued

against the corresponding table. You can also create an index for a cluster. You can

create a composite index on multiple columns up to a maximum of 16 columns. A

composite index key cannot exceed roughly one-half (minus some overhead) of the

available space in the data block.

Oracle automatically creates an index to enforce a UNIQUE or PRIMARY KEY
integrity constraint. In general, it is better to create such constraints to enforce

uniqueness and not explicitly use the obsolete CREATE UNIQUE INDEX syntax.

Use the SQL command CREATE INDEX to create an index. The following statement
CREATE INDEX emp_ename ON Emp_tab(ename)

TABLESPACE users
STORAGE (INITIAL 20K
 NEXT 20k

 PCTINCREASE 75)
 PCTFREE 0;

Notice that several storage settings are explicitly specified for the index.

Privileges Required to Create an Index
To create a new index, you must own, or have the INDEX object privilege for, the

corresponding table. The schema that contains the index must also have a quota for

the tablespace intended to contain the index, or the UNLIMITED TABLESPACE
system privilege. To create an index in another user’s schema, you must have the

CREATE ANY INDEX system privilege.
Selecting an Index Strategy 6-5

Function-Based Indexes
Dropping Indexes
You might drop an index for the following reasons:

■ The index is not providing anticipated performance improvements for queries

issued against the associated table (the table is very small, or there are many

rows in the table but very few index entries, etc.).

■ Applications do not contain queries that use the index.

■ The index is no longer needed and must be dropped before being rebuilt.

When you drop an index, all extents of the index’s segment are returned to the

containing tablespace and become available for other objects in the tablespace.

Use the SQL command DROP INDEX to drop an index. For example, to drop the

EMP_ENAME index, enter the following statement:

DROP INDEX Emp_ename;

If you drop a table, then all associated indexes are dropped.

Privileges Required to Drop an Index To drop an index, the index must be contained in

your schema or you must have the DROP ANY INDEX system privilege.

Function-Based Indexes
A function-based index is an index built on an expression. It extends your indexing

capabilities beyond indexing on a column. A function-based index increases the

variety of ways in which you can access data.

The expression used in a function-based index can be an arithmetic expression or an

expression that contains a PL/SQL function, package function, C callout, or SQL

function. Function-based indexes also support linguistic sorts based on linguistic

sort keys (collation), efficient linguistic collation of SQL statements, and

case-insensitive sorts.

Like other indexes, function-based indexes improve query performance. For

example, if you need to access a computationally complex expression often, then

you can store it in an index. Then when you need to access the expression, it is

Note: You can create function-based indexes only if you are using

the Oracle8i release, or higher.
6-6 Application Developer’s Guide - Fundamentals

Function-Based Indexes
already computed. You can find a detailed description of the advantages of

function-based indexes in "Using Function-Based Indexes" on page 6-7.

Function-based indexes have all of the same properties as indexes on columns.

However, unlike indexes on columns which can be used by both cost-based and

rule-based optimization, function-based indexes can be used by only by cost-based

optimization. Other restrictions on function-based indexes are described in

"Restrictions on Function-Based Indexes" on page 6-12.

Using Function-Based Indexes
The following list describes the advantages of function-based indexes in greater

detail:

■ Increase the number of situations where the optimizer can perform a range
scan instead of a full table scan. For example: consider the expression in the

WHERE clause below:

CREATE INDEX Idx ON Example_tab(Column_a + Column_b);
SELECT * FROM Example_tab WHERE Column_a + Column_b < 10;

In the CREATE INDEXstatement, idx is the name of the index, Example_tab is

the name of the table, and column_a and column_b represent columns. The

optimizer can use a range scan for this query because the index is built on

(column_a + column_b). Range scans typically produce fast response times if

the predicate has low selectivity (that is, if the predicate selects less than 15% of

the rows of a large table). In addition, the optimizer can estimate selectivity of

predicates involving expressions more accurately if the expressions are

materialized in a function-based index (expressions of function-based indexes

are represented as virtual columns and ANALYZE can build histograms on such

columns).

■ Precompute the value of a computationally intensive function and store it in
the index. If you have a computationally intensive expression that you access

often, then you can store it in an index. When you need to access it, the value is

already computed. This can greatly improve query execution performance.

■ Create indexes on object columns and REF columns. Methods that describe

objects can be used as functions on which to build indexes. For example, you

can use the MAP method to build indexes on an object type column.

See Also: For more information on function-based indexes, see

Oracle8i Concepts. For information on creating function-based

indexes, see Oracle8i Administrator’s Guide.
Selecting an Index Strategy 6-7

Function-Based Indexes
■ Create more powerful sorts. You can perform case-insensitive sorts with the

UPPER and LOWER functions, descending order sorts with the DESC function,

and linguistic-based sorts with the NLSSORT function.

Example
As an example, consider a weather research institute that maintains tables of

weather data for various cities. Some of their projects include tracking daily

temperature fluctuations throughout the year. Other projects include tracking

fluctuations as a function of the city’s distance from the equator. By building

indexes on the complex functions that they want to calculate, the institute can

optimize the execution of the queries they submit. The following section contains

examples of indexes that could be created and the queries that could use them.

The table, Weatherdata_tab , contains columns for the minimum daily

temperature (Mintemp), maximum daily temperature (Maxtemp), the day the

temperature was recorded (Day), and the Region (Region_Obj). Region_Obj is

an object column that contains columns for country (Country) and city

(Cityname). Figure 6–2 illustrates the Weatherdata_tab schema.

Note: The DESC keyword in the CREATE INDEX statement is no

longer ignored. Oracle sorts columns with the DESC keyword in

descending order. Such indexes are treated as function-based

indexes. Descending indexes cannot be bitmapped or reverse, and

cannot be used in bitmapped optimizations. To get the pre-Oracle

8.1 release DESC functionality, remove the DESC keyword from the

CREATE INDEX statement.

See Also: For examples of how to use function-based indexes, see

the Oracle8i Administrator’s Guide.
6-8 Application Developer’s Guide - Fundamentals

Function-Based Indexes
Figure 6–2 WEATHERDATA_TAB Schema Design

An index is created that calculates the difference in temperature for the cities in the

tables. A query that could use the delta_index index returns the contents of the

table for temperature differences less than 20:

CREATE INDEX Delta_index
ON Weatherdata_tab (Maxtemp - Mintemp);

Note: You may need to set up data structures similar to the

following for certain examples to work:

CREATE OR REPLACE FUNCTION distance_from_equator(input
NUMBER) RETURN NUMBER DETERMINISTIC IS
 distance NUMBER;
BEGIN
 distance := 100000;
 RETURN (distance);
END;

Table WEATHERDATA_TAB

Column Name

MAXTEMP MINTEMP REGION_OBJ

Kind of Data

Number
NUMBER

DAY

PK

Date
DATE

Number
NUMBER

Object_Type
REGION_TYP

Key Type

Column Object REGION_OBJ (of REGION_TYP)

COUNTRY

Text
VARCHAR2(30)

CITYNAME

Text
VARCHAR2(30)

Column Object of
the defined type
Selecting an Index Strategy 6-9

Function-Based Indexes
SELECT *
FROM Weatherdata_tab
WHERE (Maxtemp - Mintemp) < ’20’;

An index is created that calls the object method distance_from_equator to

calculate the distance from the equator for each city in the table. The method is

applied to the object column Region_Obj . A query that could use the distance_
index index returns the names of the cities that are at a distance greater than 1000

miles from the equator:

CREATE INDEX Distance_index
ON Weatherdata_tab (Distance_from_equator (Reg_obj));

SELECT *
FROM Weatherdata_tab
WHERE (Distance_from_equator (Reg_Obj)) > ’1000’;

An index is created that satisfies the queries of German-speaking users that sorts

temperature data by city name. A query that could use the City_index index

returns the contents of the table, ordered by city name. The German sort order for

city name is used. Note that in the SELECTstatement, a WHEREclause is not needed.

This is because in a German session, NLSSORT is set to German.

CREATE INDEX City_index
ON Weatherdata_tab (NLSSORT(Cityname, ’NLS_SORT=German’));

SELECT *
FROM Weatherdata_tab
ORDER BY Cityname;

An index is created on the difference between the maximum and minimum

temperatures, and on the maximum temperature. The result of the difference is

sorted in descending order. A query that could use the compare_index index

returns the contents of the table that satisfy the condition where the difference is

less than 20 and the maximum temperature is greater than 75.

CREATE INDEX compare_index
ON Weatherdata_tab ((Maxtemp - Mintemp) DESC, Maxtemp);

SELECT *
FROM Weatherdata_tab WHERE ((Maxtemp - Mintemp) < ’20’ AND Maxtemp > ’75’);
6-10 Application Developer’s Guide - Fundamentals

Function-Based Indexes
Example Function-Based Indexes

Example 1:
The following command creates a function-based index IDX on table EMP_TAB.

CREATE INDEX Idx ON Emp_tab (UPPER(Ename));

The SELECT command uses the function-based index on UPPER(e_name) to return

all of the employees with name like :KEYCOL.

SELECT *
FROM Emp_tab
WHERE UPPER(Ename) like :KEYCOL;

Example 2:
The following command creates a function-based index IDX on table Fbi_tab where

A, B, and C represent columns.

CREATE INDEX Idx
On Fbi_tab (A + B * (C - 1), A, B);

The SELECT statement can either use index range scan (notice that the expression is

a prefix of index IDX) or index fast full scan (which may be preferable if the index

has specified a high parallel degree).

SELECT a
FROM Fbi_tab
Where A + B * (C - 1) < 100;

Example 3:
This example demonstrates how a function-based index can be used to support an

NLS Sort Index. Given a string, the NLSSORT function returns a sort key. The

following CREATE INDEX statement creates an NLS_SORT sort on table NLS_TAB
with collation sequence GERMAN.

CREATE INDEX Nls_index
ON Nls_tab (NLSSORT(Name, ’NLS_SORT = German’));

The SELECT statement selects all of the contents of the table and orders it by NAME.
The rows are ordered using the German collation sequence.

SELECT *
FROM Nls_tab
ORDER BY Name;
Selecting an Index Strategy 6-11

Function-Based Indexes
Example 4:
This example demonstrates a case-insensitive search. The UPPER function converts

the ENAMEs to all uppercase letters:

CREATE INDEX Case_insensitive_idx
ON Emp_tab (UPPER(Ename));

An example query which would use this index is:

SELECT *
FROM Emp_tab
WHERE UPPER(Ename) = ’JOE’;

Restrictions on Function-Based Indexes
Note the following restrictions on function-based indexes:

■ Only cost-based optimization can use function-based indexes.

■ A function-based index expression cannot read or write database and package

state. In addition, a PL/SQL function, either a top level function or a

package-level function, used in this expression has to be declared as

DETERMINISTIC. There is no error checking whether or not a subprogram is

qualified as DETERMINISTIC. It is up to you to ensure that a subprogram is

DETERMINISTIC.

The following semantic rules demonstrate how to use the keyword

DETERMINISTIC:

■ A top level subprogram can be declared as DETERMINISTIC.

■ A PACKAGE level subprogram can be declared as DETERMINISTIC in the

PACKAGEspecification but not in the PACKAGE BODY. Errors will be raised if

DETERMINISTIC is used inside a PACKAGE BODY.

■ A private subprogram (declared inside another subprogram or a PACKAGE
BODY) cannot be declared as DETERMINISTIC.

■ A DETERMINISTIC subprogram can call another subprogram whether the

called program is declared as DETERMINISTIC or not.

■ Function-based indexes cannot be built on LOB columns.

■ Expressions used in a function-based index should reference only columns in a

row in the table. Hence, these expressions cannot contain any aggregate

functions.
6-12 Application Developer’s Guide - Fundamentals

Function-Based Indexes
■ Function-based indexes that return VARCHAR2 or RAW data types from a

PL/SQL function are not permitted due to length restrictions. A possible work

around is to use substrings to limit the size of the function’s output. For

example:

SUBSTR (F(X), 1, 100)

Where F(X) represents the PL/SQL function. The SUBSTR command would

need to be used for the function when creating the index and when referencing

the function in queries.

Note: You may need to set up data structures similar to the

following for certain examples to work:

CREATE OR REPLACE FUNCTION x(input IN VARCHAR2)
RETURN VARCHAR2 AS
output VARCHAR2(12);
BEGIN
 output :=input;
 RETURN (output);
END;

SELECT SUBSTR(x(’hello’),1,100) FROM DUAL;
Selecting an Index Strategy 6-13

Managing Clusters, Clustered Tables, and Cluster Indexes
Managing Clusters, Clustered Tables, and Cluster Indexes
Because clusters store related rows of different tables together in the same data

blocks, two primary benefits are achieved when clusters are properly used:

■ Disk I/O is reduced and access time improves for joins of clustered tables.

■ In a cluster, a cluster key value (the related value) is only stored once, no matter

how many rows of different tables contain the value. Therefore, less storage

may be required to store related table data in a cluster than is necessary in

non-clustered table format.

Guidelines for Creating Clusters
Some guidelines for creating clusters are outlined below.

Choose Appropriate Tables to Cluster Use clusters to store one or more tables that are

primarily queried (not predominantly inserted into or updated), and for which

queries often join data of multiple tables in the cluster or retrieve related data from

a single table.

Choose Appropriate Columns for the Cluster Key Choose cluster key columns carefully. If

multiple columns are used in queries that join the tables, then make the cluster key

a composite key. In general, the same column characteristics that make a good index

apply for cluster indexes.

A good cluster key has enough unique values so that the group of rows

corresponding to each key value fills approximately one data block. Too few rows

per cluster key value can waste space and result in negligible performance gains.

Cluster keys that are so specific that only a few rows share a common value can

cause wasted space in blocks, unless a small SIZE was specified at cluster creation

time.

Too many rows per cluster key value can cause extra searching to find rows for that

key. Cluster keys on values that are too general (for example, MALE and FEMALE)
result in excessive searching and can result in worse performance than with no

clustering.

A cluster index cannot be unique or include a column defined as LONG.

See Also: For performance characteristics, see Oracle8i Tuning.

See Also: "Index the Correct Tables and Columns" on page 6-3

has more information about these guidelines.
6-14 Application Developer’s Guide - Fundamentals

Managing Clusters, Clustered Tables, and Cluster Indexes
Performance Considerations
Also note that clusters can reduce the performance of DML statements (INSERTs,

UPDATEs, and DELETEs) as compared to storing a table separately with its own

index. These disadvantages relate to the use of space and the number of blocks that

must be visited to scan a table. Because multiple tables share each block, more

blocks must be used to store a clustered table than if that same table were stored

non-clustered. You should decide about using clusters with these trade-offs in

mind.

To identify data that would be better stored in clustered form than in non-clustered

form, look for tables that are related via referential integrity constraints, and tables

that are frequently accessed together using SELECT statements that join data from

two or more tables. If you cluster tables on the columns used to join table data, then

you reduce the number of data blocks that must be accessed to process the query;

all the rows needed for a join on a cluster key are in the same block. Therefore,

query performance for joins is improved.

Similarly, it may be useful to cluster an individual table. For example, the EMP_TAB
table could be clustered on the DEPTNOcolumn to cluster the rows for employees in

the same department. This would be advantageous if applications commonly

process rows, department by department.

Like indexes, clusters do not affect application design. The existence of a cluster is

transparent to users and to applications. Data stored in a clustered table is accessed

via SQL just like data stored in a non-clustered table.

Creating Clusters, Clustered Tables, and Cluster Indexes
Use a cluster to store one or more tables that are frequently joined in queries. Do not

use a cluster to cluster tables that are frequently accessed individually.

Once you create a cluster, tables can be created in the cluster. However, before you

can insert any rows into the clustered tables, you must create a cluster index. The

use of clusters does not affect the creation of additional indexes on the clustered

tables; you can create and drop them as usual.

Use the SQL command CREATE CLUSTER to create a cluster. The following

statement creates a cluster named EMP_DEPT, which stores the EMP_TAB and DEPT_
TAB tables, clustered by the DEPTNO column:

CREATE CLUSTER Emp_dept (Deptno NUMBER(3))
 PCTUSED 80
 PCTFREE 5;
Selecting an Index Strategy 6-15

Managing Clusters, Clustered Tables, and Cluster Indexes
Create a table in a cluster using the SQL command CREATE TABLE with the

CLUSTERoption. For example, the EMP_TABand DEPT_TABtables can be created in

the EMP_DEPT cluster using the following statements:

CREATE TABLE Dept_tab (
Deptno NUMBER(3) PRIMARY KEY,
. . .)
CLUSTER Emp_dept (Deptno);

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY,
Ename VARCHAR2(15) NOT NULL,
. . .
Deptno NUMBER(3) REFERENCES Dept_tab)
CLUSTER Emp_dept (Deptno);

A table created in a cluster is contained in the schema specified in the CREATE
TABLE statement; a clustered table might not be in the same schema that contains

the cluster.

You must create a cluster index before any rows can be inserted into any clustered

table. For example, the following statement creates a cluster index for the EMP_
DEPT cluster:

CREATE INDEX Emp_dept_index
ON CLUSTER Emp_dept
INITRANS 2
MAXTRANS 5
PCTFREE 5;

The cluster key establishes the relationship of the tables in the cluster.

Privileges Required to Create a Cluster, Clustered Table, and Cluster Index
To create a cluster in your schema, you must have the CREATE CLUSTER system

privilege and a quota for the tablespace intended to contain the cluster or the

UNLIMITED TABLESPACE system privilege. To create a cluster in another user’s

schema, you must have the CREATE ANY CLUSTER system privilege, and the owner

must have a quota for the tablespace intended to contain the cluster or the

UNLIMITED TABLESPACE system privilege.

Note: A cluster index cannot be unique. Furthermore, Oracle is

not guaranteed to enforce uniqueness of columns in the cluster key

if they have UNIQUE or PRIMARY KEY constraints.
6-16 Application Developer’s Guide - Fundamentals

Managing Clusters, Clustered Tables, and Cluster Indexes
To create a table in a cluster, you must have either the CREATE TABLE or CREATE
ANY TABLEsystem privilege. You do not need a tablespace quota or the UNLIMITED
TABLESPACE system privilege to create a table in a cluster.

To create a cluster index, your schema must contain the cluster, and you must have

the following privileges:

■ The CREATE ANY INDEXsystem privilege or, if you own the cluster, the CREATE
INDEX privilege

■ A quota for the tablespace intended to contain the cluster index, or the

UNLIMITED TABLESPACE system privilege

Manually Allocating Storage for a Cluster
Oracle dynamically allocates additional extents for the data segment of a cluster, as

required. In some circumstances, you might want to explicitly allocate an additional

extent for a cluster. For example, when using the Oracle Parallel Server, an extent of

a cluster can be allocated explicitly for a specific instance.

You can allocate a new extent for a cluster using the SQL command ALTER
CLUSTER with the ALLOCATE EXTENT option.

Dropping Clusters, Clustered Tables, and Cluster Indexes
Drop a cluster if the tables currently within the cluster are no longer necessary.

When you drop a cluster, the tables within the cluster and the corresponding cluster

index are dropped; all extents belonging to both the cluster’s data segment and the

index segment of the cluster index are returned to the containing tablespace and

become available for other segments within the tablespace.

You can individually drop clustered tables without affecting the table’s cluster,

other clustered tables, or the cluster index. Drop a clustered table in the same

manner as a non-clustered table—use the SQL command DROP TABLE.

See "Dropping Tables" for more information about individually dropping tables.

See Also: Oracle8i Parallel Server Concepts and Administration
Selecting an Index Strategy 6-17

Managing Clusters, Clustered Tables, and Cluster Indexes
You can drop a cluster index without affecting the cluster or its clustered tables.

However, you cannot use a clustered table if it does not have a cluster index.

Cluster indexes are sometimes dropped as part of the procedure to rebuild a

fragmented cluster index.

To drop a cluster that contains no tables, as well as its cluster index, if present, use

the SQL command DROP CLUSTER. For example, the following statement drops the

empty cluster named EMP_DEPT:

DROP CLUSTER Emp_dept;

If the cluster contains one or more clustered tables, and if you intend to drop the

tables as well, then add the INCLUDING TABLES option of the DROP CLUSTER
command. For example:

DROP CLUSTER Emp_dept INCLUDING TABLES;

If you do not include the INCLUDING TABLES option, and if the cluster contains

tables, then an error is returned.

If one or more tables in a cluster contain primary or unique keys that are referenced

by FOREIGN KEY constraints of tables outside the cluster, then you cannot drop the

cluster unless you also drop the dependent FOREIGN KEY constraints. Use the

CASCADE CONSTRAINTS option of the DROP CLUSTER command, as in

DROP CLUSTER Emp_dept INCLUDING TABLES CASCADE CONSTRAINTS;

An error is returned if the above option is not used in the appropriate situation.

Note: When you drop a single clustered table from a cluster, each

row of the table must be deleted from the cluster. To maximize

efficiency, if you intend to drop the entire cluster including all

tables, then use the DROP CLUSTERcommand with the INCLUDING
TABLES option.

You should only use the DROP TABLE command to drop an

individual table from a cluster when the rest of the cluster is going

to remain.

See Also: "Dropping Indexes" on page 6-6
6-18 Application Developer’s Guide - Fundamentals

Managing Clusters, Clustered Tables, and Cluster Indexes
Privileges Required to Drop a Cluster
To drop a cluster, your schema must contain the cluster, or you must have the DROP
ANY CLUSTER system privilege. You do not have to have any special privileges to

drop a cluster that contains tables, even if the clustered tables are not owned by the

owner of the cluster.
Selecting an Index Strategy 6-19

Managing Hash Clusters and Clustered Tables
Managing Hash Clusters and Clustered Tables
The following sections explain how to create, alter, and drop hash clusters and

clustered tables using SQL commands.

Creating Hash Clusters and Clustered Tables
A hash cluster is used to store individual tables or a group of clustered tables that

are static and often queried by equality queries. Once you create a hash cluster, you

can create tables. To create a hash cluster, use the SQL command CREATE CLUSTER.
The following statement creates a cluster named TRIAL_CLUSTER that is used to

store the TRIAL_TAB table, clustered by the TRIALNO column:

CREATE CLUSTER Trial_cluster (
 Trialno NUMBER(5,0))

PCTUSED 80
PCTFREE 5
SIZE 2K
HASH IS Trialno HASHKEYS 100000;

CREATE TABLE Trial_tab (
Trialno NUMBER(5) PRIMARY KEY,
...)
CLUSTER Trial_cluster (Trialno);

Controlling Space Usage Within a Hash Cluster
When you create a hash cluster, it is important that you correctly choose the cluster

key and set the HASH IS, SIZE , and HASHKEYS parameters to achieve the desired

performance and space usage for the cluster. The following sections provide

guidance, as well as examples of setting these parameters.

Choosing the Key
Choosing the correct cluster key is dependent on the most common types of queries

issued against the clustered tables. For example, consider the EMP_TAB table in a

Note: You may need to use a setup similar to the following for

certain examples to work:

ALTER TABLESPACE SYSTEM ADD DATAFILE ’disk1:moredata1’ SIZE 50K
AUTOEXTEND ON;
6-20 Application Developer’s Guide - Fundamentals

Managing Hash Clusters and Clustered Tables
hash cluster. If queries often select rows by employee number, then the EMPNO
column should be the cluster key; if queries often select rows by department

number, then the DEPTNO column should be the cluster key. For hash clusters that

contain a single table, the cluster key is typically the entire primary key of the

contained table. A hash cluster with a composite key must use Oracle’s internal

hash function.

Setting HASH IS
Only specify the HASH IS parameter if the cluster key is a single column of the

NUMBER datatype and contains uniformly distributed integers. If the above

conditions apply, then you can distribute rows in the cluster such that each unique

cluster key value hashes to a unique hash value (with no collisions). If the above

conditions do not apply, you should use the internal hash function.

Dropping Hash Clusters
Drop a hash cluster using the SQL command DROP CLUSTER:

DROP CLUSTER Emp_dept;

Drop a table in a hash cluster using the SQL command DROP TABLE. The

implications of dropping hash clusters and tables in hash clusters are the same as

for index clusters.

When to Use Hashing
Storing a table in a hash cluster is an alternative to storing the same table with an

index. Hashing is useful in the following situations:

■ Most queries are equality queries on the cluster key. For example:

SELECT . . . WHERE Cluster_key = . . . ;

In such cases, the cluster key in the equality condition is hashed, and the

corresponding hash key is usually found with a single read. With an indexed

table, the key value must first be found in the index (usually several reads), and

then the row is read from the table (another read).

■ The table or tables in the hash cluster are primarily static in size such that you

can determine the number of rows and amount of space required for the tables

See Also: "Dropping Clusters, Clustered Tables, and Cluster

Indexes" on page 6-17
Selecting an Index Strategy 6-21

Managing Hash Clusters and Clustered Tables
in the cluster. If tables in a hash cluster require more space than the initial

allocation for the cluster, then performance degradation can be substantial

because overflow blocks are required.

■ A hash cluster with the HASH IS col, HASHKEYSn, and SIZE m clauses is an

ideal representation for an array (table) of n items (rows) where each item

consists of m bytes of data. For example:

ARRAY X[100] OF NUMBER(8)

This could be represented as the following:

CREATE CLUSTER C(Subscript INTEGER)
HASH IS Subscript HASHKEYS 100 SIZE 100;

CREATE TABLE X(Subscript NUMBER(2), Value NUMBER(8))
CLUSTER C(Subscript);

Alternatively, hashing is not advantageous in the following situations:

■ Most queries on the table retrieve rows over a range of cluster key values. For

example, in full table scans, or queries:

SELECT . . . WHERE Cluster_key < . . . ;

A hash function cannot be used to determine the location of specific hash keys;

instead, the equivalent of a full table scan must be done to fetch the rows for the

query. With an index, key values are ordered in the index, so cluster key values

that satisfy the WHERE clause of a query can be found with relatively few I/Os.

■ A table is not static, but is continually growing. If a table grows without limit,

then the space required over the life of the table (thus, of its cluster) cannot be

predetermined.

■ Applications frequently perform full table scans on the table and the table is

sparsely populated. A full table scan in this situation takes longer under

hashing.

■ You cannot afford to preallocate the space the hash cluster will eventually need.

In most cases, you should decide (based on the above information) whether to use

hashing or indexing. If you use indexing, consider whether it is best to store a table

individually or as part of a cluster.
6-22 Application Developer’s Guide - Fundamentals

Managing Hash Clusters and Clustered Tables
If you decide to use hashing, then a table can still have separate indexes on any

columns, including the cluster key.

See Also: "Guidelines for Creating Clusters" on page 6-14

See Also: For additional guidelines on the performance

characteristics of hash clusters, see Oracle8i Tuning.
Selecting an Index Strategy 6-23

Managing Hash Clusters and Clustered Tables
6-24 Application Developer’s Guide - Fundamentals

Managing Index-Organized T
7

Managing Index-Organized Tables

This chapter covers the following topics:

■ Overview of Index-Organized Tables

■ Features of Index-Organized Tables

■ When to Use Index-Organized Tables

■ Example
ables 7-1

Overview of Index-Organized Tables
Overview of Index-Organized Tables
An index-organized table—in contrast to an ordinary table—has its own way of

structuring, storing, and indexing data. A comparison with an ordinary table may

help to explain its uniqueness.

Index-Organized Tables versus Ordinary Tables
A row in an ordinary table has a stable physical location. Once it is given its first

physical location, it never completely moves. Even if the row is partially moved

with the addition of new data, there is always a row piece at the original physical

address—identified by the original physical rowid—from which the system can find

the rest of the row. As long as the row exists, its physical rowid does not change.

When you index a column in an ordinary table, the newly created index stores both

the column data as well as the rowid.

A row in an index-organized table does not have a stable physical location. An

index-organized table is, on the one hand, like an ordinary table with an index on

one or more of its columns. It is unique, however, in that it holds its data, not in

stable rows, but in sorted order in the leaves of a B*-tree index built on the table’s

primary key. These rows may move around to retain the sorted order. An insertion,

for example, can cause an index leaf to split and the existing row to be moved to a

different slot, or even to a different block.

The leaves of the B*-tree index hold the primary key and the actual row data.

Changes to the table data—for example, adding new rows, or updating or deleting

existing rows—result only in updating the index.

Advantages of Index-Organized Tables
Because they store rows in the B*-tree index based on the primary key,

index-organized tables offer the following advantages over ordinary tables:

Fast access to table data for queries involving exact match and/or range search
on a primary key Once a search has located the key values, the remaining data is

present at that location. There is no need to follow a rowid back to table data, as

would be the case with an ordinary table and index structure. The index-organized

table thus shows its efficiency by eliminating one I/O, namely, the read of the table.

See Also: For more information on B*-tree indexes, see Oracle8i
Concepts
7-2 Application Developer’s Guide - Fundamentals

Overview of Index-Organized Tables
Best table organization for 24x7 operations When your database must be

available 100% of the time, index-organized tables provide the following

advantages:

■ You can reorganize an index-organized table or an index-organized table

partition (to recover space or improve performance) without rebuilding its

indexes. This results in a short reorganization maintenance window.

■ You can reorganize an index-organized table online. This and the ability to

perform online reorganization of secondary indexes eliminates the

reorganization maintenance window.

Reduced storage requirements This is because the key columns are not

duplicated in both the table and the index, and because no additional storage is

needed for rowids.

Figure 7–1 Conventional Table and an Index versus Index-Organized Table

Primary Key Index
All data stored

 in index

DBMS 1 17
DBMS 2 2
Oracle 1 14
Oracle 2 31

DBMS 1 ROWID 1
DBMS 2 ROWID 2
Oracle 1 ROWID 3
Oracle 2 ROWID 4

DBMS 1 17
DBMS 2 2
Oracle 1 14
Oracle 2 31
Managing Index-Organized Tables 7-3

Features of Index-Organized Tables
Features of Index-Organized Tables
You can move your existing data into an index-organized table and do all the

operations you would perform in an ordinary table. Some of the features now

available to you in using index-organized tables include the following.

Same Support for Alter Table Options as in Ordinary Tables All of the alter

options available on ordinary tables are now available for index-organized tables.

This includes ADD, MODIFY, and DROP COLUMNS and CONSTRAINTS. However, the

primary key constraint for an index-organized table cannot be dropped, deferred, or

disabled.

Logical ROWID Support Because of the inherent movability of rows in a B*-tree

index, a secondary index on an index-organized table cannot be based on a physical
rowid which is inherently fixed. Instead, a secondary index for an index-organized

table is based on what is called the logical rowid. A logical rowid has no permanent

physical address and can move across data blocks when new rows are inserted.

However, if the physical location of a row changes, its logical rowid remains valid.

A logical rowid includes the table’s primary key and a guess which identifies the

block location of a row at the time the guess is made. The guess makes rowid access

to non-volatile index-organized tables comparable to access of ordinary tables.

Logical rowids are similar to physical rowids in the following ways:

■ Users can select ROWID from an index-organized table and access the rows

using WHERE ROWID = <value predicate >.

■ The access through the logical rowid is the fastest possible way to get to a

specific row, even if it takes more than one block access to get it.

■ Logical rowid of a row does not change as long as the primary key value does

not change. However, unlike the physical rowid which remains immovable

through all updates, the logical rowid can move when hew rows are inserted.

Oracle 8i, release 8.1, introduces a single datatype, called universal rowid, to

support both logical and physical rowids.

Applications which use rowids today may, if using index-organized tables, have to

change to use universal rowids, but the changes are simpler due to the availability

of UROWID datatype. This allows applications to access logical and physical rowids

in a unified manner.

For more information: See "Declaring a Universal Rowid

Datatype" on page 7-11.
7-4 Application Developer’s Guide - Fundamentals

Features of Index-Organized Tables
Secondary Index Support Secondary indexes on index-organized tables differ from

indexes on ordinary tables in two ways:

■ They store logical rowids instead of physical rowids. Thus, a table maintenance

operation such as ALTER TABLE MOVE does not make the secondary index

unusable.

■ The logical rowid also includes a guess that provides a direct access to the

primary key index leaf block. If the guess is correct, a secondary index scan

would incur a single additional I/O once the secondary key is found. The

performance would be similar to that of a secondary index-scan on an ordinary

table.

Both unique and non-unique secondary indexes, as well as function-based

secondary indexes, are supported. However, bit-mapped secondary indexes on

index-organized tables are currently not supported.

LOB Columns You can create internal and external LOB columns in

index-organized tables to store large unstructured data such as audio, video, and

images. The SQL DDL, DML, and piece-wise operations on LOBs in

index-organized tables exhibit the same behavior as in ordinary tables. The main

differences are:

■ Tablespace mapping—By default (or unless specified otherwise), the LOB’s
data and index segments are created in the tablespace in which the primary key

index segment of the index-organized table is created.

■ Inline vs. Out-of-line storage—By default, all LOBs in index-organized tables

created without an overflow segment are stored out-of-line (that is, the default

storage attribute is DISABLE STORAGE IN ROW). Specifying an ENABLE
STORAGE IN ROW for such LOBs, will result in an error. However, LOBs in

index-organized tables with overflow segments have the same characteristics as

those in ordinary tables.

Other LOB features—such as BFILEs , temporary LOBs, and varying character

width LOBs—are also supported in index-organized tables. You use them as you

would ordinary tables. Support for LOBs in partitioned index-organized tables is

not currently available.

Parallel Query Queries on index-organized tables involving primary key index

scan can be executed in parallel. However, parallel execution of secondary

index-only scan queries is not yet supported.
Managing Index-Organized Tables 7-5

Features of Index-Organized Tables
Object Support Most of the object features are supported on index-organized

tables, including Object Type, VARRAYs, Nested Table, and REF Columns. However,

you cannot create object tables (TABLE OF <object type>) as index-organized

tables.

SQL*Loader This utility supports both ordinary and direct path load of

index-organized tables and their associated indexes (including partitioning

support). However, direct path parallel load to an index-organized table is not

supported. An alternate method of achieving the same result is to perform parallel

load to an ordinary table using SQL*Loader, then use the parallel CREATE TABLE
AS SELECT option to build the index-organized table.

Export/Import This utility supports export (both ordinary and direct path) and

import of non-partitioned and partitioned index-organized tables.

Distributed Database and Replication Support You can replicate both

non-partitioned and partitioned index-organized tables.

Tools The Oracle Enterprise Manager supports generating SQL statements for

CREATE and ALTER operations on an index-organized table.

Key Compression Key compression allows elimination of repeated occurrences of

key column prefixes in index-organized tables and indexes. The salient

characteristics of the scheme are:

■ Key compression breaks an index key into a prefix entry and suffix entry.

Compression is achieved by sharing the prefix entries among all the suffix

entries in an index block.

■ Only keys in the leaf blocks of a B*-tree are compressed. Keys in the branch

blocks of a B*-tree are still suffix truncated but not subjected to key

compression.
7-6 Application Developer’s Guide - Fundamentals

When to Use Index-Organized Tables
When to Use Index-Organized Tables
There are several occasions when you may prefer to use index-organized tables over

ordinary tables.1

When You Want to Avoid Redundant Data Storage For tables, where the majority

of columns form the primary key, there is a significant amount of redundant data

stored. You can avoid this redundant storage by using an index-organized table.

Also, by using an index-organized table, you increase the efficiency of the primary

key-based access to non-key columns.

When Developing VLDB and OLTP Applications The ability to partition an

index-organized table on a range of column values makes the use of

index-organized tables suitable for VLDB applications.

One major advantage of an index-organized table over an ordinary table stems from

the logical nature of the index-organized table’s secondary indexes. After an ALTER

TABLE MOVEand SPLIT operation, global indexes on index-organized tables remain

usable because the index rows contain logical rowids. In the case of ordinary tables,

by contrast, these operations result in making the global index unusable, requiring a

complete index rebuild, which can be very expensive.

Similarly, after an ALTER TABLE MOVE operation, local indexes on index-organized

tables are still usable. On the other hand, for ordinary tables, the MOVE operation

results in making a secondary local index unusable.

The partition maintenance operations described above do make the local and global

indexes on index-organized table perform slower as the guess component of logical

rowid becomes invalid. However, the indexes are still usable via the primary

key-component of the logical rowid.

In addition, the ALTER TABLE MOVE operation can be done on-line. This

functionality makes index-organized tables ideal for applications requiring 24X7

availability.

When Developing Time-series Applications The ability to cluster rows based on

the primary key makes index-organized tables attractive for time-series

1 If you use Oracle Advanced Queuing, you may be familiar with index-organized tables
already. Oracle Advance Queuing provides message queuing as an integrated part of the
Oracle8i server, and uses index-organized tables to hold metadata information for multiple
consumer queues. In this case, the index-organized table acts as an “index,” storing queue
metadata as part of a primary key B*-tree index on the queue identifier. DML operations in
turn have to update the “index,” and this occurs efficiently by updating the underlying
index-organized table.
Managing Index-Organized Tables 7-7

When to Use Index-Organized Tables
applications. Typically, a time-series is a set of time-stamped rows belonging to a

single item such as stock price. Data is typically accessed through an item identifier

such as a stock symbol and a time stamp. By defining, an index-organized table

with primary key (stock symbol, time stamp), the Oracle8 Time Series Data

Cartridge is able to store and manipulate time-series data efficiently. You can

achieve further storage savings by compressing repeated occurrences of the item

identifier (for example. the stock symbol) in a time series by using an

index-organized table with key compression.

When Using Nested Tables For a nested table column, Oracle internally creates a

storage table to hold all the nested table rows. The rows belonging to a single nested

table instance are identified by a NESTED_TABLE_IDcolumn. If an ordinary table is

used as nested table column storage, the nested table rows typically get

de-clustered. By contrast, when you use an index-organized table, the nested table

rows can be clustered based on the NESTED_TABLE_ID column. In Oracle 8i,
Release 8.1, you can specify the storage of the nested table to be an index-organized

table, as illustrated in the following.

CREATE TYPE Project_t AS OBJECT(Pno NUMBER, Pname VARCHAR2(80));
CREATE TYPE Project_set AS TABLE OF Project_t;
CREATE TABLE Employees (Eno NUMBER, Projects PROJECT_SET)
 NESTED TABLE Projects_ntab STORE AS Emp_project_tab
 ((PRIMARY KEY(Nested_table_id, Pno)) ORGANIZATION INDEX)
 RETURN AS LOCATOR;

When Using Extensible Indexing Oracle 8i, Release 8.1 introduces the Extensible

Indexing Framework which allows you to add a new access method to the

database. Typically, domain-specific indexing schemes need some storage

mechanism to hold their index data. Index-organized tables are ideal candidates for

such domain index storage. Oracle8 Spatial and Text Database Cartridges have

implemented domain-specific indexing schemes that use index-organized tables for

storing their index data.
7-8 Application Developer’s Guide - Fundamentals

Example
Example

This example illustrates some of the basic tasks in creating and using

index-organized tables. In this example, a text search engine uses an inverted index1

to allow a user to query for specific words or phrases over the Web. It then returns

to the user a list of hypertext links to documents containing the queried words and

phrases, and it ranks those links in the order of relevance.

This example illustrates the following tasks:

Note: You may need to set up the following data structures for

certain examples to work; such as:

CONNECT system/manager
GRANT CREATE TABLESPACE TO scott;
CONNECT scott/tiger
CREATE TABLESPACE Ind_tbs DATAFILE ’disk1:moredata2’
SIZE 100K;
CREATE TABLE Doc_tab DATAFILE ’disk1:moredata2’ SIZE
100K;
CREATE TABLESPACE Ovf_tbs DATAFILE ’disk1:moredata3’
SIZE 100K;
CREATE TABLESPACE Ind_ts0 DATAFILE ’disk1:moredata5’
SIZE 100K REUSE;
CREATE TABLESPACE Ov_ts0 DATAFILE ’disk1:moredata6’
SIZE 100K REUSE;
CREATE TABLESPACE Ind_ts1 DATAFILE ’disk1:moredata7’
SIZE 100K REUSE;
CREATE TABLESPACE Ov_ts1 DATAFILE ’disk1:moredata8’
SIZE 100K REUSE;
CREATE TABLESPACE Ind_ts2 DATAFILE ’disk1:moredata9’
SIZE 100K REUSE;
CREATE TABLESPACE Ov_ts2 DATAFILE ’disk1:moredata10’
SIZE 100K REUSE;
CREATE TABLE Doc_tab (tok VARCHAR2(4),id
VARCHAR2(14),freq NUMBER);

1 An inverted index breaks each document into individual words or tokens. For each word,
the inverted index builds a list of documents in which the word occurs, then stores that list
in the database. The application performs a content-based search by scanning the inverted
index looking for tokens of interest. From a development standpoint, an inverted index
typically contains entries of the form <token, document_id, occurrence_data> for each
distinct word in a document.
Managing Index-Organized Tables 7-9

Example
■ Moving Existing Data from an Ordinary Table into an Index-Organized Table

■ Creating Index-Organized Tables

■ Declaring a Universal Rowid Datatype

■ Creating Secondary Indexes on Index-Organized Tables

■ Manipulating Index-Organized Tables

■ Specifying an Overflow Data Segment

■ Determining the Last Non-key Column Included in the Index Row Head Piece

■ Storing Columns in the Overflow Segment

■ Modifying Physical and Storage Attributes

■ Partitioning an Index-Organized Table

■ Rebuilding an Index-Organized Table

Moving Existing Data from an Ordinary Table into an Index-Organized Table
The CREATE TABLE AS SELECTcommand allows you to move existing data from

an ordinary table into an index-organized table. In the following example, an

index-organized table, called docindex , is created from an ordinary table called

doctable .

CREATE TABLE Docindex
 (Token,
 Doc_id,
 Token_frequency,
 CONSTRAINT Pk_docindex PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX TABLESPACE Ind_tbs
PARALLEL (DEGREE 2)
AS SELECT * from Doc_tab;

Note that the PARALLEL clause allows the table creation to be performed in parallel.

Creating Index-Organized Tables
To create an index-organized table, you use the ORGANIZATION INDEX clause. In

the following example, an inverted index—typically used by Web text-search

engines—uses an index-organized table.

CREATE TABLE Docindex
 (Token CHAR(20),
7-10 Application Developer’s Guide - Fundamentals

Example
 Doc_id NUMBER,
 Token_frequency NUMBER,
 CONSTRAINT Pk_docindex PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX TABLESPACE Ind_tbs;

Declaring a Universal Rowid Datatype
The following example shows how you declare the UROWID datatype.

DECLARE
 Rid UROWID;
BEGIN
 INSERT INTO Docindex VALUES (’Or80’, 2, 30)
 RETURNING Rowid INTO RID;
 UPDATE Docindex SET Token=’Or81’ WHERE ROWID = Rid;
END;

Creating Secondary Indexes on Index-Organized Tables
You can create secondary indexes on index-organized tables to provide multiple

access paths. The following example shows the creation of an index on (doc_id ,

token).

CREATE INDEX Doc_id_index on Docindex(Doc_id, Token);

This secondary index allows Oracle to efficiently process queries involving

predicates on doc_id , as the following example illustrates.

SELECT Token FROM Docindex WHERE Doc_id = 1;

Manipulating Index-Organized Tables
Applications manipulate the index-organized tables just like an ordinary table,

using standard SQL statements for SELECT, INSERT, UPDATE, or DELETE
operations. For example, you can manipulate the docindex table as follows:

INSERT INTO Docindex VALUES (‘Oracle8.1’, 3, 17);
SELECT * FROM Docindex;
UPDATE Docindex SET Token = ‘Oracle8’ WHERE Token = ‘Oracle8.1’;
DELETE FROM Docindex WHERE Doc_id = 1;

Also, you can use SELECT FOR UPDATE statements to lock rows of an

index-organized table. All of these operations result in manipulating the primary

key B*-tree index. Both query and DML operations involving index-organized

tables are optimized by using this cost-based approach.
Managing Index-Organized Tables 7-11

Example
Specifying an Overflow Data Segment
Storing all non-key columns in the primary key B*-tree index structure may not

always be desirable because, for example:

■ Each additional non-key column stored in the primary key index reduces the

dense clustering of index rows in the B*-tree index leaf blocks

or because

■ A leaf block of aB*-tree must hold at least two index rows, and putting all

non-key columns as part of an index row may not be possible.

To overcome these problems, you can associate an overflow data segment with an

index-organized table. In the following example, an additional column, token_
offsets , is required for the docindex table. This example shows how you can

create an index-organized table and use the OVERFLOW option to create an overflow

data segment.

CREATE TABLE Docindex2
 (Token CHAR(20),
 Doc_id NUMBER,
 Token_frequency NUMBER,
 Token_offsets VARCHAR(512),
 CONSTRAINT Pk_docindex2 PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX TABLESPACE Ind_tbs PCTTHRESHOLD 20
OVERFLOW TABLESPACE Ovf_tbs INITRANS 4;

For the overflow data segment, you can specify physical storage attributes such as

TABLESPACE, INITRANS , and so on.

For an index-organized table with an overflow segment, the index row contains a

<key, row head> pair, where the row head contains the first few non-key columns

and a rowid that points to an overflow row-piece containing the remaining column

values. Although this approach incurs the storage cost of one rowid per row, it

nevertheless avoids key column duplication.
7-12 Application Developer’s Guide - Fundamentals

Example
Figure 7–2 Overflow Segment

Determining the Last Non-key Column Included in the Index Row Head Piece
To determine the last non-key column to include in the index row head piece, you

use the PCTTHRESHOLD option specified as a percentage of the leaf block size. The

remaining non-key columns are stored in the overflow data segment as one or more

row-pieces. Specifically, the last non-key column to be included is chosen so that the

index row size (key +row head) does not exceed the specified threshold (which, in

the following example, is 20% of the index leaf block). By default, PCTTHRESHOLD
is set at 50 when omitted.

The PCTTHRESHOLD option determines the last non-key column to be included in

the index on a per row basis. It does not, however, allow you to specify that the

same set of columns be included in the index for all rows in the table. For this

purpose, the INCLUDING option is provided.

The CREATE TABLE statement in the following example includes all the columns

up to the token_frequency column in the index leaf block and forces the token_
offsets column to the overflow segment.

CREATE TABLE Docindex3
 (Token CHAR(20),
 Doc_id NUMBER,
 Token_frequency NUMBER,
 Token_offsets VARCHAR(512),
 CONSTRAINT Pk_docindex3 PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX TABLESPACE Ind_tbs INCLUDING Token_frequency

Key Cols | Non-key Cols | ROWID

Non-key Cols

Primary Key Index
Managing Index-Organized Tables 7-13

Example
OVERFLOW TABLESPACE Ovf_tbs;

Such vertical partitioning of a row between the index and data segments allows for

higher clustering of rows in the index. This results in better query performance for

the columns stored in the index. For example, if the token_offsets column is

infrequently accessed, then pushing this column out of the index results in better

clustering of index rows in the primary key B*-tree structure (Figure 7–3). This in

turn results in overall improved query performance. However, there is one

additional block access for columns stored in the overflow data segment, and this

can slow performance.

Storing Columns in the Overflow Segment
The INCLUDING option ensures that all columns after the specified including

column are stored in the overflow segment. If the including column specified is

such that corresponding index row size exceeds the specified threshold, then the

last non-key column to be included is determined according to the PCTTHRESHOLD
option.
7-14 Application Developer’s Guide - Fundamentals

Example
Figure 7–3 PCTTHRESHOLD versus INCLUDING Column Usage

Modifying Physical and Storage Attributes
You can use the ALTER TABLE command to modify physical and storage attributes

for both the index and overflow data segments as well as alter PCTTHRESHOLD and

INCLUDING column values. The following example sets the INITRANS of index

segment to 4, PCTTHRESHOLD to 20, and the INITRANS of the overflow data

segment to 6. The altered values are used for subsequent operations on the table.

ALTER TABLE Docindex INITRANS 4 PCTTHRESHOLD 20 OVERFLOW INITRANS 6;

For index-organized tables created without an overflow data segment, you can add

an overflow data segment using ALTER TABLE ADD OVERFLOW option. The

following example shows how to add an overflow segment to the docindex table.

ALTER TABLE Docindex ADD OVERFLOW;

DBMS 1 17 ROWID1
DBMS 2 2 20 45
Oracle 1 14 ROWID2
Oracle 2 31 ROWID3
...

3 7 8 9 ...
5 10 32 ...
4 16 21 ...
... ...

PCTTHRESHOLD option forces
token_offsets into overflow
segments for some rows

INCLUDING option forces
token_offsets into overflow
segment for all rows

DBMS 1 17 ROWID1
DBMS 2 2 ROWID3
Oracle 1 14 ROWID2
Oracle 2 31 ROWID4
...

3 7 8 9 ...
5 10 32 ...
20 45 ...
4 16 21 ...
... ...
Managing Index-Organized Tables 7-15

Example
Analyzing an Index-Organized Table
Index-organized tables are analyzed just like ordinary tables using the ANALYZE
command. The following example illustrates how you could use the ANALYZE
command to analyze the docindex table.

ANALYZE TABLE Docindex COMPUTE STATISTICS;

Using the ANALYZE command analyzes both the primary key index segment and

the overflow data segment, and computes logical as well as physical statistics for

the table. Also, you can determine how many rows have one or more chained

overflow row-pieces using the ANALYZE LIST CHAINED ROWS option. However, to

identify the chain rows, you must create a slightly different CHAINED_ROWS table

that includes primary key columns. With the logical rowid support added in

Oracle8i, Release 8.1.5, a separate CHAINED_ROWS table is no longer needed.

Loading, exporting/importing, replicating an Index-Organized Table
Data can be loaded into both non-partitioned and partitioned index-organized

tables using the ordinary or direct path with the SQL*Loader. The data can also be

exported or imported using the Export/Import utility. Index-organized tables can

also be replicated in a distributed database just like ordinary tables.

Partitioning an Index-Organized Table
You can partition index-organized tables by range of column values. However, to

create such partitioned index-organized tables the set of partitioning columns must be a
subset of primary key columns. By imposing this restriction, only a single partition

needs to be searched for to verify the uniqueness of the primary key during DML

operations. This preserves the partition independence property.

The following are key aspects of partitioned index-organized tables:

■ You must specify the ORGANIZATION INDEX clause to create an

index-organized table as part of table-level attributes. This property is implicitly

inherited by all partitions.

■ You must specify the OVERFLOW option as part of table-level attribute to create

an index-organized table with overflow data segment.

■ The OVERFLOW option results in the creation of overflow data segments, which

are themselves equi-partitioned with the primary key index segments. That is,

each partition has an index segment and an overflow data segment.
7-16 Application Developer’s Guide - Fundamentals

Example
■ As in ordinary partitioned tables, you can specify default values for physical

attributes at the table-level. These can be overridden for each partition (both for

index and overflow data segment).

■ The tablespace for index segment, if not specified for a partition, is set to the

table level default. If the table level default is not specified, then the default

tablespace for the user is used.

■ The default values for PCTTHRESHOLD and INCLUDING column can only be

specified at the table-level.

■ All the attributes that are specified before the OVERFLOW keyword are

applicable to primary index segments. All the attributes specified after the

OVERFLOW keyword are applicable to overflow data segments.

■ The tablespace for an overflow data segment, if not specified for a partition, is

set to the table level default. If the table-level default is not specified, then the

tablespace of the corresponding partition’s index segment is used.

The following example continues the example of the docindex table. It illustrates a

range partition on token values.

CREATE TABLE Docindex4
 (Token CHAR(20),
 Doc_id NUMBER,
 Token_frequency NUMBER,
 Token_offsets VARCHAR(512),
 CONSTRAINT Pk_docindex4 PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX INITRANS 4 INCLUDING Token_frequency
OVERFLOW INITRANS 6
 PARTITION BY RANGE(token)
 (PARTITION P1 VALUES LESS THAN (’j’)
TABLESPACE Ind_ts0 OVERFLOW TABLESPACE Ov_ts0,
 PARTITION P2 VALUES LESS THAN (’s’)
TABLESPACE Ind_ts1 OVERFLOW TABLESPACE Ov_ts1,
 PARTITION P3 VALUES LESS THAN (MAXVALUE)
TABLESPACE Ind_ts2 OVERFLOW TABLESPACE Ov_ts2);

This will result in creation of the table shown in Figure 7–4. The INCLUDING
column results in storing the token_offsets in the overflow data segment for

each partition.
Managing Index-Organized Tables 7-17

Example
Figure 7–4 Range-partitioned Index-organized Table with Overflow Segment

Support for partitioned indexes on index-organized tables is very similar to that for

an ordinary table. Local prefixed, local non-prefixed, and global prefixed

partitioned indexes are supported on index-organized tables. The only difference is

that these indexes store logical rowids instead of physical rowids.

All of the ALTER TABLE operations, except MERGE, are available for partitioned

index-organized tables. However, there are some differences in behavior with

respect to ordinary tables:

■ For ALTER TABLE MOVE partition operations, all indexes—local, global, and
non-partitioned—remain USABLE because the indexes contain logical rowids.

However, the guess stored in the logical rowid becomes invalid.

■ For SPLIT partition operations, all indexes or global index partitions remain

usable.

■ For ALTER TABLE EXCHANGE partition, the target table must be a compatible

index-organized table.

■ Users can use the ALTER TABLE ADD OVERFLOW command to add an

overflow segment and specify table-level default and partition-level physical

and storage attributes. This operation results in adding an overflow data

segment to each partition.

Primary key index on
(token, doc_id)

Overflow segment
holds token_offsets

Table docindex
range-partitioned
on token

token < 'j' token < 's' token < MAXVALU

ind_ts0 ind_ts1 ind_ts2

ov_ts0 ov_ts1 ov_ts2
7-18 Application Developer’s Guide - Fundamentals

Example
ALTER INDEX operations are very similar to those on ordinary tables. The only

difference is that operations that reconstruct the entire index—namely, ALTER
INDEX REBUILD and SPLIT_PARTITION —result in reconstructing the guess

stored as part of the logical rowid.

Query and DML operations on partitioned index-organized tables work the same as

on ordinary partitioned tables.

Key Compression
You enable key compression by using the COMPRESS clause when specifying

physical attributes for the index segment. In addition, the prefix length (as number

of columns) can be specified to identify how the key can be broken into a prefix and

a suffix. The valid range of values for prefix length are [1 , number of primary
key columns minus 1] .

CREATE TABLE Docindex5
 (Token CHAR(20),
 Doc_id NUMBER,
 Token_frequency NUMBER,
 Token_offsets VARCHAR(512),
 CONSTRAINT pk_docindex5 PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX TABLESPACE Ind_tbs COMPRESS 1 INCLUDING Token_frequency
OVERFLOW TABLESPACE Ovf_tbs;

Common prefixes of length 1 (that is, token column) will be compressed in the

primary key (token, doc_id) occurrences. For the list of primary key values

(‘DBMS’, 1), (‘DBMS’, 2), (‘Oracle’, 1), (‘Oracle’, 2), the repeated occurrences of

‘DBMS’ and ‘Oracle’ are compressed away.

If a prefix length is not specified, by default it is set to number of primary key
columns minus 1 . The compress option can be specified during creation of an

index-organized table or as part of moving the index-organized table using ALTER
TABLE MOVE option. For example, you can disable compression as follows:

ALTER TABLE Docindex5 MOVE NOCOMPRESS;

Similarly, the indexes for ordinary tables and index-organized tables can be

compressed using the COMPRESS option.

Key Compression for Partitioned Index-Organized Tables Key compression is also

supported for partitioned index-organized tables. The compression clause must be

specified as part of table-level defaults. For each partition, compression can be
Managing Index-Organized Tables 7-19

Example
enabled or disabled. However, the prefix length cannot be changed at partition

level.

CREATE TABLE Docindex6
 (Token CHAR(20),
 Doc_id NUMBER,
 Token_frequency NUMBER,
 Token_offsets VARCHAR(512),
 CONSTRAINT Pk_docindex6 PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX INITRANS 4 COMPRESS 1 INCLUDING Token_frequency
OVERFLOW INITRANS 6
 PARTITION BY RANGE(Token)
 (PARTITION P1 VALUES LESS THAN (’j’)
TABLESPACE Ind_ts0 OVERFLOW TABLESPACE Ov_ts0,
 PARTITION P2 VALUES LESS THAN (’s’)
TABLESPACE Ind_ts1 NOCOMPRESS OVERFLOW TABLESPACE Ov_ts1,
 PARTITION P3 VALUES LESS THAN (MAXVALUE)
TABLESPACE Ind_ts2 OVERFLOW TABLESPACE Ov_ts2
);

All partitions inherit the table-level default for prefix length. Partitions P1 and P3

are created with key-compression enabled. For partition P2, the compression is

disabled by the partition level NOCOMPRESS option.

For ALTER TABLE MOVE and SPLIT operations, the COMRPESS option can be

altered. The following example rebuilds the partition with key compression

enabled.

ALTER TABLE Docindex6 MOVE PARTITION P2 COMPRESS;

Rebuilding an Index-Organized Table
A new SQL command, ALTER TABLE MOVE, allows you to move, that is, rebuild the

table. This should be used when the B*-tree structure containing an index-organized

table gets fragmented due to a large number of inserts, updates, or deletes. The

MOVE option rebuilds the primary key B*-tree index.

By default, the overflow data segment is not rebuilt, except when:

■ The OVERFLOW clause is explicitly specified,

■ The PCTHRESHOLD and/or INCLUDING column value are altered as part of

the MOVE statement.

■ Any LOBs are moved explicitly
7-20 Application Developer’s Guide - Fundamentals

Example
By default, LOB columns related to index and data segments are not rebuilt, except

when the LOB columns are explicitly specified as part of the MOVE statement. The

following example rebuilds the B*-tree index containing the table data after setting

the INITRANS to 6 for index blocks.

ALTER TABLE docindex MOVE INITRANS 6;

The following example rebuilds both the primary key index and overflow data

segment.

ALTER TABLE docindex MOVE TABLESPACE Ovf_tbs OVERFLOW TABLESPACE ov_ts0;

By default, during the move, the table is not available for other operations.

However, you can move an index-organized table using the ONLINE option. The

following example allows the table to be available for DML and query operations

during the actual move operation. This feature makes the index-organized table

suitable for applications requiring 24X7 availability.

ALTER TABLE Docindex MOVE ONLINE;

The MOVE option is also available for ordinary tables. However, ONLINE move is

supported only for index-organized tables which do not have an overflow segment.

Caution: You may need to set your COMPATIBLE initialization

parameter to ’8.1.3.0’ or higher to get the following to work:
Managing Index-Organized Tables 7-21

Example
7-22 Application Developer’s Guide - Fundamentals

Processing SQL Statem
8

Processing SQL Statements

This chapter describes how Oracle processes Structured Query Language (SQL)

statements. Topics include the following:

■ SQL Statement Execution

■ Controlling Transactions

■ Read-Only Transactions

■ Using Cursors

■ Explicit Data Locking

■ Explicitly Acquiring Row Locks

■ SERIALIZABLE and ROW_LOCKING Parameters

■ User Locks

■ Concurrency Control Using Serializable Transactions

■ Autonomous Transactions

Although some Oracle tools and applications simplify or mask the use of SQL, all

database operations are performed using SQL. Any other data access method

would circumvent the security built into Oracle and potentially compromise data

security and integrity.
ents 8-1

SQL Statement Execution
SQL Statement Execution
Table 8–1 outlines the stages commonly used to process and execute a SQL

statement. In some cases, these steps might be executed in a slightly different order.

For example, the DEFINE stage could occur just before the FETCH stage, depending

on how your code is written.

For many Oracle tools, several of the stages are performed automatically. Most

users do not need to be concerned with, or aware of, this level of detail. However,

you might find this information useful when writing Oracle applications.

FIPS Flagging
The Federal Information Processing Standard for SQL (FIPS 127-2) requires a way to

identify SQL statements that use vendor-supplied extensions. Oracle provides a

FIPS flagger to help you write portable applications.

When FIPS flagging is active, your SQL statements are checked to see whether they

include extensions that go beyond the ANSI/ISO SQL92 standard. If any

non-standard constructs are found, then the Oracle Server flags them as errors and

displays the violating syntax.

The FIPS flagging feature supports flagging through interactive SQL statements

submitted using Enterprise Manager or SQL*Plus. The Oracle Precompilers and

SQL*Module also support FIPS flagging of embedded and module language SQL.

When flagging is on and non-standard SQL is encountered, the following message

is returned:

ORA-00097: Use of Oracle SQL feature not in SQL92 level Level

Where level can be either ENTRY, INTERMEDIATE, or FULL.

See Also: Refer to Oracle8i Concepts for a description of each stage

of SQL statement processing for each type of SQL statement.
8-2 Application Developer’s Guide - Fundamentals

SQL Statement Execution
Figure 8–1 The Stages in Processing a SQL Statement

yes

yes

bind?reparse? no

OPEN

PARSE

query?

EXECUTE

PARALLELIZE

query?

execute
others?

CLOSE

yes

no

no

no

no

yes yes

no
no yes

describe?

DEFINE

more?

more?

BIND

more?

FETCH

more?no yes

no yes

yes

yes

no

DESCRIBE
Processing SQL Statements 8-3

Controlling Transactions
Controlling Transactions
In general, only application designers using the programming interfaces to Oracle

are concerned with which types of actions should be grouped together as one

transaction. Transactions must be defined properly so work is accomplished in

logical units and data is kept consistent. A transaction should consist of all of the

necessary parts for one logical unit of work, no more and no less. Data in all

referenced tables should be in a consistent state before the transaction begins and

after it ends. Transactions should consist of only the SQL statements or PL/SQL

blocks that comprise one consistent change to the data.

A transfer of funds between two accounts (the transaction or logical unit of work),

for example, should include the debit to one account (one SQL statement) and the

credit to another account (one SQL statement). Both actions should either fail or

succeed together as a unit of work; the credit should not be committed without the

debit. Other non-related actions, such as a new deposit to one account, should not

be included in the transfer of funds transaction.

Improving Performance
In addition to determining which types of actions form a transaction, when you

design an application, you must also determine if you can take any additional

measures to improve performance. You should consider the following performance

enhancements when designing and writing your application. Unless otherwise

noted, each of these features is described in Oracle8i Concepts.

■ Use the BEGIN_DISCRETE_TRANSACTION procedure to improve the

performance of short, non-distributed transactions.

■ Use the SET TRANSACTION command with the USE ROLLBACK SEGMENT
parameter to explicitly assign a transaction to an appropriate rollback segment.

This can eliminate the need to dynamically allocate additional extents, which

can reduce overall system performance.

■ Use the SET TRANSACTION command with the ISOLATION LEVEL set to

SERIALIZABLE to get ANSI/ISO serializable transactions.

■ Establish standards for writing SQL statements so that you can take advantage

of shared SQL areas. Oracle recognizes identical SQL statements and allows

See Also:

■ "Serializable Transaction Interaction" on page 8-26

■ Oracle8i Concepts.
8-4 Application Developer’s Guide - Fundamentals

Controlling Transactions
them to share memory areas. This reduces memory storage usage on the

database server, thereby increasing system throughput.

■ Use the ANALYZE command to collect statistics that can be used by Oracle to

implement a cost-based approach to SQL statement optimization. You can

supply additional "hints" to the optimizer as needed.

■ Call the DBMS_APPLICATION_INFO.SET_ACTION procedure before beginning

a transaction to register and name a transaction for later use when measuring

performance across an application. You should specify what type of activity a

transaction performs so that the system tuners can later see which transactions

are taking up the most system resources.

■ Increase user productivity and query efficiency by including user-written

PL/SQL functions in SQL expressions as described in "Calling Stored Functions

from SQL Expressions".

■ Create explicit cursors when writing a PL/SQL application.

■ When writing precompiler programs, increasing the number of cursors using

MAX_OPEN_CURSORS can often reduce the frequency of parsing and improve

performance.

Committing a Transaction
To commit a transaction, use the COMMIT command. The following two statements

are equivalent and commit the current transaction:

COMMIT WORK;
COMMIT;

The COMMIT command allows you to include the COMMENT parameter along with a

comment (less than 50 characters) that provides information about the transaction

being committed. This option is useful for including information about the origin of

the transaction when you commit distributed transactions:

COMMIT COMMENT ’Dallas/Accts_pay/Trans_type 10B’;

See Also: "Using Cursors" on page 8-9
Processing SQL Statements 8-5

Controlling Transactions
Rolling Back a Transaction
To roll back an entire transaction or a part of a transaction (that is, to a savepoint),

use the ROLLBACK command. For example, either of the following statements rolls

back the entire current transaction:

ROLLBACK WORK;
ROLLBACK;

The WORK option of the ROLLBACK command has no function.

To roll back to a savepoint defined in the current transaction, the TO option of the

ROLLBACKcommand must be used. For example, either of the following statements

rolls back the current transaction to the savepoint named POINT1:

SAVEPOINT Point1;
...
ROLLBACK TO SAVEPOINT Point1;
ROLLBACK TO Point1;

Defining a Transaction Savepoint
To define a savepoint in a transaction, use the SAVEPOINT command. The following

statement creates the savepoint named ADD_EMP1 in the current transaction:

SAVEPOINT Add_emp1;

If you create a second savepoint with the same identifier as an earlier savepoint,

then the earlier savepoint is erased. After a savepoint has been created, you can roll

back to the savepoint.

There is no limit on the number of active savepoints per session. An active

savepoint is one that has been specified since the last commit or rollback.

An Example of COMMIT, SAVEPOINT, and ROLLBACK
The following series of SQL statements illustrates the use of COMMIT, SAVEPOINT,
and ROLLBACK statements within a transaction:

See Also: For additional information about committing in-doubt

distributed transactions, see Oracle8 Distributed Database Systems.

See Also: For additional information about rolling back in-doubt

distributed transactions, see Oracle8 Distributed Database Systems.
8-6 Application Developer’s Guide - Fundamentals

Controlling Transactions
Privileges Required for Transaction Management
No privileges are required to control your own transactions; any user can issue a

COMMIT, ROLLBACK, or SAVEPOINT statement within a transaction.

SQL Statement Results

SAVEPOINT a; First savepoint of this transaction

DELETE...; First DML statement of this transaction

SAVEPOINT b; Second savepoint of this transaction

INSERT INTO...; Second DML statement of this transaction

SAVEPOINT c; Third savepoint of this transaction

UPDATE...; Third DML statement of this transaction.

ROLLBACK TO c; UPDATE statement is rolled back, savepoint C remains
defined

ROLLBACK TO b; INSERT statement is rolled back, savepoint C is lost,
savepoint B remains defined

ROLLBACK TO c; ORA-01086 error; savepoint C no longer defined

INSERT INTO...; New DML statement in this transaction

COMMIT; Commits all actions performed by the first DML statement
(the DELETE statement) and the last DML statement (the
second INSERT statement)

All other statements (the second and the third statements) of
the transaction had been rolled back before the COMMIT. The
savepoint A is no longer active.
Processing SQL Statements 8-7

Read-Only Transactions
Read-Only Transactions
By default, the consistency model for Oracle guarantees statement-level read

consistency, but does not guarantee transaction-level read consistency (repeatable

reads). If you want transaction-level read consistency, and if your transaction does

not require updates, then you can specify a read-only transaction. After indicating

that your transaction is read-only, you can execute as many queries as you like

against any database table, knowing that the results of each query in the read-only

transaction are consistent with respect to a single point in time.

A read-only transaction does not acquire any additional data locks to provide

transaction-level read consistency. The multi-version consistency model used for

statement-level read consistency is used to provide transaction-level read

consistency; all queries return information with respect to the system control

number (SCN) determined when the read-only transaction begins. Because no data

locks are acquired, other transactions can query and update data being queried

concurrently by a read-only transaction.

Changed data blocks queried by a read-only transaction are reconstructed using

data from rollback segments. Therefore, long running read-only transactions

sometimes receive a "snapshot too old" error (ORA-01555). Create more, or larger,

rollback segments to avoid this. Alternatively, you could issue long-running queries

when online transaction processing is at a minimum, or you could obtain a shared

lock on the table you were querying, prohibiting any other modifications during the

transaction.

A read-only transaction is started with a SET TRANSACTION statement that

includes the READ ONLY option. For example:

SET TRANSACTION READ ONLY;

The SET TRANSACTION statement must be the first statement of a new transaction;

if any DML statements (including queries) or other non-DDL statements (such as

SET ROLE) precede a SET TRANSACTION READ ONLY statement, then an error is

returned. Once a SET TRANSACTION READ ONLY statement successfully executes,

only SELECT (without a FOR UPDATEclause), COMMIT, ROLLBACK, or non-DML

statements (such as SET ROLE, ALTER SYSTEM, LOCK TABLE) are allowed in the

transaction. Otherwise, an error is returned. A COMMIT, ROLLBACK, or DDL

statement terminates the read-only transaction (a DDL statement causes an implicit

commit of the read-only transaction and commits in its own transaction).
8-8 Application Developer’s Guide - Fundamentals

Using Cursors
Using Cursors
PL/SQL implicitly declares a cursor for all SQL data manipulation statements,

including queries that return only one row. For queries that return more than one

row, you can explicitly declare a cursor to process the rows individually.

A cursor is a handle to a specific private SQL area. In other words, a cursor can be

thought of as a name for a specific private SQL area. A PL/SQL cursor variable
enables the retrieval of multiple rows from a stored procedure. Cursor variables

allow you to pass cursors as parameters in your 3GL application. Cursor variables

are described in PL/SQL User’s Guide and Reference.

Although most Oracle users rely on the automatic cursor handling of the Oracle

utilities, the programmatic interfaces offer application designers more control over

cursors. In application development, a cursor is a named resource available to a

program, which can be specifically used for parsing SQL statements embedded

within the application.

Declaring and Opening Cursors
There is no absolute limit to the total number of cursors one session can have open

at one time, subject to two constraints:

■ Each cursor requires virtual memory, so a session’s total number of cursors is

limited by the memory available to that process.

■ A system-wide limit of cursors per session is set by the initialization parameter

named OPEN_CURSORS found in the parameter file (such as INIT .ORA).

Explicitly creating cursors for precompiler programs can offer some advantages in

tuning those applications. For example, increasing the number of cursors can often

reduce the frequency of parsing and improve performance. If you know how many

cursors may be required at a given time, then you can make sure you can open that

many simultaneously.

Using a Cursor to Re-Execute Statements
After each stage of execution, the cursor retains enough information about the SQL

statement to re-execute the statement without starting over, as long as no other SQL

statement has been associated with that cursor. This is illustrated in Figure 8–1.

Notice that the statement can be re-executed without including the parse stage.

See Also: Parameters are described in Oracle8i Reference.
Processing SQL Statements 8-9

Using Cursors
By opening several cursors, the parsed representation of several SQL statements can

be saved. Repeated execution of the same SQL statements can thus begin at the

describe, define, bind, or execute step, saving the repeated cost of opening cursors

and parsing.

Closing Cursors
Closing a cursor means that the information currently in the associated private area

is lost and its memory is deallocated. Once a cursor is opened, it is not closed until

one of the following events occurs:

■ The user program terminates its connection to the server.

■ If the user program is an OCI program or precompiler application, then it

explicitly closes any open cursor during the execution of that program.

(However, when this program terminates, any cursors remaining open are

implicitly closed.)

Cancelling Cursors
Cancelling a cursor frees resources from the current fetch.The information currently

in the associated private area is lost but the cursor remains open, parsed, and

associated with its bind variables.

Note: You cannot cancel cursors using Pro*C or PL/SQL.

See Also: For more information about cancelling cursors, see

Oracle Call Interface Programmer’s Guide.
8-10 Application Developer’s Guide - Fundamentals

Explicit Data Locking
Explicit Data Locking
Oracle always performs necessary locking to ensure data concurrency, integrity, and

statement-level read consistency. However, options are available to override the

default locking mechanisms. Situations where it would be advantageous to override

the default locking of Oracle include the following:

■ An application desires transaction-level read consistency or "repeatable

reads"—transactions must query a consistent set of data for the duration of the

transaction, knowing that the data has not been changed by any other

transactions of the system. Transaction-level read consistency can be achieved

by using explicit locking, read-only transactions, serializable transactions, or

overriding default locking for the system.

■ An application requires a transaction to have exclusive access to a resource. To

proceed with its statements, the transaction with exclusive access to a resource

does not have to wait for other transactions to complete.

The automatic locking mechanisms can be overridden at two different levels:

The following sections describe each option available for overriding the default

locking of Oracle. The initialization parameter DML_LOCKS determines the

maximum number of DML locks allowed.

The default value should be sufficient; however, if you are using additional manual

locks, then you may need to increase this value.

transaction level Transactions including the following SQL statements override

Oracle’s default locking: the LOCK TABLE command, the

SELECT command including the FOR UPDATE clause, and the

SET TRANSACTION command with the READ ONLY or

ISOLATION LEVEL SERIALIZABLE options. Locks acquired

by these statements are released after the transaction is

committed or rolled back.

system level An instance can be started with non-default locking by

adjusting the initialization parameters SERIALIZABLE and

ROW_LOCKING.

See Also: See the Oracle8i Reference for a discussion of

parameters.
Processing SQL Statements 8-11

Explicit Data Locking
Explicitly Acquiring Table Locks
A transaction explicitly acquires the specified table locks when a LOCK TABLE
statement is executed. A LOCK TABLE statement manually overrides default

locking. When a LOCK TABLE statement is issued on a view, the underlying base

tables are locked. The following statement acquires exclusive table locks for the

EMP_TAB and DEPT_TAB tables on behalf of the containing transaction:

LOCK TABLE Emp_tab, Dept_tab
 IN EXCLUSIVE MODE NOWAIT;

You can specify several tables or views to lock in the same mode; however, only a

single lock mode can be specified per LOCK TABLE statement.

You can also indicate if you do or do not want to wait to acquire the lock. If you

specify the NOWAIT option, then you only acquire the table lock if it is immediately

available. Otherwise an error is returned to notify that the lock is not available at

this time. In this case, you can attempt to lock the resource at a later time. If NOWAIT
is omitted, then the transaction does not proceed until the requested table lock is

acquired. If the wait for a table lock is excessive, then you might want to cancel the

lock operation and retry at a later time; you can code this logic into your

applications.

Caution: If you override the default locking of Oracle at any
level, then be sure that the overriding locking procedures operate
correctly: Ensure that data integrity is guaranteed, data
concurrency is acceptable, and deadlocks are not possible or are
appropriately handled.

Note: When a table is locked, all rows of the table are locked. No

other user can modify the table.
8-12 Application Developer’s Guide - Fundamentals

Explicit Data Locking
The following paragraphs provide guidance on when it can be advantageous to

acquire each type of table lock using the LOCK TABLE command.

ROW SHARE and ROW EXCLUSIVE
LOCK TABLE Emp_tab IN ROW SHARE MODE;
LOCK TABLE Emp_tab IN ROW EXCLUSIVE MODE;

Row share and row exclusive table locks offer the highest degree of concurrency.

Conditions that possibly warrant the explicit acquisition of a row share or row

exclusive table lock include the following:

■ Your transaction needs to prevent another transaction from acquiring an

intervening share, share row, or exclusive table lock for a table before the table

can be updated in your transaction. If another transaction acquires an

intervening share, share row, or exclusive table lock, then no other transactions

can update the table until the locking transaction commits or rolls back.

■ Your transaction needs to prevent a table from being altered or dropped before

the table can be modified later in your transaction.

SHARE
LOCK TABLE Emp_tab IN SHARE MODE;

Share table locks are rather restrictive data locks. The following conditions could

warrant the explicit acquisition of a share table lock:

■ Your transaction only queries the table and requires a consistent set of the

table’s data for the duration of the transaction (requires transaction-level read

consistency for the locked table).

Note: A distributed transaction waiting for a table lock can

time-out waiting for the requested lock if the elapsed amount of

time reaches the interval set by the initialization parameter

DISTRIBUTED_LOCK_TIMEOUT. Because no data has been

modified, no actions are necessary as a result of the time-out. Your

application should proceed as if a deadlock has been encountered.

For more information on distributed transactions, refer to Oracle8
Distributed Database Systems.
Processing SQL Statements 8-13

Explicit Data Locking
■ It is acceptable if other transactions attempting to update the locked table

concurrently must wait until all transactions with the share table locks commit

or roll back.

■ It is acceptable to allow other transactions to acquire concurrent share table

locks on the same table, also allowing them the option of transaction-level read

consistency.

For example, assume that two tables, EMP_TAB and BUDGET_TAB, require a

consistent set of data in a third table, DEPT_TAB. For a given department number,

you want to update the information in both of these tables, and ensure that no new

members are added to the department between these two transactions.

Although this scenario is quite rare, it can be accommodated by locking the DEPT_
TAB table in SHARE MODE, as shown in the following example. Because the DEPT_
TAB table is not highly volatile, few, if any, users would need to update it while it

was locked for the updates to EMP_TAB and BUDGET_TAB.

Caution: Your transaction may or may not update the table later
in the same transaction. However, if multiple transactions
concurrently hold share table locks for the same table, no
transaction can update the table (even if row locks are held as the
result of a SELECT... FOR UPDATE statement). Therefore, if
concurrent share table locks on the same table are common,
updates cannot proceed and deadlocks are common. In this case,
use share row exclusive or exclusive table locks instead.
8-14 Application Developer’s Guide - Fundamentals

Explicit Data Locking
LOCK TABLE Dept_tab IN SHARE MODE;
UPDATE Emp_tab
 SET sal = sal * 1.1
 WHERE deptno IN
 (SELECT deptno FROM Dept_tab WHERE loc = ’DALLAS’);
UPDATE Budget_tab
 SET Totsal = Totsal * 1.1
 WHERE Deptno IN
 (SELECT Deptno FROM Dept_tab WHERE Loc = ’DALLAS’);

COMMIT; /* This releases the lock */

SHARE ROW EXCLUSIVE
LOCK TABLE Emp_tab IN SHARE ROW EXCLUSIVE MODE;

Conditions that warrant the explicit acquisition of a share row exclusive table lock

include the following:

■ Your transaction requires both transaction-level read consistency for the

specified table and the ability to update the locked table.

Note: You may need to set up data structures similar to the

following for certain examples to work:

CREATE TABLE dept_tab(
 deptno NUMBER(2) NOT NULL,
 dname VARCHAR2(14),
 loc VARCHAR2(13));

CREATE TABLE emp_tab (
 empno NUMBER(4) NOT NULL,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2));

CREATE TABLE Budget_tab (
 totsal NUMBER(7,2),
 deptno NUMBER(2) NOT NULL);
Processing SQL Statements 8-15

Explicit Data Locking
■ You are not concerned about explicit row locks being obtained (via SELECT...
FOR UPDATE) by other transactions, which may or may not make UPDATE and

INSERT statements in the locking transaction wait to update the table

(deadlocks might be observed).

■ You only want a single transaction to have the above behavior.

EXCLUSIVE
LOCK TABLE Emp_tab IN EXCLUSIVE MODE;

Conditions that warrant the explicit acquisition of an exclusive table lock include

the following:

■ Your transaction requires immediate update access to the locked table.

Therefore, if your transaction holds an exclusive table lock, then other

transactions cannot lock specific rows in the locked table.

■ Your transaction also observes transaction-level read consistency for the locked

table until the transaction is committed or rolled back.

■ You are not concerned about low levels of data concurrency, making

transactions that request exclusive table locks wait in line to update the table

sequentially.

Privileges Required
You can automatically acquire any type of table lock on tables in your schema;

however, to acquire a table lock on a table in another schema, you must have the

LOCK ANY TABLE system privilege or any object privilege (for example, SELECT or

UPDATE) for the table.
8-16 Application Developer’s Guide - Fundamentals

Explicitly Acquiring Row Locks
Explicitly Acquiring Row Locks
You can override default locking with a SELECT statement that includes the FOR
UPDATE clause. SELECT... FOR UPDATE is used to acquire exclusive row locks for

selected rows (as an UPDATE statement does) in anticipation of actually updating

the selected rows.

You can use a SELECT... FOR UPDATE statement to lock a row without actually

changing it. For example, several triggers in Chapter 13, "Using Triggers", show

how to implement referential integrity. In the EMP_DEPT_CHECK trigger (see

"Foreign Key Trigger for Child Table"), the row that contains the referenced parent

key value is locked to guarantee that it remains for the duration of the transaction; if

the parent key is updated or deleted, referential integrity would be violated.

SELECT... FOR UPDATEstatements are often used by interactive programs that allow

a user to modify fields of one or more specific rows (which might take some time);

row locks on the rows are acquired so that only a single interactive program user is

updating the rows at any given time.

If a SELECT... FOR UPDATE statement is used when defining a cursor, then the rows

in the return set are locked before the first fetch, when the cursor is opened; rows

are not individually locked as they are fetched from the cursor. Locks are only

released when the transaction that opened the cursor is committed or rolled back;

locks are not released when a cursor is closed.

Each row in the return set of a SELECT... FOR UPDATE statement is locked

individually; the SELECT... FOR UPDATE statement waits until the other transaction

releases the conflicting row lock. Therefore, if a SELECT... FOR UPDATE statement

locks many rows in a table, and if the table experiences reasonable update activity,

then it would most likely improve performance if you instead acquired an exclusive

table lock.

When acquiring row locks with SELECT... FOR UPDATE, you can indicate if you do

or do not want to wait to acquire the lock. If you specify the NOWAIT option, then

you only acquire the row lock if it is immediately possible. Otherwise, an error is

returned to notify you that the lock is not possible at this time. In this case, you can

attempt to lock the row later.

If NOWAIT is omitted, then the transaction does not proceed until the requested row

lock is acquired. If the wait for a row lock is excessive, then users might want to

cancel the lock operation and retry later; you can code such logic into your

applications.

As described on "Explicitly Acquiring Table Locks" on page 8-12, a distributed

transaction waiting for a row lock can time-out waiting for the requested lock if the
Processing SQL Statements 8-17

Explicitly Acquiring Row Locks
elapsed amount of time reaches the interval set by the initialization parameter

DISTRIBUTED_LOCK_TIMEOUT.
8-18 Application Developer’s Guide - Fundamentals

SERIALIZABLE and ROW_LOCKING Parameters
SERIALIZABLE and ROW_LOCKING Parameters
Two factors determine how an instance handles locking: the SERIALIZABLE option

of the SET TRANSACTION or ALTER SESSION command and the ROW_LOCKING
initialization parameter. By default, SERIALIZABLE is set to FALSE and ROW_
LOCKING is set to ALWAYS.

In almost every case, these parameters should not be altered. They are provided for

sites that must run in ANSI/ISO compatible mode, or that want to use applications

written to run with earlier versions of Oracle. Only these sites should consider

altering these parameters, as there is a significant performance degradation caused

by using other than the defaults.

The settings for these parameters should be changed only when an instance is shut

down. If multiple instances are accessing a single database, then all instances

should use the same setting for these parameters.

Summary of Non-Default Locking Options
Three combinations of settings for SERIALIZABLE and ROW_LOCKING, other than

the default settings, are available to change the way locking occurs for transactions.

Table 8–1 summarizes the non-default settings and why you might choose to

execute your transactions in a non-default way.

Table 8–2 illustrates the difference in locking behavior resulting from the three

possible settings of the SERIALIZABLE option and ROW_LOCKING initialization

parameter, as shown in Table 8–1.

See Also: For detailed explanations of these parameters, see

Oracle8i Reference.

Table 8–1 Summary of Non-Default Locking Options

Case Description SERIALIZABLE ROW_LOCKING

 1 Equivalent to Version 5 and earlier Oracle
releases (no concurrent inserts, updates, or
deletes in a table)

Disabled
(default)

INTENT

 2 ANSI compatible Enabled ALWAYS

 3 ANSI compatible, with table-level locking (no
concurrent inserts, updates, or deletes in a
table)

Enabled INTENT
Processing SQL Statements 8-19

SERIALIZABLE and ROW_LOCKING Parameters
Table 8–2 Non-default Locking Behavior

STATEMENT CASE 1 CASE 2 CASE 3

row table row table row table

SELECT - - - S - S

INSERT X SRX X RX X SRX

UPDATE X SRX X SRX X SRX

DELETE X SRX X SRX X SRX

SELECT...FOR UPDATE X RS X S X S

LOCK TABLE... IN..

ROW SHARE MODE RS RS RS RS RS RS

ROW EXCLUSIVE MODE RX RX RX RX RX RX

SHARE MODE S S S S S S

SHARE ROW EXCLUSIVE MODE SRX SRX SRX SRX SRX SRX

EXCLUSIVE MODE X X X X X X

DDL statements - X - X - X
8-20 Application Developer’s Guide - Fundamentals

User Locks
User Locks

Creating User Locks
You can use Oracle Lock Management services for your applications. It is possible

to request a lock of a specific mode, give it a unique name recognizable in another

procedure in the same or another instance, change the lock mode, and release it.

Because a reserved user lock is the same as an Oracle lock, it has all the

functionality of an Oracle lock, such as deadlock detection. Be certain that any user

locks used in distributed transactions are released upon COMMIT, or an undetected

deadlock may occur.

Sample User Locks
Some uses of user locks are:

■ Providing exclusive access to a device, such as a terminal

■ Providing application-level enforcement of read locks

■ Detect when a lock is released and cleanup after the application

■ Synchronizing applications and enforce sequential processing

The following Pro*COBOL precompiler example shows how locks can be used to

ensure that there are no conflicts when multiple people need to access a single

device.

* Print Check *
* Any cashier may issue a refund to a customer returning goods. *
* Refunds under $50 are given in cash, above that by check. *
* This code prints the check. The one printer is opened by all *
* the cashiers to avoid the overhead of opening and closing it *
* for every check. This means that lines of output from multiple*
* cashiers could become interleaved if we don’t ensure exclusive*
* access to the printer. The DBMS_LOCK package is used to *
* ensure exclusive access. *

CHECK-PRINT
*
* Get the lock "handle" for the printer lock.

See Also: Oracle8i Supplied Packages Reference has detailed

information on the DBMS_LOCK package.
Processing SQL Statements 8-21

User Locks
 MOVE "CHECKPRINT" TO LOCKNAME-ARR.
 MOVE 10 TO LOCKNAME-LEN.
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:LOCKNAME, :LOCKHANDLE);
 END; END-EXEC.
*
* Lock the printer in exclusive mode (default mode).
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE);
 END; END-EXEC.
* We now have exclusive use of the printer, print the check.

 ...

*
* Unlock the printer so other people can use it
*
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE);

 END; END-EXEC.

Viewing and Monitoring Locks

Oracle provides two facilities to display locking information for ongoing

transactions within an instance:

Enterprise Manager

Monitors

(Lock and Latch Monitors)

The Monitor feature of Enterprise Manager provides

two monitors for displaying lock information of an

instance. Refer to Oracle Enterprise Manager
Administrator’s Guide for complete information about

the Enterprise Manager monitors.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple character

lock wait-for graph in tree structured fashion. Using

any ad hoc SQL tool (such as SQL*Plus) to execute the

script, it prints the sessions in the system that are

waiting for locks and the corresponding blocking

locks. The location of this script file is operating

system dependent. (You must have run the

CATBLOCK.SQL script before using UTLLOCKT.SQL.)
8-22 Application Developer’s Guide - Fundamentals

Concurrency Control Using Serializable Transactions
Concurrency Control Using Serializable Transactions
By default, the Oracle Server permits concurrently executing transactions to modify,

add, or delete rows in the same table, and in the same data block. Changes made by

one transaction are not seen by another concurrent transaction until the transaction

that made the changes commits.

If a transaction A attempts to update or delete a row that has been locked by

another transaction B (by way of a DML or SELECT... FOR UPDATE statement), then

A’s DML command blocks until B commits or rolls back. Once B commits,

transaction A can see changes that B has made to the database.

For most applications, this concurrency model is the appropriate one. In some cases,

however, it is advantageous to allow transactions to be serializable. Serializable

transactions must execute in such a way that they appear to be executing one at a

time (serially), rather than concurrently. In other words, concurrent transactions

executing in serialized mode are only permitted to make database changes that they

could have made if the transactions were scheduled to run one after the other.

The ANSI/ISO SQL standard SQL92 defines three possible kinds of transaction

interaction, and four levels of isolation that provide increasing protection against

these interactions. These interactions and isolation levels are summarized in

Table 8–3.

The behavior of Oracle with respect to these isolation levels is summarized below:

Table 8–3 ANSI Isolation Levels

Isolation Level Dirty Read (1) Non-Repeatable Read (2) Phantom Read (3)

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible

REPEATABLE READ Not possible Not possible Possible

SERIALIZABLE Not possible Not possible Not possible

Notes: (1) A transaction can read uncommitted data changed by another
transaction.

(2) A transaction re-read data committed by another transaction
and sees the new data.

(3) A transaction can re-execute a query, and discover new rows
inserted by another committed transaction.
Processing SQL Statements 8-23

Concurrency Control Using Serializable Transactions
READ UNCOMMITTED Oracle never permits "dirty reads." This is not required for

high throughput with Oracle.

READ COMMITTED Oracle meets the READ COMMITTED isolation standard.

This is the default mode for all Oracle applications. Note

that because an Oracle query only sees data that was

committed at the beginning of the query (the snapshot

time), Oracle offers more consistency than actually

required by the ANSI/ISO SQL92 standards for READ
COMMITTED isolation.

REPEATABLE READ Oracle does not support this isolation level, except as

provided by SERIALIZABLE .

SERIALIZABLE You can set this isolation level using the SET
TRANSACTION command or the ALTER SESSION
command, as described on.
8-24 Application Developer’s Guide - Fundamentals

Concurrency Control Using Serializable Transactions
Figure 8–2 Time Line for Two Transactions

TRANSACTION A
(arbitrary)

begin work
update row 2
in block 1

Issue update
"too recent" for B
to see

TIME

TRANSACTION B
(serializable)

SET TRANSACTION
ISOLATION LEVEL
SERIALIZABLE
read row 1 in block 1

Change other row in
same block, see own
changes

update row 1 in block 1
read updated row 1 in
block 1

insert row 4
Create possible
"phantom" row

Uncommitted changes
invisible

read old row 2 in block 1
search for row 4
(notfound)

commit
Make changes visible
to transactions that
begin later

Make changes
after A commits update row 3 in block 1

B can see its own
changes but not the
committed changes of
transaction A.

re-read updated row 1
in block 1
search for row 4 (not found)
read old row 2 in block 1

Failure on attempt to
update row updated
& committed since
transaction B began

update row 2 in block 1
FAILS; rollback and retry
Processing SQL Statements 8-25

Concurrency Control Using Serializable Transactions
Serializable Transaction Interaction
Figure 8–3 on page 8-28 shows how a serializable transaction (Transaction B)

interacts with another transaction (A, which can be either SERIALIZABLE or READ
COMMITTED).

When a serializable transaction fails with an ORA-08177 error ("cannot serialize

access"), the application can take any of several actions:

■ Commit the work executed to that point

■ Execute additional, different, statements, perhaps after rolling back to a prior

savepoint in the transaction

■ Roll back the entire transaction and try it again

Oracle stores control information in each data block to manage access by concurrent

transactions. To use the SERIALIZABLE isolation level, you must use the

INITRANS clause of the CREATE TABLE or ALTER TABLE command to set aside

storage for this control information. To use serializable mode, INITRANS must be

set to at least 3.

Setting the Isolation Level
You can change the isolation level of a transaction using the ISOLATION LEVEL
clause of the SET TRANSACTION command. The SET TRANSACTION command

must be the first command issued in a transaction. If it is not, then the following

error is issued:

ORA-01453: SET TRANSACTION must be first statement of transaction

Use the ALTER SESSION command to set the transaction isolation level on a

session-wide basis.

The INITRANS Parameter
Oracle stores control information in each data block to manage access by concurrent

transactions. Therefore, if you set the transaction isolation level to serializable, then

you must use the ALTER TABLE command to set INITRANS to at least 3. This

parameter causes Oracle to allocate sufficient storage in each block to record the

history of recent transactions that accessed the block. Higher values should be used

for tables that will undergo many transactions updating the same blocks.

See Also: Oracle8i Reference for the complete syntax of the SET
TRANSACTION and ALTER SESSION commands.
8-26 Application Developer’s Guide - Fundamentals

Concurrency Control Using Serializable Transactions
Referential Integrity and Serializable Transactions
Because Oracle does not use read locks, even in SERIALIZABLE transactions, data

read by one transaction can be overwritten by another. Transactions that perform

database consistency checks at the application level should not assume that the data

they read will not change during the execution of the transaction (even though such

changes are not visible to the transaction). Database inconsistencies can result

unless such application-level consistency checks are coded carefully, even when

using SERIALIZABLE transactions. Note, however, that the examples shown in

this section are applicable for both READ COMMITTED and SERIALIZABLE
transactions.

Figure 8–3 on page 8-28 two different transactions that perform application-level

checks to maintain the referential integrity parent/child relationship between two

tables. One transaction reads the parent table to determine that a row with a specific

primary key value exists before inserting corresponding child rows. The other

transaction checks to see that no corresponding detail rows exist before proceeding

to delete a parent row. In this case, both transactions assume (but do not ensure)

that data they read will not change before the transaction completes.
Processing SQL Statements 8-27

Concurrency Control Using Serializable Transactions
Figure 8–3 Referential Integrity Check

Note that the read issued by transaction A does not prevent transaction B from

deleting the parent row. Likewise, transaction B’s query for child rows does not

prevent the insertion of child rows by transaction A. Therefore the above scenario

leaves in the database a child row with no corresponding parent row. This result

would occur even if both A and B are SERIALIZABLE transactions, because neither

transaction prevents the other from making changes in the data it reads to check

consistency.

As this example illustrates, for some transactions, application developers must

specifically ensure that the data read by one transaction is not concurrently written

by another. This requires a greater degree of transaction isolation than defined by

SQL92 SERIALIZABLE mode.

TRANSACTION A TRANSACTION B

read parent (it exists) read child rows (not found)

insert child row(s) delete parent

commit work commit work

A's query does
not prevent this
delete

B's query does
not prevent this
insert
8-28 Application Developer’s Guide - Fundamentals

Concurrency Control Using Serializable Transactions
Using SELECT FOR UPDATE
Fortunately, it is straightforward in Oracle to prevent the anomaly described above.

Transaction A can use SELECT FOR UPDATE to query and lock the parent row and

thereby prevent transaction B from deleting the row. Transaction B can prevent

Transaction A from gaining access to the parent row by reversing the order of its

processing steps. Transaction B first deletes the parent row, and then rolls back if its

subsequent query detects the presence of corresponding rows in the child table.

Referential integrity can also be enforced in Oracle using database triggers, instead

of a separate query as in Transaction A above. For example, an INSERT into the child

table can fire a PRE-INSERT row-level trigger to check for the corresponding parent

row. The trigger queries the parent table using SELECT FOR UPDATE, ensuring that

parent row (if it exists) remains in the database for the duration of the transaction

inserting the child row. If the corresponding parent row does not exist, then the

trigger rejects the insert of the child row.

SQL statements issued by a database trigger execute in the context of the SQL

statement that caused the trigger to fire. All SQL statements executed within a

trigger see the database in the same state as the triggering statement. Thus, in a

READ COMMITTEDtransaction, the SQL statements in a trigger see the database as of

the beginning of the triggering statement’s execution, and in a transaction executing

in SERIALIZABLE mode, the SQL statements see the database as of the beginning

of the transaction. In either case, the use of SELECT FOR UPDATE by the trigger

correctly enforces referential integrity, as explained above.

READ COMMITTED and SERIALIZABLE Isolation
Oracle gives the application developer a choice of two transaction isolation levels

with different characteristics. Both the READ COMMITTED and SERIALIZABLE
isolation levels provide a high degree of consistency and concurrency. Both levels

provide the contention-reducing benefits of Oracle’s "read consistency"

multi-version concurrency control model and exclusive row-level locking

implementation, and are designed for real-world application deployment. The rest

of this section compares the two isolation modes and provides information helpful

in choosing between them.

Transaction Set Consistency
A useful way to describe the READ COMMITTEDand SERIALIZABLE isolation levels

in Oracle is to consider the following:
Processing SQL Statements 8-29

Concurrency Control Using Serializable Transactions
■ A collection of database tables (or any set of data)

■ A particular sequence of reads of rows in those tables

■ The set of transactions committed at any particular time

An operation (a query or a transaction) is "transaction set consistent" if all its reads

return data written by the same set of committed transactions. In an operation that

is not transaction set consistent, some reads reflect the changes of one set of

transactions, and other reads reflect changes made by other transactions. An

operation that is not transaction set consistent in effect sees the database in a state

that reflects no single set of committed transactions.

Oracle provides transactions executing in READ COMMITTED mode with transaction

set consistency on a per-statement basis (because all rows read by a query must

have been committed before the query began). Similarly, Oracle SERIALIZABLE
mode provides transaction set consistency on a per-transaction basis, because all

statements in a SERIALIZABLE transaction execute with respect to an image of the

database as of the beginning of the transaction.

In other database systems (unlike in Oracle), a single query run in READ
COMMITTEDmode provides results that are not transaction set consistent. The query

is not transaction set consistent, because it may see only a subset of the changes

made by another transaction. This means, for example, that a join of a master table

with a detail table could see a master record inserted by another transaction, but not

the corresponding details inserted by that transaction, or vice versa. Oracle’s READ
COMMITTED mode does not experience this effect, and so provides a greater degree

of consistency than read-locking systems.

In read-locking systems, at the cost of preventing concurrent updates, SQL92

REPEATABLE READ isolation provides transaction set consistency at the statement

level, but not at the transaction level. The absence of phantom protection means two

queries issued by the same transaction can see data committed by different sets of

other transactions. Only the throughput-limiting and deadlock-susceptible

SERIALIZABLE mode in these systems provides transaction set consistency at the

transaction level.

Functionality Comparison Summary
Table 8–4 summarizes key similarities and differences between READ COMMITTED
and SERIALIZABLE transactions.
8-30 Application Developer’s Guide - Fundamentals

Concurrency Control Using Serializable Transactions
Choosing an Isolation Level
Application designers and developers should choose an isolation level that is

appropriate to the specific application and workload, and may choose different

isolation levels for different transactions. The choice should be based on

performance and consistency needs, and consideration of application coding

requirements.

For environments with many concurrent users rapidly submitting transactions,

designers must assess transaction performance requirements in terms of the

expected transaction arrival rate and response time demands, and choose an

isolation level that provides the required degree of consistency while satisfying

performance expectations. Frequently, for high performance environments, the

choice of isolation levels involves making a trade-off between consistency and

concurrency (transaction throughput).

Table 8–4 Read Committed vs. Serializable Transaction

Read Committed Serializable

Dirty write Not Possible Not Possible

Dirty read Not Possible Not Possible

Non-repeatable read Possible Not Possible

Phantoms Possible Not Possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction

Transaction set consistency Statement level Transaction level

Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different-row writers block writers No No

Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to "can’t serialize access" error No Yes

Error after blocking transaction aborts No No

Error after blocking transaction
commits

No Yes
Processing SQL Statements 8-31

Concurrency Control Using Serializable Transactions
Both Oracle isolation modes provide high levels of consistency and concurrency

(and performance) through the combination of row-level locking and Oracle’s

multi-version concurrency control system. Because readers and writers don’t block

one another in Oracle, while queries still see consistent data, both READ
COMMITTED and SERIALIZABLE isolation provide a high level of concurrency for

high performance, without the need for reading uncommitted ("dirty") data.

READ COMMITTED isolation can provide considerably more concurrency with a

somewhat increased risk of inconsistent results (due to phantoms and

non-repeatable reads) for some transactions. The SERIALIZABLE isolation level

provides somewhat more consistency by protecting against phantoms and

non-repeatable reads, and may be important where a read/write transaction

executes a query more than once. However, SERIALIZABLE mode requires

applications to check for the "can’t serialize access" error, and can significantly

reduce throughput in an environment with many concurrent transactions accessing

the same data for update. Application logic that checks database consistency must

take into account the fact reads don’t block writes in either mode.

Application Tips
When a transaction runs in serializable mode, any attempt to change data that was

changed by another transaction since the beginning of the serializable transaction

results in the following error:

ORA-08177: Can’t serialize access for this transaction.

When you get an ORA-08177 error, the appropriate action is to roll back the current

transaction, and re-execute it. After a rollback, the transaction acquires a new

transaction snapshot, and the DML operation is likely to succeed.

Because a rollback and repeat of the transaction is required, it is good development

practice to put DML statements that might conflict with other concurrent

transactions towards the beginning of your transaction, whenever possible.
8-32 Application Developer’s Guide - Fundamentals

Autonomous Transactions
Autonomous Transactions
This section gives a brief overview of autonomous transactions and what you can

do with them.

At times, you may want to commit or roll back some changes to a table

independently of a primary transaction’s final outcome. For example, in a stock

purchase transaction, you may want to commit a customer’s information regardless

of whether the overall stock purchase actually goes through. Or, while running that

same transaction, you may want to log error messages to a debug table even if the

overall transaction rolls back. Autonomous transactions allow you to do such tasks.

An autonomous transaction (AT) is an independent transaction started by another

transaction, the main transaction (MT). It lets you suspend the main transaction, do

SQL operations, commit, or roll back those operations, then resume the main

transaction.

An autonomous transaction executes within an autonomous scope. An autonomous

scope is a routine you mark with the pragma (compiler directive) AUTONOMOUS_
TRANSACTION. The pragma instructs the PL/SQL compiler to mark a routine as

autonomous (independent). In this context, the term routine includes:

■ Top-level (not nested) anonymous PL/SQL blocks

■ Local, stand-alone, and packaged functions and procedures

■ Methods of a SQL object type

■ PL/SQL triggers

Figure 8–4 shows how control flows from the main routine (MT) to an autonomous

routine (AT) and back again. As you can see, the autonomous routine can commit

more than one transaction (AT1 and AT2) before control returns to the main routine.

See Also: For detailed information on autonomous transactions,

see PL/SQL User’s Guide and Referenceand Chapter 13, "Using

Triggers".
Processing SQL Statements 8-33

Autonomous Transactions
Figure 8–4 Transaction Control Flow

When you enter the executable section of an autonomous routine, the main

transaction suspends. When you exit the routine, the main transaction resumes.

COMMIT and ROLLBACK end the active autonomous transaction but do not exit the

autonomous routine. As Figure 8–4 shows, when one transaction ends, the next SQL

statement begins another transaction.

A few more characteristics of autonomous transactions:

■ The changes autonomous transactions effect do not depend on the state or the

eventual disposition of the main transaction. For example:

– An autonomous transaction does not see any changes made by the main

transaction.

– When an autonomous transaction commits or rolls back, it does not affect

the outcome of the main transaction.

■ The changes an autonomous transaction effects are visible to other transactions

as soon as that autonomous transaction commits. This means that users can

access the updated information without having to wait for the main transaction

to commit.

■ Autonomous transactions can start other autonomous transactions.

Figure 8–5 illustrates some of the possible sequences autonomous transactions can

follow.

PROCEDURE proc1 IS
 emp_id NUMBER;
BEGIN
 emp_id := 7788;
 INSERT ...
SELECT ...
 proc2;
 DELETE ...
 COMMIT;
END;

PROCEDURE proc2 IS
 PRAGMA AUTON...
 dept_id NUMBER;
BEGIN
 dept_id := 20;
 UPDATE ...
 INSERT ...
 UPDATE ...
 COMMIT;
 INSERT ...
 INSERT ...
 COMMIT;
END;

Main Routine Autonomous Routine

MT ends

MT begins
MT suspends

AT1 begins

AT1 ends
AT2 begins

AT2 ends
MT resumes
8-34 Application Developer’s Guide - Fundamentals

Autonomous Transactions
Figure 8–5 Possible Sequences of Autonomous Transactions

AT Scope 1 AT Scope 2 AT Scope 3 AT Scope 4MT Scope
A main transaction scope
(MT Scope) begins the main
transaction, MTx. MTx
invokes the first autonomous
transaction scope (AT
Scope1). MTx suspends. AT
Scope 1 begins the
transaction Tx1.1.

At Scope 1 commits or rolls
back Tx1.1, than ends. MTx
resumes.

MTx invokes AT Scope 2.
MT suspends, passing
control to AT Scope 2 which,
initially, is performing queries.

AT Scope 2 then begins
Tx2.1 by, say, doing an
update. AT Scope 2 commits
or rolls back Tx2.1.

Later, AT Scope 2 begins a
second transaction, Tx2.2,
then commits or rolls it back.

AT Scope 2 performs a few
queries, then ends, passing
control back to MTx.

MTx invokes AT Scope 3.
MTx suspends, AT Scope 3
begins.

AT Scope 3 begins Tx3.1
which, in turn, invokes AT
Scope 4. Tx3.1 suspends, AT
Scope 4 begins.

AT Scope 4 begins Tx4.1,
commits or rolls it back, then
ends. AT Scope 3 resumes.

AT Scope 3 commits or rolls
back Tx3.1, then ends. MTx
resumes.

Finally, MT Scope commits
or rolls back MTx, then ends.

MTx

Tx1.1

MTx

Tx2.1

Tx2.2

MTx

Tx3.1

Tx4.1

Tx3.1

MTx
Processing SQL Statements 8-35

Autonomous Transactions
Examples
The two examples in this section illustrate some of the ways you can use

autonomous transactions.

As these examples illustrate, there are four possible outcomes that can occur when

you use autonomous and main transactions. The following table presents these

possible outcomes. As you can see, there is no dependency between the outcome of

an autonomous transaction and that of a main transaction.

Entering a Buy Order
In this example, a customer enters a buy order. That customer’s information (e.g.,

name, address, phone) is committed to a customer information table—even though

the sale does not go through.

Autonomous Transaction Main Transaction

Commits Commits

Commits Rolls back

Rolls back Commits

Rolls back Rolls back
8-36 Application Developer’s Guide - Fundamentals

Autonomous Transactions
Figure 8–6 Example: A Buy Order

Example: Making a Bank Withdrawal
In the following banking application, a customer tries to make a withdrawal from

his or her account. In the process, a main transaction calls one of two autonomous

transaction scopes (AT Scope 1, and AT Scope 2).

The following diagrams illustrate three possible scenarios for this transaction.

■ Scenario 1: There are sufficient funds to cover the withdrawal and therefore the

bank releases the funds

■ Scenario 2: There are insufficient funds to cover the withdrawal, but the

customer has overdraft protection. The bank therefore releases the funds.

■ Scenario 3: There are insufficient funds to cover the withdrawal, the customer

does not have overdraft protection, and the bank therefore withholds the

requested funds.

AT Scope MT Scope
MT Scope begins the main
transaction, MTx inserts the
buy order into a table.

MTx invokes the autonomous
transaction scope (AT
Scope). When AT Scope
begins, MT Scope suspends.

ATx, updates the audit table
with customer information.

MTx seeks to validate the
order, finds that the selected
item is unavailable, and
therefore rolls back the main
transaction.

MTx

ATx

MTx
Processing SQL Statements 8-37

Autonomous Transactions
Scenario 1:
There are sufficient funds to cover the withdrawal and therefore the bank releases

the funds

Figure 8–7 Example: Bank Withdrawal—Sufficient Funds

AT Scope 1 AT Scope 2MT Scope
MTx generates a
transaction ID.

Tx1.1 inserts the transaction
ID into the audit table and
commits.

MTx validates the balance on
the account.

Tx2.1, updates the audit table
using the transaction ID
generated above, then
commits.

MTx releases the funds. MT
Scope ends.

MTx

Tx1.1

MTx

Tx2.1

MTx
8-38 Application Developer’s Guide - Fundamentals

Autonomous Transactions
Scenario 2:
There are insufficient funds to cover the withdrawal, but the customer has overdraft

protection. The bank therefore releases the funds.

Figure 8–8 Example: Bank Withdrawal—Insufficient Funds WITH Overdraft Protection

AT Scope 1 AT Scope 2MT Scope

MTx discovers that there are
insufficient funds to cover the
withdrawal. It finds that the
customer has overdraft
protection and sets a flag to
the appropriate value.

Tx2.1, updates the
audit table.

MTx, releases the funds. MT
Scope ends.

MTx

Tx1.1

MTx

Tx2.1

MTx
Processing SQL Statements 8-39

Autonomous Transactions
Scenario 3:
There are insufficient funds to cover the withdrawal, the customer does not have

overdraft protection, and the bank therefore withholds the requested funds.

Figure 8–9 Example: Bank Withdrawal—Insufficient Funds WITHOUT Overdraft
Protection

AT Scope 1 AT Scope 2MT Scope

MTx discovers that there are
insufficient funds to cover the
withdrawal. It finds that the
customer does not have
overdraft protection and sets
a flag to the appropriate
value.

Tx2.1, updates the
audit table.

MTx Scope rolls back MTx,
denying the release of funds.
MT Scope ends.

MTx

Tx1.1

MTx

Tx2.1

MTx
8-40 Application Developer’s Guide - Fundamentals

Autonomous Transactions
Defining Autonomous Transactions

To define autonomous transactions, you use the pragma (compiler directive)

AUTONOMOUS_TRANSACTION. The pragma instructs the PL/SQL compiler to mark

the procedure, function, or PL/SQL block as autonomous (independent).

You can code the pragma anywhere in the declarative section of a procedure,

function, or PL/SQL block. But, for readability, code the pragma at the top of the

section. The syntax follows:

PRAGMA AUTONOMOUS_TRANSACTION;

In the following example, you mark a packaged function as autonomous:

CREATE OR REPLACE PACKAGE Banking AS
 FUNCTION Balance (Acct_id INTEGER) RETURN REAL;
 -- add additional functions and/or packages
END Banking;

CREATE OR REPLACE PACKAGE BODY Banking AS
 FUNCTION Balance (Acct_id INTEGER) RETURN REAL IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 My_bal REAL;
 BEGIN
 --add appropriate code
 END;
 -- add additional functions and/or packages...
END Banking;

You cannot use the pragma to mark all subprograms in a package (or all methods in

an object type) as autonomous. Only individual routines can be marked

autonomous. For example, the following pragma is illegal:

CREATE OR REPLACE PACKAGE Banking AS
 PRAGMA AUTONOMOUS_TRANSACTION; -- illegal
 FUNCTION Balance (Acct_id INTEGER) RETURN REAL;
 END Banking;

Note: This section is provided here to round out your general
understanding of autonomous transactions. For a more thorough
understanding of autonomous transactions, see PL/SQL User’s Guide
and Reference.
Processing SQL Statements 8-41

Autonomous Transactions
8-42 Application Developer’s Guide - Fundamentals

Dyna
9

Dynamic SQL

Dynamic SQL is a programming technique that enables you to build SQL

statements dynamically at runtime. You can create more general purpose, flexible

applications by using dynamic SQL because the full text of a SQL statement may be

unknown at compilation. For example, dynamic SQL lets you create a procedure

that operates on a table whose name is not known until runtime.

In past releases of Oracle, the only way to implement dynamic SQL in a PL/SQL

application was by using the DBMS_SQL package. Oracle8i introduces native

dynamic SQL, an alternative to the DBMS_SQLpackage. Using native dynamic SQL,

you can place dynamic SQL statements directly into PL/SQL blocks.

This chapter covers the following topics:

■ What Is Dynamic SQL?

■ When to Use Dynamic SQL

■ A Dynamic SQL Scenario Using Native Dynamic SQL

■ Native Dynamic SQL vs. the DBMS_SQL Package

■ Application Development Languages Other Than PL/SQL
mic SQL 9-1

What Is Dynamic SQL?
What Is Dynamic SQL?
Dynamic SQL enables you to write programs that reference SQL statements whose

full text is not known until runtime. Before discussing dynamic SQL in detail, a

clear definition of static SQL may provide a good starting point for understanding

dynamic SQL. Static SQL statements do not change from execution to execution.

The full text of static SQL statements are known at compilation, which provides the

following benefits:

■ Successful compilation verifies that the SQL statements reference valid database

objects.

■ Successful compilation verifies that the necessary privileges are in place to

access the database objects.

■ Performance of static SQL is generally better than dynamic SQL.

Because of these advantages, you should use dynamic SQL only if you cannot use

static SQL to accomplish your goals, or if using static SQL is cumbersome compared

to dynamic SQL. However, static SQL has limitations that can be overcome with

dynamic SQL. You may not always know the full text of the SQL statements that

must be executed in a PL/SQL procedure. Your program may accept user input that

defines the SQL statements to execute, or your program may need to complete some

processing work to determine the correct course of action. In such cases, you should

use dynamic SQL.

For example, consider a reporting application that performs standard queries on

tables in a data warehouse environment where the exact table name is unknown

until runtime. To accommodate the large amount of data in the data warehouse

efficiently, you create a new table every quarter to store the invoice information for

the quarter. These tables all have exactly the same definition and are named

according to the starting month and year of the quarter, for example INV_01_1997 ,

INV_04_1997 , INV_07_1997 , INV_10_1997 , INV_01_1998 , etc. In such a case,

you can use dynamic SQL in your reporting application to specify the table name at

runtime.

With static SQL, all of the data definition information, such as table definitions,

referenced by the SQL statements in your program must be known at compilation.

If the data definition changes, you must change and recompile the program.

Dynamic SQL programs can handle changes in data definition information, because

the SQL statements can change "on the fly" at runtime. Therefore, dynamic SQL is

much more flexible than static SQL. Dynamic SQL enables you to write application

code that is reusable because the code defines a process that is independent of the

specific SQL statements used.
9-2 Application Developer’s Guide - Fundamentals

When to Use Dynamic SQL
In addition, dynamic SQL lets you execute SQL statements that are not supported in

static SQL programs, such as data definition language (DDL) statements. Support

for these statements allows you to accomplish more with your PL/SQL programs.

When to Use Dynamic SQL
You should use dynamic SQL in cases where static SQL does not support the

operation you want to perform, or in cases where you do not know the exact SQL

statements that must be executed by a PL/SQL procedure. These SQL statements

may depend on user input, or they may depend on processing work done by the

program. The following sections describe typical situations where you should use

dynamic SQL and typical problems that can be solved by using dynamic SQL.

To Execute Dynamic DML Statements
You can use dynamic SQL to execute DML statements in which the exact SQL

statement is not known until runtime. For examples, see the DML examples in the

"Examples of DBMS_SQL Package Code and Native Dynamic SQL Code" on

page 9-19 and "Sample DML Operation" on page 9-10.

To Execute Statements Not Supported by Static SQL in PL/SQL
In PL/SQL, you cannot execute the following types of statements using static SQL:

■ Data definition language (DDL) statements, such as CREATE, DROP, GRANT, and

REVOKE

■ Session control language (SCL) statements, such as ALTER SESSION and

SET ROLE

Use dynamic SQL if you need to execute any of these types of statements within a

PL/SQL block.

Note: The phrase dynamic SQL programs means programs that

include dynamic SQL; such programs also can include static SQL.

Static SQL programs are those programs that include only static SQL

and no dynamic SQL.

See Also: Oracle8i SQL Reference for information about DDL and

SCL statements.
Dynamic SQL 9-3

When to Use Dynamic SQL
In addition, static SQL in PL/SQL does not allow the use of the TABLE clause in the

SELECT statements. There is no such limitation in dynamic SQL. For example, the

following PL/SQL block contains a SELECT statement that uses the TABLE clause

and native dynamic SQL:

CREATE TYPE t_emp AS OBJECT (id NUMBER, name VARCHAR2(20))
/
CREATE TYPE t_emplist AS TABLE OF t_emp
/

CREATE TABLE dept_new (id NUMBER, emps t_emplist)
 NESTED TABLE emps STORE AS emp_table;

INSERT INTO dept_new VALUES (
 10,
 t_emplist(
 t_emp(1, ’SCOTT’),
 t_emp(2, ’BRUCE’)));

DECLARE
 deptid NUMBER;
 ename VARCHAR2(20);
BEGIN
 EXECUTE IMMEDIATE ’SELECT d.id, e.name
 FROM dept_new d, TABLE(d.emps) e -- not allowed in static SQL
 -- in PL/SQL
 WHERE e.id = 1’
 INTO deptid, ename;
END;
/

To Execute Dynamic Queries
You can use dynamic SQL to create applications that execute dynamic queries,

which are queries whose full text is not known until runtime. Many types of

applications need to use dynamic queries, including:

■ Applications that allow users to input or choose query search or sorting criteria

at runtime

■ Applications that allow users to input or choose optimizer hints at run time

■ Applications that query a database where the data definitions of tables are

constantly changing

■ Applications that query a database where new tables are created often
9-4 Application Developer’s Guide - Fundamentals

When to Use Dynamic SQL
For examples, see "Query Example" on page 9-19, and see the query examples in "A

Dynamic SQL Scenario Using Native Dynamic SQL" on page 9-9.

To Reference Database Objects that Do Not Exist at Compilation
Many types of applications must interact with data that is generated periodically.

For example, it may be possible to determine the definition of the database tables at

compilation, but not the names of the tables, because new tables are being

generated periodically. Your application needs to access the data, but there is no

way to know the exact names of the tables until runtime.

Dynamic SQL can solve this problem, because dynamic SQL allows you to wait

until runtime to specify the table names you need to access. For example, in the

sample data warehouse application discussed in "What Is Dynamic SQL?" on

page 9-2, new tables are generated every quarter, and these tables always have the

same definition. In this case, you might allow a user to specify the name of the table

at runtime with a dynamic SQL query similar to the following:

CREATE OR REPLACE PROCEDURE query_invoice(
 month VARCHAR2,
 year VARCHAR2) IS
 TYPE cur_typ IS REF CURSOR;
 c cur_typ;
 query_str VARCHAR2(200);
 inv_num NUMBER;
 inv_cust VARCHAR2(20);
 inv_amt NUMBER;
BEGIN
 query_str := 'SELECT num, cust, amt FROM inv_' || month ||’_’|| year
 || ' WHERE invnum = :id';
 OPEN c FOR query_str USING inv_num;
 LOOP
 FETCH c INTO inv_num, inv_cust, inv_amt;
 EXIT WHEN c%NOTFOUND;
 -- process row here
 END LOOP;
 CLOSE c;
END;
/

Dynamic SQL 9-5

When to Use Dynamic SQL
To Optimize Execution Dynamically
If you use static SQL, you must decide at compilation how you want to construct

your SQL statements, whether to have hints in your statements, and, if you include

hints, exactly which hints to have. However, you can use dynamic SQL to build a

SQL statement in a way that optimizes the execution and/or concatenates the hints

into a SQL statement dynamically. This allows you to change the hints based on

your current database statistics, without requiring recompilation.

For example, the following procedure uses a variable called a_hint to allow users

to pass a hint option to the SELECT statement:

CREATE OR REPLACE PROCEDURE query_emp
 (a_hint VARCHAR2) AS
 TYPE cur_typ IS REF CURSOR;
 c cur_typ;
BEGIN
 OPEN c FOR ’SELECT ’ || a_hint ||
 ’ empno, ename, sal, job FROM emp WHERE empno = 7566’;
 -- process
END;
/

In this example, the user can pass any of the following values for a_hint :

■ a_hint = '/*+ ALL_ROWS */'

■ a_hint = '/*+ FIRST_ROWS */'

■ a_hint = '/*+ CHOOSE */'

■ Any other valid hint option

See Also: Oracle8i Tuning for more information about using hints.
9-6 Application Developer’s Guide - Fundamentals

When to Use Dynamic SQL
To Invoke Dynamic PL/SQL Blocks
You can use the EXECUTE IMMEDIATE statement to invoke anonymous PL/SQL

blocks. The ability to invoke dynamic PL/SQL blocks can be useful for application

extension and customization where the module to be executed is determined

dynamically at runtime.

For example, suppose you want to write an application that takes an event number

and dispatches to a handler for the event. The name of the handler is in the form

EVENT_HANDLER_event_num , where event_num is the number of the event. One

approach would be to implement the dispatcher as a switch statement, as shown

below, where the code handles each event by making a static call to its appropriate

handler.

CREATE OR REPLACE PROCEDURE event_handler_1(param number) AS BEGIN
 -- process event
 RETURN;
END;
/

CREATE OR REPLACE PROCEDURE event_handler_2(param number) AS BEGIN
 -- process event
 RETURN;
END;
/

CREATE OR REPLACE PROCEDURE event_handler_3(param number) AS BEGIN
 -- process event
 RETURN;
END;
/

CREATE OR REPLACE PROCEDURE event_dispatcher
 (event number, param number) IS
BEGIN
 IF (event = 1) THEN
 EVENT_HANDLER_1(param);
 ELSIF (event = 2) THEN
 EVENT_HANDLER_2(param);
 ELSIF (event = 3) THEN
 EVENT_HANDLER_3(param);
 END IF;
END;
/

Dynamic SQL 9-7

When to Use Dynamic SQL
This code is not very extensible because the dispatcher code must be updated

whenever a handler for a new event is added. However, using native dynamic SQL,

you can write an extensible event dispatcher similar to the following:

CREATE OR REPLACE PROCEDURE event_dispatcher
 (event NUMBER, param NUMBER) IS
BEGIN
 EXECUTE IMMEDIATE
 'BEGIN
 EVENT_HANDLER_' || to_char(event) || '(:1);
 END;'
 USING param;
END;
/

To Perform Dynamic Operations Using Invoker-Rights
By using the invoker-rights feature with dynamic SQL, you can build applications

that issue dynamic SQL statements under the privileges and schema of the invoker.

These two features, invoker-rights and dynamic SQL, enable you to build reusable

application subcomponents that can operate on and access the invoker’s data and

modules.

See Also: PL/SQL User’s Guide and Reference for information about

using invokers-rights and native dynamic SQL.
9-8 Application Developer’s Guide - Fundamentals

A Dynamic SQL Scenario Using Native Dynamic SQL
A Dynamic SQL Scenario Using Native Dynamic SQL
The scenario described in this section illustrates the power and flexibility of native

dynamic SQL. This scenario includes examples that show you how to perform the

following operations using native dynamic SQL:

■ Execute DDL and DML operations

■ Execute single row and multiple row queries

Data Model
The database in this scenario is a company’s human resources database (named hr)

with the following data model:

A master table named offices contains the list of all company locations. The

offices table has the following definition:

Column Name Null? Type
LOCATION NOT_NULL VARCHAR2(200)

Multiple emp_location tables contain the employee information, where

location is the name of city where the office is located. For example, a table

named emp_houston contains employee information for the company’s Houston

office, while a table named emp_boston contains employee information for the

company’s Boston office.

Each emp_location table has the following definition:

Column Name Null? Type
EMPNO NOT_NULL NUMBER(4)
ENAME NOT_NULL VARCHAR2(10)
JOB NOT_NULL VARCHAR2(9)
SAL NOT_NULL NUMBER(7,2)
DEPTNO NOT_NULL NUMBER(2)

The following sections describe various native dynamic SQL operations that can be

performed on the data in the hr database.
Dynamic SQL 9-9

A Dynamic SQL Scenario Using Native Dynamic SQL
Sample DML Operation
The following native dynamic SQL procedure gives a raise to all employees with a

particular job title:

CREATE OR REPLACE PROCEDURE salary_raise (raise_percent NUMBER, job VARCHAR2) IS
 TYPE loc_array_type IS TABLE OF VARCHAR2(40)
 INDEX BY binary_integer;
 dml_str VARCHAR2(200);
 loc_array loc_array_type;
BEGIN
 -- bulk fetch the list of office locations
 SELECT location BULK COLLECT INTO loc_array
 FROM offices;
 -- for each location, give a raise to employees with the given 'job'
 FOR i IN loc_array.first..loc_array.last LOOP
 dml_str := 'UPDATE emp_' || loc_array(i)
 || ' SET sal = sal * (1+(:raise_percent/100))'
 || ' WHERE job = :job_title';
 EXECUTE IMMEDIATE dml_str USING raise_percent, job;
 END LOOP;
END;
/

Sample DDL Operation
The EXECUTE IMMEDIATE statement can perform DDL operations. For example,

the following procedure adds an office location:

CREATE OR REPLACE PROCEDURE add_location (loc VARCHAR2) IS
BEGIN
 -- insert new location in master table
 INSERT INTO offices VALUES (loc);
 -- create an employee information table
 EXECUTE IMMEDIATE
 'CREATE TABLE ' || 'emp_' || loc ||
 '(
 empno NUMBER(4) NOT NULL,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 sal NUMBER(7,2),
 deptno NUMBER(2)
)';
END;
/

9-10 Application Developer’s Guide - Fundamentals

A Dynamic SQL Scenario Using Native Dynamic SQL
The following procedure deletes an office location:

CREATE OR REPLACE PROCEDURE drop_location (loc VARCHAR2) IS
BEGIN
 -- delete the employee table for location 'loc'
 EXECUTE IMMEDIATE 'DROP TABLE ' || 'emp_' || loc;
 -- remove location from master table
 DELETE FROM offices WHERE location = loc;
END;
/

Sample Dynamic Single-Row Query
The EXECUTE IMMEDIATE statement can perform dynamic single-row queries. You

can specify bind variables in the USING clause and fetch the resulting row into the

target specified in the INTO clause of the statement.

The following function retrieves the number of employees at a particular location

performing a specified job:

CREATE OR REPLACE FUNCTION get_num_of_employees (loc VARCHAR2, job VARCHAR2)
 RETURN NUMBER IS
 query_str VARCHAR2(1000);
 num_of_employees NUMBER;
BEGIN
 query_str := 'SELECT COUNT(*) FROM '
 || ' emp_' || loc
 || ' WHERE job = :job_title';
 EXECUTE IMMEDIATE query_str
 INTO num_of_employees
 USING job;
 RETURN num_of_employees;
END;
/

Dynamic SQL 9-11

Native Dynamic SQL vs. the DBMS_SQL Package
Sample Dynamic Multiple-Row Query
The OPEN-FOR, FETCH, and CLOSE statements can perform dynamic multiple-row

queries. For example, the following procedure lists all of the employees with a

particular job at a specified location:

CREATE OR REPLACE PROCEDURE list_employees(loc VARCHAR2, job VARCHAR2) IS
 TYPE cur_typ IS REF CURSOR;
 c cur_typ;
 query_str VARCHAR2(1000);
 emp_name VARCHAR2(20);
 emp_num NUMBER;
BEGIN
 query_str := 'SELECT ename, empno FROM emp_' || loc
 || ' WHERE job = :job_title';
 -- find employees who perform the specified job
 OPEN c FOR query_str USING job;
 LOOP
 FETCH c INTO emp_name, emp_num;
 EXIT WHEN c%NOTFOUND;
 -- process row here
 END LOOP;
 CLOSE c;
END;
/

Native Dynamic SQL vs. the DBMS_SQL Package
Oracle provides two methods for using dynamic SQL within PL/SQL: native

dynamic SQL and the DBMS_SQL package. Native dynamic SQL enables you to

place dynamic SQL statements directly into PL/SQL code. These dynamic

statements include DML statements (including queries), PL/SQL anonymous

blocks, DDL statements, transaction control statements, and session control

statements.

To process most native dynamic SQL statements, you use the EXECUTE IMMEDIATE
statement. However, to process a multi-row query (SELECT statement), you use

OPEN-FOR, FETCH, and CLOSE statements.

Note: To use native dynamic SQL, the COMPATIBLE initialization

parameter must be set to 8.1.0 or higher. See Oracle8i Migration for

more information about the COMPATIBLE parameter.
9-12 Application Developer’s Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package
The DBMS_SQL package is a PL/SQL library that offers a programmatic API to

execute SQL statements dynamically. The DBMS_SQL package has programmatic

interfaces to open a cursor, parse a cursor, supply binds, etc. Programs that use the

DBMS_SQL package make calls to this package to perform dynamic SQL operations.

The following sections provide detailed information about the advantages of both

methods.

Advantages of Native Dynamic SQL
Native dynamic SQL provides the following advantages over the DBMS_SQL
package:

Ease of Use
Native dynamic SQL is much simpler to use than the DBMS_SQL package. Because

native dynamic SQL is integrated with SQL, you can use it in the same way that

you currently use static SQL within PL/SQL code. In addition, native dynamic SQL

code is typically more compact and readable than equivalent code that uses the

DBMS_SQL package.

The DBMS_SQL package is not as easy to use as native dynamic SQL. There are

many procedures and functions that must be used in a strict sequence. Typically,

performing simple operations requires a large amount of code when you use the

DBMS_SQL package. You can avoid this complexity by using native dynamic SQL

instead.

See Also: The PL/SQL User’s Guide and Reference for detailed

information about using native dynamic SQL and the Oracle8i
Supplied Packages Reference for detailed information about using the

DBMS_SQLpackage. In the PL/SQL User’s Guide and Reference, native

dynamic SQL is referred to simply as dynamic SQL.
Dynamic SQL 9-13

Native Dynamic SQL vs. the DBMS_SQL Package
Table 9–1 illustrates the difference in the amount of code required to perform the

same operation using the DBMS_SQL package and native dynamic SQL.

Table 9–1 Code Comparison of DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL Package Native Dynamic SQL

CREATE PROCEDURE insert_into_table (
 table_name VARCHAR2,
 deptnumber NUMBER,
 deptname VARCHAR2,
 location VARCHAR2) IS
 cur_hdl INTEGER;
 stmt_str VARCHAR2(200);
 rows_processed BINARY_INTEGER;

BEGIN
 stmt_str := 'INSERT INTO ' ||
 table_name || ' VALUES
 (:deptno, :dname, :loc)';

 -- open cursor
 cur_hdl := dbms_sql.open_cursor;

 -- parse cursor
 dbms_sql.parse(cur_hdl, stmt_str,
 dbms_sql.native);

 -- supply binds
 dbms_sql.bind_variable
 (cur_hdl, ':deptno', deptnumber);
 dbms_sql.bind_variable
 (cur_hdl, ':dname', deptname);
 dbms_sql.bind_variable
 (cur_hdl, ':loc', location);

 -- execute cursor
 rows_processed :=
 dbms_sql.execute(cur_hdl);

 -- close cursor
 dbms_sql.close_cursor(cur_hdl);

END;
/

CREATE PROCEDURE insert_into_table (
 table_name VARCHAR2,
 deptnumber NUMBER,
 deptname VARCHAR2,
 location VARCHAR2) IS
 stmt_str VARCHAR2(200);

BEGIN
 stmt_str := ’INSERT INTO ’ ||
 table_name || ’ values
 (:deptno, :dname, :loc)’;

 EXECUTE IMMEDIATE stmt_str
 USING
 deptnumber, deptname, location;

END;
/

9-14 Application Developer’s Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package
Performance Improvements
The performance of native dynamic SQL in PL/SQL is comparable to the

performance of static SQL because the PL/SQL interpreter has built-in support for

native dynamic SQL. Therefore, the performance of programs that use native

dynamic SQL is much better than that of programs that use the DBMS_SQLpackage.

Typically, native dynamic SQL statements perform 1.5 to 3 times better than

equivalent statements that use the DBMS_SQL package. Of course, your

performance gains may vary depending on your application.

The DBMS_SQL package is based on a procedural API and, as a result, incurs high

procedure call and data copy overhead. For example, every time you bind a

variable, the DBMS_SQL package copies the PL/SQL bind variable into its space for

later use during execution. Similarly, every time you execute a fetch, first the data is

copied into the space managed by the DBMS_SQLpackage and then the fetched data

is copied, one column at a time, into the appropriate PL/SQL variables, resulting in

substantial overhead resulting from data copying. In contrast, native dynamic SQL

bundles the statement preparation, binding, and execution steps into a single

operation, which minimizes the data copying and procedure call overhead and

improves performance.

Performance Tip When using either native dynamic SQL or the DBMS_SQL package,

you can improve performance by using bind variables, because using bind variables

allows Oracle to share a single cursor for multiple SQL statements.

For example, the following native dynamic SQL code does not use bind variables:

CREATE OR REPLACE PROCEDURE del_dept (
 my_deptno dept.deptno%TYPE) IS
BEGIN
 EXECUTE IMMEDIATE ’DELETE FROM dept WHERE deptno = ’ || to_char (my_deptno);
END;
/

For each distinct my_deptno variable, a new cursor is created, which can cause

resource contention and poor performance. Instead, bind my_deptno as a bind

variable, as in the following example:

CREATE OR REPLACE PROCEDURE del_dept (
 my_deptno dept.deptno%TYPE) IS
BEGIN
 EXECUTE IMMEDIATE ’DELETE FROM dept WHERE deptno = :1’ USING my_deptno;
END;
/

Dynamic SQL 9-15

Native Dynamic SQL vs. the DBMS_SQL Package
Here, the same cursor is reused for different values of the bind my_deptno , thereby

improving performance and scalabilty.

Support for User-Defined Types
Native dynamic SQL supports all of the types supported by static SQL in PL/SQL.

Therefore, native dynamic SQL provides support for user-defined types, such as

user-defined objects, collections, and REFs. The DBMS_SQL package does not

support these user-defined types.

Support for Fetching Into Records
Native dynamic SQL and static SQL both support fetching into records, but the

DBMS_SQL package does not. With native dynamic SQL, the rows resulting from a

query can be directly fetched into PL/SQL records.

In the following example, the rows from a query are fetched into the emp_rec
record:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR;
 c EmpCurTyp;
 emp_rec emp%ROWTYPE;
 stmt_str VARCHAR2(200);
 e_job emp.job%TYPE;

BEGIN
 stmt_str := ’SELECT * FROM emp WHERE job = :1’;
 -- in a multi-row query
 OPEN c FOR stmt_str USING ’MANAGER’;
 LOOP
 FETCH c INTO emp_rec;
 EXIT WHEN c%NOTFOUND;
 END LOOP;
 CLOSE c;
 -- in a single-row query
 EXECUTE IMMEDIATE stmt_str INTO emp_rec USING ’PRESIDENT’;

END;
/

Note: The DBMS_SQL package provides limited support for

arrays. See the Oracle8i Supplied Packages Reference for information.
9-16 Application Developer’s Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package
Advantages of the DBMS_SQL Package
The DBMS_SQL package provides the following advantages over native dynamic

SQL:

Support for Client-Side Programs
Currently, the DBMS_SQL package is supported in client-side programs, but native

dynamic SQL is not. Every call to the DBMS_SQL package from the client-side

program translates to a PL/SQL remote procedure call (RPC); these calls occur

when you need to bind a variable, define a variable, or execute a statement.

Support for DESCRIBE
The DESCRIBE_COLUMNS procedure in the DBMS_SQL package can be used to

describe the columns for a cursor opened and parsed through DBMS_SQL. The

functionality is similar to the DESCRIBE command in SQL*Plus. Native dynamic

SQL does not have a DESCRIBE facility.

Support for Bulk Dynamic SQL
Bulk SQL is the ability to process multiple rows of data in a single DML statement.

Bulk SQL improves performance by reducing the amount of context switching

between SQL and the host language. Currently, the DBMS_SQL package supports

bulk dynamic SQL.

Although there is no direct support for bulk operations in native dynamic SQL, you

can simulate a native dynamic bulk SQL statement by placing the bulk SQL

statement in a 'BEGIN ... END' block and executing the block dynamically. This

workaround enables you to realize the benefits of bulk SQL within a native

dynamic SQL program. For example, the following native dynamic SQL code copies

the ename column of one table to another:

CREATE TYPE name_array_type IS
 VARRAY(100) of VARCHAR2(50)
/

CREATE OR REPLACE PROCEDURE copy_ename_column
 (table1 VARCHAR2, table2 VARCHAR2) IS
 ename_col NAME_ARRAY_TYPE;
Dynamic SQL 9-17

Native Dynamic SQL vs. the DBMS_SQL Package
BEGIN
 -- bulk fetch the ’ename’ column into a VARRAY of VARCHAR2s.
 EXECUTE IMMEDIATE
 ’BEGIN
 SELECT ename BULK COLLECT INTO :tab
 FROM ’ || table1 || ’;
 END;’
 USING OUT ename_col;

 -- bulk insert the ’ename’ column into another table.
 EXECUTE IMMEDIATE
 ’BEGIN
 FORALL i IN :first .. :last
 INSERT INTO ’ || table2 || ’ VALUES (:tab(i));
 END;’
 USING ename_col.first, ename_col.last, ename_col;
END;
/

Multiple Row Updates and Deletes with a RETURNING Clause
The DBMS_SQL package supports statements with a RETURNING clause that update

or delete multiple rows. Native dynamic SQL only supports a RETURNING clause if

a single row is returned.

Support for SQL Statements Larger than 32KB
The DBMS_SQLpackage supports SQL statements larger than 32KB; native dynamic

SQL does not.

Reuse of SQL Statements
The PARSEprocedure in the DBMS_SQLpackage parses a SQL statement once. After

the initial parsing, the statement can be used multiple times with different sets of

bind arguments.

In contrast, native dynamic SQL prepares a SQL statement for execution each time

the statement is used. Statement preparation typically involves parsing,

optimization, and plan generation. Preparing a statement each time it is used incurs

a small performance penalty. However, Oracle’s shared cursor mechanism

See Also: "DML Returning Example" on page 9-22 for examples

of DBMS_SQLpackage code and native dynamic SQL code that uses

a RETURNING clause.
9-18 Application Developer’s Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package
minimizes the cost, and the performance penalty is typically trivial when compared

to the performance benefits of native dynamic SQL.

Examples of DBMS_SQL Package Code and Native Dynamic SQL Code
The following examples illustrate the differences in the code necessary to complete

operations with the DBMS_SQL package and native dynamic SQL. Specifically, the

following types of examples are presented:

■ A query

■ A DML operation

■ A DML returning operation

In general, the native dynamic SQL code is more readable and compact, which can

improve developer productivity.

Query Example
The following example includes a dynamic query statement with one bind variable

(:jobname) and two select columns (ename and sal):

stmt_str := ’SELECT ename, sal FROM emp WHERE job = :jobname’;

This example queries for employees with the job description SALESMAN in the job
column of the emp table. Table 9–2 shows sample code that accomplishes this query

using the DBMS_SQL package and native dynamic SQL.
Dynamic SQL 9-19

Native Dynamic SQL vs. the DBMS_SQL Package
Table 9–2 Querying Using the DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL Query Operation Native Dynamic SQL Query Operation

DECLARE
 stmt_str varchar2(200);
 cur_hdl int;
 rows_processed int;
 name varchar2(10);
 salary int;
BEGIN
cur_hdl := dbms_sql.open_cursor; -- open cursor
stmt_str := ’SELECT ename, sal FROM emp WHERE
job = :jobname’;
dbms_sql.parse(cur_hdl, stmt_str, dbms_
sql.native);

-- supply binds (bind by name)
dbms_sql.bind_variable(
 cur_hdl, ’jobname’, ’SALESMAN’);

-- describe defines
dbms_sql.define_column(cur_hdl, 1, name, 200);
dbms_sql.define_column(cur_hdl, 2, salary);

rows_processed := dbms_sql.execute(cur_hdl); --
execute

LOOP
 -- fetch a row
 IF dbms_sql.fetch_rows(cur_hdl) > 0 then

 -- fetch columns from the row
 dbms_sql.column_value(cur_hdl, 1, name);
 dbms_sql.column_value(cur_hdl, 2, salary);

 -- <process data>

 ELSE
 EXIT;
 END IF;
END LOOP;
dbms_sql.close_cursor(cur_hdl); -- close cursor
END;
/

DECLARE
 TYPE EmpCurTyp IS REF CURSOR;
 cur EmpCurTyp;
 stmt_str VARCHAR2(200);
 name VARCHAR2(20);
 salary NUMBER;
BEGIN
 stmt_str := ’SELECT ename, sal FROM emp
 WHERE job = :1’;
 OPEN cur FOR stmt_str USING ’SALESMAN’;

LOOP
 FETCH cur INTO name, salary;
 EXIT WHEN cur%NOTFOUND;
 -- <process data>
END LOOP;
CLOSE cur;
END;
/

9-20 Application Developer’s Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package
DML Example
The following example includes a dynamic INSERT statement for a table with three

columns:

stmt_str := ’INSERT INTO dept_new VALUES (:deptno, :dname, :loc)’;

This example inserts a new row for which the column values are in the PL/SQL

variables deptnumber , deptname , and location . Table 9–3 shows sample code

that accomplishes this DML operation using the DBMS_SQL package and native

dynamic SQL.

Table 9–3 DML Operation Using the DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL DML Operation Native Dynamic SQL DML Operation

DECLARE
 stmt_str VARCHAR2(200);
 cur_hdl NUMBER;
 deptnumber NUMBER := 99;
 deptname VARCHAR2(20);
 location VARCHAR2(10);
 rows_processed NUMBER;
BEGIN
 stmt_str := ’INSERT INTO dept_new VALUES
 (:deptno, :dname, :loc)’;
 cur_hdl := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(
 cur_hdl, stmt_str, DBMS_SQL.NATIVE);
 -- supply binds
 DBMS_SQL.BIND_VARIABLE
 (cur_hdl, ’:deptno’, deptnumber);
 DBMS_SQL.BIND_VARIABLE
 (cur_hdl, ’:dname’, deptname);
 DBMS_SQL.BIND_VARIABLE
 (cur_hdl, ’:loc’, location);

rows_processed := dbms_sql.execute(cur_hdl);
 -- execute
 DBMS_SQL.CLOSE_CURSOR(cur_hdl); -- close
END;
/

DECLARE
 stmt_str VARCHAR2(200);
 deptnumber NUMBER := 99;
 deptname VARCHAR2(20);
 location VARCHAR2(10);
BEGIN
 stmt_str := ’INSERT INTO dept_new VALUES
 (:deptno, :dname, :loc)’;
 EXECUTE IMMEDIATE stmt_str
 USING deptnumber, deptname, location;
END;
/

Dynamic SQL 9-21

Native Dynamic SQL vs. the DBMS_SQL Package
DML Returning Example
The following example includes a dynamic UPDATE statement that updates the

location of a department when given the department number (deptnumber) and a

new location (location), and then returns the name of the department:

stmt_str := ’UPDATE dept_new
 SET loc = :newloc
 WHERE deptno = :deptno
 RETURNING dname INTO :dname’;

This example inserts a new row for which the column values are in the PL/SQL

variables deptnumber , deptname , and location . Table 9–4 shows sample code

that accomplishes this DML returning operation using the DBMS_SQL package and

native dynamic SQL.
9-22 Application Developer’s Guide - Fundamentals

Native Dynamic SQL vs. the DBMS_SQL Package
Table 9–4 DML Returning Operation Using the DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL DML Returning Operation Native Dynamic SQL DML Returning Operation

DECLARE
 deptname_array dbms_sql.Varchar2_Table;
 cur_hdl INT;
 stmt_str VARCHAR2(200);
 location VARCHAR2(20);
 deptnumber NUMBER := 10;
 rows_processed NUMBER;
BEGIN
 stmt_str := ’UPDATE dept_new
 SET loc = :newloc
 WHERE deptno = :deptno
 RETURNING dname INTO :dname’;

 cur_hdl := dbms_sql.open_cursor;
 dbms_sql.parse
 (cur_hdl, stmt_str, dbms_sql.native);
 -- supply binds
 dbms_sql.bind_variable
 (cur_hdl, ’:newloc’, location);
 dbms_sql.bind_variable
 (cur_hdl, ’:deptno’, deptnumber);
 dbms_sql.bind_array
 (cur_hdl, ’:dname’, deptname_array);
 -- execute cursor
 rows_processed := dbms_sql.execute(cur_hdl);
 -- get RETURNING column into OUT bind array
 dbms_sql.variable_value
 (cur_hdl, ’:dname’, deptname_array);
 dbms_sql.close_cursor(cur_hdl);
END;
/

DECLARE
 deptname_array dbms_sql.Varchar2_Table;
 stmt_str VARCHAR2(200);
 location VARCHAR2(20);
 deptnumber NUMBER := 10;
 deptname VARCHAR2(20);
BEGIN
 stmt_str := ’UPDATE dept_new
 SET loc = :newloc
 WHERE deptno = :deptno
 RETURNING dname INTO :dname’;
 EXECUTE IMMEDIATE stmt_str
 USING location, deptnumber, OUT deptname;
END;
/

Dynamic SQL 9-23

Application Development Languages Other Than PL/SQL
Application Development Languages Other Than PL/SQL
So far, the discussion in this chapter has been about PL/SQL support for

dynamic SQL. However, you can use other application development languages to

implement programs that use dynamic SQL. These application development

languages include C/C++, COBOL, and Java.

If you use C/C++, you can develop applications that use dynamic SQL with the

Oracle Call Interface (OCI), or you can use the Pro*C/C++ precompiler to add

dynamic SQL extensions to your C code. Similarly, if you use COBOL, you can use

the Pro*COBOL precompiler to add dynamic SQL extensions to your COBOL code.

If you use Java, you can develop applications that use dynamic SQL with JDBC.

In the past, the only way to use dynamic SQL in PL/SQL applications was by using

the DBMS_SQL package. There are a number of limitations to using this package,

including performance concerns. Consequently, application developers may have

used one of the alternatives to PL/SQL discussed above to implement

dynamic SQL. However, with the introduction of native dynamic SQL in PL/SQL,

many of the drawbacks to using PL/SQL for dynamic SQL are now eliminated.

If you have an application that uses OCI, Pro*C/C++, or Pro*COBOL for

dynamic SQL execution, the network roundtrips required to perform dynamic SQL

operations may hurt performance. Because these applications typically reside on

clients, more network calls are required to complete dynamic SQL operations. If you

have this type of application, consider moving the dynamic SQL functionality to

stored procedures and stored functions in PL/SQL that use native dynamic SQL.

Doing so might improve the performance of your application because the stored

procedures can reside on the server, thereby eliminating the network overhead. You

can then call the PL/SQL stored procedures and stored functions from the

application.

See Also: Oracle Call Interface Programmer’s Guide, Pro*C/C++
Precompiler Programmer’s Guide, Pro*COBOL Precompiler
Programmer’s Guide, and Oracle8i Java Stored Procedures Developer’s
Guide for information about calling Oracle stored procedures and

stored functions from non-PL/SQL applications.
9-24 Application Developer’s Guide - Fundamentals

Using Procedures and Pa
10

Using Procedures and Packages

This chapter discusses some of the procedural capabilities of Oracle for application

development, including:

■ PL/SQL Program Units

■ Wrapping PL/SQL Code

■ Remote Dependencies

■ Cursor Variables

■ Compile-Time Errors

■ Run-Time Error Handling

■ Debugging

■ Calling Stored Procedures

■ Calling Remote Procedures

■ Calling Stored Functions from SQL Expressions
ckages 10-1

PL/SQL Program Units
PL/SQL Program Units
PL/SQL is a modern, block-structured programming language. It provides a

number of features that make developing powerful database applications very

convenient. For example, PL/SQL provides procedural constructs, such as loops

and conditional statements, that are not available in standard SQL.

You can directly enter SQL data manipulation language (DML) statements inside

PL/SQL blocks, and you can use procedures, supplied by Oracle, to perform data

definition language (DDL) statements.

PL/SQL code runs on the server, so using PL/SQL lets you centralize significant

parts of your database applications for increased maintainability and security. It

also enables you to achieve a significant reduction of network overhead in

client/server applications.

You can even use PL/SQL for some database applications in place of 3GL programs

that use embedded SQL or the Oracle Call Interface (OCI).

PL/SQL program units include:

■ Anonymous Blocks

■ Stored Program Units (Procedures, Functions, and Packages)

■ Triggers

Anonymous Blocks
An anonymous block is a PL/SQL program unit that has no name, and it does not

require the explicit presence of the BEGIN and END keywords to enclose the

executable statements. An anonymous block consists of an optional declarative part,

an executable part, and one or more optional exception handlers.

The declarative part declares PL/SQL variables, exceptions, and cursors. The

executable part contains PL/SQL code and SQL statements, and can contain nested

blocks. Exception handlers contain code that is called when the exception is raised,

Note: Some Oracle tools, such as Oracle Forms, contain a PL/SQL

engine, and can run PL/SQL locally.

See Also: For complete information about the PL/SQL language,

see the PL/SQL User’s Guide and Reference.
10-2 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
either as a predefined PL/SQL exception (such as NO_DATA_FOUND or ZERO_
DIVIDE) or as an exception that you define.

The following short example of a PL/SQL anonymous block prints the names of all

employees in department 20 in the Emp_tab table, using the DBMS_OUTPUT
package:

DECLARE
 Emp_name VARCHAR2(10);
 Cursor c1 IS SELECT Ename FROM Emp_tab
 WHERE Deptno = 20;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO Emp_name;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(Emp_name);
 END LOOP;
END;

Exceptions let you handle Oracle error conditions within PL/SQL program logic.

This allows your application to prevent the server from issuing an error that could

cause the client application to abend. The following anonymous block handles the

predefined Oracle exception NO_DATA_FOUND (which would result in an

ORA-01403 error if not handled):

Note: If you test this block using SQL*Plus, then enter the

statement SET SERVEROUTPUT ON, so that output using the DBMS_
OUTPUT procedures (for example, PUT_LINE) is activated. Also,

end the example with a slash (/) to activate it.

See Also: For complete information about the DBMS_OUTPUT
package, see Oracle8i Supplied Packages Reference.
Using Procedures and Packages 10-3

PL/SQL Program Units
DECLARE
 Emp_number INTEGER := 9999;
 Emp_name VARCHAR2(10);
BEGIN
 SELECT Ename INTO Emp_name FROM Emp_tab
 WHERE Empno = Emp_number; -- no such number
 DBMS_OUTPUT.PUT_LINE(’Employee name is ’ || Emp_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’No such employee: ’ || Emp_number);
END;

You can also define your own exceptions, declare them in the declaration part of a

block, and define them in the exception part of the block. An example follows:

DECLARE
 Emp_name VARCHAR2(10);
 Emp_number INTEGER;
 Empno_out_of_range EXCEPTION;
BEGIN
 Emp_number := 10001;
 IF Emp_number > 9999 OR Emp_number < 1000 THEN
 RAISE Empno_out_of_range;
 ELSE
 SELECT Ename INTO Emp_name FROM Emp_tab
 WHERE Empno = Emp_number;
 DBMS_OUTPUT.PUT_LINE(’Employee name is ’ || Emp_name);
END IF;
EXCEPTION
 WHEN Empno_out_of_range THEN
 DBMS_OUTPUT.PUT_LINE(’Employee number ’ || Emp_number ||
 ’ is out of range.’);
END;

Anonymous blocks are usually used interactively from a tool, such as SQL*Plus, or

in a precompiler, OCI, or SQL*Module application. They are usually used to call

stored procedures or to open cursor variables.

See Also: "Run-Time Error Handling" on page 10-44 and see the

PL/SQL User’s Guide and Reference.

See Also: "Cursor Variables" on page 10-38.
10-4 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
Stored Program Units (Procedures, Functions, and Packages)
A stored procedure, function, or package is a PL/SQL program unit that has the

following features:

■ Has a name.

■ Can take parameters, and can return values.

■ Is stored in the data dictionary.

■ Can be called by many users.

Naming Procedures and Functions
Because a procedure or function is stored in the database, it must be named. This

distinguishes it from other stored procedures and makes it possible for applications

to call it. Each publicly-visible procedure or function in a schema must have a

unique name, and the name must be a legal PL/SQL identifier.

Parameters for Procedures and Functions
Stored procedures and functions can take parameters. The following example

shows a stored procedure that is similar to the anonymous block in "Anonymous

Blocks" on page 10-2.

Note: The term stored procedure is sometimes used generically to

cover both stored procedures and stored functions. The only

difference between procedures and functions is that functions

always return a single value to the caller, while procedures do not

return a value to the caller.

Note: If you plan to call a stored procedure using a stub generated

by SQL*Module, then the stored procedure name must also be a

legal identifier in the calling host 3GL language, such as Ada or C.

Caution: To execute the following, use CREATE OR REPLACE
PROCEDURE...
Using Procedures and Packages 10-5

PL/SQL Program Units
PROCEDURE Get_emp_names (Dept_num IN NUMBER) IS
 Emp_name VARCHAR2(10);
 CURSOR c1 (Depno NUMBER) IS
 SELECT Ename FROM Emp_tab
 WHERE deptno = Depno;
BEGIN
 OPEN c1(Dept_num);
 LOOP
 FETCH c1 INTO Emp_name;
 EXIT WHEN C1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(Emp_name);
 END LOOP;
 CLOSE c1;
END;

In this stored procedure example, the department number is an input parameter

which is used when the parameterized cursor c1 is opened.

The formal parameters of a procedure have three major parts:

Parameter Modes Parameter modes define the behavior of formal parameters. The

three parameter modes, IN (the default), OUT, and IN OUT, can be used with any

subprogram. However, avoid using the OUT and IN OUT modes with functions. The

purpose of a function is to take no arguments and return a single value. It is poor

programming practice to have a function return multiple values. Also, functions

should be free from side effects, which change the values of variables not local to

the subprogram.

Table 10–1 summarizes the information about parameter modes.

Name This must be a legal PL/SQL identifier.

Mode This indicates whether the parameter is an input-only parameter

(IN), an output-only parameter (OUT), or is both an input and an

output parameter (IN OUT). If the mode is not specified, then IN
is assumed.

Datatype This is a standard PL/SQL datatype.

See Also: Parameter modes are explained in detail in the PL/SQL
User’s Guide and Reference.
10-6 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
Parameter Datatypes The datatype of a formal parameter consists of one of the

following:

■ An unconstrained type name, such as NUMBER or VARCHAR2.

■ A type that is constrained using the %TYPE or %ROWTYPE attributes.

%TYPE and %ROWTYPE Attributes

Use the type attributes %TYPE and %ROWTYPE to constrain the parameter. For

example, the Get_emp_names procedure specification in "Parameters for

Procedures and Functions" on page 10-5 could be written as the following:

PROCEDURE Get_emp_names(Dept_num IN Emp_tab.Deptno%TYPE)

This has the Dept_num parameter take the same datatype as the Deptno column in

the Emp_tab table. The column and table must be available when a declaration

using %TYPE (or %ROWTYPE) is elaborated.

Using %TYPE is recommended, because if the type of the column in the table

changes, then it is not necessary to change the application code.

Table 10–1 Parameter Modes

IN OUT IN OUT

The default. Must be specified. Must be specified.

Passes values to a
subprogram.

Returns values to the caller. Passes initial values to a
subprogram; returns updated
values to the caller.

Formal parameter acts like a
constant.

Formal parameter acts like an
uninitialized variable.

Formal parameter acts like an
initialized variable.

Formal parameter cannot be
assigned a value.

Formal parameter cannot be
used in an expression; must
be assigned a value.

Formal parameter should be
assigned a value.

Actual parameter can be a
constant, initialized
variable, literal, or
expression.

Actual parameter must be a
variable.

Actual parameter must be a
variable.

Note: Numerically constrained types such as NUMBER(2) or

VARCHAR2(20) are not allowed in a parameter list.
Using Procedures and Packages 10-7

PL/SQL Program Units
If the Get_emp_names procedure is part of a package, then you can use

previously-declared public (package) variables to constrain a parameter datatype.

For example:

Dept_number number(2);
...
PROCEDURE Get_emp_names(Dept_num IN Dept_number%TYPE);

Use the %ROWTYPE attribute to create a record that contains all the columns of the

specified table. The following example defines the Get_emp_rec procedure, which

returns all the columns of the Emp_tab table in a PL/SQL record for the given

empno:

PROCEDURE Get_emp_rec (Emp_number IN Emp_tab.Empno%TYPE,
 Emp_ret OUT Emp_tab%ROWTYPE) IS
BEGIN
 SELECT Empno, Ename, Job, Mgr, Hiredate, Sal, Comm, Deptno
 INTO Emp_ret
 FROM Emp_tab
 WHERE Empno = Emp_number;
END;

You could call this procedure from a PL/SQL block as follows:

DECLARE
 Emp_row Emp_tab%ROWTYPE; -- declare a record matching a
 -- row in the Emp_tab table
BEGIN
 Get_emp_rec(7499, Emp_row); -- call for Emp_tab# 7499
 DBMS_OUTPUT.PUT(Emp_row.Ename || ’ ’ || Emp_row.Empno);
 DBMS_OUTPUT.PUT(’ ’ || Emp_row.Job || ’ ’ || Emp_row.Mgr);
 DBMS_OUTPUT.PUT(’ ’ || Emp_row.Hiredate || ’ ’ || Emp_row.Sal);
 DBMS_OUTPUT.PUT(’ ’ || Emp_row.Comm || ’ ’|| Emp_row.Deptno);
 DBMS_OUTPUT.NEW_LINE;
END;

Stored functions can also return values that are declared using %ROWTYPE. For

example:

FUNCTION Get_emp_rec (Dept_num IN Emp_tab.Deptno%TYPE)
 RETURN Emp_tab%ROWTYPE IS ...

Caution: To execute the following, use CREATE OR REPLACE
PROCEDURE...
10-8 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
Tables and Records You can pass PL/SQL tables as parameters to stored procedures

and functions. You can also pass tables of records as parameters.

Default Parameter Values Parameters can take default values. Use the DEFAULT
keyword or the assignment operator to give a parameter a default value. For

example, the specification for the Get_emp_names procedure could be written as

the following:

PROCEDURE Get_emp_names (Dept_num IN NUMBER DEFAULT 20) IS ...

or

PROCEDURE Get_emp_names (Dept_num IN NUMBER := 20) IS ...

When a parameter takes a default value, it can be omitted from the actual

parameter list when you call the procedure. When you do specify the parameter

value on the call, it overrides the default value.

Creating Stored Procedures and Functions
Use your usual text editor to write the procedure or function. At the beginning of

the procedure, place the following statement:

CREATE PROCEDURE Procedure_name AS ...

For example, to use the example in "%TYPE and %ROWTYPE Attributes" on

page 10-7, create a text (source) file called get_emp .sql containing the following

code:

CREATE PROCEDURE Get_emp_rec (Emp_number IN Emp_tab.Empno%TYPE,
 Emp_ret OUT Emp_tab%ROWTYPE) AS
BEGIN
 SELECT Empno, Ename, Job, Mgr, Hiredate, Sal, Comm, Deptno
 INTO Emp_ret
 FROM Emp_tab
 WHERE Empno = Emp_number;
END;
/

Note: Unlike in an anonymous PL/SQL block, you do not use the

keyword DECLARE before the declarations of variables, cursors,

and exceptions in a stored procedure. In fact, it is an error to use it.
Using Procedures and Packages 10-9

PL/SQL Program Units
Then, using an interactive tool such as SQL*Plus, load the text file containing the

procedure by entering the following statement:

SQLPLUS> @get_emp

This loads the procedure into the current schema from the get_emp .sql file (.sql
is the default file extension). Note the slash (/) at the end of the code. This is not

part of the code; it just activates the loading of the procedure.

Use the CREATE [OR REPLACE] FUNCTION... statement to store functions.

You can use either the keyword IS or AS after the procedure parameter list.

Privileges to Create Procedures and Functions To create a stand-alone procedure or

function, or package specification or body, you must meet the following

prerequisites:

■ You must have the CREATE PROCEDURE system privilege to create a procedure

or package in your schema, or the CREATE ANY PROCEDUREsystem privilege to

create a procedure or package in another user’s schema.

If the privileges of a procedure’s or a package’s owner change, then the procedure

must be reauthenticated before it is run. If a necessary privilege to a referenced

Caution: When developing a new procedure, it is usually much
more convenient to use the CREATE OR REPLACE... PROCEDURE
statement. This replaces any previous version of that procedure
in the same schema with the newer version, but note that this is
done without warning.

See Also: See the Oracle8i Reference for the complete syntax of the

CREATE PROCEDURE and CREATE FUNCTION statements.

Note: To create without errors (to compile the procedure or

package successfully) requires the following additional privileges:

■ The owner of the procedure or package must be explicitly

granted the necessary object privileges for all objects referenced

within the body of the code.

■ The owner cannot obtain required privileges through roles.
10-10 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
object is revoked from the owner of the procedure or package, then the procedure

cannot be run.

The EXECUTE privilege on a procedure gives a user the right to run a procedure

owned by another user. Privileged users run the procedure under the security

domain of the procedure’s owner. Therefore, users never need to be granted the

privileges to the objects referenced by a procedure. This allows for more disciplined

and efficient security strategies with database applications and their users.

Furthermore, all procedures and packages are stored in the data dictionary (in the

SYSTEM tablespace). No quota controls the amount of space available to a user who

creates procedures and packages.

Altering Stored Procedures and Functions
To alter a stored procedure or function, you must first drop it using the DROP
PROCEDURE or DROP FUNCTION statement, then recreate it using the CREATE
PROCEDURE or CREATE FUNCTION statement. Alternatively, use the CREATE OR
REPLACE PROCEDURE or CREATE OR REPLACE FUNCTION statement, which first

drops the procedure or function if it exists, then recreates it as specified.

Dropping Procedures and Functions
A stand-alone procedure, a stand-alone function, a package body, or an entire

package can be dropped using the SQL statements DROP PROCEDURE, DROP
FUNCTION, DROP PACKAGE BODY, and DROP PACKAGE, respectively. A DROP
PACKAGE statement drops both a package’s specification and body.

The following statement drops the Old_sal_raise procedure in your schema:

DROP PROCEDURE Old_sal_raise;

Privileges to Drop Procedures and Functions To drop a procedure, function, or package,

the procedure or package must be in your schema, or you must have the DROP ANY
PROCEDURE privilege. An individual procedure within a package cannot be

dropped; the containing package specification and body must be re-created without

the procedures to be dropped.

See Also: "Privileges Required to Execute a Procedure" on

page 10-53.

Caution: The procedure or function is dropped without any
warning.
Using Procedures and Packages 10-11

PL/SQL Program Units
External Procedures
A PL/SQL procedure executing on an Oracle Server can call an external procedure

written in a 3GL. The 3GL procedure runs in a separate address space from that of

the Oracle Server.

PL/SQL Packages
A package is an encapsulated collection of related program objects (e.g., procedures,

functions, variables, constants, cursors, and exceptions) stored together in the

database.

Using packages is an alternative to creating procedures and functions as standalone

schema objects. Packages have many advantages over stand-alone procedures and

functions. For example, they:

■ Let you organize your application development more efficiently.

■ Let you grant privileges more efficiently.

■ Let you modify package objects without recompiling dependent schema objects.

■ Enable Oracle to read multiple package objects into memory at once.

■ Can contain global variables and cursors that are available to all procedures and

functions in the package.

■ Let you overload procedures or functions. Overloading a procedure means

creating multiple procedures with the same name in the same package, each

taking arguments of different number or datatype.

The specification part of a package declares the public types, variables, constants, and

subprograms that are visible outside the immediate scope of the package. The body
of a package defines the objects declared in the specification, as well as private

objects that are not visible to applications outside the package.

Example The following example shows a package specification for a package named

Employee_management . The package contains one stored function and two stored

procedures. The body for this package defines the function and the procedures:

See Also: For information about external procedures, see the

Chapter 11, "External Routines".

See Also: The PL/SQL User’s Guide and Reference has more

information about subprogram name overloading.
10-12 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
CREATE PACKAGE BODY Employee_management AS
 FUNCTION Hire_emp (Name VARCHAR2, Job VARCHAR2,
 Mgr NUMBER, Hiredate DATE, Sal NUMBER, Comm NUMBER,
 Deptno NUMBER) RETURN NUMBER IS
 New_empno NUMBER(10);

-- This function accepts all arguments for the fields in
-- the employee table except for the employee number.
-- A value for this field is supplied by a sequence.
-- The function returns the sequence number generated
-- by the call to this function.

 BEGIN
 SELECT Emp_sequence.NEXTVAL INTO New_empno FROM dual;
 INSERT INTO Emp_tab VALUES (New_empno, Name, Job, Mgr,
 Hiredate, Sal, Comm, Deptno);
 RETURN (New_empno);
 END Hire_emp;

 PROCEDURE fire_emp(emp_id IN NUMBER) AS

-- This procedure deletes the employee with an employee
-- number that corresponds to the argument Emp_id. If
-- no employee is found, then an exception is raised.

 BEGIN
 DELETE FROM Emp_tab WHERE Empno = Emp_id;
 IF SQL%NOTFOUND THEN
 Raise_application_error(-20011, ’Invalid Employee
 Number: ’ || TO_CHAR(Emp_id));
 END IF;
END fire_emp;

PROCEDURE Sal_raise (Emp_id IN NUMBER, Sal_incr IN NUMBER) AS

-- This procedure accepts two arguments. Emp_id is a
-- number that corresponds to an employee number.
-- SAL_INCR is the amount by which to increase the
-- employee’s salary. If employee exists, then update
-- salary with increase.

 BEGIN
 UPDATE Emp_tab
 SET Sal = Sal + Sal_incr
 WHERE Empno = Emp_id;
Using Procedures and Packages 10-13

PL/SQL Program Units
 IF SQL%NOTFOUND THEN
 Raise_application_error(-20011, ’Invalid Employee
 Number: ’ || TO_CHAR(Emp_id));
 END IF;
 END Sal_raise;
END Employee_management;

Creating Packages
Each part of a package is created with a different statement. Create the package

specification using the CREATE PACKAGE statement. The CREATE PACKAGE
statement declares public package objects.

To create a package body, use the CREATE PACKAGE BODY statement. The CREATE
PACKAGE BODY statement defines the procedural code of the public procedures and

functions declared in the package specification.

You can also define private, or local, package procedures, functions, and variables

in a package body. These objects can only be accessed by other procedures and

functions in the body of the same package. They are not visible to external users,

regardless of the privileges they hold.

It is often more convenient to add the OR REPLACE clause in the CREATE PACKAGE
or CREATE PACKAGE BODY statements when you are first developing your

application. The effect of this option is to drop the package or the package body

without warning. The CREATE statements would then be the following:

CREATE OR REPLACE PACKAGE Package_name AS ...

and

CREATE OR REPLACE PACKAGE BODY Package_name AS ...

Note: If you want to try this example, then first create the

sequence number Emp_sequence . Do this with the following

SQL*Plus statement:

SQL> CREATE SEQUENCE Emp_sequence
 > START WITH 8000 INCREMENT BY 10;
10-14 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
Creating Packaged Objects The body of a package can contain include:

■ Procedures and functions declared in the package specification.

■ Definitions of cursors declared in the package specification.

■ Local procedures and functions, not declared in the package specification.

■ Local variables.

Procedures, functions, cursors, and variables that are declared in the package

specification are global. They can be called, or used, by external users that have

EXECUTE permission for the package or that have EXECUTE ANY PROCEDURE
privileges.

When you create the package body, make sure that each procedure that you define

in the body has the same parameters, by name, datatype, and mode, as the declaration

in the package specification. For functions in the package body, the parameters and
the return type must agree in name and type.

Privileges to Create or Drop Packages The privileges required to create or drop a

package specification or package body are the same as those required to create or

drop a stand-alone procedure or function.

Naming Packages and Package Objects
The names of a package and all public objects in the package must be unique within

a given schema. The package specification and its body must have the same name.

All package constructs must have unique names within the scope of the package,

unless overloading of procedure names is desired.

Package Invalidations and Session State
Each session that references a package object has its own instance of the

corresponding package, including persistent state for any public and private

variables, cursors, and constants. If any of the session’s instantiated packages

(specification or body) are subsequently invalidated and recompiled, then all other

dependent package instantiations (including state) for the session are lost.

For example, assume that session S instantiates packages P1 and P2, and that a

procedure in package P1 calls a procedure in package P2. If P1 is invalidated and

recompiled (for example, as the result of a DDL operation), then the session S

See Also: "Privileges to Create Procedures and Functions" on

page 10-10 and "Privileges to Drop Procedures and Functions" on

page 10-11.
Using Procedures and Packages 10-15

PL/SQL Program Units
instantiations of both P1 and P2 are lost. In such situations, a session receives the

following error the first time it attempts to use any object of an invalidated package

instantiation:

ORA-04068: existing state of packages has been discarded

The second time a session makes such a package call, the package is reinstantiated

for the session without error.

In most production environments, DDL operations that can cause invalidations are

usually performed during inactive working hours; therefore, this situation might

not be a problem for end-user applications. However, if package specification or

body invalidations are common in your system during working hours, then you

might want to code your applications to detect for this error when package calls are

made.

Oracle Supplied Packages
There are many built-in packages provided with the Oracle Server, either to extend

the functionality of the database or to give PL/SQL access to SQL features. You may

take advantage of the functionality provided by these packages when creating your

application, or you may simply want to use these packages for ideas in creating

your own stored procedures.

This section lists each of the supplied packages and indicates where they are

described in more detail. These packages run as the calling user, rather than the

package owner. Unless otherwise noted, the packages are callable through public

synonyms of the same name.

Note: Oracle has been optimized to not return this message to the

session calling the package that it invalidated. Thus, in the example

above, session S receives this message the first time it called

package P2, but it does not receive it when calling P1.
10-16 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
Table 10–2 List of Oracle Supplied Packages

Package Name Description Documentation

Calendar

(see Note #2 below)

Provides calendar maintenance functions. Oracle8i Time Series User’s
Guide

DBMS_ALERT Provides support for the asynchronous
notification of database events.

Oracle8i Supplied Packages
Reference

DBMS_APPLICATION_INFO Lets you register an application name with the
database for auditing or performance tracking
purposes.

Oracle8i Supplied Packages
Reference

DBMS_AQ Lets you add a message (of a predefined object
type) onto a queue or to dequeue a message.

Oracle8i Supplied Packages
Reference

DBMS_AQADM Lets you perform administrative functions on a
queue or queue table for messages of a
predefined object type.

Oracle8i Supplied Packages
Reference

DBMS_DDL Provides access to some SQL DDL statements
from stored procedures, and provides special
administration operations not available as DDLs.

Oracle8i Supplied Packages
Reference

DBMS_DEBUG A PL/SQL API to the PL/SQL debugger layer,
Probe, in the Oracle server.

Oracle8i Supplied Packages
Reference

DBMS_DEFER Provides the user interface to a replicated
transactional deferred remote procedure call
facility. Requires the Distributed Option.

Oracle8i Supplied Packages
Reference

DBMS_DEFER_QUERY Permits querying the deferred remote procedure
calls (RPC) queue data that is not exposed
through views. Requires the Distributed Option.

Oracle8i Supplied Packages
Reference

DMBS_DEFER_SYS Provides the system administrator interface to a
replicated transactional deferred remote
procedure call facility. Requires the Distributed
Option.

Oracle8i Supplied Packages
Reference

DBMS_DESCRIBE Describes the arguments of a stored procedure
with full name translation and security checking.

Oracle8i Supplied Packages
Reference

DBMS_DISTRIBUTED_TRUST_ADMINMaintains the Trusted Database List, which is
used to determine if a privileged database link
from a particular server can be accepted.

Oracle8i Supplied Packages
Reference

DBMS_HS Lets you create and modify objects in the
Heterogeneous Services dictionary.

Oracle8i Supplied Packages
Reference
Using Procedures and Packages 10-17

PL/SQL Program Units
DBMS_HS_PASSTHROUGH Lets you use Heterogeneous Services to send
pass-through SQL statements to non-Oracle
systems.

Oracle8i Supplied Packages
Reference

DBMS_IOT Creates a table into which references to the
chained rows for an Index Organized Table can
be placed using the ANALYZE command.

Oracle8i Supplied Packages
Reference

DBMS_JOB Lets you schedule administrative procedures that
you want performed at periodic intervals; it is
also the interface for the job queue.

Oracle8i Supplied Packages
Reference

DBMS_LOB Provides general purpose routines for operations
on Oracle Large Object (LOBs) datatypes - BLOB,
CLOB (read-write), and BFILE s (read-only).

Oracle8i Supplied Packages
Reference

DBMS_LOCK Lets you request, convert and release locks
through Oracle Lock Management services.

Oracle8i Supplied Packages
Reference

DBMS_LOGMNR Provides functions to initialize and run the log
reader.

Oracle8i Supplied Packages
Reference

DBMS_LOGMNR_D Queries the dictionary tables of the current
database, and creates a text based file containing
their contents.

Oracle8i Supplied Packages
Reference

DBMS_OFFLINE_OG Provides public APIs for offline instantiation of
master groups.

Oracle8i Supplied Packages
Reference

DBMS_OFFLINE_SNAPSHOT Provides public APIs for offline instantiation of
snapshots.

Oracle8i Supplied Packages
Reference

DBMS_OLAP Provides procedures for summaries, dimensions,
and query rewrites.

Oracle8i Supplied Packages
Reference

DBMS_ORACLE_TRACE_AGENT Provides client callable interfaces to the Oracle
TRACE instrumentation within the Oracle7
Server.

Oracle8i Supplied Packages
Reference

DBMS_ORACLE_TRACE_USER Provides public access to the Oracle release 7
Server Oracle TRACE instrumentation for the
calling user.

Oracle8i Supplied Packages
Reference

DBMS_OUTPUT Accumulates information in a buffer so that it can
be retrieved out later.

Oracle8i Supplied Packages
Reference

DBMS_PCLXUTIL Provides intra-partition parallelism for creating
partition-wise local indexes.

Oracle8i Supplied Packages
Reference

Table 10–2 List of Oracle Supplied Packages

Package Name Description Documentation
10-18 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
DBMS_PIPE Provides a DBMS pipe service which enables
messages to be sent between sessions.

Oracle8i Supplied Packages
Reference

DBMS_PROFILER Provides a Probe Profiler API to profile existing
PL/SQL applications and identify performance
bottlenecks.

Oracle8i Supplied Packages
Reference

DBMS_RANDOM Provides a built-in random number generator. Oracle8i Supplied Packages
Reference

DBMS_RECTIFIER_DIFF Provides APIs used to detect and resolve data
inconsistencies between two replicated sites.

Oracle8i Supplied Packages
Reference

DBMS_REFRESH Lets you create groups of snapshots that can be
refreshed together to a transactionally consistent
point in time. Requires the Distributed Option.

Oracle8i Supplied Packages
Reference

DBMS_REPAIR Provides data corruption repair procedures. Oracle8i Supplied Packages
Reference

DBMS_REPCAT Provides routines to administer and update the
replication catalog and environment. Requires
the Replication Option.

Oracle8i Supplied Packages
Reference

DBMS_REPCAT_ADMIN Lets you create users with the privileges needed
by the symmetric replication facility. Requires the
Replication Option.

Oracle8i Supplied Packages
Reference

DBMS_REPCAT_INSTATIATE Instantiates deployment templates. Requires the
Replication Option.

Oracle8i Supplied Packages
Reference

DBMS_REPCAT_RGT Controls the maintenance and definition of
refresh group templates. Requires the Replication
Option.

Oracle8i Supplied Packages
Reference

DBMS_REPUTIL Provides routines to generate shadow tables,
triggers, and packages for table replication.

Oracle8i Supplied Packages
Reference

DBMS_RESOURCE_MANAGER Maintains plans, consumer groups, and plan
directives; it also provides semantics so that you
may group together changes to the plan schema.

Oracle8i Supplied Packages
Reference

DBMS_RESOURCE_MANAGER_PRIVSMaintains privileges associated with resource
consumer groups.

Oracle8i Supplied Packages
Reference

DBMS_RLS Provides row level security administrative
interface.

Oracle8i Supplied Packages
Reference

DBMS_ROWID Provides procedures to create ROWIDs and to
interpret their contents.

Oracle8i Supplied Packages
Reference

Table 10–2 List of Oracle Supplied Packages

Package Name Description Documentation
Using Procedures and Packages 10-19

PL/SQL Program Units
DBMS_SESSION Provides access to SQL ALTER SESSION
statements, and other session information, from
stored procedures.

Oracle8i Supplied Packages
Reference

DBMS_SHARED_POOL Lets you keep objects in shared memory, so that
they will not be aged out with the normal LRU
mechanism.

Oracle8i Supplied Packages
Reference

DBMS_SNAPSHOT

(synonym DBMS_MVIEW)

Lets you refresh snapshots that are not part of the
same refresh group and purge logs. Requires the
Distributed Option.

Oracle8i Supplied Packages
Reference

DBMS_SPACE Provides segment space information not
available through standard SQL.

Oracle8i Supplied Packages
Reference

DBMS_SPACE_ADMIN Provides tablespace and segment space
administration not available through the
standard SQL.

Oracle8i Supplied Packages
Reference

DBMS_SQL Lets you use dynamic SQL to access the database. Oracle8i Supplied Packages
Reference

DBMS_STANDARD Provides language facilities that help your
application interact with Oracle.

(see Note #1 below)

DBMS_STATS Provides a mechanism for users to view and
modify optimizer statistics gathered for database
objects.

Oracle8i Supplied Packages
Reference

DBMS_TRACE Provides routines to start and stop PL/SQL
tracing.

Oracle8i Supplied Packages
Reference

DBMS_TRANSACTION Provides access to SQL transaction statements
from stored procedures and monitors transaction
activities.

Oracle8i Supplied Packages
Reference

DBMS_TTS Checks if the transportable set is self-contained. Oracle8i Supplied Packages
Reference

DBMS_UTILITY Provides various utility routines. Oracle8i Supplied Packages
Reference

DEBUG_EXTPROC Lets you debug external procedures on platforms
with debuggers that can attach to a running
process.

Oracle8i Supplied Packages
Reference

OUTLN_PKG Provides the interface for procedures and
functions associated with management of stored
outlines.

Oracle8i Supplied Packages
Reference

Table 10–2 List of Oracle Supplied Packages

Package Name Description Documentation
10-20 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
PLITBLM Handles index-table operations. (see Note #1 below)

SDO_ADMIN

(see Note #3 below)

Provides functions implementing spatial index
creation and maintenance for spatial objects.

Oracle8i Spatial User’s
Guide and Reference

SDO_GEOM

(see Note #3 below)

Provides functions implementing geometric
operations on spatial objects.

Oracle8i Spatial User’s
Guide and Reference

SDO_MIGRATE

(see Note #3 below)

Provides functions for migrating spatial data
from release 7.3.3 and 7.3.4 to 8.1.x.

Oracle8i Spatial User’s
Guide and Reference

SDO_TUNE

(see Note #3 below)

Provides functions for selecting parameters that
determine the behavior of the spatial indexing
scheme used in the Spatial Cartridge.

Oracle8i Spatial User’s
Guide and Reference

STANDARD Declares types, exceptions, and subprograms
which are available automatically to every
PL/SQL program.

(see Note #1 below)

TimeSeries

(see Note #2 below)

Provides functions that perform operations, such
as extraction, retrieval, arithmetic, and
aggregation, on time series data.

Oracle8i Time Series User’s
Guide

TimeScale

(see Note #2 below)

Provides scaleup and scaledown functions. Oracle8i Time Series User’s
Guide

TSTools

(see Note #2 below)

Provides administrative tools procedures. Oracle8i Time Series User’s
Guide

UTL_COLL Enables PL/SQL programs to use collection
locators to query and update.

Oracle8i Supplied Packages
Reference

UTL_FILE Enables your PL/SQL programs to read and
write operating system (OS) text files and
provides a restricted version of standard OS
stream file I/O.

Oracle8i Supplied Packages
Reference

UTL_HTTP Enables HTTP callouts from PL/SQL and SQL to
access data on the Internet or to call Oracle Web
Server Cartridges.

Oracle8i Supplied Packages
Reference

UTL_PG Provides functions for converting COBOL
numeric data into Oracle numbers and Oracle
numbers into COBOL numeric data.

Oracle Procedural Gateway
for APPC User’s Guide

UTL_RAW Provides SQL functions for RAWdatatypes that
concat, substr, etc. to and from RAWS.

Oracle8i Supplied Packages
Reference

Table 10–2 List of Oracle Supplied Packages

Package Name Description Documentation
Using Procedures and Packages 10-21

PL/SQL Program Units
Bulk Binds
Oracle uses two engines to run PL/SQL blocks and subprograms: the PL/SQL

engine and the SQL engine. The PL/SQL engine runs procedural statements, while

the SQL engine runs SQL statements. During execution, every SQL statement

causes a context switch between the two engines, which results in a performance

penalty.

Performance can be improved substantially by minimizing the number of context

switches required to run a particular block or subprogram. When a SQL statement

runs inside a loop that uses collection elements as bind variables, the large number

of context switches required by the block can cause poor performance. Collections

include the following:

■ Varrays

■ Nested tables

■ Index-by tables

■ Host arrays

Binding is the assignment of values to PL/SQL variables in SQL statements. Bulk
binding is binding an entire collection at once. Without bulk binds, the elements in a

UTL_REF Enables a PL/SQL program to access an object by
providing a reference to the object.

Oracle8i Supplied Packages
Reference

Vir_Pkg

(see Note #2 below)

Provides analytical and conversion functions for
Visual Information Retrieval.

Oracle8i Visual
Information Retrieval
User’s Guide and Reference

Note #1:

The DBMS_STANDARD, STANDARD, and PLITBLM packages contain subprograms to
help implement basic language features. Oracle does not recommend that the
subprograms be directly called. For this reason, these three supplied packages are
not documented in this book.

Note #2:

Time-Series, Image, Visual Information Retrieval, Audio, and Server-Managed
Video Cartridge packages are installed in user ORDSYS without public synonyms.

Note #3:

Spatial Cartridge packages are installed in user MDSYS with public synonyms.

Table 10–2 List of Oracle Supplied Packages

Package Name Description Documentation
10-22 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
collection are sent to the SQL engine individually, whereas bulk binds pass the

entire collection back and forth between the two engines.

Using bulk binds, you can improve performance by reducing the number of context

switches required to run SQL statements that use collection elements. Typically,

using bulk binds improves performance for SQL statements that affect four or more

database rows. The more rows affected by a SQL statement, the greater the

performance gain will be with bulk binds.

When to Use Bulk Binds The following sections discuss common scenarios where bulk

binds can improve performance. If you have, or plan to have, similar scenarios in

your applications, then you should consider using bulk binds.

DML Statements Referencing Collections Bulk binds can be used to improve the

performance of DML statements that reference collections. To bulk-bind an input

collection before sending it to the SQL engine, use the FORALL keyword. The SQL

statement must be an INSERT, UPDATE, or DELETE statement that references

collection elements.

For example, the following PL/SQL block increases the salary for employees whose

manager’s ID number is 7902, 7698, or 7839, without using bulk binds:

DECLARE
 TYPE Numlist IS VARRAY (100) OF NUMBER;
 Id NUMLIST := NUMLIST(7902, 7698, 7839);
BEGIN
 FOR i IN Id.FIRST..Id.LAST LOOP
 UPDATE Emp_tab SET Sal = 1.1 * Sal
 WHERE Mgr = Id(i);
 END LOOP;
END;

Note: This section provides an overview of bulk binds to help you

decide if you should use them in your PL/SQL applications. For

detailed information about using bulk binds, see the PL/SQL User’s
Guide and Reference.

Caution: You may need to set up or drop data structures for

certain examples to work.
Using Procedures and Packages 10-23

PL/SQL Program Units
To run this block, PL/SQL sends a SQL statement to the SQL engine for each

employee that is updated. If there are many employees to update, then the large

number of context switches between the PL/SQL engine and the SQL engine can

hurt performance.

Use the FORALL keyword to bulk-bind the collection and improve performance:

DECLARE
 TYPE Numlist IS VARRAY (100) OF NUMBER;
 Id NUMLIST := NUMLIST(7902, 7698, 7839);
BEGIN
 FORALL i IN Id.FIRST..Id.LAST -- bulk-bind the VARRAY
 UPDATE Emp_tab SET Sal = 1.1 * Sal
 WHERE Mgr = Id(i);
END;

SELECT Statements Referencing Collections Bulk binds can be used to improve the

performance of SELECT statements that reference collections. To bulk-bind output

collections before returning them to the PL/SQL engine, use the keywords BULK
COLLECT INTO.

For example, the following PL/SQL block returns the employee name and job for

employees whose manager’s ID number is 7698, without using bulk binds:

DECLARE
 TYPE Var_tab IS TABLE OF VARCHAR2(20) INDEX BY BINARY_INTEGER;
 Empno VAR_TAB;
 Ename VAR_TAB;
 Counter NUMBER;
 CURSOR C IS
 SELECT Empno, Ename FROM Emp_tab WHERE Mgr = 7698;
BEGIN

-- Initialize variable tracing number of employees returned.

 counter := 1;

-- Find all employees whose manager’s ID number is 7698.

 FOR rec IN C LOOP
 Empno(Counter) := rec.Empno;
 Ename(Counter) := rec.Ename;
 Counter := Counter + 1;
 END LOOP;
END;
10-24 Application Developer’s Guide - Fundamentals

PL/SQL Program Units
PL/SQL sends a SQL statement to the SQL engine for each employee that is

selected. If there are many employees selected, then the large number of context

switches between the PL/SQL engine and the SQL engine can hurt performance.

Use the BULK COLLECT INTO keywords to bulk-bind the collection and improve

performance:

DECLARE
 TYPE Emplist IS VARRAY(100) OF NUMBER;
 Empids EMPLIST := EMPLIST(7369, 7499, 7521, 7566, 7654, 7698);
 TYPE Bonlist IS TABLE OF Emp_tab.Sal%TYPE;
 Bonlist_inst BONLIST;
BEGIN
 Bonlist_inst := BONLIST(1,2,3,4,5);
 FOR i IN Empids.FIRST..empIDs.LAST LOOP
 UPDATE Emp_tab SET Bonus = 0.1 * Sal
 WHERE empno = Empids(i)
 RETURNING Sal INTO BONLIST(i);
 END LOOP;
END;

FOR Loops that Reference Collections and the Returning Into Clause Bulk binds can be

used to improve the performance of FOR loops that reference collections and return

DML. If you have, or plan to have, PL/SQL code that does this, then you can use

the FORALL keyword along with the BULK COLLECT INTO keywords to improve

performance.

For example, the following PL/SQL block updates the Emp_tab table by

computing bonuses for a collection of employees; then it returns the bonuses in a

column called Bonlist . Both actions are performed without using bulk binds:

DECLARE
 TYPE Emplist IS VARRAY(100) OF NUMBER;
 Empids EMPLIST := EMPLIST(7369, 7499, 7521, 7566, 7654, 7698);
 TYPE Bonlist IS TABLE OF Emp_tab.sal%TYPE;
 Bonlist_inst BONLIST;
BEGIN
 Bonlist_inst := BONLIST(1,2,3,4,5);
 FOR i IN Empids.FIRST..Empids.LAST LOOP
 UPDATE Emp_tab Set Bonus = 0.1 * sal
 WHERE Empno = Empids(i)
 RETURNING Sal INTO BONLIST(i);
 END LOOP;
END;
Using Procedures and Packages 10-25

PL/SQL Program Units
PL/SQL sends a SQL statement to the SQL engine for each employee that is

updated. If there are many employees updated, then the large number of context

switches between the PL/SQL engine and the SQL engine can hurt performance.

Use the FORALL and BULK COLLECT INTO keywords together to bulk-bind the

collection and improve performance:

DECLARE
 TYPE Emplist IS VARRAY(100) OF NUMBER;
 TYPE Numlist IS TABLE OF Emp_tab.Sal%TYPE;
 Empids EMPLIST := EMPLIST(7369, 7499, 7521, 7566, 7654, 7698);
 Bonlist NUMLIST;
BEGIN
 FORALL i IN Empids.FIRST..empIDs.LAST
 UPDATE Emp_tab SET Bonus = 0.1 * Sal
 WHERE Empno = Empids(i)
 RETURNING Sal BULK COLLECT INTO Bonlist;
END;

Triggers
A trigger is a special kind of PL/SQL anonymous block. You can define triggers to

fire before or after SQL statements, either on a statement level or for each row that is

affected. You can also define INSTEAD OF triggers or system triggers (triggers on

DATABASE and SCHEMA).

See Also: Chapter 13, "Using Triggers".
10-26 Application Developer’s Guide - Fundamentals

Wrapping PL/SQL Code
Wrapping PL/SQL Code
You can deliver your stored procedures in object code format using the PL/SQL

Wrapper. Wrapping your PL/SQL code hides your application internals. To run the

PL/SQL Wrapper, enter the WRAP statement at your system prompt using the

following syntax:

wrap INAME=input_file [ONAME=ouput_file]

See Also: For complete instructions on using the PL/SQL

Wrapper, see the PL/SQL User’s Guide and Reference.
Using Procedures and Packages 10-27

Remote Dependencies
Remote Dependencies
Dependencies among PL/SQL program units can be handled in two ways:

■ Timestamps

■ Signatures

Timestamps
If timestamps are used to handle dependencies among PL/SQL program units, then

whenever you alter a program unit or a relevant schema object, all of its dependent

units are marked as invalid and must be recompiled before they can be run.

Each program unit carries a timestamp that is set by the server when the unit is

created or recompiled. Figure 10–1 demonstrates this graphically. Procedures P1
and P2 call stored procedure P3. Stored procedure P3 references table T1. In this

example, each of the procedures is dependent on table T1. P3 depends upon T1
directly, while P1 and P2 depend upon T1 indirectly.

Figure 10–1 Dependency Relationships

If P3 is altered, then P1 and P2 are marked as invalid immediately, if they are on

the same server as P3. The compiled states of P1 and P2 contain records of the

timestamp of P3. Therefore, if the procedure P3 is altered and recompiled, then the

timestamp on P3 no longer matches the value that was recorded for P3 during the

compilation of P1 and P2.

If P1 and P2 are on a client system, or on another Oracle Server in a distributed

environment, then the timestamp information is used to mark them as invalid at

runtime.

P1 P3 T1

P2
10-28 Application Developer’s Guide - Fundamentals

Remote Dependencies
Disadvantages of the Timestamp Model
The disadvantage of this dependency model is that it is unnecessarily restrictive.

Recompilation of dependent objects across the network are often performed when

not strictly necessary, leading to performance degradation.

Furthermore, on the client side, the timestamp model can lead to situations that

block an application from running at all, if the client-side application is built using

PL/SQL version 2. Earlier releases of tools, such as Oracle Forms, that used

PL/SQL version 1 on the client side did not use this dependency model, because

PL/SQL version 1 had no support for stored procedures.

For releases of Oracle Forms that are integrated with PL/SQL version 2 on the client

side, the timestamp model can present problems. For example, during the

installation of the application, the application is rendered invalid unless the

client-side PL/SQL procedures that it uses are recompiled at the client site. Also, if a

client-side procedure depends on a server procedure, and if the server procedure is

changed or automatically recompiled, then the client-side PL/SQL procedure must

then be recompiled. Yet in many application environments (such as Forms runtime

applications), there is no PL/SQL compiler available on the client. This blocks the

application from running at all. The client application developer must then

redistribute new versions of the application to all customers.

Signatures
To alleviate some of the problems with the timestamp-only dependency model,

Oracle provides the additional capability of remote dependencies using signatures.

The signature capability affects only remote dependencies. Local (same server)

dependencies are not affected, as recompilation is always possible in this

environment.

A signature is associated with each compiled stored program unit. It identifies the

unit using the following criteria:

■ The name of the unit (the package, procedure, or function name).

■ The types of each of the parameters of the subprogram.

■ The modes of the parameters (IN , OUT, IN OUT).

■ The number of parameters.

■ The type of the return value for a function.

The user has control over whether signatures or timestamps govern remote

dependencies.
Using Procedures and Packages 10-29

Remote Dependencies
When the signature dependency model is used, a dependency on a remote program

unit causes an invalidation of the dependent unit if the dependent unit contains a

call to a subprogram in the parent unit, and if the signature of this subprogram has

been changed in an incompatible manner.

For example, consider a procedure Get_emp_name stored on a server in Boston

(BOSTON_SERVER). The procedure is defined as the following:

CREATE OR REPLACE PROCEDURE Get_emp_name (
 emp_number IN NUMBER,
 hire_date OUT VARCHAR2,
 emp_name OUT VARCHAR2) AS
BEGIN
 SELECT ename, to_char(hiredate, ’DD-MON-YY’)
 INTO emp_name, hire_date
 FROM emp
 WHERE empno = emp_number;
END;

When Get_emp_name is compiled on BOSTON_SERVER, its signature, as well as its

timestamp, is recorded.

Now, assume that on another server in California, some PL/SQL code calls Get_
emp_name identifying it using a DBlink called BOSTON_SERVER, as follows:

CREATE OR REPLACE PROCEDURE print_ename (emp_number IN NUMBER) AS
 hire_date VARCHAR2(12);
 ename VARCHAR2(10);
BEGIN
 get_emp_name@BOSTON_SERVER(emp_number, hire_date, ename);
 dbms_output.put_line(ename);
 dbms_output.put_line(hire_date);
END;

See Also: "Controlling Remote Dependencies" on page 10-35.

Note: You may need to set up data structures, similar to the

following, for certain examples to work:

CONNECT system/manager
CREATE PUBLIC DATABASE LINK boston_server USING ’inst1_alias’;
CONNECT scott/tiger
10-30 Application Developer’s Guide - Fundamentals

Remote Dependencies
When this California server code is compiled, the following actions take place:

■ A connection is made to the Boston server.

■ The signature of Get_emp_name is transferred to the California server.

■ The signature is recorded in the compiled state of Print_ename .

At runtime, during the remote procedure call from the California server to the

Boston server, the recorded signature of Get_emp_name that was saved in the

compiled state of Print_ename gets sent to the Boston server, regardless of

whether or not there were any changes.

If the timestamp dependency mode is in effect, then a mismatch in timestamps

causes an error status to be returned to the calling procedure.

However, if the signature mode is in effect, then any mismatch in timestamps is

ignored, and the recorded signature of Get_emp_name in the compiled state of

Print_ename on the California server is compared with the current signature of

Get_emp_name on the Boston server. If they match, then the call succeeds. If they

do not match, then an error status is returned to the Print_name procedure.

Note that the Get_emp_name procedure on the Boston server could have been

changed. Or, its timestamp could be different from that recorded in the Print_
name procedure on the California server, possibly due to the installation of a new

release of the server. As long as the signature remote dependency mode is in effect

on the California server, a timestamp mismatch does not cause an error when Get_
emp_name is called.

When Does a Signature Change?

Datatypes A signature changes when you switch from one class of datatype to

another. Within each datatype class, there can be several types. Changing a

parameter datatype from one type to another within a class does not cause the

signature to change.

Note: DETERMINISTIC, PARALLEL_ENABLE, and purity

information do not show in the signature mode. Optimizations

based on these settings are not automatically reconsidered if a

function on a remote system is redefined with different settings.

This may lead to incorrect query results when calls to the remote

function occur, even indirectly, in a SQL statement, or if the remote

function is used, even indirectly, in a function-based index.
Using Procedures and Packages 10-31

Remote Dependencies
Table 10–3 lists the classes of types.

Modes Changing to or from an explicit specification of the default parameter mode

IN does not change the signature of a subprogram. For example, you change

PROCEDURE P1 (Param1 NUMBER);

to

PROCEDURE P1 (Param1 IN NUMBER);

Table 10–3 Datatypes

Varchar Types Number Types

VARCHAR2 NUMBER

VARCHAR INTEGER

STRING INT

LONG SMALLINT

ROWID DECIMAL

Character Types DEC

CHARACTER REAL

CHAR FLOAT

Raw Types NUMERIC

RAW DOUBLE PRECISION

LONG RAW NUMERIC

Integer Types Date Type

BINARY_INTEGER DATE

PLS_INTEGER MLS Label Type

BOOLEAN MLSLABEL

NATURAL

POSITIVE

POSITIVEN

NATURALN
10-32 Application Developer’s Guide - Fundamentals

Remote Dependencies
This does not change the signature. Any other change of parameter mode does
change the signature.

Default Parameter Values Changing the specification of a default parameter value does

not change the signature. For example, procedure P1 has the same signature in the

following two examples:

PROCEDURE P1 (Param1 IN NUMBER := 100);
PROCEDURE P1 (Param1 IN NUMBER := 200);

An application developer who requires that callers get the new default value must

recompile the called procedure, but no signature-based invalidation occurs when a

default parameter value assignment is changed.

Examples of Signatures
Using the Get_emp_names procedure defined in "Parameters for Procedures and

Functions" on page 10-5, if the procedure body is changed to the following:

DECLARE
 Emp_number NUMBER;
 Hire_date DATE;
BEGIN
-- date format model changes

 SELECT Ename, To_char(Hiredate, ’DD/MON/YYYY’)
 INTO Emp_name, Hire_date
 FROM Emp_tab
 WHERE Empno = Emp_number;
END;

Then, the specification of the procedure has not changed, and, therefore, its

signature has not changed.

But, if the procedure specification is changed to the following:

CREATE OR REPLACE PROCEDURE Get_emp_name (
 Emp_number IN NUMBER,
 Hire_date OUT DATE,
 Emp_name OUT VARCHAR2) AS

And, if the body is changed accordingly, then the signature changes, because the

parameter Hire_date has a different datatype.
Using Procedures and Packages 10-33

Remote Dependencies
However, if the name of that parameter changes to When_hired , and the datatype

remains VARCHAR2, and the mode remains OUT, then the signature does not change.

Changing the name of a formal parameter does not change the signature of the unit.

Consider the following example:

CREATE OR REPLACE PACKAGE Emp_package AS
 TYPE Emp_data_type IS RECORD (
 Emp_number NUMBER,
 Hire_date VARCHAR2(12),
 Emp_name VARCHAR2(10));
 PROCEDURE Get_emp_data
 (Emp_data IN OUT Emp_data_type);
END;

CREATE OR REPLACE PACKAGE BODY Emp_package AS
 PROCEDURE Get_emp_data
 (Emp_data IN OUT Emp_data_type) IS
 BEGIN
 SELECT Empno, Ename, TO_CHAR(Hiredate, ’DD/MON/YY’)
 INTO Emp_data
 FROM Emp_tab
 WHERE Empno = Emp_data.Emp_number;
 END;
END;

If the package specification is changed so that the record’s field names are changed,

but the types remain the same, then this does not affect the signature. For example,

the following package specification has the same signature as the previous package

specification example:

CREATE OR REPLACE PACKAGE Emp_package AS
 TYPE Emp_data_type IS RECORD (
 Emp_num NUMBER, -- was Emp_number
 Hire_dat VARCHAR2(12), -- was Hire_date
 Empname VARCHAR2(10)); -- was Emp_name
 PROCEDURE Get_emp_data
 (Emp_data IN OUT Emp_data_type);
END;

Changing the name of the type of a parameter does not cause a change in the

signature if the type remains the same as before. For example, the following

package specification for Emp_package is the same as the first one:
10-34 Application Developer’s Guide - Fundamentals

Remote Dependencies
CREATE OR REPLACE PACKAGE Emp_package AS
 TYPE Emp_data_ record _type IS RECORD (
 Emp_number NUMBER,
 Hire_date VARCHAR2(12),
 Emp_name VARCHAR2(10));
 PROCEDURE Get_emp_data
 (Emp_data IN OUT Emp_data_ record_ type);
END;

Controlling Remote Dependencies
The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE controls

whether the timestamp or the signature dependency model is in effect.

■ If the initialization parameter file contains the following specification:

REMOTE_DEPENDENCIES_MODE = TIMESTAMP

Then only timestamps are used to resolve dependencies (if this is not explicitly

overridden dynamically).

■ If the initialization parameter file contains the following parameter

specification:

REMOTE_DEPENDENCIES_MODE = SIGNATURE

Then signatures are used to resolve dependencies (if this not explicitly

overridden dynamically).

■ You can alter the mode dynamically by using the DDL statements. For example:

ALTER SESSION SET REMOTE_DEPENDENCIES_MODE =
 {SIGNATURE | TIMESTAMP}

The above example alters the dependency model for the current session.

ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE =
 {SIGNATURE | TIMESTAMP}

The above example alters the dependency model on a system-wide basis after

startup.

If the REMOTE_DEPENDENCIES_MODE parameter is not specified, either in the

init .ora parameter file or using the ALTER SESSION or ALTER SYSTEM DDL

statements, then timestamp is the default value. Therefore, unless you explicitly use

the REMOTE_DEPENDENCIES_MODE parameter, or the appropriate DDL statement,

your server is operating using the timestamp dependency model.
Using Procedures and Packages 10-35

Remote Dependencies
When you use REMOTE_DEPENDENCIES_MODE=SIGNATURE, you should be aware

of the following:

■ If you change the default value of a parameter of a remote procedure, then the

local procedure calling the remote procedure is not invalidated. If the call to the

remote procedure does not supply the parameter, then the default value is used.

In this case, because invalidation/recompilation does not automatically occur,

the old default value is used. If you want to see the new default values, then

you must recompile the calling procedure manually.

■ If you add a new overloaded procedure in a package (a new procedure with the

same name as an existing one), then local procedures that call the remote

procedure are not invalidated. If it turns out that this overloading results in a

rebinding of existing calls from the local procedure under the timestamp mode,

then this rebinding does not happen under the signature mode, because the

local procedure does not get invalidated. You must recompile the local

procedure manually to achieve the new rebinding.

■ If the types of parameters of an existing packaged procedure are changed so

that the new types have the same shape as the old ones, then the local calling

procedure is not invalidated or recompiled automatically. You must recompile

the calling procedure manually to get the semantics of the new type.

Dependency Resolution
When REMOTE_DEPENDENCIES_MODE = TIMESTAMP (the default value),

dependencies among program units are handled by comparing timestamps at

runtime. If the timestamp of a called remote procedure does not match the

timestamp of the called procedure, then the calling (dependent) unit is invalidated

and must be recompiled. In this case, if there is no local PL/SQL compiler, then the

calling application cannot proceed.

In the timestamp dependency mode, signatures are not compared. If there is a local

PL/SQL compiler, then recompilation happens automatically when the calling

procedure is run.

When REMOTE_DEPENDENCIES_MODE = SIGNATURE, the recorded timestamp in

the calling unit is first compared to the current timestamp in the called remote unit.

If they match, then the call proceeds. If the timestamps do not match, then the

signature of the called remote subprogram, as recorded in the calling subprogram,

is compared with the current signature of the called subprogram. If they do not

match (using the criteria described in the section "When Does a Signature Change?"

on page 10-31), then an error is returned to the calling session.
10-36 Application Developer’s Guide - Fundamentals

Remote Dependencies
Suggestions for Managing Dependencies
Oracle recommends that you follow these guidelines for setting the REMOTE_
DEPENDENCIES_MODE parameter:

■ Server-side PL/SQL users can set the parameter to TIMESTAMP (or let it default

to that) to get the timestamp dependency mode.

■ Server-side PL/SQL users can choose to use the signature dependency mode if

they have a distributed system and they want to avoid possible unnecessary

recompilations.

■ Client-side PL/SQL users should set the parameter to SIGNATURE. This allows:

– Installation of new applications at client sites, without the need to

recompile procedures.

– Ability to upgrade the server, without encountering timestamp mismatches.

■ When using signature mode on the server side, add new procedures to the end

of the procedure (or function) declarations in a package specification. Adding a

new procedure in the middle of the list of declarations can cause unnecessary

invalidation and recompilation of dependent procedures.
Using Procedures and Packages 10-37

Cursor Variables
Cursor Variables
A cursor is a static object; a cursor variable is a pointer to a cursor. Because cursor

variables are pointers, they can be passed and returned as parameters to procedures

and functions. A cursor variable can also refer to different cursors in its lifetime.

Some additional advantages of cursor variables include:

■ Encapsulation Queries are centralized in the stored procedure that opens the

cursor variable.

■ Ease of maintenance If you need to change the cursor, then you only need to

make the change in one place: the stored procedure. There is no need to change

each application.

■ Convenient security The user of the application is the username used when the

application connects to the server. The user must have EXECUTE permission on

the stored procedure that opens the cursor. But, the user does not need to have

READ permission on the tables used in the query. This capability can be used to

limit access to the columns in the table, as well as access to other stored

procedures.

Declaring and Opening Cursor Variables
Memory is usually allocated for a cursor variable in the client application using the

appropriate ALLOCATE statement. In Pro*C, use the EXEC SQL ALLOCATE
<cursor_name> statement. In OCI, use the Cursor Data Area.

You can also use cursor variables in applications that run entirely in a single server

session. You can declare cursor variables in PL/SQL subprograms, open them, and

use them as parameters for other PL/SQL subprograms.

Examples of Cursor Variables
This section includes several examples of cursor variable usage in PL/SQL. For

additional cursor variable examples that use the programmatic interfaces, see the

following manuals:

See Also: The PL/SQL User’s Guide and Reference has a complete

discussion of cursor variables.
10-38 Application Developer’s Guide - Fundamentals

Cursor Variables
■ Pro*C/C++ Precompiler Programmer’s Guide

■ Pro*COBOL Precompiler Programmer’s Guide

■ Oracle Call Interface Programmer’s Guide

■ SQL*Module for Ada Programmer’s Guide

Fetching Data
The following package defines a PL/SQL cursor variable type Emp_val_cv_type ,

and two procedures. The first procedure, Open_emp_cv, opens the cursor variable

using a bind variable in the WHERE clause. The second procedure, Fetch_emp_
data , fetches rows from the Emp_tab table using the cursor variable.

CREATE OR REPLACE PACKAGE Emp_data AS
 TYPE Emp_val_cv_type IS REF CURSOR RETURN Emp_tab%ROWTYPE;
 PROCEDURE Open_emp_cv (Emp_cv IN OUT Emp_val_cv_type,
 Dept_number IN INTEGER);
 PROCEDURE Fetch_emp_data (emp_cv IN Emp_val_cv_type,
 emp_row OUT Emp_tab%ROWTYPE);
END Emp_data;

CREATE OR REPLACE PACKAGE BODY Emp_data AS
 PROCEDURE Open_emp_cv (Emp_cv IN OUT Emp_val_cv_type,
 Dept_number IN INTEGER) IS
 BEGIN
 OPEN emp_cv FOR SELECT * FROM Emp_tab WHERE deptno = dept_number;
 END open_emp_cv;
 PROCEDURE Fetch_emp_data (Emp_cv IN Emp_val_cv_type,
 Emp_row OUT Emp_tab%ROWTYPE) IS
 BEGIN
 FETCH Emp_cv INTO Emp_row;
 END Fetch_emp_data;
END Emp_data;

The following example shows how to call the Emp_data package procedures from

a PL/SQL block:
Using Procedures and Packages 10-39

Cursor Variables
DECLARE
-- declare a cursor variable
 Emp_curs Emp_data.Emp_val_cv_type;
 Dept_number Dept_tab.Deptno%TYPE;
 Emp_row Emp_tab%ROWTYPE;

BEGIN
 Dept_number := 20;
-- open the cursor using a variable
 Emp_data.Open_emp_cv(Emp_curs, Dept_number);
-- fetch the data and display it
 LOOP
 Emp_data.Fetch_emp_data(Emp_curs, Emp_row);
 EXIT WHEN Emp_curs%NOTFOUND;
 DBMS_OUTPUT.PUT(Emp_row.Ename || ’ ’);
 DBMS_OUTPUT.PUT_LINE(Emp_row.Sal);
 END LOOP;
END;

Implementing Variant Records
The power of cursor variables comes from their ability to point to different cursors.

In the following package example, a discriminant is used to open a cursor variable

to point to one of two different cursors:

CREATE OR REPLACE PACKAGE Emp_dept_data AS
 TYPE Cv_type IS REF CURSOR;
 PROCEDURE Open_cv (Cv IN OUT cv_type,
 Discrim IN POSITIVE);
END Emp_dept_data;

CREATE OR REPLACE PACKAGE BODY Emp_dept_data AS
 PROCEDURE Open_cv (Cv IN OUT cv_type,
 Discrim IN POSITIVE) IS
 BEGIN
 IF Discrim = 1 THEN
 OPEN Cv FOR SELECT * FROM Emp_tab WHERE Sal > 2000;
 ELSIF Discrim = 2 THEN
 OPEN Cv FOR SELECT * FROM Dept_tab;
 END IF;
 END Open_cv;
END Emp_dept_data;

You can call the Open_cv procedure to open the cursor variable and point it to

either a query on the Emp_tab table or the Dept_tab table. The following PL/SQL
10-40 Application Developer’s Guide - Fundamentals

Cursor Variables
block shows how to fetch using the cursor variable, and then use the ROWTYPE_
MISMATCH predefined exception to handle either fetch:

DECLARE
 Emp_rec Emp_tab%ROWTYPE;
 Dept_rec Dept_tab%ROWTYPE;
 Cv Emp_dept_data.CV_TYPE;

BEGIN
 Emp_dept_data.open_cv(Cv, 1); -- Open Cv For Emp_tab Fetch
 Fetch cv INTO Dept_rec; -- but fetch into Dept_tab record
 -- which raises ROWTYPE_MISMATCH
 DBMS_OUTPUT.PUT(Dept_rec.Deptno);
 DBMS_OUTPUT.PUT_LINE(’ ’ || Dept_rec.Loc);

EXCEPTION
 WHEN ROWTYPE_MISMATCH THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE
 (’Row type mismatch, fetching Emp_tab data...’);
 FETCH Cv INTO Emp_rec;
 DBMS_OUTPUT.PUT(Emp_rec.Deptno);
 DBMS_OUTPUT.PUT_LINE(’ ’ || Emp_rec.Ename);
 END;
Using Procedures and Packages 10-41

Compile-Time Errors
Compile-Time Errors
When you use SQL*Plus to submit PL/SQL code, and when the code contains

errors, you receive notification that compilation errors have occurred, but there is

no immediate indication of what the errors are. For example, if you submit a

stand-alone (or stored) procedure PROC1 in the file proc1 .sql as follows:

SVRMGR> @proc1

And, if there are one or more errors in the code, then you receive a notice such as

the following:

MGR-00072: Warning: Procedure proc1 created with compilation errors

In this case, use the SHOW ERRORS statement in SQL*Plus to get a list of the errors

that were found. SHOW ERRORS with no argument lists the errors from the most

recent compilation. You can qualify SHOW ERRORS using the name of a procedure,

function, package, or package body:

SQL> SHOW ERRORS PROC1
SQL> SHOW ERRORS PROCEDURE PROC1

Assume that you want to create a simple procedure that deletes records from the

employee table using SQL*Plus:

CREATE OR REPLACE PROCEDURE Fire_emp(Emp_id NUMBER) AS
 BEGIN
 DELETE FROM Emp_tab WHER Empno = Emp_id;
 END
/
Notice that the CREATE PROCEDURE statement has two errors: the DELETE
statement has an error (the ’E’ is absent from WHERE), and the semicolon is missing

after END.

See Also: See the SQL*Plus User’s Guide and Reference for complete

information about the SHOW ERRORS statement.

Note: Before issuing the SHOW ERRORS statement, use the SET
CHARWIDTH statement to get long lines on output. The value 132 is

usually a good choice. For example:

SET CHARWIDTH 132
10-42 Application Developer’s Guide - Fundamentals

Compile-Time Errors
After the CREATE PROCEDUREstatement is entered and an error is returned, a SHOW
ERRORS statement returns the following lines:

SHOW ERRORS;

ERRORS FOR PROCEDURE Fire_emp:
LINE/COL ERROR
-------------- --
3/27 PL/SQL-00103: Encountered the symbol "EMPNO" wh. . .
5/0 PL/SQL-00103: Encountered the symbol "END" when . . .
2 rows selected.

Notice that each line and column number where errors were found is listed by the

SHOW ERRORS statement.

Alternatively, you can query the following data dictionary views to list errors when

using any tool or application:

■ USER_ERRORS

■ ALL_ERRORS

■ DBA_ERRORS

The error text associated with the compilation of a procedure is updated when the

procedure is replaced, and it is deleted when the procedure is dropped.

Original source code can be retrieved from the data dictionary using the following

views: ALL_SOURCE, USER_SOURCE, and DBA_SOURCE.

See Also: Oracle8i Reference for more information about these data

dictionary views.
Using Procedures and Packages 10-43

Run-Time Error Handling
Run-Time Error Handling
Oracle allows user-defined errors in PL/SQL code to be handled so that

user-specified error numbers and messages are returned to the client application.

After received, the client application can handle the error based on the

user-specified error number and message returned by Oracle.

User-specified error messages are returned using the RAISE_APPLICATION_
ERROR procedure. For example:

RAISE_APPLICATION_ERROR(Error_number , ’ text ’, Keep_error_stack)

This procedure stops procedure execution, rolls back any effects of the procedure,

and returns a user-specified error number and message (unless the error is trapped

by an exception handler). ERROR_NUMBER must be in the range of -20000 to -20999.

Error number -20000 should be used as a generic number for messages where it is

important to relay information to the user, but having a unique error number is not

required. Text must be a character expression, 2 Kbytes or less (longer messages

are ignored). Keep_error_stack can be TRUE if you want to add the error to any

already on the stack, or FALSE if you want to replace the existing errors. By default,

this option is FALSE.

The RAISE_APPLICATION_ERROR procedure is often used in exception handlers

or in the logic of PL/SQL code. For example, the following exception handler

selects the string for the associated user-defined error message and calls the RAISE_
APPLICATION_ERROR procedure:

...
WHEN NO_DATA_FOUND THEN
 SELECT Error_string INTO Message
 FROM Error_table,
 V$NLS_PARAMETERS V
 WHERE Error_number = -20101 AND Lang = v.value AND
 v.parameter = "NLS_LANGUAGE";
 Raise_application_error(-20101, Message);
...

Note: Some of the Oracle-supplied packages, such as DBMS_
OUTPUT, DBMS_DESCRIBE, and DBMS_ALERT, use application error

numbers in the range -20000 to -20005. See the descriptions of these

packages for more information.
10-44 Application Developer’s Guide - Fundamentals

Run-Time Error Handling
The following section includes an example of passing a user-specified error number

from a trigger to a procedure.

Declaring Exceptions and Exception Handling Routines
User-defined exceptions are explicitly defined and signaled within the PL/SQL

block to control processing of errors specific to the application. When an exception

is raised (signaled), the usual execution of the PL/SQL block stops, and a routine

called an exception handler is called. Specific exception handlers can be written to

handle any internal or user-defined exception.

Application code can check for a condition that requires special attention using an

IF statement. If there is an error condition, then two options are available:

■ Enter a RAISE statement that names the appropriate exception. A RAISE
statement stops the execution of the procedure, and control passes to an

exception handler (if any).

■ Call the RAISE_APPLICATION_ERROR procedure to return a user-specified

error number and message.

You can also define an exception handler to handle user-specified error messages.

For example, Figure 10–2 on page 10-46 illustrates the following:

■ An exception and associated exception handler in a procedure

■ A conditional statement that checks for an error (such as transferring funds not

available) and enters a user-specified error number and message within a

trigger

■ How user-specified error numbers are returned to the calling environment (in

this case, a procedure), and how that application can define an exception that

corresponds to the user-specified error number

Declare a user-defined exception in a procedure or package body (private

exceptions), or in the specification of a package (public exceptions). Define an

exception handler in the body of a procedure (stand-alone or package).

See Also: For information on exception handling when calling

remote procedures, see"Handling Errors in Remote Procedures" on

page 10-47.
Using Procedures and Packages 10-45

Run-Time Error Handling
Figure 10–2 Exceptions and User-Defined Errors

Unhandled Exceptions
In database PL/SQL program units, an unhandled user-error condition or internal

error condition that is not trapped by an appropriate exception handler causes the

implicit rollback of the program unit. If the program unit includes a COMMIT
statement before the point at which the unhandled exception is observed, then the

implicit rollback of the program unit can only be completed back to the previous

COMMIT.

Additionally, unhandled exceptions in database-stored PL/SQL program units

propagate back to client-side applications that call the containing program unit. In

such an application, only the application program unit call is rolled back (not the

entire application program unit), because it is submitted to the database as a SQL

statement.

If unhandled exceptions in database PL/SQL program units are propagated back to

database applications, then the database PL/SQL code should be modified to

handle the exceptions. Your application can also trap for unhandled exceptions

when calling database program units and handle such errors appropriately.

Procedure fire_emp(empid NUMBER) IS

Table EMP

 invalid_empid EXCEPTION;
 PRAGMA EXCEPTION_INIT(invalid_empid, –20101);
BEGIN
 DELETE FROM emp WHERE empno = empid;
EXCEPTION
 WHEN invlid_empid THEN
 INSERT INTO emp_audit
 VALUES (empid, ’Fired before probation ended’);
END;

TRIGGER emp_probation
BEFORE DELETE ON emp
FOR EACH ROW
BEGIN
 IF (sysdate–:old.hiredate)<30 THEN
 raise_application_error(20101,
 ’Employee’||old.ename||’ on probation’)
 END IF;
END;

Error number
returned to
calling
environment
10-46 Application Developer’s Guide - Fundamentals

Run-Time Error Handling
Handling Errors in Distributed Queries
You can use a trigger or a stored procedure to create a distributed query. This

distributed query is decomposed by the local Oracle into a corresponding number

of remote queries, which are sent to the remote nodes for execution. The remote

nodes run the queries and send the results back to the local node. The local node

then performs any necessary post-processing and returns the results to the user or

application.

If a portion of a distributed statement fails, possibly due to an integrity constraint

violation, then Oracle returns error number ORA-02055 . Subsequent statements, or

procedure calls, return error number ORA-02067 until a rollback or a rollback to

savepoint is entered.

You should design your application to check for any returned error messages that

indicates that a portion of the distributed update has failed. If you detect a failure,

then you should rollback the entire transaction (or rollback to a savepoint) before

allowing the application to proceed.

Handling Errors in Remote Procedures
When a procedure is run locally or at a remote location, four types of exceptions can

occur:

■ PL/SQL user-defined exceptions, which must be declared using the keyword

EXCEPTION.

■ PL/SQL predefined exceptions, such as NO_DATA_FOUND.

■ SQL errors, such as ORA-00900 and ORA-02015 .

■ Application exceptions, which are generated using the RAISE_APPLICATION_
ERROR() procedure.

When using local procedures, all of these messages can be trapped by writing an

exception handler, such as shown in the following example:

EXCEPTION
 WHEN ZERO_DIVIDE THEN
 /* ...handle the exception */

Notice that the WHEN clause requires an exception name. If the exception that is

raised does not have a name, such as those generated with RAISE_APPLICATION_
ERROR, then one can be assigned using PRAGMA_EXCEPTION_INIT, as shown in

the following example:
Using Procedures and Packages 10-47

Run-Time Error Handling
DECLARE
 ...
 Null_salary EXCEPTION;
 PRAGMA EXCEPTION_INIT(Null_salary, -20101);
BEGIN
 ...
 RAISE_APPLICATION_ERROR(-20101, ’salary is missing’);
 ...
EXCEPTION
 WHEN Null_salary THEN
 ...

When calling a remote procedure, exceptions are also handled by creating a local

exception handler. The remote procedure must return an error number to the local

calling procedure, which then handles the exception, as shown in the previous

example. Because PL/SQL user-defined exceptions always return ORA-06510 to

the local procedure, these exceptions cannot be handled. All other remote

exceptions can be handled in the same manner as local exceptions.
10-48 Application Developer’s Guide - Fundamentals

Debugging
Debugging
A free Java-based debugger is available from Oracle for debugging PL/SQL

applications. This is a lightweight debugger which can be run as an applet from the

Microsoft or Netscape browser, or as a stand-alone application to debug PL/SQL

stored procedures. The debugger works with Oracle 7.3.4 and higher.

If you are using PL/SQL for writing Web-based applications in conjunction with the

Applications Server, and if you would like to debug and look at the generated

HTML, you can use this debugger as well (check restrictions in the README file).

You can download the debugger from:

http://www.oracle.com/st/products/features/plsql.html

The DBMS_DEBUG API, provided with Oracle8i, implements server-side debuggers,

and it provides a way to debug server-side PL/SQL program units. Several of the

debuggers currently available, such as Oracle Procedure Builder and various

third-party vendor solutions, use this API.

Oracle Procedure Builder is an advanced client-server debugger that transparently

debugs your database applications. It lets you run PL/SQL procedures and triggers

in a controlled debugging environment, and you can set breakpoints, list the values

of variables, and perform other debugging tasks. Oracle Procedure Builder is part of

the Oracle Developer tool set.

You can also debug stored procedures and triggers using the DBMS_OUTPUT
supplied package. Put PUT and PUT_LINE statements in your code to output the

value of variables and expressions to your terminal.

See Also: Oracle Procedure Builder Developer’s Guide

See Also: See Oracle8i Supplied Packages Reference for more

information about the DBMS_DEBUG and the DBMS_OUTPUT
packages.
Using Procedures and Packages 10-49

Calling Stored Procedures
Calling Stored Procedures

Procedures can be called from many different environments. For example:

■ A procedure can be called within the body of another procedure or a trigger.

■ A procedure can be interactively called by a user using an Oracle tool.

■ A procedure can be explicitly called within an application, such as a SQL*Forms

or a precompiler application.

■ A stored function can be called from a SQL statement in a manner similar to

calling a built-in SQL function, such as LENGTH or ROUND.

This section includes some common examples of calling procedures from within

these environments.

Note: You may need to set up data structures, similar to the

following, for certain examples to work:

CREATE TABLE Emp_tab (
 Empno NUMBER(4) NOT NULL,
 Ename VARCHAR2(10),
 Job VARCHAR2(9),
 Mgr NUMBER(4),
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(7,2),
 Deptno NUMBER(2));

CREATE OR REPLACE PROCEDURE fire_emp1(Emp_id NUMBER) AS
 BEGIN
 DELETE FROM Emp_tab WHERE Empno = Emp_id;
 END;
VARIABLE Empnum NUMBER;

See Also: "Calling Stored Functions from SQL Expressions" on

page 10-57.
10-50 Application Developer’s Guide - Fundamentals

Calling Stored Procedures
A Procedure or Trigger Calling Another Procedure
A procedure or trigger can call another stored procedure. For example, included in

the body of one procedure might be the following line:

. . .
Sal_raise(Emp_id, 200);
. . .

This line calls the Sal_raise procedure. Emp_id is a variable within the context of

the procedure. Recursive procedure calls are allowed within PL/SQL: A procedure

can call itself.

Interactively Calling Procedures From Oracle Tools
A procedure can be called interactively from an Oracle tool, such as SQL*Plus. For

example, to call a procedure named SAL_RAISE, owned by you, you can use an

anonymous PL/SQL block, as follows:

BEGIN
 Sal_raise(7369, 200);
END;

An easier way to run a block is to use the SQL*Plus statement EXECUTE, which

wraps BEGIN and END statements around the code you enter. For example:

EXECUTE Sal_raise(7369, 200);

Some interactive tools allow session variables to be created. For example, when

using SQL*Plus, the following statement creates a session variable:

VARIABLE Assigned_empno NUMBER

After defined, any session variable can be used for the duration of the session. For

example, you might run a function and capture the return value using a session

variable:

EXECUTE :Assigned_empno := Hire_emp(’JSMITH’, ’President’,
 1032, SYSDATE, 5000, NULL, 10);
PRINT Assigned_empno;
ASSIGNED_EMPNO

 2893

Note: Interactive tools, such as SQL*Plus, require you to follow

these lines with a slash (/) to run the PL/SQL block.
Using Procedures and Packages 10-51

Calling Stored Procedures
Calling Procedures within 3GL Applications
A 3GL database application, such as a precompiler or an OCI application, can

include a call to a procedure within the code of the application.

To run a procedure within a PL/SQL block in an application, simply call the

procedure. The following line within a PL/SQL block calls the Fire_emp
procedure:

Fire_emp1(:Empnun);

In this case, :Empno is a host (bind) variable within the context of the application.

To run a procedure within the code of a precompiler application, you must use the

EXEC call interface. For example, the following statement calls the Fire_emp
procedure in the code of a precompiler application:

EXEC SQL EXECUTE
 BEGIN
 Fire_emp1(:Empnum);
 END;
END-EXEC;

Name Resolution When Calling Procedures
References to procedures and packages are resolved according to the algorithm

described in the "Name Resolution in SQL Statements" section of Chapter 3,

"Managing Schema Objects".

See Also: See the SQL*Plus User’s Guide and Reference for

SQL*Plus information. See your tools documentation for

information about performing similar operations using your

development tool.

See Also: For more information about calling PL/SQL

procedures from within 3GL applications, see the following

manuals:

Oracle Call Interface Programmer’s Guide

Pro*C/C++ Precompiler Programmer’s Guide,

SQL*Module for Ada Programmer’s Guide
10-52 Application Developer’s Guide - Fundamentals

Calling Stored Procedures
Privileges Required to Execute a Procedure
If you are the owner of a stand-alone procedure or package, then you can run the

stand-alone procedure or packaged procedure, or any public procedure or

packaged procedure at any time, as described in the previous sections. If you want

to run a stand-alone or packaged procedure owned by another user, then the

following conditions apply:

■ You must have the EXECUTEprivilege for the stand-alone procedure or package

containing the procedure, or you must have the EXECUTE ANY PROCEDURE
system privilege. If you are executing a remote procedure, then you must be

granted the EXECUTE privilege or EXECUTE ANY PROCEDURE system privilege

directly, not through a role.

■ You must include the owner’s name in the call. For example:

EXECUTE Jward.Fire_emp (1043);

EXECUTE Jward.Hire_fire.Fire_emp (1043);

Specifying Values for Procedure Arguments
When you call a procedure, specify a value or parameter for each of the procedure’s

arguments. Identify the argument values using either of the following methods, or a

combination of both:

■ List the values in the order the arguments appear in the procedure declaration.

■ Specify the argument names and corresponding values, in any order.

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT sys/change_on_install AS Sysdba;
CREATE USER Jward IDENTIFIED BY Jward;
GRANT CREATE ANY PACKAGE TO Jward;
GRANT CREATE SESSION TO Jward;
GRANT EXECUTE ANY PROCEDURE TO Jward;
CONNECT Scott/Tiger

Note: A stored subprogram or package runs in the privilege

domain of the owner of the procedure. The owner must be

explicitly granted the necessary object privileges to all objects

referenced within the body of the code.
Using Procedures and Packages 10-53

Calling Remote Procedures
For example, these statements each call the procedure Sal_raise to increase the

salary of employee number 7369 by 500:

Sal_raise(7369, 500);

Sal_raise(Sal_incr=>500, Emp_id=>7369);

Sal_raise(7369, Sal_incr=>500);

The first statement identifies the argument values by listing them in the order in

which they appear in the procedure specification.

The second statement identifies the argument values by name and in an order

different from that of the procedure specification. If you use argument names, then

you can list the arguments in any order.

The third statement identifies the argument values using a combination of these

methods. If you use a combination of order and argument names, then values

identified in order must precede values identified by name.

If you used the DEFAULT option to define default values for IN parameters to a

subprogram (see the PL/SQL User’s Guide and Reference),then you can pass different

numbers of actual parameters to the first subprogram, accepting or overriding the

default values as you please. If an actual value is not passed, then the

corresponding default value is used. If you want to assign a value to an argument

that occurs after an omitted argument (for which the corresponding default is used),

then you must explicitly designate the name of the argument, as well as its value.

Calling Remote Procedures
Call remote procedures using an appropriate database link and the procedure’s

name. The following SQL*Plus statement runs the procedure Fire_emp located in

the database and pointed to by the local database link named NY:

EXECUTE fire_emp1@boston_server(1043);

Remote Procedure Calls and Parameter Values
You must explicitly pass values to all remote procedure parameters, even if there

are defaults. You cannot access remote package variables and constants.

See Also: For information on exception handling when calling

remote procedures, see "Handling Errors in Remote Procedures" on

page 10-47.
10-54 Application Developer’s Guide - Fundamentals

Calling Remote Procedures
Referencing Remote Objects
Remote objects can be referenced within the body of a locally defined procedure.

The following procedure deletes a row from the remote employee table:

CREATE OR REPLACE PROCEDURE fire_emp(emp_id NUMBER) IS
BEGIN
 DELETE FROM emp@boston_server WHERE empno = emp_id;
END;

The list below explains how to properly call remote procedures, depending on the

calling environment.

■ Remote procedures (stand-alone and packaged) can be called from within a

procedure, an OCI application, or a precompiler application by specifying the

remote procedure name, a database link, and the arguments for the remote

procedure.

CREATE OR REPLACE PROCEDURE local_procedure(arg IN NUMBER) AS
BEGIN
 fire_emp1@boston_server(arg);
END;

■ In the previous example, you could create a synonym for FIRE_

EMP1@BOSTON_SERVER. This would enable you to call the remote procedure

from an Oracle tool application, such as a SQL*Forms application, as well from

within a procedure, OCI application, or precompiler application.

CREATE SYNONYM synonym1 for fire_emp1@boston_server;
CREATE OR REPLACE PROCEDURE local_procedure(arg IN NUMBER) AS
BEGIN
 synonym1(arg);
END;

■ If you do not want to use a synonym, then you could write a local cover

procedure to call the remote procedure.

DECLARE
 arg NUMBER;
BEGIN
 local_procedure(arg);
END;

Here, local_procedure is defined as in the first item of this list.
Using Procedures and Packages 10-55

Calling Remote Procedures
All calls to remotely stored procedures are assumed to perform updates; therefore,

this type of referencing always requires two-phase commit of that transaction (even

if the remote procedure is read-only). Furthermore, if a transaction that includes a

remote procedure call is rolled back, then the work done by the remote procedure is

also rolled back. A procedure called remotely cannot execute a COMMIT, ROLLBACK,
or SAVEPOINT statement.

A distributed update modifies data on two or more nodes. A distributed update is

possible using a procedure that includes two or more remote updates that access

data on different nodes. Statements in the construct are sent to the remote nodes,

and the execution of the construct succeeds or fails as a unit. If part of a distributed

update fails and part succeeds, then a rollback (of the entire transaction or to a

savepoint) is required to proceed. Consider this when creating procedures that

perform distributed updates.

Pay special attention when using a local procedure that calls a remote procedure. If

a timestamp mismatch is found during execution of the local procedure, then the

remote procedure is not run, and the local procedure is invalidated.

Synonyms for Procedures and Packages
Synonyms can be created for stand-alone procedures and packages to do the

following:

■ Hide the identity of the name and owner of a procedure or package.

■ Provide location transparency for remotely stored procedures (stand-alone or

within a package).

When a privileged user needs to call a procedure, an associated synonym can be

used. Because the procedures defined within a package are not individual objects

(the package is the object), synonyms cannot be created for individual procedures

within a package.

See Also: "Synonyms for Procedures and Packages" on page 10-56

Caution: Unlike stored procedures, which use compile-time
binding, runtime binding is used when referencing remote
procedures. The user account to which you connect depends on
the database link.
10-56 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
Calling Stored Functions from SQL Expressions
You can include user-written PL/SQL functions in SQL expressions. (You must be

using PL/SQL release 2.1 or higher.) By using PL/SQL functions in SQL statements,

you can do the following:

■ Increase user productivity by extending SQL. Expressiveness of the SQL

statement increases where activities are too complex, too awkward, or

unavailable with SQL.

■ Increase query efficiency. Functions used in the WHERE clause of a query can

filter data using criteria that would otherwise need to be evaluated by the

application.

■ Manipulate character strings to represent special datatypes (for example,

latitude, longitude, or temperature).

■ Provide parallel query execution: If the query is parallelized, then SQL

statements in your PL/SQL function may also be run in parallel (using the

parallel query option).

Using PL/SQL Functions
PL/SQL functions must be created as top-level functions or declared within a

package specification before they can be named within a SQL statement. Stored

PL/SQL functions are used in the same manner as built-in Oracle functions (such as

SUBSTR or ABS).

PL/SQL functions can be placed wherever an Oracle function can be placed within

a SQL statement, or, wherever expressions can occur in SQL. For example, they can

be called from the following:

■ The select list of the SELECT statement.

■ The condition of the WHERE and HAVING clause.

■ The CONNECT BY, START WITH, ORDER BY, and GROUP BY clauses.

■ The VALUES clause of the INSERT statement.

■ The SET clause of the UPDATE statement.

You cannot call stored PL/SQL functions from a CHECK constraint clause of a

CREATE or ALTER TABLE statement or use them to specify a default value for a

column. These situations require an unchanging definition.
Using Procedures and Packages 10-57

Calling Stored Functions from SQL Expressions
Syntax
Use the following syntax to reference a PL/SQL function from SQL:

[[schema.]package.]function_name[@dblink][(param_1...param_n)]

For example, to reference a function you created that is called My_func , in the My_
funcs_pkg package, in the Scott schema, that takes two numeric parameters, you

could call the following:

SELECT Scott.My_funcs_pkg.My_func(10,20) FROM dual;

Naming Conventions
If only one of the optional schema or package names is given, then the first

identifier can be either a schema name or a package name. For example, to

determine whether Payroll in the reference Payroll .Tax_rate is a schema or

package name, Oracle proceeds as follows:

■ Oracle first checks for the Payroll package in the current schema.

■ If the PAYROLL package is found in the current schema, then Oracle looks for a

Tax_rate function in the Payroll package. If a Tax_rate function is not

found in the Payroll package, then an error message is returned.

■ If a Payroll package is not found, then Oracle looks for a schema named

Payroll that contains a top-level Tax_rate function. If the Tax_rate
function is not found in the Payroll schema, then an error message is

returned.

You can also refer to a stored top-level function using any synonym that you have

defined for it.

Name Precedence
In SQL statements, the names of database columns take precedence over the names

of functions with no parameters. For example, if schema Scott creates the

following two objects:

Note: Unlike functions, which are called as part of an expression,

procedures are called as statements. Therefore, PL/SQL procedures

are not directly callable from SQL statements. However, functions

called from a PL/SQL statement or referenced in a SQL expression

can call a PL/SQL procedure.
10-58 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
CREATE TABLE Emp_tab(New_sal NUMBER ...);
CREATE FUNCTION New_sal RETURN NUMBER IS ...;

Then, in the following two statements, the reference to New_sal refers to the

column Emp_tab .New_sal :

SELECT New_sal FROM Emp_tab;
SELECT Emp_tab.New_sal FROM Emp_tab;

To access the function new_sal , enter the following:

SELECT Scott.New_sal FROM Emp_tab;

Example For example, to call the Tax_rate PL/SQL function from schema Scott ,

run it against the Ss_no and sal columns in Tax_table , and place the results in

the variable Income_tax , specify the following:

DECLARE
 Tax_id NUMBER;
 Income_tax NUMBER;
BEGIN
 SELECT scott.tax_rate (Ss_no, Sal)
 INTO Income_tax
 FROM Tax_table
 WHERE Ss_no = Tax_id;
END;

Note: You may need to set up data structures similar to the

following for certain examples to work:

CREATE TABLE Tax_table (
 Ss_no NUMBER,
 Sal NUMBER);

CREATE OR REPLACE FUNCTION tax_rate (ssn IN NUMBER, salary IN
NUMBER) RETURN NUMBER IS
 sal_out NUMBER;
 BEGIN
 sal_out := salary * 1.1;
 END;
Using Procedures and Packages 10-59

Calling Stored Functions from SQL Expressions
These sample calls to PL/SQL functions are allowed in SQL expressions:

Circle_area(Radius)
Payroll.Tax_rate(Empno)
scott.Payroll.Tax_rate@boston_server(Dependents, Empno)

Arguments
To pass any number of arguments to a function, supply the arguments within the

parentheses. You must use positional notation; named notation is not currently

supported. For functions that do not accept arguments, use () .

Using Default Values
The stored function Gross_pay initializes two of its formal parameters to default

values using the DEFAULT clause. For example:

CREATE OR REPLACE FUNCTION Gross_pay
 (Emp_id IN NUMBER,
 St_hrs IN NUMBER DEFAULT 40,
 Ot_hrs IN NUMBER DEFAULT 0) RETURN NUMBER AS
 ...

When calling Gross_pay from a procedural statement, you can always accept the

default value of St_hrs . This is because you can use named notation, which lets

you skip parameters. For example:

IF Gross_pay(Eenum, Ot_hrs => Otime) > Pay_limit
THEN ...

However, when calling Gross_pay from a SQL expression, you cannot accept the

default value of St_hrs , unless you accept the default value of Ot_hrs . This is

because you cannot use named notation.

Privileges
To call a PL/SQL function from SQL, you must either own or have EXECUTE
privileges on the function. To select from a view defined with a PL/SQL function,

you must have SELECT privileges on the view. No separate EXECUTE privileges are

necessary to select from the view.

Meeting Basic Requirements
To be callable from SQL expressions, a user-defined PL/SQL function must meet

the following basic requirements:
10-60 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
■ It must be a stored function, not a function defined within a PL/SQL block or

subprogram.

■ It must be a row function, not a column (group) function; in other words, it

cannot take an entire column of data as its argument.

■ All its formal parameters must be IN parameters; none can be an OUTor IN OUT
parameter.

■ The datatypes of its formal parameters must be Oracle Server internal types,

such as CHAR, DATE, or NUMBER, not PL/SQL types, such as BOOLEAN, RECORD,
or TABLE.

■ Its return type (the datatype of its result value) must be an Oracle Server

internal type.

For example, the following stored function meets the basic requirements:

CREATE FUNCTION Gross_pay
 (Emp_id IN NUMBER,
 St_hrs IN NUMBER DEFAULT 40,
 Ot_hrs IN NUMBER DEFAULT 0) RETURN NUMBER AS
 St_rate NUMBER;
 Ot_rate NUMBER;

BEGIN
 SELECT Srate, Orate INTO St_rate, Ot_rate FROM Payroll
 WHERE Acctno = Emp_id;
 RETURN St_hrs * St_rate + Ot_hrs * Ot_rate;
END Gross_pay;

Controlling Side Effects
The purity of a stored function refers to the side effects of that function on database

tables or package variables. Side effects can prevent the parallelization of a query,

yield order-dependent (and therefore, indeterminate) results, or require that

Note: You may need to set up the following data structures for

certain examples to work:

CREATE TABLE Payroll(
 Srate NUMBER
 Orate NUMBER
 Acctno NUMBER);
Using Procedures and Packages 10-61

Calling Stored Functions from SQL Expressions
package state be maintained across user sessions. Various side effects are not

allowed when a function is called from a SQL query or DML statement.

In previous releases, Oracle leveraged the PL/SQL compiler to enforce restrictions

during the compilation of a stored function or a SQL statement. In Oracle8i, the

compile-time restrictions have been relaxed, and a smaller set of restrictions are

enforced during execution.

This change provides uniform support for stored functions written in PL/SQL,

Java, and C, and it allows programmers the most flexibility possible.

PL/SQL Compilation Checking
A user-written function can now be called from a SQL statement without any

compile-time checking of its purity: PRAGMA RESTRICT_REFERENCES is no longer

required on functions called from SQL statements.

PRAGMA RESTRICT_REFERENCES remains available as a means of asking the

PL/SQL compiler to verify that a function has only the side effects that you expect.

SQL statements, package variable accesses, or calls to functions that violate the

declared restrictions will continue to raise PL/SQL compilation errors to help you

isolate the code that has unintended effects.

Because Oracle no longer requires that the pragma on functions called from SQL

statements, different applications may choose different style standards on whether

and where to use PRAGMA RESTRICT REFERENCES. An existing PL/SQL

application will most likely want to continue using the pragma even on new

functionality, to ease integration with the existing code. A newly created Java

application will most likely not want to use the pragma at all, because the Java

compiler does not have the functionality to assist in isolating unintended effects.

Restrictions
When a SQL statement is run, checks are made to see if it is logically embedded

within the execution of an already running SQL statement. This occurs if the

statement is run from a trigger or from a function that was in turn called from the

already running SQL statement. In these cases, further checks occur to determine if

the new SQL statement is safe in the specific context.

The following restrictions are enforced:

See Also: "Restrictions" on page 10-62.

See Also: "Using PRAGMA RESTRICT_REFERENCES" on

page 10-66.
10-62 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
■ A function called from a query or DML statement may not end the current

transaction, create or rollback to a savepoint, or ALTER the system or session.

■ A function called from a query (SELECT) statement or from a parallelized DML

statement may not execute a DML statement or otherwise modify the database.

■ A function called from a DML statement may not read or modify the particular

table being modified by that DML statement.

These restrictions apply regardless of what mechanism is used to run the SQL

statement inside the function or trigger. For example:

■ They apply to a SQL statement called from PL/SQL, whether embedded

directly in a function or trigger body, run using the new native dynamic

mechanism (EXECUTE IMMEDIATE), or run using the DBMS_SQL package.

■ They apply to statements embedded in Java with SQLJ syntax or run using

JDBC.

■ They apply to statements run with OCI using the callback context from within

an "external" C function.

You can avoid these restrictions if the execution of the new SQL statement is not

logically embedded in the context of the already running statement. PL/SQL’s new

autonomous transactions provide one escape. Another escape is available using

OCI from an external C function, if you create a new connection, rather than using

the handle available from the OCIExtProcContext argument.

Declaring a Function
The keywords DETERMINISTIC and PARALLEL_ENABLE can be used in the syntax

for declaring a function. These are optimization hints, informing the query

optimizer and other aspects of Oracle8i about those functions that need not be

called redundantly and about those that may be used within a parallelized query or

parallelized DML statement. Only functions that are DETERMINISTIC are allowed

in function-based indexes and in certain snapshots and materialized views.

A function that is dependent solely on the values passed into it as arguments, and

does not meaningfully reference or modify the contents of package variables or the

database, or have any other side-effects, is termed deterministic. Such a function

reliably produces the exact same result value for any particular combination of

argument values passed into it.

The DETERMINISTIC keyword is placed after the return value type in a declaration

of the function. For example:
Using Procedures and Packages 10-63

Calling Stored Functions from SQL Expressions
CREATE FUNCTION F1 (P1 NUMBER) RETURN NUMBER DETERMINISTIC IS
BEGIN
 RETURN P1 * 2;
END;

This keyword may be placed on a function defined in a CREATE FUNCTION
statement, in a function’s declaration in a CREATE PACKAGE statement, or on a

method’s declaration in a CREATE TYPE statement. It should not be repeated on the

function’s or method’s body in a CREATE PACKAGE BODY or CREATE TYPE BODY
statement.

Certain performance optimizations occur on calls to functions that are marked

DETERMINISTIC, without any other action being required. However, the database

has no reasonable way to recognize if the function’s behavior indeed is truly

deterministic. If the DETERMINISTIC keyword is applied to a function whose

behavior is not truly deterministic, then the result of queries involving that function

is unpredictable.

Two new features in Oracle8i require that any function used with them is declared

DETERMINISTIC.

■ Any function used in a function-based index is required to be DETERMINISTIC.

■ Any function used in a materialized view must be DETERMINISTIC if that

view is to be marked ENABLE QUERY REWRITE.

Both of these features attempt to use previously calculated results rather than

calling the function when it is possible to do so.

It is also preferable that only functions declared DETERMINISTIC are used in any

materialized view or snapshot that is declared REFRESH FAST. Oracle allows in

REFRESH FAST snapshots those functions that have a PRAGMA RESTRICT_
REFERENCES noting that they are RNDS, and those PL/SQL functions defined with

a CREATE FUNCTIONstatement whose code can be examined to determine that they

do not read the database nor call any other routine which might, as these have been

allowed historically.

Functions that are used in a WHERE, ORDER BY, or GROUP BY clause, are MAP or

ORDERmethods of a SQL type, or in any other way are part of determining whether

or where a row should appear in a result set also should be DETERMINISTIC as

discussed above. Oracle cannot require that they be explicitly declared

DETERMINISTIC without breaking existing applications, but the use of the

keyword might be a wise choice of style within your application.
10-64 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
Parallel Query/Parallel DML
Oracle’s parallel execution feature divides the work of executing a SQL statement

across multiple processes. Functions called from a SQL statement which is run in

parallel may have a separate copy run in each of these processes, with each copy

called for only the subset of rows that are handled by that process.

Each process has its own copy of package variables. When parallel execution

begins, these are initialized based on the information in the package specification

and body as if a new user is logging into the system; the values in package variables

are not copied from the original login session. And changes made to package

variables are not automatically propagated between the various sessions or back to

the original session. Java STATIC class attributes are similarly initialized and

modified independently in each process. Because a function can use package (or

Java STATIC) variables to accumulate some value across the various rows it

encounters, Oracle cannot assume that it is safe to parallelize the execution of all

user-defined functions.

For query (SELECT) statements, in previous releases, the parallel query

optimization looked to see if a function was noted as RNPS and WNPS in a PRAGMA
RESTRICT_REFERENCES declaration; those functions that were marked as both

RNPS and WNPS could be run in parallel. Functions defined with a CREATE
FUNCTION statement had their code implicitly examined to determine if they were

actually pure enough; parallelized execution might occur even though a pragma

cannot be specified on these functions.

For DML statements, in previous releases, the parallelization optimization looked to

see if a function was noted as having all four of RNDS, WNDS, RNPS and WNPS
specified in a PRAGMA RESTRICT_REFERENCES declaration; those functions that

were marked as neither reading nor writing to either the database or package

variables could run in parallel. Again, those functions defined with a CREATE
FUNCTION statement had their code implicitly examined to determine if they were

actually pure enough; parallelized execution might occur even though a pragma

cannot be specified on these functions.

In Oracle8i, we continue to parallelize those functions that Oracle7 and Oracle8

would recognize as parallelizable. In addition, a new keyword, PARALLEL_
ENABLE, has been added. This is the preferred way now for users to mark their

code as safe for parallel execution. This keyword is syntactically similar to

See Also: "Using PRAGMA RESTRICT_REFERENCES" on

page 10-66.
Using Procedures and Packages 10-65

Calling Stored Functions from SQL Expressions
DETERMINISTIC as described above; it is placed after the return value type in a

declaration of the function, as in:

CREATE FUNCTION F1 (P1 NUMBER) RETURN NUMBER PARALLEL_ENABLE IS
BEGIN
 RETURN P1 * 2;
END;

This keyword may be placed on a function defined in a CREATE FUNCTION
statement, in a function’s declaration in a CREATE PACKAGE statement, or on a

method’s declaration in a CREATE TYPE statement. It should not be repeated on the

function’s or method’s body in a CREATE PACKAGE BODY or CREATE TYPE BODY
statement.

Note that a PL/SQL function that is defined with CREATE FUNCTION may still be

run in parallel without any explicit declaration that it is safe to do so, if the system

can determine that it neither reads nor writes package variables nor calls any

function that might do so. A Java method or C function is never seen by the system

as safe to run in parallel unless the programmer explicitly indicates PARALLEL_
ENABLE on the "call specification" or provides a PRAGMA RESTRICT_REFERENCES
indicating that the function is sufficiently pure.

An additional runtime restriction is imposed on functions run in parallel as part of a

parallelized DML statement. Such a function is not permitted to in turn execute a

DML statement; it is subject to the same restrictions that are enforced on functions

that are run inside a query (SELECT) statement.

Using PRAGMA RESTRICT_REFERENCES
To assert the purity level, code the pragma RESTRICT_REFERENCESin the package

specification (not in the package body). The pragma must follow the function

declaration, but it does not need to follow it immediately. Only one pragma can

reference a given function declaration.

To code the pragma RESTRICT_REFERENCES, use the following syntax:

PRAGMA RESTRICT_REFERENCES (
 Function_name, WNDS [, WNPS] [, RNDS] [, RNPS] [, TRUST]);

Where:

See Also: "Restrictions" on page 10-62.
10-66 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
You can pass the arguments in any order. If any SQL statement inside the function

body violates a rule, then you get an error when the statement is parsed.

In the example below, the function compound neither reads nor writes database or

package state; therefore, you can assert the maximum purity level. Always assert

the highest purity level that a function allows. That way, the PL/SQL compiler

never rejects the function unnecessarily.

CREATE PACKAGE Finance AS -- package specification
 FUNCTION Compound
 (Years IN NUMBER,
 Amount IN NUMBER,
 Rate IN NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (Compound, WNDS, WNPS, RNDS, RNPS);
END Finance;

CREATE PACKAGE BODY Finance AS --package body
 FUNCTION Compound
 (Years IN NUMBER,
 Amount IN NUMBER,
 Rate IN NUMBER) RETURN NUMBER IS

WNDS Writes no database state (does not modify database tables).

RNDS Reads no database state (does not query database tables).

WNPS Writes no package state (does not change the values of packaged

variables).

RNPS Reads no package state (does not reference the values of packaged

variables).

TRUST Allows easy calling from functions that do have RESTRICT_
REFERENCES declarations to those that do not.

Note: You may need to set up the following data structures for

certain examples to work:

CREATE TABLE Accts (
 Yrs NUMBER
 Amt NUMBER
 Acctno NUMBER
 Rte NUMBER);
Using Procedures and Packages 10-67

Calling Stored Functions from SQL Expressions
 BEGIN
 RETURN Amount * POWER((Rate / 100) + 1, Years);
 END Compound;
 -- no pragma in package body
END Finance;

Later, you might call compound from a PL/SQL block, as follows:

DECLARE
 Interest NUMBER;
 Acct_id NUMBER;
BEGIN
 SELECT Finance.Compound(Yrs, Amt, Rte) -- function call
 INTO Interest
 FROM Accounts
 WHERE Acctno = Acct_id;

Using the Keyword TRUST The keyword TRUST in the RESTRICT_REFERENCES
syntax allows easy calling from functions that have RESTRICT_REFERENCES
declarations to those that do not. When TRUST is present, the restrictions listed in

the pragma are not actually enforced, but rather are simply trusted to be true.

When calling from a section of code that is using pragmas to one that is not, there

are two likely usage styles. One is to place a pragma on the routine to be called, for

example on a "call specification" for a Java method. Then, calls from PL/SQL to this

method will complain if the method is less restricted than the calling function. For

example:

CREATE OR REPLACE PACKAGE P1 IS
 FUNCTION F1 (P1 NUMBER) RETURN NUMBER IS
 LANGUAGE JAVA NAME ’CLASS1.METHODNAME(int) return int’;
 PRAGMA RESTRICT_REFERENCES(F1,WNDS,TRUST);
 FUNCTION F2 (P1 NUMBER) RETURN NUMBER;

 PRAGMA RESTRICT_REFERENCES(F2,WNDS);
END;

CREATE OR REPLACE PACKAGE BODY P1 IS
 FUNCTION F2 (P1 NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN F1(P1);
 END;
END;

Here, F2 can call F1, as F1 has been declared to be WNDS.
10-68 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
The other approach is to mark only the caller, which may then make a call to any

function without complaint. For example:

CREATE OR REPLACE PACKAGE P1a IS
 FUNCTION F1 (P1 NUMBER) RETURN NUMBER IS
 LANGUAGE JAVA NAME ’CLASS1.METHODNAME(int) return int’;
 FUNCTION F2 (P1 NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES(F2,WNDS,TRUST);
END;

CREATE OR REPLACE PACKAGE BODY P1a IS
 FUNCTION F2 (P1 NUMBER) RETURN NUMBER IS
 BEGIN
 RETURN F1(P1);
 END;
END;

Here, F2 can call F1 because while F2 is promised to be WNDS (because TRUST is
specified), the body of F2 is not actually examined to determine if it truly satisfies

the WNDS restriction. Because F2 is not examined, its call to F1 is allowed, even

though there is no PRAGMA RESTRICT_REFERENCES for F1.

Differences between Static and Dynamic SQL Statements. Static INSERT, UPDATE, and

DELETE statements do not violate RNDS if these statements do not explicitly read

any database states, such as columns of a table. However, dynamic INSERT,

UPDATE, and DELETE statements always violate RNDS, regardless of whether or not

the statements explicitly read database states.

The following INSERT violates RNDS if it’s executed dynamically, but it does not
violate RNDS if it’s executed statically.

INSERT INTO my_table values(3, ’SCOTT’);

The following UPDATE always violates RNDS statically and dynamically, because it

explicitly reads the column name of my_table .

UPDATE my_table SET id=777 WHERE name=’SCOTT’;

Overloading
PL/SQL lets you overload packaged (but not stand-alone) functions. You can use the

same name for different functions if their formal parameters differ in number, order,

or datatype family.
Using Procedures and Packages 10-69

Calling Stored Functions from SQL Expressions
However, a RESTRICT_REFERENCES pragma can apply to only one function

declaration. Therefore, a pragma that references the name of overloaded functions

always applies to the nearest foregoing function declaration.

In the following example, the pragma applies to the second declaration of valid :

CREATE PACKAGE Tests AS
 FUNCTION Valid (x NUMBER) RETURN CHAR;
 FUNCTION Valid (x DATE) RETURN CHAR;
 PRAGMA RESTRICT_REFERENCES (valid, WNDS);
 END;

Serially Reusable PL/SQL Packages
PL/SQL packages usually consume user global area (UGA) memory corresponding

to the number of package variables and cursors in the package. This limits

scalability, because the memory increases linearly with the number of users. The

solution is to allow some packages to be marked as SERIALLY_REUSABLE (using

pragma syntax).

For serially reusable packages, the package global memory is not kept in the UGA

per user; rather, it is kept in a small pool and reused for different users. This means

that the global memory for such a package is only used within a unit of work. At

the end of that unit of work, the memory can therefore be released to the pool to be

reused by another user (after running the initialization code for all the global

variables).

The unit of work for serially reusable packages is implicitly a call to the server; for

example, an OCI call to the server, or a PL/SQL client-to-server RPC call, or a

server-to-server RPC call.

Package States
The state of a nonreusable package (one not marked SERIALLY_REUSABLE)
persists for the lifetime of a session. A package’s state includes global variables,

cursors, and so on.

The state of a serially reusable package persists only for the lifetime of a call to the

server. On a subsequent call to the server, if a reference is made to the serially

reusable package, then Oracle creates a new instantiation (described below) of the

serially reusable package and initializes all the global variables to NULL or to the

default values provided. Any changes made to the serially reusable package state in

the previous calls to the server are not visible.
10-70 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
Why Serially Reusable Packages?
Because the state of a non-reusable package persists for the lifetime of the session,

this locks up UGA memory for the whole session. In applications, such as Oracle

Office, a log-on session can typically exist for days together. Applications often need

to use certain packages only for certain localized periods in the session and would

ideally like to de-instantiate the package state in the middle of the session, after

they are done using the package.

With SERIALLY_REUSABLE packages, application developers have a way of

modelling their applications to manage their memory better for scalability. Package

state that they care about only for the duration of a call to the server should be

captured in SERIALLY_REUSABLE packages.

Syntax
A package can be marked serially reusable by a pragma. The syntax of the pragma

is:

PRAGMA SERIALLY_REUSABLE;

A package specification can be marked serially reusable, whether or not it has a

corresponding package body. If the package has a body, then the body must have

the serially reusable pragma, if its corresponding specification has the pragma; it

cannot have the serially reusable pragma unless the specification also has the

pragma.

Note: Creating a new instantiation of a serially reusable package

on a call to the server does not necessarily imply that Oracle

allocates memory or configures the instantiation object. Oracle

simply looks for an available instantiation work area (which is

allocated and configured) for this package in a least-recently used

(LRU) pool in SGA.

At the end of the call to the server, this work area is returned back

to the LRU pool. The reason for keeping the pool in the SGA is that

the work area can be reused across users who have requests for the

same package.
Using Procedures and Packages 10-71

Calling Stored Functions from SQL Expressions
Semantics
A package that is marked SERIALLY_REUSABLE has the following properties:

■ Its package variables are meant for use only within the work boundaries, which

correspond to calls to the server (either OCI call boundaries or PL/SQL RPC

calls to the server).

■ A pool of package instantiations is kept, and whenever a "unit of work" needs

this package, one of the instantiations is "reused", as follows:

– The package variables are reinitialized (for example, if the package

variables have default values, then those values are reinitialized).

– The initialization code in the package body is run again.

■ At the "end work" boundary, cleanup is done.

– If any cursors were left open, then they are silently closed.

– Some non-reusable secondary memory is freed (such as memory for

collection variables or long VARCHAR2s).

– This package instantiation is returned back to the pool of reusable

instantiations kept for this package.

■ Serially reusable packages cannot be accessed from within triggers. If you

attempt to access a serially reusable package from a trigger, then Oracle issues

the error message "cannot access Serially Reusable package <string> in the

context of a trigger."

Note: If the application programmer makes a mistake and

depends on a package variable that is set in a previous unit of

work, then the application program can fail. PL/SQL cannot check

for such cases.
10-72 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
Examples

Example 1 This example has a serially reusable package specification (there is no

body). It demonstrates how package variables act across call boundaries.

CONNECT Scott/Tiger

CREATE OR REPLACE PACKAGE Sr_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 N NUMBER := 5; -- default initialization
END Sr_pkg;

Suppose your Enterprise Manager (or SQL*Plus) application issues the following:

CONNECT Scott/Tiger

first CALL to server
BEGIN
 Sr_pkg.N := 10;
END;

second CALL to server
BEGIN
 DBMS_OUTPUT.PUT_LINE(Sr_pkg.N);
END;

The above program prints:

5

Example 2 This example has both a package specification and package body, which

are serially reusable. Like Example 1, this example demonstrates how the package

variables act across call boundaries.

CONNECT Scott/Tiger

DROP PACKAGE Sr_pkg;
CREATE OR REPLACE PACKAGE Sr_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 TYPE Str_table_type IS TABLE OF VARCHAR2(200) INDEX BY BINARY_INTEGER;
 Num NUMBER := 10;

Note: If the package had not had the pragma SERIALLY_
REUSABLE, then the program would have printed '10'.
Using Procedures and Packages 10-73

Calling Stored Functions from SQL Expressions
 Str VARCHAR2(200) := 'default-init-str';
 Str_tab STR_TABLE_TYPE;

 PROCEDURE Print_pkg;
 PROCEDURE Init_and_print_pkg(N NUMBER, V VARCHAR2);
END Sr_pkg;
CREATE OR REPLACE PACKAGE BODY Sr_pkg IS
 -- the body is required to have the pragma because the
 -- specification of this package has the pragma
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE Print_pkg IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('num: ' || Sr_pkg.Num);
 DBMS_OUTPUT.PUT_LINE('str: ' || Sr_pkg.Str);
 DBMS_OUTPUT.PUT_LINE('number of table elems: ' || Sr_pkg.Str_tab.Count);
 FOR i IN 1..Sr_pkg.Str_tab.Count LOOP
 DBMS_OUTPUT.PUT_LINE(Sr_pkg.Str_tab(i));
 END LOOP;
 END;
 PROCEDURE Init_and_print_pkg(N NUMBER, V VARCHAR2) IS
 BEGIN
 -- init the package globals
 Sr_pkg.Num := N;
 Sr_pkg.Str := V;
 FOR i IN 1..n LOOP
 Sr_pkg.Str_tab(i) := V || ' ' || i;
 END LOOP;
 -- now print the package
 Print_pkg;
 END;
 END Sr_pkg;

SET SERVEROUTPUT ON;

Rem SR package access in a CALL:

BEGIN
 -- initialize and print the package
 DBMS_OUTPUT.PUT_LINE('Initing and printing pkg state..');
 Sr_pkg.Init_and_print_pkg(4, 'abracadabra');
 -- print it in the same call to the server.
 -- we should see the initialized values.
 DBMS_OUTPUT.PUT_LINE('Printing package state in the same CALL...');
 Sr_pkg.Print_pkg;
END;
10-74 Application Developer’s Guide - Fundamentals

Calling Stored Functions from SQL Expressions
Initing and printing pkg state..
num: 4
str: abracadabra
number of table elems: 4
abracadabra 1
abracadabra 2
abracadabra 3
abracadabra 4
Printing package state in the same CALL...
num: 4
str: abracadabra
number of table elems: 4
abracadabra 1
abracadabra 2
abracadabra 3
abracadabra 4

REM SR package access in subsequent CALL:
BEGIN
 -- print the package in the next call to the server.
 -- We should that the package state is reset to the initial (default) values.
 DBMS_OUTPUT.PUT_LINE('Printing package state in the next CALL...');
 Sr_pkg.Print_pkg;
END;
Statement processed.
Printing package state in the next CALL...
num: 10
str: default-init-str
number of table elems: 0

Example 3 This example demonstrates that any open cursors in serially reusable

packages get closed automatically at the end of a work boundary (which is a call).

Also, in a new call, these cursors need to be opened again.

REM For serially reusable pkg: At the end work boundaries
REM (which is currently the OCI call boundary) all open
REM cursors will be closed.
REM
REM Because the cursor is closed - every time we fetch we
REM will start at the first row again.

CONNECT Scott/Tiger
DROP PACKAGE Sr_pkg;
DROP TABLE People;
Using Procedures and Packages 10-75

Calling Stored Functions from SQL Expressions
CREATE TABLE People (Name VARCHAR2(20));
INSERT INTO People VALUES ('ET');
INSERT INTO People VALUES ('RAMBO');
CREATE OR REPLACE PACKAGE Sr_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 CURSOR C IS SELECT Name FROM People;
END Sr_pkg;
SQL> SET SERVEROUTPUT ON;
SQL>
CREATE OR REPLACE PROCEDURE Fetch_from_cursor IS
Name VARCHAR2(200);
BEGIN
 IF (Sr_pkg.C%ISOPEN) THEN
 DBMS_OUTPUT.PUT_LINE('cursor is already open.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('cursor is closed; opening now.');
 OPEN Sr_pkg.C;
 END IF;
 -- fetching from cursor.
 FETCH sr_pkg.C INTO name;
 DBMS_OUTPUT.PUT_LINE('fetched: ' || Name);
 FETCH Sr_pkg.C INTO name;
 DBMS_OUTPUT.PUT_LINE('fetched: ' || Name);
 -- Oops forgot to close the cursor (Sr_pkg.C).
 -- But, because it is a Serially Reusable pkg's cursor,
 -- it will be closed at the end of this CALL to the server.
END;
EXECUTE fetch_from_cursor;
cursor is closed; opening now.
fetched: ET
fetched: RAMBO
10-76 Application Developer’s Guide - Fundamentals

Extern
11

External Routines

The Need to Work with Multiple Languages
Oracle offers you the possibility of working in different languages:

■ PL/SQL, as described in the PL/SQL User’s Guide and Reference

■ C, by means of the Oracle Call Interface (OCI), as described in the Oracle Call
Interface Programmer’s Guide

■ C++, by means of the Pro*C/C++ precompiler, as described in the Pro*C/C++
Precompiler Programmer’s Guide

■ COBOL, by means of the Pro*COBOL precompiler, as described in the

Pro*COBOL Precompiler Programmer’s Guide

■ Visual Basic, by means of Oracle Objects For OLE (OO4O), as described in the

Oracle Objects for OLE/ActiveX Programmer’s Guide

■ Java, by means of the JDBC Application Programmers Interlace (API), as

described in Oracle8 Database Programming with Java.

How should you choose between these different implementation possibilities? Each

of these languages offers different advantages: Ease of use, the availability of

programmers with specific expertise, the need for portability, and the existence of

legacy code are powerful determinants.

Note: This guide is not yet available in book form.

Note: This guide is not yet available in book form.
al Routines 11-1

The Need to Work with Multiple Languages
However, the choice may narrow depending on how your application needs to

work with the Oracle ORDBMS:

■ PL/SQL is a powerful development tool, specialized for SQL transaction

processing.

■ Some computation-intensive tasks are executed most efficiently in a lower level

language, such as C.

■ The need for portability, together with the need for security, may influence you

to select Java.

Most significantly, from the point of view of performance, you should note that only

PL/SQL and Java methods run within the address space of the server. C/C++

methods are dispatched as external procedures, and run on the server but outside

the address space of the server. Pro*COBOL and Pro*C are precompilers, and Visual

Basic accesses Oracle via the OCI, which is implemented in C.

Taking all these factors into account suggests that there may be a number of

situations in which you may need to implement your application in more than one

language. For instance, the introduction of Java running within the address space of

the server suggest that you may want to import existing Java applications into the

database, and then leverage this technology by calling Java functions from PL/SQL

and SQL.

Until Oracle 8.0, the Oracle RDBMS supported SQL and the stored procedure

language PL/SQL. In Oracle 8.0, PL/SQL introduced external procedures, which

allowed the capability of writing C functions as PL/SQL bodies. These C functions

are callable from PL/SQL and SQL (via PL/SQL). With 8.1, Oracle provides a

special-purpose interface, the call specification, that lets you call external routines
from other languages. While this service is designed for intercommunication

between SQL, PL/SQL, C, and Java, it is accessible from any base language that can

call these languages. For example, your routine can be written in a language other

than Java or C and still be usable by SQL or PL/SQL, provided that is callable by C.

Therefore, if you have a candidate C++ routine, you would use a C++ extern "C"

statement in that routine to make it callable by C.

This means that the strengths and capabilities of different languages are available to

you, irrespective of your programmatic environment: You are not restricted to one

language with its inherent limitations. The use of external routines promotes

Note: Java functionality is not available with this release.
11-2 Application Developer’s Guide - Fundamentals

The Call Specification
reusability and modularity because you can deploy specific languages for specific

purposes.

What is an External Routine?
An external routine, previously referred to as an external procedure, is a routine stored

in a dynamic link library (DLL), or libunit in the case of a Java class method. You

register the routine with the base language, and then call it to perform

special-purpose processing.

For instance, if you are working in PL/SQL, then the language loads the library

dynamically at runtime, and then calls the routine as if it were a PL/SQL

subprogram. These routines participate fully in the current transaction and can ’call

back’ to the database to perform SQL operations.

The routines are loaded only when necessary, so memory is conserved. The

decoupling of the call specification from its implementation body means that the

routines can be enhanced without affecting the calling programs.

External routines let you:

■ Move computation-bound programs from client to server where they execute

faster (because they avoid the roundtrips entailed in across-network

communication)

■ Interface the database server with external systems and data sources

■ Extend the functionality of the database server itself

The Call Specification
Until now, you published an external routine to Oracle via an AS EXTERNAL clause

in a PL/SQL wrapper. This wrapper defined the mapping to, and allowed the

calling of, external C routines. Oracle 8.1 introduces call specifications, which

include the AS EXTERNAL wrapper as a subset of the new AS LANGUAGE clause. AS
LANGUAGE call specifications allow the publishing of external C routines, as before,

but also Java class methods.
External Routines 11-3

Loading External Routines
In general, call specifications enable:

■ Dispatching the appropriate C or Java target routine

■ Datatype conversions

■ Parameter mode mappings

■ Automatic memory allocation and cleanup

■ Purity constraints to be specified, where necessary, for packaged functions

called from SQL.

■ Calling Java methods or C routines from database triggers

■ Location flexibility: You can put AS LANGUAGE call specifications in package or

type specifications, or package (or type) bodies to optimize performance and

hide implementation details

To use an already-existing program as an external routine, load, publish, and then

call it.

Loading External Routines
To make your external C routines or Java methods available to PL/SQL, you must

first load them. The manner of doing this depends upon whether the routine is

written in C or Java.

Loading Java Class Methods
One way to load Java programs is to use the CREATE JAVA statement, which you

can execute interactively from SQL*Plus. When implicitly invoked by the CREATE
JAVA statement, the Java Virtual Machine (JVM)] library manager loads Java

Note: Call specifications also allow you to publish with the AS
EXTERNAL clause, introduced in Oracle 8.0. For new applications,

however, you should use the AS LANGUAGE clause.

See Also: Oracle8i Java Stored Procedures Developer’s Guide

For help in creating a DLL, look in the RDBMS subdirectory /public,

where a template makefile can be found.
11-4 Application Developer’s Guide - Fundamentals

Loading External Routines
binaries (.class files) and resources from local BFILE s or LOB columns into

RDBMS libunits.

Suppose a compiled Java class is stored in the following OS file:

/home/java/bin/Agent.class

Creating a class libunit in schema scott from file Agent.class requires two

steps: First, create a directory object on the server’s file system. The name of the

directory object is an alias for the directory path leading to Agent .class .

To create the directory object, you must grant user scott the CREATE ANY
DIRECTORY privilege, then execute the CREATE DIRECTORY statement, as follows:

CONNECT System/Manager
GRANT CREATE ANY DIRECTORY TO Scott IDENTIFIED BY Tiger;
CONNECT Scott/Tiger
CREATE DIRECTORY Bfile_dir AS ’/home/java/bin’;

Now, you are ready to create the class libunit, as follows:

CREATE JAVA CLASS USING BFILE (Bfile_dir, ’Agent.class’);

The name of the libunit is derived from the name of the class.

Alternatively, you can use the command-line utility LoadJava . This uploads Java

binaries and resources into a system-generated database table, then uses the

CREATE JAVA statement to load the Java files into RDBMS libunits. You can upload

Java files from OS file systems, Java IDEs, intranets, or the Internet.

Loading External C Routines
In order to set up to use external routines written in C, or callable by C, you and

your DBA take the following steps:

1. Set Up the Environment
Your DBA sets up the environment for calling external routines by adding entries to

the files tnsname .ora and listener .ora and by starting a Listener process

exclusively for external routines.

See Also: Oracle8i Java Stored Procedures Developer’s Guide

Note: This feature is available only on platforms that support DLLs or

dynamically loadable shared libraries such as Solaris .so libraries.
External Routines 11-5

Loading External Routines
The Listener sets a few required environment variables (such as ORACLE_HOME,

ORACLE_SID, and LD_LIBRARY_PATH) for extproc . Otherwise, it provides

extproc with a "clean" environment. The environment variables set for extproc
are independent of those set for the client, server, and Listener. Therefore, external

routines, which run in the extproc process, cannot read environment variables set

for the client, server, or Listener process.

2. Identify the DLL
In this context, a DLL is any dynamically loadable operating-system file that stores

external routines.

For safety, your DBA controls access to the DLL. Using the CREATE LIBRARY
statement, the DBA creates a schema object called an alias library, which represents

the DLL. Then, if you are an authorized user, the DBA grants you EXECUTE
privileges on the alias library. Alternatively, the DBA may you CREATE ANY
LIBRARY privileges, in which case you can create your own alias libraries using the

following syntax:

CREATE LIBRARY library_name {IS | AS} 'file_path';

You must specify the full path to the DLL, because the linker cannot resolve

references to just the DLL name. In the following example, you create alias library

c_utils , which represents DLL utils .so :

CREATE LIBRARY C_utils AS ’/DLLs/utils.so’;

3. Designate the External Routine
You find or write a new external C routine, then add it to the DLL, or simply

designate a routine already in the DLL.

See Also: Oracle8i Administrator’s Guide.

Note: It is possible for you to set and read environment variables

themselves by using the standard C routines setenv () and getenv (),

respectively. Environment variables, set this way, are specific to the

extproc process, which means that they can be read by all functions

executed in that process, but not by any other process running on the

same machine.
11-6 Application Developer’s Guide - Fundamentals

Publishing an External Routine
External C routines are loaded into DLLs. After creating and including your

external routine within a DLL, you create the alias library which represents the

DLL, like this:

CREATE LIBRARY C_utils AS ’/DLLs/utils.so’;

Publishing an External Routine
Oracle can only use external routines that have been published. Publishing is

accomplished with a call specification, which maps names, parameter types, and

return types for your Java class method or C external routine to their SQL

counterparts. It is written like any other PL/SQL stored subprogram except that, in

its body, instead of declarations and a BEGIN.. END block, you code the AS
LANGUAGE clause.

The call specification syntax, which follows the normal CREATE OR REPLACEsyntax

for a procedure, function, package specification, package body, type specification, or

type body, is:

{IS | AS} LANGUAGE {C | JAVA}

This is then followed by either:

NAME <java_string_literal_name>

Where java_string_literal_name is the signature of your Java method, or by:

LIBRARY <library_name>
[NAME <c_string_literal_name>]
[WITH CONTEXT]
[PARAMETERS (external_parameter[, external_parameter]...)];

Where library_name is the name of your alias library, c_string_literal_
name is the name of your external C routine, and external_parameter stands

for:

{ CONTEXT
 | SELF [{TDO | property}]

Note: Oracle uses a PL/SQL variant of the ANSI SQL92 External

Procedure, but replaces the ANSI keyword AS EXTERNAL with this

call specification syntax. This new syntax, introduced for Java class

methods, has now been extended to C routines.

Oracle8i Java Stored Procedures Developer’s Guide
External Routines 11-7

Publishing an External Routine
 | {parameter_name | RETURN} [property] [BY REFERENCE] [external_datatype]}

property stands for:

{INDICATOR [{STRUCT | TDO}] | LENGTH | MAXLEN | CHARSETID | CHARSETFORM}

The AS LANGUAGE Clause for Java Class Methods
The [AS] LANGUAGE clause is the interface between PL/SQL and a Java class

method.

The AS LANGUAGE Clause for External C Routines
The following subclauses tell PL/SQL where to locate the external C routine, how

to call it, and what to pass to it. Only the LIBRARY subclause is required.

LIBRARY
Specifies a local alias library. (You cannot use a database link to specify a remote

library.) The library name is a PL/SQL identifier. Therefore, if you enclose the name

in double quotes, then it becomes case sensitive. (By default, the name is stored in

upper case.) You must have EXECUTE privileges on the alias library.

NAME
Specifies the external C routine to be called. If you enclose the routine name in

double quotes, then it becomes case sensitive. (By default, the name is stored in

upper case.) If you omit this subclause, then the routine name defaults to the

upper-case name of the PL/SQL subprogram.

LANGUAGE
Specifies the third-generation language in which the external routine was written. If

you omit this subclause, then the language name defaults to C.

Note: Unlike Java, C doesn’t understand SQL types; therefore, the

syntax is more intricate

See Also: Oracle8i Java Stored Procedures Developer’s Guide

Note: The terms LANGUAGE and CALLING STANDARD apply

only to the superseded AS EXTERNAL clause.
11-8 Application Developer’s Guide - Fundamentals

Publishing Java Class Methods
CALLING STANDARD
Specifies the Windows NT calling standard (C or Pascal) under which the external

routine was compiled. (Under the Pascal Calling Standard, arguments are reversed

on the stack, and the called function must pop the stack.) If you omit this subclause,

then the calling standard defaults to C.

WITH CONTEXT
Specifies that a context pointer will be passed to the external routine. The context

data structure is opaque to the external routine but is available to service routines

called by the external routine.

PARAMETERS
Specifies the positions and datatypes of parameters passed to the external routine. It

can also specify parameter properties, such as current length and maximum length,

and the preferred parameter passing method (by value or by reference).

Publishing Java Class Methods
Java classes and their methods are stored in RDBMS libunits in which you can load

Java sources, binaries and resources using the LOADJAVA utility or the

CREATEJAVA SQL statements. Libunits can be considered analogous to DLLs

written, for example, in C—although they map one-to-one with Java classes,

whereas DLLs can contain more than one routine.

The NAME-clause string uniquely identifies the Java method. The PL/SQL function

or procedure and Java must correspond with regard to parameters. If the Java

method takes no parameters, then you must code an empty parameter list for it.

When you load Java classes into the RDBMS, they are not published to SQL

automatically. This is because the methods of many Java classes are called only from

other Java classes, or take parameters for which there is no appropriate SQL type.

Suppose you want to publish the following Java method named J_
calcFactorial , which returns the factorial of its argument:

package myRoutines.math;
public class Factorial {
 public static int J_calcFactorial (int n) {
 if (n == 1) return 1;

See Also: Oracle8i Java Stored Procedures Developer’s Guide
External Routines 11-9

Publishing External C Routines
 else return n * J_calcFactorial(n - 1);
 }
}

The following call specification publishes Java method J_calcFactorial as

PL/SQL stored function plsToJavaFac_func , using SQL*Plus:

CREATE OR REPLACE FUNCTION Plstojavafac_func (N NUMBER) RETURN NUMBER AS
 LANGUAGE JAVA
 NAME ’myRoutines.math.Factorial.J_calcFactorial(int) return int’;

Publishing External C Routines
In the following example, you write a PL/SQL standalone function named

plsCallsCdivisor_func that publishes C function Cdivisor_func as an

external function:

CREATE OR REPLACE FUNCTION Plscallscdivisor_func (
/* Find greatest common divisor of x and y: */
 x BINARY_INTEGER,
 y BINARY_INTEGER)
RETURN BINARY_INTEGER
AS LANGUAGE C
 LIBRARY C_utils
 NAME "Cdivisor_func"; /* Quotation marks preserve case. *

Locations of Call Specifications
For both Java class methods and external C routines, call specifications can be

specified in any of the following locations:

■ Standalone PL/SQL Procedures and Functions

■ PL/SQL Package Specifications

■ PL/SQL Package Bodies

■ Object Type Specifications

■ Object Type Bodies
11-10 Application Developer’s Guide - Fundamentals

Locations of Call Specifications
We have already shown an example of call specification located in a standalone

PL/SQL function. Here are some examples showing some of the other locations.

Example: Locating a Call Specification in a PL/SQL Package
CREATE OR REPLACE PACKAGE Demo_pack
AUTHID DEFINER
AS
 PROCEDURE plsToC_demoExternal_proc (x BINARY_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
END;

Example: Locating a Call Specification in a PL/SQL Package Body
CREATE OR REPLACE PACKAGE Demo_pack
 AUTHID CURRENT_USER
AS
 PROCEDURE plsToC_demoExternal_proc(x BINARY_INTEGER, y VARCHAR2, z DATE);
END;

CREATE OR REPLACE PACKAGE BODY Demo_pack
 SQL_NAME_RESOLVE CURRENT_USER
AS
 PROCEDURE plsToC_demoExternal_proc (x BINARY_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE JAVA
 NAME ’pkg1.class4.methodProc1(int,java.lang.String,java.sql.Date)’;
END;

Note: Under Oracle 8.0, AS EXTERNAL call specifications could not be

placed in package or type bodies.

Note: In the following examples, the AUTHID and SQL_NAME_
RESOLVE clauses may or may not be required to fully stipulate a call

specification. See the Invoker-rights section of this manual for rules on

their placement and defaults.
External Routines 11-11

Locations of Call Specifications
Example: Locating a Call Specification in an Object Type Specification

CREATE OR REPLACE TYPE Demo_typ
AUTHID DEFINER
AS OBJECT
 (Attribute1 VARCHAR2(2000), SomeLib varchar2(20),
 MEMBER PROCEDURE plsToC_demoExternal_proc (x BINARY_INTEGER, y VARCHAR2, z
DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 -- PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE)
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE, SELF)
);

Example: Locating a Call Specification in an Object Type Body
CREATE OR REPLACE TYPE Demo_typ
AUTHID CURRENT_USER
AS OBJECT
 (attribute1 NUMBER,
 MEMBER PROCEDURE plsToJ_demoExternal_proc (x BINARY_INTEGER, y VARCHAR2, z
DATE)
);

CREATE OR REPLACE TYPE BODY Demo_typ
AS
 MEMBER PROCEDURE plsToJ_demoExternal_proc (x BINARY_INTEGER, y VARCHAR2, z
DATE)
 AS LANGUAGE JAVA
 NAME ’pkg1.class4.J_demoExternal(int,java.lang.String,java.sql.Date)’;
END;

Note: You may need to set up the following data structures for

certain examples to work:

CONN SYS/CHANGE_ON_INSTALL AS SYSDBA;
GRANT CREATE ANY LIBRARY TO scott;
CONNECT scott/tiger
CREATE OR REPLACE LIBRARY SOMELIB AS ’/tmp/lib.so’;
11-12 Application Developer’s Guide - Fundamentals

Locations of Call Specifications
Example: Java with AUTHID
Here is an example of a publishing a Java class method in a standalone PL/SQL

subprogram.

CREATE OR REPLACE PROCEDURE plsToJ_demoExternal_proc (x BINARY_INTEGER, y
VARCHAR2, z DATE)
 AUTHID CURRENT_USER
AS LANGUAGE JAVA
 NAME ’pkg1.class4.methodProc1(int,java.lang.String,java.sql.Date)’;

Example: C with Optional AUTHID
Here is an example of AS EXTERNAL publishing a C routine in a standalone

PL/SQL program, in which the AUTHID clause is optional. This maintains

compatibility with the external procedures of Oracle 8.0.

CREATE OR REPLACE PROCEDURE plsToC_demoExternal_proc (x BINARY_INTEGER, y
VARCHAR2, z DATE)
AS
 EXTERNAL
 LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);

Example: Mixing Call Specifications in a Package
CREATE OR REPLACE PACKAGE Demo_pack
AUTHID DEFINER
AS
 PROCEDURE plsToC_InBodyOld_proc (x BINARY_INTEGER, y VARCHAR2, z DATE);
 PROCEDURE plsToC_demoExternal_proc (x BINARY_INTEGER, y VARCHAR2, z DATE);
 PROCEDURE plsToC_InBody_proc (x BINARY_INTEGER, y VARCHAR2, z DATE);
 PROCEDURE plsToJ_InBody_proc (x BINARY_INTEGER, y VARCHAR2, z DATE);

 PROCEDURE plsToJ_InSpec_proc (x BINARY_INTEGER, y VARCHAR2, z DATE)
 IS LANGUAGE JAVA
 NAME ’pkg1.class4.J_InSpec_meth(int,java.lang.String,java.sql.Date)’;

PROCEDURE C_InSpec_proc (x BINARY_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
External Routines 11-13

Passing Parameters to Java Class Methods with Call Specifications
END;

CREATE OR REPLACE PACKAGE BODY Demo_pack
AS
PROCEDURE plsToC_InBodyOld_proc (x BINARY_INTEGER, y VARCHAR2, z DATE)
 AS EXTERNAL
 LANGUAGE C
 NAME "C_InBodyOld"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
PROCEDURE plsToC_demoExternal_proc (x BINARY_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);

PROCEDURE plsToC_InBody_proc (x BINARY_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_InBody"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
PROCEDURE plsToJ_InBody_proc (x BINARY_INTEGER, y VARCHAR2, z DATE)
 IS LANGUAGE JAVA
 NAME ’pkg1.class4.J_InBody_meth(int,java.lang.String,java.sql.Date)’;
END;

Passing Parameters to Java Class Methods with Call Specifications

Passing Parameters to External C Routines with Call Specifications
Call specifications allows a mapping between PL/SQL and C datatypes. Datatype

mappings are shown below.

Passing parameters to an external C routine is complicated by several

circumstances:

■ The available set of PL/SQL datatypes does not correspond one-to-one with the

set of C datatypes.

See Also: Oracle8i Java Stored Procedures Developer’s Guide
11-14 Application Developer’s Guide - Fundamentals

Passing Parameters to External C Routines with Call Specifications
■ Unlike C, PL/SQL includes the RDBMS concept of nullity. Therefore, PL/SQL

parameters can be NULL, whereas C parameters cannot.

■ The external routine might need the current length or maximum length of

CHAR, LONG RAW, RAW, and VARCHAR2 parameters.

■ The external routine might need characterset information about CHAR,
VARCHAR2, and CLOB parameters.

■ PL/SQL might need the current length, maximum length, or null status of

values returned by the external routine.

In the following sections, you learn how to specify a parameter list that deals with

these circumstances.

Note: The maximum number of parameters that you can pass to a C

external routine is 128. However, if you pass float or double parameters

by value, then the maximum is less than 128. How much less depends on

the number of such parameters and your operating system. To get a

rough estimate, count each float or double passed by value as two

parameters.
External Routines 11-15

Passing Parameters to External C Routines with Call Specifications
Specifying Datatypes
Do not pass parameters to an external routine directly. Instead, pass them to the

PL/SQL subprogram that published the external routine. Therefore, you must

specify PL/SQL datatypes for the parameters. Each PL/SQL datatype maps to a

default external datatype, as shown in Table 11–1.

Table 11–1 Parameter Datatype Mappings

PL/SQL Type Supported External Types Default External Type

BINARY_INTEGER
BOOLEAN
PLS_INTEGER

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

INT

NATURAL
NATURALN
POSITIVE
POSITIVEN
SIGNTYPE

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

UNSIGNED INT

FLOAT
REAL

FLOAT FLOAT

DOUBLE PRECISION DOUBLE DOUBLE

CHAR
CHARACTER
LONG
NCHAR
NVARCHAR2
ROWID
VARCHAR
VARCHAR2

STRING
OCISTRING

STRING

LONG RAW
RAW

RAW
OCIRAW

RAW

BFILE
BLOB
CLOB
NCLOB

OCILOBLOCATOR OCILOBLOCATOR
11-16 Application Developer’s Guide - Fundamentals

Passing Parameters to External C Routines with Call Specifications
NUMBER
DEC
DECIMAL
INT
INTEGER
NUMERIC
SMALLINT

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T
OCINUMBER

OCINUMBER

DATE OCIDATE OCIDATE

composite object types:
ADTs

dvoid dvoid

composite object types:
collections (varrays,
nested tables, index-by
tables

OCICOLL OCICOLL

Table 11–1 Parameter Datatype Mappings (Cont.)
External Routines 11-17

Passing Parameters to External C Routines with Call Specifications
External Datatype Mappings
Each external datatype maps to a C datatype, and the datatype conversions are

performed implicitly. To avoid errors when declaring C prototype parameters, refer

to Table 11–2, which shows the C datatype to specify for a given external datatype

and PL/SQL parameter mode. For example, if the external datatype of an OUT
parameter is STRING, then specify the datatype char * in your C prototype.

Table 11–2 External Datatype Mappings

 Datatypes Used in C Prototype

External Datatype IN, RETURN

IN by REFERENCE,
RETURN by
REFERENCE IN OUT, OUT

CHAR char char * char *

UNSIGNED CHAR unsigned char unsigned char * unsigned char *

SHORT short short * short *

UNSIGNED SHORT unsigned short unsigned short * unsigned short *

INT int int * int *

UNSIGNED INT unsigned int unsigned int * unsigned int *

LONG long long * long *

UNSIGNED LONG unsigned long unsigned long * unsigned long *

SIZE_T size_t size_t * size_t *

SB1 sb1 sb1 * sb1 *

UB1 ub1 ub1 * ub1 *

SB2 sb2 sb2 * sb2 *

UB2 ub2 ub2 * ub2 *

SB4 sb4 sb4 * sb4 *

UB4 ub4 ub4 * ub4 *

FLOAT float float * float *

DOUBLE double double * double *

STRING char * char * char *

RAW unsigned char * unsigned char * unsigned char *

OCILOBLOCATOR OCILobLocator * OCILobLocator ** OCILobLocator **
11-18 Application Developer’s Guide - Fundamentals

Passing Parameters to External C Routines with Call Specifications
Composite object types are not self describing. Their description is stored in a Type
Descriptor Object (TDO). Objects and indicator structs for objects have no

predefined OCI datatype, but must use the datatypes generated by Oracle’s Object
Type Translator (OTT). The optional TDO argument for INDICATOR, and for

composite objects, in general, has the C datatype, OCIType *.

OCICOLL for REF and collection arguments is optional and only exists for the sake

of completeness. You can not map REFs or collections onto any other datatype and

vice versa.

BY VALUE/REFERENCE for IN and IN OUT Parameter Modes
If you specify BY VALUE, then scalar IN and RETURNarguments are passed by value

(which is also the default). Alternatively, you may have them passed by reference

by specifying BY REFERENCE.

By default, or if you specify BY REFERENCE, then scalar IN OUT, and OUT
arguments are passed by reference. Specifying BY VALUE for IN OUT, and OUT
arguments is not supported for C. The usefulness of the BY REFERENCE/VALUE
clause is restricted to external datatypes that are, by default, passed by value. This is

true for IN , and RETURN arguments of the following external types:

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SIZE_T

OCINUMBER OCINumber * OCINumber * OCINumber *

OCISTRING OCIString * OCIString * OCIString *

OCIRAW OCIRaw * OCIRaw * OCIRaw *

OCIDATE OCIDate * OCIDate * OCIDate *

OCICOLL OCIColl * or
OCIArray *, or
OCITable *

OCIColl ** or
OCIArray **, or
OCITable **

OCIColl ** or
OCIArray **, or
OCITable **

OCITYPE OCIType * OCIType * OCIType *

TDO OCIType * OCIType * OCIType *

ADT dvoid* dvoid* dvoid*

Table 11–2 (Cont.) External Datatype Mappings
External Routines 11-19

Passing Parameters to External C Routines with Call Specifications
SB1
SB2
SB4
UB1
UB2
UB4
FLOAT
DOUBLE

All IN and RETURN arguments of external types not on the above list, all IN OUT
arguments, and all OUT arguments are passed by reference.

The PARAMETERS Clause
Generally, the PL/SQL subprogram that publishes an external routine declares a list

of formal parameters, as the following example shows:

CREATE OR REPLACE FUNCTION Interp_func (
/* Find the value of y at x degrees using Lagrange interpolation: */
 x IN FLOAT,
 y IN FLOAT)
RETURN FLOAT AS
 LANGUAGE C
 NAME "Interp_func"
 LIBRARY MathLib ;

Each formal parameter declaration specifies a name, parameter mode, and PL/SQL

datatype (which maps to the default external datatype). That might be all the

information the external routine needs. If not, then you can provide more

information using the PARAMETERS clause, which lets you specify the following:

■ Non-default external datatypes

■ The current and/or maximum length of a parameter

■ NULL/NOT NULL indicators for parameters

■ Characterset IDs and forms

■ The position of parameters in the list

Note: You may need to set up the following data structures for

certain examples to work:

CREATE LIBRARY MathLib AS ’/tmp/math.so’;
11-20 Application Developer’s Guide - Fundamentals

Passing Parameters to External C Routines with Call Specifications
■ How IN parameters are passed (by value or by reference)

If you decide to use the PARAMETERS clause, keep in mind:

■ For every formal parameter, there must be a corresponding parameter in the

PARAMETERS clause.

■ If you include the WITH CONTEXT clause, then you must specify the parameter

CONTEXT, which shows the position of the context pointer in the parameter list.

■ If the external routine is a function, then you must specify the parameter

RETURN, and it must be in the last position.

Overriding Default Datatype Mapping
In some cases, you can use the PARAMETERS clause to override the default datatype

mappings. For example, you can re-map the PL/SQL datatype BOOLEAN from

external datatype INT to external datatype CHAR.

Specifying Properties
You can also use the PARAMETERS clause to pass additional information about

PL/SQL formal parameters and function results to an external routine. Do this by

specifying one or more of the following properties:

INDICATOR [{STRUCT | TDO}]
LENGTH
MAXLEN
CHARSETID
CHARSETFORM
SELF

The following table shows the allowed and the default external datatypes, PL/SQL

datatypes, and PL/SQL parameter modes allowed for a given property. Notice that

MAXLEN (used to specify data returned from C back to PL/SQL) cannot be applied

to an IN parameter.
External Routines 11-21

Passing Parameters to External C Routines with Call Specifications
In the following example, the PARAMETERS clause specifies properties for the

PL/SQL formal parameters and function result:

CREATE OR REPLACE FUNCTION plsToCparse_func (
 x IN BINARY_INTEGER,
 Y IN OUT CHAR)
RETURN CHAR AS LANGUAGE C
 LIBRARY c_utils
 NAME "C_parse"
 PARAMETERS (
 x, - - stores value of x
 x INDICATOR, -- stores null status of x
 y, -- stores value of y
 y LENGTH, -- stores current length of y
 y MAXLEN, -- stores maximum length of y
 RETURN INDICATOR,
 RETURN);

With this PARAMETERS clause, the C prototype becomes:

Table 11–3 Property Datatype Mappings

Property C Parameter PL/SQL Parameter

Allowed External
Types

Default External
Type Allowed Types Allowed Modes

Default
Passing
Method

INDICATOR SHORT
INT
LONG

SHORT all scalars IN
IN OUT
OUT
RETURN

BY VALUE
BY REFERENCE
BY REFERENCE
BY REFERENCE

LENGTH [UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

INT CHAR
LONG RAW
RAW
VARCHAR2

IN
IN OUT
OUT
RETURN

BY VALUE
BY REFERENCE
BY REFERENCE
BY REFERENCE

MAXLEN [UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

INT CHAR
LONG RAW
RAW
VARCHAR2

IN OUT
OUT
RETURN

BY REFERENCE
BY REFERENCE
BY REFERENCE

CHARSETID
CHARSETFORM

[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

[UNSIGNED] INT CHAR
CLOB
VARCHAR2

IN
IN OUT
OUT
RETURN

BY VALUE
BY REFERENCE
BY REFERENCE
BY REFERENCE
11-22 Application Developer’s Guide - Fundamentals

Passing Parameters to External C Routines with Call Specifications
char * C_parse(int x, short x_ind, char *y, int *y_len,
 int *y_maxlen, short *retind);

The additional parameters in the C prototype correspond to the INDICATOR (for x),
LENGTH(of y), and MAXLEN (of y], as well as the INDICATOR for the function
result in the PARAMETERS clause. The parameter RETURN corresponds to the C

function identifier, which stores the result value.

INDICATOR
An INDICATOR is a parameter whose value indicates whether or not another

parameter is NULL. PL/SQL does not need indicators, because the RDBMS concept

of nullity is built into the language. However, an external routine might need to

know if a parameter or function result is NULL. Also, an external routine might need

to signal the server that a returned value is actually a NULL, and should be treated

accordingly.

In such cases, you can use the property INDICATOR to associate an indicator with a

formal parameter. If the PL/SQL subprogram is a function, then you can also

associate an indicator with the function result, as shown above.

To check the value of an indicator, you can use the constants OCI_IND_NULL and

OCI_IND_NOTNULL. If the indicator equals OCI_IND_NULL, then the associated

parameter or function result is NULL. If the indicator equals OCI_IND_NOTNULL,
then the parameter or function result is not NULL.

For IN parameters, which are inherently read-only, INDICATOR is passed by value

(unless you specify BY REFERENCE) and is read-only (even if you specify BY
REFERENCE). For OUT, IN OUT, and RETURN parameters, INDICATOR is passed by

reference by default.

The INDICATOR can also have a STRUCT or TDO option. Because specifying

INDICATOR as a property of an object is not supported, and because arguments of

objects have complete indicator structs instead of INDICATOR scalars, you must

specify this by using the STRUCT option. You must use the type descriptor object

(TDO) option for composite objects and collections,

LENGTH and MAXLEN
In PL/SQL, there is no standard way to indicate the length of a RAW or string

parameter. However, in many cases, you want to pass the length of such a

parameter to and from an external routine. Using the properties LENGTH and

MAXLEN, you can specify parameters that store the current length and maximum

length of a formal parameter.
External Routines 11-23

Passing Parameters to External C Routines with Call Specifications
For IN parameters, LENGTH is passed by value (unless you specify BY REFERENCE)
and is read-only. For OUT, IN OUT, and RETURN parameters, LENGTH is passed by

reference.

As mentioned above, MAXLEN does not apply to IN parameters. For OUT, IN OUT,

and RETURN parameters, MAXLEN is passed by reference and is read-only.

CHARSETID and CHARSETFORM
Oracle provides national language support, which lets you process single-byte and

multi-byte character data and convert between character sets. It also lets your

applications run in different language environments.

The properties CHARSETID and CHARSETFORM identify the non-default character

set from which the character data being passed was formed. With CHAR, CLOB, and

VARCHAR2 parameters, you can use CHARSETID and CHARSETFORM to pass the

character set ID and form to the external routine.

For IN parameters, CHARSETIDand CHARSETFORMare passed by value (unless you

specify BY REFERENCE) and are read-only (even if you specify BY REFERENCE). For

OUT, IN OUT, and RETURN parameters, CHARSETID and CHARSETFORM are passed

by reference and are read-only.

The OCI attribute names for these properties are OCI_ATTR_CHARSET_ID and

OCI_ATTR_CHARSET_FORM.

Repositioning Parameters
Remember, each formal parameter of the external routine must have a

corresponding parameter in the PARAMETERS clause. Their positions can differ,

because PL/SQL associates them by name, not by position. However, the

PARAMETERS clause and the C prototype for the external routine must have the

same number of parameters, and they must be in the same order.

Note: With a parameter of type RAW or LONG RAW, you must use

the property LENGTH. Also, if that parameter is IN OUT and NULL
or OUT and NULL, then you must set the length of the

corresponding C parameter to zero.

See Also: For more information about using NLS data with the

OCI, see Oracle Call Interface Programmer’s Guide and the Oracle8i
National Language Support Guide.
11-24 Application Developer’s Guide - Fundamentals

Passing Parameters to External C Routines with Call Specifications
Using SELF
SELF is the always-present argument of an object type’s member function or

procedure, namely the object instance itself. In most cases, this argument is implicit

and is not listed in the argument list of the PL/SQL procedure. However, SELF
must be explicitly specified as an argument of the PARAMETERS clause.

For example, assume that a user wants to create a Person object, consisting of a

person’s name and date of birth, and then further a table of this object type. The

user would eventually like to determine the age of each Person in this table.

In SQL*Plus, the Person object type can be created by:

CREATE OR REPLACE TYPE Person1_typ AS OBJECT
(Name VARCHAR2(30),
 B_date DATE,
 MEMBER FUNCTION calcAge_func RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES(calcAge_func, WNDS)
);

Normally, the member function would be implemented in PL/SQL, but for this

example, we make it an external procedure. To realize this, the body of the member

function is declared as follows:

CREATE OR REPLACE TYPE BODY Person1_typ AS
 MEMBER FUNCTION calcAge_func RETURN NUMBER
 AS LANGUAGE C
 NAME "age"
 LIBRARY agelib
 WITH CONTEXT
 PARAMETERS
 (CONTEXT,

Note: You may need to set up data structures similar to the

following for certain examples to work:

CONNECT system/manager
GRANT CONNECT,RESOURCE,CREATE LIBRARY TO scott IDENTIFIED BY
tiger;
CONNECT scott/tiger
CREATE OR REPLACE LIBRARY agelib UNTRUSTED IS
 ’/tmp/scott1.so’;.

This example is only for Solaris; other libraries and include paths

might be needed for other platforms.
External Routines 11-25

Passing Parameters to External C Routines with Call Specifications
 SELF,
 SELF INDICATOR STRUCT,
 SELF TDO,
 RETURN INDICATOR
);
END;

Notice that the calcAge_func member function doesn’t take any arguments, but

only returns a number. A member function is always invoked on an instance of the

associated object type. The object instance itself always is an implicit argument of

the member function. To refer to the implicit argument, the SELF keyword is used.

This is incorporated into the external procedure syntax by supporting references to

SELF in the parameters clause.

Now the matching table is created and populated.

CREATE TABLE Person_tab OF Person1_typ;

INSERT INTO Person_tab VALUES
 (’SCOTT’, TO_DATE(’14-MAY-85’));

INSERT INTO Person_tab VALUES
 (’TIGER’, TO_DATE(’22-DEC-71’));

Finally, we retrieve the information of interest from the table.

SELECT p.name, p.b_date, p.calcAge_func() FROM Person_tab p;

NAME B_DATE P.CALCAGE_
------------------------------ --------- ----------
SCOTT 14-MAY-85 0
TIGER 22-DEC-71 0

Sample C code, implementing the "external" member function, and the

Object-Type-Translator (OTT)-generated struct definitions are included below.

#include <oci.h>

struct PERSON
{
 OCIString *NAME;
 OCIDate B_DATE;
};
typedef struct PERSON PERSON;

struct PERSON_ind
11-26 Application Developer’s Guide - Fundamentals

Passing Parameters to External C Routines with Call Specifications
{
 OCIInd _atomic;
 OCIInd NAME;
 OCIInd B_DATE;
};
typedef struct PERSON_ind PERSON_ind;

OCINumber *age (ctx, person_obj, person_obj_ind, tdo, ret_ind)
OCIExtProcContext *ctx;
PERSON *person_obj;
PERSON_ind *person_obj_ind;
OCIType *tdo;
OCIInd *ret_ind;
{
 sword err;
 text errbuf[512];
 OCIEnv *envh;
 OCISvcCtx *svch;
 OCIError *errh;
 OCINumber *age;
 int inum = 0;
 sword status;

 /* get OCI Environment */
 err = OCIExtProcGetEnv(ctx, &envh, &svch, &errh);

 /* initialize return age to 0 */
 age = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 status = OCINumberFromInt(errh, &inum, sizeof(inum), OCI_NUMBER_SIGNED,
 age);
 if (status != OCI_SUCCESS)
 {
 OCIExtProcRaiseExcp(ctx, (int)1476);
 return (age);
 }

 /* return NULL if the person object is null or the birthdate is null */
 if (person_obj_ind->_atomic == OCI_IND_NULL ||
 person_obj_ind->B_DATE == OCI_IND_NULL)
 {
 *ret_ind = OCI_IND_NULL;
 return (age);
 }

 /* The actual implementation to calculate the age is left to the reader,
External Routines 11-27

Passing Parameters to External C Routines with Call Specifications
 but an easy way of doing this is a callback of the form:
 select trunc(months_between(sysdate, person_obj->b_date) / 12)
 from dual;
 */
 *ret_ind = OCI_IND_NOTNULL;
 return (age);
}

Passing Parameters by Reference
In C, you can pass IN scalar parameters by value (the value of the parameter is

passed) or by reference (a pointer to the value is passed). When an external routine

expects a pointer to a scalar, specify BY REFERENCEphrase to pass the parameter by

reference:

CREATE OR REPLACE PROCEDURE findRoot_proc (
 x IN REAL)
AS LANGUAGE C
 LIBRARY c_utils
 NAME "C_findRoot"
 PARAMETERS (
 x BY REFERENCE);

In this case, the C prototype would be:

void C_findRoot(float *x);

This is rather than the default, which would be used when there is no PARAMETERS
clause:

void C_findRoot(float x);

WITH CONTEXT
By including the WITH CONTEXT clause, you can give an external routine access to

information about parameters, exceptions, memory allocation, and the user

environment. The WITH CONTEXT clause specifies that a context pointer will be

passed to the external routine. For example, if you write the following PL/SQL

function:

CREATE OR REPLACE FUNCTION getNum_func (
 x IN REAL)
RETURN BINARY_INTEGER AS LANGUAGE C
 LIBRARY c_utils
 NAME "C_getNum"
 WITH CONTEXT
11-28 Application Developer’s Guide - Fundamentals

Executing External Routines: the CALL Statement
 PARAMETERS (
 CONTEXT,
 x BY REFERENCE,
 RETURN INDICATOR);

Then, the C prototype would be:

int C_getNum(
 OCIExtProcContext *with_context,
 float *x,
 short *retind);

The context data structure is opaque to the external routine; but, is available to

service routines called by the external routine.

If you also include the PARAMETERS clause, then you must specify the parameter

CONTEXT, which shows the position of the context pointer in the parameter list. If

you omit the PARAMETERS clause, then the context pointer is the first parameter

passed to the external routine.

Inter-Language Parameter Mode Mappings
PL/SQL supports the IN , IN OUT, and OUTparameter modes, as well as the RETURN
clause for routines returning values.

Rules for PL/SQL and C Parameter Modes are listed above.

Executing External Routines: the CALL Statement
Now that your Java class method, or external C routine, has been published, you

are ready to invoke it.

Do not call an external routine directly. Instead, call the PL/SQL subprogram that

published the external routine. Such calls, which you code in the usual way, can

appear in the following:

■ Anonymous blocks

■ Stand-alone and packaged subprograms

■ Methods of an object type

■ Database triggers

See Also: Oracle8i Java Stored Procedures Developer’s Guide
External Routines 11-29

Executing External Routines: the CALL Statement
■ SQL statements (calls to packaged functions only).

Although the CALL statement, described below, is confined to SELECTs, it can

appear in either the WHERE clause or the SELECT list.

Any PL/SQL block or subprogram executing on the server side, or on the client

side, (for example, in a tool such as Oracle Forms) can call an external procedure.

On the server side, the external procedure runs in a separate process address space,

which safeguards your database. Figure 11–1 shows how Oracle8 and external

routines interact.

Figure 11–1 Oracle8 and External Routines

Preliminaries
Before you call your external routine, you might want to make sure you understand

the execution environment. Specifically, you might be interested in privileges,

permissions, and synonyms.

Note: To call a packaged function from SQL statements, you must use

the pragma RESTRICT_REFERENCES, which asserts the purity level of

the function (the extent to which the function is free of side effects).

PL/SQL cannot check the purity level of the corresponding external

routine. Therefore, make sure that the routine does not violate the

pragma. Otherwise, you might get unexpected results.

Oracle 8.1 Server
Process Execution

External Process
Execution

PL/SQL
Interpreter

Java Virtual
Machine

SQL
Engine

DLL

External C
Process

Oracle 8.1 Database
Disk Storage

PL/SQL Subprogram

Java Method
11-30 Application Developer’s Guide - Fundamentals

Executing External Routines: the CALL Statement
Privileges
When external routines are called via CALL specification’s, they execute with

definer’s privileges, rather than with the privileges of their invoker.

An invoker’s-privileges program is not bound to a particular schema. It executes at

the calling site and accesses database items (such as tables and views) with the

caller’s visibility and permissions. However, a definer’s privileges program is

bound to the schema in which it is defined. It executes at the defining site, in the

definer’s schema, and accesses database items with the definer’s visibility and

permissions.

Managing Permissions

To call external routines, a user must have the EXECUTE privilege on the call

specification and on any resources used by the routine.

In SQL*Plus, you can use the GRANT and REVOKE data control statements to

manage permissions. For example:

GRANT EXECUTE ON plsToJ_demoExternal_proc TO Public;
REVOKE EXECUTE ON plsToJ_demoExternal_proc FROM Public;
GRANT EXECUTE ON JAVA RESOURCE "appImages" TO Public;
GRANT EXECUTE ON plsToJ_demoExternal_proc TO Scott;
REVOKE EXECUTE ON plsToJ_demoExternal_proc FROM Scott;

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT system/manager
GRANT CREATE ANY DIRECTORY to scott;
CONNECT scott/tiger
CREATE OR REPLACE DIRECTORY bfile_dir AS ’/tmp’;
CREATE OR REPLACE JAVA RESOURCE NAMED "appImages" USING BFILE
(bfile_dir,’bfile_audio’);
External Routines 11-31

Executing External Routines: the CALL Statement
Creating Synonyms
For convenience, you or your DBA can create synonyms for external routines using

the CREATE [PUBLIC] SYNONYM statement. In the example below, your DBA

creates a public synonym, which is accessible to all users. If PUBLIC is not specified,

then the synonym is private and accessible only within its schema.

CREATE PUBLIC SYNONYM Rfac FOR Scott.RecursiveFactorial;

CALL Statement Syntax
Invoke the external routine by means of the SQL CALL statement. You can execute

the CALL statement interactively from SQL*Plus. The syntax is:

CALL [schema.][{object_type_name | package_name}]routine_name[@dblink_name]
 [(parameter_list)] [INTO :host_variable][INDICATOR][:indicator_variable];

This is essentially the same as executing a routine foo () using a SQL statement of

the form "SELECT foo(...) FROM dual ," except that the overhead associated with

performing the SELECT is not incurred.

For example, here is an anonymous PL/SQL block which uses dynamic SQL to call

plsToC_demoExternal_proc , which we published above. PL/SQL passes three

parameters to the external C routine C_demoExternal_proc.

DECLARE
 xx NUMBER(4);
 yy VARCHAR2(10);
 zz DATE;
 BEGIN
 EXECUTE IMMEDIATE ’CALL plsToC_demoExternal_proc(:xxx, :yyy, :zzz)’ USING
xx,yy,zz;
 END;

The semantics of the CALL statement is identical to the that of an equivalent

BEGIN..END block.

See Also:

■ Oracle8i SQL Reference

■ Oracle8i Java Stored Procedures Developer’s Guide
11-32 Application Developer’s Guide - Fundamentals

Executing External Routines: the CALL Statement
Calling Java Class Methods
Here is how you would call the J_calcFactorial class method published earlier.

First, declare and initialize two SQL*Plus host variables, as follows:

VARIABLE x NUMBER
VARIABLE y NUMBER
EXECUTE :x := 5;

Now, call J_calcFactorial :

CALL J_calcFactorial(:x) INTO :y;
PRINT y

The result:

Y

 120

Calling External C Routines
To call an external C routine, PL/SQL must know in which DLL it resides. To do

this, the PL/SQL engine looks in the data dictionary for the library alias mentioned

in the AS LANGUAGE clause. Oracle looks for the filename associated with the DLL

contained in that library.

Next, PL/SQL alerts a Listener process which, in turn, spawns a session-specific

agent named extproc . The Listener hands over the connection to extproc , and

PL/SQL passes to extproc the name of the DLL, the name of the external routine,

and any parameters.

Then, extproc loads the DLL and runs the external routine. Also, extproc
handles service calls (such as raising an exception) and callbacks to the Oracle

server. Finally, extproc passes to PL/SQL any values returned by the external

routine.

Note: CALL is the only SQL statement that cannot be put, by itself, in a

PL/SQL BEGIN...END block. It can be part of an EXECUTE IMMEDIATE
statement within a BEGIN...END block.

See Also: Oracle8i Java Stored Procedures Developer’s Guide
External Routines 11-33

Errors and Exceptions
After the external routine completes, extproc remains active throughout your

Oracle session; when you log off, extproc is killed. Consequently, you incur the

cost of launching extproc only once, no matter how many calls you make. Still,

you should call an external routine only when the computational benefits outweigh

the cost.

Here, we call PL/SQL function plsCallsCdivisor_func , which we published

above, from an anonymous block. PL/SQL passes the two integer parameters to

external function Cdivisor_func , which returns their greatest common divisor.

DECLARE
 g BINARY_INTEGER;
 a BINARY_INTEGER;
 b BINARY_INTEGER;
CALL plsCallsCdivisor_func(a, b);
IF g IN (2,4,8) THEN ...

Errors and Exceptions

Generic Compile Time Call specification Errors
The PL/SQL compiler raises compile time errors if the following conditions are

detected in the syntax:

■ An AS EXTERNAL call specification is found in a TYPE or PACKAGE
specification.

Note: Although some DLL caching takes place, there is no

guarantee that your DLL will remain in the cache; therefore, do not

store global variables in your DLL.

Note: The Listener, using the information in the tnsnames.ora
and listener .ora files, must start extproc on the machine that

runs the Oracle server. Starting extproc on a different machine is

not supported.
11-34 Application Developer’s Guide - Fundamentals

Using Service Routines with External C Routines
Java Exception Handling

C Exception Handling
C programs can raise exceptions through the OCIExtproc ... functions.

Using Service Routines with External C Routines
When called from an external routine, a service routine can raise exceptions,

allocate memory, and invoke OCI handles for callbacks to the server. To use a

service routine, you must specify the WITH CONTEXTclause, which lets you pass

a context structure to the external routine. The context structure is declared in

header file ociextp.h as follows:

typedef struct OCIExtProcContext OCIExtProcContext;

OCIExtProcAllocCallMemory
This service routine allocates n bytes of memory for the duration of the external

routine call. Any memory allocated by the function is freed automatically as soon as

control returns to PL/SQL.

The C prototype for this function is as follows:

dvoid *OCIExtProcAllocCallMemory(
 OCIExtProcContext *with_context,
 size_t amount);

The parameters with_context and amount are the context pointer and number of

bytes to allocate, respectively. The function returns an untyped pointer to the

allocated memory. A return value of zero indicates failure.

See Also: Oracle8i Java Stored Procedures Developer’s Guide

Note: ociextp.h is located in $ORACLE_HOME/plsql/public
on UNIX.

Note: The external routine does not need to (and should not) call

the C function free () to free memory allocated by this service

routine as this is handled automatically.
External Routines 11-35

Using Service Routines with External C Routines
In SQL*Plus, suppose you publish external function plsToC_concat_func , as

follows:

CREATE OR REPLACE FUNCTION plsToC_concat_func (
 str1 IN VARCHAR2,
 str2 IN VARCHAR2)
RETURN VARCHAR2 AS LANGUAGE C
NAME "concat"
LIBRARY stringlib
WITH CONTEXT
PARAMETERS (
CONTEXT,
str1 STRING,
str1 INDICATOR short,
str2 STRING,
str2 INDICATOR short,
RETURN INDICATOR short,
RETURN LENGTH short,
RETURN STRING);

When called, C_concat concatenates two strings, then returns the result:

select plsToC_concat_func(’hello ’, ’world’) from dual;

PLSTOC_CONCAT_FUNC(’HELLO’,’WORLD’)

hello world

If either string is NULL, then the result is also NULL. As the following example

shows, C_concat uses OCIExtProcAllocCallMemory to allocate memory for

the result string:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Note: You may need to set up data structures similar to the

following for certain examples to work:

CONNECT system/manager
DROP USER y CASCADE;
GRANT CONNECT,RESOURCE,CREATE LIBRARY TO y IDENTIFIED BY y;
CONNECT y/y
CREATE LIBRARY stringlib AS
’/private/varora/ilmswork/Cexamples/john2.so’;
11-36 Application Developer’s Guide - Fundamentals

Using Service Routines with External C Routines
#include <oci.h>
#include <ociextp.h>

char *concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l)
OCIExtProcContext *ctx;
char *str1;
short str1_i;
char *str2;
short str2_i;
short *ret_i;
short *ret_l;
{
 char *tmp;
 short len;
 /* Check for null inputs. */
 if ((str1_i == OCI_IND_NULL) || (str2_i == OCI_IND_NULL))
 {
 *ret_i = (short)OCI_IND_NULL;
 /* PL/SQL has no notion of a NULL ptr, so return a zero-byte string. */
 tmp = OCIExtProcAllocCallMemory(ctx, 1);
 tmp[0] = '\0';
 return(tmp);
 }
 /* Allocate memory for result string, including NULL terminator. */
 len = strlen(str1) + strlen(str2);
 tmp = OCIExtProcAllocCallMemory(ctx, len + 1);

 strcpy(tmp, str1);
 strcat(tmp, str2);

 /* Set NULL indicator and length. */
 *ret_i = (short)OCI_IND_NOTNULL;
 *ret_l = len;
 /* Return pointer, which PL/SQL frees later. */
 return(tmp);
}

#ifdef LATER
static void checkerr (/*_ OCIError *errhp, sword status _*/);

void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
External Routines 11-37

Using Service Routines with External C Routines
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

char *concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l)
OCIExtProcContext *ctx;
char *str1;
short str1_i;
char *str2;
short str2_i;
short *ret_i;
short *ret_l;
{
 char *tmp;
 short len;
11-38 Application Developer’s Guide - Fundamentals

Using Service Routines with External C Routines
 /* Check for null inputs. */
 if ((str1_i == OCI_IND_NULL) || (str2_i == OCI_IND_NULL))
 {
 *ret_i = (short)OCI_IND_NULL;
 /* PL/SQL has no notion of a NULL ptr, so return a zero-byte string. */
 tmp = OCIExtProcAllocCallMemory(ctx, 1);
 tmp[0] = '\0';
 return(tmp);
 }
 /* Allocate memory for result string, including NULL terminator. */
 len = strlen(str1) + strlen(str2);
 tmp = OCIExtProcAllocCallMemory(ctx, len + 1);

 strcpy(tmp, str1);
 strcat(tmp, str2);

 /* Set NULL indicator and length. */
 *ret_i = (short)OCI_IND_NOTNULL;
 *ret_l = len;
 /* Return pointer, which PL/SQL frees later. */
 return(tmp);
}

/*==*/
int main(char *argv, int argc)
{
 OCIExtProcContext *ctx;
 char *str1;
 short str1_i;
 char *str2;
 short str2_i;
 short *ret_i;
 short *ret_l;
 /* OCI Handles */
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *authp;
 OCIStmt *stmthp;
 OCILobLocator *clob, *blob;
 OCILobLocator *Lob_loc;

 /* Initialize and Logon */
 (void) OCIInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
External Routines 11-39

Using Service Routines with External C Routines
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0);

 (void) OCIEnvInit((OCIEnv **) &envhp,
 OCI_DEFAULT, (size_t) 0,
 (dvoid **) 0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);

 /* Server contexts */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);

 /* Service context */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);

 /* Attach to Oracle */
 (void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);

 /* Set attribute server context in the service context */
 (void) OCIAttrSet ((dvoid *) svchp, OCI_HTYPE_SVCCTX,
 (dvoid *)srvhp, (ub4) 0,
 OCI_ATTR_SERVER, (OCIError *) errhp);

 (void) OCIHandleAlloc((dvoid *) envhp,
 (dvoid **)&authp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "samp", (ub4)4,
 (ub4) OCI_ATTR_USERNAME, errhp);

 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "samp", (ub4) 4,
 (ub4) OCI_ATTR_PASSWORD, errhp);

 /* Begin a User Session */
 checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT));

 (void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) authp, (ub4) 0,
11-40 Application Developer’s Guide - Fundamentals

Using Service Routines with External C Routines
 (ub4) OCI_ATTR_SESSION, errhp);

 /* -----------------------User Logged In------------------------------*/
 printf ("user logged in \n");

 /* allocate a statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 checkerr(errhp, OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &Lob_loc,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0));

 /* ------- subroutine called here-----------------------*/
 printf ("calling concat...\n");
 concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l);

 return 0;
}

#endif

OCIExtProcRaiseExcp
This service routine raises a predefined exception, which must have a valid Oracle

error number in the range 1...32767. After doing any necessary cleanup, your

external must return immediately. (No values are assigned to OUT or IN OUT
parameters.) The C prototype for this function follows:

int OCIExtProcRaiseExcp(
 OCIExtProcContext *with_context,
 size_t errnum);

The parameters with_context and error_number are the context pointer and

Oracle error number. The return values OCIEXTPROC_SUCCESS and OCIEXTPROC_
ERROR indicate success or failure.

In SQL*Plus, suppose you publish external routine plsTo_divide_proc , as

follows:

CREATE OR REPLACE PROCEDURE plsTo_divide_proc (
 dividend IN BINARY_INTEGER,
 divisor IN BINARY_INTEGER,
 result OUT FLOAT)
AS LANGUAGE C
 NAME "C_divide"
External Routines 11-41

Using Service Routines with External C Routines
 LIBRARY MathLib
 WITH CONTEXT
 PARAMETERS (
 CONTEXT,
 dividend INT,
 divisor INT,
 result FLOAT);

When called, C_divide finds the quotient of two numbers. As the following

example shows, if the divisor is zero, C_divide uses OCIExtProcRaiseExcp to

raise the predefined exception ZERO_DIVIDE:

void C_divide (ctx, dividend, divisor, result)
OCIExtProcContext *ctx;
int dividend;
int divisor;
float *result;
{
 /* Check for zero divisor. */
 if (divisor == (int)0)
 {
 /* Raise exception ZERO_DIVIDE, which is Oracle error 1476. */
 if (OCIExtProcRaiseExcp(ctx, (int)1476) == OCIEXTPROC_SUCCESS)
 {
 return;
 }
 else
 {
 /* Incorrect parameters were passed. */
 assert(0);
 }
 }
 *result = (float)dividend / (float)divisor;
}

OCIExtProcRaiseExcpWithMsg
This service routine raises a user-defined exception and returns a user-defined error

message. The C prototype for this function follows:

int OCIExtProcRaiseExcpWithMsg(
 OCIExtProcContext *with_context,
 size_t error_number,
 text *error_message,
 size_t len);
11-42 Application Developer’s Guide - Fundamentals

Doing Callbacks with External C Routines
The parameters with_context , error_number , and error_message are the

context pointer, Oracle error number, and error message text. The parameter len
stores the length of the error message. If the message is a null-terminated string,

then len is zero. The return values OCIEXTPROC_SUCCESS and OCIEXTPROC_
ERROR indicate success or failure.

In the previous example, we published external routine plsTo_divide_proc . In

the example below, you use a different implementation. With this version, if the

divisor is zero, then C_divide uses OCIExtProcRaiseExcpWithMsg to raise a

user-defined exception:

void C_divide (ctx, dividend, divisor, result)
OCIExtProcContext *ctx;
int dividend;
int divisor;
float *result;
 /* Check for zero divisor. */
 if (divisor == (int)0)
 {
 /* Raise a user-defined exception, which is Oracle error 20100,
 and return a null-terminated error message. */
 if (OCIExtProcRaiseExcpWithMsg(ctx, (int)20100,
 "divisor is zero", 0) == OCIEXTPROC_SUCCESS)
 {
 return;
 }
 else
 {
 /* Incorrect parameters were passed. */
 assert(0);
 }
 }
 *result = dividend / divisor;

}

Doing Callbacks with External C Routines

OCIExtProcGetEnv
This service routine enables OCI callbacks to the database during an external

routine call. It is only used for callbacks, and, furthermore, it is the only callback

routine used. If you use the OCI handles obtained by this function for standard OCI
External Routines 11-43

Doing Callbacks with External C Routines
calls, then the handles establish a new connection to the database and cannot be

used for callbacks in the same transaction. In other words, during an external

routine call, you can use OCI handles for callbacks or a new connection but not for

both.

The C prototype for this function follows:

sword OCIExtProcGetEnv (OCIExtProcContext *with_context,
 OCIEnv envh,
 OCISvcCtx svch,
 OCIError errh)

The parameter with_context is the context pointer, and the parameters envh ,

svch , and errh are the OCI environment, service, and error handles, respectively.

The return values OCIEXTPROC_SUCCESS and OCIEXTPROC_ERROR indicate

success or failure.

Both External C routines and Java class methods can call-back to the database to do

SQL operations. For a working example, see "Demo Program" on page 11-48.

Java exceptions:

An external C routine executing on the Oracle server can call a service routine to

obtain OCI environment and service handles. With the OCI, you can use callbacks

to execute SQL statements and PL/SQL subprograms, fetch data, and manipulate

LOBs. Moreover, callbacks and external routines operate in the same user session

and transaction context, and so have the same user privileges.

In SQL*Plus, suppose you run the following script:

CREATE TABLE Emp_tab (empno NUMBER(10))

CREATE PROCEDURE plsToC_insertIntoEmpTab_proc (
 empno BINARY_INTEGER)
AS LANGUAGE C
 NAME "C_insertEmpTab"
 LIBRARY insert_lib

See Also: Oracle8i Java Stored Procedures Developer’s Guide

Note: Callbacks are not necessarily a same-session phenomenon; you

may execute an SQL statement in a different session via OCIlogon .
11-44 Application Developer’s Guide - Fundamentals

Doing Callbacks with External C Routines
 WITH CONTEXT
 PARAMETERS (
 CONTEXT,
 empno LONG);

Later, you might call service routine OCIExtProcGetEnv from external routine

plsToC_insertIntoEmpTab_proc , as follows:

#include <stdio.h>
#include <stdlib.h>
#include <oratypes.h>
#include <oci.h> /* includes ociextp.h */
...
void C_insertIntoEmpTab (ctx, empno)
OCIExtProcContext *ctx;
long empno;
{
 OCIEnv *envhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 int err;
 ...
 err = OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp);
 ...
}

If you do not use callbacks, you do not need to include oci.h ; instead, just include

ociextp.h .

Object Support for OCI Callbacks
To execute object-related callbacks from your external routines, the OCI

environment in the extproc agent is now fully initialized in object mode. You

retrieve handles to this environment with the OCIExtProcGetEnv () routine.

The object runtime environment lets you use static, as well as dynamic, object

support provided by OCI. To utilize static support, use the OTT to generate C

structs for the appropriate object types, and then use conventional C code to access

the objects’ attributes.

For those objects whose types are unknown at external procedure creation time, an

alternative, dynamic, way of accessing objects is first to invoke OCIDescribeAny ()

to obtain attribute and method information about the type. Then,
External Routines 11-45

Doing Callbacks with External C Routines
OCIObjectGetAttr () and OCIObjectSetAttr () can be called to retrieve and set

attribute values.

Because the current external routine model is stateless, OCIExtProcGetEnv () must

be called in every external routine that wants to execute callbacks, or invoke

OCIExtProc ...() service routines. After every external routine invocation, the

callback mechanism is cleaned up and all OCI handles are freed.

Restrictions on Callbacks
With callbacks, the following SQL commands and OCI routines are not supported:

■ Transaction control commands such as COMMIT

■ Data definition commands such as CREATE

■ The following object-oriented OCI routines:

OCIObjectNew
OCIObjectPin
OCIObjectUnpin
OCIObjectPinCountReset
OCIObjectLock
OCIObjectMarkUpdate
OCIObjectUnmark
OCIObjectUnmarkByRef
OCIObjectAlwaysLatest
OCIObjectNotAlwaysLatest
OCIObjectMarkDeleteByRef
OCIObjectMarkDelete
OCIObjectFlush
OCIObjectFlushRefresh
OCIObjectGetTypeRef
OCIObjectGetObjectRef
OCIObjectExists
OCIObjectIsLocked
OCIObjectIsDirtied
OCIObjectIsLoaded
OCIObjectRefresh
OCIObjectPinTable
OCIObjectArrayPin
OCICacheFlush,
OCICacheFlushRefresh,
OCICacheRefresh
OCICacheUnpin
OCICacheFree
11-46 Application Developer’s Guide - Fundamentals

Doing Callbacks with External C Routines
OCICacheUnmark
OCICacheGetObjects
OCICacheRegister

■ Polling-mode OCI routines such as OCIGetPieceInfo

■ The following OCI routines:

OCIEnvInit
OCIInitialize
OCIPasswordChange
OCIServerAttach
OCIServerDetach
OCISessionBegin
OCISessionEnd
OCISvcCtxToLda
OCITransCommit
OCITransDetach
OCITransRollback
OCITransStart

Also, with OCI routine OCIHandleAlloc , the following handle types are not

supported:

OCI_HTYPE_SERVER
OCI_HTYPE_SESSION
OCI_HTYPE_SVCCTX
OCI_HTYPE_TRANS

Debugging External Routines

Usually, when an external routine fails, its prototype is faulty. In other words, the

prototype does not match the one generated internally by PL/SQL. This can happen

if you specify an incompatible C datatype. For example, to pass an OUT parameter

of type REAL, you must specify float * . Specifying float , double * , or any

other C datatype will result in a mismatch.

In such cases, you might get:

lost RPC connection to external routine agent

See Also: Oracle8i Java Stored Procedures Developer’s Guide
External Routines 11-47

Doing Callbacks with External C Routines
This error, which means that agent extproc terminated abnormally because the

external routine caused a core dump. To avoid errors when declaring C prototype

parameters, refer to the tables above.

Using Package DEBUG_EXTPROC
To help you debug external routines, PL/SQL provides the utility package DEBUG_
EXTPROC. To install the package, run the script dbgextp.sql which you can find

in the PL/SQL demo directory. (For the location of the directory, see your Oracle

Installation or User’s Guide.)

To use the package, follow the instructions in dbgextp.sql . Your Oracle account

must have EXECUTE privileges on the package and CREATE LIBRARY privileges.

Demo Program
Also in the PL/SQL demo directory is the script extproc.sql , which

demonstrates the calling of an external routine. The companion file extproc.c
contains the C source code for the external routine.

To run the demo, follow the instructions in extproc.sql . You must use the

SCOTT/TIGER account, which must have CREATE LIBRARY privileges.

Guidelines for External C Routines

Handling Global And Static Variables

Global Variables A global variable is declared outside of a function, and its value is

shared by all functions of a program. In case of external routines, this means that all

functions in a DLL share the value of the global. The usage of global variables is

discouraged for two reasons:

■ Threading: In the current non-threaded configuration of the extproc process,

there is only one function active at a time. In the future, however, Oracle might

thread the extproc process, which would mean that multiple functions can be

active at the same time. In that case, it is possible that two or more functions

concurrently would try to access the global variable with unsuccessful results.

Note: DEBUG_EXTPROC works only on platforms with debuggers that can
attach to a running process.
11-48 Application Developer’s Guide - Fundamentals

Doing Callbacks with External C Routines
■ DLL caching: Global variables are also used to store data that is intended to

persist beyond the lifetime of a function. For example, consider two functions

func1() and func2() trying to pass data to each other. Because of the DLL caching

feature, it is possible that after func1()'s completion, the DLL will be unloaded,

which results in all global variables losing their values. When func2() is

executed, the DLL is reloaded, and all globals are initialized to 0, which will be

inconsistent with their values at the completion of func1().

Static Variables There are two types of static variables: external and internal. An

external static variable is a special case of a global variable, so its usage is

discouraged for the above two reasons. Internal static variables are local to a

particular function, but remain in existence rather than coming and going each time

the function is activated. Therefore, they provide private, permanent storage within

a single function. These variables are used to pass on data to subsequent invocation

of the same function. But, because of the DLL caching feature mentioned above, the

DLL might be unloaded and reloaded between invocations, which means that the

internal static variable would lose its value.

Call specification and CALLing Guidelines
When calling external routines:

■ Never write to IN parameters or overflow the capacity of OUT parameters.

(PL/SQL does no run time checks for these error conditions.)

■ Never read an OUT parameter or a function result.

■ Always assign a value to IN OUT and OUT parameters and to function results.

Otherwise, your external routine will not return successfully.

■ If you include the WITH CONTEXT and PARAMETERS clauses, then you must

specify the parameter CONTEXT, which shows the position of the context

pointer in the parameter list.

■ If you include the PARAMETERS clause, and if the external routine is a function,

then you must specify the parameter RETURN in the last position.

■ For every formal parameter, there must be a corresponding parameter in the

PARAMETERS clause. Also, make sure that the datatypes of parameters in the

PARAMETERS clause are compatible with those in the C prototype, because no

implicit conversions are done.

See Also: For help in creating a dynamic link library, look in the

RDBMS subdirectory /public, where a template makefile can be

found.
External Routines 11-49

Doing Callbacks with External C Routines
■ With a parameter of type RAW or LONG RAW, you must use the property

LENGTH. Also, if that parameter is IN OUT or OUT and null, then you must set

the length of the corresponding C parameter to zero.

Restrictions on External C Routines
Currently, the following restrictions apply to external routines:

■ This feature is available only on platforms that support DLLs.

■ Only C routines and routines callable from C code are supported.

■ You cannot pass PL/SQL cursor variables, records, collections, or instances of

an object type to an external routine.

■ In the LIBRARY subclause, you cannot use a database link to specify a remote

library.

■ The Listener must start agent extproc on the machine that runs the Oracle

server. Starting extproc on a different machine is not supported.

■ The maximum number of parameters that you can pass to a external routine is

128. However, if you pass float or double parameters by value, then the

maximum is less than 128. How much less depends on the number of such

parameters and your operating system. To get a rough estimate, count each

float or double passed by value as two parameters.
11-50 Application Developer’s Guide - Fundamentals

Establishing Security
12

Establishing Security Policies

This chapter discusses and provides guidance on developing security policies.

This chapter discusses the elements you can incorporate into security policies:

■ About Security Policies

■ Application Security

■ Application Context

■ Fine-Grained Access Control

■ Using Application Context within a Fine-Grained Access Control Package

■ Examples

Note: If you are using Trusted Oracle, then see the Trusted Oracle
documentation for additional information about establishing an

overall system security policy.
 Policies 12-1

About Security Policies
About Security Policies
There are many types of mechanisms available to maintain the security of an Oracle

database. In addition to requirements unique to your environment, you should

design and implement a discretionary security policy to determine, for example:

■ The level of security at the application level

■ System and object privileges

■ Database roles

■ How to grant and revoke privileges and roles

■ How to create, alter, and drop roles

■ How to control role use

■ Level of granularity of access control

■ Which user attributes govern a user’s access to the database

This chapter discusses three elements you can use in establishing security policies:

Application Security: Attach privileges and roles to each application, while

making sure that users do not misuse those roles and

privileges when they are not actually using the application.

Application Context: Use this feature to set up session-based attributes securely.

For example, you can securely store such user attributes as

the user name, her role, the application she is using, the

books she is authorized to access, and her position in the

management hierarchy. You can then retrieve that

information later in the session.

Fine-Grained Access

Control:

Use this feature to implement security policies at a low

level of granularity. Do this by creating security policy

functions attached to the table or view on which you have

based your application. Then, when a user enters a DML

statement on that object, Oracle modifies that statement

dynamically and transparently to the user.
12-2 Application Developer’s Guide - Fundamentals

Application Security
Application Security
Draft a security policy for each database application. For example, each developed

database application should have one or more application roles that provide

different levels of security when executing the application. The application roles can

be granted to user roles or directly to specific usernames.

Applications that potentially allow unrestricted SQL statement execution (such as

SQL*Plus) also need security policies that prevent malicious access to confidential

or important schema objects.

Application Administrators
In large database systems with many database applications, it may be desirable to

have application administrators. An application administrator is responsible for the

following:

■ Creating roles for an application and managing the privileges of each

application role

■ Creating and managing the objects used by a database application

■ Maintaining and updating the application code and Oracle procedures and

packages as necessary

Roles and Application Privilege Management
Because most database applications involve many different privileges on many

different schema objects, keeping track of which privileges are required for each

application can be complex. In addition, authorizing users to run an application can

involve many GRANT operations. To simplify application privilege management,

create a role for each application and grant that role all the privileges a user needs

to run the application. In fact, an application might have a number of roles, each

granted a specific subset of privileges that allow fewer or more capabilities while

running the application.

For example, suppose that every administrative assistant uses the Vacation

application to record vacation taken by members of the department. You should:

1. Create a VACATION role.

2. Grant all privileges required by the Vacation application to the VACATION role.

3. Grant the VACATION role to all administrative assistants or to a role named

ADMIN_ASSISTS (if previously defined).
Establishing Security Policies 12-3

Application Security
Grouping application privileges in a role aids privilege management. Consider the

following administrative options:

■ You can grant the role, rather than many individual privileges, to those users

who run the application. Then, as employees change jobs, you need to grant or

revoke only one role, rather than many privileges.

■ You can change the privileges associated with an application by modifying only

the privileges granted to the role, rather than the privileges held by all users of

the application.

■ You can determine which privileges are necessary to run a particular

application by querying the ROLE_TAB_PRIVS and ROLE_SYS_PRIVS data

dictionary views.

■ You can determine which users have privileges on which applications by

querying the DBA_ROLE_PRIVS data dictionary view.

Enabling Application Roles
A single user can use many applications and associated roles. However, you should

allow a user to have only the privileges associated with the currently running

application role. For example, consider the following scenario:

■ The ORDER role (for the ORDER application) contains the UPDATE privilege for

the INVENTORY table.

■ The INVENTORY role (for the INVENTORY application) contains the SELECT
privilege for the INVENTORY table.

■ Several order entry clerks have been granted both the ORDER and INVENTORY
roles.

In this scenario, an order entry clerk, who has been granted both roles, can

presumably use the privileges of the ORDER role when running the INVENTORY
application to update the INVENTORY table. The problem is that updating the

INVENTORY table is not an authorized action when using the INVENTORY
application, but only when using the ORDER application.

To avoid such problems, consider using either the SET ROLE command or the SET
ROLE procedure as explained below.
12-4 Application Developer’s Guide - Fundamentals

Application Security
SET ROLE Command
Use a SET ROLE statement at the beginning of each application to automatically

enable its associated role and, consequently, disable all others. By using the SET
ROLE command, each application dynamically enables particular privileges for a

user only when required.

The SET ROLE statement facilitates privilege management because, in addition to

letting you control what information a user can access, it allows you to control

when a user can access it. In addition, the SET ROLE statement keeps users

operating in a well defined privilege domain.

If a user gets all privileges from roles, then the user cannot combine them to

perform unauthorized operations.

SET_ROLE Procedure
The DBMS_SESSIONS.SET_ROLE procedure behaves similarly to the SET ROLE
statement and can be accessed from PL/SQL. You cannot call SET_ROLE from a

stored procedure. This restriction prevents a stored procedure from changing its

security domain during its execution. A stored procedure executes under the

security domain of the creator of the procedure.

DBMS_SESSION.SET_ROLE is callable only from the following:

■ Anonymous PL/SQL blocks

■ Invoker’s rights stored procedures (except those invoked from within definer’s

rights procedures).

Because PL/SQL does the security check on SQL when an anonymous block is

compiled, SET_ROLE will not affect the security role (in other words, it will not

affect the roles enabled) for embedded SQL statements or procedure calls.

For example, suppose you have a role named ACCTthat has been granted privileges

allowing you to select from table FINANCE in the JOE schema. In this case, the

following block fails:

See Also: "Enabling and Disabling Roles" on page 12-12
Establishing Security Policies 12-5

Application Security
DECLARE
 n NUMBER;
BEGIN
 SYS.DBMS_SESSION.SET_ROLE(’acct’);
 SELECT empno INTO n FROM JOE.FINANCE;
END;

This block fails because the security check that verifies that you have the SELECT
privilege on table JOE.FINANCE happens at compile time. At compile time, you do

not have the ACCT role enabled yet. The role is not enabled until the block is

executed.

The DBMS_SQL package, however, is not subject to this restriction. When you use

this package, the security checks are performed at runtime. Thus, a call to SET_
ROLE would affect the SQL executed using calls to the DBMS_SQL package. The

following block is, therefore, successful:

CREATE OR REPLACE PROCEDURE dynSQL_proc IS
 n NUMBER;
BEGIN
 SYS.DBMS_SESSION.SET_ROLE(’acct’);
 EXECUTE IMMEDIATE ’select empno from joe.finance’ INTO n;
 --other calls to SYS.DBMS_SQL
END;

Note: You may need to set up data structures for certain examples

to work, such as:

CONNECT system/manager
DROP USER joe CASCADE;
CREATE USER joe IDENTIFIED BY joe;
GRANT CREATE SESSION, RESOURCE, UNLIMITED TABLESPACE TO joe;
GRANT CREATE SESSION, RESOURCE, UNLIMITED TABLESPACE TO scott;
DROP ROLE acct;
CREATE ROLE acct;
GRANT acct TO scott;

CONNECT joe/joe;
CREATE TABLE finance (empno NUMBER);
GRANT SELECT ON finance TO acct;
CONNECT scott/tiger
12-6 Application Developer’s Guide - Fundamentals

Application Security
Restricting Application Roles from Tool Users
Prebuilt database applications explicitly control the potential actions of a user,

including the enabling and disabling of the user’s roles while using the application.

Alternatively, ad hoc query tools, such as SQL*Plus, allow a user to submit any SQL

statement (which may or may not succeed), including the enabling and disabling of

any granted role. This can pose a serious security problem: A user of an application

could exercise the privileges attached to that application to issue destructive SQL

statements against database tables by using an ad hoc tool.

For example, consider the following scenario:

■ The Vacation application has a corresponding VACATION role.

■ The VACATION role includes the privileges to issue SELECT, INSERT, UPDATE,
and DELETE statements against the EMP_TAB table.

■ The Vacation application controls the use of the privileges obtained via the

VACATION role (the application controls when statements are issued).

Now, consider a user who has been granted the VACATIONrole. Suppose, instead of

using the Vacation application, the user executes SQL*Plus. At this point, the user is

restricted only by the privileges granted to him explicitly or via roles, including the

VACATION role. Because SQL*Plus is an ad hoc query tool, the user is not restricted

to a set of predefined actions, as with designed database applications. The user can

query or modify data in the EMP_TAB table as he or she chooses.

To avoid potential problems like the one above, consider the following possible

policies for application roles, each of which is explained more fully below:

■ Enable the proper role when the application starts, and disable it when the

application terminates

■ Encapsulate privileges in stored procedures and grant the user execute

privileges rather than raw privileges

■ Grant privileges through roles that require a password unknown to the user

■ Use application context

Enable the proper role when the application starts, and disable it when the
application terminates
■ Give each application distinct roles:

– One role should contain all privileges necessary to use the application

successfully. Depending on the situation, there might be several roles that

contain more or fewer privileges to provide tighter or less restrictive
Establishing Security Policies 12-7

Application Security
security while executing the application. Each application role should be

protected by a password (or by operating system authentication) to prevent

unauthorized use.

– Another role should contain only non-destructive privileges associated

with the application (SELECT privileges for specific tables or views

associated with the application). The read-only role allows the application

user to generate custom reports using ad hoc tools, such as SQL*Plus.

However, this role does not allow the application user to modify table data

outside the application itself. A role designed for an ad hoc query tool may

or may not be protected by a password (or operating system

authentication).

■ At startup, each application should use the SET ROLE command to enable one

of the application roles associated with that application. If a password is used to

authorize the role, then the password must be included in the SET ROLE
statement within the application (encrypted by the application, if possible); if

the role is authorized by the operating system, then the system administrator

must have set up user accounts and applications so that application users get

the appropriate operating system privileges when using the application.

■ At termination, each application should disable the previously enabled

application role.

■ Application users should be granted application roles, as required. The

administrator can prohibit a user from using application data with ad hoc tools

by not granting the non-destructive role to the user.

Using this configuration, each application enables the proper role when the

application is started, and disables the role when the application terminates. If an

application user decides to use an ad hoc tool, then the user can enable only the

non-destructive role intended for that tool.

Additionally, you can

■ Specify the roles to enable when a user starts SQL*Plus, using the PRODUCT_
USER_PROFILE table. This functionality is similar to that of a precompiler or

Oracle Call Interface (OCI) application that issues a SET ROLE statement to

enable specific roles upon application startup.

■ Disable the use of the SET ROLE command for SQL*Plus users with the

PRODUCT_USER_PROFILE table. This allows a SQL*Plus user only the

privileges associated with the roles enabled when the user started SQL*Plus.
12-8 Application Developer’s Guide - Fundamentals

Application Security
Other ad hoc query and reporting tools can also make use of the PRODUCT_USER_
PROFILE table to restrict the roles and commands that each user can use while

running that product.

Encapsulate privileges in stored procedures and grant the user execute
privileges rather than raw privileges
Another way to restrict users from exercising application privileges by way of ad

hoc query tools is to encapsulate privileges into stored procedures, rather than

issuing direct privilege grants to users. This allows users to exercise privileges only

in the context of well-formed business applications. For example, consider

authorizing users to update a table only by executing a stored procedure, rather

than by updating the table directly. By doing this, you avoid the problem of the user

having the SELECT privilege and using it outside the application.

Grant privileges through roles that require a password unknown to the user
In this scenario, you enable the roles by a password known only by the creator of the
role. Use the application to issue a SET ROLE command. Because the user does not

have the password, either embed the password in the application, or use a stored

procedure to retrieve the role password from a database table.

Use application context
In this scenario, you establish a security policy by securely setting session-based

attributes.

Schemas
A schema is a security domain that can contain database objects. The privileges

granted to each user or role controls access to these database objects.

Most schemas can be thought of as usernames — the accounts set up to allow users

to connect to a database and access the database’s objects. However, unique schemas
do not allow connections to the database, but are used to contain a related set of

objects. Schemas of this sort are created as normal users, yet not granted the

CREATE SESSION system privilege (either explicitly or via a role). However, you

See Also: See the appropriate tool manual.

See Also: For an example of encapsulating privileges in stored

procedures, see "Example 3: Human Resources Application #2" on

page 12-35.

See Also: "Application Context" on page 12-22
Establishing Security Policies 12-9

Application Security
must temporarily grant the CREATE SESSION privilege to such schemas, if you

want to use the CREATE SCHEMA command to create multiple tables and views in a

single transaction.

For example, the schema objects for a specific application might be owned by a

schema. Application users can connect to the database using typical database

usernames and use the application and the corresponding object, if they have the

privileges to do so. However, no user can connect to the database using the schema

set up for the application, thereby preventing access to the associated objects via

this schema. This security configuration provides another layer of protection for

schema objects.

Managing Privileges and Roles
As part of designing your application, you need to determine the types of users

who will be working with the application and the level of access that they must be

granted to accomplish their designated tasks. You must categorize these users into

role groups, and then determine the privileges that must be granted to each role.

Typically, end users are granted object privileges. An object privilege allows a user

to perform a particular action on a specific table, view, sequence, procedure,

function, or package. Depending on the type of object, there are different types of

object privileges. Table 12–1 summarizes the object privileges available for each

type of object.

See Also: "Renaming the Schema" on page 3-48 in Chapter 3,

"Managing Schema Objects"

Table 12–1 Object Privileges

Object Privilege Table View Sequence Procedure (1)

ALTER 3 3

DELETE 3 3

EXECUTE 3

INDEX 3 (2)

INSERT 3 3

REFERENCES 3 (2)

SELECT 3 3 (3) 3

UPDATE 3 3
12-10 Application Developer’s Guide - Fundamentals

Application Security
■ "Procedure (1)"—stand-alone stored procedures, functions, and public package

constructs

■ "2"—privilege that cannot be granted to a role

■ "3"—can also be granted for snapshots

Table 12–2 lists the SQL statements permitted by the object privileges listed in

Table 12–1.

As you implement and test your application, you should create each of these roles,

and test the usage scenario for each role to be certain that the users of your

application will have proper access to the database. After completing your tests,

you should coordinate with the administrator of the application that each user is

assigned the proper roles.

Creating a Role
The use of a role can be protected by an associated password. For example:

CREATE ROLE Clerk IDENTIFIED BY Bicentennial;

If you are granted a role protected by a password, then you can enable or disable

the role only by supplying the proper password for the role using a SET
ROLEcommand.

Table 12–2 SQL Statements Permitted by Database Object Privileges

Object Privilege SQL Statements Permitted

ALTER ALTER object (table or sequence)

CREATE TRIGGER ON object (tables only)

DELETE DELETE FROM object (table or view)

EXECUTE EXECUTE object (procedure or function)

References to public package variables

INDEX CREATE INDEX ON object (table or view)

INSERT INSERT INTO object (table or view)

REFERENCES CREATEor ALTER TABLEstatement defining a FOREIGN KEYintegrity
constraint on object (tables only)

SELECT SELECT...FROM object (table, view, or snapshot) SQL statements using
a sequence
Establishing Security Policies 12-11

Application Security
Alternatively, roles can be created, so that role use is authorized using information

from the operating system or from a network authentication service.

If a role is created without any protection, then any grantee can enable or disable it.

Database applications usually use the role authorization feature to specifically

enable an application role, and disable all other roles of a user. This way, the user

cannot use privileges (from a role) intended for another application. With ad hoc

query tools, such as SQL*Plus or Enterprise Manager, users can explicitly enable

only the roles for which they are authorized (in other words, they know the

password or are authorized by the operating system).

When you create a new role, the name that you use must be unique among existing

usernames and role names of the database. Roles are not contained in the schema of

any user.

Immediately after creation, a role has no privileges associated with it. To associate

privileges with a new role, you must grant privileges or other roles to the newly

created role.

Privileges Required to Create Roles To create a role, you must have the CREATE ROLE
system privilege.

Enabling and Disabling Roles
Although a user can be granted a role, the role must be enabled before the

privileges associated with it become available in the user’s current session. Some,

all, or none of the user’s roles can be enabled or disabled. The following sections

discuss when roles should be enabled and disabled, and the different ways that a

user can have roles enabled or disabled.

When to Enable Roles In general, a user’s security domain should always permit the

user to perform the current task at hand, yet limit the user from having unnecessary

See Also: "Explicitly Enabling Roles" on page 12-14

See Also: Oracle8i Administrator’s Guide

For information about network authentication services, see Oracle
Advanced Security Administrator’s Guide.

See Also: "Restricting Application Roles from Tool Users" on

page 12-7
12-12 Application Developer’s Guide - Fundamentals

Application Security
privileges for the current job. For example, a user should have all the privileges to

work with the database application currently in use, but not have any privileges

required for any other database applications. Having too many privileges might

allow users to access information through unintended methods.

Privileges granted directly to a user are always available to the user; therefore,

directly granted privileges cannot be selectively enabled and disabled, depending

on a user’s current task. Alternatively, privileges granted to a role can be selectively

made available for any user granted the role. The enabling of roles never affects

privileges explicitly granted to a user. The following sections explain how a user’s

roles can be selectively enabled (and disabled).

Default Roles A default role is one that is automatically enabled for a user when the

user creates a session. A user’s list of default roles should include those roles that

correspond to his or her typical job function.

Each user has a list of zero, or one or more default roles. Any role directly granted

to a user can potentially be a default role of the user; an indirectly granted role (a

role that is granted to a role) cannot be a default role; only directly granted roles can

be default roles of a user.

The number of default roles for a user should not exceed the maximum number of

enabled roles that are allowed per user (as specified by the initialization parameter

MAX_ENABLED_ROLES); if the number of default roles for a user exceeds this

maximum, then errors are returned when the user attempts a connection, and the

user’s connection is not allowed.

A user’s list of default roles can be set and altered using the SQL command ALTER
USER. If the user’s list of default roles is specified as ALL, then every role granted to

a user is automatically added to the user’s list of default roles. Only subsequent

modification of a user’s default role list can remove newly granted roles from a

user’s list of default roles.

Modifications to a user’s default role list only apply to sessions created after the

alteration or role grant; neither method applies to a session in progress at the time

of the user alteration or role grant.

Note: A default role is automatically enabled for a user when the

user creates a session. Placing a role in a user’s list of default roles

bypasses authentication for the role, whether it is authorized using

a password or the operating system.
Establishing Security Policies 12-13

Application Security
Explicitly Enabling Roles A user (or application) can explicitly enable a role using the

SQL command SET ROLE. A SET ROLE statement enables all specified roles,

provided that they have been granted to the user. All roles granted to the user that

are not explicitly specified in a SET ROLE statement are disabled, including any

roles previously enabled.

When you enable a role that contains other roles, all the indirectly granted roles are

specifically enabled. Each indirectly granted role can be explicitly enabled or

disabled for a user.

If a role is protected by a password, then the role can only be enabled by indicating

the role’s password in the SET ROLE statement. If the role is not protected by a

password, then the role can be enabled with a simple SET ROLE statement. For

example, assume that Morris’ security domain is as follows:

■ He is granted three roles:

– PAYROLL_CLERK (password BICENTENNIAL)

– ACCTS_PAY (password GARFIELD)

– ACCTS_REC (identified externally).

The PAYROLL_CLERK role includes the indirectly granted role PAYROLL_
REPORT (identified externally).

■ His only default role is PAYROLL_CLERK.

Morris’ currently enabled roles can be changed from his default role, PAYROLL_
CLERK, to ACCTS_PAY and ACCTS_REC, by the following statements:

SET ROLE accts_pay IDENTIFIED BY garfield;
SET ROLE accts_pay IDENTIFIED BY accts_rec;

Notice that in the first statement, multiple roles can be enabled in a single SET ROLE
statement. The ALL and ALL EXCEPT options of the SET ROLE command also allow

several roles granted directly to the user to be enabled in one statement:

Note: You may need to set up the following data structures for

certain examples to work, such as:

GRANT PAYROLL_CLERK TO hr;
GRANT ACCTS_PAY TO hr;
GRANT ACCTS_REC TO hr;
12-14 Application Developer’s Guide - Fundamentals

Application Security
SET ROLE ALL EXCEPT Payroll_clerk;

This statement shows the use of the ALL EXCEPToption of the SET ROLEcommand.

Use this option when you want to enable most of a user’s roles and only disable one

or more. Similarly, all of Morris’ roles can be enabled by the following statement:

SET ROLE ALL;

When using the ALL or ALL EXCEPT options of the SET ROLE command, all roles to

be enabled either must not require a password, or must be authenticated using the

operating system. If a role requires a password, then the SET ROLE ALL or ALL
EXCEPT statement is rolled back and an error is returned.

A user can also explicitly enable any indirectly granted roles granted to him or her

via an explicit grant of another role. For example, Morris can issue the following

statement:

SET ROLE Payroll_report;

Privileges Required to Explicitly Enable Roles Any user can use the SET ROLEcommand

to enable any granted roles, provided the grantee supplies role passwords, when

necessary.

Enabling and Disabling Roles When OS_ROLES=TRUE If OS_ROLES is set to TRUE, then

any role granted by the operating system can be dynamically enabled using the SET
ROLE command. However, any role not identified in a user’s operating system

account cannot be specified in a SET ROLE statement (it is ignored), even if a role

has been granted using a GRANT statement.

When OS_ROLES is set to TRUE, a user can enable as many roles as specified by the

initialization parameter MAX_ENABLED_ROLES.

Note: You may need to set up the following data structures for

certain examples to work, such as:

CREATE ROLE Payroll_clerk;
CREATE ROLE Payroll_report;

See Also: For more information about use of the operating

system for role authorization, see Oracle8i Administrator’s Guide.
Establishing Security Policies 12-15

Application Security
Dropping Roles
When you drop a role, the security domains of all users and roles granted that role

are immediately changed to reflect the absence of the dropped role’s privileges. All

indirectly granted roles of the dropped role are also removed from affected security

domains. Dropping a role automatically removes the role from all users’ default role

lists.

Because the creation of objects is not dependent upon the privileges received via a

role, no cascading effects regarding objects need to be considered when dropping a

role (for example, tables or other objects are not dropped when a role is dropped).

Drop a role using the SQL command DROP ROLE. For example:

DROP ROLE clerk;

Privileges Required to Drop Roles To drop a role, you must have the DROP ANY ROLE
system privilege or have been granted the role with the ADMIN OPTION.

Granting and Revoking Privileges and Roles
The following sections explain how to grant and revoke system privileges, roles,

and schema object privileges.

Granting System Privileges and Roles System privileges and roles can be granted to

other roles or users using the SQL command GRANT, as shown in the following

example:

GRANT CREATE SESSION, Accts_pay TO jward, finance;

Note: You may need to set up the following data structures for

certain examples to work, such as:

CONNECT sys/change_on_install AS sysdba;
CREATE USER jward IDENTIFIED BY jward;
CREATE USER tsmith IDENTIFIED BY tsmith;
CREATE USER finance IDENTIFIED BY finance;
CREATE USER michael IDENTIFIED BY michael;
CREATE ROLE Payroll_report;
GRANT CREATE TABLE, Accts_rec TO finance IDENTIFIED BY finance;
GRANT CREATE TABLE, Accts_rec TO tsmith IDENTIFIED BY tsmith;
GRANT REFERENCES ON Dept_tab TO jward;
CONNECT scott/tiger
CREATE VIEW Salary AS SELECT Empno,Sal from Emp_tab;
12-16 Application Developer’s Guide - Fundamentals

Application Security
Schema object privileges cannot be granted along with system privileges and roles

in the same GRANT statement.

The ADMIN OPTION—A system privilege or role can be granted with the ADMIN
OPTION. (This option is not valid when granting a role to another role.) A grantee

with this option has several expanded capabilities:

■ The grantee can grant or revoke the system privilege or role to or from any user

or other role in the database. (A user cannot revoke a role from himself.)

■ The grantee can further grant the system privilege or role with the ADMIN
OPTION.

■ The grantee of a role can alter or drop the role.

A grantee without the ADMIN OPTION cannot perform the above operations.

When a user creates a role, the role is automatically granted to the creator with the

ADMIN OPTION.

Assume that you grant the NEW_DBA role to MICHAEL with the following statement:

GRANT New_dba TO michael WITH ADMIN OPTION;

The user MICHAEL cannot only use all of the privileges implicit in the NEW_DBA
role, but can grant, revoke, or drop the NEW_DBA role, as necessary.

Privileges Required to Grant System Privileges or Roles—To grant a system

privilege or role, the grantor requires the ADMIN OPTION for all system privileges

and roles being granted. Additionally, any user with the GRANT ANY ROLE system

privilege can grant any role in a database.

Granting Schema Object Privileges Grant schema object privileges to roles or users

using the SQL command GRANT. The following statement grants the SELECT,
INSERT, and DELETE object privileges for all columns of the EMP_TAB table to the

users JWARD and TSMITH:

GRANT SELECT, INSERT, DELETE ON Emp_tab TO jward, tsmith;

To grant the INSERT object privilege for only the ENAME and JOB columns of the

EMP_TAB table to the users JWARD and TSMITH, enter the following statement:

GRANT INSERT(Ename, Job) ON Emp_tab TO jward, tsmith;
Establishing Security Policies 12-17

Application Security
To grant all schema object privileges on the SALARY view to the user WALLEN, use

the ALL short cut. For example:

GRANT ALL ON Salary TO wallen;

System privileges and roles cannot be granted along with schema object privileges

in the same GRANT statement.

The GRANT OPTION—A schema object privilege can be granted to a user with

the GRANT OPTION. This special privilege allows the grantee several expanded

privileges:

■ The grantee can grant the schema object privilege to any user or any role in the

database.

■ The grantee can also grant the schema object privilege to other users, with or

without the GRANT OPTION.

■ If the grantee receives schema object privileges for a table with the GRANT
OPTION, and the grantee has the CREATE VIEW or the CREATE ANY VIEW
system privilege, then the grantee can create views on the table and grant the

corresponding privileges on the view to any user or role in the database.

The user whose schema contains an object is automatically granted all associated

schema object privileges with the GRANT OPTION.

Privileges Required to Grant Schema Object Privileges—To grant a schema object

privilege, the grantor must either

■ Be the owner of the schema object being specified, or

■ Have been granted the schema object privileges being granted with the GRANT
OPTION

Revoking System Privileges and Roles System privileges and roles can be revoked

using the SQL command REVOKE. For example:

REVOKE CREATE TABLE, Accts_rec FROM tsmith, finance;

Note: The GRANT OPTION is not valid when granting a schema

object privilege to a role. Oracle prevents the propagation of

schema object privileges via roles, so that grantees of a role cannot

propagate object privileges received via roles.
12-18 Application Developer’s Guide - Fundamentals

Application Security
The ADMIN OPTION for a system privilege or role cannot be selectively revoked; the

privilege or role must be revoked, and then the privilege or role is regranted

without the ADMIN OPTION.

Privileges Required to Revoke System Privileges and Roles—Any user with the

ADMIN OPTION for a system privilege or role can revoke the privilege or role from

any other database user or role (the user does not have to be the user that originally

granted the privilege or role). Additionally, any user with the GRANT ANY ROLE can

revoke any role.

Revoking Schema Object Privileges Schema object privileges can be revoked using the

SQL command REVOKE. For example, assuming you are the original grantor, to

revoke the SELECT and INSERT privileges on the EMP_TAB table from the users

JWARD and TSMITH, enter the following statement:

REVOKE SELECT, INSERT ON Emp_tab FROM jward, tsmith;

A grantor could also revoke all privileges on the table DEPT_TAB (even if only

one privilege was granted) that he or she granted to the role HUMAN_RESOURCESby

entering the following statement:

REVOKE ALL ON Dept_tab FROM human_resources;

This statement would only revoke the privileges that the grantor authorized, not

the grants made by other users. The GRANT OPTION for a schema object privilege

cannot be selectively revoked; the schema object privilege must be revoked and

then regranted without the GRANT OPTION. A user cannot revoke schema object

privileges from him or herself.

Revoking Column-Selective Schema Object Privileges—Recall that

column-specific INSERT, UPDATE, and REFERENCES privileges can be granted for

tables or views; however, it is not possible to revoke column-specific privileges

selectively with a similar REVOKE statement. Instead, the grantor must first revoke

the schema object privilege for all columns of a table or view, and then selectively

grant the new column-specific privileges again.

For example, assume the role HUMAN_RESOURCES has been granted the UPDATE
privilege on the DEPTNO and DNAME columns of the table DEPT_TAB. To revoke the

UPDATE privilege on just the DEPTNO column, enter the following two statements:

REVOKE UPDATE ON Dept_tab FROM human_resources;
GRANT UPDATE (Dname) ON Dept_tab TO human_resources;
Establishing Security Policies 12-19

Application Security
The REVOKE statement revokes the UPDATE privilege on all columns of the DEPT_
TAB table from the role HUMAN_RESOURCES. The GRANT statement regrants the

UPDATE privilege on the DNAME column to the role HUMAN_RESOURCES.

Revoking the REFERENCES Schema Object Privilege—If the grantee of the

REFERENCES object privilege has used the privilege to create a foreign key

constraint (that currently exists), then the grantor can only revoke the privilege by

specifying the CASCADE CONSTRAINTS option in the REVOKE statement:

REVOKE REFERENCES ON Dept_tab FROM jward CASCADE CONSTRAINTS;

Any foreign key constraints currently defined that use the revoked REFERENCES
privilege are dropped when the CASCADE CONSTRAINTS option is specified.

Privileges Required to Revoke Schema Object Privileges—To revoke a schema

object privilege, the revoker must be the original grantor of the object privilege

being revoked.

Cascading Effects of Revoking Privileges Depending on the type of privilege, there

may or may not be cascading effects if a privilege is revoked. The following sections

explain several cascading effects.

System Privileges—There are no cascading effects when revoking a system

privilege related to DDL operations, regardless of whether the privilege was

granted with or without the ADMIN OPTION. For example, assume the following:

1. You grant the CREATE TABLE system privilege to JWARD with the WITH ADMIN
OPTION.

2. JWARD creates a table.

3. JWARD grants the CREATE TABLE system privilege to TSMITH.

4. TSMITH creates a table.

5. You revoke the CREATE TABLE privilege from JWARD.

6. JWARD’s table continues to exist. TSMITH continues to have the CREATE TABLE
system privilege, and his table still exists.

Cascading effects can be observed when revoking a system privilege related to a

DML operation. For example, if SELECT ANY TABLE is granted to a user, and if that

user has created any procedures, then all procedures contained in the user’s schema

must be reauthorized before they can be used again (after the revoke).
12-20 Application Developer’s Guide - Fundamentals

Application Security
Schema Object Privileges—Revoking a schema object privilege can have several

types of cascading effects that should be investigated before a REVOKE statement is

issued:

■ Schema object definitions that depend on a DML object privilege can be affected

if the DML object privilege is revoked. For example, assume the procedure

body of the TEST procedure includes a SQL statement that queries data from

the EMP_TAB table. If the SELECT privilege on the EMP_TAB table is revoked

from the owner of the TEST procedure, then the procedure can no longer be

executed successfully.

■ Schema object definitions that require the ALTER and INDEX DDL object

privileges are not affected, if the ALTER or INDEX object privilege is revoked.

For example, if the INDEX privilege is revoked from a user that created an index

on someone else’s table, then the index continues to exist after the privilege is

revoked.

■ When a REFERENCES privilege for a table is revoked from a user, any foreign

key integrity constraints defined by the user that require the dropped

REFERENCES privilege are automatically dropped. For example, assume that

the user JWARDis granted the REFERENCESprivilege for the DEPTNOcolumn of

the DEPT_TAB table and creates a foreign key on the DEPTNO column in the

EMP_TAB table that references the DEPTNO column. If the REFERENCES
privilege on the DEPTNO column of the DEPT_TAB table is revoked, then the

foreign key constraint on the DEPTNO column of the EMP_TAB table is dropped

in the same operation.

■ The schema object privilege grants propagated using the GRANT OPTION are

revoked, if a grantor’s object privilege is revoked. For example, assume that

USER1 is granted the SELECT object privilege with the GRANT OPTION, and

grants the SELECT privilege on EMP_TAB to USER2. Subsequently, the SELECT
privilege is revoked from USER1. This revoke is cascaded to USER2 as well. Any

schema objects that depended on USER1’s and USER2’s revoked SELECT
privilege can also be affected.

Granting to, and Revoking from, the User Group PUBLIC Privileges and roles can also be

granted to and revoked from the user group PUBLIC. Because PUBLIC is accessible

to every database user, all privileges and roles granted to PUBLIC are accessible to

every database user.

You should only grant a privilege or role to PUBLIC if every database user requires

the privilege or role. This recommendation restates the general rule that at any

given time, each database user should only have the privileges required to

successfully accomplish the current task.
Establishing Security Policies 12-21

Application Context
Revokes from PUBLIC can cause significant cascading effects, depending on the

privilege that is revoked. If any privilege related to a DML operation is revoked

from PUBLIC (for example, SELECT ANY TABLE, UPDATE ON EMP_TAB), then all

procedures in the database (including functions and packages) must be

reauthorized before they can be used again. Therefore, use caution when granting

DML-related privileges to PUBLIC.

When Do Grants and Revokes Take Effect? Depending upon what is granted or

revoked, a grant or revoke takes effect at different times:

■ All grants/revokes of privileges (system and schema object) to users, roles, or

PUBLIC are immediately observed.

■ All grants/revokes of roles to users, other roles, or PUBLIC are observed only

when a current user session issues a SET ROLE statement to re-enable the role

after the grant/revoke, or when a new user session is created after the

grant/revoke.

How Do Grants Affect Dependent Objects? Issuing a GRANT statement against a schema

object causes the "last DDL time" attribute of the object to change. This can

invalidate any dependent schema objects, in particular PL/SQL package bodies that

refer to the schema object. These then must be recompiled.

Application Context
Application context allows you to write applications on certain aspects of a user’s

session information. This is especially useful in developing secure applications

based on a user’s access privileges. For example, suppose a user is running the

Oracle Human Resource application. Part of the application’s initialization process

is to determine the kind of responsibility that the user may assume based on the

user’s identity. This responsibility ID becomes part of the Oracle Human Resource

application context; it will affect what data the user can access throughout the

session.

Features of Application Context
Application context provides security tailored to the attributes you specify for each

application. It also provides security through validation.
12-22 Application Developer’s Guide - Fundamentals

Application Context
Security Tailored to the Attributes You Specify for Each Application
Each application can have its own context with its own attributes. For example,

suppose you have three applications: General Ledger, Order Entry, and Human

Resources. You can specify different attributes for each application. Thus,

■ For the General Ledger application context, you can specify the attributes BOOK
and TITLE

■ For the Order Entry application context, you can specify the attribute

CUSTOMER_NUMBER

and

■ For the Human Resources application context, you can specify the attributes

ORGANIZATION_ID, POSITION, and COUNTRY.

In each case, you can adapt the application context to your precise security needs.

Security through Validation
Suppose you have a General Ledger application, which has access control based on

sets of books. If a user accessing this application changes the set of books he is

working on from 01 to 02, the application context can ensure that:

■ 02 is a valid set of books

■ The user has privileges to access set of books 02

The validation function can check application metadata tables to make this

determination and ensure that the attributes in combination are in line with the

overall security policy. To restrict a user from changing a context attribute without

the above security validation, Oracle verifies that only the designated package

implementing the context changes the attribute.

Using Application Context
In very basic terms, when you use application context, you perform the following

two tasks, each of which is described below.

■ Create a PL/SQL package with functions that set the context for your

application

■ Create a unique context and associate it with the PL/SQL package you created
Establishing Security Policies 12-23

Application Context
Create a PL/SQL package with functions that set the context for your
application

The following example creates the package app_security_context .

CREATE OR REPLACE PACKAGE App_security_context IS
 PROCEDURE Set_empno;
END;

CREATE OR REPLACE PACKAGE BODY App_security_context IS
 PROCEDURE Set_empno
 IS
 Emp_id NUMBER;
 BEGIN
 SELECT Empno INTO Emp_id FROM Emp_tab
 WHERE Ename = SYS_CONTEXT(’USERENV’,
 ’SESSION_USER’);
 DBMS_SESSION.SET_CONTEXT(’app_context’, ’empno’, Emp_id);
 END;
END;

See Also: See Oracle8i Supplied Packages Reference
12-24 Application Developer’s Guide - Fundamentals

Application Context
About the SYS_CONTEXT function The syntax for this function is

SYS_CONTEXT (’ namespace ’, ’ attribute ’)

and it returns the value of attribute as defined in the package currently

associated with the context namespace. It is evaluated once for each statement

execution, and is treated like a constant during type checking for optimization. You

can use the pre-defined namespace USERENV to access primitive contexts such as

userid and NLS parameters.

Create a unique context and associate it with the PL/SQL package you
created

To do this, you use the CREATE CONTEXT command. Each context must have a

unique attribute and belong to a namespace. Contexts are always owned by the

schema SYS.

For example:

CREATE CONTEXT App_context USING APP_SECURITY_CONTEXT;

where app_context is the context namespace, and app_security_context
is the trusted package that can set attributes in the context namespace.

After you have created the context, you can set or reset the context attributes by

using the DBMS_SESSION.SET_CONTEXT package. The values of the attributes

you set remain either until you reset them or until the user ends the session.

You can set the context attributes inside only the trusted procedure you named

in the CREATE CONTEXT command.

See Also: See Oracle8i SQL Reference
Establishing Security Policies 12-25

Fine-Grained Access Control
Fine-Grained Access Control
Fine-grained access control allows you to build applications that enforce security

policies at a low level of granularity. You can use it, for example, to restrict a

customer who is accessing an Oracle server to see only his own account, a physician

to see only the records of her own patients, or a manager to see only the records of

employees who work for him.

When you use fine-grained access control, you create security policy functions

attached to the table or view on which you have based your application. Then,

when a user enters a DML statement (SELECT, INSERT, UPDATE, or DELETE) on

that object, Oracle dynamically modifies that user’s statement—transparently to the

user—so that the statement implements the correct access control.

Features of Fine-Grained Access Control
Fine-grained access control provides the following capabilities.

Table- or view-based security policies
Attaching security policies to tables or views, rather than to applications, provides

greater security, simplicity, and flexibility.

Security Attaching a policy to a table or view overcomes a potentially

serious application security problem. Suppose a user is

authorized to use an application, and then, drawing on the

privileges associated with that application, wrongfully

modifies the database by using an ad hoc query tool, such as

SQL*Plus. By attaching security policies to tables or views,

fine-grained access control ensures that the same security is in

force, no matter how a user accesses the data.

Simplicity Adding the security policy to the table or view means that

you make the addition only once, rather than repeatedly

adding it to each of your table- or view-based applications.

Flexibility You can have one security policy for SELECT statements,

another for INSERT statements, and still others for UPDATE
and DELETE statements. For example, you might want to

enable a Human Resources clerk to SELECT all employee

records in her division, but to UPDATE only salaries for those

employees in her division whose last names begin with "A"

through "F."
12-26 Application Developer’s Guide - Fundamentals

Fine-Grained Access Control
Multiple policies for each table or view
You can establish several policies for the same table or view. For example, suppose

you have a base application for Order Entry, and each division of your company has

its own special rules for data access. You can add a division-specific policy function

to a table without having to rewrite the policy function of the base application.

High performance
With fine-grained access control, each policy function for a given query is evaluated

only once, namely, at statement parse time. Moreover, the entire dynamically

modified query is optimized and the parsed statement can be shared and reused.

This means that rewritten queries can take advantage of the high performance

features of Oracle such as dictionary caching and shared cursors.

Example of a Dynamically Modified Statement
Suppose you want to attach to the ORDERS_TAB table the following security policy:

"Customers can see only their own orders." The process would be as follows.

1. You create a package to add a predicate to a user’s DML statement.

In this case, you might create a package that adds the following predicate:

 Cust_no = (SELECT Custno FROM Customers WHERE Custname =
 SYS_CONTEXT (’userenv’,’session_user’))

2. A user enters the statement:

SELECT * FROM Orders_tab

3. The Oracle server calls the package you created to implement the security

policy.

Note: For performance reasons, parsed static SQL statements in

instantiated PL/SQL packages may not get re-parsed. If you want

to force the re-evaluation of the policy function, Oracle

recommends that you use dynamic SQL.

Note: A predicate is the WHERE clause and, more explicitly, a

selection criteria clause based on one of the operators (=, !=, IS , IS
NOT, >, >=).
Establishing Security Policies 12-27

Using Application Context within a Fine-Grained Access Control Package
4. The package dynamically modifies the user’s statement to read:

SELECT * FROM Orders_tab WHERE Custno = (
 SELECT Custno FROM Customers
 WHERE Custname = SYS_CONTEXT(’userenv’, ’session_user’))

5. The Oracle server executes the dynamically modified statement.

6. Upon execution, the package uses the username returned by SYS_
CONTEXT (’userenv’,’session_user’) to look up the corresponding

customer and to limit the data returned from the ORDERS_TAB table to that

customer’s data only.

Using Application Context within a Fine-Grained Access Control
Package

To make the implementation of a security policy easier, you have the option of

using application context within a fine-grained access control package.

Using Application Context as a Secure Data Cache
Accessing an application context inside your fine-grained access control policy

function is like writing down an often-used phone number and posting it next to

your phone, where you can find it easily, rather than looking it up every time you

need it.

For example, suppose you base access to the ORDERS_TAB table on customer

number. Rather than querying the customer number for a logged-in user each time

you need it, you could store it in the application context. This way, the customer

number is available when you need it.

Designing a Fine-Grained Access Control Policy to Return a Specific
Predicate for an Attribute
Suppose an attribute of the Order Entry context is position . You can return

different predicates depending on that attribute. Thus, you can enable a user in the

Clerk position to retrieve all orders, but a user in the Customer position to see his

own records only.

See Also: For more information on using Fine-grained access

control, see "Examples" on page 12-29 and Oracle8i Supplied Packages
Reference
12-28 Application Developer’s Guide - Fundamentals

Examples
To design a fine-grained access control policy to return a specific predicate for an

attribute, access the application context within the package that implements the

policy. For example, to limit customers to seeing their own records only, use

fine-grained access control to dynamically modify the user’s query from this:

SELECT * FROM Orders_tab

to this:

SELECT * FROM Orders_tab
 WHERE Custno = SYS_CONTEXT (’order_entry’, ’cust_num’);

Examples
This section provides three examples, each using application context within a

fine-grained access control package.

Example 1: Order Entry Application
This simple example uses application context to implement the policy: ’Customers

can see their own orders only.’ This example guides you through the following

tasks in building the application:

■ Create a PL/SQL package which sets the context for the application

■ Create an application context

■ Access the application context inside the package that implements the security

policy on the database object

■ Create the new security policy

The procedure in this example:

■ Assumes a one-to-one relationship between users and customers

■ Finds the user’s customer number (Cust_num)

See Also: "Application Context" on page 12-22 and "Examples" on

page 12-29.

See Also: Compare and contrast this example, which uses an

application context within the dynamically generated predicate,

with "Example of a Dynamically Modified Statement" on

page 12-27, which uses a subquery in the predicate.
Establishing Security Policies 12-29

Examples
■ Caches the customer number in the application context

You can later refer to the cust_num attribute of your order entry context (order_
entry_ctx) inside the security policy package.

Create a PL/SQL package which sets the context for the application
CREATE OR REPLACE PACKAGE apps.oe_ctx AS
 PROCEDURE set_cust_num ;
END;

CREATE OR REPLACE PACKAGE BODY apps.oe_ctx AS
 PROCEDURE set_cust_num IS
 custnum NUMBER;
 BEGIN
 SELECT cust_no INTO custnum FROM customers WHERE username =
 SYS_CONTEXT(’USERENV’, ’session_user’);
 /* SET cust_num attribute in ’order_entry’ context */
 DBMS_SESSION.SET_CONTEXT(’order_entry’, ’cust_num’, custnum);
 DBMS_SESSION.SET_CONTEXT(’order_entry’, ’cust_num’, custnum);
 END set_cust_num;
 END;

Create an application context
CREATE CONTEXT Order_entry USING Apps.Oe_ctx;

Note: You could use a logon trigger to set the initial context.

See Also: Chapter 13, "Using Triggers"

Note: This example does not treat error handling.

You can access session primitives—such as session user—by using

SYS_CONTEXT(’USERENV’, desired session primitive) .

For more information, see Oracle8i SQL Reference.
12-30 Application Developer’s Guide - Fundamentals

Examples
Access the application context inside the package that implements the
security policy on the database object

The package body appends a dynamic predicate to SELECT statements on the

ORDERS_TAB table. This predicate limits the orders returned to those of the user’s

customer number by accessing the cust_num context attribute, instead of a

subquery to the customers table.

CREATE OR REPLACE PACKAGE BODY Oe_security AS

/* limits select statements based on customer number: */
FUNCTION Custnum_sec (D1 VARCHAR2, D2 VARCHAR2) RETURN VARCHAR2
IS
 D_predicate VARCHAR2 (2000)
 BEGIN
 D_predicate = ’cust_no = SYS_CONTEXT("order_entry", "cust_num")’;
 RETURN D_predicate;
 END Custnum_sec;
END Oe_security;

Create the new security policy

DBMS_RLS.ADD_POLICY (’scott’, ’orders_tab’, ’oe_policy’, ’secusr’,
 ’oe_security.custnum_sec’, ’select’)

This statement adds a policy named OE_POLICY to the ORDERS_TAB table for

viewing in schema SCOTT. The SECUSR.OE_SECURITY.CUSTNUM_SEC function

Note: You may need to set up the following data structures for

certain examples to work:

CREATE PACKAGE Oe_security AS
FUNCTION Custnum_sec (D1 VARCHAR2, D2 VARCHAR2)
RETURN VARCHAR2;
END;

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT sys/change_on_install AS sysdba;
CREATE USER secusr IDENTIFIED BY secusr;
Establishing Security Policies 12-31

Examples
implements the policy, is stored in the SECUSR schema, and applies to SELECT
statements only.

Now, any select statement by a customer on the ORDERS_TAB table automatically

returns only that customer’s orders. In other words, the dynamic predicate modifies

the user’s statement from this:

SELECT * FROM Orders_tab;

to this:

SELECT * FROM Orders_tab
 WHERE Custno = SYS_CONTEXT(’order_entry’,’cust_num’);

Note the following with regard to this example:

■ In reality, you might have several predicates based on a user’s position. For

example, a sales rep would be able to see records for all his customers, and an

order entry clerk would be able to see any customer order. You could expand

the custnum_sec function to return different predicates based on the user’s

position context value.

■ The use of application context in a fine-grained access control package

effectively gives you a bind variable in a parsed statement. For example:

SELECT * FROM Orders_tab
 WHERE Custno = SYS_CONTEXT(’order_entry’, ’cust_num’)

This is fully parsed and optimized, but the evaluation of the user’s CUST_NUM
attribute value for the ORDER_ENTRY context takes place at execution. This

means that you get the benefit of an optimized statement which executes

differently for each user executing the statement.

■ You could set your context attributes based on data from a database table or

tables, or from a directory server using LDAP (Lightweight Directory Access

Protocol).

Note: You can improve the performance of the function in this

example even more by indexing CUST_NO.
12-32 Application Developer’s Guide - Fundamentals

Examples
Example 2: Human Resources Application #1
This example uses application context to control user access by way of a Human

Resources application. It guides you through the following three tasks, each of

which is described more fully below.

■ Create a PL/SQL package with a number of functions that sets the context for

the application

■ Create the context and associate it with the package

■ Create the initialization script for the application

In this example, assume that the application context for the Human Resources

application is assigned to the HR_CTX namespace.

Create a PL/SQL package with a number of functions that sets the context for
the application

APPS is the schema owning the package.

CREATE OR REPLACE PACKAGE BODY apps.hr_sec_ctx IS
/* function to set responsibility id */
PROCEDURE set_resp_id (respid NUMBER) IS
BEGIN

/* validate respid based on primitive and other context */
/* validate_respid (respid); */

/* set resp_id attribute under namespace ’hr_ctx’*/
 DBMS_SESSION.SET_CONTEXT(’hr_ctx’, ’resp_id’, respid);
END set_resp_id;

/* function to set organization id */
PROCEDURE set_org_id (orgid NUMBER) IS

Note: You may need to set up the following data structures for

certain examples to work:

CREATE OR REPLACE PACKAGE apps.hr_sec_ctx IS
 PROCEDURE set_resp_id (respid NUMBER);
 PROCEDURE set_org_id (orgid NUMBER);
 /* PROCEDURE validate_respid (respid NUMBER); */
 /* PROCEDURE validate_org_id (orgid NUMBER); */
END hr_sec_ctx;
Establishing Security Policies 12-33

Examples
BEGIN
/* validate organization ID */
/* validate_org_id(orgid); /*
/* set org_id attribute under namespace ’hr_ctx’ */
 DBMS_SESSION.SET_CONTEXT(’hr_ctx’, ’org_id’, orgid);
END set_org_id;

/* more functions to set other attributes for the HR application */
END hr_sec_ctx;

Create the context and associate it with the package
CREATE CONTEXT Hr_ctx USING Apps.Hr_sec_ctx;

Create the initialization script for the application
Suppose that the execute privilege on the package HR_SEC_CTX has been granted

to the schema running the application. Part of the script will make calls to set

various attributes of the HR_CTX context. Here, we do not show how the context is

determined. Normally, it is based on the primitive context or other derived context.

APPS.HR_SEC_CTX.SET_RESP_ID(1);
APPS.HR_SEC_CTX.SET_ORG_ID(101);

The SYS_CONTEXT function can be used for data access control based on this

application context. For example, the base table HR_ORGANIZATION_UNIT can be

secured by a view that restricts access to rows based on attribute ORG_ID:

CREATE VIEW Hr_organization_secv AS
 SELECT * FROM hr_organization_unit
 WHERE Organization_id = SYS_CONTEXT(’hr_ctx’,’org_id’);

Caution: You may need to set up data structures for certain

examples to work:

CREATE TABLE hr_organization_unit (organization_id NUMBER);
12-34 Application Developer’s Guide - Fundamentals

Examples
Example 3: Human Resources Application #2

This example illustrates the use of the following security features in Oracle8i release

8.1.4:

■ Event triggers

■ Application context

■ Fine-grained access control

■ Encapsulation of privileges in stored procedures

In this example, we associate a security policy with the table called DIRECTORY
which has the following columns:

■ EMPNO—identification number for each employee

■ MGRID—employee identification number for the manager of each employee

■ RANK—position of the employee in the corporate hierarchy

The security policy associated with this table has two elements:

■ All users can find the MGRID for a specific EMPNO.

To implement this, we create a definer’s right package in the Human

Resources schema (HR) to do SELECT on the table

■ Managers can update the positions in the corporate hierarchy of only their

direct subordinates. To do this they must use only the designated application.

Note: You may need to set up the following data structures for

certain examples to work:

CREATE TABLE Payroll(
 Srate NUMBER,
 Orate NUMBER,
 Acctno NUMBER,
 Empno NUMBER,
 Name VARCHAR2(20));
CREATE TABLE Directory_u(
 Empno NUMBER,
 Mgrno NUMBER,
 Rank NUMBER);
CREATE SEQUENCE Empno_seq
CREATE SEQUENCE Rank_seq
Establishing Security Policies 12-35

Examples
To implement this:

* Define fine-grained access policies on the table based on EMPNO and

application context.

* Set EMPNO by using a logon trigger.

* Set the application context by using the designated package for

processing the updates (event triggers and application context).

CONNECT system/manager AS sysdba
GRANT CONNECT,RESOURCE,UNLIMITED TABLESPACE,CREATE ANY CONTEXT, CREATE
PROCEDURE, CREATE ANY TRIGGER TO HR IDENTIFIED BY HR;
CONNECT hr/hr;
CREATE TABLE Directory (Empno NUMBER(4) NOT NULL,
 Mgrno NUMBER(4) NOT NULL,
 Rank NUMBER(7,2) NOT NULL);

CREATE TABLE Payroll (Empno NUMBER(4) NOT NULL,
 Name VARCHAR(30) NOT NULL);

/* seed the tables with a couple of managers: */
INSERT INTO Directory VALUES (1, 1, 1.0);
INSERT INTO Payroll VALUES (1, 'KING');
INSERT INTO Directory VALUES (2, 1, 5);
INSERT INTO Payroll VALUES (2, 'CLARK');

/* Create the sequence number for EMPNO: */
CREATE SEQUENCE Empno_seq START WITH 5;

/* Create the sequence number for RANK: */
CREATE SEQUENCE Rank_seq START WITH 100;

CREATE OR REPLACE CONTEXT Hr_app USING Hr.Hr0_pck;
CREATE OR REPLACE CONTEXT Hr_sec USING Hr.Hr1_pck;

CREATE or REPLACE PACKAGE Hr0_pck IS
PROCEDURE adjustrankby1(Empno NUMBER);
END;

Note: In this example, we grant UPDATE privileges on the table to

public, because fine-grained access control prevents an

unauthorized user from wrongly modifying a given row.
12-36 Application Developer’s Guide - Fundamentals

Examples
CREATE or REPLACE PACKAGE BODY Hr0_pck IS
/* raise the rank of the empno by 1: */
PROCEDURE Adjustrankby1(Empno NUMBER)
IS
 Stmt VARCHAR2(100);
 BEGIN

 /*Set context to indicate application state */
 DBMS_SESSION.SET_CONTEXT('hr_app','adjstate',1);
 /* Now we can issue DML statement: */
 Stmt := 'UPDATE SET Rank := Rank +1 FROM Directory d WHERE d.Empno = '
 || Empno;
 EXECUTE IMMEDIATE STMT;

/* Re-set application state: */
 DBMS_SESSION.SET_CONTEXT('hr_app','adjstate',0);
 END;
END;

CREATE or REPLACE PACKAGE hr1_pck IS PROCEDURE setid;
END;
/
/* Based on userid, find EMPNO, and set it in application context */

CREATE or REPLACE PACKAGE BODY Hr1_pck IS
PROCEDURE setid
 IS
 id NUMBER;
 BEGIN
 SELECT Empno INTO id FROM Payroll WHERE Name =
 SYS_CONTEXT('userenv','session_user') ;
 DBMS_SESSION.SET_CONTEXT('hr_sec','empno',id);
 DBMS_SESSION.SET_CONTEXT('hr_sec','appid',id);
 EXCEPTION
 /* For purposes of demonstration insert into payroll table
 / so that user can continue on and run example. */
 WHEN NO_DATA_FOUND THEN
 INSERT INTO Payroll (Empno, Name)
 VALUES (Empno_seq.NEXTVAL, SYS_CONTEXT('userenv','session_user'));
 INSERT INTO Directory (Empno, Mgrno, Rank)
 VALUES (Empno_seq.CURRVAL, 2, Rank_seq.NEXTVAL);
 SELECT Empno INTO id FROM Payroll WHERE Name =
 sys_context('userenv','session_user') ;
 DBMS_SESSION.SET_CONTEXT('hr_sec','empno',id);
 DBMS_SESSION.SET_CONTEXT('hr_sec','appid',id);
Establishing Security Policies 12-37

Examples
 WHEN OTHERS THEN
 NULL;
 /* If this is to be fired via a "logon" trigger,
 / you need to handle exceptions if you want the user to continue
 / logging into the database. */
 END;
END;

GRANT EXECUTE ON Hr1_pck TO public;

CONNECT system/manager AS sysdba

CREATE OR REPLACE TRIGGER Databasetrigger

AFTER LOGON
ON DATABASE
BEGIN
 hr.Hr1_pck.Setid;
END;

/* Creates the package for finding the MGRID for a particular EMPNO
using definer's right (encapsulated privileges). Note that users are
granted EXECUTE privileges only on this package, and not on the table
(DIRECTORY) it is querying. */

CREATE or REPLACE PACKAGE hr2_pck IS
 FUNCTION Findmgr(Empno NUMBER) RETURN NUMBER;
END;

CREATE or REPLACE PACKAGE BODY hr2_pck IS
 /* insert a new employee record: */
 FUNCTION findmgr(empno number) RETURN NUMBER IS
 Mgrid NUMBER;
 BEGIN
 SELECT mgrno INTO mgrid FROM directory WHERE mgrid = empno;
 RETURN mgrid;
 END;
END;

CREATE or REPLACE FUNCTION secure_updates(ns varchar2,na varchar2)
 RETURN VARCHAR2 IS
 Results VARCHAR2(100);
 BEGIN

/* Only allow updates when designated application has set the session
 state to indicate we are inside it. */
12-38 Application Developer’s Guide - Fundamentals

Examples
 IF (sys_context('hr_sec','adjstate') = 1)
 THEN results := 'mgr = SYS_CONTEXT("hr_sec","empno")';
 ELSE results := '1=2';
 END IF;
 RETURN Results;
 END;

/* Attaches fine-grained access policy to all update operations on
hr.directory */

CONNECT system/manager AS sysdba;
BEGIN
 DBMS_RLS.ADD_POLICY('hr','directory_u','secure_update','hr',
 'secure_updates','update',TRUE,TRUE);
END;
Establishing Security Policies 12-39

Examples
12-40 Application Developer’s Guide - Fundamentals

Part III

 The Active Database

Part III contains the following chapters:

■ Chapter 13, "Using Triggers"

■ Chapter 14, "Working With System Events"

■ Chapter 15, "Using Publish-Subscribe"

Us
13

Using Triggers

Triggers are procedures that are stored in the database and implicitly run, or fired,

when something happens.

Traditionally, triggers supported the execution of a PL/SQL block when an INSERT,

UPDATE, or DELETE occurred on a table or view. With Oracle8i, triggers support

system and other data events on DATABASE and SCHEMA. Oracle also supports the

execution of a PL/SQL or Java procedure.

This chapter discusses DML triggers, INSTEAD OF triggers, and system triggers

(triggers on DATABASE and SCHEMA). Topics include:

■ Designing Triggers

■ Creating Triggers

■ Compiling Triggers

■ Modifying Triggers

■ Enabling and Disabling Triggers

■ Listing Information About Triggers

■ Examples of Trigger Applications

■ Triggering Event Publication
ing Triggers 13-1

Designing Triggers
Designing Triggers
Use the following guidelines when designing your triggers:

■ Use triggers to guarantee that when a specific operation is performed, related

actions are performed.

■ Do not define triggers that duplicate the functionality already built into Oracle.

For example, do not define triggers to enforce data integrity rules that can be

easily enforced using declarative integrity constraints.

■ Limit the size of triggers. If the logic for your trigger requires much more than

60 lines of PL/SQL code, then it is better to include most of the code in a stored

procedure and call the procedure from the trigger.

■ Use triggers only for centralized, global operations that should be fired for the

triggering statement, regardless of which user or database application issues the

statement.

■ Do not create recursive triggers. For example, creating an AFTER UPDATE
statement trigger on the Emp_tab table that itself issues an UPDATE statement

on Emp_tab , causes the trigger to fire recursively until it has run out of

memory.

■ Use triggers on DATABASE judiciously. They are executed for every user every
time the event occurs on which the trigger is created.
13-2 Application Developer’s Guide - Fundamentals

Creating Triggers
Creating Triggers
Triggers are created using the CREATE TRIGGER statement. This statement can be

used with any interactive tool, such as SQL*Plus or Enterprise Manager. When

using an interactive tool, a single slash (/) on the last line is necessary to activate the

CREATE TRIGGER statement.

The following statement creates a trigger for the Emp_tab table:

CREATE OR REPLACE TRIGGER Print_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON Emp_tab
FOR EACH ROW
WHEN (new.Empno > 0)
DECLARE
 sal_diff number;
BEGIN
 sal_diff := :new.sal - :old.sal;
 dbms_output.put(’Old salary: ’ || :old.sal);
 dbms_output.put(’ New salary: ’ || :new.sal);
 dbms_output.put_line(’ Difference ’ || sal_diff);
END;
/

If you enter a SQL statement, such as the following:

UPDATE Emp_tab SET sal = sal + 500.00 WHERE deptno = 10;

Then, the trigger fires once for each row that is updated, and it prints the new and

old salaries, and the difference.

The CREATE (or CREATE OR REPLACE) statement fails if any errors exist in the

PL/SQL block.

The following sections use this example to illustrate the way that parts of a trigger

are specified.

Note: The size of the trigger cannot be more than 32K.

See Also: For more realistic examples of CREATE TRIGGER
statements, see "Examples of Trigger Applications" on page 13-34.
Using Triggers 13-3

Creating Triggers
Prerequisites for Creating Triggers
Before creating any triggers, run the CATPROC.SQL script while connected as SYS.

This script automatically runs all of the scripts required for, or used within, the

procedural extensions to the Oracle Server.

Types of Triggers
A trigger is either a stored PL/SQL block or a PL/SQL, C, or Java procedure

associated with a table, view, schema, or the database itself. Oracle automatically

executes a trigger when a specified event takes place, which may be in the form of a

system event or a DML statement being issued against the table.

Triggers can be:

■ DML triggers on tables.

■ INSTEAD OF triggers on views.

■ System triggers on DATABASE or SCHEMA: With DATABASE, triggers fire for

each event for all users; with SCHEMA, triggers fire for each event for that

specific user.

Overview of System Events
You can create triggers to be fired on any of the following:

■ DML statements (DELETE, INSERT, UPDATE)

■ DDL statements (CREATE, ALTER, DROP)

■ Database operations (SERVERERROR, LOGON, LOGOFF, STARTUP, SHUTDOWN)

See Also: The location of this file is operating system dependent;

see your platform-specific Oracle documentation.

Note: With Oracle8i release 8.1.5, INSTEAD OF triggers are only

available with the Enterprise Edition. This may change in future

releases.

See Also: Oracle8i SQL Reference explains the syntax for creating

triggers.
13-4 Application Developer’s Guide - Fundamentals

Creating Triggers
System Event Publication Attributes
You can obtain certain event-specific attributes when the trigger is fired.

Creating a trigger on DATABASE implies that the triggering event is outside the

scope of a user (for example, database STARTUP and SHUTDOWN), and it applies to

all users (for example, a trigger created on LOGON event by the DBA).

Creating a trigger on SCHEMAimplies that the trigger is created in the current user’s

schema and is fired only for that user.

For each trigger, publication can be specified on DML and system events.

Naming Triggers
Trigger names must be unique with respect to other triggers in the same schema.

Trigger names do not need to be unique with respect to other schema objects, such

as tables, views, and procedures. For example, a table and a trigger can have the

same name (however, to avoid confusion, this is not recommended).

Triggering Statement
The triggering statement specifies the following:

■ The type of SQL statement or the system event, database event, or DDL event

that fires the trigger body. The options include DELETE, INSERT, and UPDATE.
One, two, or all three of these options can be included in the triggering

statement specification.

■ The table, view, DATABASE, or SCHEMA associated with the trigger.

See Also: Chapter 14, "Working With System Events".

See Also: "Triggering Event Publication" on page 13-54 and

"Event Attribute Functions" in Chapter 14, "Working With System

Events"

Note: Exactly one table or view can be specified in the triggering

statement. If the INSTEAD OF option is used, then the triggering

statement may only specify a view; conversely, if a view is specified

in the triggering statement, then only the INSTEAD OF option may

be used.
Using Triggers 13-5

Creating Triggers
For example, the PRINT_SALARY_CHANGES trigger fires after any DELETE,
INSERT, or UPDATE on the Emp_tab table. Any of the following statements trigger

the PRINT_SALARY_CHANGES trigger given in the previous example:

DELETE FROM Emp_tab;
INSERT INTO Emp_tab VALUES (. . .);
INSERT INTO Emp_tab SELECT . . . FROM . . . ;
UPDATE Emp_tab SET . . . ;

INSERT Trigger Behavior
INSERT triggers will fire during import and during SQL*Loader conventional

loads. (For direct loads, triggers are disabled before the load.)

For example, you have three tables: A, B, and C. You also have an INSERT trigger

on table A which looks from table B and inserts into table C. If you import table A,

then table C is also updated.

Column List for UPDATE
If a triggering statement specifies UPDATE, then an optional list of columns can be

included in the triggering statement. If you include a column list, then the trigger is

fired on an UPDATEstatement only when one of the specified columns is updated. If

you omit a column list, then the trigger is fired when any column of the associated

table is updated. A column list cannot be specified for INSERT or DELETE
triggering statements.

The previous example of the PRINT_SALARY_CHANGES trigger could include a

column list in the triggering statement. For example:

. . . BEFORE DELETE OR INSERT OR UPDATE OF ename ON Emp_tab . . .

Note: The IGNORE parameter determines whether triggers will be

fired during import. If IGNORE=N (default), then import does not

load an already existing table, so no pre-existing triggers will fire. If

the table did not exist, then import creates and loads it before any

triggers are defined, so again, they do not fire. If IGNORE=Y, then

import loads rows into existing tables. Triggers will fire, and

indexes will be maintained.
13-6 Application Developer’s Guide - Fundamentals

Creating Triggers
Usage Notes

■ You cannot specify a column list for UPDATE with INSTEAD OF triggers.

■ If the column specified in the UPDATE OF clause is an object column, then the

trigger is also fired if any of the attributes of the object are modified.

■ You cannot specify UPDATE OF clauses on collection columns.

BEFORE and AFTER Options
The BEFORE or AFTER option in the CREATE TRIGGER statement specifies exactly

when to fire the trigger body in relation to the triggering statement that is being

run. In a CREATE TRIGGER statement, the BEFORE or AFTER option is specified just

before the triggering statement. For example, the PRINT_SALARY_CHANGEStrigger

in the previous example is a BEFORE trigger.

INSTEAD OF Triggers
The INSTEAD OF option can also be used in triggers. INSTEAD OF triggers provide

a transparent way of modifying views that cannot be modified directly through

UPDATE, INSERT, and DELETE statements. These triggers are called INSTEAD OF
triggers because, unlike other types of triggers, Oracle fires the trigger instead of

executing the triggering statement. The trigger performs UPDATE, INSERT, or

DELETE operations directly on the underlying tables.

You can write normal UPDATE, INSERT, and DELETE statements against the view,

and the INSTEAD OF trigger works invisibly in the background to make the right

actions take place.

INSTEAD OF triggers can only be activated for each row.

Note: AFTER row triggers are slightly more efficient than BEFORE
row triggers. With BEFORE row triggers, affected data blocks must

be read (logical read, not physical read) once for the trigger and

then again for the triggering statement.

Alternatively, with AFTER row triggers, the data blocks must be

read only once for both the triggering statement and the trigger.

See Also: "FOR EACH ROW Option" on page 13-12
Using Triggers 13-7

Creating Triggers
Usage Notes

■ With Oracle8i release 8.1.5, INSTEAD OF triggers are only available with the

Enterprise Edition. This may also be available in the Standard Edition in future

releases.

■ The INSTEAD OF option can only be used for triggers created over views.

■ The BEFORE and AFTER options cannot be used for triggers created over views.

■ The CHECKoption for views is not enforced when inserts or updates to the view

are done using INSTEAD OF triggers. The INSTEAD OF trigger body must

enforce the check.

Views That Are Not Modifiable
A view cannot be modified by UPDATE, INSERT, or DELETE statements if the view

query contains any of the following constructs:

■ Set operators

■ Group functions

■ GROUP BY, CONNECT BY, or START WITH clauses

■ The DISTINCT operator

■ Joins (a subset of join views are updatable)

If a view contains pseudocolumns or expressions, then you can only update the

view with an UPDATE statement that does not refer to any of the pseudocolumns or

expressions.
13-8 Application Developer’s Guide - Fundamentals

Creating Triggers
INSTEAD OF Trigger Example

The following example shows an INSTEAD OF trigger for inserting rows into the

MANAGER_INFO view.

CREATE OR REPLACE VIEW manager_info AS
 SELECT e.ename, e.empno, d.dept_type, d.deptno, p.prj_level,
 p.projno
 FROM Emp_tab e, Dept_tab d, Project_tab p
 WHERE e.empno = d.mgr_no
 AND d.deptno = p.resp_dept;

CREATE OR REPLACE TRIGGER manager_info_insert
INSTEAD OF INSERT ON manager_info
REFERENCING NEW AS n -- new manager information

FOR EACH ROW
DECLARE
 rowcnt number;

Note: You may need to set up the following data structures for

this example to work:

CREATE TABLE Project_tab (
 Prj_level NUMBER,
 Projno NUMBER,
 Resp_dept NUMBER);
CREATE TABLE Emp_tab (
 Empno NUMBER NOT NULL,
 Ename VARCHAR2(10),
 Job VARCHAR2(9),
 Mgr NUMBER(4),
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(7,2),
 Deptno NUMBER(2) NOT NULL);

CREATE TABLE Dept_tab (
 Deptno NUMBER(2) NOT NULL,
 Dname VARCHAR2(14),
 Loc VARCHAR2(13),
 Mgr_no NUMBER,
 Dept_type NUMBER);
Using Triggers 13-9

Creating Triggers
BEGIN
 SELECT COUNT(*) INTO rowcnt FROM Emp_tab WHERE empno = :n.empno;
 IF rowcnt = 0 THEN
 INSERT INTO Emp_tab (empno,ename) VALUES (:n.empno, :n.ename);
 ELSE
 UPDATE Emp_tab SET Emp_tab.ename = :n.ename
 WHERE Emp_tab.empno = :n.empno;
 END IF;
 SELECT COUNT(*) INTO rowcnt FROM Dept_tab WHERE deptno = :n.deptno;
 IF rowcnt = 0 THEN
 INSERT INTO Dept_tab (deptno, dept_type)
 VALUES(:n.deptno, :n.dept_type);
 ELSE
 UPDATE Dept_tab SET Dept_tab.dept_type = :n.dept_type
 WHERE Dept_tab.deptno = :n.deptno;
 END IF;
 SELECT COUNT(*) INTO rowcnt FROM Project_tab
 WHERE Project_tab.projno = :n.projno;
 IF rowcnt = 0 THEN
 INSERT INTO Project_tab (projno, prj_level)
 VALUES(:n.projno, :n.prj_level);
 ELSE
 UPDATE Project_tab SET Project_tab.prj_level = :n.prj_level
 WHERE Project_tab.projno = :n.projno;
 END IF;
END;

The actions shown for rows being inserted into the MANAGER_INFOview first test to

see if appropriate rows already exist in the base tables from which MANAGER_INFO
is derived. The actions then insert new rows or update existing rows, as

appropriate. Similar triggers can specify appropriate actions for UPDATE and

DELETE.

Object Views and INSTEAD OF Triggers
INSTEAD OF triggers provide the means to modify object view instances on the

client-side through OCI calls.

To modify an object materialized by an object view in the client-side object cache

and flush it back to the persistent store, you must specify INSTEAD OF triggers,

unless the object view is modifiable. If the object is read only, then it is not necessary

to define triggers to pin it.

See Also: Oracle Call Interface Programmer’s Guide
13-10 Application Developer’s Guide - Fundamentals

Creating Triggers
Triggers on Nested Table View Columns
INSTEAD OF triggers can also be created over nested table view columns. These

triggers provide a way of updating elements of the nested table. They fire for each

nested table element being modified. The row correlation variables inside the

trigger correspond to the nested table element. This type of trigger also provides an

additional correlation name for accessing the parent row that contains the nested

table being modified.

For example, consider a department view that contains a nested table of employees.

CREATE OR REPLACE VIEW Dept_view AS
SELECT d.Deptno, d.Dept_type, d.Dept_name,
 CAST (MULTISET (SELECT e.Empno, e.Empname, e.Salary
 FROM Emp_tab e
 WHERE e.Deptno = d.Deptno) AS Amp_list_ Emplist
FROM Dept_tab d;

The CAST (MULTISET..) operator creates a multi-set of employees for each

department. Now, if you want to modify the emplist column, which is the nested

table of employees, then you can define an INSTEAD OF trigger over the column to

handle the operation.

The following example shows how an insert trigger might be written:

CREATE OR REPLACE TRIGGER Dept_emplist_tr
 INSTEAD OF INSERT ON NESTED TABLE Emplist OF Dept_view
 REFERENCING NEW AS Employee
 PARENT AS Department
 FOR EACH ROW
BEGIN
-- The insert on the nested table is translated to an insert on the base table:
 INSERT INTO Emp_tab VALUES (
 :Employee.Empno, :Employee.Empname,:Employee.Salary, :Department.Deptno);
END;

Note: These triggers:

■ Can only be defined over nested table columns in views.

■ Fire only when the nested table elements are modified using

the THE() or TABLE() clauses. They do not fire when a DML

statement is performed on the view.
Using Triggers 13-11

Creating Triggers
Any INSERT into the nested table fires the trigger, and the Emp_tab table is filled

with the correct values. For example:

INSERT INTO TABLE (SELECT d.Emplist FROM Dept_view d WHERE Deptno = 10)
 VALUES (1001, ’John Glenn’, 10000)

The :department .deptno correlation variable in this example would have a value

of 10.

FOR EACH ROW Option
The FOR EACH ROW option determines whether the trigger is a row trigger or a

statement trigger. If you specify FOR EACH ROW, then the trigger fires once for each

row of the table that is affected by the triggering statement. The absence of the FOR
EACH ROW option indicates that the trigger fires only once for each applicable

statement, but not separately for each row affected by the statement.

For example, you define the following trigger:

asdf

CREATE OR REPLACE TRIGGER Log_salary_increase
AFTER UPDATE ON Emp_tab
FOR EACH ROW
WHEN (new.Sal > 1000)
BEGIN
 INSERT INTO Emp_log (Emp_id, Log_date, New_salary, Action)
 VALUES (:new.Empno, SYSDATE, :new.SAL, ’NEW SAL’);
END;

Then, you enter the following SQL statement:

UPDATE Emp_tab SET Sal = Sal + 1000.0
 WHERE Deptno = 20;

If there are five employees in department 20, then the trigger fires five times when

this statement is entered, because five rows are affected.

Note: You may need to set up the following data structures for

certain examples to work:

CREATE TABLE Emp_log (
 Emp_id NUMBER,
 Log_date DATE,
 New_salary NUMBER,
 Action VARCHAR2(20));
13-12 Application Developer’s Guide - Fundamentals

Creating Triggers
The following trigger fires only once for each UPDATE of the Emp_tab table:

CREATE OR REPLACE TRIGGER Log_emp_update
AFTER UPDATE ON Emp_tab
BEGIN
 INSERT INTO Emp_log (Log_date, Action)
 VALUES (SYSDATE, ’Emp_tab COMMISSIONS CHANGED’);
END;

The statement level triggers are useful for performing validation checks for the

entire statement.

WHEN Clause
Optionally, a trigger restriction can be included in the definition of a row trigger by

specifying a Boolean SQL expression in a WHEN clause.

If included, then the expression in the WHEN clause is evaluated for each row that

the trigger affects.

If the expression evaluates to TRUEfor a row, then the trigger body is fired on behalf

of that row. However, if the expression evaluates to FALSE or NOT TRUE for a row

(unknown, as with nulls), then the trigger body is not fired for that row. The

evaluation of the WHEN clause does not have an effect on the execution of the

triggering SQL statement (in other words, the triggering statement is not rolled

back if the expression in a WHEN clause evaluates to FALSE).

For example, in the PRINT_SALARY_CHANGES trigger, the trigger body is not run if

the new value of Empno is zero, NULL, or negative. In more realistic examples, you

might test if one column value is less than another.

The expression in a WHEN clause of a row trigger can include correlation names,

which are explained below. The expression in a WHEN clause must be a SQL

expression, and it cannot include a subquery. You cannot use a PL/SQL expression

(including user-defined functions) in the WHEN clause.

See Also: For the order of trigger firing, see Oracle8i Concepts.

Note: You can only specify the FOR EACH ROWoption for INSTEAD
OF triggers.

Note: A WHEN clause cannot be included in the definition of a

statement trigger.
Using Triggers 13-13

Creating Triggers
The Trigger Body
The trigger body is a CALL procedure or a PL/SQL block that can include SQL and

PL/SQL statements. The CALL procedure can be either a PL/SQL or a Java

procedure that is encapsulated in a PL/SQL wrapper. These statements are run if

the triggering statement is entered and if the trigger restriction (if included)

evaluates to TRUE.

The trigger body for row triggers has some special constructs that can be included

in the code of the PL/SQL block: correlation names and the REFERENCEINGoption,

and the conditional predicates INSERTING, DELETING, and UPDATING.

Example 1 This example illustrates how a DBA can monitor all users logging on:

Note: You cannot specify the WHEN clause for INSTEAD OF
triggers.

Note: The INSERTING, DELETING, and UPDATING conditional

predicates cannot be used for the CALL procedures; they can only

be used in a PL/SQL block.

Note: You may need to set up data structures similar to the

following for certain examples to work:

CONNECT system/manager
GRANT ADMINISTER DATABASE TRIGGER TO scott;
CONNECT scott/tiger
CREATE TABLE audit_table (
 seq number,
 user_at VARCHAR2(10),
 time_now DATE,
 term VARCHAR2(10),
 job VARCHAR2(10),
 proc VARCHAR2(10),
 enum NUMBER);
13-14 Application Developer’s Guide - Fundamentals

Creating Triggers
CREATE OR REPLACE PROCEDURE foo (c VARCHAR2) AS
 BEGIN
 INSERT INTO Audit_table (user_at) VALUES(c);
 END;

CREATE OR REPLACE TRIGGER logontrig AFTER LOGON ON DATABASE
CALL foo (sys.login_user)
/

Example 2 This example illustrates a trigger invoking a Java procedure:

CREATE OR REPLACE PROCEDURE Before_delete (Id IN NUMBER, Ename VARCHAR2)
IS language Java
name ’thjvTriggers.beforeDelete (oracle.sql.NUMBER, oracle.sql.CHAR)’;

CREATE OR REPLACE TRIGGER Pre_del_trigger BEFORE DELETE ON Tab
FOR EACH ROW
CALL Before_delete (:old.Id, :old.Ename)

thjvTriggers.java

import java.sql.*
import java.io.*
import oracle.sql.*
import oracle.oracore.*
public class thjvTriggers
{
public state void
beforeDelete (NUMBER old_id, CHAR old_name)
Throws SQLException, CoreException
 {
 Connection conn = JDBCConnection.defaultConnection();
 Statement stmt = conn.CreateStatement();
 String sql = "insert into logtab values
 ("+ old_id.intValue() +", ’"+ old_ename.toString() + ", BEFORE DELETE’);
 stmt.exectueUpdate (sql);
 stmt.close();
 return;
 }
}

Accessing Column Values in Row Triggers
Within a trigger body of a row trigger, the PL/SQL code and SQL statements have

access to the old and new column values of the current row affected by the
Using Triggers 13-15

Creating Triggers
triggering statement. Two correlation names exist for every column of the table

being modified: one for the old column value, and one for the new column value.

Depending on the type of triggering statement, certain correlation names might not

have any meaning.

■ A trigger fired by an INSERT statement has meaningful access to new column

values only. Because the row is being created by the INSERT, the old values are

null.

■ A trigger fired by an UPDATE statement has access to both old and new column

values for both BEFORE and AFTER row triggers.

■ A trigger fired by a DELETE statement has meaningful access to :old column

values only. Because the row no longer exists after the row is deleted, the :new
values are NULL. However, you cannot modify :new values: ORA-4084 is raised

if you try to modify :new values.

The new column values are referenced using the new qualifier before the column

name, while the old column values are referenced using the old qualifier before the

column name. For example, if the triggering statement is associated with the Emp_
tab table (with the columns SAL, COMM, etc.), then you can include statements in

the trigger body. For example:

IF :new.Sal > 10000 . . .
IF :new.Sal < :old.Sal . . .

Old and new values are available in both BEFORE and AFTER row triggers. A new
column value can be assigned in a BEFORE row trigger, but not in an AFTER row

trigger (because the triggering statement takes effect before an AFTER row trigger is

fired). If a BEFORE row trigger changes the value of new.column , then an AFTER
row trigger fired by the same statement sees the change assigned by the BEFORE
row trigger.

Correlation names can also be used in the Boolean expression of a WHEN clause. A

colon must precede the old and new qualifiers when they are used in a trigger’s

body, but a colon is not allowed when using the qualifiers in the WHEN clause or the

REFERENCING option.

INSTEAD OF Triggers on Nested Table View Columns
In the case of INSTEAD OF triggers on nested table view columns, the new and old
qualifiers correspond to the new and old nested table elements. The parent row

corresponding to this nested table element can be accessed using the parent
qualifier. The parent correlation name is meaningful and valid only inside a nested

table trigger.
13-16 Application Developer’s Guide - Fundamentals

Creating Triggers
REFERENCING Option
The REFERENCING option can be specified in a trigger body of a row trigger to

avoid name conflicts among the correlation names and tables that might be named

old or new. Because this is rare, this option is infrequently used.

For example, assume you have a table named new with columns field1 (number)

and field2 (character). The following CREATE TRIGGER example shows a trigger

associated with the new table that can use correlation names and avoid naming

conflicts between the correlation names and the table name:

CREATE OR REPLACE TRIGGER Print_salary_changes
BEFORE UPDATE ON new
REFERENCING new AS Newest
FOR EACH ROW
BEGIN
 :Newest.Field2 := TO_CHAR (:newest.field1);
END;

Notice that the new qualifier is renamed to newest using the REFERENCING
option, and it is then used in the trigger body.

Conditional Predicates
If more than one type of DML operation can fire a trigger (for example, ON INSERT
OR DELETE OR UPDATE OF Emp_tab), then the trigger body can use the conditional

predicates INSERTING, DELETING, and UPDATING to run specific blocks of code,

depending on the type of statement that fires the trigger. Assume this is the

triggering statement:

INSERT OR UPDATE ON Emp_tab

Within the code of the trigger body, you can include the following conditions:

IF INSERTING THEN . . . END IF;
IF UPDATING THEN . . . END IF;

Note: You may need to set up the following data structures for

certain examples to work:

CREATE TABLE new (
 field1 NUMBER,
 field2 VARCHAR2(20));
Using Triggers 13-17

Creating Triggers
The first condition evaluates to TRUEonly if the statement that fired the trigger is an

INSERT statement; the second condition evaluates to TRUE only if the statement

that fired the trigger is an UPDATE statement.

In an UPDATE trigger, a column name can be specified with an UPDATING
conditional predicate to determine if the named column is being updated. For

example, assume a trigger is defined as the following:

CREATE OR REPLACE TRIGGER . . .
. . . UPDATE OF Sal, Comm ON Emp_tab . . .
BEGIN

. . . IF UPDATING (’SAL’) THEN . . . END IF;

END;

The code in the THEN clause runs only if the triggering UPDATE statement updates

the SAL column. The following statement fires the above trigger and causes the

UPDATING (sal) conditional predicate to evaluate to TRUE:

UPDATE Emp_tab SET Sal = Sal + 100;

Error Conditions and Exceptions in the Trigger Body
If a predefined or user-defined error condition or exception is raised during the

execution of a trigger body, then all effects of the trigger body, as well as the

triggering statement, are rolled back (unless the error is trapped by an exception

handler). Therefore, a trigger body can prevent the execution of the triggering

statement by raising an exception. User-defined exceptions are commonly used in

triggers that enforce complex security authorizations or integrity constraints.

The only exception to this is when the event under consideration is database

STARTUP, SHUTDOWN, or LOGIN when the user logging in is SYSTEM. In these

scenarios, only the trigger action is rolled back.

Triggers and Handling Remote Exceptions
A trigger that accesses a remote site cannot do remote exception handling if the

network link is unavailable. For example:
13-18 Application Developer’s Guide - Fundamentals

Creating Triggers
CREATE OR REPLACE TRIGGER Example
AFTER INSERT ON Emp_tab
FOR EACH ROW
BEGIN
 INSERT INTO Emp_tab@Remote -- <- compilation fails here
 VALUES (’x’); -- when dblink is inaccessible
EXCEPTION
 WHEN OTHERS THEN
 INSERT INTO Emp_log
 VALUES (’x’);
END;

A trigger is compiled when it is created. Thus, if a remote site is unavailable when

the trigger must compile, then Oracle cannot validate the statement accessing the

remote database, and the compilation fails. The previous example exception

statement cannot run, because the trigger does not complete compilation.

Because stored procedures are stored in a compiled form, the work-around for the

above example is as follows:

CREATE OR REPLACE TRIGGER Example
AFTER INSERT ON Emp_tab
FOR EACH ROW
BEGIN
 Insert_row_proc;
END;

CREATE OR REPLACE PROCEDURE Insert_row_proc AS
BEGIN
 INSERT INTO Emp_tab@Remote
 VALUES (’x’);
EXCEPTION
 WHEN OTHERS THEN
 INSERT INTO Emp_log
 VALUES (’x’);
END;

The trigger in this example compiles successfully and calls the stored procedure,

which already has a validated statement for accessing the remote database; thus,

when the remote INSERT statement fails because the link is down, the exception is

caught.
Using Triggers 13-19

Creating Triggers
Restrictions on Creating Triggers
Coding triggers requires some restrictions that are not required for standard

PL/SQL blocks. The following sections discuss these restrictions.

Trigger Size The size of a trigger cannot be more than 32K.

Valid SQL Statements in Trigger Bodies The body of a trigger can contain DML SQL

statements. It can also contain SELECT statements, but they must be SELECT...
INTO... statements or the SELECT statement in the definition of a cursor.

DDL statements are not allowed in the body of a trigger. Also, no transaction

control statements are allowed in a trigger. ROLLBACK, COMMIT, and SAVEPOINT
cannot be used.For system triggers, {CREATE/ALTER/DROP} TABLEstatements and

ALTER...COMPILE are allowed.

Statements inside a trigger can reference remote schema objects. However, pay

special attention when calling remote procedures from within a local trigger. If a

timestamp or signature mismatch is found during execution of the trigger, then the

remote procedure is not run, and the trigger is invalidated.

LONG, LONG RAW, and LOB Datatypes LONG, LONG RAW, and LOB datatypes in

triggers are subject to the following restrictions:

■ A SQL statement within a trigger can insert data into a column of LONGor LONG
RAW datatype.

■ If data from a LONG or LONG RAW column can be converted to a constrained

datatype (such as CHAR and VARCHAR2), then a LONG or LONG RAW column can

be referenced in a SQL statement within a trigger. The maximum length for

these datatypes is 32000 bytes.

■ Variables cannot be declared using the LONG or LONG RAW datatypes.

■ :NEW and :PARENT cannot be used with LONG or LONG RAW columns.

■ LOB values for :NEW variables cannot be modified in the trigger body. For

example:

:NEW.Column := ...

Note: A procedure called by a trigger cannot run the above

transaction control statements, because the procedure runs within

the context of the trigger body.
13-20 Application Developer’s Guide - Fundamentals

Creating Triggers
This is not allowed if column is of LOB datatype.

References to Package Variables If an UPDATE or DELETE statement detects a conflict

with a concurrent UPDATE, then Oracle performs a transparent ROLLBACK to
SAVEPOINT and restarts the update. This can occur many times before the

statement completes successfully. Each time the statement is restarted, the BEFORE
statement trigger is fired again. The rollback to savepoint does not undo changes to

any package variables referenced in the trigger. The package should include a

counter variable to detect this situation.

Row Evaluation Order A relational database does not guarantee the order of rows

processed by a SQL statement. Therefore, do not create triggers that depend on the

order in which rows are processed. For example, do not assign a value to a global

package variable in a row trigger if the current value of the global variable is

dependent on the row being processed by the row trigger. Also, if global package

variables are updated within a trigger, then it is best to initialize those variables in a

BEFORE statement trigger.

When a statement in a trigger body causes another trigger to be fired, the triggers

are said to be cascading. Oracle allows up to 32 triggers to cascade at any one time.

However, you can effectively limit the number of trigger cascades using the

initialization parameter OPEN_CURSORS, because a cursor must be opened for

every execution of a trigger.

Trigger Evaluation Order Although any trigger can run a sequence of operations either

in-line or by calling procedures, using multiple triggers of the same type enhances

database administration by permitting the modular installation of applications that

have triggers on the same tables.

Oracle executes all triggers of the same type before executing triggers of a different

type. If you have multiple triggers of the same type on a single table, then Oracle

chooses an arbitrary order to execute these triggers.

Note: Previously, column , in this example, would not have been

allowed if it was an object, a varray, or a nested table. This

restriction has been lifted in release 8.1.5.

See Also: Oracle8i Concepts has more information on the firing

order of triggers.
Using Triggers 13-21

Creating Triggers
Each subsequent trigger sees the changes made by the previously fired triggers.

Each trigger can see the old and new values. The old values are the original values,

and the new values are the current values, as set by the most recently fired UPDATE
or INSERT trigger.

To ensure that multiple triggered actions occur in a specific order, you must

consolidate these actions into a single trigger (for example, by having the trigger

call a series of procedures).

You cannot open a database that contains multiple triggers of the same type if you

are using any version of Oracle before release 7.1. You also cannot open such a

database if your COMPATIBLE initialization parameter is set to a version earlier

than 7.1.0. For system triggers, compatibility must be 8.1.0.

Mutating and Constraining Tables A mutating table is a table that is currently being

modified by an UPDATE, DELETE, or INSERT statement, or it is a table that might

need to be updated by the effects of a declarative DELETE CASCADE referential

integrity constraint.

A constraining table is a table that a triggering statement might need to read either

directly, for a SQL statement, or indirectly, for a declarative referential integrity

constraint. A table is mutating or constraining only to the session that issued the

statement in progress.

Tables are never considered mutating or constraining for statement triggers unless the

trigger is fired as the result of a DELETE CASCADE. Views are not considered

mutating or constraining in INSTEAD OF triggers.

For all row triggers, or for statement triggers that were fired as the result of a

DELETE CASCADE, there are two important restrictions regarding mutating and

constraining tables. These restrictions prevent a trigger from seeing an inconsistent

set of data.

■ The SQL statements of a trigger cannot read from (query) or modify a mutating

table of the triggering statement.

■ The statements of a trigger cannot change the PRIMARY, FOREIGN, or UNIQUE
KEY columns of a constraining table of the triggering statement.

There is an exception to this restriction: For a single row INSERT, constraining

tables are mutating for AFTER row triggers, but not for BEFORE row triggers.

INSERT statements that involve more than one row, such as INSERT INTO
Emp_tab SELECT..., are not considered single row inserts, even if they only

result in one row being inserted.

Figure 13–1 illustrates the restriction placed on mutating tables.
13-22 Application Developer’s Guide - Fundamentals

Creating Triggers
Figure 13–1 Mutating Tables

Notice that the SQL statement is run for the first row of the table, and then an

AFTER row trigger is fired. In turn, a statement in the AFTER row trigger body

attempts to query the original table. However, because the EMP table is mutating,

this query is not allowed by Oracle. If attempted, then a runtime error occurs, the

effects of the trigger body and triggering statement are rolled back, and control is

returned to the user or application.

Consider the following trigger:

CREATE OR REPLACE TRIGGER Emp_count
AFTER DELETE ON Emp_tab
FOR EACH ROW
DECLARE
 n INTEGER;
BEGIN
 SELECT COUNT(*) INTO n FROM Emp_tab;
 DBMS_OUTPUT.PUT_LINE(’ There are now ’ || n ||
 ’ employees.’);
END;

If the following SQL statement is entered:

DELETE FROM Emp_tab WHERE Empno = 7499;

ENAME SAL

EMP Table

SMITH 1000

JONES 1000

WARD 1000

ENAME SAL

EMP Table

SMITH 1100

JONES 1000

WARD 1000

AFTER Row
Trigger Fired,
Contains:

SELECT sal
FROM emp
WHERE...

Not allowed because EMP
table is a mutating table

UPDATE emp
SET sal=sal *1.1;

Original
EMP Table

SQL Statement That
Fires an AFTER
Row Trigger

Mutating
EMP Table
Using Triggers 13-23

Creating Triggers
Then, the following error is returned:

ORA-04091: table SCOTT.Emp_tab is mutating, trigger/function may not see it

Oracle returns this error when the trigger fires, because the table is mutating when

the first row is deleted. (Only one row is deleted by the statement, because Empnois

a primary key, but Oracle has no way of knowing that.)

If you delete the line "FOR EACH ROW" from the trigger above, then the trigger

becomes a statement trigger, the table is not mutating when the trigger fires, and the

trigger does output the correct data.

If you need to update a mutating or constraining table, then you could use a

temporary table, a PL/SQL table, or a package variable to bypass these restrictions.

For example, in place of a single AFTER row trigger that updates the original table,

resulting in a mutating table error, you may be able to use two triggers—an AFTER
row trigger that updates a temporary table, and an AFTER statement trigger that

updates the original table with the values from the temporary table.

Declarative integrity constraints are checked at various times with respect to row

triggers.

Because declarative referential integrity constraints are currently not supported

between tables on different nodes of a distributed database, the constraining table

restrictions do not apply to triggers that access remote nodes. These restrictions are

also not enforced among tables in the same database that are connected by

loop-back database links. A loop-back database link makes a local table appear

remote by defining a Net8 path back to the database that contains the link.

You should not use loop-back database links to circumvent the trigger restrictions.

Such applications might behave unpredictably.

System Trigger Restrictions

Nature of the Event Depending on the event, the publication functionality imposes

different restrictions. It may not be possible for the server to impose all restrictions.

The restrictions that cannot be fully enforced are clearly documented. For example,

certain DDL operations may not be allowed on DDL events.

Only committed triggers are fired. For example, if you create a trigger that should

be fired after all CREATE events, then the trigger itself does not fire after the

See Also: Oracle8i Concepts has information about the interaction

of triggers and integrity constraints.
13-24 Application Developer’s Guide - Fundamentals

Creating Triggers
creation, because the correct information about this trigger was not committed at

the time when the trigger on CREATE events was fired. On the other hand, if you

DROP a trigger that should be fired before all DROP events, then the trigger fires

before the DROP.

For example, if you execute the following SQL statement:

CREATE OR REPLACE TRIGGER Foo AFTER CREATE ON DATABASE
BEGIN null;
END;

Then, trigger foo is not fired after the creation of foo . Oracle does not fire a trigger

that is not committed.

Foreign Function Callouts All restrictions on foreign function callouts will also apply.

Who Is the Trigger User?
If you enter the following statement:

SELECT Username FROM USER_USERS;

Then, in a trigger, the name of the owner of the trigger is returned, not the name of

user who is updating the table.

Privileges

Privileges to Create Triggers
To create a trigger in your schema, you must have the CREATE TRIGGER system

privilege, and either:

■ Own the table specified in the triggering statement, or

■ Have the ALTER privilege for the table in the triggering statement, or

■ Have the ALTER ANY TABLE system privilege

To create a trigger in another user’s schema, you must have the CREATE ANY
TRIGGER system privilege. With this privilege, the trigger can be created in any

schema and can be associated with any user’s table. In addition, the user creating

the trigger must also have EXECUTE privilege on the referenced procedures,

functions, or packages.

See Also: For other restrictions, see "List of Events" on page 14-4.
Using Triggers 13-25

Creating Triggers
To create a trigger on DATABASE, you must have the ADMINISTER DATABASE
TRIGGER privilege. If this privilege is later revoked, then you can drop the trigger,

but not alter it.

Privileges for Referenced Schema Objects
The object privileges to the schema objects referenced in the trigger body must be

granted to the trigger’s owner explicitly (not through a role). The statements in the

trigger body operate under the privilege domain of the trigger’s owner, not the

privilege domain of the user issuing the triggering statement. This is similar to

stored procedures.
13-26 Application Developer’s Guide - Fundamentals

Compiling Triggers
Compiling Triggers
Triggers are similar to PL/SQL anonymous blocks with the addition of the :new and

:old capabilities, but their compilation is different. A PL/SQL anonymous block is

compiled each time it is loaded into memory. Compilation involves three stages:

1. Syntax checking: PL/SQL syntax is checked, and a parse tree is generated.

2. Semantic checking: Type checking and further processing on the parse tree.

3. Code generation: The pcode is generated.

Triggers, in contrast, are fully compiled when the CREATE TRIGGER statement is

entered, and the pcode is stored in the data dictionary. Hence, firing the trigger no

longer requires the opening of a shared cursor to run the trigger action. Instead, the

trigger is executed directly.

If errors occur during the compilation of a trigger, then the trigger is still created. If

a DML statement fires this trigger, then the DML statement fails. (Runtime that

trigger errors always cause the DML statement to fail.) You can use the SHOW
ERRORSstatement in SQL*Plus or Enterprise Manager to see any compilation errors

when you create a trigger, or you can SELECT the errors from the USER_ERRORS
view.

Dependencies
Compiled triggers have dependencies. They become invalid if a depended-on

object, such as a stored procedure or function called from the trigger body, is

modified. Triggers that are invalidated for dependency reasons are recompiled

when next invoked.

You can examine the ALL_DEPENDENCIES view to see the dependencies for a

trigger. For example, the following statement shows the dependencies for the

triggers in the SCOTT schema:

SELECT NAME, REFERENCED_OWNER, REFERENCED_NAME, REFERENCED_TYPE
 FROM ALL_DEPENDENCIES
 WHERE OWNER = ’SCOTT’ and TYPE = ’TRIGGER’;

Triggers may depend on other functions or packages. If the function or package

specified in the trigger is dropped, then the trigger is marked invalid. An attempt is

made to validate the trigger on occurrence of the event. If the trigger cannot be

validated successfully, then it is marked VALID WITH ERRORS, and the event fails.
Using Triggers 13-27

Compiling Triggers
Recompiling Triggers
Use the ALTER TRIGGER statement to recompile a trigger manually. For example,

the following statement recompiles the PRINT_SALARY_CHANGES trigger:

ALTER TRIGGER Print_salary_changes COMPILE;

To recompile a trigger, you must own the trigger or have the ALTER ANY TRIGGER
system privilege.

Migration Issues
Non-compiled triggers cannot be fired under compiled trigger releases (such as

Oracle 7.3 and Oracle8). If you are upgrading from a non-compiled trigger release

to a compiled trigger release, then all existing triggers must be compiled. The

upgrade script cat73xx.sql invalidates all triggers, so that they are automatically

recompiled when first run. (The xx stands for a variable minor release number.)

Downgrading from Oracle 7.3 or later to a release prior to 7.3 requires that you run

the cat73xxd.sql downgrade script. This handles portability issues between

stored and non-stored trigger releases.

Note:

■ There is an exception for STARTUP events: STARTUP events

succeed even if the trigger fails. There are also exceptions for

SHUTDOWN events and for LOGON events if you login as

SYSTEM.

■ Because the DBMS_AQ package is used to enqueue a message,

dependency between triggers and queues cannot be

maintained.
13-28 Application Developer’s Guide - Fundamentals

Modifying Triggers
Modifying Triggers
Like a stored procedure, a trigger cannot be explicitly altered: It must be replaced

with a new definition. (The ALTER TRIGGER statement is used only to recompile,

enable, or disable a trigger.)

When replacing a trigger, you must include the OR REPLACE option in the CREATE
TRIGGER statement. The OR REPLACE option is provided to allow a new version of

an existing trigger to replace the older version, without affecting any grants made

for the original version of the trigger.

Alternatively, the trigger can be dropped using the DROP TRIGGER statement, and

you can rerun the CREATE TRIGGER statement.

To drop a trigger, the trigger must be in your schema, or you must have the DROP
ANY TRIGGER system privilege.

Debugging Triggers
You can debug a trigger using the same facilities available for stored procedures.

See Also: "Debugging" on page 10-49
Using Triggers 13-29

Enabling and Disabling Triggers
Enabling and Disabling Triggers
A trigger can be in one of two distinct modes:

Enabling Triggers
By default, a trigger is automatically enabled when it is created; however, it can

later be disabled. After you have completed the task that required the trigger to be

disabled, re-enable the trigger, so that it fires when appropriate.

Enable a disabled trigger using the ALTER TRIGGER statement with the ENABLE
option. To enable the disabled trigger named REORDER of the INVENTORY table,

enter the following statement:

ALTER TRIGGER Reorder ENABLE;

All triggers defined for a specific table can be enabled with one statement using the

ALTER TABLE statement with the ENABLE clause with the ALL TRIGGERS option.

For example, to enable all triggers defined for the INVENTORY table, enter the

following statement:

ALTER TABLE Inventory
 ENABLE ALL TRIGGERS;

Disabling Triggers
You might temporarily disable a trigger if:

■ An object it references is not available.

■ You need to perform a large data load, and you want it to proceed quickly

without firing triggers.

■ You are reloading data.

By default, triggers are enabled when first created. Disable a trigger using the

ALTER TRIGGER statement with the DISABLE option.

Enabled An enabled trigger executes its trigger body if a triggering statement

is entered and the trigger restriction (if any) evaluates to TRUE.

Disabled A disabled trigger does not execute its trigger body, even if a

triggering statement is entered and the trigger restriction (if any)

evaluates to TRUE.
13-30 Application Developer’s Guide - Fundamentals

Enabling and Disabling Triggers
For example, to disable the trigger named REORDER of the INVENTORY table, enter

the following statement:

ALTER TRIGGER Reorder DISABLE;

All triggers associated with a table can be disabled with one statement using the

ALTER TABLE statement with the DISABLE clause and the ALL TRIGGERS option.

For example, to disable all triggers defined for the INVENTORY table, enter the

following statement:

ALTER TABLE Inventory
 DISABLE ALL TRIGGERS;
Using Triggers 13-31

Listing Information About Triggers
Listing Information About Triggers
The following data dictionary views reveal information about triggers:

■ USER_TRIGGERS

■ ALL_TRIGGERS

■ DBA_TRIGGERS

The new column, BASE_OBJECT_TYPE, specifies whether the trigger is based on

DATABASE, SCHEMA, table, or view. The old column, TABLE_NAME, is null if the

base object is not table or view.

The column ACTION_TYPE specifies whether the trigger is a call type trigger or a

PL/SQL trigger.

The column TRIGGER_TYPE includes two additional values: BEFORE EVENT and

AFTER EVENT, applicable only to system events.

The column TRIGGERING_EVENT includes all system and DML events.

For example, assume the following statement was used to create the REORDER
trigger:

See Also: The Oracle8i Reference provides a complete description

of these data dictionary views.

Caution: You may need to set up data structures for certain

examples to work:
13-32 Application Developer’s Guide - Fundamentals

Listing Information About Triggers
CREATE OR REPLACE TRIGGER Reorder
AFTER UPDATE OF Parts_on_hand ON Inventory
FOR EACH ROW
WHEN(new.Parts_on_hand < new.Reorder_point)
DECLARE
 x NUMBER;
BEGIN
 SELECT COUNT(*) INTO x
 FROM Pending_orders
 WHERE Part_no = :new.Part_no;
 IF x = 0 THEN
 INSERT INTO Pending_orders
 VALUES (:new.Part_no, :new.Reorder_quantity,
 sysdate);
 END IF;
END;

The following two queries return information about the REORDER trigger:

SELECT Trigger_type, Triggering_event, Table_name
 FROM USER_TRIGGERS
 WHERE Trigger_name = ’REORDER’;

TYPE TRIGGERING_STATEMENT TABLE_NAME
---------------- -------------------------- ------------
AFTER EACH ROW UPDATE INVENTORY

SELECT Trigger_body
 FROM USER_TRIGGERS
 WHERE Trigger_name = ’REORDER’;

TRIGGER_BODY
--
DECLARE
 x NUMBER;
BEGIN
 SELECT COUNT(*) INTO x
 FROM Pending_orders
 WHERE Part_no = :new.Part_no;
 IF x = 0
 THEN INSERT INTO Pending_orders
 VALUES (:new.Part_no, :new.Reorder_quantity,
 sysdate);
 END IF;
END;
Using Triggers 13-33

Examples of Trigger Applications
Examples of Trigger Applications
You can use triggers in a number of ways to customize information management in

an Oracle database. For example, triggers are commonly used to:

■ Provide sophisticated auditing

■ Prevent invalid transactions

■ Enforce referential integrity (either those actions not supported by declarative

integrity constraints or across nodes in a distributed database)

■ Enforce complex business rules

■ Enforce complex security authorizations

■ Provide transparent event logging

■ Automatically generate derived column values

■ Enable building complex views that are updatable

■ Track system events

This section provides an example of each of the above trigger applications. These

examples are not meant to be used exactly as written: They are provided to assist

you in designing your own triggers.

Auditing with Triggers
Triggers are commonly used to supplement the built-in auditing features of Oracle.

Although triggers can be written to record information similar to that recorded by

the AUDIT statement, triggers should be used only when more detailed audit

information is required. For example, use triggers to provide value-based auditing

on a per-row basis tables.

Sometimes, the Oracle AUDIT statement is considered a security audit facility, while

triggers can provide financial audit facility.

When deciding whether to create a trigger to audit database activity, consider what

Oracle’s auditing features provide, compared to auditing defined by triggers.
13-34 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
When using triggers to provide sophisticated auditing, AFTERtriggers are normally

used. By using AFTER triggers, auditing information is recorded after the triggering

statement is subjected to any applicable integrity constraints, preventing cases

where the audit processing is carried out unnecessarily for statements that generate

exceptions to integrity constraints.

When to use AFTER row vs. AFTER statement triggers depends on the information

being audited. For example, row triggers provide value-based auditing on a

per-row basis for tables. Triggers can also require the user to supply a "reason code"

for issuing the audited SQL statement, which can be useful in both row and

statement-level auditing situations.

DML and DDL

Auditing

Standard auditing options permit auditing of DML and DDL

statements regarding all types of schema objects and

structures. Comparatively, triggers permit auditing of DML

statements entered against tables, and DDL auditing at

SCHEMA or DATABASE level.

Centralized Audit

Trail

All database audit information is recorded centrally and

automatically using the auditing features of Oracle.

Declarative

Method

Auditing features enabled using the standard Oracle features

are easier to declare and maintain, and less prone to errors,

when compared to auditing functions defined by triggers.

Auditing Options

can be Audited

Any changes to existing auditing options can also be audited

to guard against malicious database activity.

Session and

Execution time

Auditing

Using the database auditing features, records can be

generated once every time an audited statement is entered (BY
ACCESS) or once for every session that enters an audited

statement (BY SESSION). Triggers cannot audit by session; an

audit record is generated each time a trigger-audited table is

referenced.

Auditing of

Unsuccessful Data

Access

Database auditing can be set to audit when unsuccessful data

access occurs. However, unless autonomous transactions are

used, any audit information generated by a trigger is rolled

back if the triggering statement is rolled back. For more

information on autonomous transactions, see Oracle8i
Concepts.

Sessions can be

Audited

Connections and disconnections, as well as session activity

(physical I/Os, logical I/Os, deadlocks, etc.), can be recorded

using standard database auditing.
Using Triggers 13-35

Examples of Trigger Applications
The following example demonstrates a trigger that audits modifications to the Emp_
tab table on a per-row basis. It requires that a "reason code" be stored in a global

package variable before the update. This shows how triggers can be used to provide

value-based auditing and how to use public package variables.

Note: You may need to set up the following data structures for the

examples to work:

CREATE OR REPLACE PACKAGE Auditpackage AS
 Reason VARCHAR2(10);
PROCEDURE Set_reason(Reason VARCHAR2);
END;
CREATE TABLE Emp99 (
 Empno NOT NULL NUMBER(4)
 Ename VARCHAR2(10)
 Job VARCHAR2(9)
 Mgr NUMBER(4)
 Hiredate DATE
 Sal NUMBER(7,2)
 Comm NUMBER(7,2)
 Deptno NUMBER(2)
 Bonus NUMBER
 Ssn NUMBER
 Job_classification NUMBER);

CREATE TABLE Audit_employee (
 Oldssn NUMBER
 Oldname VARCHAR2(10)
 Oldjob VARCHAR2(2)
 Oldsal NUMBER
 Newssn NUMBER
 Newname VARCHAR2(10)
 Newjob VARCHAR2(2)
 Newsal NUMBER
 Reason VARCHAR2(10)
 User1 VARCHAR2(10)
 Systemdate DATE);
13-36 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
CREATE OR REPLACE TRIGGER Audit_employee
AFTER INSERT OR DELETE OR UPDATE ON Emp99
FOR EACH ROW
BEGIN
/* AUDITPACKAGE is a package with a public package
 variable REASON. REASON could be set by the
 application by a command such as EXECUTE
 AUDITPACKAGE.SET_REASON(reason_string). Note that a
 package variable has state for the duration of a
 session and that each session has a separate copy of
 all package variables. */

IF Auditpackage.Reason IS NULL THEN
 Raise_application_error(-20201, ’Must specify reason’
 || ’ with AUDITPACKAGE.SET_REASON(Reason_string)’);
END IF;

/* If the above conditional evaluates to TRUE, the
 user-specified error number and message is raised,
 the trigger stops execution, and the effects of the
 triggering statement are rolled back. Otherwise, a
 new row is inserted into the predefined auditing
 table named AUDIT_EMPLOYEE containing the existing
 and new values of the Emp_tab table and the reason code
 defined by the REASON variable of AUDITPACKAGE. Note
 that the "old" values are NULL if triggering
 statement is an INSERT and the "new" values are NULL
 if the triggering statement is a DELETE. */

INSERT INTO Audit_employee VALUES
 (:old.Ssn, :old.Ename, :old.Job_classification, :old.Sal,
 :new.Ssn, :new.Ename, :new.Job_classification, :new.Sal,
 auditpackage.Reason, User, Sysdate);
END;

Optionally, you can also set the reason code back to NULL if you wanted to force the

reason code to be set for every update. The following simple AFTER statement

trigger sets the reason code back to NULL after the triggering statement is run:

CREATE OR REPLACE TRIGGER Audit_employee_reset
AFTER INSERT OR DELETE OR UPDATE ON Emp_tab
BEGIN
 auditpackage.set_reason(NULL);
END;
Using Triggers 13-37

Examples of Trigger Applications
Notice that the previous two triggers are both fired by the same type of SQL

statement. However, the AFTER row trigger is fired once for each row of the table

affected by the triggering statement, while the AFTER statement trigger is fired only

once after the triggering statement execution is completed.

Another example of using triggers to do auditing is shown below. This trigger

tracks changes made to the Emp_tab table and stores this information in AUDIT_
TABLE and AUDIT_TABLE_VALUES.

Note: You may need to set up the following data structures for the

example to work:

CREATE TABLE Audit_table (
 Seq NUMBER,
 User_at VARCHAR2(10),
 Time_now DATE,
 Term VARCHAR2(10),
 Job VARCHAR2(10),
 Proc VARCHAR2(10),
 enum NUMBER);
CREATE SEQUENCE Audit_seq;
CREATE TABLE Audit_table_values (
 Seq NUMBER,
 Dept NUMBER,
 Dept1 NUMBER,
 Dept2 NUMBER);
13-38 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
CREATE OR REPLACE TRIGGER Audit_emp
 AFTER INSERT OR UPDATE OR DELETE ON Emp_tab
 FOR EACH ROW
 DECLARE
 Time_now DATE;
 Terminal CHAR(10);
 BEGIN
 -- get current time, and the terminal of the user:
 Time_now := SYSDATE;
 Terminal := USERENV(’TERMINAL’);
 -- record new employee primary key
 IF INSERTING THEN
 INSERT INTO Audit_table
 VALUES (Audit_seq.NEXTVAL, User, Time_now,
 Terminal, ’Emp_tab’, ’INSERT’, :new.Empno);
 -- record primary key of the deleted row:
 ELSIF DELETING THEN
 INSERT INTO Audit_table
 VALUES (Audit_seq.NEXTVAL, User, Time_now,
 Terminal, ’Emp_tab’, ’DELETE’, :old.Empno);
 -- for updates, record the primary key
 -- of the row being updated:
 ELSE
 INSERT INTO Audit_table
 VALUES (audit_seq.NEXTVAL, User, Time_now,
 Terminal, ’Emp_tab’, ’UPDATE’, :old.Empno);
 -- and for SAL and DEPTNO, record old and new values:
 IF UPDATING (’SAL’) THEN
 INSERT INTO Audit_table_values
 VALUES (Audit_seq.CURRVAL, ’SAL’,
 :old.Sal, :new.Sal);

 ELSIF UPDATING (’DEPTNO’) THEN
 INSERT INTO Audit_table_values
 VALUES (Audit_seq.CURRVAL, ’DEPTNO’,
 :old.Deptno, :new.DEPTNO);
 END IF;
 END IF;
END;
Using Triggers 13-39

Examples of Trigger Applications
Integrity Constraints and Triggers
Triggers and declarative integrity constraints can both be used to constrain data

input. However, triggers and integrity constraints have significant differences.

Declarative integrity constraints are statements about the database that are always

true. A constraint applies to existing data in the table and any statement that

manipulates the table.

Triggers constrain what a transaction can do. A trigger does not apply to data

loaded before the definition of the trigger; therefore, it is not known if all data in a

table conforms to the rules established by an associated trigger.

Although triggers can be written to enforce many of the same rules supported by

Oracle’s declarative integrity constraint features, triggers should only be used to

enforce complex business rules that cannot be defined using standard integrity

constraints. The declarative integrity constraint features provided with Oracle offer

the following advantages when compared to constraints defined by triggers:

While most aspects of data integrity can be defined and enforced using declarative

integrity constraints, triggers can be used to enforce complex business constraints

not definable using declarative integrity constraints. For example, triggers can be

used to enforce:

■ UPDATE and DELETE SET NULL, and UPDATE and DELETE SET DEFAULT
referential actions.

■ Referential integrity when the parent and child tables are on different nodes of a

distributed database.

■ Complex check constraints not definable using the expressions allowed in a

CHECK constraint.

See Also: Chapter 5, "Maintaining Data Integrity"

Centralized

Integrity Checks

All points of data access must adhere to the global set of rules

defined by the integrity constraints corresponding to each

schema object.

Declarative

Method

Constraints defined using the standard integrity constraint

features are much easier to write and are less prone to errors,

when compared with comparable constraints defined by

triggers.
13-40 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
Referential Integrity Using Triggers
Many cases of referential integrity can be enforced using triggers. However, only

use triggers when you want to enforce the UPDATE and DELETE SET NULL (when

referenced data is updated or deleted, all associated dependent data is set to NULL),

and UPDATE and DELETE SET DEFAULT (when referenced data is updated or

deleted, all associated dependent data is set to a default value) referential actions, or

when you want to enforce referential integrity between parent and child tables on

different nodes of a distributed database.

When using triggers to maintain referential integrity, declare the PRIMARY (or

UNIQUE) KEY constraint in the parent table. If referential integrity is being

maintained between a parent and child table in the same database, then you can

also declare the foreign key in the child table, but disable it; this prevents the

corresponding PRIMARY KEY constraint from being dropped (unless the PRIMARY
KEY constraint is explicitly dropped with the CASCADE option).

To maintain referential integrity using triggers:

■ A trigger must be defined for the child table that guarantees values inserted or

updated in the foreign key correspond to values in the parent key.

■ One or more triggers must be defined for the parent table. These triggers

guarantee the desired referential action (RESTRICT, CASCADE, or SET NULL) for

values in the foreign key when values are updated or deleted in the parent key.

No action is required for inserts into the parent table (no dependent foreign

keys exist).

The following sections provide examples of the triggers necessary to enforce

referential integrity. The Emp_tab and Dept_tab table relationship is used in these

examples.

Several of the triggers include statements that lock rows (SELECT... FOR UPDATE).
This operation is necessary to maintain concurrency as the rows are being

processed.

Foreign Key Trigger for Child Table The following trigger guarantees that before an

INSERT or UPDATE statement affects a foreign key value, the corresponding value

exists in the parent key. The mutating table exception included in the example

below allows this trigger to be used with the UPDATE_SET_DEFAULT and UPDATE_
CASCADE triggers. This exception can be removed if this trigger is used alone.
Using Triggers 13-41

Examples of Trigger Applications
CREATE OR REPLACE TRIGGER Emp_dept_check
BEFORE INSERT OR UPDATE OF Deptno ON Emp_tab
FOR EACH ROW WHEN (new.Deptno IS NOT NULL)

-- Before a row is inserted, or DEPTNO is updated in the Emp_tab
-- table, fire this trigger to verify that the new foreign
-- key value (DEPTNO) is present in the Dept_tab table.
DECLARE
 Dummy INTEGER; -- used for cursor fetch below
 Invalid_department EXCEPTION;
 Valid_department EXCEPTION;
 Mutating_table EXCEPTION;
 PRAGMA EXCEPTION_INIT (Mutating_table, -4091);

-- Cursor used to verify parent key value exists. If
-- present, lock parent key’s row so it can’t be
-- deleted by another transaction until this
-- transaction is committed or rolled back.
 CURSOR Dummy_cursor (Dn NUMBER) IS
 SELECT Deptno FROM Dept_tab
 WHERE Deptno = Dn
 FOR UPDATE OF Deptno;
BEGIN
 OPEN Dummy_cursor (:new.Deptno);
 FETCH Dummy_cursor INTO Dummy;

 -- Verify parent key. If not found, raise user-specified
 -- error number and message. If found, close cursor
 -- before allowing triggering statement to complete:
 IF Dummy_cursor%NOTFOUND THEN
 RAISE Invalid_department;
 ELSE
 RAISE valid_department;
 END IF;
 CLOSE Dummy_cursor;
EXCEPTION
 WHEN Invalid_department THEN
 CLOSE Dummy_cursor;
 Raise_application_error(-20000, ’Invalid Department’
 || ’ Number’ || TO_CHAR(:new.deptno));
 WHEN Valid_department THEN
 CLOSE Dummy_cursor;
 WHEN Mutating_table THEN
 NULL;
END;
13-42 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
UPDATE and DELETE RESTRICT Trigger for Parent Table The following trigger is defined

on the DEPT_TAB table to enforce the UPDATE and DELETE RESTRICT referential

action on the primary key of the DEPT_TAB table:

CREATE OR REPLACE TRIGGER Dept_restrict
BEFORE DELETE OR UPDATE OF Deptno ON Dept_tab
FOR EACH ROW

-- Before a row is deleted from Dept_tab or the primary key
-- (DEPTNO) of Dept_tab is updated, check for dependent
-- foreign key values in Emp_tab; rollback if any are found.
DECLARE
 Dummy INTEGER; -- used for cursor fetch below
 Employees_present EXCEPTION;
 employees_not_present EXCEPTION;

 -- Cursor used to check for dependent foreign key values.
 CURSOR Dummy_cursor (Dn NUMBER) IS
 SELECT Deptno FROM Emp_tab WHERE Deptno = Dn;

BEGIN
 OPEN Dummy_cursor (:old.Deptno);
 FETCH Dummy_cursor INTO Dummy;
 -- If dependent foreign key is found, raise user-specified
 -- error number and message. If not found, close cursor
 -- before allowing triggering statement to complete.
 IF Dummy_cursor%FOUND THEN
 RAISE Employees_present; -- dependent rows exist
 ELSE
 RAISE Employees_not_present; -- no dependent rows
 END IF;
 CLOSE Dummy_cursor;

EXCEPTION
 WHEN Employees_present THEN
 CLOSE Dummy_cursor;
 Raise_application_error(-20001, ’Employees Present in’
 || ’ Department ’ || TO_CHAR(:old.DEPTNO));
 WHEN Employees_not_present THEN
 CLOSE Dummy_cursor;
END;
Using Triggers 13-43

Examples of Trigger Applications
UPDATE and DELETE SET NULL Triggers for Parent Table The following trigger is defined

on the DEPT_TAB table to enforce the UPDATE and DELETE SET NULL referential

action on the primary key of the DEPT_TAB table:

CREATE OR REPLACE TRIGGER Dept_set_null
AFTER DELETE OR UPDATE OF Deptno ON Dept_tab
FOR EACH ROW

-- Before a row is deleted from Dept_tab or the primary key
-- (DEPTNO) of Dept_tab is updated, set all corresponding
-- dependent foreign key values in Emp_tab to NULL:
BEGIN
 IF UPDATING AND :OLD.Deptno != :NEW.Deptno OR DELETING THEN
 UPDATE Emp_tab SET Emp_tab.Deptno = NULL
 WHERE Emp_tab.Deptno = :old.Deptno;
 END IF;
END;

DELETE Cascade Trigger for Parent Table The following trigger on the DEPT_TAB table

enforces the DELETE CASCADE referential action on the primary key of the DEPT_
TAB table:

CREATE OR REPLACE TRIGGER Dept_del_cascade
AFTER DELETE ON Dept_tab
FOR EACH ROW

-- Before a row is deleted from Dept_tab, delete all
-- rows from the Emp_tab table whose DEPTNO is the same as
-- the DEPTNO being deleted from the Dept_tab table:
BEGIN
 DELETE FROM Emp_tab
 WHERE Emp_tab.Deptno = :old.Deptno;
END;

Caution: This trigger does not work with self-referential tables
(tables with both the primary/unique key and the foreign key).
Also, this trigger does not allow triggers to cycle (such as, A fires
B fires A).
13-44 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
UPDATE Cascade Trigger for Parent Table The following trigger ensures that if a

department number is updated in the Dept_tab table, then this change is

propagated to dependent foreign keys in the Emp_tab table:

-- Generate a sequence number to be used as a flag for
-- determining if an update has occurred on a column:
CREATE SEQUENCE Update_sequence
 INCREMENT BY 1 MAXVALUE 5000
 CYCLE;

CREATE OR REPLACE PACKAGE Integritypackage AS
 Updateseq NUMBER;
END Integritypackage;

CREATE OR REPLACE PACKAGE BODY Integritypackage AS
END Integritypackage;
-- create flag col:
ALTER TABLE Emp_tab ADD Update_id NUMBER; .

CREATE OR REPLACE TRIGGER Dept_cascade1 BEFORE UPDATE OF Deptno ON Dept_tab
DECLARE
 Dummy NUMBER;

-- Before updating the Dept_tab table (this is a statement
-- trigger), generate a new sequence number and assign
-- it to the public variable UPDATESEQ of a user-defined
-- package named INTEGRITYPACKAGE:
BEGIN
 SELECT Update_sequence.NEXTVAL
 INTO Dummy
 FROM dual;
 Integritypackage.Updateseq := Dummy;
END;

CREATE OR REPLACE TRIGGER Dept_cascade2 AFTER DELETE OR UPDATE
 OF Deptno ON Dept_tab FOR EACH ROW

-- For each department number in Dept_tab that is updated,
-- cascade the update to dependent foreign keys in the

Note: Typically, the code for DELETE CASCADE is combined with

the code for UPDATE SET NULL or UPDATE SET DEFAULT to
account for both updates and deletes.
Using Triggers 13-45

Examples of Trigger Applications
-- Emp_tab table. Only cascade the update if the child row
-- has not already been updated by this trigger:
BEGIN
 IF UPDATING THEN
 UPDATE Emp_tab
 SET Deptno = :new.Deptno,
 Update_id = Integritypackage.Updateseq --from 1st
 WHERE Emp_tab.Deptno = :old.Deptno
 AND Update_id IS NULL;
 /* only NULL if not updated by the 3rd trigger
 fired by this same triggering statement */
 END IF;
 IF DELETING THEN

 -- Before a row is deleted from Dept_tab, delete all
 -- rows from the Emp_tab table whose DEPTNO is the same as
 -- the DEPTNO being deleted from the Dept_tab table:
 DELETE FROM Emp_tab
 WHERE Emp_tab.Deptno = :old.Deptno;
 END IF;
END;
CREATE OR REPLACE TRIGGER Dept_cascade3 AFTER UPDATE OF Deptno ON Dept_tab
BEGIN UPDATE Emp_tab
 SET Update_id = NULL
 WHERE Update_id = Integritypackage.Updateseq;
END;

Note: Because this trigger updates the Emp_tab table, the Emp_
dept_check trigger, if enabled, is also fired. The resulting

mutating table error is trapped by the Emp_dept_check trigger.

You should carefully test any triggers that require error trapping to

succeed to ensure that they always work properly in your

environment.
13-46 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
Complex Check Constraints
Triggers can enforce integrity rules other than referential integrity. For example, this

trigger performs a complex check before allowing the triggering statement to run.

CREATE OR REPLACE TRIGGER Salary_check
BEFORE INSERT OR UPDATE OF Sal, Job ON Emp99
FOR EACH ROW
DECLARE
 Minsal NUMBER;
 Maxsal NUMBER;
 Salary_out_of_range EXCEPTION;
BEGIN

/* Retrieve the minimum and maximum salary for the
 employee’s new job classification from the SALGRADE
 table into MINSAL and MAXSAL: */

SELECT Minsal, Maxsal INTO Minsal, Maxsal FROM Salgrade
 WHERE Job_classification = :new.Job;

/* If the employee’s new salary is less than or greater
 than the job classification’s limits, the exception is
 raised. The exception message is returned and the
 pending INSERT or UPDATE statement that fired the
 trigger is rolled back:*/

 IF (:new.Sal < Minsal OR :new.Sal > Maxsal) THEN
 RAISE Salary_out_of_range;
 END IF;
EXCEPTION
 WHEN Salary_out_of_range THEN
 Raise_application_error (-20300,
 ’Salary ’||TO_CHAR(:new.Sal)||’ out of range for ’

Note: You may need to set up the following data structures for the

example to work:

CREATE TABLE Salgrade (
 Grade NUMBER,
 Losal NUMBER,
 Hisal NUMBER,
 Job_classification NUMBER)
Using Triggers 13-47

Examples of Trigger Applications
 ||’job classification ’||:new.Job
 ||’ for employee ’||:new.Ename);
 WHEN NO_DATA_FOUND THEN
 Raise_application_error(-20322,
 ’Invalid Job Classification ’
 ||:new.Job_classification);
END;

Complex Security Authorizations and Triggers
Triggers are commonly used to enforce complex security authorizations for table

data. Only use triggers to enforce complex security authorizations that cannot be

defined using the database security features provided with Oracle. For example, a

trigger can prohibit updates to salary data of the Emp_tab table during weekends,

holidays, and non-working hours.

When using a trigger to enforce a complex security authorization, it is best to use a

BEFORE statement trigger. Using a BEFORE statement trigger has these benefits:

■ The security check is done before the triggering statement is allowed to run, so

that no wasted work is done by an unauthorized statement.

■ The security check is performed only once for the triggering statement, not for

each row affected by the triggering statement.

This example shows a trigger used to enforce security.

CREATE OR REPLACE TRIGGER Emp_permit_changes
BEFORE INSERT OR DELETE OR UPDATE ON Emp99
DECLARE
 Dummy INTEGER;
 Not_on_weekends EXCEPTION;
 Not_on_holidays EXCEPTION;
 Non_working_hours EXCEPTION;
BEGIN
 /* check for weekends: */
 IF (TO_CHAR(Sysdate, ’DY’) = ’SAT’ OR
 TO_CHAR(Sysdate, ’DY’) = ’SUN’) THEN
 RAISE Not_on_weekends;
 END IF;

Note: You may need to set up the following data structures for the

example to work:

CREATE TABLE Company_holidays (Day DATE);
13-48 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
 /* check for company holidays:*/
 SELECT COUNT(*) INTO Dummy FROM Company_holidays
 WHERE TRUNC(Day) = TRUNC(Sysdate);
 /* TRUNC gets rid of time parts of dates: */
 IF dummy > 0 THEN
 RAISE Not_on_holidays;
 END IF;
 /* Check for work hours (8am to 6pm): */
 IF (TO_CHAR(Sysdate, ’HH24’) < 8 OR
 TO_CHAR(Sysdate, ’HH24’) > 18) THEN
 RAISE Non_working_hours;
 END IF;
EXCEPTION
 WHEN Not_on_weekends THEN
 Raise_application_error(-20324,’May not change ’
 ||’employee table during the weekend’);
 WHEN Not_on_holidays THEN
 Raise_application_error(-20325,’May not change ’
 ||’employee table during a holiday’);
 WHEN Non_working_hours THEN
 Raise_application_error(-20326,’May not change ’
 ||’Emp_tab table during non-working hours’);
END;

Transparent Event Logging and Triggers
Triggers are very useful when you want to transparently perform a related change

in the database following certain events.

The REORDER trigger example shows a trigger that reorders parts as necessary

when certain conditions are met. (In other words, a triggering statement is entered,

and the PARTS_ON_HAND value is less than the REORDER_POINT value.)

Derived Column Values and Triggers
Triggers can derive column values automatically, based upon a value provided by

an INSERT or UPDATE statement. This type of trigger is useful to force values in

specific columns that depend on the values of other columns in the same row.

BEFORE row triggers are necessary to complete this type of operation for the

following reasons:
Using Triggers 13-49

Examples of Trigger Applications
■ The dependent values must be derived before the INSERT or UPDATEoccurs, so

that the triggering statement can use the derived values.

■ The trigger must fire for each row affected by the triggering INSERT or UPDATE
statement.

The following example illustrates how a trigger can be used to derive new column

values for a table whenever a row is inserted or updated.

CREATE OR REPLACE TRIGGER Derived
BEFORE INSERT OR UPDATE OF Ename ON Emp99

/* Before updating the ENAME field, derive the values for
 the UPPERNAME and SOUNDEXNAME fields. Users should be
 restricted from updating these fields directly: */
FOR EACH ROW
BEGIN
 :new.Uppername := UPPER(:new.Ename);
 :new.Soundexname := SOUNDEX(:new.Ename);
END;

Building Complex Updatable Views
Views are an excellent mechanism to provide logical windows over table data.

However, when the view query gets complex, the system implicitly cannot translate

the DML on the view into those on the underlying tables. INSTEAD OFtriggers help

solve this problem. These triggers can be defined over views, and they fire instead of

the actual DML.

Consider a library system where books are arranged under their respective titles.

The library consists of a collection of book type objects. The following example

explains the schema.

Note: You may need to set up the following data structures for the

example to work:

ALTER TABLE Emp99 ADD(
 Uppername VARCHAR2(20),
 Soundexname VARCHAR2(20));
13-50 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
CREATE OR REPLACE TYPE Book_t AS OBJECT
(
 Booknum NUMBER,
 Title VARCHAR2(20),
 Author VARCHAR2(20),
 Available CHAR(1)
);
CREATE OR REPLACE TYPE Book_list_t AS TABLE OF Book_t;

Assume that the following tables exist in the relational schema:

Table Book_table (Booknum, Section, Title, Author, Available)

Library consists of library_table (section).

Now you can define a complex view over these tables to create a logical view of the

library with sections and a collection of books in each section.

CREATE OR REPLACE VIEW Library_view AS
SELECT i.Section, CAST (MULTISET (
 SELECT b.Booknum, b.Title, b.Author, b.Available
 FROM Book_table b
 WHERE b.Section = i.Section) AS Book_list_t) BOOKLIST
FROM Library_table i;

Make this view updatable by defining an INSTEAD OF trigger over the view.

CREATE OR REPLACE TRIGGER Library_trigger INSTEAD OF INSERT ON Library_view FOR
EACH ROW
 Bookvar BOOK_T;
 i INTEGER;

Booknum Section Title Author Available

121001 Classic Iliad Homer Y

121002 Novel Gone With the Wind Mitchell M N

Section

Geography

Classic
Using Triggers 13-51

Examples of Trigger Applications
BEGIN
 INSERT INTO Library_table VALUES (:NEW.Section);
 FOR i IN 1..:NEW.Booklist.COUNT LOOP
 Bookvar := Booklist(i);
 INSERT INTO book_table
 VALUES (Bookvar.booknum, :NEW.Section, Bookvar.Title, Bookvar.Author,
bookvar.Available);
 END LOOP;
END;
/

Now, the library_view is an updatable view, and any INSERTs on the view are

handled by the trigger that gets fired automatically. For example:

INSERT INTO Library_view VALUES (’History’, book_list_t(book_t(121330,
’Alexander’, ’Mirth’, ’Y’);

Similarly, you can also define triggers on the nested table booklist to handle

modification of the nested table element.

Tracking System Events

Fine-Grained Access Control System triggers can be used to set application context.

Application context is an Oracle8i feature which enhances your ability to implement

fine-grained access control. Application context is a secure session cache, and it can

be used to store session-specific attributes.

In the example that follows, procedure set_ctx sets the application context based

on the user profile. The trigger setexpensectx ensures that the context is set for

every user.

CONNECT secdemo/secdemo

CREATE OR REPLACE CONTEXT Expenses_reporting USING Secdemo.Exprep_ctx;

REM ===
REM Creation of the package which implements the context:
REM ===

CREATE OR REPLACE PACKAGE Exprep_ctx AS
 PROCEDURE Set_ctx;
END;

SHOW ERRORS
13-52 Application Developer’s Guide - Fundamentals

Examples of Trigger Applications
CREATE OR REPLACE PACKAGE BODY Exprep_ctx IS
 PROCEDURE Set_ctx IS
 Empnum NUMBER;
 Countrec NUMBER;
 Cc NUMBER;
 Role VARCHAR2(20);
 BEGIN

 -- SET emp_number:
 SELECT Employee_id INTO Empnum FROM Employee
 WHERE Last_name = SYS_CONTEXT(’userenv’, ’session_user’);

 DBMS_SESSION.SET_CONTEXT(’expenses_reporting’,’emp_number’, Empnum);

 -- SET ROLE:
 SELECT COUNT (*) INTO Countrec FROM Cost_center WHERE Manager_id=Empnum;
 IF (countrec > 0) THEN
 DBMS_SESSION.SET_CONTEXT(’expenses_reporting’,’exp_role’,’MANAGER’);
 ELSE
 DBMS_SESSION.SET_CONTEXT(’expenses_reporting’,’exp_role’,’EMPLOYEE’);
 END IF;

 -- SET cc_number:
 SELECT Cost_center_id INTO Cc FROM Employee
 WHERE Last_name = SYS_CONTEXT(’userenv’,’session_user’);
 DBMS_SESSION.SET_CONTEXT(expenses_reporting’,’cc_number’,Cc);
 END;
END;

CALL Syntax
CREATE OR REPLACE TRIGGER Secdemo.Setexpseetx
AFTER LOGON ON DATABASE
CALL Secdemo.Exprep_etx.Set_otx
Using Triggers 13-53

Triggering Event Publication
Triggering Event Publication
Oracle’s system event publication lets applications subscribe to database events, just

like they subscribe to messages from other applications.

Oracle’s system events publication framework includes the following features:

■ Infrastructure for publish/subscribe, by making the database an active

publisher of events.

■ Integration of data cartridges in the server: The system events publication can

be used to notify cartridges of state changes in the server.

■ Integration of fine-grained access control in the server.

Publication Framework
The Oracle framework allows declarative definition of system event publication.

This enables triggers to support database events, and users can specify a procedure

that is to be run when the event occurs. DML events are supported on tables, and

system events are supported on DATABASE and SCHEMA.

The system event publication subsystem tightly integrates with the Advanced

Queueing publish/subscribe engine. The DBMS_AQ.ENQUEUE() procedure is used by

publish/subscribe applications, and callouts are used by non-publish/subscribe

applications, like cartridges.

Users or administrators can enable publication of system events by creating triggers

specifying the publication attributes. By default, a trigger (and, therefore,

publication of events specified in the trigger) is enabled. Users can also disable

publication of these events by disabling the trigger, using the ALTER TRIGGER
statement.

See Also: Chapter 14, "Working With System Events"

See Also: Oracle8i SQL Reference

For details on how to subscribe to published events and how to

specify the delivery of these published events, see Oracle8i
Application Developer’s Guide - Advanced Queuing and Oracle Call
Interface Programmer’s Guide
13-54 Application Developer’s Guide - Fundamentals

Triggering Event Publication
Event Publication
When events are detected by the server, the trigger mechanism executes the action

specified in the trigger. As part of this action, you can use the DBMS_AQ package to

publish the event to a queue, which then enables subscribers to get notifications.

When an event occurs, all triggers that are enabled on that event are fired. More

than one trigger can be created on an object; therefore, it is possible that more than

one publication is made in response to the same event, and there should be no

publication ordering assumptions. The publications are made in the order in which

the system events transpire.

Publication Context When an event is published, certain runtime context and

attributes, as specified in the parameter list, are passed to the callout procedure. A

set of functions called event attribute functions are provided.

For each system event supported, event-specific attributes are identified and

predefined for the event. You can choose the parameter list to be any of these

attributes, along with other simple expressions. For callouts, these are passed as IN
arguments.

Error Handling Return status from publication callout functions for all events are

ignored. For example, with SHUTDOWN events, the server cannot do anything with

the return status.

Execution Model Traditionally, triggers execute as the definer of the trigger. The

trigger action of an event is executed as the definer of the action (as the definer of

the package or function in callouts, or as owner of the trigger in queues). Because

the owner of the trigger must have EXECUTE privileges on the underlying queues,

packages, or procedure, this behavior is consistent.

Note: Detection of an event is predefined for a given release of the

server. There is no user-specified event detection mechanism.

See Also: For event-specific attributes, see "Event Attribute

Functions" on page 14-2.

See Also: For details on return status, see "List of Events" on

page 14-4.
Using Triggers 13-55

Triggering Event Publication
13-56 Application Developer’s Guide - Fundamentals

Working With System
14

Working With System Events

System events, like LOGON and SHUTDOWN, provide a mechanism for tracking

system changes. With Oracle, this tracking can be combined with database event

notification. Database event notification provides a simple and elegant method of

delivering asynchrononous messaging to an application.

This chapter includes descriptions of the various events on which triggers can be

created. It also provides the list of event attribute functions.

See Also: Chapter 13, "Using Triggers"
 Events 14-1

Event Attribute Functions
Event Attribute Functions
You can obtain certain event-specific attributes when a trigger is fired. These

attributes can be used as standalone functions.

Usage Notes
■ To make these attributes available, you must first run the CATPROC.SQL script.

■ The trigger dictionary object maintains metadata about events that will be

published and their corresponding attributes.

Table 14–1 System Defined Event Attributes

Attribute Type Description Example

sysevent VARCHAR2(20) System event firing the
trigger: Event name is same
as that in the syntax.

INSERT INTO event_table
(sys.sysevent);

instance_num NUMBER Instance number. IF (instance_num = 1)
 THEN INSERT INTO event_table (’1’);
END IF;

database_name VARCHAR2(50) Database name. DECLARE
 db_name VARCHAR2(50);
BEGIN
 db_name := database_name;
END;

server_error NUMBER Given a position(1 for top of
stack), it returns the error
number at that position on
error stack

INSERT INTO event_table (’top stack
error ’ || sys.server_error(1));

is_servererror BOOLEAN Returns TRUEif given error is
on error stack, FALSE
otherwise.

IF (is_servererror(error_number))
 THEN INSERT INTO event_table
(’Server error!!’);
END IF;

login_user VARCHAR2(30) Login user name. SELECT sys.login_user
FROM dual;

dictionary_obj_
type

VARCHAR(20) Type of the dictionary object
on which the DDL operation
occurred.

INSERT INTO event_table (’This
object is a ’ || sys.dictionary_obj_
type);
14-2 Application Developer’s Guide - Fundamentals

Event Attribute Functions
dictionary_obj_
name

VARCHAR(30) Name of the dictionary object
on which the DDL operation
occurred.

INSERT INTO event_table (’Changed
object is ’ || sys.dictionary_obj_
name’);

dictionary_obj_
owner

VARCHAR(30) Owner of the dictionary
object on which the DDL
operation occurred.

INSERT INTO event_table (’object
owner is’ || sys.dictionary_
obj.owner’);

des_encrypted_
password

VARCHAR(2) The DES encrypted password
of the user being created or
altered.

IF (dictionary_obj_type = ’USER’)
 THEN INSERT INTO event_table
(sys.des_encypted_password);
END IF;

Table 14–1 System Defined Event Attributes (Cont.)

Attribute Type Description Example
Working With System Events 14-3

List of Events
List of Events

Resource Manager Events
Resource manager events are related to instance startup and shutdown.Triggers

created on resource manager events must be associated with the database object.

Table 14–2 contains a list of resource manager events.

Table 14–2 Resource Manager Events

Event Description Conditions Restrictions Transaction Attributes

STARTUP This event is fired when
the database is open.

None allowed No database
operations
allowed

Return status
ignored.

Starts a separate
transaction and
commits it after
firing the triggers.

sysevent
login_user
instance_num
database_name

SHUTDOWN This event is fired just
before the server starts the
shutdown of an instance.

This lets the cartridge
shutdown completely. For
abnormal instance
shutdown, this event may
not be fired.

None allowed No database
operations
allowed

Return status
ignored.

Starts a separate
transaction and
commits it after
firing the triggers.

sysevent
login_user
instance_num
database_name

SERVERERRORThis event is fired when
the error eno occurs. If no
condition is given, then
this event fires when any
error occurs.

ERRNO = eno Depends on
the error

Return status
ignored.

Starts a separate
transaction and
commits it after
firing the triggers.

sysevent
login_user
instance_num
database_name
server_error
is_servererror
14-4 Application Developer’s Guide - Fundamentals

List of Events
Client Events
Client events are the events related to user logon/logoff, DML, and DDL

operations. For example:

CREATE OR REPLACE TRIGGER On_Logon
 AFTER LOGON
 ON The_user.Schema
BEGIN
 Do_Something;
END;

Table 14–3 contains a list of client events.

Table 14–3 Client Events

Event Description Conditions Restrictions Transaction Attributes

LOGON These events
are fired after
a successful
logon of a
user.

Simple conditions
on USERID() and
USERNAME()

None

Return status
ignored.

Starts a separate
transaction and
commits it after
firing the
triggers.

sysevent
login_user
instance_num
database_name

LOGOFF These events
are fired at the
start of a user
logoff

Simple conditions
on USERID() and
USERNAME()

None

Return status
ignored.

Fires the
triggers in the
existing user
transaction.

sysevent
login_user
instance_num
database_name
Working With System Events 14-5

List of Events
BEFORE CREATE

AFTER CREATE

These events
are fired when
a catalog
object is
created.

Simple conditions
on the type and
name of the
object; functions
like USERID()
and USERNAME()

Cannot drop
the object
being
created.

Fires the
triggers in the
existing user
transaction.

sysevent
login_user
instance_num
database_name
dictionary_obj_type
dictionary_obj_name
dictionary_obj_owner

BEFORE ALTER

AFTER ALTER

These events
are fired when
a catalog
object is
altered.

Simple conditions
on the type and
name of the
object; functions
like USERID()
and USERNAME()

Cannot drop
the object
being
altered.

Fire the triggers
in the existing
user transaction.

sysevent
login_user
instance_num
database_name
dictionary_obj_type
dictionary_obj_name
dictionary_obj_owner

DROP

BEFORE DROP

AFTER DROP

These events
are fired when
a catalog
object is
dropped.

Simple conditions
on the type and
name of the
object; functions
like USERID()
and USERNAME()

Cannot alter
the object
being
dropped.

Fire the triggers
in the existing
user transaction.

sysevent
login_user
instance_num
database_name
dictionary_obj_type
dictionary_obj_name
dictionary_obj_owner

Table 14–3 Client Events

Event Description Conditions Restrictions Transaction Attributes
14-6 Application Developer’s Guide - Fundamentals

Using Publish
15

Using Publish-Subscribe

Because the database is the most significant resource of information within the

enterprise, Oracle created a publish-subscribe solution for enterprise information

delivery and messaging to complement this role. Topics in this chapter include:

■ Introduction to Publish-Subscribe

■ Publish-Subscribe Infrastructure

■ Publish-Subscribe Concepts

■ Examples
-Subscribe 15-1

Introduction to Publish-Subscribe
Introduction to Publish-Subscribe
Networking technologies and products now enable a high degree of connectivity

across a large number of computers, applications, and users. In these environments,

it is important to provide asynchronous communications for the class of distributed

systems that operate in a loosely-coupled and autonomous fashion, and which

require operational immunity from network failures. This requirement has been

filled by various middleware products that are characterized as messaging, message

oriented middleware (MOM), message queuing, or publish-subscribe.

Applications which communicate through a publish and subscribe paradigm

require the sending applications (publishers) to publish messages without explicitly

specifying recipients or having knowledge of intended recipients. Similarly,

receiving applications (subscribers) must receive only those messages that the

subscriber has registered an interest in.

This decoupling between senders and recipients is usually accomplished by an

intervening entity between the publisher and the subscriber, which serves as a level

of indirection. This intervening entity is a queue which is used to represent a subject

or channel. Figure 15–1 illustrates publish and subscribe functionality.

Figure 15–1 Oracle Publish-Subscribe Functionality

A subscriber subscribes to a queue by expressing interest in messages enqueued to

that queue and by using a subject- or content-based rule as a filter. This results in a

set of rule-based subscriptions associated with a given queue.

Subject, Channel Agent

Subscriber

Publisher

Agent

Subscriptions

Rules

Topic subscribe

register

receive notification/
message
15-2 Application Developer’s Guide - Fundamentals

Publish-Subscribe Infrastructure
At runtime, publishers post messages to various queues. The queue (in other words,

the delivery mechanisms of the underlying infrastructure) then delivers messages

that match the various subscriptions to the appropriate subscribers.

Publish-Subscribe Infrastructure
Oracle includes the following infrastructure and features to support

database-enabled publish-subscribe messaging:

■ Database Events

■ Advanced Queuing

■ Client Notifications

Database Events
Database events support declarative definitions for publishing database events,

detection, and run-time publication of such events. This feature enables active

publication of information to end-users in an event-driven manner, to complement

the traditional pull-oriented approaches to accessing information.

Advanced Queuing
Oracle Advanced Queuing supports a queue-based publish-subscribe paradigm.

Database queues serve as a durable store for messages, along with capabilities to

allow publish and subscribe based on queues. A rules-engine and subscription

service dynamically route messages to recipients based on expressed interest. This

allows decoupling of addressing between senders and receivers to complement the

existing explicit sender-receiver message addressing.

Client Notifications
Client notifications support asynchronous delivery of messages to interested

subscribers. This enables database clients to register interest in certain queues, and

it enables these clients to receive notifications when publications on such queues

occur. Asynchronous delivery of messages to database clients is in contrast to the

traditional polling techniques used to retrieve information.

See Also: Chapter 14, "Working With System Events"

See Also: Oracle8i Application Developer’s Guide - Advanced
Queuing
Using Publish-Subscribe 15-3

Publish-Subscribe Concepts
Publish-Subscribe Concepts
This section describes various concepts related to publish-subscribe.

Queues
A queue is an entity that supports the notion of named subjects of interest. Queues

can be characterized as:

Non-Persistent Queues (Lightweight Queues) The underlying queue infrastructure

pushes the messages published to connected clients in a lightweight, at-best-once,

manner.

Persistent Queues Queues serve as durable containers for messages. Messages are

delivered in a deferred and reliable mode.

Agent
Publishers and subscribers are internally represented as agents. There is a

distinction between an agent and a client.

An agent is a persistent logical subscribing entity that expresses interest in a queue

via a subscription. An agent has properties, such as an associated subscription, an

address, and a delivery mode for messages. In this context, an agent is an electronic

proxy for a publisher or subscriber.

A client is a transient physical entity. The attributes of a client include the physical

process where the client programs run, the node name, and the client application

logic. There could be several clients acting on behalf of a single agent. Also, the

same client, if authorized, can act on behalf of multiple agents.

Rules
A rule on a queue is specified as a conditional expression using a predefined set of

operators on the message format attributes or on the message header attributes.

Each queue has an associated message content format that describes the structure of

the messages represented by that queue. The message format may be unstructured

(RAW) or it may have a well-defined structure (ADT). This allows both subject- or

content-based subscriptions.

See Also: Oracle Call Interface Programmer’s Guide
15-4 Application Developer’s Guide - Fundamentals

Publish-Subscribe Concepts
Subscriber
Subscribers (agents) may specify subscriptions on a queue using a rule. Subscribers

are durable and are stored in a catalog.

Database Event Publication Framework
The database represents a significant source for publishing information. An event

framework is proposed to allow declarative definition of database event

publication. As these pre-defined events occur, the framework detects and

publishes such events. This allows active delivery of information to end-users in an

event-driven manner as part of the publish-subscribe capability.

Registration
Registration is the process of associated delivery information by a given client,

acting on behalf of an agent. There is an important distinction between the

subscription and registration related to the agent/client separation.

Subscription indicates an interest in a particular queue by an agent. It does not

specify where and how delivery must occur. Delivery information is a physical

property that is associated with a client, and it is a transient manifestation of the

logical agent; i.e., the subscriber. A specific client process acting on behalf of an

agent registers delivery information by associating a host and port, indicating where
the delivery should be done, and a callback, indicating how there delivery should be

done.

Publish Message
Publishers publish messages to queues by using the appropriate queuing interfaces.

The interfaces may depend on which model the queue is implemented on. For

example, an enqueue call represents the publishing of a message.

Rules Engine
When a message is posted or published to a given queue, a rules engine extracts the

set of candidate rules from all rules defined on that queue that match the published

message.

Subscription Services
Corresponding to the list of candidate rules on a given queue, the set of subscribers

that match the candidate rules can be evaluated. In turn, the set of agents

corresponding to this subscription list can be determined and notified.
Using Publish-Subscribe 15-5

Examples
Posting
The queue notifies all registered clients of the appropriate published messages. This

concept is called posting. When the queue needs to notify all interested clients, it

posts the message to all registered clients.

Receive Message
A subscriber may receive messages via any of the following mechanisms:

■ A client process acting on behalf of the subscriber specifies a callback using the

registration mechanism. The posting mechanism then asynchronously invokes

the callback when a message matches the subscriber’s subscription. The

message content may be passed to the callback function (non-persistent queues

only).

■ A client process acting on behalf of the subscriber specifies a callback using the

registration mechanism. The posting mechanism then asynchronously invokes

the callback function, but without the full message content. This serves as a

notification to the client, which subsequently retrieves the message content in a

pull fashion (persistent queues only).

■ A client process acting on behalf of the subscriber simply retrieves messages

from the queue in a periodic, or some other appropriate, manner. While the

messages are deferred, there is no asynchronous delivery to the end-client.

Examples

Scenario: This example shows how system events, client notification, and AQ work

together to implement publish-subscribe.

Note: You may need to set up data structures, similar to the

following, for certain examples to work:

CONNECT system/manager
DROP USER pubsub CASCADE;
CREATE USER pubsub IDENTIFIED BY pubsub;
GRANT CONNECT, RESOURCE TO pubsub;
GRANT EXECUTE ON DBMS_AQ to pubsub;
GRANT EXECUTE ON DBMS_AQADM to pubsub;
GRANT AQ_ADMINISTRATOR_ROLE TO pubsub;
CONNECT pubsub/pubsub
15-6 Application Developer’s Guide - Fundamentals

Examples
■ Create under the user schema, pubsub , with all objects necessary to support a

publish-subscribe mechanism. In this particular code, the Agent snoop
subscribe to messages that are published at logon events. Note that the user

pubsub needs AQ_ADMINISTRATOR_ROLEprivileges to use AQ functionalities.

■

Rem --
REM create queue table for persistent multiple consumers:
Rem --

CONNECT pubsub/pubsub;

Rem Create or replace a queue table
BEGIN
DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => ’Pubsub.Raw_msg_table’,
 Multiple_consumers => TRUE,
 Queue_payload_type => ’RAW’,
 Compatible => ’8.1’);
END;
/
Rem --
Rem Create a persistent queue for publishing messages:
Rem --

Rem Create a queue for logon events
begin
BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 Queue_name => ’Pubsub.Logon’,
 Queue_table => ’Pubsub.Raw_msg_table’,
 Comment => ’Q for error triggers’);
END;
/

Rem --
Rem Start the queue:
Rem --

BEGIN
 DBMS_AQADM.START_QUEUE(’pubsub.logon’);
END;
/

Using Publish-Subscribe 15-7

Examples
Rem --
Rem define new_enqueue for convenience:
Rem --

CREATE OR REPLACE PROCEDURE New_enqueue(
 Queue_name IN VARCHAR2,
 Payload IN RAW ,
 Correlation IN VARCHAR2 := NULL,
 Exception_queue IN VARCHAR2 := NULL)
AS

Enq_ct DBMS_AQ.Enqueue_options_t;
Msg_prop DBMS_AQ.Message_properties_t;
Enq_msgid RAW(16);
Userdata RAW(1000);

BEGIN
 Msg_prop.Exception_queue := Exception_queue;
 Msg_prop.Correlation := Correlation;
 Userdata := Payload;

DBMS_AQ.ENQUEUE(Queue_name, Enq_ct, Msg_prop, Userdata, Enq_msgid);
END;
/

Rem --
Rem add subscriber with rule based on current user name,
Rem using correlation_id
Rem --

DECLARE
Subscriber Sys.Aq$_agent;
BEGIN
 Subscriber := sys.aq$_agent(’SNOOP’, NULL, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(
 Queue_name => ’Pubsub.logon’,
 Subscriber => subscriber,
 Rule => ’CORRID = ’’SCOTT’’ ’);
END;
/

Rem --
Rem create a trigger on logon on database:
Rem --
15-8 Application Developer’s Guide - Fundamentals

Examples
Rem create trigger on after logon:
CREATE OR REPLACE TRIGGER pubsub.Systrig2
 AFTER LOGON
 ON DATABASE
 BEGIN
 New_enqueue(’Pubsub.Logon’, HEXTORAW(’9999’), Dbms_standard.login_user);
 END;
/

■ After subscriptions are created, the next step is for the client to register for

notification using callback functions. This is done using the Oracle Call

Interface (OCI). The code below performs necessary steps for registration. The

initial steps of allocating and initializing session handles are omitted here for

sake of clarity.

ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;

/* callback function for notification of logon of user ’scott’ on database: */

ub4 notifySnoop(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;
OCISubscription *subscrhp;
dvoid *pay;
ub4 payl;
dvoid *desc;
ub4 mode;
{
 printf("Notification : User Scott Logged on\n");
}

int main()
{
 OCISession *authp = (OCISession *) 0;
 OCISubscription *subscrhpSnoop = (OCISubscription *)0;

 /***
 Initialize OCI Process/Environment
 Initialize Server Contexts
 Connect to Server
 Set Service Context
 **/

 /* Registration Code Begins */
Using Publish-Subscribe 15-9

Examples
 /* Each call to initSubscriptionHn allocates
 and Initialises a Registration Handle */

 initSubscriptionHn(&subscrhpSnoop, /* subscription handle */
 "ADMIN:PUBSUB.SNOOP", /* subscription name */
 /* <agent_name>:<queue_name> */
 (dvoid*)notifySnoop); /* callback function */

 /***
 The Client Process does not need a live Session for Callbacks
 End Session and Detach from Server
 **/

 OCISessionEnd (svchp, errhp, authp, (ub4) OCI_DEFAULT);

 /* detach from server */
 OCIServerDetach(srvhp, errhp, OCI_DEFAULT);

 while (1) /* wait for callback */
 sleep(1);

}

void initSubscriptionHn (subscrhp,
subscriptionName,
func)

OCISubscription **subscrhp;
char* subscriptionName;
dvoid * func;
{

 /* allocate subscription handle: */

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)subscrhp,
 (ub4) OCI_HTYPE_SUBSCRIPTION,
 (size_t) 0, (dvoid **) 0);

 /* set subscription name in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) subscriptionName,
 (ub4) strlen((char *)subscriptionName),
15-10 Application Developer’s Guide - Fundamentals

Examples
 (ub4) OCI_ATTR_SUBSCR_NAME, errhp);

 /* set callback function in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) func, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) 0, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CTX, errhp);

 /* set namespace in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &namespace, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

 checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,

 OCI_DEFAULT));
}

Now, if user SCOTT logged on to the database, the client is notified, and the call

back function notifySnoop is called.
Using Publish-Subscribe 15-11

Examples
15-12 Application Developer’s Guide - Fundamentals

Part IV

 The Object-Relational Database

Management System

Part IV contains the following chapters:

■ Chapter 16, "User-Defined Datatypes"

■ Chapter 17, "Objects in Views"

■ Chapter 18, "Design Considerations for Oracle Objects"

■ Chapter 19, "Programmatic Environments for Oracle Objects"

User-Defined D
16

User-Defined Datatypes

This chapter has an extended example of how to use user-defined datatypes (Oracle

objects). The example shows how a relational model might be transformed into an

object-relational model that better represents the real-world entities that are

managed by an application.

This chapter contains the following sections:

■ Introduction

■ A Purchase Order Example

■ Implementing the Application Under The Relational Model

■ Implementing the Application Under The Object-Relational Model

■ Partitioning Tables with Oracle Objects
atatypes 16-1

Introduction
Introduction
User-defined types are schema objects in which users formalize the data structures

and operations that appear in their applications.

The example in this chapter illustrates the most important aspects of defining and

using user-defined types. One important aspect of using user-defined types is

creating methods that perform operations on objects. In the example, definitions of

object type methods use the PL/SQL language. Other aspects of using user-defined

types, such as defining a type, use SQL.

PL/SQL and Java provide additional capabilities beyond those illustrated in this

chapter, especially in the area of accessing and manipulating the elements of

collections.

Client applications that use the Oracle Call Interface (OCI), Pro*C/C++, or Oracle

Objects for OLE (OO4O) can take advantage of its extensive facilities for accessing

objects and collections, and manipulating them on clients.

See Also: Oracle8i Concepts for an introduction to user-defined

types and instructions on how to use them.

See Also: Oracle8i SQL Reference for a complete description of

SQL syntax and usage for user-defined types.

See Also: PL/SQL User’s Guide and Reference for a complete

discussion of PL/SQL capabilities, and Oracle8i Java Stored
Procedures Developer’s Guide for a complete discussion of Java.

See Also: Oracle Call Interface Programmer’s Guide, Pro*C/C++
Precompiler Programmer’s Guideo and Oracle Objects for OLE/ActiveX
Programmer’s Guide for more information.
16-2 Application Developer’s Guide - Fundamentals

A Purchase Order Example
A Purchase Order Example
This example is based on a simple business activity: managing customer orders. The

hypothetical application is presented utilizing three different approaches.

■ The first approach — Implementing the Application Under The Relational
Model — implements the schema using only Oracle’s built-in datatypes. In this

approach, you create tables and use well-known relational techniques to store,

access, and modify the data.

■ The second approach —Implementing the Application Under The
Object-Relational Model — uses Oracle’s object types to translate the entities

and their relationships into schema objects that more closely represent their

existence in the real world of the application domain. It uses object-relational
tables to hold the underlying data, and encapsulates the behavior of objects with

their data as operations which can then be used to access and modify the data in

addition to the traditional DML.

■ The third approach — Using Object Views — uses the relational tables created

in the first approach. Rather than building object-relational tables, it uses object

views to represent virtual object tables. This approach is described in

Chapter 17.
User-Defined Datatypes 16-3

Implementing the Application Under The Relational Model
Implementing the Application Under The Relational Model

Figure 16–1 Entity-Relationship Diagram for Purchase Order Application

contains

places

refers
to

Purchase Order

Customer

Line Items

Stock Item

customer number

customer name

purchase order number

customer number

order date

ship date

tostreet

tocity

tostate

tozip

stocknumber

price

tax rate

street

city

zip

phone1

phone2

phone3

1

1

N

N

N

1

16-4 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Relational Model
Entities and Relationships
The basic entities in this example are:

■ Customers

■ The stock of products for sale

■ Purchase orders

As you can see from Figure 16–1, a customer has contact information, so that the

address and set of telephone numbers is exclusive to that customer. In other words,

the application does not allow for different customers to be associated with the

same address or telephone numbers. Also, if a customer changes her address, then

the previous address ceases to exist; or, if someone ceases to be a customer, then the

associated address disappears.

A customer has a one-to-many relationship with a purchase order, because a

customer can place many orders, but a given purchase order is placed by a single

customer. However, the relationship is optional rather than mandatory, because a

person or company be defined as a customer before placing an order.

A purchase order has a many-to-many relationship with a stock item, because a

purchase order can contain many stock items, and a stock item can appear on many

purchase orders. Because this relationship does not show which stock items appear

on which purchase orders, the entity-relationship has the notion of a line item. As

pictured in the diagram, a purchase order must contain one or more line items. Each

line item is associated only with a single purchase order.

The relationship between line item and stock item is that a particular stock item can

appear on none or many line items, but each line item must refer to one and only

one stock item.

Creating Tables Under the Relational Model
The relational approach normalizes entities and their attributes, and structures

customers, purchase orders, and stock item into tables. The table names are

Customer_reltab , PurchaseOrder_reltab , and Stock_reltab .

Taking the relational approach means breaking addresses into their standard parts

and allocating these to columns in the Customer_reltab table. A side-effect of

structuring telephone numbers as columns is that doing so sets an arbitrary limit on

the number of telephone numbers a customer can have.
User-Defined Datatypes 16-5

Implementing the Application Under The Relational Model
The relational approach separates line items from their purchase orders and puts

each into its own table, named PurchaseOrder_reltab and LineItems_
reltab . As depicted in Figure 16–1, a line item has a relationship to both a

purchase order and a stock item. Under the relational model, these are implemented

as columns in LineItems_reltab table with foreign keys to PurchaseOrder_
reltab and Stock_reltab .

The relational approach results in the following tables:

Customer_reltab
The Customer_reltab table has the following definition:

CREATE TABLE Customer_reltab (
 CustNo NUMBER NOT NULL,
 CustName VARCHAR2(200) NOT NULL,
 Street VARCHAR2(200) NOT NULL,
 City VARCHAR2(200) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(20) NOT NULL,
 Phone1 VARCHAR2(20),
 Phone2 VARCHAR2(20),
 Phone3 VARCHAR2(20),
 PRIMARY KEY (CustNo)
) ;

This table, Customer_reltab , stores all the information about customers, which

means that it fully contains information that is intrinsic to the customer (defined

with the NOT NULLconstraint) and information that is not as essential. According to

Note: We have adopted a convention in this section of the chapter

of adding the suffix _reltab to the names of tables created under

the relational model. It is always useful to develop a notation that

allows you to keep track of your coding design and allows those

that come after to you to understand your intentions.

You may find it useful to make distinctions between tables (_tab)

and types (_typ), particularly while you are learning the

technology. However, we are not suggesting that using our

conventions is an integral part of working with object-relational

technology. Indeed, one of the main advantages of object-relational

methods is that the names you give to software entities can closely

model real-world objects.
16-6 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Relational Model
this definition of the table, the application requires that every customer have a

shipping address.

Our Entity-Relationship (E-R) diagram showed a customer placing an order, but the

table does not make allowance for any relationship between the customer and the

purchase order. This suggests that the relationship must be managed by the

purchase order.

PurchaseOrder_reltab
The PurchaseOrder_reltab table has the following definition:

CREATE TABLE PurchaseOrder_reltab (
 PONo NUMBER, /* purchase order no */
 Custno NUMBER references Customer_reltab, /* Foreign KEY referencing
 customer */
 OrderDate DATE, /* date of order */
 ShipDate DATE, /* date to be shipped */
 ToStreet VARCHAR2(200), /* shipto address */
 ToCity VARCHAR2(200),
 ToState CHAR(2),
 ToZip VARCHAR2(20),
 PRIMARY KEY(PONo)
) ;

As expected, PurchaseOrder_reltab manages the relationship between the

customer and the purchase order by means of the foreign key (FK) column CustNo ,

which references the CustNo key of the PurchaseOrder_reltab . Because the

table makes no allowance for the relationship between the purchase order and its

line items, the list of line items must handle this.

LineItems_reltab
The LineItems_reltab table has the following definition:

CREATE TABLE LineItems_reltab (
 LineItemNo NUMBER,
 PONo NUMBER REFERENCES PurchaseOrder_reltab,
 StockNo NUMBER REFERENCES Stock_reltab,
 Quantity NUMBER,
 Discount NUMBER,
 PRIMARY KEY (PONo, LineItemNo)
) ;
User-Defined Datatypes 16-7

Implementing the Application Under The Relational Model
The table name is in the plural form LineItems_reltab as opposed to the

singular LineItems_reltab to emphasize that the table will serve as a collection

of line items. Of course, the table name has no effect on the behavior of the table,

but it is a useful naming convention because it helps you keep in mind that, while

every table is a collection, this is not the same as requiring a table to serve as a

collection.

As shown in the E-R diagram, the list of line items has relationships with both the

purchase order and the stock item. These relationships are managed by

LineItems_reltab by means of two FK columns:

■ PONo, which references the PONo column in PurchaseOrder_reltab

■ StockNo , which references the StockNo column in Stock_reltab

Stock_reltab
The Stock_reltab table has the following definition:

CREATE TABLE Stock_reltab (
 StockNo NUMBER PRIMARY KEY,
 Price NUMBER,
 TaxRate NUMBER
) ;

Schema Plan Under the Relational Model
The following drawing is a graphical representation of the relationships between

the tables. It is similar to the E-R diagram (Figure 16–1) because it tries to describe

the model for the total application. It differs from the E-R diagram because it

pictures an implementation of the first approach we are considering — the

relational approach.

Note: The Stock_reltab table, describe in "Stock_reltab" on

page 16-8, must be created before creating the LineItems_
reltab table.
16-8 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Relational Model
Figure 16–2 Schema Plan for a Purchase Order Application Under the Relational Model

Table LINEITEMS_RELTAB

Column Name

PONO STOCKNO QUANTITY DISCOUNT

Kind of Data

Number
NUMBER

LINEITEMNO

PK FK

Number
NUMBER

Number
NUMBER

Number
NUMBER

Number
NUMBER

Key TypeReferences

PK, FK

Table CUSTOMER_RELTAB

CUSTNAME STREET CITY STATE ZIP . . .

Text
CUSTNAME

CUSTNO

PK

Number
NUMBER

Text
VARCHAR(200)

Text
VARCHAR(200)

Text
CHAR(2)

Number
VARCHAR2(20)

PHONE1

Number
VARCHAR2(20)

Table STOCK_RELTAB

PRICE TAXRATE

Money
NUMBER

STOCKNO

PK

Number
NUMBER

Number
NUMBER

Table PURCHASEORDER_RELTAB

CUSTNO ORDERDATE SHIPDATE TOSTREET TOCITY TOZIP

Number
NUMBER

PONO

PK

Number
NUMBER

Date
DATE

Date
DATE

Text
VARCHAR2(200)

Text
VARCHAR2(200)

Number
VARCHAR2(20)

TOSTATE

Text
CHAR(2)

FK

References

References
User-Defined Datatypes 16-9

Implementing the Application Under The Relational Model
Inserting Values Under the Relational Model
In an application based on the tables defined in the previous section, statements

similar to the following insert data into the tables.

Establish Inventory
INSERT INTO Stock_reltab VALUES(1004, 6750.00, 2) ;
INSERT INTO Stock_reltab VALUES(1011, 4500.23, 2) ;
INSERT INTO Stock_reltab VALUES(1534, 2234.00, 2) ;
INSERT INTO Stock_reltab VALUES(1535, 3456.23, 2) ;

Register Customers
INSERT INTO Customer_reltab
 VALUES (1, ’Jean Nance’, ’2 Avocet Drive’,
 ’Redwood Shores’, ’CA’, ’95054’,
 ’415-555-1212’, NULL, NULL) ;

INSERT INTO Customer_reltab
 VALUES (2, ’John Nike’, ’323 College Drive’,
 ’Edison’, ’NJ’, ’08820’,
 ’609-555-1212’, ’201-555-1212’, NULL) ;

Place Orders
INSERT INTO PurchaseOrder_reltab
 VALUES (1001, 1, SYSDATE, ’10-MAY-1997’,
 NULL, NULL, NULL, NULL) ;

INSERT INTO PurchaseOrder_reltab
 VALUES (2001, 2, SYSDATE, ’20-MAY-1997’,
 ’55 Madison Ave’, ’Madison’, ’WI’, ’53715’) ;

Detail Line Items
INSERT INTO LineItems_reltab VALUES(01, 1001, 1534, 12, 0) ;
INSERT INTO LineItems_reltab VALUES(02, 1001, 1535, 10, 10) ;
INSERT INTO LineItems_reltab VALUES(01, 2001, 1004, 1, 0) ;
INSERT INTO LineItems_reltab VALUES(02, 2001, 1011, 2, 1) ;
16-10 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Relational Model
Querying Data Under The Relational Model
Assuming that values have been inserted into these tables in the usual way, your

application could execute queries similar to the following to retrieve the necessary

information from the stored data.

Get Customer and Line Item Data for a Specific Purchase Order
SELECT C.CustNo, C.CustName, C.Street, C.City, C.State,
 C.Zip, C.phone1, C.phone2, C.phone3,
 P.PONo, P.OrderDate,
 L.StockNo, L.LineItemNo, L.Quantity, L.Discount
 FROM Customer_reltab C,
 PurchaseOrder_reltab P,
 LineItems_reltab L
 WHERE C.CustNo = P.CustNo
 AND P.PONo = L.PONo
 AND P.PONo = 1001 ;

Get the Total Value of Purchase Orders
SELECT P.PONo, SUM(S.Price * L.Quantity)
 FROM PurchaseOrder_reltab P,
 LineItems_reltab L,
 Stock_reltab S
 WHERE P.PONo = L.PONo
 AND L.StockNo = S.StockNo
 GROUP BY P.PONo ;

Get the Purchase Order and Line Item Data for those LineItems that Use a Stock
Item Identified by a Specific Stock Number
SELECT P.PONo, P.CustNo,
 L.StockNo, L.LineItemNo, L.Quantity, L.Discount
 FROM PurchaseOrder_reltab P,
 LineItems_reltab L
 WHERE P.PONo = L.PONo
 AND L.StockNo = 1004 ;
User-Defined Datatypes 16-11

Implementing the Application Under The Relational Model
Updating Data Under The Relational Model
Given the schema objects described above, you could execute statements similar to

the following to update the stored data:

Update the Quantity for Purchase Order 1001 and Stock Item 1534
UPDATE LineItems_reltab
 SET Quantity = 20
 WHERE PONo = 1001
 AND StockNo = 1534 ;

Deleting Data Under The Relational Model
In an application based on the tables defined earlier, you could execute statements

similar to the following to delete stored data:

Delete Purchase Order 1001
DELETE
 FROM LineItems_reltab
 WHERE PONo = 1001 ;

DELETE
 FROM PurchaseOrder_reltab
 WHERE PONo = 1001 ;
16-12 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Relational Model
Limitations of a Purely Relational Model
The Relational Database Management System (RDBMS) is a very powerful and

efficient form of information management. Why then should you even consider

another approach? If you examine the application as developed under the relational

model in comparison to the real world of the application domain, then certain

shortcomings become evident.

Limitation in Encapsulating Data (Structure) with Operations (Behavior)
Database tables are excellent for modeling a structure of relationships, but they fail

to capture the way that objects in the real world are naturally bundled with

operations on the data. For example, when you operate on a purchase order in the

real world, you expect to be able to sum the line items to find the total cost to the

customer. Similarly, you expect that you should be able to retrieve information

about the customer who placed the order — such as name, reference number,

address, and so on. More complexly, you may want to determine the customer’s

buying history and payment pattern.

An RDBMS provides very sophisticated structures for storing and retrieving data,

but each application developer must craft the operations needed for each

application. This means that you must recode operations often, even though they

may be very similar to operations already coded for applications within the same

enterprise.

Limitation in Dealing with Composition
Relational tables do not capture compositions. For example, an address may be a

composite of number, street, city, state, and zip code, but in a relational table, the

notion of an address as a structure composed of the individual columns is not

captured.

Limitation in Dealing with Aggregation
Relational tables have difficulty dealing with complex part-whole relationships. A

piston and an engine have the same status as columns in the Stock_reltab , but

there is no easy way to describe the fact that pistons are part of engines, except by

creating multiple tables with primary key-foreign key relationships. Similarly, there

is no easy way to implement the complex interrelationships between collections.
User-Defined Datatypes 16-13

Implementing the Application Under The Relational Model
Limitation in Dealing with Generalization-Specialization
There is no easy way to capture the relationship of generalization-specification

(inheritance). If we abstract the base requirements of a purchase order and build a

complex technology to capture the relationships, then there is no way to develop

purchase orders that use this basic functionality and then further specialize the

functionality for different domains. Instead, we will have built the base

functionality into every implementation of a purchase order.

The Evolution of the Object-Relational Database System
So why not create applications using a third-generation language (3GL)?

First, an RDBMS provides functionality that would take millions of person-hours to

replicate.

Second, one of the problems of information management using 3GLs is that they are

not persistent; or, if they are persistent, then they sacrifice security to obtain the

necessary performance by way of locating the application logic and the data logic in

the same address space. Neither trade-off is acceptable to users of an RDBMS, for

whom both persistence and security are basic requirements.

This leaves the application developer working under the relational model with the

problem of simulating complex types by some form of mapping into SQL. Apart

from the many person-hours required, this approach involves serious problems of

implementation. You must:

■ Translate from application logic into data logic on 'write', and then

■ Perform the reverse process on 'read' (and vice versa).

Obviously, there is heavy traffic back and forth between the client address space

and that of the server, with the accompanying decrement in performance. And, if

client and server are on different machines, then the toll on performance from

network roundtrips may be considerable.

Object-relational (O-R) technology solves these problems. This chapter and the

following chapter present examples that implement this new functionality.
16-14 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
Implementing the Application Under The Object-Relational Model

Figure 16–3 Class Diagram for Purchase Order Application

The O-R approach to the previous relational example begins with the same entity

relationships outlined in "Entities and Relationships" on page 16-5. However,

viewing these from the object-oriented perspective portrayed in the class diagram

above allows us to define user-defined types that make it possible to translate more

of the real-world structure into the database schema.

1 0 . . 10
Phone

Number

Address

Street
City
State
Zip

Customer

CustNo
CustName

Line Item

LineItemNo

Purchase Order

PONo
OrderDate
ShipDate

getPONo()
sumLineItems()

has

1 1

has

* ShipTo

1

*

*

places
contains

1

1

1 1

refers to Stock Item

StockNo
Price
TaxRate
User-Defined Datatypes 16-15

Implementing the Application Under The Object-Relational Model
Rather than breaking up addresses or the customer’s contact phones into unrelated

columns in relational tables, the O-R approach defines types to represent them;

rather than breaking line items out into a separate table, the O-R approach allows

them to stay with their respective purchase orders as nested tables.

In the O-R approach, the main entities — customers, stock, and purchase orders —

become objects. Object references express the relationships between them.

Collection types model their multi-valued attributes.

Given an O-R strategy, there are two approaches to implementation:

■ Create and populate object tables.

■ Use object views to represent virtual object tables from existing relational data.

The remainder of this chapter develops the O-R schema and shows how to

implement it with object tables. Chapter 17, "Objects in Views" implements the same

schema with object views.

Defining Types
The following statements set the stage:

CREATE TYPE StockItem_objtyp
/

CREATE TYPE LineItem_objtyp
/

CREATE TYPE PurchaseOrder_objtyp
/

The preceding three statements define incomplete object types. The incomplete

definitions notify Oracle that full definitions are coming later. Oracle allows types

that refer to these types to compile successfully. Incomplete type declarations are

like forward declarations in C and other programming languages.
16-16 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
The following statement defines an array type:

CREATE TYPE PhoneList_vartyp AS VARRAY(10) OF VARCHAR2(20)
/

Figure 16–4 Object Relational Representation of PhoneList_vartyp Type

The preceding statement defines the type PhoneList_vartyp . Any data unit of

type PhoneList_vartyp is a varray of up to 10 telephone numbers, each

represented by a data item of type VARCHAR2.

A list of phone numbers could occupy a varray or a nested table. In this case, the list

is the set of contact phone numbers for a single customer. A varray is a better choice

than a nested table for the following reasons:

■ The order of the numbers might be important: varrays are ordered while nested

tables are unordered.

■ The number of phone numbers for a specific customer is small. Varrays force

you to specify a maximum number of elements (10 in this case) in advance.

They use storage more efficiently than nested tables, which have no special size

limitations.

■ There is no reason to query the phone number list, so the nested table format

offers no benefit.

In general, if ordering and bounds are not important design considerations, then

designers can use the following rule of thumb for deciding between varrays and

nested tables: If you need to query the collection, then use nested tables; if you

intend to retrieve the collection as a whole, then use varrays.

See Also: Chapter 18, "Design Considerations for Oracle Objects"

for more information about the design considerations for varrays

and nested tables.

Type PHONELIST_VARTYP

(PHONE)

Number
NUMBER
User-Defined Datatypes 16-17

Implementing the Application Under The Object-Relational Model
The following statement defines the object type Address_objtyp to represent

addresses:

CREATE TYPE Address_objtyp AS OBJECT (
 Street VARCHAR2(200),
 City VARCHAR2(200),
 State CHAR(2),
 Zip VARCHAR2(20)
)
/

Figure 16–5 Object Relational Representation of Address_objtyp Type

All of the attributes of an address are character strings, representing the usual parts

of a simplified mailing address.

The following statement defines the object type Customer_objtyp , which uses

other user-defined types as building blocks. This object type also has a comparison

method.

CREATE TYPE Customer_objtyp AS OBJECT (
 CustNo NUMBER,
 CustName VARCHAR2(200),
 Address_obj Address_objtyp,
 PhoneList_var PhoneList_vartyp,

 ORDER MEMBER FUNCTION
 compareCustOrders(x IN Customer_objtyp) RETURN INTEGER,

 PRAGMA RESTRICT_REFERENCES (
 compareCustOrders, WNDS, WNPS, RNPS, RNDS)
)
/

Type ADDRESS_OBJTYP

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

Text
VARCHAR2(200)
16-18 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
Instances of the type Customer_objtyp are objects that represent blocks of

information about specific customers. The attributes of a Customer_objtyp object

are a number, a character string, an Address_objtyp object, and a varray of type

PhoneList_vartyp .

Every Customer_objtyp object also has an associated order method, one of the

two types of comparison methods. Whenever Oracle needs to compare two

Customer_objtyp objects, it invokes the compareCustOrders method to do so.

The two types of comparison methods are map methods and order methods. This

application uses one of each for purposes of illustration.

An ORDER method must be called for every two objects being compared, whereas a

MAP method is called once per object. In general, when sorting a set of objects, the

number of times an ORDERmethod is called is more than the number of times a MAP
method would be called.

Because the system can perform scalar value comparisons very efficiently, coupled

with the fact that calling a user-defined function is slower than calling a kernel

implemented function, sorting objects using the ORDER method is relatively slow

compared to sorting the mapped scalar values (returned by the MAP function).

Note: The statement does not include the actual PL/SQL program

implementing the method compareCustOrders . That program

appears in "The compareCustOrders Method" section on

page 16-25.

See Also:

■ Oracle8i Concepts for a discussion of ORDER and MAP methods.

■ Chapter 18, "Design Considerations for Oracle Objects" for

more information about design considerations for ORDER and

MAP methods.

■ PL/SQL User’s Guide and Reference for details about how to use

pragma declarations.
User-Defined Datatypes 16-19

Implementing the Application Under The Object-Relational Model
The following statement completes the definition of the incomplete object type

LineItem_objtyp declared at the beginning of this section.

CREATE TYPE LineItem_objtyp AS OBJECT (
 LineItemNo NUMBER,
 Stock_ref REF StockItem_objtyp,
 Quantity NUMBER,
 Discount NUMBER
)
/

Figure 16–6 Object Relational Representation of LineItem_objtyp Type

Instances of type LineItem_objtyp are objects that represent line items. They

have three numeric attributes and one REF attribute. The LineItem_objtyp
models the line item entity and includes an object reference to the corresponding

stock object.

The following statement defines the nested table type LineItemList_ntabtyp :

CREATE TYPE LineItemList_ntabtyp AS TABLE OF LineItem_objtyp
/

A data unit of this type is a nested table, each row of which contains an object of

type LineItem_objtyp . A nested table of line items is a better choice to represent

the multivalued line item list of a purchase order than a varray of LineItem_
objtyp objects would be, for the following reasons:

■ Querying the contents of line items is likely to be a requirement for most

applications. This is an inefficient operation for varrays because its storage

representation is not the same as the table representation.

■ Indexing on line item data may be a requirement in some applications. Nested

tables allow this, but it is not possible with varrays.

Type LINEITEM_OBJTYP

STOCK_REF

Reference
STOCKITEM_OBJTYP

QUANTITY

Number
NUMBER

DISCOUNT

Number
NUMBER

LINEITEMNO

Number
NUMBER
16-20 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
■ The order of line items is usually unimportant, and the line item number can be

used to specify an order when necessary.

■ There is no practical upper bound on the number of line items on a purchase

order. Using a varray requires specifying an arbitrary upper bound on the

number of elements.

The following statement completes the definition of the incomplete object type

PurchaseOrder_objtyp declared at the beginning of this section:

CREATE TYPE PurchaseOrder_objtyp AUTHID CURRENT_USER AS OBJECT (
 PONo NUMBER,
 Cust_ref REF Customer_objtyp,
 OrderDate DATE,
 ShipDate DATE,
 LineItemList_ntab LineItemList_ntabtyp,
 ShipToAddr_obj Address_objtyp,

 MAP MEMBER FUNCTION
 getPONo RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES (
 getPONo, WNDS, WNPS, RNPS, RNDS),

 MEMBER FUNCTION
 sumLineItems RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES (sumLineItems, WNDS, WNPS)
)
/

Figure 16–7 Object Relational Representation of the PuchaseOrder_objtyp

Type PURCHASEORDER_OBJTYP

CUST_REF

Reference
CUSTOMER_
OBJTYP

ORDERDATE

Date
DATE

SHIPDATE

Date
DATE

LINEITEMLIST_NTAB

Nested Table
LINEITEMLIST_
NTABTYP

SHIPTOADDR_OBJ

Object Type
ADDRESS_
OBJTYP

PONO

PK FK

Number
NUMBER

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineItems RETURN NUMBER
User-Defined Datatypes 16-21

Implementing the Application Under The Object-Relational Model
The preceding statement defines the object type PurchaseOrder_objtyp .

Instances of this type are objects representing purchase orders. They have six

attributes, including a REF to Customer_objtyp , an Address_objtyp object,

and a nested table of type LineItemList_ntabtyp , which is based on type

LineItem_objtyp .

Objects of type PurchaseOrder_objtyp have two methods: getPONo and

sumLineItems . One, getPONo , is a MAP method, one of the two kinds of

comparison methods. A MAP method returns the relative position of a given record

within the order of records within the object. So, whenever Oracle needs to compare

two PurchaseOrder_objtyp objects, it implicitly calls the getPONo method to

do so.

The two pragma declarations provide information to PL/SQL about what sort of

access the two methods need to the database.

The statement does not include the actual PL/SQL programs implementing the

methods getPONo and sumLineItems . That appears in "Method Definitions" on

page 16-23.

The following statement completes the definition of StockItem_objtyp , the last

of the three incomplete object types declared at the beginning of this section.

CREATE TYPE StockItem_objtyp AS OBJECT (
 StockNo NUMBER,
 Price NUMBER,
 TaxRate NUMBER
)
/

See Also: PL/SQL User’s Guide and Reference for complete details

about how to use pragma declarations.
16-22 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
Figure 16–8 Object Relational Representation of the StockItem_objtyp

Instances of type StockItem_objtyp are objects representing the stock items that

customers order. They have three numeric attributes.

Method Definitions
This section shows how to specify the methods of the PurchaseOrder_objtyp
and Customer_objtyp object types. The following statement defines the body of

the PurchaseOrder_objtyp object type (the PL/SQL programs that implement

its methods):

CREATE OR REPLACE TYPE BODY PurchaseOrder_objtyp AS

MAP MEMBER FUNCTION getPONo RETURN NUMBER is
 BEGIN
 RETURN PONo;
 END;

MEMBER FUNCTION sumLineItems RETURN NUMBER is
 i INTEGER;
 StockVal StockItem_objtyp;
 Total NUMBER := 0;

 BEGIN
 FOR i in 1..SELF.LineItemList_ntab.COUNT LOOP
 UTL_REF.SELECT_OBJECT(LineItemList_ntab(i).Stock_ref,StockVal);
 Total := Total + SELF.LineItemList_ntab(i).Quantity * StockVal.Price;
 END LOOP;
 RETURN Total;
 END;
END;
/

Type STOCKITEM_OBJTYP

PRICE

Number
NUMBER

TAXRATE

Number
NUMBER

STOCKNO

PK

Number
NUMBER
User-Defined Datatypes 16-23

Implementing the Application Under The Object-Relational Model
The getPONo Method
The getPONo method is simple; use it to return the purchase order number of its

associated PurchaseOrder_objtyp object.

The sumLineItems Method
The sumLineItems method uses a number of O-R features:

■ As already noted, the basic function of the sumLineItems method is to return

the sum of the values of the line items of its associated PurchaseOrder_
objtyp object. The keyword SELF, which is implicitly created as a parameter

to every function, lets you refer to that object.

■ The keyword COUNT gives the count of the number of elements in a PL/SQL

table or array. Here, in combination with LOOP, the application iterates through

all the elements in the collection — in this case, the items of the purchase order.

In this way SELF.LineItemList_ntab .COUNT counts the number of elements

in the nested table that match the LineItemList_ntab attribute of the

PurchaseOrder_objtyp object, here represented by SELF.

■ A UTL_REF package method is used in the implementation. The UTL_REF
package methods are necessary because Oracle does not support implicit

dereferencing of REFs within PL/SQL programs. The UTL_REF package

provides methods that operate on object references. Here, the SELECT_OBJECT
method is called to obtain the StockItem_objtyp object corresponding to the

Stock_ref . Looking back to our data definition, you will see that Stock_ref
is an attribute of the LineItem_objtyp object, which is itself an element of

the LineItemList_ntabtyp . Recall that a purchase order

(PurchaseOrder_objtyp) contains a list (LineItemList_ntab) of items

(LineItem_objtyp), each of which contains a reference (Stock_ref) to

information about the item (StockItem_objtyp). The operation that we have

been considering simply fetches the required data by O-R means.

■ The AUTHID CURRENT_USER syntax specifies that the PurchaseOrder_
objtyp is defined invoker-rights. Therefore, the methods are executed under

the rights of the current user, not under the rights of the user who defined the

type.

■ The PL/SQL variable StockVal is of type StockItem_objtyp . The UTL_
REF.SELECT_OBJECT sets it to the object whose reference is the following:

(LineItemList_ntab(i).Stock_ref)

This object is the actual stock item referred to in the currently selected line item.
16-24 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
■ Having retrieved the stock item in question, the next step is to compute its cost.

The program refers to the stock item’s cost as StockVal .Price , the Price
attribute of the StockItem_objtyp object. But to compute the cost of the

item, you also need to know the quantity of items ordered. In the application,

the term LineItemList_ntab(i) .Quantity represents the Quantity
attribute of the currently selected LineItem_objtyp object.

The remainder of the method program is straightforward. The loop sums the

extended values of the line items, and the method returns the total as its value.

The compareCustOrders Method
The following statement defines the compareCustOrders method of the

Customer_objtyp object type.

CREATE OR REPLACE TYPE BODY Customer_objtyp AS
 ORDER MEMBER FUNCTION
 compareCustOrders (x IN Customer_objtyp) RETURN INTEGER IS
 BEGIN
 RETURN CustNo - x.CustNo;
 END;
END;
/

As mentioned earlier, the function of the compareCustOrders operation is to

compare information about two customer orders. The mechanics of the operation

are quite simple. The order method compareCustOrders takes another

Customer_objtyp object as an input argument and returns the difference of the

two CustNo numbers. Because it subtracts the CustNo of the other Customer_
objtyp object from its own object’s CustNo , the method returns one of the

following:

■ a negative number, if its own object has a smaller value of CustNo

■ a positive number, if its own object has a larger value of CustNo

■ zero, if the two objects have the same value of CustNo —in which case it is

referring to itself.

If CustNo has some meaning in the real world (for example, lower numbers are

created earlier in time than higher numbers), then the actual value returned by this

function could be useful. If either of the input arguments (SELF and explicit) to an

ORDER method is NULL, Oracle does not call the ORDER method and simply treats

the result as NULL.
User-Defined Datatypes 16-25

Implementing the Application Under The Object-Relational Model
This completes the definition of the user-defined types used in the purchase order

application. None of the declarations create tables or reserve data storage space.

Creating Object Tables
To this point, the example is the same whether you plan to create and populate

object tables or implement the application with object views on top of the relational

tables that appear in "Implementing the Application Under The Relational Model"

on page 16-4. The remainder of this chapter continues the example using object

tables. Chapter 17, "Objects in Views", picks up from this point and continues the

example with object views.

Generally, you can think of the relationship between the "objects" and "object tables"

in the following way:

■ Classes, which represent entities, map to object tables

■ Attributes map to columns

■ Objects map to rows

Viewed in this way, each object table is an implicit type whose objects (specific

rows) each have the same attributes (column values). The creation of explicit

user-defined datatypes and object tables introduces a new level of functionality.

The Object Table Customer_objtab
The following statement defines an object table Customer_objtab to hold objects

of type Customer_objtyp :

CREATE TABLE Customer_objtab OF Customer_objtyp (CustNo PRIMARY KEY)
 OBJECT ID PRIMARY KEY ;

As you can see, there is a syntactic difference in the definition of object tables as

opposed to relational tables, namely the use of the term "OF" for object tables. You

may recall that we earlier defined the attributes of Customer_objtyp objects as:

CustNo NUMBER
CustName VARCHAR2(200)
Address_obj Address_objtyp
PhoneList_var PhoneList_vartyp

This means that the object table Customer_objtab has columns of CustNo ,

CustName , Address_obj , and PhoneList_var , and that each row is an object of

type Customer_objtyp . As you will see, this notion of row object offers a

significant advance in functionality.
16-26 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
Figure 16–9 Object Relational Representation of Table Customer_objtab

Object Datatypes as a Template for Object Tables
Because there is a type Customer_objtyp , you could create numerous object

tables of type Customer_objtyp . For example, you could create an object table

Customer_objtab2 also of type Customer_objtyp . By contrast, without this

ability, you would need to define each table individually.

Being able to create object tables of the same type does not mean that you cannot

introduce variations. The statement that created Customer_objtab defined a

primary key constraint on the CustNo column. This constraint applies only to this

object table. Another object table of Customer_objtyp objects (for example,

Customer_objtab2) does not need to satisfy this constraint.

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

PK

Text
VARCHAR2(200)

Varray PHONELIST_VAR (of PHONELIST_VARTYP)

(PHONE)

Number
NUMBER

Table CUSTOMER_OBJTAB (of CUSTOMER_OBJTYP)

CUSTNAME

Text
VARCHAR2(200)

ADDRESS_OBJ

Object Type
ADDRESS_OBJTYP

PHONELIST_VAR

Varray
PHONELIST_VARTYP

CUSTNO

PK

Number
NUMBER
User-Defined Datatypes 16-27

Implementing the Application Under The Object-Relational Model
Object Identifiers and References
Customer_objtab contains customer objects, represented as row objects. Oracle

allows row objects to be referenceable, meaning that other row objects or relational

rows may reference a row object using its object identifier (OID). For example, a

purchase order row object may reference a customer row object using its object

reference. The object reference is an opaque system-generated value represented by

the type REF and is composed of the row object’s unique OID.

Oracle requires every row object to have a unique OID. You may specify the unique

OID value to be system-generated or specify the row object’s primary key to serve

as its unique OID. You indicate this when you execute the CREATE TABLEstatement

by specifying OBJECT ID PRIMARY KEY or OBJECT ID SYSTEM GENERATED, the

latter serving as the default. The choice of primary key as the object identifier may

be more efficient in cases where the primary key value is smaller than the default 16

byte system-generated identifier. For our example, the choice of primary key as the

row object identifier has been made.

Object Tables with Embedded Objects
Examining the definition of Customer_objtab , you can see that the Address_
obj column contains Address_objtyp objects. In other words, an object type may

have attributes that are themselves object types. These embedded objects represent

composite or structured values, and are also referred to as column objects. They

differ from row objects because they are not referenceable and can be NULL.

Address_objtyp objects have attributes of built-in types, which means that they

are leaf-level scalar attributes of Customer_objtyp . Oracle creates columns for

Address_objtyp objects and their attributes in the object table Customer_
objtab . You can refer to these columns using the dot notation. For example, if you

want to build an index on the Zip column, then you can refer to it as Address .Zip .

The PhoneList column contains varrays of type PhoneList_vartyp . You may

recall that we defined each object of type PhoneList_vartyp as a varray of up to

10 telephone numbers, each represented by a data item of type VARCHAR2. Here is

the CREATE TYPE statement that created PhoneList_vartyp :

CREATE TYPE PhoneList_vartyp AS VARRAY(10) OF VARCHAR2(20)
/

16-28 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
Because each varray of type PhoneList_vartyp can contain no more than 200

characters (10 x 20), plus a small amount of overhead, Oracle stores the varray as a

single data unit in the PhoneList_var column. Oracle stores varrays that exceed

4000 bytes in "inline" BLOBs, which means that a portion of the varray value could

potentially be stored outside the table.

The Object Table Stock_objtab
The next statement creates an object table for StockItem_objtyp objects:

CREATE TABLE Stock_objtab OF StockItem_objtyp (StockNo PRIMARY KEY)
 OBJECT ID PRIMARY KEY ;

This statement does not introduce anything new. The statement creates the Stock_
objtab object table. Each row of the table is a StockItem_objtyp object having

three numeric attributes:

StockNo NUMBER
Price NUMBER
TaxRate NUMBER

Oracle assigns a column for each attribute, and the CREATE TABLEstatement places

a primary key constraint on the StockNo column, and specifies that the primary

key be used as the row object’s identifier.

The Object Table PurchaseOrder_objtab
The next statement defines an object table for PurchaseOrder_objtyp objects:

CREATE TABLE PurchaseOrder_objtab OF PurchaseOrder_objtyp (/* Line 1 */
 PRIMARY KEY (PONo), /* Line 2 */
 FOREIGN KEY (Cust_ref) REFERENCES Customer_objtab) /* Line 3 */
 OBJECT ID PRIMARY KEY /* Line 4 */
 NESTED TABLE LineItemList_ntab STORE AS PoLine_ntab (/* Line 5 */
 (PRIMARY KEY(NESTED_TABLE_ID, LineItemNo)) /* Line 6 */
 ORGANIZATION INDEX COMPRESS) /* Line 7 */
 RETURN AS LOCATOR /* Line 8 */
/

User-Defined Datatypes 16-29

Implementing the Application Under The Object-Relational Model
The SCOPE FOR constraint on a REF is not allowed in a CREATE TABLE statement.

Therefore, to specify that Stock_ref can reference only the object table Stock_
objtab , issue the following ALTER TABLE statement on the PoLine_ntab storage

table:

ALTER TABLE PoLine_ntab
 ADD (SCOPE FOR (Stock_ref) IS stock_objtab) ;

Note that this statement is executed on the storage table, not the parent table.

The preceding CREATE TABLE statement creates the PurchaseOrder_objtab
object table. This statement requires some explanation; hence, it has been annotated

with line numbers on the right:

Line 1:

CREATE TABLE PurchaseOrder_objtab OF PurchaseOrder_objtyp (

This line indicates that each row of the table is a PurchaseOrder_objtyp object.

Attributes of PurchaseOrder_objtyp objects are:

 PONo NUMBER
 Cust_ref REF Customer_objtyp
 OrderDate DATE
 ShipDate DATE
 LineItemList_ntab LineItemList_ntabtyp
 ShipToAddr_obj Address_objtyp
16-30 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
Figure 16–10 Object Relational Representation of Table PurchaseOrder_objtab

Line 2:

PRIMARY KEY (PONo),

This line specifies that the PONo attribute is the primary key for the table.

Line 3:

FOREIGN KEY (Cust_ref) REFERENCES Customer_objtab)

This line specifies a referential constraint on the Cust_ref column. This referential

constraint is similar to those specified for relational tables. When there is no

constraint, the REFcolumn allows you to reference any row object. However, in this

case, the Cust_ref REF s can refer only to row objects in the Customer_objtab
object table.

Table PURCHASEORDER_OBJTAB (of PURCHASEORDER_OBJTYP)

CUST_REF

Reference
CUSTOMER_
OBJTYP

ORDERDATE

Date
DATE

SHIPDATE

Date
DATE

LINEITEMLIST_NTAB

Nested Table
LINEITEMLIST_
NTABTYP

SHIPTOADDR_OBJ

Object Type
ADDRESS_
OBJTYP

PONO

PK FK

Number
NUMBER

Table CUSTOMER_OBJTAB (of CUSTOMER_OBJTYP)

CUSTNAME

Text
VARCHAR2(200)

ADDRESS_OBJ

Object Type
ADDRESS_OBJTYP

PHONELIST_VAR

Varray
PHONELIST_VARTYP

CUSTNO

PK

Number
NUMBER

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineItems RETURN NUMBER

Reference
to a row of
the table
User-Defined Datatypes 16-31

Implementing the Application Under The Object-Relational Model
Line 4:

OBJECT ID PRIMARY KEY

This line indicates that the primary key of the PurchaseOrder_objtab object

table be used as the row’s OID.

Line 5 - 8:

NESTED TABLE LineItemList_ntab STORE AS PoLine_ntab (
 (PRIMARY KEY(NESTED_TABLE_ID, LineItemNo))
 ORGANIZATION INDEX COMPRESS)
 RETURN AS LOCATOR

These lines pertain to the storage specification and properties of the nested table

column, LineItemList_ntab . Recall from Oracle8i Concepts that the rows of a

nested table are stored in a separate storage table. This storage table is not directly

queryable by the user but can be referenced in DDL statements for maintenance

purposes. A hidden column in the storage table, called the NESTED_TABLE_ID,
matches the rows with their corresponding parent row. All the elements in the

nested table belonging to a particular parent have the same NESTED_TABLE_ID
value. For example, all the elements of the nested table of a given row of

PurchaseOrder_objtab have the same value of NESTED_TABLE_ID. The nested

table elements that belong to a different row of PurchaseOrder_objtab have a

different value of NESTED_TABLE_ID.

In the CREATE TABLE example above, Line 5 indicates that the rows of

LineItemList_ntab nested table are to be stored in a separate table (referred to

as the storage table) named PoLine_ntab . The STORE ASclause also allows you to

specify the constraint and storage specification for the storage table. In this

example, Line 7 indicates that the storage table is an index-organized table (IOT). In

general, storing nested table rows in an IOT is beneficial, because it provides

clustering of rows belonging to the same parent. The specification of COMPRESS on

the IOT saves storage space because, if you do not specify COMPRESS, the NESTED_
TABLE_ID part of the IOT ’s key is repeated for every row of a parent row object. If,

however, you specify COMPRESS, the NESTED_TABLE_ID is stored only once for

each row of a parent row object.

See Also: "Nested Table Storage" on page 18-16 for information

about the benefits of organizing a nested table as and IOT and

specifying nested table compression, and for more information

about nested table storage.
16-32 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
In Line 6, the specification of NESTED_TABLE_IDand LineItemNo attribute as the

primary key for the storage table serves two purposes: first, it serves as the key for

the IOT ; second, it enforces uniqueness of a column (LineItemNo) of a nested table

within each row of the parent table. By including the LineItemNo column in the

key, the statement ensures that the LineItemNo column contains distinct values

within each purchase order.

Line 8 indicates that the nested table, LineItemList_ntab , is to be returned in

the locator form when retrieved. If you do not specify LOCATOR, the default is

VALUE, which indicates that the entire nested table is to be returned instead of just a

locator to the nested table. When the cardinality of the nested table collection is

high, it may not be very efficient to return the entire nested table whenever the

containing row object or the column is selected.

Specifying that the nested table’s locator is to be returned enables Oracle to send to

the client only a locator to the actual collection value. An application may ascertain

whether a fetched nested table is in the locator or value form by calling the

OCICollIsLocator or UTL_COLL.IS_LOCATOR interfaces. Once it is determined

that the locator has been returned, the application may query using the locator to

fetch only the desired subset of row elements in the nested table. This locator-based

retrieval of the nested table rows is based on the original statement’s snapshot, to

preserve the value or copy semantics of the nested table. That is, when the locator is

used to fetch a subset of row elements in the nested table, the nested table snapshot

reflects the nested table when the locator was first retrieved.

Recall the implementation of the sumLineItems method of PurchaseOrder_
objtyp in "Method Definitions" on page 16-23. That implementation assumed that

the LineItemList_ntab nested table would be returned as a VALUE. In order to

handle large nested tables more efficiently, and to take advantage of the fact that the

nested table in the PurchaseOrder_objtab is returned as a locator, the

sumLineItems method would need to be rewritten as follows:

CREATE OR REPLACE TYPE BODY PurchaseOrder_objtyp AS

 MAP MEMBER FUNCTION getPONo RETURN NUMBER is
 BEGIN
 RETURN PONo;
 END;

 MEMBER FUNCTION sumLineItems RETURN NUMBER IS
 i INTEGER;
 StockVal StockItem_objtyp;
 Total NUMBER := 0;
User-Defined Datatypes 16-33

Implementing the Application Under The Object-Relational Model
 BEGIN
 IF (UTL_COLL.IS_LOCATOR(LineItemList_ntab)) -- check for locator
 THEN
 SELECT SUM(L.Quantity * L.Stock_ref.Price) INTO Total
 FROM TABLE(CAST(LineItemList_ntab AS LineItemList_ntabtyp)) L;
 ELSE
 FOR i in 1..SELF.LineItemList_ntab.COUNT LOOP
 UTL_REF.SELECT_OBJECT(LineItemList_ntab(i).Stock_ref,StockVal);
 Total := Total + SELF.LineItemList_ntab(i).Quantity *
 StockVal.Price;
 END LOOP;
 END IF;
 RETURN Total;
 END;
END;
/

In the above implementation of sumLineItems method, a check is made to

ascertain whether the nested table attribute, LineItemList_ntab , is returned as a

locator using the UTL_COLL.IS_LOCATOR function. In the case where the condition

evaluates to TRUE, the nested table locator is queried using the TABLE expression.

The querying of the nested table locator results in a more efficient processing of the

large line item list of a purchase order. The previous code segment of iterating over

the LineItemList_ntab in the program is retained to deal with the case where

the nested table is returned as a VALUE.

After the table is created, the following ALTER TABLE statement is issued:

ALTER TABLE PoLine_ntab
 ADD (SCOPE FOR (Stock_ref) IS stock_objtab);

This statement specifies that the Stock_ref column of the nested table is scoped to

Stock_objtab . This indicates that the values stored in this column must be

references to row objects in Stock_objtab . The SCOPE constraint is different from

the referential constraint, because the SCOPE constraint has no implication on the

referenced object. For example, any referenced row object in Stock_objtab may

be deleted, even if it is referenced in the Stock_ref column of the nested table.

Note: The CAST expression is currently required in such TABLE
expressions to communicate to the SQL compilation engine the

actual type of the collection attribute (or parameter or variable) so

that it can successfully compile the query.
16-34 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
Such a deletion renders the corresponding reference in the nested table a

DANGLING REF.

Figure 16–11 Object Relational Representation of Nested Table LineItemList_ntab

Oracle does not support referential constraint specification for storage tables. In this

situation, specifying the SCOPE clause for a REF column is useful. In general,

specifying scope or referential constraints for REF columns has a few benefits:

■ It saves storage space because it allows Oracle to store just the row object’s

unique identifier as the REF value in the column.

■ It enables an index to be created on the storage table’s REF column.

■ It allows Oracle to rewrite queries containing dereferences of these REFs as joins

involving the referenced table.

At this point, all of the tables for the purchase order application are in place. The

next section shows how to operate on these tables.

Column LINEITEMLIST_NTAB (of LINEITEMLIST_NTABTYP
 (as table of LINEITEM_OBJTYP))

STOCK_REF

Reference
STOCKITEM_OBJTYP

QUANTITY

Number
NUMBER

DISCOUNT

Number
NUMBER

LINEITEMNO

Number
NUMBER

Table STOCK_OBJTAB (of STOCKITEM_OBJTYP)

PRICE

Number
NUMBER

TAXRATE

Number
NUMBER

STOCKNO

PK

Number
NUMBER

Refers to a row
of the table
User-Defined Datatypes 16-35

Implementing the Application Under The Object-Relational Model
Figure 16–12 Object Relational Representation of Table PurchaseOrder_objtab

Inserting Values
The statements in this section show how to insert the same data into the object

tables just created as the earlier statements inserted values into relational tables.

Stock_objtab
INSERT INTO Stock_objtab VALUES(1004, 6750.00, 2) ;
INSERT INTO Stock_objtab VALUES(1011, 4500.23, 2) ;
INSERT INTO Stock_objtab VALUES(1534, 2234.00, 2) ;
INSERT INTO Stock_objtab VALUES(1535, 3456.23, 2) ;

Table PURCHASEORDER_OBJTAB (of PURCHASEORDER_OBJTYP)

CUST_REF

Reference
CUSTOMER_
OBJTYP

ORDERDATE

Date
DATE

SHIPDATE

Date
DATE

LINEITEMLIST_NTAB

Nested Table
LINEITEMLIST_
NTABTYP

SHIPTOADDR_OBJ

Object Type
ADDRESS_
OBJTYP

PONO

PK FK

Number
NUMBER

Column Object SHIPTOADDR_OBJ (of ADDR_OBJTYP)

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

Text
VARCHAR2(200)

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineItems RETURNNUMBER

Column Object
of the defined type
16-36 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
Customer_objtab
INSERT INTO Customer_objtab
 VALUES (
 1, ’Jean Nance’,
 Address_objtyp(’2 Avocet Drive’, ’Redwood Shores’, ’CA’, ’95054’),
 PhoneList_vartyp(’415-555-1212’)
) ;

INSERT INTO Customer_objtab
 VALUES (
 2, ’John Nike’,
 Address_objtyp(’323 College Drive’, ’Edison’, ’NJ’, ’08820’),
 PhoneList_vartyp(’609-555-1212’,’201-555-1212’)
) ;

PurchaseOrder_objtab
INSERT INTO PurchaseOrder_objtab
 SELECT 1001, REF(C),
 SYSDATE, ’10-MAY-1999’,
 LineItemList_ntabtyp(),
 NULL
 FROM Customer_objtab C
 WHERE C.CustNo = 1 ;

The preceding statement constructs a PurchaseOrder_objtyp object with the

following attributes:

 PONo 1001
 Cust_ref REF to customer number 1
 OrderDate SYSDATE
 ShipDate 10-MAY-1999
 LineItemList_ntab an empty LineItem_ntabtyp
 ShipToAddr_obj NULL

The statement uses a query to construct a REF to the row object in the Customer_
objtab object table that has a CustNo value of 1.
User-Defined Datatypes 16-37

Implementing the Application Under The Object-Relational Model
The following statement uses a TABLE expression to identify the nested table as the

target for the insertion, namely the nested table in the LineItemList_ntab
column of the row object in the PurchaseOrder_objtab table that has a PONo
value of 1001.

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 1001
)
 SELECT 01, REF(S), 12, 0
 FROM Stock_objtab S
 WHERE S.StockNo = 1534 ;

The preceding statement inserts a line item into the nested table identified by the

TABLE expression. The line item that it inserts contains a REF to the row object in

the object table Stock_objtab that has a StockNo value of 1534 .

The following statements are similar to the preceding two:

INSERT INTO PurchaseOrder_objtab
 SELECT 2001, REF(C),
 SYSDATE, ’20-MAY-1997’,
 LineItemList_ntabtyp(),
 Address_objtyp(’55 Madison Ave’,’Madison’,’WI’,’53715’)
 FROM Customer_objtab C
 WHERE C.CustNo = 2 ;

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 1001
)
 SELECT 02, REF(S), 10, 10
 FROM Stock_objtab S
 WHERE S.StockNo = 1535 ;

Note: Oracle release 8.0 supports the "flattened subquery" or "THE
(subquery)" expression to identify the nested table. This construct is

being deprecated in release 8.1 in favor of the TABLE expression

illustrated below.
16-38 Application Developer’s Guide - Fundamentals

Implementing the Application Under The Object-Relational Model
INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 2001
)
 SELECT 10, REF(S), 1, 0
 FROM Stock_objtab S
 WHERE S.StockNo = 1004 ;

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 2001
)
 VALUES(11, (SELECT REF(S)
 FROM Stock_objtab S
 WHERE S.StockNo = 1011), 2, 1) ;

Querying
The following query statement implicitly invokes a comparison method. It shows

how Oracle uses the ordering of PurchaseOrder_objtyp object types that the

comparison method defines:

SELECT p.PONo
 FROM PurchaseOrder_objtab p
 ORDER BY VALUE(p) ;

The preceding instruction causes Oracle to invoke the map method getPONo for

each PurchaseOrder_objtyp object in the selection. Because that method simply

returns the value of the object’s PONo attribute, the result of the selection is a list of

purchase order numbers in ascending numerical order.

The following queries correspond to the queries executed under the relational

model.

Customer and Line Item Data for Purchase Order 1001
SELECT DEREF(p.Cust_ref), p.ShipToAddr_obj, p.PONo,
 p.OrderDate, LineItemList_ntab
 FROM PurchaseOrder_objtab p
 WHERE p.PONo = 1001 ;
User-Defined Datatypes 16-39

Implementing the Application Under The Object-Relational Model
Total Value of Each Purchase Order
SELECT p.PONo, p.sumLineItems()
 FROM PurchaseOrder_objtab p ;

Purchase Order and Line Item Data Involving Stock Item 1004
SELECT po.PONo, po.Cust_ref.CustNo,
 CURSOR (
 SELECT *
 FROM TABLE (po.LineItemList_ntab) L
 WHERE L.Stock_ref.StockNo = 1004
)
 FROM PurchaseOrder_objtab po ;

The above query returns a nested cursor for the set of LineItem_obj objects

selected from the nested table. The application can fetch from the nested cursor to

obtain the individual LineItem_obj objects. The above query can be alternatively

expressed by unnesting the nested set with respect to the outer result as follows:

SELECT po.PONo, po.Cust_ref.CustNo, L.*
 FROM PurchaseOrder_objtab po, TABLE (po.LineItemList_ntab) L
 WHERE L.Stock_ref.StockNo = 1004 ;

The above query returns the result set as a "flattened" form (or First Normal Form).

This type of query is useful when accessing Oracle collection columns from

relational tools and APIs, such as ODBC. In the above unnesting example, only the

rows of the PurchaseOrder_objtab object table that has any LineItemList_
ntab rows are returned. If all rows of PurchaseOrder_objtab table are to be

fetched, irrespective of the presence of any rows in their corresponding

LineItemList_ntab , then the (+) operator is required as illustrated in the

following query:

SELECT po.PONo, po.Cust_ref.CustNo, L.*
 FROM PurchaseOrder_objtab po, TABLE (po.LineItemList_ntab) (+) L
 WHERE L.Stock_ref.StockNo = 1004 ;

Average Discount across all Line Items of all Purchase Orders
This request requires the rows of all nested tables, LineItemList_ntab , of all

PurchaseOrder_objtab rows be queried. Again, unnesting is required for the

following query:

SELECT AVG(L.DISCOUNT)
 FROM PurchaseOrder_objtab po, TABLE (po.LineItemList_ntab) L ;
16-40 Application Developer’s Guide - Fundamentals

Partitioning Tables with Oracle Objects
Deleting
The following example has the same effect as the two deletions needed in the

relational case (see "Deleting Data Under The Relational Model" on page 16-12). In

this case, Oracle automatically deletes all line items belonging to the deleted

purchase order. The relational case requires a separate step.

Delete Purchase Order 1001
DELETE
 FROM PurchaseOrder_objtab
 WHERE PONo = 1001 ;

This concludes the object table version of the purchase order example. The next

chapter develops an alternative version of the example using relational tables and

object views.

Partitioning Tables with Oracle Objects
Partitioning addresses the key problem of supporting very large tables and indexes

by allowing you to decompose them into smaller and more manageable pieces

called partitions. Oracle8i extends your partitioning capabilities by letting you

partition tables that contain objects, REFs, varrays, and nested tables. Varrays stored

in LOBs are equipartitioned in a way similar to LOBs.

The following example partitions the purchase order table along zip codes (ToZip),

which is an attribute of the ShipToAddr embedded column object. For the

purposes of this example, the LineItemList nested table was made a varray to

illustrate storage for the partitioned varray.

Assuming that the LineItemList is defined as a varray:

Restriction: Nested tables are allowed in tables that are

partitioned; however, the storage table associated with the nested

table is not partitioned.
User-Defined Datatypes 16-41

Partitioning Tables with Oracle Objects
CREATE TYPE LineItemList_vartyp as varray(10000) of LineItem_objtyp
/

CREATE TYPE PurchaseOrder_typ AS OBJECT (
 PONo NUMBER,
 Cust_ref REF Customer_objtyp,
 OrderDate DATE,
 ShipDate DATE,
 OrderForm BLOB,
 LineItemList LineItemList_vartyp,
 ShipToAddr Address_objtyp,

 MAP MEMBER FUNCTION
 ret_value RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES (
 ret_value, WNDS, WNPS, RNPS, RNDS),

 MEMBER FUNCTION
 total_value RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES (total_value, WNDS, WNPS)
)
/

CREATE TABLE PurchaseOrders_tab of PurchaseOrder_typ
 LOB (OrderForm) store as (nocache logging)
 PARTITION BY RANGE (ShipToAddr.zip)
 (PARTITION PurOrderZone1_part
 VALUES LESS THAN ('59999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 VARRAY LineItemList store as LOB (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)),
 PARTITION PurOrderZone6_part
 VALUES LESS THAN ('79999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 VARRAY LineItemList store as LOB (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)),
 PARTITION PurOrderZoneO_part
 VALUES LESS THAN ('99999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 VARRAY LineItemList store as LOB (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))) ;
16-42 Application Developer’s Guide - Fundamentals

Objects
17

Objects in Views

This chapter contains an extended example of how to use object views. The chapter

has the following major sections:

■ Introduction

■ Advantages of Using Views to Synthesize Objects

■ Fundamental Elements of Using Objects in Views

■ Extending the Purchase Order Example

■ Using the OCI Object Cache
 in Views 17-1

Introduction
Introduction
The view mechanism has been extended to support objects: the view with row

objects is called an object view. Why is this important? And how is it useful?

The need to maintain legacy applications, and a variety of other reasons, may

require that the data be kept in relational format. The ability to create objects in

views means that you can apply the object model to this data without changing its

underlying structure. Just as you can define column objects and row objects (objects

in object tables) in tables, you can define them in views. These column and row

objects need not exist physically in the database and can simply be synthesized

from relational data.

This makes objects in views a powerful object modeling tool to work with both

relational and object data. For instance, using views for synthesizing objects can

provide a stepping stone for “objectizing” relational data — prototyping the object

model without modifying the storage structures. It also allows you to maintain

co-existing relational and object applications.

This chapter deals with the various ways of defining and using such objects in

views. We use the purchase-order example described in the previous chapters to

show how to design the purchase-order object model. Specifically, we show how

you would construct this model by using object views to synthesize objects from

existing relational tables. We also show how complex views can be made

"updatable" by using the INSTEAD-OF trigger mechanism.

The example in this chapter illustrates the most important aspects of defining and

using object views. The definitions of triggers use the PL/SQL language. The

remainder of the example uses SQL.

PL/SQL and Java provide additional capabilities beyond those illustrated in this

chapter, especially in the area of accessing and manipulating the elements of

collections.

See Also: Oracle8i Concepts for a discussion of object views and

how to use them.

See Also: Oracle8i SQL Reference for a complete description of

SQL syntax and usage.
17-2 Application Developer’s Guide - Fundamentals

Advantages of Using Views to Synthesize Objects
Client applications that use the Oracle Call Interface (OCI) can take advantage of

OCI’s extensive facilities for accessing the objects and collections defined by object

views and manipulating them on the client side.

Advantages of Using Views to Synthesize Objects
■ Column objects and row objects in views can be synthesized from any data. The

data may come from relational tables, object tables or data from any

heterogeneous database.

■ By synthesizing objects from relational data, we can extend the ways in which

we can execute queries on the data. You can view data from multiple tables by

using object de-referencing instead of writing complex joins with multiple

tables.

■ An object view provides a way of synthesizing row objects that have object

identifiers and are capable of being referenced. By synthesizing such objects

within the server, it endows the data with all the properties of objects — strong

typing, structure (including multi-valued attributes), behavior (methods) and

navigational access.

■ Since the objects in the view are processed within the server, not on the client,

this can result in significantly fewer SQL statements and much less network

traffic.

■ You can use views to provide security for existing object data. They can

potentially expose only a subset of the attributes.

■ Views can provide strong encapsulation of object data. By defining the view to

be on the attribute accessor methods of the underlying object data, you can

encapsulate the data and protect it against updates.

■ You can deploy INSTEAD-OF triggers to update complex views since these

triggers provide the logic of executing the actual DML. This allows you to

See Also: PL/SQL User’s Guide and Reference for a complete

discussion of PL/SQL capabilities, and Oracle8i Java Stored
Procedures Developer’s Guide for a complete discussion of Java.

See Also: Oracle Call Interface Programmer’s Guide for a complete

discussion of those facilities.
Objects in Views 17-3

Fundamental Elements of Using Objects in Views
control the behavior of updates to complex object models and enforce security

restrictions.

■ The object data from object views can be pinned and used in the client side

object cache. When you retrieve these synthesized objects in the object cache by

means of specialized object retrieval mechanisms, you reduce network traffic.

■ You gain great flexibility when you create an object model within a view in that

you can continue to develop the model. If you need to alter an object type, you

can simply replace the invalidated views with a new definition.

■ Using objects in views does not place any restrictions on the characteristics of

the underlying storage mechanisms. By the same token, you are not limited by

the restrictions of current technology. For example, you can synthesize objects

from relational tables which are parallelized and partitioned.

■ You can create different complex data models from the same underlying data by

means of object views. For example, you might wish to create one model of

departments with embedded employees and another model in which

department and employee objects mutually reference each other.

■ You can also use objects views to model inverse relationships: you can use the

same data to model one-to-one and one-to-many relationships as either

embedded objects, or as collections of references to objects.

Fundamental Elements of Using Objects in Views
You need to understand the operation of a small number of basic elements in order

to optimize your implementation of objects in views:

■ Objects in Columns

■ Collection Objects

■ Row Objects and Object Identifiers

■ Object References

■ Inverse Relationships

■ Mutating Objects and Validation

Objects in Columns
Column objects can be constructed by either selecting them from an underlying

column object or by synthesizing them using the column’s type constructor.
17-4 Application Developer’s Guide - Fundamentals

Fundamental Elements of Using Objects in Views
For example, consider the department table dept which has the following

structure,

CREATE TABLE dept
(
 deptno NUMBER PRIMARY KEY,
 deptname VARCHAR2(20),
 deptstreet VARCHAR2(20),
 deptcity VARCHAR2(10),
 deptstate CHAR(2),
 deptzip VARCHAR2(10)
);

Suppose you want to view all the departments and their addresses with the address

as an object, you could do the following.

1. Create the type for the address object:

CREATE TYPE address_t AS OBJECT
(
 street VARCHAR2(20),
 city VARCHAR2(10),
 state CHAR(2),
 zip VARCHAR2(10)
);
/

2. Create the view containing the department number, name and address:

CREATE VIEW dept_view AS
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS
deptaddr
 FROM dept d;

Now that the deptaddr column in the view is a structured object column, you can

invoke member methods of the address_t object type on the objects synthesized

in this column.

Atomic Nullness:
In the example shown above, the address object (deptaddr) can never be null

(atomically null). In the relational department table we do not have a column that

captures the nullness of the address for the department. If the nullness of the

deptstreet column indicates that the whole address is null, then we can write a

DECODE() expression to generate the atomic null object.
Objects in Views 17-5

Fundamental Elements of Using Objects in Views
CREATE VIEW dept_view AS
 SELECT d.deptno, d.deptname,
 DECODE(d.deptstreet, NULL, NULL,
 address_t(d.deptstreet, d.deptcity, d.deptstate, d.deptzip)) AS
deptaddr
 FROM dept d;

We could also create functions other than the DECODE() expression to accomplish

the same task. The drawback of these methods is that the deptaddr column

becomes inherently "non-updatable" and so we would have to define an

INSTEAD-OF trigger over the view to take care of updates to this column.

Collection Objects
Collections, both nested tables and VARRAYs, can be columns in views. You can

select these collections from underlying collection columns or you can synthesize

them using subqueries. The CAST-MULTISET operator provides a way of

synthesizing such collections.

Taking the previous example as our starting point, let us represent each employee in

an emp relational table with following structure:

CREATE TABLE emp
(
 empno NUMBER PRIMARY KEY,
 empname VARCHAR2(20),
 salary NUMBER,
 deptno NUMBER REFERENCES dept(deptno)
);

Using this relational table, we can construct a dept_view with the department

number, name, address and a collection of employees belonging to the department.

1. Define a employee type and a nested table type for the employee type:

CREATE TYPE employee_t AS OBJECT
(
 eno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER
);
/
CREATE TYPE employee_list_t AS TABLE OF employee_t;
/
2. The dept_view can now be defined:
17-6 Application Developer’s Guide - Fundamentals

Fundamental Elements of Using Objects in Views
CREATE VIEW dept_view AS
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS deptaddr,
 CAST(MULTISET (
 SELECT e.empno, e.empname, e.salary
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_t)
 AS emp_list
 FROM dept d;

The SELECT subquery inside the CAST-MULTISET block selects the list of

employees that belong to the current department. The MULTISET keyword

indicates that this is a list as opposed to a singleton value. The CAST operator casts

the result set into the appropriate type, in this case to the employee_list_t
collection type.

A query on this view could give us the list of departments, with each department

row containing the department number, name, the address object and a collection of

employees belonging to the department.

Row Objects and Object Identifiers
The object view mechanism provides a way of creating row objects. Since the view

data is not stored persistently, and therefore needs to be computed as required,

utilizing object identifiers can become a tricky issue.

If the view is based on an object table or an object view, the row objects could take

the same identifier as the underlying object entity. However, if the row object is

synthesized from relational data, we do not have any object identifiers with which

to work.

Oracle solves this problem by introducing primary key based object identifiers. The

set of unique keys that identify the resultant row object is chosen to be the identifier

for the object. This object identifier is itself synthesized using these key values. It is

necessary for these values to be unique within the rows selected out of the view,

since duplicates would lead to problems during navigation through object

references.

The major benefits of defining these row objects are that they become capable of

being referenced and can be pinned in the object cache.

Continuing with our department example, we can create a dept_view object view:

1. Define the object type for the row, in this case the dept_t department type:
Objects in Views 17-7

Fundamental Elements of Using Objects in Views
CREATE TYPE dept_t AS OBJECT
(
 dno NUMBER,
 dname VARCHAR2(20),
 deptaddr address_t ,
 emplist employee_list_t
);
/

In our case, the department table has deptno as the primary key. Consequently

each department row will have a unique department number which can identify the

row. This allows us to define the object view dept_view with the dno attribute

(which maps to the deptno column value in the SELECT list of the view) as being

the object identifier.

CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT e.empno, e.empname, e.salary
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_t)
 FROM dept d;

If the object view is based on an object table or on another object view, the object

identifiers need not be synthesized, and the object identifiers from the underlying

table or view can be used provided that they still uniquely identify each object in

this view. In that case, you either need not specify the WITH OBJECT IDENTIFIER
clause, or you can specify WITH OBJECT IDENTIFIER DEFAULTto re-use the object

identifiers from the underlying table or view source.

The object view created with the WITH OBJECT IDENTIFIER clause has a primary

key based object identifier. If the WITH OBJECT IDENTIFIER DEFAULT clause is

used during the creation of the view, the object identifier is either system generated

or primary key based, depending on the underlying table or view definition.

Object References
In the example we have been developing, each object selected out of the dept_
view view has a unique object identifier composed of the department number

value. In the relational case, the foreign key deptno in the emp employee table

matches the deptno primary key value in the dept department table. We used the

primary key value for creating the object identifier in the dept_view . This allows
17-8 Application Developer’s Guide - Fundamentals

Fundamental Elements of Using Objects in Views
us to use the foreign key value in the emp_view in creating a reference to the

primary key value in dept_view .

We accomplish this by using MAKE_REFoperator to synthesize a primary key object

reference. This takes the view or table name to which the reference points and a list

of foreign key values to create the object identifier portion of the reference that will

match with a particular object in the referenced view.

In order to create an emp_view view which has the employee’s number, name,

salary and a reference to the department in which she works, we need first to create

the employee type emp_t and then the view based on that type

CREATE TYPE emp_t AS OBJECT
(
 eno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER,
 deptref REF dept_t
);
/

CREATE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,
 MAKE_REF(dept_view, e.deptno)
 FROM emp e;

The deptref column in the view holds the department reference. We write the

following simple query to determine all employees whose department is located in

the city of San Francisco:

SELECT e.eno, e.salary, e.deptref.dno
FROM emp_view e
WHERE e.deptref.deptaddr.city = ‘San Francisco’;

Note that we could also have used the REF modifier to get the reference to the

dept_view objects:

CREATE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary, REF(d)
 FROM emp e, dept_view d
 WHERE e.deptno = d.dno;

In this case we join the dept_view and the emp table on the deptno key. The

advantage of using MAKE_REF operator instead of the REF modifier is that in using

the former, we can create circular references. For example, we can create employee
Objects in Views 17-9

Fundamental Elements of Using Objects in Views
view to have a reference to the department in which she works, and the department

view can have a list of references to the employees who work in that department.

Note that if the object view has a primary key based object identifier, the reference

to such a view is primary key based. On the other hand, a reference to a view with

system generated object identifier will be a system generated object reference. This

difference is only relevant when you create object instances in the OCI object cache

and need to get the reference to the newly created objects. This is explained in a

later section.

As with synthesized objects, we can also select persistently stored references as

view columns and use them seamlessly in queries. However, the object references to

view objects cannot be stored persistently.

Inverse Relationships
Views with objects can be used to model inverse relationships.

One-to-One Relationships
One-to-one relationships can be modeled with inverse object references. For

example, let us say that each employee has a particular computer on her desk, and

that the computer ’belongs’ to that employee only. A relational model would

capture this using foreign keys either from the computer table to the employee

table, or in the reverse direction. Using views, we can model the objects so that we

have an object reference from the employee to the computer object and also have a

reference from the computer object to the employee.

One-to-Many and One-to-Many Relationships
One-to-many relationships (or many-to-many relationships) can be modeled either

by using object references or by embedding the objects. One-to-many relationship

can be modeled by having a collection of objects or object references. The

many-to-one side of the relationship can be modeled using object references.

Consider the department-employee case. In the underlying relational model, we

have the foreign key in the employee table. Using collections in views, we can

model the relationship between departments and employees. The department view

can have a collection of employees, and the employee view can have a reference to

the department (or inline the department values). This gives us both the forward

relation (from employee to department) and the inverse relation (department to list

of employees). The department view can also have a collection of references to

employee objects instead of embedding the employee objects.
17-10 Application Developer’s Guide - Fundamentals

Extending the Purchase Order Example
Mutating Objects and Validation
INSTEAD-OF triggers provide a way of updating complex views which otherwise

could not be updated. However, they can also be used to enforce constraints, check

privileges and validate the DML. Using these triggers, you can control mutation of

the objects created though an object view that might be caused by inserting,

updating and deleting.

For instance, suppose we wanted to enforce the condition that the number of

employees in a department cannot exceed 10. To enforce this, we can write an

INSTEAD-OF trigger for the employee view. The trigger is not needed for doing the

DML since the view can be updated, but we need it to enforce the constraint.

We implement the trigger by means of the following code:

CREATE TRIGGER emp_instr INSTEAD OF INSERT on emp_view
FOR EACH ROW
DECLARE
 dept_var dept_t;
 emp_count integer;
BEGIN
 -- Enforce the constraint..!
 -- First get the department number from the reference
 UTL_REF.SELECT_OBJECT(:NEW.deptref,dept_var);

 SELECT COUNT(*) INTO emp_count
 FROM emp
 WHERE deptno = dept_var.dno;

 IF emp_count < 9 THEN
 -- let us do the insert
 INSERT INTO emp VALUES (:NEW.eno,:NEW.ename,:NEW.salary,dept_var.dno);
 END IF;
END;
/

Extending the Purchase Order Example
In Chapter 16, "User-Defined Datatypes" we developed a purchase order example

by following these steps:

1. Establish the entities and relationships.

2. Implement the entity-relationship structure by creating and populating the

relational tables.
Objects in Views 17-11

Extending the Purchase Order Example
3. Define an object-relational schema of user-defined types to model the

entity-relationship structure.

4. Implement the entity-relationship structure using the object-relational schema

to create and populate object tables.

Using the mechanisms described in the previous section, let us redo the last step by

creating an object-relational schema using views over relational tables.

Stock Object View
Stock objects are referenced from line item objects, and so we need to synthesize

them from the Stock_reltab relational table. This mapping is straightforward as

each attribute of the stock type directly maps to a column in the relational table.

Since the stock number will uniquely identify each stock, we will use that for our

object identifier. We define the stock object view as follows:

CREATE OR REPLACE VIEW Stock_objview OF StockItem_objtyp
 WITH OBJECT IDENTIFIER(StockNo)
 AS SELECT *
 FROM Stock_reltab;

Customer Object View
The customer object type (Customer_objtyp) includes an embedded address

object (Address_objtyp) and a VARRAY (PhoneList_vartyp) of phone

numbers. The relational table, Customer_retab , has three columns to store phone

numbers. We can synthesize the VARRAY from these columns as show below,

CREATE OR REPLACE VIEW Customer_objview OF Customer_objtyp
 WITH OBJECT IDENTIFIER(Custno)
 AS SELECT c.Custno, C.custname,
 Address_objtyp(C.Street, C.City, C.State, C.Zip),
 PhoneList_vartyp(Phone1, Phone2, Phone3)
 FROM Customer_reltab c;
Again, the customer number forms the identifier for the customer object and the

customer’s address is synthesized using the default constructor of the Address_
objtyp .

Purchase order view
The purchase order type uses a reference to the customer and has a collection of line

item objects. The customer reference can be created using the MAKE_REF operator

on the Customer_objview object view using the Custno foreign key in the
17-12 Application Developer’s Guide - Fundamentals

Extending the Purchase Order Example
purchase order table. We can synthesize the line items from the line item table using

a subquery to identify the line items corresponding to the particular purchase order.

The line item type also includes a reference to the stock object which can be created

using the MAKE_REF operator on the Stock_objview object view.

CREATE OR REPLACE VIEW PurchaseOrder_objview OF PurchaseOrder_objtyp
 WITH OBJECT IDENTIFIER(PONo)
 AS SELECT P.PONo,
 MAKE_REF(Customer_objview, P.Custno),
 P.OrderDate,
 P.ShipDate,
 CAST(MULTISET(
 SELECT LineItem_objtyp(L.LineItemNo,
 MAKE_REF(Stock_objview,L.StockNo),
 L.Quantity, L.Discount)
 FROM LineItems_reltab L
 WHERE L.PONo = P.PONo)
 AS LineItemList_ntabtyp),
 Address_objtyp(P.ToStreet,P.ToCity, P.ToState, P.ToZip)
 FROM PurchaseOrder_reltab P;

One minor point to note in the CAST-MULTISET operator is that we have used the

base object type LineItem_objtyp in the SELECTlist and constructed a list of line

item objects and then cast them to the nested table type, LineItemList_ntabtyp .

This is not necessary and we could have omitted the constructor and simply written

the CAST-MULTISET part as

 CAST(MULTISET (SELECT L.LineItemNo, MAKE_REF(..) …)
 AS LineItemList_ntabtyp)

Oracle would automatically create the line item objects before creating the

collection. However putting the constructor improves the readability of the

CREATE-VIEWstatement and forces a structural validation with the base type of the

collection type specified in the CAST expression.

We have now created an object relational schema model using relational data and

views. These views can be queried just like object tables.

Selecting
Objects synthesized using views will behave in the same way as native objects.

The following query statement implicitly invokes a comparison method. It shows

how Oracle uses the ordering of PurchaseOrder_objtyp object types defined by

the comparison method:
Objects in Views 17-13

Extending the Purchase Order Example
SELECT p.PONo
 FROM PurchaseOrder_objview p
 ORDER BY VALUE(p);

The preceding instruction causes Oracle to invoke the map method getPONo for

each PurchaseOrder_objtyp object in the selection. Because that method returns

the value of the object's PONo attribute, the result of the selection is a list of

purchase order numbers in ascending numerical order. Remember that the object is

constructed by the object view from underlying relational data.

The following queries correspond to the queries executed under the relational

model.

Customer and Line Item Data for Purchase Order 1001
SELECT DEREF(p.Cust_ref), p.ShipToAddr_obj, p.PONo,
 p.OrderDate, LineItemList_ntab
 FROM PurchaseOrder_objview p
 WHERE p.PONo = 1001 ;

Total Value of Each Purchase Order
SELECT p.PONo, p.sumLineItems()
 FROM PurchaseOrder_objview p ;

Purchase Order and Line Item Data Involving Stock Item 1004
SELECT po.PONo, po.Cust_ref.CustNo,
 CURSOR (
 SELECT *
 FROM TABLE (po.LineItemList_ntab) L
 WHERE L.Stock_ref.StockNo = 1004
)
 FROM PurchaseOrder_objview po ;

This query returns a nested cursor for the set of LineItem_obj objects selected

from the nested table. The application can fetch from the nested cursor to obtain the

individual LineItem_obj objects. You can implement the same query by

unnesting the nested set with respect to the outer result:

SELECT po.PONo, po.Cust_ref.CustNo, L.*
 FROM PurchaseOrder_objview po, TABLE (po.LineItemList_ntab) L
 WHERE L.Stock_ref.StockNo = 1004;
17-14 Application Developer’s Guide - Fundamentals

Extending the Purchase Order Example
This query returns the result set as "flattened" in the First Normal Form form. This

is useful when accessing Oracle collection columns from relational tools and APIs

that cannot work with collections. In this example of unnesting, only the rows of the

PurchaseOrder_objtab table which have any LineItemList_ntab rows are

returned. If you need to fetch all rows of PurchaseOrder_objtab table

irrespective of whether there are any rows in their corresponding LineItemList_
ntab , an outer join (+) is required.

SELECT po.PONo, po.Cust_ref.CustNo, L.*
 FROM PurchaseOrder_objview po, TABLE (po.LineItemList_ntab) (+) L
 WHERE L.Stock_ref.StockNo = 1004;

Average Discount across all Line Items of all Purchase Orders
The following statement requires that the rows of all nested tables,

LineItemList_ntab , of all PurchaseOrder_objview objects be queried.

Again, unnesting is required for this query:

SELECT AVG(L.DISCOUNT)
 FROM PurchaseOrder_objview po, TABLE (po.LineItemList_ntab) L;

As we have seen from the examples, views can help develop a good object model

from any kind of data.

Updating Views
In the purchase-order model, the Stock_objview object view is a simple view and

the system can translate any DML on the view into changes made to the underlying

tables. However, in the case of the purchase order view (PurchaseOrder_
objview) , the task becomes complex and the view becomes inherently

non-updatable. Such views (and any view) can be made updatable by defining

INSTEAD-OF triggers for the view.

INSTEAD-OF triggers are triggers that fire upon an insert, delete or update of a row

of a view on which they are defined and the body of the trigger contains the code

for performing the DML. This means that when you create an INSTEAD-OF trigger,

you specify the exact way to handle an update to the view.

As is the case with any other trigger, the new and old values of the row can be

obtained through the respective qualifiers.
Objects in Views 17-15

Extending the Purchase Order Example
For example, let us consider the PurchaseOrder_objview object view. Each row

of the view contains a purchase order object with an embedded shipping address

object, a reference to a customer object and a list of line items.

To translate an insert on this view into a change of the underlying data, we need to

map the object attributes back to the relational tables from which we obtained those

values. Specifically, we need to map the customer reference back to the customer

number and map the line item list to the line item relational table.

INSTEAD-OF Trigger for PurchaseOrder_objview
CREATE OR REPLACE TRIGGER POView_instdinserttr
 INSTEAD OF INSERT on PurchaseOrder_objview
 DECLARE
 LineItems_ntab LineItemList_ntabtyp;
 i INTEGER;
 CustVar_obj Customer_objtyp;
 StockVar_obj StockItem_objtyp;
 StockVarTemp_ref REF StockItem_objtyp;

 BEGIN

 LineItems_ntab := :new.LineItemList_ntab;
 UTL_REF.SELECT_OBJECT(:new.Cust_ref, CustVar_obj);

 INSERT INTO PurchaseOrder_reltab
 VALUES(:new.PONo,CustVar_obj.Custno,:new.OrderDate,:new.ShipDate,
 :new.ShipToAddr_obj.Street,:new.ShipToAddr_obj.City,
 :new.ShipToAddr_obj.State,:new.ShipToAddr_obj.Zip) ;

 FOR i in 1..LineItems_ntab.count LOOP
 UTL_REF.SELECT_OBJECT(LineItems_ntab(i).Stock_ref, StockVar_obj);
 INSERT INTO LineItems_reltab
 VALUES(LineItems_ntab(i).LineItemNo,:new.PONo,StockVar_obj.StockNo,
 LineItems_ntab(i).Quantity,LineItems_ntab(i).Discount);
 END LOOP;

 END;
/

See Also: Chapter 13, "Using Triggers" for more information

about working with triggers.
17-16 Application Developer’s Guide - Fundamentals

Extending the Purchase Order Example
CREATE OR REPLACE TRIGGER POView_instddeletetr
 INSTEAD OF DELETE on PurchaseOrder_objview
 BEGIN

 DELETE FROM LineItems_reltab
 WHERE PONo = :old.PONo;

 DELETE FROM PurchaseOrder_reltab
 WHERE PONo = :old.PONo;

 END;
/

Note the use of the UTL_REF.SELECT_OBJECT function in the trigger. The UTL_
REF package provides functions for pinning an object reference and selecting the

object value. In the purchase order case, we need to get the object instances for the

customer reference and the stock reference so that we can get the customer number

and stock number to insert into the relational tables. You use the UTL_REFfunctions

to accomplish this.

Any insert of the form,

INSERT INTO PurchaseOrder_objview
 SELECT 1001, REF(cust),,….

would fire the INSTEAD-OF trigger to perform the necessary action.

Similarly any deletes on the purchase order view would fire the POView_
instddeletetr and delete the purchase order and the corresponding line items.

Inserting into the Nested Table
In the purchase order example, we might also want to be able to update the

lineItemList collection elements directly:

 INSERT INTO TABLE(SELECT e.lineItemList FROM PurchaseOrder_objview e
 WHERE e.PONo = 1001)
 VALUES (101,….);;

To do this we can define an INSTEAD-OF trigger over the nested table column to

perform a similar action. These triggers are fired on DML statements that target the

nested table using the TABLE<collection subquery>, and fire for each row of the

collection being modified. The new and old qualifiers correspond to the new and

old values of the collection element.
Objects in Views 17-17

Extending the Purchase Order Example
We can code the trigger in a similar way. One important difference is that the line

item list object does not include the purchase order number which we need for

inserting a row into the line item list table. However, we have this in the parent
row corresponding to the collection entity being modified, and we can access this

parent row’s value through the parent qualifier.

The example below creates an instead-of trigger for the LineItemList_ntab
nested table of object view, PurchaseOrder_objview .

 CREATE OR REPLACE TRIGGER POLineItems_instdinsertr
 INSTEAD OF INSERT ON NESTED TABLE LineItemList_ntab OF PurchaseOrder_objview
 DECLARE
 StockVar StockItem_objtyp;
 BEGIN
 UTL_REF.SELECT_OBJECT(:NEW.Stock_ref, StockVar);
 INSERT INTO LineItems_reltab
 VALUES (:NEW.LineItemNo, :PARENT.PONo, StockVar.StockNo, :NEW.Quantity,
 :NEW.Discount);
 END;
/
 CREATE OR REPLACE TRIGGER POLineItems_instddeltr
 INSTEAD OF DELETE ON NESTED TABLE LineItemList_ntab OF PurchaseOrder_objview
 BEGIN
 DELETE FROM LineItems_reltab
 WHERE LineItemNo = :OLD.LineItemNo AND PONo = :PARENT.PONo;
 END;
/

INSTEAD-OF Trigger for Customer_objview
In the Customer_objview case, we have an embedded object for the customer’s

address and a VARRAY of phone numbers. Our task is that we need to extract each

element of the VARRAY and insert it into the phone columns in the base table.

CREATE OR REPLACE TRIGGER CustView_instdinserttr
 INSTEAD OF INSERT on Customer_objview
 DECLARE
 Phones_var PhoneList_vartyp;
 TPhone1 Customer_reltab.Phone1%TYPE := NULL;
 TPhone2 Customer_reltab.Phone2%TYPE := NULL;
 TPhone3 Customer_reltab.Phone3%TYPE := NULL;
 BEGIN

 Phones_var := :new.PhoneList;
17-18 Application Developer’s Guide - Fundamentals

Extending the Purchase Order Example
 IF Phones_var.COUNT > 2 then
 TPhone3 := Phones_var(3);
 END IF;
 IF Phones_var.COUNT > 1 then
 TPhone2 := Phones_var(2);
 END IF;
 IF Phones_var.COUNT > 0 then
 TPhone1 := Phones_var(1);
 END IF;

 INSERT INTO Customer_reltab
 VALUES(:new.Custno,:new.Custname,:new.Address.Street,
 :new.Address.City, :new.Address.State, :new.Address.Zip,
 TPhone1,TPhone2,TPhone3);
 END;
/

This trigger function updates the Customer_reltab table with the new

information. Most of the program deals with updating the three phone number

columns of the Customer_reltab table from the VARRAY of phone numbers. The

IF statements assure that the program does not attempt to access elements with

indexes greater than the specified number.

There is a slight mismatch between these two representations, because the VARRAY
is defined hold up to ten numbers, while the customer table has only three phone

number columns. The trigger program discards elements with indexes greater than

three.

INSTEAD-OF Trigger for Stock_objview
The Stock_objview is a simple view which is inherently updatable. We do not have

to define an INSTEAD-OF trigger for performing DML on it. However, we might

want to enforce constraints on it, such as the TaxRate not being greater than 30%.

We might also want to record this new Stock addition in the Stock_archive_tab
which stores information on the stock purchase and depletion.

The Stock_archive_tab structure is shown below

CREATE TABLE Stock_archive_tab
(
 archive_date DATE,
 StockNo NUMBER,
 Price NUMBER,
 TaxRate NUMBER
);
Objects in Views 17-19

Extending the Purchase Order Example
CREATE OR REPLACE TRIGGER StockView_instdinsertr
 INSTEAD OF INSERT on Stock_objview
 BEGIN

 -- When the TaxRate is greater than 30% we can simply ignore the
 -- row or raise an exception.
 IF :new.TaxRate <= 30 THEN
 -- insert the values into the Stock table
 INSERT INTO Stock_reltab
 VALUES(:new.StockNo,:new.Cost,:new.TaxRate);

 -- Let us record this stock increase in the archive:
 INSERT INTO Stock_archive_tab
 VALUES (SYSDATE, :new.StockNo, :new.Cost, :new.TaxRate);

 END IF;
 END;
/

This trigger function updates the Stock_reltab table with the new information

and also archives it. Similarly, we can implement delete and update triggers on the

view which would both update the base table and also the archival table.

Inserting Values
The statements in this section show how to insert the same data into the object

views created. Again, we have used the same examples as the last chapter to show

how the synthesized objects in views behaves in the same way as native objects.

Stock_objview
INSERT INTO Stock_objview VALUES(1004, 6750.00, 2);
INSERT INTO Stock_objview VALUES(1011, 4500.23, 2);
INSERT INTO Stock_objview VALUES(1534, 2234.00, 2);
INSERT INTO Stock_objview VALUES(1535, 3456.23, 2);

The INSTEAD-OF trigger on the view would automatically record these insertions.

The following insert would not be recorded as our StockView_instdinsertr
would prevent a stock object with TaxRate greater than 30% to be inserted.

INSERT INTO Stock_objview VALUES(1535, 3456.23, 32);
17-20 Application Developer’s Guide - Fundamentals

Extending the Purchase Order Example
Customer_objview
Let us insert some customers in our system.

INSERT INTO Customer_objview
 VALUES (
 1, 'Jean Nance',
 Address_objtyp('2 Avocet Drive', 'Redwood Shores', 'CA', '95054'),
 PhoneList_vartyp('415-555-1212')
) ;

INSERT INTO Customer_objview
 VALUES (
 2, 'John Nike',
 Address_objtyp('323 College Drive', 'Edison', 'NJ', '08820'),
 PhoneList_vartyp('609-555-1212','201-555-1212')
) ;

PurchaseOrder_objview

INSERT INTO PurchaseOrder_objview
 VALUES (1001, (SELECT REF(C)
 FROM Customer_objview C
 WHERE C.CustNo = 1),
 SYSDATE, '10-MAY-1997',
 LineItemList_ntabtyp(), NULL);

The preceding statement constructs a PurchaseOrder_objtyp object with the

following attributes:

 PONo 1001
 Cust_ref REF to customer number 1
 OrderDate SYSDATE
 ShipDate 10-MAY-1997
 LineItemList an empty LineItem_objtyp
 ShipToAddr NULL

The statement uses a query to construct an object reference to the row object in the

Customer_objtab object table that has a CustNo value of 1. Note the use of the

subquery in the VALUESclause to construct an object reference to the customer. This

query returns a single value.

We could also have used the MAKE_REF operator to construct the object reference

with the same result,

INSERT INTO PurchaseOrder_objview
Objects in Views 17-21

Extending the Purchase Order Example
 VALUES(1001, MAKE_REF(Customer_objview, 1) ,
 SYSDATE,'10-MAY-1997', LineItemList_ntabtyp(), NULL);

The next statement uses a TABLE expression to identify the nested table as the

target for the insertion. In this case, we are targeting the nested table in the

LineItemList_ntab column of the row object in the PurchaseOrder_objview
view that has a PONo value of 1001.

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objview P
 WHERE P.PONo = 1001
)
 SELECT 01, REF(S), 12, 0
 FROM Stock_objview S
 WHERE S.StockNo = 1534;

The preceding statement inserts a line item into the nested table identified by the

TABLE expression. The line item that it inserts contains a reference to the row object

in the object view Stock_objview that has a StockNo value of 1534. Remember

that this will fire the POLineItems_instdinsertr trigger to insert the line item

values into the LineItems_reltab relational table.

Deleting
The following example has the same effect as the deletions made in the relational

case (see "Deleting Data Under The Relational Model" on page 16-12 in Chapter 16,

"User-Defined Datatypes"). With views and INSTEAD-OF triggers, when a purchase

order object is deleted, all line items belonging to the purchase order is

automatically deleted. The relational case requires a separate step.

Delete Purchase Order 1001
DELETE
 FROM PurchaseOrder_objview p
 WHERE p.PONo = 1001 ;

Note: Oracle8.0 supports the "flattened subquery" or "THE(
<subquery>)" expression to identify the nested table. This construct

is being deprecated in favor of the TABLE expression illustrated

below.
17-22 Application Developer’s Guide - Fundamentals

Using the OCI Object Cache
This concludes the view version of the purchase order example.

Using the OCI Object Cache
We can pin and navigate objects synthesized from object views in the OCI Object

Cache similar to the way we do this with object tables. We can also create new view

objects, update them, delete them and flush them from the cache. The flush

performs the appropriate DML on the view (such as insert for newly created objects

and updates for any attribute changes). This would fire the INSTEAD-OF triggers if

any on the view and the object would get stored persistently.

There is a minor difference between the two approaches with regard to getting the

reference to a newly created instance in the object cache.

In the case of object views with primary key based reference, the attributes that

make up the identifier for the object need to be initialized before the

OCIObjectGetObjectRef call can be called on the object to get the object

reference. For example, to create a new object in the OCI Object cache for the

purchase order object, we need to take the following steps:

.. /* Initialize all the settings including creating a connection, getting a
 environment handle etc. We do not check for error conditions to make
 the example eaiser to read. */
OCIType *purchaseOrder_tdo = (OCIType *) 0; /* This is the type object for the
 purchase order */
dvoid * purchaseOrder_viewobj = (dvoid *) 0; /* This is the view object */

/* The purchaseOrder struct is a structure that is defined to have the same
attributes as that of PurchaseOrder_objtyp type. This can be created by the
user or generated automatically using the OTT generator. */
purchaseOrder_struct *purchaseOrder_obj;

/* This is the null structure corresponding to the purchase order object’s
attributes */
purchaseOrder_nullstruct *purchaseOrder_nullobj;

/* This is the variable containing the purchase order number that we need to
create */
int PONo = 1003;

/* This is the reference to the purchase order object */
OCIRef *purchaseOrder_ref = (OCIRef *)0;
Objects in Views 17-23

Using the OCI Object Cache
/* Pin the object type first */
OCITypeByName(envhp, errhp, svchp,
 (CONST text *) “”, (ub4) strlen(“”) ,
 (CONST text *) “PURCHASEORDER_OBJTYP” ,
 (ub4) strlen(“PURCHASEORDER_OBJTYP”),
 (CONST char *) 0, (ub4)0,
 OCI_DURATION_SESSION, OCI_TYPEGET_ALL,
&purchaseOrder_tdo);

/* Pin the table object - in this case it is the purchase order view */
OCIObjectPinObjectTable(envhp, errhp, svchp, (CONST text *) “”,
 (ub4) strlen(“”),
 (CONST text *) “PURCHASEORDER_OBJVIEW”,
 (ub4) strlen(“PURCHASEORDER_OBJVIEW”),
 (CONST OCIRef *) NULL,
 OCI_DURATION_SESSION,
 &purchaseOrder_viewobj);

/* Now create a new object in the cache. This is a purchase order object */
OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE_OBJECT, purchaseOrder_tdo,
 purchaseOrder_viewobj, OCI_DURATION_DEFAULT, FALSE,
 (dvoid **) *purchaseOrder_obj);

/* Now we can initialize this object, and use it as a regular object. But before
getting the reference to this object we need to initialize the PONo attribute of
the object which makes up its object identifier in the view */

/* Initialize the null identifiers */
OCIObjectGetInd(envhp, errhp, purchaseOrder_obj, purchaseOrder_nullobj);

purchaseOrder_nullobj->purchaseOrder = OCI_IND_NOTNULL;
purchaseOrder_nullobj->PONo = OCI_IND_NOTNULL;

/* This sets the PONo attribute */
OCINumberFromInt(errhp, (CONST dvoid *) &PoNo, sizeof(PoNo), OCI_NUMBER_SIGNED,
 &(purchaseOrder_obj->PONo));

/* Create an object reference */
OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE_REF, (OCIType *) 0,
 (dvoid *) 0, (dvoid *) 0, OCI_DURATION_DEFAULT, TRUE,
 (dvoid **) &purchaseOrder_ref);

/* Now get the reference to the newly created object */
OCIObjectGetObjectRef(envhp, errhp, (dvoid *) purchaseOrder_obj, purchaseOrder_
ref);
17-24 Application Developer’s Guide - Fundamentals

Using the OCI Object Cache
/* This reference may be used in the rest of the program ….. */
…
/* We can flush the changes to the disk and the newly instantiated purchase
order object in the object cache will become permanent. In the case of the
purchase order object, the insert will fire the INSTEAD-OF trigger defined over
the purchase order view to do the actual processing */

OCICacheFlush(envhp, errhp, svchp, (dvoid *) 0, 0, (OCIRef **) 0);
…

Views on Remote Tables
Views can be used to synthesize objects from remote tables.

Consider the case of a company which has three branches — one in Washington

D.C., another in Seattle and a third in Chicago. Let us say that each of these sites has

an employee table that is maintained separately by the respective IT departments.

The headquarters in Washington has an department table that has the list of all the

departments. Supposing that the CEO wants to get a total view of the entire

organization, we can create views over the individual remote tables and then a

overall view of the organization:-

Let us create the individual views first.

CREATE VIEW emp_washington_view (eno,ename,salary)
 AS SELECT e.empno, e.empname, e.salary
 FROM emp@washington_link e;

CREATE VIEW emp_chicago_view
 AS SELECT e.eno, e.name, e.salary
 FROM emp_tab@chicago_link e;

CREATE VIEW emp_seattle_view (eno,ename,salary)
 AS SELECT e.employeeno, e.employeename, e.employeesalary
 FROM employeetab@seattle_link e;

We can now create the global view as follows:-

CREATE VIEW orgnzn_view OF dept_t WITH OBJECT IDENTIFIER (dno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT e.eno, e.ename, e.salary
 FROM emp_washington_view e)
Objects in Views 17-25

Using the OCI Object Cache
 AS employee_list_t)
 FROM dept d
 WHERE d.deptcity = ‘Washington’
 UNION ALL
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT e.eno, e.name, e.salary
 FROM emp_chicago_view e)
 AS employee_list_t)
 FROM dept d
 WHERE d.deptcity = ‘Chicago’
 UNION ALL
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT e.eno, e.ename, e.salary
 FROM emp_seattle_view e)
 AS employee_list_t)
 FROM dept d
 WHERE d.deptcity = ‘Seattle;

This view would now have list of all employees for each department. We use UNION
ALL in this example since we cannot have two employees working in more than one

department. If we had to deal with that eventuality, we could use a UNION of the

rows. However, one caveat in using the UNION operator is that we need to

introduce an ORDER BY operator within the CAST-MULTISET expressions so that

the comparison of two collections is performed properly.

Partitioning Tables with Objects
Working with very large tables and indexes may lead you to decompose them into

smaller and more manageable pieces called partitions. Since using objects in views

does not affect the storage characteristics of the underlying tables, queries on objects

with views can be optimized to take advantage of the partitions.

Parallel Query with Objects
Parallel query is supported on the objects synthesized from views.

To execute queries involving joins and sorts (using the ORDER BY, GROUP BY, and

SET operations) in parallel, a MAP function is needed. In the absence of a MAP
function, the query automatically becomes serial.
17-26 Application Developer’s Guide - Fundamentals

Using the OCI Object Cache
Parallel queries on nested table columns are not supported. Even in the presence of

parallel hints or parallel attributes for the view, the query will be serial if it involves

the nested table column.

Parallel DML is not supported on views with INSTEAD-OF trigger. However, the

individual statements within the trigger may be parallelized.

Circular View References
You can define circular references to views using the MAKE_REF operator: view_A
can refer to view_B which in turn can refer to view_A .

For example, in the case of the department and employee, the department object

currently includes a list of employees. We may not want to materialize the entire list

and instead opt to use references to employee objects. This may be necessary, for

instance, if the employee object is large and we do not need all the employee objects

to be materialized. We can pin the necessary employee references and extract the

information later.

The employee object already has a reference to the department in which the

employee works.

If we create object view over this model, we would get circular references between

the department view and the employee view.

We can create circular references between object views in two different ways.

Method 1:
1. Create view A without including the reference to view B (that is, have a NULL

value for the MAKE_REF column).

2. Create view B which includes the reference to view A.

3. Replace view A with a new definition which includes the reference to view B.

Method 2:
1. Create view A with the reference to view B using the FORCE keyword.

2. Create view B with reference to view A. When view A is used it is validated

and re-compiled.

The advantage of Method 2 is that we do not have to repeat the creation of the view.

But the disadvantage is other errors in the view creation may get masked because of

the FORCE keyword. You need to use USER_ERRORS catalog view to get the errors
Objects in Views 17-27

Using the OCI Object Cache
during the view creation in this case. Use this method only if you are sure that there

are no errors in the view creation statement.

Also, if the views do not get automatically recompiled upon use because of errors,

you would need to recompile them manually using the ALTER VIEW COMPILE
command.

We will see the implementation for both the methods.

 Creation of Tables and Types
Create the emp table to store the employee information.

CREATE TABLE emp
(
 empno NUMBER PRIMARY KEY,
 empname VARCHAR2(20),
 salary NUMBER,
 deptno NUMBER
);

Create the emp_t type with the reference to the department. Create a dummy

department type so that the emp_t type creation does not result in any warnings or

errors.

CREATE TYPE dept_t;
/
Create the employee type that includes a reference to the department.

CREATE TYPE emp_t AS OBJECT
(
 eno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER,
 deptref REF dept_t
);
/
Create the list of references to employee types.

CREATE TYPE employee_list_ref_t AS TABLE OF REF emp_t;
/
Create the department table.

CREATE TABLE dept
(
 deptno NUMBER PRIMARY KEY,
 deptname VARCHAR2(20),
17-28 Application Developer’s Guide - Fundamentals

Using the OCI Object Cache
 deptstreet VARCHAR2(20),
 deptcity VARCHAR2(10),
 deptstate CHAR(2),
 deptzip VARCHAR2(10)
);

Create an address type to store the address information as an object.

CREATE TYPE address_t AS OBJECT
(
 street VARCHAR2(20),
 city VARCHAR2(10),
 state CHAR(2),
 zip VARCHAR2(10)
);
/
Create the department type. Note that we are replacing the existing department

type.

CREATE OR REPLACE TYPE dept_t AS OBJECT
(
 dno NUMBER,
 dname VARCHAR2(20),
 deptaddr address_t,
 empreflist employee_list_ref_t
);
/

View Creation
Having created the necessary types with the underlying relational table definition,

let us create the object views on top of them.

Method 1: Create the views without using the FORCE keyword.
Here we will first create the employee view without including the reference to the

department view.

CREATE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,
 NULL
 FROM emp e;

The deptref column has a NULL value in it.
Objects in Views 17-29

Using the OCI Object Cache
Next, we create the department view which includes references to the employee

objects.

CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT MAKE_REF(emp_view, e.empno)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_ref_t)
 FROM dept d;

Here we have a created a list of references to employee objects in the department

view instead of including the entire employee object. We can now proceed to

re-create the employee view with the reference to the department view.

CREATE OR REPLACE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,
 MAKE_REF(dept_view, e.deptno)
 FROM emp e;

This creates the views.

Method 2: Creating the views with the FORCE keyword.
If we are sure that we do not have any syntax errors in the view creation statement,

we can use the FORCE keyword to first force the creation of one of the views

without the other view being present.

Let us first create an employee view which includes a reference to the department

view. At this point, the department view has not been created and so the employee

view is being forced into creation. This view cannot be queried until the department

view is created properly.

CREATE FORCE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,
 MAKE_REF(dept_view, e.deptno)
 FROM emp e;

Next, we create the department view which includes references to the employee

objects. We do not have to use the FORCE keyword here, since emp_view already

exists.

CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
17-30 Application Developer’s Guide - Fundamentals

Using the OCI Object Cache
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT MAKE_REF(emp_view, e.empno)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_ref_t)
 FROM dept d;

This allows us to query the department view, getting the employee object by

pinning the object reference.

We can retrieve the entire employee object by de-referencing the employee reference

from the nested table empreflist .

SELECT DEREF(e.COLUMN_VALUE)
FROM TABLE(SELECT e.empreflist FROM dept_view e WHERE e.dno = 100) e;

The COLUMN_VALUE column is used to get to the scalar value in a scalar nested

table. In this case, COLUMN_VALUE denotes the reference to the employee objects in

the nested table empreflist.

We could also access only the employee number of all those employees whose name

begins with “John”.

SELECT e.COLUMN_VALUE.eno
FROM TABLE(SELECT e.empreflist FROM dept_view e WHERE e.dno = 100) e
WHERE e.COLUMN_VALUE.ename like ‘John%’;

To get a tabular output, unnest the list of references:

SELECT d.dno, e.COLUMN_VALUE.eno, e.COLUMN_VALUE.ename
FROM dept_view d, TABLE(d.empreflist) e
WHERE e.COLUMN_VALUE.ename like ‘John%’
 AND d.dno = 100;

Finally, we could rewrite the above query to use the emp_view instead of the

dept_view in order to demonstrate the functionality of circular nature of the

reference:
Objects in Views 17-31

Using the OCI Object Cache
SELECT e.deptref.dno, DEREF(f.COLUMN_VALUE)
FROM emp_view e, TABLE(e.deptref.empreflist) f
WHERE e.deptref.dno = 100
AND f.COLUMN_VALUE.ename like ‘John%’;
17-32 Application Developer’s Guide - Fundamentals

Design Considerations for Oracle O
18

Design Considerations for Oracle Objects

This chapter explains the implementation and performance characteristics of

Oracle’s object-relational model. The information in this chapter enables database

designers to understand the advantages and disadvantages of various ways of

mapping a logical data model into an Oracle physical implementation. This chapter

also enables application developers to be aware of the various design issues to

consider so that the they can use the features of Oracle objects effectively.

Specifically, this chapter covers the following topics:

■ Object Types

■ REFs

■ Collections

■ Methods

■ Other Considerations

You should be familiar with the basic concepts behind Oracle objects before you

read this chapter.

See Also: Oracle8i Concepts for conceptual information about

Oracle objects, and see Oracle8i SQL Reference for information about

the SQL syntax for using Oracle objects.
bjects 18-1

Object Types
Object Types
Object types are abstractions of real-world entities, such as purchase orders, that

interact with application programs. You can think of an object type as a template

and a structured data unit that matches the template as an object. Object types can

represent many different data structures; a few examples are line items, images, and

spatial data.

You can use object types to map an object model directly to a database schema,

instead of flattening the model to relational tables and columns. Objects enable you

to bring related pieces of data together in a single unit, and object types allow you

to store the behavior of data along with the data itself. Application code can retrieve

and manipulate the data as objects.

Column Objects vs. Row Objects
You can store objects in columns of relational tables as column objects, or in object

tables as row objects. Objects that have meaning outside of the relational database

object in which they are contained, or objects that are shared among more than one

relational database object, should be made referenceable as row objects. That is,

such objects should be stored in an object table instead of in a column of a relational

table.

For example, an object of object type CUSTOMER has meaning outside of any

particular purchase order, and should be referenceable; therefore, CUSTOMERobjects

should be stored as row objects in an object table. An object of object type ADDRESS,
however, has little meaning outside of a particular purchase order and can be one

attribute within a purchase order; therefore, ADDRESS objects should be stored as

column objects in columns of relational tables or object tables. So, ADDRESS might

be a column object in the CUSTOMER row object.

Column Object Storage
The storage of a column object is the same as the storage of an equivalent set of

scalar columns that collectively make up the object. The only difference is that there

is the additional overhead of maintaining the atomic null values of the object and its

embedded object attributes. These values are called null indicators because, for every

column object, a null indicator specifies whether the column object is null and

whether each of its embedded object attributes is null. However, null indicators do

not specify whether the scalar attributes of a column object are null. Oracle uses a

different method to determine whether scalar attributes are null.
18-2 Application Developer’s Guide - Fundamentals

Object Types
Consider a table that holds the identification number, name, address, and phone

numbers of people within an organization. You can create three different object

types to hold the name, address, and phone number. First, to create the name_
objtyp object type, enter the following SQL statement:

CREATE TYPE name_objtyp AS OBJECT (
 first VARCHAR2(15),
 middle VARCHAR2(15),
 last VARCHAR2(15))
/

Figure 18–1 Object Relational Representation for the name_objtyp Type

Type NAME_OBJTYP

MIDDLE LAST

Text
VARCHAR2(15)

FIRST

Text
VARCHAR2(15)

Text
VARCHAR2(15)
Design Considerations for Oracle Objects 18-3

Object Types
Next, to create the address_objtyp object type, enter the following SQL

statement:

CREATE TYPE address_objtyp AS OBJECT (
 street VARCHAR2(200),
 city VARCHAR2(200),
 state CHAR(2),
 zipcode VARCHAR2(20))
/

Figure 18–2 Object Relational Representation of the address_objtyp Type

Finally, to create the phone_objtyp object type, enter the following SQL

statement:

CREATE TYPE phone_objtyp AS OBJECT (
 location VARCHAR2(15),
 num VARCHAR2(14))
/

Figure 18–3 Object Relational Representation of the phone_objtyp Type

Type ADDRESS_OBJTYP

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

Text
VARCHAR2(200)

Type PHONE_OBJTYP

NUM

Number
VARCHAR2(14)

LOCATION

Text
VARCHAR2(15)
18-4 Application Developer’s Guide - Fundamentals

Object Types
Because each person may have more than one phone number, create a nested table

type phone_ntabtyp based on the phone_objtyp object type:

CREATE TYPE phone_ntabtyp AS TABLE OF phone_objtyp
/

Once all of these object types are in place, you can create a table to hold the

information about the people in the organization with the following SQL statement:

CREATE TABLE people_reltab (
 id NUMBER(4) CONSTRAINT pk_people_reltab PRIMARY KEY,
 name_obj name_objtyp,
 address_obj address_objtyp,
 phones_ntab phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab;

See Also: "Nested Tables" on page 18-16 for more information

about nested tables.
Design Considerations for Oracle Objects 18-5

Object Types
Figure 18–4 Representation of the people_reltab Relational Table

Table PEOPLE_RELTAB

NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Object Type
NAME_OBJTYP

ID

PK

Number
NUMBER(4)

Object Type
ADDRESS_OBJTYP

Nested Table
PHONE_NTABTYP

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

CITY STATE ZIPCODE

Text
VARCHAR(200)

STREET

Text
VARCHAR2(200)

Text
CHAR(2)

Text
VARCHAR(20)

Nested Table PHONES_NTAB (of PHONE_NTABTYP)

NUM

Number
VARCHAR(14)

LOCATION

Text
VARCHAR(15)

Column Object NAME_OBJ (of NAME_OBJTYP)

MIDDLE LAST

Text
VARCHAR2(15)

FIRST

Text
VARCHAR2(15)

Text
VARCHAR2(15)
18-6 Application Developer’s Guide - Fundamentals

Object Types
The people_reltab table has three column objects: name_obj , address_obj ,

and phones_ntab . The phones_ntab column object is also a nested table.

The storage for each object stored in the people_reltab table is the same as that

of the attributes of the object. For example, the storage required for a name_obj
object is the same as the storage for the first , middle , and last attributes

combined, except for the null indicator overhead.

If the COMPATIBLE parameter is set to 8.1.0 or higher, the null indicator for an

object and its embedded object attributes occupy one bit each. Thus, an object with

n embedded object attributes (including objects at all levels of nesting) has a storage

overhead of CEIL(n/8) bytes. In the people_reltab table, for example, the

overhead of the null information for each row is one byte because it translates to

CEIL(3/8) or CEIL(.37) , which rounds up to one byte. In this case, there are

three objects in each row: name_obj , address_obj , and phones_ntab .

If, however, the COMPATIBLE parameter is set to a value below 8.1.0, such as 8.0.0,

the storage is determined by the following calculation:

CEIL(n/8) + 6

Here, n is the total number of all attributes (scalar and object) within the object.

Therefore, in the people_reltab table, for example, the overhead of the null

information for each row is seven bytes because it translates to the following

calculation:

CEIL(4/8) + 6 = 7

CEIL(4/8) is CEIL(.5) , which rounds up to one byte. In this case, there are three

objects in each row and one scalar.

Therefore, the storage overhead and performance of manipulating a column object

is similar to that of the equivalent set of scalar columns. The storage for collection

attributes are described in the "Collections" section on page 18-13.

Note: The name_obj object, address_obj object, phones_ntab
nested table, and people_reltab table are used in examples

throughout this chapter.

See Also: Oracle8i SQL Reference for more information about

CEIL .
Design Considerations for Oracle Objects 18-7

Object Types
Row Object Storage in Object Tables
Row objects are stored in object tables. An object table is a special kind of table that

holds objects and provides a relational view of the attributes of those objects. An

object table is logically and physically similar to a relational table whose column

types correspond to the top level attributes of the object type stored in the object

table. The key difference is that an object table can optionally contain an additional

object identifier (OID) column and index.

Object Identifier (OID) Storage and OID Index By default, Oracle assigns every row object

a unique, immutable object identifier, called an OID. An OID allows the

corresponding row object to be referred to from other objects or from relational

tables. A built-in datatype called a REF represents such references. A REF
encapsulates a reference to a row object of a specified object type.

By default, an object table contains a system-generated OID column, so that each

row object is assigned a globally unique OID. This OID column is automatically

indexed for efficient OID-based lookups. The OID column is the equivalent of

having an extra 16-byte primary key column.

Primary-Key Based OIDs If a primary key column is available, you can avoid the

storage and performance overhead of maintaining the 16-byte OID column and its

index. Instead of using the system-generated OIDs, you can use a CREATE TABLE
statement to specify that the system use the primary key column(s) as the OIDs of

the objects in the table. Therefore, you can use existing columns as the OIDs of the

objects or use application generated OIDs that are smaller than the 16-byte globally

unique OIDs generated by Oracle.

Comparing Objects
You can compare objects by invoking the map or order methods defined on the object

type. A map method converts objects into scalar values while preserving the

ordering of the objects. Mapping objects into scalar values, if it can be done, is

preferred because it allows the system to efficiently order objects once they are

mapped.

The way objects are mapped has significant performance implications when sorting

is required on the objects for ORDER BY or GROUP BY processing because an object

may need to be compared to other objects many times, and it is much more efficient

if the objects can be mapped to scalar values first. If the comparison semantics are

extremely complex, or if the objects cannot be mapped into scalar values for

comparison, you can define an order method that, given two objects, returns the

ordering determined by the object implementor. Order methods are not as efficient
18-8 Application Developer’s Guide - Fundamentals

REFs
as map methods, so performance may suffer if you use order methods. In any one

object type, you can implement either map or order methods, but not both.

Once again, consider an object type ADDRESSconsisting of four character attributes:

STREET, CITY, STATE, and ZIPCODE. Here, the most efficient comparison method

is a map method because each object can be converted easily into scalar values. For

example, you might define a map method that orders all of the objects by state.

On the other hand, suppose you want to compare binary objects, such as images. In

this case, the comparison semantics may be too complex to use a map method; if so,

you can use an order method to perform comparisons. For example, you could

create an order method that compares images according to brightness or the

number of pixels in each image.

If an object type does not have either a map or order method, only equality

comparisons are allowed on objects of that type. In this case, Oracle performs the

comparison by doing a field-by-field comparison of the corresponding object

attributes, in the order they are defined. If the comparison fails at any point, a

FALSE value is returned. If the comparison matches at every point, a TRUE value is

returned. However, if an object has a collection of LOB attributes, then Oracle does

not compare the object on a field-by-field basis. Such objects must have a map or

order method to perform comparisons.

REFs
A REF is a logical "pointer" to a row object. REFs and collections of REFs model

associations between objects and other objects. There are several scenarios in which

REFs are useful in modelling relationships. For example, the relationship between a

purchase order and a customer can be established using a REF attribute in the

purchase order that references the customer. REFs provide an easy mechanism for

navigating between objects. You can use the extended dot notation to follow the

"pointers" without explicit joins.

Object Identifiers (OIDs)
REFs use object identifiers (OIDs) to point to objects. You can use either

system-generated OIDs or primary-key based OIDs. The differences between these

types of OIDs are outlined in "Row Object Storage in Object Tables" on page 18-8. If

you use system-generated OIDs for an object table, Oracle maintains an index on

the column that stores these OIDs. The index requires storage space, and each row

object has a system-generated OID, which requires an extra 16 bytes of storage per

row.
Design Considerations for Oracle Objects 18-9

REFs
You can avoid these added storage requirements by using the primary key for the

object identifiers, instead of system-generated OIDs. You can enforce referential

integrity on columns that store references to these row objects in a way similar to

foreign keys in relational tables.

However, if each primary key value requires more than 16 bytes of storage and you

have a large number of REFs, using the primary key might require more space than

system-generated OIDs because each REF is the size of the primary key. In addition,

each primary-key based OID is locally (but not necessarily globally) unique. If you

require a globally unique identifier, you must ensure that the primary key is

globally unique or use system-generated OIDs.

Storage of REFs
A REF contains the following three logical components:

■ OID of the object referenced. A system-generated OID is 16 bytes long. The size

of a primary-key based OID depends on the size of the primary key column(s).

■ OID of the table or view containing the object referenced, which is 16 bytes

long.

■ Rowid hint, which is 10 bytes long.

Constraints on REFs
Referential integrity constraints on REFcolumns ensure that there is a row object for

the REF. Referential integrity constraints on REFs create the same relationship as

specifying a primary key/foreign key relationship on relational data. In general,

you should use referential integrity constraints wherever possible because they are

the only way to ensure that the row object for the REF exists. However, you cannot

specify referential integrity constraints on REFs that are in nested tables.

A scoped REFis constrained to contain only references to a specified object table. You

can specify a scoped REF when you declare a column type, collection element, or

object type attribute to be a REF. In general, you should use scoped REFs whenever

possible instead of unscoped REFs because scoped REFs are stored more efficiently.

Scoped REFs are stored on disk as just the OID, so each scoped REFis 16 bytes long.

In addition to the smaller size, the optimizer often can optimize queries that

dereference a scoped REF into efficient joins. This optimization is not possible for

unscoped REFs because the optimizer cannot determine the containing table(s) for

unscoped REFs at query optimization time.
18-10 Application Developer’s Guide - Fundamentals

REFs
However, unlike referential integrity constraints, scoped REFs do not ensure that

the referenced row object exists; they only ensure that the referenced object table

exists. Therefore, if you specify a scoped REF to a row object and then delete the

row object, the scoped REF becomes a dangling REF because the referenced object

no longer exists.

Unscoped REFs are useful if the application design requires that the objects

referenced be scattered in multiple tables. Because rowid hints are ignored for

scoped REFs, you should use unscoped REFs if the performance gain of the rowid

hint, as explained below in the "WITH ROWID Option" section, outweighs the

benefits of the storage saving and query optimization of using scoped REFs.

WITH ROWID Option
If the WITH ROWIDoption is specified for a REFcolumn, Oracle maintains the rowid

of the object referenced in the REF. Then, Oracle can find the object referenced

directly using the rowid contained in the REF, without the need to fetch the rowid

from the OID index. Therefore, you use the WITH ROWID option to specify a rowid

hint. Maintaining the rowid requires more storage space because the rowid adds 16

bytes to the storage requirements of the REF.

Bypassing the OID index search improves the performance of REF traversal

(navigational access) in applications. The actual performance gain may vary from

application to application depending on the following factors:

■ How large the OID indexes are

■ Whether the OID indexes are cached in the buffer cache

■ How many REF traversals an application does

The WITH ROWID option is only a hint because, when you use this option, Oracle

checks the OID of the row object with the OID in the REF. If the two OIDs do not

match, Oracle uses the OID index instead. The rowid hint is not supported for

scoped REFs, for REFs with referential integrity constraints, or for primary

key-based REFs.

Note: Referential integrity constraints are scoped implicitly.
Design Considerations for Oracle Objects 18-11

REFs
Indexing REFs
You can build indexes on scoped REF columns using the CREATE INDEX command.

Then, you can use the index to efficiently evaluate queries that dereference the

scoped REFs. Such queries are turned into joins implicitly. For certain types of

queries, Oracle can use an index on the scoped REF column to evaluate the join

efficiently.

For example, suppose the object type address_objtyp is used to create an object

table named address_objtab :

CREATE TABLE address_objtab OF address_objtyp ;

Then, a people_reltab2 table can be created that has the same definition as the

people_reltab table discussed in "Column Object Storage" on page 18-2, except

that a REF is used for the address:

CREATE TABLE people_reltab2 (
 id NUMBER(4) CONSTRAINT pk_people_reltab2 PRIMARY KEY,
 name_obj name_objtyp,
 address_ref REF address_objtyp SCOPE IS address_objtab, -- REF specified
 phones_ntab phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab2 ;

Now, an index can be created on the address_ref column:

CREATE INDEX address_ref_idx ON people_reltab2 (address_ref) ;

The following query dereferences the address_ref :

SELECT id FROM people_reltab2 p
 WHERE p.address_ref.state = 'CA' ;

When this query is executed, the address_ref_idx index is used to efficiently

evaluate it. Here, address_ref is a scoped REF column that stores references to

addresses stored in the address_objtab object table. Oracle implicitly transforms

the above query into a query with a join:

SELECT p.id FROM people_reltab2 p, address_objtab a
 WHERE p.address_ref = ref(a) AND a.state = 'CA' ;

Oracle’s optimizer might create a plan to perform a nested-loops join with

address_objtab as the outer table and look up matching addresses using the

index on the address_ref scoped REF column.
18-12 Application Developer’s Guide - Fundamentals

Collections
Collections
Collections model one-to-many relationships. For example, a purchase order has

one or more line items; so, you may want to put the line items into a collection.

Oracle supports two kinds of collections: varrays and nested tables.

There are two major differences between varrays and nested tables:

■ Varrays are ordered and bounded collections, whereas nested tables are

unordered and unbounded collections.

■ Varrays are stored as opaque objects (that is, raw or BLOB), whereas nested

tables are stored in a storage table with every element mapping to a row in the

storage table.

Given these differences, if you want efficient queryability of collections, then you

should use nested tables. On the other hand, if you constantly need to retrieve and

manipulate the entire collection as a value, such as in a 3GL application, then

varrays are a better choice. However, if the collections are very large, then you

probably do not want the entire collection to be retrieved as a value and are likely to

retrieve only subsets. In such cases, the collection should be modelled as a nested

table and retrieved as a locator. For example, a purchase order object may have a

nested table of line items, while a geometry object may contain a varray of

coordinates.

Unnesting Queries
An unnesting query on a collection allows the data to be viewed in a flat (relational)

form. You can execute unnesting queries on both nested tables and varrays. This

section contains examples of unnesting queries.

Nested tables can be unnested for queries using the TABLE syntax, as in the

following example:

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_ntab) n ;

Here, phones_ntab specifies the attributes of the phones_ntab nested table. To

ensure that the parent rows with no children rows also are retrieved, use the outer

join syntax as follows:

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_ntab) (+) n ;
Design Considerations for Oracle Objects 18-13

Collections
In the first case, if the query does not refer to any columns from the parent table

(other than the nested table column in the FROM clause), the query is optimized to

execute only against the storage table.

You can also use the TABLE syntax to query varrays. For example, suppose the

phones_ntab nested table is instead a varray named phones_var . In this case,

you still can use the TABLE syntax to query the varray, as in the following example:

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_var) n ;

The unnesting query syntax is the same for varrays and nested tables.

Using Procedures and Functions in Unnesting Queries
You can create procedures and functions that you can then execute to perform

unnesting queries. For example, you can create a function called home_phones()
that returns only the phone numbers where location is 'home'. To create the

home_phones() function, you enter code similar to the following:

CREATE OR REPLACE FUNCTION home_phones(allphones IN phone_ntabtyp)
 RETURN phone_ntabtyp IS
 homephones phone_ntabtyp := phone_ntabtyp();
 indx1 number;
 indx2 number := 0;
BEGIN
 FOR indx1 IN 1..allphones.count LOOP
 IF
 allphones(indx1).location = 'home'
 THEN
 homephones.extend; -- extend the local collection
 indx2 := indx2 + 1; -- extend the local collection
 homephones(indx2) := allphones(indx1);
 END IF;
 END LOOP;

 RETURN homephones;
END;
/

Now, to query for a list of people and their home phone numbers, enter the

following:

SELECT p.name_obj, n.num
 FROM people_reltab p, table(
 CAST(home_phones(p.phones_ntab) AS phone_ntabtyp)) n ;
18-14 Application Developer’s Guide - Fundamentals

Collections
To query for a list of people and their home phone numbers, including those people

who do not have a home phone number listed, enter the following:

SELECT p.name_obj, n.num
 FROM people_reltab p,
 TABLE(CAST(home_phones(p.phones_ntab) AS phone_ntabtyp))(+) n ;

Varrays
The following sections contain design considerations for using varrays.

Varray Storage
The size of a stored varray depends only on the current count of the number of

elements in the varray and not on the maximum number of elements that it can

hold. The storage of varrays incurs some overhead, such as null information.

Therefore, the size of the varray stored may be slightly greater than the size of the

elements multiplied by the count.

Varrays are stored in columns either as raw values or BLOBs. Oracle decides how to

store the varray when the varray is defined, based on the maximum possible size of

the varray computed using the LIMIT of the declared varray. If the size exceeds

approximately 4000 bytes, then the varray is stored in BLOBs. Otherwise, the varray

is stored in the column itself as a raw value. In addition, Oracle supports inline

LOBs; therefore, elements that fit in the first 4000 bytes of a large varray (with some

bytes reserved for the LOB locator) are stored in the column of the row itself.

Varray Access
If the entire collection is manipulated as a single unit in the application, varrays

perform much better than nested tables. The varray is stored "packed" and requires

no joins to retrieve the data, unlike nested tables.

See Also: Oracle8i SQL Reference for more information about

using the TABLE syntax.
Design Considerations for Oracle Objects 18-15

Collections
Varray Querying
The unnesting syntax can be used to access varray columns similar to the way it is

used to access nested tables.

Varray Updates
Piece-wise updates of a varray value are not supported. Thus, when a varray is

updated, the entire old collection is replaced by the new collection.

Nested Tables
The following sections contain design considerations for using nested tables.

Nested Table Storage
Oracle stores the rows of a nested table in a separate storage table. A system

generated NESTED_TABLE_ID, which is 16 bytes in length, correlates the parent

row with the rows in its corresponding storage table.

Figure 18–5 shows how the storage table works. The storage table contains each

value for each nested table in a nested table column. Each value occupies one row in

the storage table. The storage table uses the NESTED_TABLE_ID to track the nested

table for each value. So, in Figure 18–5, all of the values that belong to nested table A
are identified, all of the values that belong to nested table B are identified, etc.

See Also: "Unnesting Queries" on page 18-13 for more

information.
18-16 Application Developer’s Guide - Fundamentals

Collections
Figure 18–5 Nested Table Storage

Nested Table in an Index-Organized Table (IOT)
If a nested table has a primary key, you can organize the nested table as an

index-organized table (IOT). If the NESTED_TABLE_ID column is a prefix of the

primary key for a given parent row, Oracle physically clusters its children rows

together. So, when a parent row is accessed, all its children rows can be efficiently

retrieved. When only parent rows are accessed, efficiency is maintained because the

children rows are not inter-mixed with the parent rows.

Figure 18–6 shows how the storage table works when the nested table is in an IOT.

The storage table groups the values for each nested table within a nested table

column. In Figure 18–6, for each nested table in the NT_DATA column of the parent

table, the data is grouped in the storage table. So, all of the values in nested table A
are grouped together, all of the values in nested table B are grouped together, etc.

B21
B22
C33
A11
E51
B25
E52
A12
E54
B23
C32
A13
D41
B24
E53

B
B
C
A
E
B
E
A
E
B
C
A
D
B
E

ValuesNESTED_TABLE_ID
Storage Table

A
B
C
D
E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .
. . .
. . .
. . .
. . .

DATA3
. . .
. . .
. . .
. . .
. . .

DATA2
. . .
. . .
. . .
. . .

DATA1

. . .
Design Considerations for Oracle Objects 18-17

Collections
Figure 18–6 Nested Table in IOT Storage

In addition, the COMPRESS clause enables prefix compression on the IOT rows. It

factors out the key of the parent in every child row. That is, the parent key is not

repeated in every child row, thus providing significant storage savings.

In other words, if you specify nested table compression using the COMPRESSclause,

the amount of space required for the storage table is reduced because the NESTED_
TABLE_ID is not repeated for each value in a group. Instead, the NESTED_TABLE_
ID is stored only once per group, as illustrated in Figure 18–7.

A11
A12
A13
B21
B22
B23
B24
B25
C31
C32
D41
E51
E52
E53
E54

A
A
A
B
B
B
B
B
C
C
D
E
E
E
E

ValuesNESTED_TABLE_ID
Storage for

nested
table A

Storage for
nested
table B

Storage for
nested
table C

Storage for
nested
table E

Storage for
nested
table D

Storage Table

A
B
C
D
E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .
. . .
. . .
. . .
. . .

DATA3
. . .
. . .
. . .
. . .
. . .

DATA2
. . .
. . .
. . .
. . .

DATA1

. . .
18-18 Application Developer’s Guide - Fundamentals

Collections
Figure 18–7 Nested Table in IOT Storage with Compression

In general, Oracle Corporation recommends that nested tables be stored in an IOT

with the NESTED_TABLE_ID column as a prefix of the primary key. Further, prefix

compression should be enabled on the IOT. However, if you usually do not retrieve

the nested table as a unit and you do not want to cluster the child rows, do not store

the nested table in an IOT and do not specify compression.

Nested Table Indexes
For nested tables stored in heap tables (as opposed to IOTs), you should create an

index on the NESTED_TABLE_ID column of the storage table. The index on the

corresponding ID column of the parent table is created by Oracle automatically

when the table is created. Creating an index on the NESTED_TABLE_ID column

enables Oracle to access the child rows of the nested table more efficiently, because

Oracle must perform a join between the parent table and the nested table using the

NESTED_TABLE_ID column.

A11
A12
A13
B21
B22
B23
B24
B25
C31
C32
D41
E51
E52
E53
E54

A

B

C

D

ValuesNESTED_TABLE_ID
Storage Table

Storage for
nested
table A

Storage for
nested
table B

Storage for
nested
table C

Storage for
nested
table E

Storage for
nested
table D

A
B
C
D
E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .
. . .
. . .
. . .
. . .

DATA3
. . .
. . .
. . .
. . .
. . .

DATA2
. . .
. . .
. . .
. . .

DATA1

E

. . .
Design Considerations for Oracle Objects 18-19

Collections
Nested Table Locators
For large child-sets, the parent row and a locator to the child-set can be returned so

that the children rows can be accessed on demand; the child-sets also can be filtered.

Using nested table locators allows you to avoid unnecessary transporting of

children rows for every parent.

You can perform either one of the following actions to access the children rows

using the nested table locator:

■ Call the OCI collection functions. This action occurs implicitly when you access

the elements of the collection in the client-side code, such as OCIColl* functions.

The entire collection is retrieved implicitly on the first access.

■ Use SQL to retrieve the rows corresponding to the nested table. This action is

described in the "The Object Table PurchaseOrder_objtab" section on

page 16-29.

Optimizing Set Membership Queries
Set membership queries are useful when you want to search for a specific item in a

nested table. For example, the following query tests the membership in a child-set;

specifically, whether the location home is in the nested table phones_ntab , which

is in the parent table people_reltab :

SELECT * FROM people_reltab p
 WHERE ’home’ IN (SELECT location FROM TABLE(p.phones_ntab)) ;

Oracle can execute a query that tests the membership in a child-set more efficiently

by transforming it internally into a semi-join. However, this optimization only

happens if the ALWAYS_SEMI_JOIN initialization parameter is set. If you want to

perform semi-joins, the valid values for this parameter are MERGE and HASH; these

parameter values indicate which join method to use.

See Also: Oracle Call Interface Programmer’s Guide for more

information about OCI collection functions.

Note: In the example above, home and location are child set

elements. If the child set elements are object types, they must have

a map or order method to perform a set membership query.
18-20 Application Developer’s Guide - Fundamentals

Collections
DML Operations on Nested Tables
You can perform DML operations on nested tables. Rows can be inserted into or

deleted from a nested table, and existing rows can be updated, by using the

appropriate SQL command against the nested table. In these operations, the nested

table is identified by a TABLE subquery. The following example inserts a new

person into the people_reltab table, including phone numbers into the phones_
ntab nested table:

INSERT INTO people_reltab values (
 0001,
 name_objtyp(
 ’john’, ’william’, ’foster’),
 address_objtyp(
 ’111 Maple Road’, ’Fairfax’, ’VA’, ’22033’),
 phone_ntabtyp(
 phone_objtyp(’home’, ’650.331.1222’),
 phone_objtyp(’work’, ’650.945.4389’))) ;

The following example inserts a phone number into the nested table phones_ntab
for an existing person in the people_reltab table whose identification number is

0001 :

INSERT INTO TABLE(SELECT p.phones_ntab FROM people_reltab p WHERE p.id = ’0001’)
 VALUES (’cell’, ’650.331.9337’) ;

To drop a particular nested table, you can set the nested table column in the parent

row to NULL, as in the following example:

UPDATE people_reltab SET phones_ntab = NULL WHERE id = ’0001’ ;

Once you drop a nested table, you cannot insert values into it until you recreate it.

To recreate the nested table in the phones_ntab nested table column object for the

person whose identification number is 0001 , enter the following SQL statement:

UPDATE people_reltab SET phones_ntab = phone_ntabtyp() WHERE id = ’0001’ ;

You also can insert values into the nested table as you recreate it:

UPDATE people_reltab
 SET phones_ntab = phone_ntabtyp(phone_objtyp(’home’, ’650.331.1222’))
 WHERE id = ’0001’ ;

DML operations on a nested table lock the parent row. Therefore, only one

modification at a time can be made to the data in a particular nested table, even if

the modifications are on different rows in the nested table. However, if only part of
Design Considerations for Oracle Objects 18-21

Collections
the data in your nested table must support simultaneous modifications, while other

data in the nested table does not require this support, you should consider using

REFs to the data that requires simultaneous modifications.

For example, if you have an application that processes purchase orders, you might

include customer information and line items in the purchase orders. In this case, the

customer information does not change often and so you do not need to support

simultaneous modifications for this data. Line items, on the other hand, might

change very often. To support simultaneous updates on line items that are in the

same purchase order, you can store the line items in a separate object table and

reference them with REFs in the nested table.

Nesting Collections
An attribute of a collection cannot be a collection type (either varray or nested

table). In other words, you cannot have collections within collections. Oracle allows

only one level of direct nesting of collections. However, an attribute of a collection

can be a reference to an object that has a collection attribute. Thus, you can have

multiple levels of collections indirectly by using REFs.

For example, suppose you want to create a new object type called person_objtyp
using the object types described in "Column Object Storage" on page 18-2, which are

name_objtyp , address_objtyp , and phone_ntabtyp . Remember that the

phone_ntabtyp object type is a nested table because each person may have more

than one phone number.

To create the person_objtyp object type, issue the following SQL statement:

CREATE TYPE person_objtyp AS OBJECT (
 id NUMBER(4),
 name_obj name_objtyp,
 address_obj address_objtyp,
 phones_ntab phone_ntabtyp)
/

To create an object table called people_objtab of person_objtyp object type,

issue the following SQL statement:

CREATE TABLE people_objtab OF person_objtyp (id PRIMARY KEY)
 NESTED TABLE phones_ntab STORE AS phones_store_ntab ;

The people_objtab table has the same attributes as the people_reltab table

discussed in "Column Object Storage" on page 18-2. The difference is that the

people_objtab is an object table with row objects, while the people_reltab
table is a relational table with three column objects.
18-22 Application Developer’s Guide - Fundamentals

Collections
Figure 18–8 Object Relational Representation of the people_objtab Object Table

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Object Type
NAME_OBJTYP

ID

PK

Number
NUMBER(4)

Object Type
ADDRESS_OBJTYP

Nested Table
PHONE_NTABTYP

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

CITY STATE ZIPCODE

Text
VARCHAR(200)

STREET

Text
VARCHAR2(200)

Text
CHAR(2)

Text
VARCHAR2(20)

Nested Table PHONES_NTAB (of PHONE_NTABTYP)

NUM

Number
VARCHAR(14)

LOCATION

Text
VARCHAR(15)

Column Object NAME_OBJ (of NAME_OBJTYP)

MIDDLE LAST

Text
VARCHAR2(15)

FIRST

Text
VARCHAR2(15)

Text
VARCHAR2(15)
Design Considerations for Oracle Objects 18-23

Collections
Now you can reference the row objects in the people_objtab object table from

other tables. For example, suppose you want to create a projects_objtab table

that contains the following:

■ A project identification number for each project

■ The title of each project

■ The project lead for each project

■ A description of each project

■ Nested table collection of the team of people assigned to each project

You can use REFs to the people_objtab for the project leads, and you can use a

nested table collection of REFs for the team. To begin, create a nested table object

type called personref_ntabtyp based on the person_objtyp object type:

CREATE TYPE personref_ntabtyp AS TABLE OF REF person_objtyp
/

Now you are ready to create the object table projects_objtab . First, create the

object type projects_objtyp by issuing the following SQL statement:

CREATE TYPE projects_objtyp AS OBJECT (
 id NUMBER(4),
 title VARCHAR2(15),
 proglead_ref REF person_objtyp,
 description CLOB,
 team_ntab personref_ntabtyp)
/

Next, create the object table projects_objtab based on the projects_objtyp :

CREATE TABLE projects_objtab OF projects_objtyp (id PRIMARY KEY)
 NESTED TABLE team_ntab STORE AS team_store_ntab ;
18-24 Application Developer’s Guide - Fundamentals

Collections
Figure 18–9 Object Relational Representation of the projects_objtab Object Table

Once the people_objtab object table and the projects_objtab object table are

in place, you indirectly have a nested collection. That is, the projects_objtab
table contains a nested table collection of REFs that point to the people in the

people_objtab table, and the people in the people_objtab table have a nested

table collection of phone numbers.

You can insert values into the people_objtab table in the following way:

INSERT INTO people_objtab VALUES (
 0001,
 name_objtyp(’JOHN’, ’JACOB’, ’SCHMIDT’),
 address_objtyp(’1252 Maple Road’, ’Fairfax’, ’VA’, ’22033’),
 phone_ntabtyp(
 phone_objtyp(’home’, ’650.339.9922’),
 phone_objtyp(’work’, ’510.563.8792’))) ;

Table PROJECTS_OBJTAB (of PROJECTS_OBJTYP)

TITLE

Text
VARCHAR2(15)

PROJLEAD_REF

Reference
PERSON_OBJTYP

DESCRIPTION

Text
CLOB

TEAM_NTAB

Nested Table Reference
PERSONREF_NTABTYP

ID

PK

Number
NUMBER(4)

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

NAME_OBJ

Object Type
NAME_OBJTYP

ADDRESS_OBJ

Object Type
ADDRESS_OBJTYP

PHONES_NTAB

Nested Table
PHONE_NTABTYP

ID

PK

Number
NUMBER(4)

Refers to a
row of the
object table

Refers to multiple rows
of the object table
Design Considerations for Oracle Objects 18-25

Collections
INSERT INTO people_objtab VALUES (
 0002,
 name_objtyp(’MARY’, ’ELLEN’, ’MILLER’),
 address_objtyp(’33 Spruce Street’, ’McKees Rocks’, ’PA’, ’15136’),
 phone_ntabtyp(
 phone_objtyp(’home’, ’415.642.6722’),
 phone_objtyp(’work’, ’650.891.7766’))) ;

INSERT INTO people_objtab VALUES (
 0003,
 name_objtyp(’SARAH’, ’MARIE’, ’SINGER’),
 address_objtyp(’525 Pine Avenue’, ’San Mateo’, ’CA’, ’94403’),
 phone_ntabtyp(
 phone_objtyp(’home’, ’510.804.4378’),
 phone_objtyp(’work’, ’650.345.9232’),
 phone_objtyp(’cell’, ’650.854.9233’))) ;

Then, you can insert into the projects_objtab relational table by selecting from

the people_objtab object table using a REF operator, as in the following

examples:

INSERT INTO projects_objtab VALUES (
 1101,
 ’Demo Product’,
 (SELECT REF(p) FROM people_objtab p WHERE id = 0001),
 ’Demo the product, show all the great features.’,
 personref_ntabtyp(
 (SELECT REF(p) FROM people_objtab p WHERE id = 0001),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;

INSERT INTO projects_objtab VALUES (
 1102,
 ’Create PRODDB’,
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 ’Create a database of our products.’,
 personref_ntabtyp(
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;

Note: This example uses nested tables to store REFs, but you also

can store REFs in varrays. That is, you can have a varray of REFs.
18-26 Application Developer’s Guide - Fundamentals

Methods
Methods
Methods are functions or procedures written in PL/SQL or Java and stored in the

database, or written in a language such as C and stored externally. Methods

implement operations the application can perform on the object.

Choosing a Language
Type methods can be implemented in any of the languages supported by Oracle,

such as PL/SQL, Java, or C. Consider the following factors when you choose the

language for a particular application:

■ Ease of use

■ SQL calls

■ Speed of execution

■ Same/different address space

In general, if the application performs intense computations, C is preferable, but if

the application performs a relatively large number of database calls, PL/SQL or

Java is preferable.

A method implemented in C executes in a separate process from the server using

external routines. In contrast, a method implemented in Java or PL/SQL executes in

the same process as the server.

Method Implementation Example
The example described in this section involves an object type whose methods are

implemented in different languages. In the example, the object type ImageType
has an ID attribute, which is a NUMBER that uniquely identifies it, and an IMG
attribute, which is a BLOB that stores the raw image. The object type ImageType
has the following methods:

■ The method get_name() fetches the name of the image by looking it up in the

database. This method is implemented in PL/SQL.

■ The method rotate() rotates the image. This method is implemented in C.

■ The method clear() returns a new image of the specified color. This method

is implemented in Java.

See Also: Chapter 11, "External Routines"for information about
using external routines.
Design Considerations for Oracle Objects 18-27

Methods
For implementing a method in C, a LIBRARY object must be defined to point to the

library that contains the external C routines. For implementing a method

implemented in Java, this example assumes that the Java class with the method has

been compiled and uploaded into Oracle.

Here is the object type specification and its methods:

CREATE TYPE ImageType AS OBJECT (
 id NUMBER,
 img BLOB,
 MEMBER FUNCTION get_name() return VARCHAR2,
 MEMBER FUNCTION rotate() return BLOB,
 STATIC FUNCTION clear(color NUMBER) return BLOB
)
/

CREATE TYPE BODY ImageType AS
 MEMBER FUNCTION get_name() RETURN VARCHAR2
 AS
 imgname VARCHAR2(100);
 BEGIN
 SELECT name INTO imgname FROM imgtab WHERE imgid = id;
 RETURN imgname;
 END;

 MEMBER FUNCTION rotate() RETURN BLOB
 AS LANGUAGE C
 NAME "Crotate"
 LIBRARY myCfuncs;

 STATIC FUNCTION clear(color NUMBER) RETURN BLOB
 AS LANGUAGE JAVA
 NAME ’myJavaClass.clear(color oracle.sql.NUMBER) RETURN oracle.sql.BLOB’;

END;
/

See Also: Chapter 11, "External Routines" and Oracle8i Java Stored
Procedures Developer’s Guide for more information.
18-28 Application Developer’s Guide - Fundamentals

Methods
Static Methods
Static methods differ from member methods in that the SELF value is not passed in

as the first parameter. Methods in which the value of SELF is not relevant should be

implemented as static methods. Static methods can be used for user-defined

constructors.

The following example is a constructor-like method that constructs an instance of

the type based on the explicit input parameters and inserts the instance into the

specified table:

CREATE OR REPLACE TYPE atype AS OBJECT(a1 NUMBER,
 STATIC PROCEDURE newa (
 p1 NUMBER,
 tabname VARCHAR2,
 schname VARCHAR2))
/

CREATE OR REPLACE TYPE BODY atype AS
 STATIC PROCEDURE newa (p1 NUMBER, tabname VARCHAR2, schname VARCHAR2)
 IS
 sqlstmt VARCHAR2(100);
 BEGIN
 sqlstmt := ’INSERT INTO ’||schname||’.’||tabname|| ’ VALUES (atype(:1))’;
 EXECUTE IMMEDIATE sqlstmt USING p1;
 END;
END;
/

CREATE TABLE atab OF atype;
 BEGIN
 atype.newa(1, ’atab’, ’scott’);
 END;
/

Restriction: Type methods can be mapped only to static Java

methods.

See Also: Chapter 1, "Programmatic Environments" for more

information about choosing a language.
Design Considerations for Oracle Objects 18-29

Methods
Invoker and Definer Rights
To create generic types that can be used in any schema, you must define the type to

use invoker-rights. In general, use invoker-rights when both of the following

conditions are true:

■ There are type methods that access and manipulate data.

■ Users who did not define these type methods must use them.

For example, you can grant user SARA execute privileges on type atype created by

SCOTT in "Static Methods" on page 18-29, and then create table atab based on the

type:

GRANT EXECUTE ON atype TO SARA ;
CONNECT SARA/TPK101 ;
CREATE TABLE atab OF scott.atype ;

Now, suppose user SARA tries to use atype in the following statement:

BEGIN
 scott.atype.newa(1, ’atab’, ’SARA’); -- raises an error
END;
/

This statement raises an error because the definer of the type (SCOTT) does not have

the privileges required to perform the insert in the newa procedure. You can avoid

this error by defining atype using invoker-rights. Here, you first drop the atab
table in both schemas and recreate atype using invoker-rights by specifying the

AUTHID CURRENT_USER option:

DROP TABLE atab ;
CONNECT SCOTT/TIGER ;
DROP TABLE atab ;

CREATE OR REPLACE TYPE atype AUTHID CURRENT_USER AS OBJECT(a1 NUMBER,
 STATIC PROCEDURE newa(p1 NUMBER, tabname VARCHAR2, schname VARCHAR2))
/

18-30 Application Developer’s Guide - Fundamentals

Methods
CREATE OR REPLACE TYPE BODY atype AS
 STATIC PROCEDURE newa(p1 NUMBER, tabname VARCHAR2, schname VARCHAR2)
 IS
 sqlstmt VARCHAR2(100);
 BEGIN
 sqlstmt := ’INSERT INTO ’||schname||’.’||tabname|| ’ VALUES
 (scott.atype(:1))’;
 EXECUTE IMMEDIATE sqlstmt USING p1;
 END;
END;
/

Now, if user SARA tries to use atype again, the statement executes successfully:

GRANT EXECUTE ON atype TO SARA ;
CONNECT SARA/TPK101 ;
CREATE TABLE atab OF scott.atype;

BEGIN
 scott.atype.newa(1, ’atab’, ’SARA’); -- executes successfully
END;
/

The statement is successful this time because the procedure is executed under the

privileges of the invoker (SARA), not the definer (SCOTT).

Invoker-rights also is useful when you are writing methods that operate on REFs

and LOB locators. To access the data through the REF or the locator, you need to

check that the invoker of the method (and not the type definer) has the necessary

privileges.
Design Considerations for Oracle Objects 18-31

Methods
Function-Based Indexes on the Return Values of Type Methods
You can create function-based indexes on the return values of type methods. The

following example creates a function-based index on the method afun() of the

type atype2 :

CREATE TYPE atype2 AS OBJECT
(
 a NUMBER,
 MEMBER FUNCTION afun RETURN NUMBER DETERMINISTIC
)
/

CREATE OR REPLACE TYPE BODY atype2 IS
 MEMBER FUNCTION afun RETURN NUMBER IS
 BEGIN
 RETURN self.a * 100;
 END;
END;
/

CREATE TABLE atab2 OF atype2 ;
CREATE INDEX atab2_afun_idx ON atab2 x (x.afun()) ;

For some methods, you can use function-based indexes to improve the performance

of method invocation in SQL.

Restriction: You cannot create an index on a type method that

takes as input LOB, REF, nested table, or varray arguments, or on

any object type that contains such attributes.

See Also: Oracle8i SQL Reference for detailed information about

using function-based indexes.
18-32 Application Developer’s Guide - Fundamentals

Other Considerations
Other Considerations
The following sections describe other factors you should consider when you

implement Oracle objects.

New Object Format in Release 8.1
In release 8.1, objects are stored in a new format that uses less storage space and has

better performance characteristics than the previous format. The performance also

is improved due to a more efficient transport protocol. If the COMPATIBLE
parameter is set to 8.1.0 or higher, all the new objects you create are automatically

stored and transported in the release 8.1 format.

In order to convert the objects created in a release 8.0 database to the release 8.1

format, complete following steps:

1. Recreate the tables using a CREATE TABLE...AS SELECT... statement.

2. Export/import the data in the tables.

Replication
Replication of object columns and object tables is not yet supported. If replication is

a requirement, then you can use object views and store the application objects in

relational tables, which can be replicated. Using object views, both the object model

and the data to be replicated can be preserved in the database.

Inheritance
Inheritance is a technique used in object-oriented development to create objects that

contain generalized attributes and behavior for groups of related objects. The more

general objects created using inheritance are referred to as a super-types. The

objects that "inherit" from the super-types (that is, are more specific cases of the

super-type) are called subtypes.

A common case of inheritance is that of Person and Employee . Some instances of

person are employees. The more general case, Person , is the super-type and the

special case, Employee , the sub-type. Another example could involve a Vehicle
as super-type and Car and Truck as its subtypes.

See Also: Oracle8i Migration for more information about

compatibility and the COMPATIBLE initialization parameter.
Design Considerations for Oracle Objects 18-33

Other Considerations
Figure 18–10 Class Diagram: Vehicle as Super-type, Car and Truck as Subtypes

Inheritance Implementation Consequences
Inheritance can imply various levels of encapsulation for super-types. In cases

where the super-type should not be exposed to other objects, a subtype should

contain the methods and attributes necessary to make the super-type invisible. To

understand the implementation consequences of the inheritance, it is also important

to remember that Oracle8i is a strongly-typed system. A strongly-typed system

requires that the type of an attribute is declared when the attribute is declared. Only

values of the declared type may be stored in the attribute. For example, the Oracle8i
collections are strongly-typed. Oracle8i does not allow the implementation of

heterogeneous collections (collections of multiple types).

Simulating Inheritance
The Oracle type model does not support inheritance directly. However, you can

map your current Oracle object types to Java classes and then leverage the

inheritance features native to Java.

In addition, inheritance can be simulated in Oracle. For example, you can use one of

the following techniques to simulate inheritance:

■ Subtype Contains Super-type

■ Super-type Contains or References All Subtypes

■ Dual Subtype / Super-type Reference

See Also: Oracle8i JDBC Developer’s Guide and Reference and

Oracle8i SQLJ Developer’s Guide and Reference for more information

about mapping Oracle objects to Java classes.

Vehicle

Car Truck
18-34 Application Developer’s Guide - Fundamentals

Other Considerations
Subtype Contains Super-type

Figure 18–11 Object-Relational Schema — Subtype Contains Super-type

Table SUBSCONTAINSUPER_TAB

CAR_OBJ TRUCK_OBJ . . .

Object Type
CAR_OBJTYP

. . .

Object Type
TRUCK_OBJ

VEHICLE_OBJ (of VEHICLE_OBJTYP)

MODE OF TRAVEL WHEELS . . .

Text
VARCHAR2(20)

. . .

Boolean
BOOLEAN

Column Object CAR_OBJ (of CAR_OBJTYP)

VEHICLE_OBJ . . .

Object Type
VEHICLE_OBJTYP

. . .

Column Object TRUCK_OBJ (of TRUCK_OBJTYP)

VEHICLE_OBJ . . .

Object Type
VEHICLE_OBJTYP

. . .

Column
object of the
defined type

Column
object of the
defined type

Column
object of the
defined type

Column
object of the
defined type

MEMBER FUNCTION get Mode Of Travel
RETURN VARCHAR2(20)

MEMBER FUNCTION get Mode Of Travel
RETURN VARCHAR2(20)
Design Considerations for Oracle Objects 18-35

Other Considerations
The Subtype Contains Super-type technique hides the implementation of the

abstractions/generalizations for a subtype. Each of the subtypes are exposed to

other types in the object model. The super-types are not exposed to other types. To

simulate inheritance, the super-type in the design object model is created as an

object type. The subtype is also created as an object type. The super-type is defined

as an embedded attribute in the subtype. All of the methods that can be executed

for the subtype and it's super-type must be defined in the subtype.

The Subtype Contains Super-type technique is used when each subtype has specific

relationships to other objects in the object model. For example, a super-type of

Customer may have subtypes of Private Customer and Corporate Customer .

Private Customers have relationships with the Personal Banking objects,

while Corporate Customers have relationships with the Commercial Banking
objects. In this environment, the Customer super-type is not visible to the rest of

the object model.

In the Vehicle -Car /Truck example, the Vehicle (super-type) is embedded in

the sub-types Car and Truck .
18-36 Application Developer’s Guide - Fundamentals

Other Considerations
Super-type Contains All Subtypes

Figure 18–12 Object-Relational Schema — Super-type Contains All Subtypes

The Super-type Contains All Subtypes technique hides the implementation of the

subtypes and only exposes the super-type. To simulate inheritance, all of the

subtypes for a given super-type in the design object model are created as object

types. The super-type is created as an object type as well. The super-type declares

an attribute for each subtype. The super-type also declares the constraints to enforce

the one-and-only-one rules for the subtype attributes. All of the methods that can be

executed for the subtype must defined in the super-type.

The Super-type Contains All Subtypes technique is used when objects have

relationships with other objects that are predominately one-to-many in multiplicity.

For example, a Customer can have many Accounts and a Bank can have many

Accounts . The many relationships require a collection for each subtype if the

Subtype Contains Super-type technique is used. If the Account is a super-type and

Checking and Savings are subtypes, both Bank and Customer must implement

a collection of Checking and Savings (4 collections). Adding a new account

Table SUPERCONTAINSUBS_TAB (of VEHICLE_OBJTYP)

CAR_OBJ TRUCK_OBJ . . .

Column Object
CAR_OBJTYP

. . .

Column Object
TRUCK_OBJTYP

Column Object CAR_OBJ (of CAR_OBJTYP)

WHEELS . . .

Number
NUMBER

ARMOR PLATED

Boolean
BOOLEAN

. . .

Column Object TRUCK_OBJ (of TRUCK_OBJTYP)

WHEELS . . .

Number
NUMBER

ARMOR PLATED

Boolean
BOOLEAN

. . .

Column
object of the
defined type

Column
object of the
defined type

MEMBER FUNCTION is Stick Shift
RETURN BOOLEAN
Design Considerations for Oracle Objects 18-37

Other Considerations
subtype requires that both Customer and Bank add the collection to support the

new account subtype (2 collections per addition). Using the Super-type Contains All
Subtypes technique means that Customer and Bank have a collection of Account .

Adding a subtype to Accounts means that only account changes.

In the case of the Vehicle -Car /Truck , the Vehicle is created with Car and

Truck as embedded attributes of Vehicle .

Dual Subtype / Super-type Reference

Figure 18–13 Object-Relational Schema — Dual Subtype / Super-type Reference

In cases where the super-type is involved in multiple object-relationships with

many for a multiplicity and the subtypes have specific relationships in the object

model, the implementation of inheritance is a combination of the two inheritance

techniques. The super-type is implemented as an object type. Each subtype is

implemented as an object type. The super-type implements a referenced attribute

for each subtype (zero referenced relationship). The super-type also implements an

Table DUALSUBSREFSUPER_TAB (of VEHICLE_OBJTYP)

CAR_REF TRUCK_REF . . .

Reference
CAR_OBJTYP

VIN

PK

Number
NUMBER

Reference
TRUCK_OBJTYP

Table CAR_TAB (of CAR_OBJTYP)

WHEELS . . .

Number
NUMBER

SEATS

Number
NUMBER

VIN

PK

Number
NUMBER

Table TRUCK_TAB (of TRUCK_OBJTYP)

WHEELS . . .

Number
NUMBER

HAULS

Weight
NUMBER

VIN

Number
NUMBER

References a row
in the table of the
defined type

References a row
in the table of the
defined type

References
18-38 Application Developer’s Guide - Fundamentals

Other Considerations
or-association for the group of subtype attributes. Each subtype implements a

referenced attribute for the super-type (one referenced relationship). In this way,

both the super-type and sub-type are visible to the rest of the object model.

In the case of the Vehicle -Car /Truck , the Vehicle is created as a type. The Car
and Truck are created as types. The Vehicle type implements a reference to both

Car and Truck , with the or-constraint on the Car and Truck attributes. The Car
implements an attribute that references Vehicle . The Truck implements an

attribute that references Vehicle .

Constraints on Objects
Oracle does not support constraints and defaults in type specifications. However,

you can specify the constraints and defaults when creating the tables:

CREATE OR REPLACE TYPE customer_type AS OBJECT(
 cust_id INTEGER)
/

CREATE OR REPLACE TYPE department_type AS OBJECT(
 deptno INTEGER)
/

CREATE TABLE customer_tab OF customer_type (
 cust_id default 1 NOT NULL) ;

CREATE TABLE department_tab OF department_type (
 deptno PRIMARY KEY) ;

CREATE TABLE customer_tab1 (
 cust customer_type DEFAULT customer_type(1)
 CHECK (cust.cust_id IS NOT NULL),
 some_other_column VARCHAR2(32)) ;
Design Considerations for Oracle Objects 18-39

Other Considerations
Type Evolution
You cannot change the definitions of types that have dependent data (in the form of

column and/or row objects). However, you can modify tables with column objects

by dropping and adding columns in a way similar to regular relational tables.

You cannot change tables containing row objects by dropping, adding, or modifying

columns. If you need to modify tables containing row objects, a workaround is to

perform the following steps:

1. Copy the table data into a temporary table, or export the table data.

2. Drop the table.

3. Recreate the type with the new definition.

4. Recreate the table.

5. Copy in the relevant data from temporary table, or import the data.

If type evolution is a requirement and this workaround is not acceptable, you

should use object views defined over relational tables, instead of column objects or

row objects. You can then change the definitions of object types and views.

Performance Tuning
See Oracle8i Tuning for details on measuring and tuning the performance of your

application. In particular, some of the key performance factors are the following:

■ ANALYZE command to collect statistics.

■ tkprof to profile execution of SQL commands.

■ EXPLAIN PLAN to generate the query plans.

See Also: Oracle8i Tuning describes these factors in detail.
18-40 Application Developer’s Guide - Fundamentals

Other Considerations
Parallel Query with Oracle Objects
Oracle8i supports parallel query with objects. However, there are the following

restrictions:

■ To make queries involving joins and sorts parallel (using the ORDER BY, GROUP
BY, and SET operations), a MAP function is required. In the absence of a MAP
function, the query automatically becomes serial.

■ Parallel queries on nested tables are not supported. Even if there are parallel

hints or parallel attributes for the table, the query is serial.

■ Parallel DML and parallel DDL are not supported with objects. DML and DDL

are always performed in serial.

Support for Exporting, Importing, and Loading Oracle Objects
Oracle8i supports exporting Oracle objects using the Export utility, importing

Oracle objects using the Import utility, and loading Oracle objects using

SQL*Loader.

Objects that can be loaded with SQL*Loader include row objects, column objects,

and objects with collections and references. However, SQL*Loader cannot perform

direct path loading of objects. Therefore, use conventional path loading to load

objects.

An alternative to conventional path loading is to first load the data into relational

tables using direct path loading, and then create the object tables and tables with

column objects using CREATE TABLE...AS SELECT commands. However, with this

approach you need enough space to hold as much as twice the actual data.

See Also: Oracle8i Utilities for information about exporting,

importing, and loading Oracle objects.
Design Considerations for Oracle Objects 18-41

Other Considerations
18-42 Application Developer’s Guide - Fundamentals

Programmatic Environments for Oracle O
19

Programmatic Environments for

Oracle Objects

In Oracle8i, the SQL data definition language (DDL) commands have been

enhanced to support creation of object types and the SQL data manipulation

language (DML) commands have been enhanced to manipulate objects. Also,

Oracle's application programming environments have been enhanced to support

objects. These environments include the Oracle Call Interface (OCI), Pro*C/C++,

Oracle Objects for OLE, and Java. For each of these environments, an overview of

object enhancements is provided.

This chapter covers the following topics:

■ Oracle Call Interface (OCI)

■ Pro*C/C++

■ Oracle Objects For OLE

■ Java: JDBC and Oracle SQLJ
bjects 19-1

Oracle Call Interface (OCI)
Oracle Call Interface (OCI)
OCI is a set of C library functions that applications can use to manipulate data and

schemas in an Oracle database. OCI supports both the associative style and the

navigational style of data access.

Associative Access
Traditionally, 3GL programs have manipulated data stored in a relational database

using the associative style of access. In associative access, data is manipulated by

executing SQL statements and PL/SQL procedures, which allows applications to

utilize the benefits of the SQL and PL/SQL languages. Also, in associative access,

data may be manipulated on the server without incurring the cost of transporting

the data to the client(s). OCI supports associative access to objects by providing an

API for executing SQL statements that manipulate object data. Specifically, OCI

supports the following object capabilities for associative access:

■ Support for execution of SQL statements that manipulate object data and object

type schema information

■ Support for passing object instances, object references (REFs), and collections as

input variables in SQL statements

■ Support for receiving object instances, REFs, and collections as output of SQL

statement fetches

■ Support for describing the properties of SQL statements that return object

instances, REFs, and collections

■ Support for describing and executing PL/SQL procedures or functions with

object parameters or results

■ Enhancement of commit and rollback functions to synchronize object and

relational functionality

See Also: Oracle Call Interface Programmer’s Guide for more

information about using objects with OCI.
19-2 Application Developer’s Guide - Fundamentals

Oracle Call Interface (OCI)
Navigational Access
OCI also supports navigational access by object-oriented programs. In the

object-oriented programming paradigm, applications model their real-world

entities as a set of inter-related objects that form graphs of objects. The relationships

between objects are implemented as references. An application processes objects by

starting at some initial set of objects, using the references in these initial objects to

traverse the remaining objects, and performing computations on each object. This

style of access to objects is known as navigational access to objects. OCI provides an

API for navigational access to objects. Specifically, OCI supports the following

object capabilities for navigational access:

■ A client side object cache for caching objects in memory

■ Support for de-referencing an object reference and pinning the corresponding

object in the object cache. The pinned object is transparently mapped in the host

language representation.

■ Support for notifying the cache when the pinned object is no longer needed

■ Support for fetching a graph of related objects from the database into the client

cache in one call

■ Support for locking objects

■ Support for creating, updating, and deleting objects in the cache

■ Support for flushing changes made to objects in the client cache to the database

Object Cache
To support high-performance navigational access of objects, OCI runtime provides

an object cache for caching objects in memory. The object cache supports references

(REFs) to database objects in the object cache, the database objects can be identified

(that is, pinned) through their references. Applications do not need to provide for

allocation or freeing of memory when database objects are loaded into the cache,

because the object cache provides transparent and efficient memory management

for database objects.

Also, when database objects are loaded into the cache, they are transparently

mapped into the host language representation. For example, in the C programming

language, the database object is mapped to its corresponding C structure. The object

cache maintains the association between the object copy in the cache and the

corresponding database object. Upon transaction commit, changes made to the

object copy in the cache are propagated automatically to the database.
Programmatic Environments for Oracle Objects 19-3

Oracle Call Interface (OCI)
The object cache maintains a fast look-up table for mapping REFs to objects. When

an application de-references a REFand the corresponding object is not yet cached in

the object cache, the object cache automatically sends a request to the server to fetch

the object from the database and load it into the object cache. Subsequent

de-references of the same REFare faster because they become local cache access and

do not incur network round-trips. To notify the object cache that an application is

accessing an object in the cache, the application pins the object; when it is finished

with the object, it unpins it. The object cache maintains a pin count for each object in

the cache. The count is incremented upon a pin call and decremented upon an

unpin call. When the pin count goes to zero, it means the object is no longer needed

by the application. The object cache uses a least-recently used (LRU) algorithm to

manage the size of the cache. When the cache reaches the maximum size, the LRU

algorithm frees candidate objects with a pin count of zero.

Building an OCI Program that Manipulates Objects
When you build an OCI program that manipulates objects, you must complete the

following general steps:

1. Define the object types that correspond to the application objects.

2. Execute the SQL DDL statements to populate the database with the necessary

object types.

3. Represent the object types in the host language format.

For example, to manipulate instances of the object types in a C program, you

must represent these types in the C host language format. You can do this by

representing the object types as C structs. You can use a tool provided by Oracle

called the Object Type Translator (OTT) to generate the C mapping of the object

types. The OTT puts the equivalent C structs in header (*.h) files. You include

these *.h files in the *.c files containing the C functions that implement the

application.

4. Construct the application executable by compiling and linking the application's

*.c files with the OCI library.
19-4 Application Developer’s Guide - Fundamentals

Oracle Call Interface (OCI)
OCI Tips and Techniques
The following sections introduce tips and techniques for using OCI effectively by

walking through common operations performed by an OCI program that uses

objects.

Initializing Object Manipulation
To enable object manipulation, the OCI program must be initialized in object mode.

The following OCI code initializes a program in object mode:

err = OCIInitialize(OCI_OBJECT, 0, 0, 0, 0);

When the program is initialized in object mode, the object cache is initialized.

Memory for the cache is not allocated at this time; instead, it is allocated only on

demand.

Controlling Object Cache Size
You can control the size of the object cache by using the following two OCI

environment handle attributes:

■ OCI_ATTR_CACHE_MAX_SIZE controls the maximum cache size

■ OCI_ATTR_CACHE_OPT_SIZE controls the optimal cache size

You can get or set these OCI attributes using the OCIAttrGet() or OCIAttrSet()
functions. Whenever memory is allocated in the cache, a check is made to determine

whether the maximum cache size has been reached. If the maximum cache size has

been reached, the cache automatically frees (ages out) the least-recently used objects

with a pin count of zero. The cache continues freeing such objects until memory

usage in the cache reaches the optimal size, or until it runs out of objects eligible for

freeing. The object cache does not limit cache growth to the maximum cache size.

The servicing of the memory allocation request could cause the cache to grow

beyond the specified maximum cache size. The above two parameters allow the

application to control the frequency of object aging from the cache.

Pinning and Unpinning Objects
Pinning is the process of retrieving an object from the server to the client cache,

laying it in memory, providing a pointer to it for an application to manipulate, and

marking the object as being in use. The OCIObjectPin() function de-references the

given REF and pins the corresponding object in the cache. A pointer to the pinned

object is returned to the caller and this pointer is valid as long as the object is

pinned in the cache. This pointer should not be used after the object is unpinned
Programmatic Environments for Oracle Objects 19-5

Oracle Call Interface (OCI)
because the object may have aged out and therefore may no longer be in the object

cache.

The following are examples of OCIObjectPin() and OCIObjectUnpin() calls:

status = OCIObjectPin(envh, errh, empRef,(OCIComplexObject*)0,
 OCI_PIN_RECENT, OCI_DURATION_TRANSACTION,
 OCI_LOCK_NONE, (dvoid**)&emp);
/* manipulate emp object */
status = OCIObjectUnpin(envh, errh, emp);

The empRef parameter passed in the pin call specifies the REF to the desired

employee object. A pointer to the employee object in the cache is returned via the

emp parameter.

You can use the OCIObjectPinArray() function to pin an array of objects in one call.

This function de-references an array of REFs and pins the corresponding objects in

the cache. Objects that are not already cached in the cache are retrieved from the

server in one network round-trip. Therefore, calling OCIObjectPinArray() to pin an

array of objects improves application performance. Also, the array of objects you

are pinning can be of different types.

Pin Options When pinning an object, you can use the pin option argument to specify

whether the recent version, latest version, or any version of the object is desired.

The valid options are explained in more detail in the following list:

■ The OCI_PIN_RECENT pin option instructs the object cache to return the object

that is loaded into the cache in the current transaction; in other words, if the

object was loaded prior to the current transaction, the object cache needs to

refresh it with the latest version from the database. Succeeding pins of the object

within the same transaction would return the cached copy and would not result

in database access. In most cases, you should use this pin option.

■ The OCI_PIN_LATEST pin option instructs the object cache to always get the

latest copy of the object. If the object is already in the cache and not-locked, the

object copy is refreshed with the latest copy from the database. On the other

hand, if the object in the cache is locked, Oracle assumes that it is the latest

copy, and the cached copy is returned. You should use this option for

applications that must display the most recent copy of the object, such as

applications that display stock quotes, current account balance, etc.
19-6 Application Developer’s Guide - Fundamentals

Oracle Call Interface (OCI)
■ The OCI_PIN_ANY pin option instructs the object cache to fetch the object in the

most efficient manner; the version of the returned object does not matter. The

pin any option is appropriate for objects which do not change often, such as

product information, parts information, etc. The pin any option also is

appropriate for read-only objects.

Pin Duration When pinning an object, you can specify the duration for which the

object is pinned in the cache. When the duration expires, the object is unpinned

automatically from the cache. The application should not use the object pointer after

the object’s pin duration has ended. An object can be unpinned prior to the

expiration of its duration by explicitly calling the OCIObjectUnpin() function. Oracle

supports two pre-defined pin durations:

■ The session pin duration (OCI_DURATION_SESSION) lifetime is the duration of

the database connection. Objects that are required in the cache at all times

across transactions should be pinned with session duration.

■ The transaction pin duration (OCI_DURATION_TRANS) lifetime is the duration

of the database transaction. That is, the duration ends when the transaction is

rolled back or committed.

Lock Options When pinning an object, the caller can specify whether the object

should be locked via lock options. When an object is locked, a server-side lock is

acquired, which prevents any other user from modifying the object. The lock is

released when the transaction commits or rolls back. The following list describes the

available lock options:

■ The OCI_LOCK_NONE lock option instructs the cache to pin the object without

locking.

■ The OCI_LOCK_X lock option instructs the cache to pin the object only after

acquiring a lock. If the object is currently locked by another user, the pin call

with this option waits until it can acquire the lock before returning to the caller.

Using the OCI_LOCK_X lock option is equivalent to executing a SELECT FOR
UPDATE statement.

■ The OCI_LOCK_X_NOWAITlock option instructs the cache to pin the object only

after acquiring a lock. Unlike the OCI_LOCK_X option, the pin call with OCI_
LOCK_X_NOWAIT option will not wait if the object is currently locked by

another user. Using the OCI_LOCK_X_NOWAIT lock option is equivalent to

executing a SELECT FOR UPDATE WITH NOWAIT statement.
Programmatic Environments for Oracle Objects 19-7

Oracle Call Interface (OCI)
Using Complex Object Retrieval (COR)
Complex Object Retrieval (COR) can significantly improve the performance of

applications that manipulate graphs of objects. COR allows applications to pre-fetch

a set of related objects in one network round-trip, thereby improving performance.

When pinning the root object(s) using OCIObjectPin() or OCIObjectPinArray(), you

can specify the related objects to be pre-fetched along with the root. The pre-fetched

objects are not pinned in the cache; instead, they are put in the LRU list. Subsequent

pin calls on these objects result in a cache hit, thereby avoiding a round-trip to the

server.

The application specifies the set of related objects to be pre-fetched by providing the

following information:

■ A REF to the root object

■ One or more pairs of object type and depth information to specify the content

and boundary of objects to be pre-fetched. The type information indicates

which REF attributes should be de-referenced and which resulting object

should be pre-fetched. The depth defines the boundary of objects pre-fetched.

The depth level is the shortest number of references that need to be traversed

from the root object to a related object.

For example, consider a purchase order system with the following properties:

■ Each purchase order object includes a purchase order number, a REF to a

customer object, and a collection of REFs that point to line item objects.

■ Each customer object includes information about the customer, such as the

customer’s name and address.

■ Each line item object includes a reference to a stock item and the quantity of the

order.

■ Each stock item object includes the name of the item, its price, and other

information about the item.

Suppose you want to calculate the total cost of a particular purchase order. To

maximize efficiency, you want to fetch only the objects necessary for the calculation

from the server to the client cache, and you want to fetch these objects with the least

number of calls to the server possible.

If you do not use COR, your application must make several server calls to retrieve

all of the necessary objects. However, if you use COR, you can specify the objects

that you want to retrieve and exclude other objects that are not required. To

calculate the total cost of a purchase order, you need the purchase order object, the
19-8 Application Developer’s Guide - Fundamentals

Oracle Call Interface (OCI)
related line item objects, and the related stock item objects, but you do not need the

customer objects.

Therefore, as shown in Figure 19–1, COR enables you to retrieve the required

information for the calculation in the most efficient way possible. When pinning the

purchase order object without COR, only that object is retrieved. When pinning it

with COR, the purchase order and the related line item objects and stock item

objects are retrieved. However, the related customer object is not retrieved because

it is not required for the calculation.
Programmatic Environments for Oracle Objects 19-9

Oracle Call Interface (OCI)
Figure 19–1 Difference Between Retrieving an Object Without COR and With COR

Creating a New Object
The OCIObjectNew() function creates transient or persistent objects. A transient

object’s lifetime is the duration of the session in which it was created. A persistent

object is an object that is stored in an object table in the database. The

OCIObjectNew() function returns a pointer to the object created in the cache, and the

application should initialize the new object by setting the attribute values directly.

The object is not created in the database yet; it will be created and stored in the

database when it is flushed from the cache.

When OCIObjectNew() creates an object in the cache, it sets all the attributes to

NULL. The attribute null indicator information is recorded in the parallel null

. . .

. . .

. . .

. . .

REF

PONO

Cust_Ref

Nested Table
of Line Items

Pinning of Purchase Order Object without COR

. . .

. . .

. . .

. . .

Ref

PONO

Cust_Ref

Nested Table
of Line Items

Pinning of Purchase Order Object with COR

Quantity

Line Item Object

Ref

Quantity

Line Item Object

Ref

Quantity

Line Item Object

Ref

Quantity

Line Item Object

Ref

Name

Stock Item Object

Price

Name

Line Item Object

Price

Name

Line Item Object

Price

Name

Line Item Object

Price
19-10 Application Developer’s Guide - Fundamentals

Oracle Call Interface (OCI)
indicator structure. If the application sets the attribute values, but fails to set the

null indicator information in the parallel null structure, then upon object flush the

object attributes will be set to NULL in the database.

In Oracle8i, if you want to set all of the attributes to NOT NULL during object

creation instead, you can use the OCI_OBJECT_NEW_NOTNULL attribute of the

environment handle using the OCIAttrSet() function. When set, this attribute creates

a non-null object. That is, all the attributes are set to default values provided by

Oracle and their null status information in the parallel null indicator structure is set

to NOT NULL. Using this attribute eliminates the additional step of changing the

indicator structure. You cannot change the default values provided by Oracle.

Instead, you can populate the object with your own default values immediately

after object creation.

When OCIObjectNew() is used to create a persistent object, the caller must identify

the database table into which the newly created object is to be inserted. The caller

identifies the table using a table object. Given the schema name and table name, the

OCIObjectPinTable() function returns a pointer to the table object. Each call to

OCIObjectPinTable() results in a call to the server to fetch the table object

information. The call to the server happens even if the required table object has

been previously pinned in the cache. When the application is creating multiple

objects to be inserted into the same database table, Oracle Corporation recommends

that the table object be pinned once and the pointer to the table object be saved for

future use. Doing so improves performance of the application.
Programmatic Environments for Oracle Objects 19-11

Oracle Call Interface (OCI)
Updating an Object
Before you can update an object, the object must be pinned in the cache. After

pinning the object, the application can update the desired attributes directly. You

must make a call to the OCIObjectMarkUpdate() function to indicate that the object

has been updated. Objects which have been marked as updated are placed in a dirty

list and are flushed to the server upon cache flush or when the transaction is

committed.

Deleting an Object
You can delete an object by calling the OCIObjectMarkDelete() function or the

OCIObjectMarkDeleteByRef() function.

Locking an Object
The object cache supports both a pessimistic locking scheme and an optimistic

locking scheme.

In the pessimistic locking scheme, objects are locked up-front prior to modifying the

object in the cache, ensuring that no other user can modify the object till the

transaction owning the lock performs a commit or rollback. The object can be locked

at the time of pin by choosing the appropriate locking options. An object which was

not locked at the time of pin also can be locked by calling explicit lock function

OCIObjectLock(). A new locking function, OCIObjectLockNoWait(), has been added in

Oracle8i. As the name indicates, this function does not wait to acquire the lock if

another user holds a lock on the object.

In the optimistic locking scheme, objects are fetched and modified in the cache

without acquiring a lock. A lock is acquired only when the object is flushed to the

server. Optimistic locking allows for a higher degree of concurrent access than

pessimistic locking. To use optimistic locking effectively, the Oracle8i object cache

has been enhanced to detect if an object is changed by any other user since it was

fetched into the cache. By turning on the object change detection mode, object

modifications are made persistent only if the object has not been changed by any

other user since it was fetched into the cache. This mode is activated by setting

OCI_OBJECT_DETECTCHANGE attribute of the environment handle using the

OCIAttrSet() function.
19-12 Application Developer’s Guide - Fundamentals

Oracle Call Interface (OCI)
Flushing an Object from the Object Cache
Changes made to the objects in the object cache are not sent to the database until the

object cache is flushed. The OCICacheFlush() function flushes all changes in a single

network round-trip between the client and the server. The changes may involve

insertion of new objects into the appropriate object tables, updating objects in object

tables, and deletion of objects from object tables. If the application commits a

transaction by calling the OCITransCommit() function, the object cache automatically

performs a cache flush prior to committing the transaction.

Demonstration of OCI and Oracle Objects
For a demonstration of how to use OCI with Oracle objects, see the cdemocor1 .c
file in $ORACLE_HOME/rdbms/demo.
Programmatic Environments for Oracle Objects 19-13

Pro*C/C++
Pro*C/C++
Pro*C/C++ support for objects mirrors the support provided by OCI. Extensions to

the embedded SQL syntax provide both associative and navigational access to

objects. The Object Type Translator is used to generate C language representations

(structs) for database object types that are used as host variables in the embedded

SQL statements. By extending the embedded SQL syntax, Pro*C/C++ users retain

the benefits of precompile-time syntactic and semantic checking for their

object-relational applications.

Associative Access in Pro*C/C++
Pro*C/C++ offers the following capabilities for associative access to objects:

■ Support for transient copies of objects allocated in the object cache

■ Support for transient copies of objects referenced as input host variables in

embedded SQL INSERT, UPDATE, and DELETE statements, or in the WHERE
clause of a SELECT statement

■ Support for transient copies of objects referenced as output host variables in

embedded SQL SELECT and FETCH statements

■ Support for ANSI dynamic SQL statements that reference object types through

the DESCRIBE statement, to get the object’s type and schema information

Navigational Access in Pro*C/C++
Object navigation is a new programming paradigm introduced in release 8.0 of

Oracle. Pro*C/C++ offers the following capabilities to support a more

object-oriented interface to objects:

■ Support for de-referencing, pinning, and optionally locking an object in the

object cache using an embedded SQL OBJECT DEREF statement

■ Allowing a Pro*C/C++ user to inform the object cache when an object has been

updated or deleted, or when it is no longer needed, using embedded SQL

OBJECT UPDATE, OBJECT DELETE, and OBJECT RELEASE statements

■ Support for creating new referenceable objects in the object cache using an

embedded SQL OBJECT CREATE statement

■ Support for flushing changes made in the object cache to the server with an

embedded SQL OBJECT FLUSH statement
19-14 Application Developer’s Guide - Fundamentals

Pro*C/C++
Converting Between Oracle Types and C Types
The C representation for objects that is generated by the Oracle Type Translator

(OTT) uses opaque OCI types such as OCIString and OCINumber for scalar

attributes. Collection types and object references are similarly represented using

OCITable , OCIArray , and OCIRef types. While using opaque types insulates the

application developer from changes to the internal format of these types, using such

types in a C or C++ application is cumbersome. Pro*C/C++ provides the following

ease-of-use enhancements to simplify use of OCI types in C and C++ applications:

■ Object attributes can be retrieved and implicitly converted to C types with the

embedded SQL OBJECT GET statement.

■ Object attributes can be set and converted from C types with the embedded

SQL OBJECT SET statement.

■ Collections can be mapped to a host array with the embedded SQL

COLLECTION GET statement. Furthermore, if the collection is comprised of

scalar types, then the OCI types can be implicitly converted to a compatible C

type.

■ Host arrays can be used to update the elements of a collection with the

embedded SQL COLLECTION SET statement. As with the COLLECTION GET
statement, if the collection is comprised of scalar types, C types are implicitly

converted to OCI types.
Programmatic Environments for Oracle Objects 19-15

Oracle Objects For OLE
Oracle Objects For OLE
Oracle Objects for OLE (OO4O) provides full support for accessing and

manipulating instances of REFs, value instances, variable-length arrays (VARRAYs),

and nested tables in an Oracle database server.

Figure 19–2 illustrates the containment hierarchy for value instances of all types in

OO4O.

Figure 19–2 Supported Oracle Datatypes

Instances of these types can be fetched from the database or passed as input or

output variables to SQL statements and PL/SQL blocks, including stored

procedures and functions. All instances are mapped to COM Automation Interfaces

that provide methods for dynamic attribute access and manipulation. These

interfaces may be obtained from:

■ The value property of an OraField object in a Dynaset

■ The value property of an OraParameter object used as an input or an output

parameter in SQL Statements or PL/SQL blocks

■ An attribute of an object (REF)

■ An element in a collection (varray or a nested table)

OraAttribute

OraAttribute

Element Values

OraObject

OraRef

OraCollection

OraField

OraParameter

OraBLOB

OraCLOB

OraBFILE

Value of all other scalar types
19-16 Application Developer’s Guide - Fundamentals

Oracle Objects For OLE
OraObject
The OraObject interface is a representation of an Oracle embedded object or a value

instance. It contains a collection interface (OraAttributes) for accessing and

manipulating (updating and inserting) individual attributes of a value instance.

Individual attributes of an OraAttributes collection interface can be accessed by

using a subscript or the name of the attribute.

The following Visual Basic example illustrates how to access attributes of the

Address object in the person_tab table:

Set Person = OraDatabase.CreateDynaset("select * from person_tab", 0&)
set Address = Person.Fields("Addr").Value
msgbox Address.Zip
msgbox.Address.City

OraRef
The OraRef interface represents an Oracle object reference (REF) as well as

referenceable objects in client applications. The object attributes are accessed in the

same manner as attributes of an object represented by the OraObject interface.

OraRef is derived from an OraObject interface via the containment mechanism in

COM. REF objects are updated and deleted independent of the context they

originated from, such as Dynasets. The OraRef interface also encapsulates the

functionality for navigating through graphs of objects utilizing the Complex Object

Retrieval Capability (COR) in OCI, described in "Using Complex Object Retrieval

(COR)" on page 19-8.
Programmatic Environments for Oracle Objects 19-17

Oracle Objects For OLE
OraCollection
The OraCollection interface provides methods for accessing and manipulating

Oracle collection types, namely variable-length arrays (VARRAYs) and nested tables

in OO4O. Elements contained in a collection are accessed by subscripts.

The following Visual Basic example illustrates how to access attributes of the

EnameList object from the department table:

Set Person = OraDatabase.CreateDynaset("select * from department", 0&)
set EnameList = Department.Fields("Enames").Value
’access all elements of the EnameList VArray
for I=1 to I=EnameList.Size
 msgbox EnameList(I)
Next I

See Also: OO4O online help for detailed information about using

OO4O with Oracle objects.
19-18 Application Developer’s Guide - Fundamentals

Java: JDBC and Oracle SQLJ
Java: JDBC and Oracle SQLJ
Java has emerged as a powerful, modern object-oriented language that provides

developers with a simple, efficient, portable, and safe application development

platform. Oracle provides two ways to integrate Oracle object features with Java:

JDBC and Oracle SQLJ. The following sections provide more information about

JDBC and Oracle SQLJ.

JDBC Access to Oracle Object Data
Oracle provides tight integration between its Oracle object features and its JDBC

functionality. You can map SQL types to Java classes, and Oracle offers considerable

flexibility in how this mapping is done.

Version 2.0 of the JDBC specification contains support for Object-Relational

constructs, such as user-defined (Object) types. JDBC materializes Oracle objects as

instances of particular Java classes. There are two main issues in using JDBC to

access Oracle objects: creating the Java classes for the Oracle objects and populating

these classes. You have the following options:

■ Let JDBC materialize the object as a STRUCT. In this case, JDBC will create the

classes for the attributes and populate them for you.

■ Personally specify the mappings between Oracle objects and Java classes; that

is, customize your Java classes for object data. The driver then needs to be able

to populate the customized Java classes that you specify, which imposes a set of

constraints on the Java classes. To satisfy these constraints, you can chose to

define your classes according to either the SQLData interface or the

CustomDatum interface.

Support for Objects in Oracle SQLJ
Oracle also provides Oracle SQLJ, a standard way to embed SQL statements in Java

programs. Source files are then processed by Oracle SQLJ. When writing a SQLJ

application, a user writes a Java program and embeds SQL statements in it, while

following certain standard syntactic rules that govern how SQL statements can be

embedded in Java programs. The user then runs the Oracle SQLJ translator, which

converts this SQLJ program to a standard Java program, and replaces the embedded

SQL statements with calls to the Oracle SQLJ runtime. The generated Java program

See Also: Oracle8i JDBC Developer’s Guide and Reference for more

information about JDBC access to Oracle object data.
Programmatic Environments for Oracle Objects 19-19

Java: JDBC and Oracle SQLJ
is compiled, using any Java compiler, and run against a database. The Oracle SQLJ

runtime environment consists of a thin SQLJ runtime library, which is implemented

in pure Java, and which implements your SQL operations, typically using a JDBC

driver.

SQLJ, therefore, is similar to the ANSI/ISO Embedded SQL standards, which

prescribe how static SQL is embedded in C/C++, COBOL, FORTRAN, and other

languages. For example, Oracle's pre-compiler product, Pro*C/C++, is an

implementation of the Embedded SQL standard in the C/C++ host language. The

following are the general steps required for writing and running an Oracle SQLJ

program:

1. Write Oracle SQLJ source files, embedding SQL statements within Java code.

The embedded SQL statements are marked by a special #sql token.

2. Translate Oracle SQLJ source files with the Oracle SQLJ translator, which

generates:

■ New Java source files with calls to the Oracle SQLJ runtime

■ Additional Oracle SQLJ profile files containing all the information about the

static SQL statements that were found in the Oracle SQLJ source

3. Compile the Java sources with a Java compiler.

4. Customize the generated SQL profiles to use vendor-specific features.

5. Run the application.

Usually, the Oracle SQLJ translator performs steps 2, 3, and 4 automatically,

invoking a Java compiler and profile customizer in the process. At translation time,

the static SQL statements in the program can be checked against a given database

schema. The Oracle SQLJ runtime uses a JDBC driver, typically the Oracle JDBC

driver, in accessing the database.

Oracle SQLJ supports either strongly typed or weakly typed Java representations of

object types, reference types (REFs), and collection types (VARRAYs and nested

tables) to be used in iterators or host expressions. Strongly typed representations

use a custom Java class that corresponds to a particular object type, reference type, or

collection type and must implement the interface oracle .sql .CustomDatum . This

paradigm is supported by the Oracle JPublisher utility, which can be used to

automatically generate such custom Java classes. Weakly typed representations use

the class oracle .sql .STRUCT (for objects), oracle .sql .REF (for references), or

oracle .sql .ARRAY (for collections).
19-20 Application Developer’s Guide - Fundamentals

Java: JDBC and Oracle SQLJ
To use Oracle-specific object, reference, and collection types, you must customize

your profile appropriately. The default Oracle customizer,

oracle .sqlj .runtime .util .OraCustomizer , typically is recommended. This

customization is performed automatically when you run the sqlj script unless you

specify otherwise.

For Oracle-specific semantics checking, you must use an appropriate checker. The

default checker, oracle .sqlj .checker .OracleChecker , is recommended. This

acts as a front-end and chooses an appropriate checker for you, depending on

whether you enable online checking and on which JDBC driver and Oracle database

release you use.

About Custom Java Classes and the CustomDatum Interface
Custom Java classes are used by the JDBC driver to convert data between the

database and your Java application, and they make the data accessible. You should

provide custom Java classes for all user-defined types that you use in an Oracle

SQLJ application. Even if you do not directly use custom Java class instances in

your code, the JDBC driver can use such instances in order to convert data. Using

custom Java classes is more convenient and less prone to error than using the

weakly typed classes oracle.sql.STRUCT , REF, and ARRAY. Custom Java classes

are first-class types that you can use to read from and write to user-defined SQL

types transparently.

Note: Custom Java classes used for objects, references, and

collections are referred to as custom object classes, custom reference
classes, and custom collection classes, respectively. Also, user-defined

object types and user-defined collection types are sometimes

simply referred to as user-defined types.

See Also: This section only provides an overview of support for

objects in Oracle SQLJ. For detailed information about using objects

in Oracle SQLJ, see the Oracle8i SQLJ Developer’s Guide and Reference

Note: Oracle JDBC drivers are required to use custom Java classes.
Programmatic Environments for Oracle Objects 19-21

Java: JDBC and Oracle SQLJ
CustomDatum and CustomDatumFactory Specifications Oracle provides the interface

oracle .sql .CustomDatum and the related interface

oracle .sql .CustomDatumFactory as vehicles to use in mapping Oracle object

types, reference types, and collection types to custom Java classes and in converting

data between the database and your application. Custom Java classes must

implement CustomDatum in order to be used in Oracle SQLJ iterators and host

expressions.

Data passed to or from the database is in the form of an oracle .sql .Datum object,

with the underlying data being in the format of the appropriate oracle .sql .Datum
subclass, such as oracle .sql .STRUCT. This data is still in its codified database

format; the oracle .sql .Datum object is just a wrapper.

The CustomDatum interface specifies a toDatum() method for data conversion

from Java format to database format. This method takes as input your

OracleConnection object (which is required by the Oracle JDBC drivers) and

converts data to the appropriate oracle .sql.* representation. The

OracleConnection object is necessary so that the JDBC driver can perform

appropriate type checking and type conversions at runtime. The following is the

CustomDatum and toDatum() specification:

interface oracle.sql.CustomDatum
{
 oracle.sql.Datum toDatum(OracleConnection c);
}

The CustomDatumFactory interface specifies a create() method that constructs

instances of your custom Java class, converting from database format to Java

format. This method takes as input a Datum object containing data from the

database and an integer indicating the SQL type of the underlying data, such as

OracleTypes .RAW. It returns an object of your custom Java class, which

implements the CustomDatum interface. This object receives its data from the

Datum object that was input. The following is the CustomDatumFactory and

create() specification:

interface oracle.sql.CustomDatumFactory
{
 oracle.sql.CustomDatum create(oracle.sql.Datum d, int sqlType);
}

To complete the relationship between the CustomDatum and

CustomDatumFactory interfaces, there is a requirement for a static

getFactory() method that you must implement in any custom Java class that

implements the CustomDatum interface. This method returns an object that
19-22 Application Developer’s Guide - Fundamentals

Java: JDBC and Oracle SQLJ
implements the CustomDatumFactory interface, and that therefore can be used to

create instances of your custom Java class. This returned object may itself be an

instance of your custom Java class, and its create() method is used by the Oracle

JDBC driver to produce further instances of your custom Java class as necessary.

Custom Java classes produced by JPublisher automatically implement the

CustomDatum and CustomDatumFactory interfaces and the getFactory()
method.

Custom Java Class Support for Object Methods
You can implement methods of Oracle objects as wrappers in custom Java classes.

Whether the underlying stored procedure is written in PL/SQL or is written in Java

and published to SQL is invisible to the user.

A Java wrapper method that is used to invoke a server method requires a

connection in order to communicate with the server. The connection object can be

provided as an explicit parameter, or can be associated in some other way (as an

attribute of your custom Java class, for example).

You can write each wrapper method as an instance method of the custom Java class,

regardless of whether the server method that the wrapper method invokes is an

instance method or a static method. Custom Java classes generated by JPublisher

use this technique.

There are also issues regarding output and input-output parameters in methods of

Oracle objects. In the database, if a stored procedure (Oracle object method)

modifies the internal state of one of its arguments, the actual argument that was

passed to the stored procedure is modified. In Java this is not possible. When a

JDBC output parameter is returned from a stored procedure call, it is stored in a

newly created object. The original object identity is lost.

One way to return an output or input-output parameter to the caller is to pass the

parameter as an element of an array. If the parameter is input-output, the wrapper

method takes the array element as input; after processing, the wrapper assigns the

output to the array element. Custom Java classes generated by JPublisher use this

technique—each output or input-output parameter is passed in a one-element array.

See Also: Oracle8i SQLJ Developer’s Guide and Reference for more

information about the CustomDatum and CustomDatumFactory
interfaces.
Programmatic Environments for Oracle Objects 19-23

Java: JDBC and Oracle SQLJ
Compiling Custom Java Classes
You can include the .java files for your custom Java classes on the Oracle SQLJ

command line together with your .sqlj file. For example, if ObjectDemo.sqlj
uses the Oracle object types Address and Person , and you have run JPublisher or

otherwise produced custom Java classes for these objects, you can run Oracle SQLJ

in the following way:

sqlj options ObjectDemo.sqlj Address.java AddressRef.java Person.java PersonRef.java

Otherwise you can compile them separately, using your Java compiler directly. If

you do this, it must be done prior to translating the .sqlj file.

JPublisher and Creating Custom Java Classes
Oracle offers flexibility in how you can customize the mapping of Oracle object

types, reference types, and collection types to Java classes in a strongly typed

paradigm. You have the following choices in creating these custom Java classes:

■ Use Oracle JPublisher to automatically generate custom Java classes and use

those classes directly without modification.

■ Use Oracle JPublisher to automatically generate custom Java classes and

subclass them to create custom Java classes with added functionality.

■ Manually code custom Java classes without using JPublisher, provided that the

classes meet the requirements stated in the Oracle8i SQLJ Developer’s Guide and
Reference .

Although you have the option of manually coding your custom Java classes, it is

recommended that you use JPublisher. If you need special functionality, you can

subclass the classes that JPublisher creates and modify the subclasses as necessary.

See Also: The Oracle8i JPublisher User’s Guide for more

information.
19-24 Application Developer’s Guide - Fundamentals

Java: JDBC and Oracle SQLJ
What JPublisher Produces When you run JPublisher for a user-defined object type, it

automatically creates the following:

■ A custom object class to act as a type definition to correspond to your Oracle

object type

This class includes getter and setter methods for each attribute. The method

names are of the form getFoo() and setFoo() for attribute foo .

Also, you can optionally instruct JPublisher to generate wrapper methods in

your class that invoke the associated Oracle object methods executing in the

server.

■ A related custom reference class for object references to your Oracle object type

This class includes a getValue() method that returns an instance of your

custom object class, and a setValue() method that updates an object value in

the database, taking as input an instance of the custom object class.

When you run JPublisher for a user-defined collection type, it automatically creates

the following:

■ A custom collection class to act as a type definition to correspond to your

Oracle collection type

This class includes overloaded getArray() and setArray() methods to

retrieve or update a collection as a whole, a getElement() method and

setElement() method to retrieve or update individual elements of a

collection, and additional utility methods.

JPublisher-produced custom Java classes in any of these categories implement the

CustomDatum interface, the CustomDatumFactory interface, and the

getFactory() method.

Strongly Typed Objects and References in Oracle SQLJ Executable Statements
Oracle SQLJ is flexible in how it allows you to use host variables and iterators in

reading or writing object data through strongly typed objects or references.

For iterators, you can use custom object classes as iterator column types.

Alternatively, you can have iterator columns that correspond to individual object

attributes (similar to extent tables), using column types that appropriately map to

the attribute datatypes in the database.

See Also: The Oracle8i JPublisher User’s Guide for more

information about using JPublisher.
Programmatic Environments for Oracle Objects 19-25

Java: JDBC and Oracle SQLJ
For host expressions, you can use host variables of your custom object class type or

custom reference class type, or you can use host variables that correspond to object

attributes, using variable types that appropriately map to the attribute datatypes in

the database.

Weakly Typed Objects, References, and Collections
Weakly typed objects, references, and collections are supported by Oracle SQLJ.

Their general use is not recommended and there are some restrictions on their use,

but in some circumstances they may be useful. For example, you may have generic

code that can use "any STRUCT" or "any REF" (although if this code uses dynamic

SQL it would require coding in JDBC instead of Oracle SQLJ).

In using Oracle objects, references, or collections in an Oracle SQLJ application, you

have the option of using generic and weakly typed oracle .sql classes instead of

the strongly typed custom Java classes that implement the CustomDatum interface.

The following oracle.sql classes can be used for iterator columns or host

expressions in Oracle SQLJ:

■ oracle .sql .STRUCT for objects

■ oracle .sql .REF for object references

■ oracle .sql .ARRAY for collections

In host expressions they are supported as follows:

■ As input host expressions

■ As output host expressions in an INTO-list

Using these classes is not generally recommended, however, as you would lose all

the advantages of the strongly typed paradigm that Oracle SQLJ offers.

Each attribute in a STRUCT object or each element in an ARRAY object is stored in an

oracle .sql .Datum object, with the underlying data in the form of the appropriate

oracle .sql .* type (such as oracle .sql .NUMBER or oracle .sql .CHAR).
Attributes in a STRUCT object are nameless.

See Also: Oracle8i SQLJ Developer’s Guide and Reference for more

information about how to manipulate Oracle objects using custom

object classes, custom object class attributes, and custom reference

classes for host variables and iterator columns in Oracle SQLJ

executable statements.
19-26 Application Developer’s Guide - Fundamentals

Java: JDBC and Oracle SQLJ
Because of the generic nature of the STRUCTand ARRAYclasses, Oracle SQLJ can do

no type checking where objects or collections are written to or read from instances

of these classes.

Oracle Corporation recommends that you use custom Java classes for objects,

references, and collections, preferably classes produced by JPublisher.

Oracle SQLJ Restrictions on Weakly Typed Objects, References, and Collections A weakly

typed object (STRUCT instance), reference (REF instance), or collection (ARRAY
instance) cannot be used in host expressions in the following circumstances:

■ OUT or INOUT parameter in stored procedure or function call

■ OUT parameter in stored function result-expression

There are no Oracle SQLJ restrictions on their use in IN host expressions; however,

there may be JDBC requirements to initialize weakly typed STRUCT, REF, and

ARRAY objects with a SQL typecode from oracle .jdbc .driver .OracleTypes .

Note: Oracle’s implementations of STRUCT, REF, and ARRAY are

designed to be compliant with JDBC 2.0, implementing interfaces

based on Sun Microsystems standards.
Programmatic Environments for Oracle Objects 19-27

Java: JDBC and Oracle SQLJ
19-28 Application Developer’s Guide - Fundamentals

Part V

CUBE and ROLLUP Extensions to SQL

Part V contains the following chapter:

■ Chapter 20, "Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES"

Analyzing Data with ROLLUP, CUBE, AND TOP-N Q
20

Analyzing Data with ROLLUP, CUBE, AND

TOP-N QUERIES

This chapter covers the following topics:

■ Overview of CUBE, ROLLUP, and Top-N Queries

■ ROLLUP

■ CUBE

■ Using Other Aggregate Functions with ROLLUP and CUBE

■ GROUPING Function

■ Other Considerations when Using ROLLUP and CUBE

■ Optimized "Top-N" Analysis

■ Reference
UERIES 20-1

Overview of CUBE, ROLLUP, and Top-N Queries
Overview of CUBE, ROLLUP, and Top-N Queries
The last decade has seen a tremendous increase in the use of query, reporting, and

on-line analytical processing (OLAP) tools, often in conjunction with data

warehouses and data marts. Enterprises exploring new markets and facing greater

competition expect these tools to provide the maximum possible decision-making

value from their data resources.

Oracle expands its long-standing support for analytical applications in Oracle8i
release 8.1.5 with the CUBE and ROLLUP extensions to SQL. Oracle also provides

optimized performance and simplified syntax for Top-N queries. These

enhancements make important calculations significantly easier and more efficient,

enhancing database performance, scalability and simplicity.

ROLLUP and CUBE are simple extensions to the SELECT statement’s GROUP BY

clause. ROLLUP creates subtotals at any level of aggregation needed, from the most

detailed up to a grand total. CUBE is an extension similar to ROLLUP, enabling a

single statement to calculate all possible combinations of subtotals. CUBE can

generate the information needed in cross-tab reports with a single query. To

enhance performance, both CUBE and ROLLUP are parallelized: multiple processes

can simultaneously execute both types of statements.

Enhanced Top-N queries enable more efficient retrieval of the largest and smallest

values of a data set. This chapter presents concepts, syntax, and examples of CUBE,
ROLLUP and Top-N analysis.

Analyzing across Multiple Dimensions
One of the key concepts in decision support systems is "multi-dimensional

analysis": examining the enterprise from all necessary combinations of dimensions.

We use the term "dimension" to mean any category used in specifying questions.

Among the most commonly specified dimensions are time, geography, product,

department, and distribution channel, but the potential dimensions are as endless

as the varieties of enterprise activity. The events or entities associated with a

particular set of dimension values are usually referred to as "facts." The facts may be

sales in units or local currency, profits, customer counts, production volumes, or

anything else worth tracking.

See Also: For information on parallel execution, see Oracle8i
Concepts.
20-2 Application Developer’s Guide - Fundamentals

Overview of CUBE, ROLLUP, and Top-N Queries
Here are some examples of multi-dimensional requests:

■ Show total sales across all products at increasing aggregation levels: from state

to country to region for 1996 and 1997.

■ Create a cross-tabular analysis of our operations showing expenses by territory

in South America for 1996 and 1997. Include all possible subtotals.

■ List the top 10 sales representatives in Asia according to 1997 sales revenue in

for automotive products and rank their commissions.

All the requests above constrain multiple dimensions. Many multi-dimensional

questions require aggregated data and comparisons of data sets, often across time,

geography or budgets.

To visualize data that has many dimensions, analysts commonly use the analogy of

a data "cube," that is, a space where facts are stored at the intersection of n

dimensions. Figure 20–1 shows a data cube and how it could be used differently by

various groups. The cube stores sales data organized by the dimensions of Product,

Market, and Time.

Figure 20–1 Cube and Views by Different Users

Regional Mgr. View

Financial Mgr. View Ad Hoc View

PROD

Time

M
ar

ke
t

SALES
Product Mgr. View
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-3

Overview of CUBE, ROLLUP, and Top-N Queries
We can retrieve "slices" of data from the cube. These correspond to cross-tabular

reports such as the one shown in Table 20–1 on page 20-5. Regional managers might

study the data by comparing slices of the cube applicable to different markets. In

contrast, product managers might compare slices that apply to different products.

An ad hoc user might work with a wide variety of constraints, working in a subset

cube.

Answering multi-dimensional questions often involves huge quantities of data,

sometimes millions of rows. Because the flood of detailed data generated by large

organizations cannot be interpreted at the lowest level, aggregated views of the

information are essential. Subtotals across many dimensions are vital to

multi-dimensional analyses. Therefore, analytical tasks require convenient and

efficient data aggregation.

Optimized Performance
Not only multi-dimensional issues, but all types of processing can benefit from

enhanced aggregation facilities. Transaction processing, financial and

manufacturing systems—all of these generate large numbers of production reports

needing substantial system resources. Improved efficiency when creating these

reports will reduce system load. In fact, any computer process that aggregates data

from details to higher levels needs optimized performance.

To leverage the power of the database server, powerful aggregation commands

should be available inside the SQL engine. New extensions in Oracle provide these

features and bring many benefits, including:

■ Simplified programming requiring less SQL code for many tasks

■ Quicker and more efficient query processing

■ Reduced client processing loads and network traffic because aggregation work

is shifted to servers

■ Opportunities for caching aggregations because similar queries can leverage

existing work

Oracle8i provides all these benefits with the new CUBE and ROLLUP extensions to

the GROUP BY clause. These extensions adhere to the ANSI and ISO proposals for

SQL3, a draft standard for enhancements to SQL.
20-4 Application Developer’s Guide - Fundamentals

ROLLUP
A Scenario
To illustrate CUBE, ROLLUP, and Top-N queries, this chapter uses a hypothetical

videotape sales and rental company. All the examples given refer to data from this

scenario. The hypothetical company has stores in several regions and tracks sales

and profit information. The data is categorized by three dimensions: Time,

Department, and Region. The time dimensions are 1996 and 1997, the departments

are Video Sales and Video Rentals, and the regions are East, West, and Central.

Table 20–1 is a sample cross-tabular report showing the total profit by region and

department in 1997:

Consider that even a simple report like Table 20–1, with just twelve values in its

grid, needs five subtotals and a grand total. The subtotals are the shaded numbers,

such as Video Rental Profits across regions, namely, 279,000, and Eastern region

profits across department, namely, 238,000. Half of the values needed for this report

would not be calculated with a query that used a standard SUM() and GROUP BY.
Database commands that offer improved calculation of subtotals bring major

benefits to querying, reporting and analytical operations.

ROLLUP
ROLLUP enables a SELECT statement to calculate multiple levels of subtotals across

a specified group of dimensions. It also calculates a grand total. ROLLUP is a simple

extension to the GROUP BY clause, so its syntax is extremely easy to use. The

ROLLUP extension is highly efficient, adding minimal overhead to a query.

Table 20–1 Simple Cross-Tabular Report, with Subtotals Shaded

1997

Region Department

Video Rental Profit Video Sales Profit Total Profit

Central 82,000 85,000 167,000

East 101,000 137,000 238,000

West 96,000 97,000 193,000

Total 279,000 319,000 598,000
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-5

ROLLUP
Syntax
ROLLUP appears in the GROUP BY clause in a SELECT statement. Its form is:

SELECT … GROUP BY
 ROLLUP(grouping_column_reference_list)

Details
ROLLUP’s action is straightforward: it creates subtotals which "roll up" from the

most detailed level to a grand total, following a grouping list specified in the

ROLLUP clause. ROLLUP takes as its argument an ordered list of grouping columns.

First, it calculates the standard aggregate values specified in the GROUP BY clause.

Then, it creates progressively higher-level subtotals, moving from right to left

through the list of grouping columns. Finally, it creates a grand total.

ROLLUP will create subtotals at n+1 levels, where n is the number of grouping

columns. For instance, if a query specifies ROLLUP on grouping columns of Time,

Region, and Department (n=3), the result set will include rows at four aggregation

levels.

Example
This example of ROLLUP uses the data in the video store database.

 SELECT Time, Region, Department,
 sum(Profit) AS Profit FROM sales
 GROUP BY ROLLUP(Time, Region, Dept)

As you can see in Table 20–2, this query returns the following sets of rows:

■ Regular aggregation rows that would be produced by GROUP BY without using

ROLLUP

■ First-level subtotals aggregating across Department for each combination of

Time and Region

■ Second-level subtotals aggregating across Region and Department for each

Time value

■ A grand total row
20-6 Application Developer’s Guide - Fundamentals

ROLLUP
Interpreting “[NULL]” Values in Results
The NULL values returned by ROLLUP and CUBE are not always the traditional

NULLvalue meaning “value unknown.” Instead, a NULLmay indicate that its row is

a subtotal. For instance, the first NULL value shown in Table 20–2 is in the

Department column. This NULL means that the row is a subtotal for "All

Departments" for the Central region in 1996. To avoid introducing another

non-value in the database system, these subtotal values are not given a special tag.

Table 20–2 ROLLUP Aggregation across Three Dimensions

Time Region Department Profit

1996 Central VideoRental 75,000

1996 Central VideoSales 74,000

1996 Central [NULL] 149,000

1996 East VideoRental 89,000

1996 East VideoSales 115,000

1996 East [NULL] 204,000

1996 West VideoRental 87,000

1996 West VideoSales 86,000

1996 West [NULL] 173,000

1996 [NULL] [NULL] 526,000

1997 Central VideoRental 82,000

1997 Central VideoSales 85,000

1997 Central [NULL] 167,000

1997 East VideoRental 101,000

1997 East VideoSales 137,000

1997 East [NULL] 238,000

1997 West VideoRental 96,000

1997 West VideoSales 97,000

1997 West [NULL] 193,000

1997 [NULL] [NULL] 598,000

[NULL] [NULL] [NULL] 1,124,000
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-7

ROLLUP
See the section "GROUPING Function" on page 20-13 for details on how the NULLs
representing subtotals are distinguished from NULLs stored in the data.

Calculating Subtotals without ROLLUP
The result set in Table 20–1 could be generated by the UNION of four SELECT
statements, as shown below. This is a subtotal across three dimensions. Notice that

a complete set of ROLLUP-style subtotals in n dimensions would require n+1

SELECT statements linked with UNION ALL.

SELECT Time, Region, Department, SUM(Profit)
 FROM Sales
 GROUP BY Time, Region, Department
UNION ALL
 SELECT Time, Region, '' , SUM(Profit)
 FROM Sales
 GROUP BY Time, Region
UNION ALL
 SELECT Time, '', '', SUM(Profits)
 FROM Sales
 GROUP BY Time
UNION ALL
 SELECT '', '', '', SUM(Profits)
 FROM Sales;

The approach shown in the SQL above has two shortcomings compared to using

the ROLLUP operator. First, the syntax is complex, requiring more effort to generate

and understand. Second, and more importantly, query execution is inefficient

because the optimizer receives no guidance about the user’s overall goal. Each of

the four SELECT statements above causes table access even though all the needed

subtotals could be gathered with a single pass. The ROLLUP extension makes the
desired result explicit and gathers its results with just one table access.

The more columns used in a ROLLUP clause, the greater the savings versus the

UNION approach. For instance, if a four-column ROLLUP replaces a UNION of 5

SELECT statements, the reduction in table access is four-fifths or 80%.

Some data access tools calculate subtotals on the client side and thereby avoid the

multiple SELECT statements described above. While this approach can work, it

Note: The NULLs shown in the figures of this paper are displayed

only for clarity: in standard Oracle output these cells would be

blank.
20-8 Application Developer’s Guide - Fundamentals

CUBE
places significant loads on the computing environment. For large reports, the client

must have substantial memory and processing power to handle the subtotaling

tasks. Even if the client has the necessary resources, a heavy processing burden for

subtotal calculations may slow down the client in its performance of other activities.

When to Use ROLLUP
Use the ROLLUP extension in tasks involving subtotals.

■ It is very helpful for subtotaling along a hierarchical dimension such as time or

geography. For instance, a query could specify a ROLLUPof year/month/day or

country/state/city.

■ It simplifies and speeds the population and maintenance of summary tables.

Data warehouse administrators may want to make extensive use of it. Note that

population of summary tables is even faster if the ROLLUP query executes in

parallel.

CUBE
Note that the subtotals created by ROLLUP are only a fraction of possible subtotal

combinations. For instance, in the cross-tab shown in Table 20–1, the departmental

totals across regions (279,000 and 319,000) would not be calculated by a

ROLLUP(Time, Region, Department) clause. To generate those numbers would

require a ROLLUP clause with the grouping columns specified in a different order:

ROLLUP(Time, Department, Region). The easiest way to generate the full set of

subtotals needed for cross-tabular reports such as those needed for Figure 20–1 is to

use the CUBE extension.

CUBE enables a SELECT statement to calculate subtotals for all possible

combinations of a group of dimensions. It also calculates a grand total. This is the

set of information typically needed for all cross-tabular reports, so CUBE can

calculate a cross-tabular report with a single SELECTstatement. Like ROLLUP, CUBE
is a simple extension to the GROUP BY clause, and its syntax is also easy to learn.

See Also: For information on parallel execution, see Oracle8i
Concepts.
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-9

CUBE
Syntax
CUBE appears in the GROUP BY clause in a SELECT statement. Its form is:

SELECT … GROUP BY
 CUBE (grouping_column_reference_list)

Details
CUBEtakes a specified set of grouping columns and creates subtotals for all possible

combinations of them. In terms of multi-dimensional analysis, CUBE generates all

the subtotals that could be calculated for a data cube with the specified dimensions.

If you have specified CUBE(Time, Region, Department), the result set will include all

the values that would be included in an equivalent ROLLUP statement plus

additional combinations. For instance, in Table 20–1, the departmental totals across

regions (279,000 and 319,000) would not be calculated by a ROLLUP(Time, Region,

Department) clause, but they would be calculated by a CUBE(Time, Region,

Department) clause. If there are n columns specified for a CUBE, there will be 2n

combinations of subtotals returned. Table 20–3 gives an example of a

three-dimension CUBE.

Example
This example of CUBE uses the data in the video store database.

SELECT Time, Region, Department,
 sum(Profit) AS Profit FROM sales
 GROUP BY CUBE (Time, Region, Dept)

Table 20–3 shows the results of this query.

Table 20–3 Cube Aggregation across Three Dimensions

Time Region Department Profit

1996 Central VideoRental 75,000

1996 Central VideoSales 74,000

1996 Central [NULL] 149,000

1996 East VideoRental 89,000

1996 East VideoSales 115,000

1996 East [NULL] 204,000

1996 West VideoRental 87,000
20-10 Application Developer’s Guide - Fundamentals

CUBE
1996 West VideoSales 86,000

1996 West [NULL] 173,000

1996 [NULL] VideoRental 251,000

1996 [NULL] VideoSales 275,000

1996 [NULL] [NULL] 526,000

1997 Central VideoRental 82,000

1997 Central VideoSales 85,000

1997 Central [NULL] 167,000

1997 East VideoRental 101,000

1997 East VideoSales 137,000

1997 East [NULL] 238,000

1997 West VideoRental 96,000

1997 West VideoSales 97,000

1997 West [NULL] 193,000

1997 [NULL] VideoRental 279,000

1997 [NULL] VideoSales 319,000

1997 [NULL] [NULL] 598,000

[NULL] Central VideoRental 157,000

[NULL] Central VideoSales 159,000

[NULL] Central [NULL] 316,000

[NULL] East VideoRental 190,000

[NULL] East VideoSales 252,000

[NULL] East [NULL] 442,000

[NULL] West VideoRental 183,000

[NULL] West VideoSales 183,000

[NULL] West [NULL] 366,000

[NULL] [NULL] VideoRental 530,000

Table 20–3 Cube Aggregation across Three Dimensions

Time Region Department Profit
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-11

CUBE
Calculating subtotals without CUBE
Just as for ROLLUP, multiple SELECT statements combined with UNION statements

could provide the same information gathered through CUBE. However, this may

require many SELECTstatements: for an n-dimensional cube, 2n SELECTstatements

are needed. In our 3-dimension example, this would mean issuing 8 SELECTS
linked with UNION ALL.

Consider the impact of adding just one more dimension when calculating all

possible combinations: the number of SELECT statements would double to 16. The

more columns used in a CUBE clause, the greater the savings versus the UNION
approach. For instance, if a four-column CUBE replaces a UNION of 16 SELECT
statements, the reduction in table access is fifteen-sixteenths or 93.75%.

When to Use CUBE
■ Use CUBE in any situation requiring cross-tabular reports. The data needed for

cross-tabular reports can be generated with a single SELECT using CUBE. Like

ROLLUP, CUBE can be helpful in generating summary tables. Note that

population of summary tables is even faster if the CUBE query executes in

parallel.

■ CUBE is especially valuable in queries that use columns from multiple

dimensions rather than columns representing different levels of a single

dimension. For instance, a commonly requested cross-tabulation might need

subtotals for all the combinations of month/state/product. These are three

independent dimensions, and analysis of all possible subtotal combinations will

be commonplace. In contrast, a cross-tabulation showing all possible

combinations of year/month/day would have several values of limited

interest, since there is a natural hierarchy in the time dimension. Subtotals such

as profit by day of month summed across year would be unnecessary in most

analyses.

[NULL] [NULL] VideoSales 594,000

[NULL] [NULL] [NULL] 1,124,000

See Also: For information on parallel execution, see Oracle8i
Concepts.

Table 20–3 Cube Aggregation across Three Dimensions

Time Region Department Profit
20-12 Application Developer’s Guide - Fundamentals

GROUPING Function
Using Other Aggregate Functions with ROLLUP and CUBE
The examples in this chapter show ROLLUPand CUBEused with the SUM() operator.

While this is the most common type of aggregation, the extensions can also be used

with all the other functions available to Group by clauses, for example, COUNT, AVG,

MIN, MAX, STDDEV, and VARIANCE. COUNT, which is often needed in cross-tabular

analyses, is likely be the second most helpful function.

GROUPING Function
Two challenges arise with the use of ROLLUP and CUBE. First, how can we

programmatically determine which result set rows are subtotals, and how do we

find the exact level of aggregation of a given subtotal? We will often need to use

subtotals in calculations such as percent-of-totals, so we need an easy way to

determine which rows are the subtotals we seek. Second, what happens if query

results contain both stored NULL values and “NULL” values created by a ROLLUP or

CUBE? How does an application or developer differentiate between the two?

To handle these issues, Oracle 8i introduces a new function called GROUPING. Using

a single column as its argument, Grouping returns 1 when it encounters a NULL
value created by a ROLLUP or CUBE operation. That is, if the NULL indicates the

row is a subtotal, GROUPINGreturns a 1. Any other type of value, including a stored

NULL, will return a 0.

Syntax
GROUPING appears in the selection list portion of a SELECT statement. Its form is:

SELECT … [GROUPING(dimension_column)…] …
 GROUP BY … {CUBE | ROLLUP}

Examples
This example uses GROUPING to create a set of mask columns for the result set

shown in Table 20–3. The mask columns are easy to analyze programmatically.

Note: The DISTINCT qualifier has ambiguous semantics when

combined with ROLLUP and CUBE. To minimize confusion and

opportunities for error, DISTINCT is not permitted together with

the extensions.
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-13

GROUPING Function
SELECT Time, Region, Department, SUM(Profit) AS Profit,
 GROUPING (Time) as T,

GROUPING (Region) as R,
 GROUPING (Department) as D
 FROM Sales
GROUP BY ROLLUP (Time, Region, Department)

Table 20–4 shows the results of this query.

Table 20–4 Use of Grouping Function

Time Region Department Profit T R D

1996 Central Video Rental 75,000 0 0 0

1996 Central Video Sales 74,000 0 0 0

1996 Central [NULL] 149,000 0 0 1

1996 East Video Rental 89,000 0 0 0

1996 East Video Sales 115,000 0 0 0

1996 East [NULL] 204,000 0 0 1

1996 West Video Rental 87,000 0 0 0

1996 West Video Sales 86,000 0 0 0

1996 West [NULL] 173,000 0 0 1

1996 [NULL] [NULL] 526,000 0 1 1

1997 Central Video Rental 82,000 0 0 0

1997 Central Video Sales 85,000 0 0 0

1997 Central [NULL] 167,000 0 0 1

1997 East Video Rental 101,000 0 0 0

1997 East Video Sales 137,000 0 0 0

1997 East [NULL] 238,000 0 0 1

1997 West VideoRental 96,000 0 0 0

1997 West VideoSales 97,000 0 0 0

1997 West [NULL] 193,000 0 0 1

1997 [NULL] [NULL] 598,000 0 1 1

[NULL] [NULL] [NULL] 1,124,000 1 1 1
20-14 Application Developer’s Guide - Fundamentals

GROUPING Function
A program can easily identify the detail rows above by a mask of “0 0 0” on the T,

R, and D columns. The first level subtotal rows have a mask of “0 0 1”, the second

level subtotal rows have a mask of “0 1 1”, and the overall total row have a mask of

“1 1 1”.

Table 20–5 shows an ambiguous result set created using the CUBE extension.

In this case, four different rows show NULL for both Time and Region. Some of

those NULLSmust represent aggregates due to the CUBEextension, and others must

be NULLS stored in the database. How can we tell which is which? GROUPING
functions, combined with the NVL and DECODE functions, resolve the ambiguity so

that human readers can easily interpret the values.

We can resolve the ambiguity by using the GROUPING and other functions in the

code below.

SELECT
 DECODE(GROUPING(Time), 1, 'All Times', Time) as Time,
 DECODE(GROUPING(region), 1, 'All Regions', 0, null)) as
 Region, SUM(Profit) AS Profit from Sales
 GROUP BY CUBE(Time, Region)

This code generates the result set in Table 20–6. These results include text values

clarifying which rows have aggregations.

Table 20–5 Distinguishing Aggregate NULL from Stored NULL Value

Time Region Profit

1996 East 200,000

1996 [NULL] 200,000

[NULL] East 200,000

[NULL] [NULL] 190,000

[NULL] [NULL] 190,000

[NULL] [NULL] 190,000

[NULL] [NULL] 390,000

Note: The numbers in this example differ from the set used in the

other figures.
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-15

GROUPING Function
To explain the SQL statement above, we will examine its first column specification,

which handles the Time column. Look at the first line of the in the SQL code above,

namely,

DECODE(GROUPING(Time), 1, 'All Times', Time) as Time,

The Time value is determined with a DECODE function that contains a GROUPING
function. The GROUPING function returns a 1 if a row value is an aggregate created

by ROLLUPor CUBE, otherwise it returns a 0. The DECODEfunction then operates on

the GROUPING function's results. It returns the text "All Times" if it receives a 1 and

the time value from the database if it receives a 0. Values from the database will be

either a real value such as 1996 or a stored NULL. The second column specification,

displaying Region, works the same way.

When to Use GROUPING
The GROUPING function is not only useful for identifying NULLS, it also enables

sorting subtotal rows and filtering results. In the example below (Table 20–7), we

retrieve a subset of the subtotals created by a CUBE and none of the base-level

aggregations. The HAVING clause constrains columns which use GROUPING
functions.

Table 20–6 Grouping Function used to Differentiate Aggregate-based "NULL" from
Stored Null Values

Time Region Profit

1996 East 200,000

1996 All Regions 200,000

All Times East 200,000

[NULL] [NULL] 190,000

[NULL] All Regions 190,000

All Times [NULL] 190,000

All Times All Regions 390,000
20-16 Application Developer’s Guide - Fundamentals

Other Considerations when Using ROLLUP and CUBE
SELECT Time, Region, Department, SUM(Profit) AS Profit,
 GROUPING (Time) AS T,
 GROUPING (Region) AS R,
 GROUPING (Department) AS D
 FROM Sales
 GROUP BY CUBE (Time, Region, Department)
 HAVING (D=1 AND R=1 AND T=1)
 OR (R=1 AND D=1)
 OR (T=1 AND D=1)

Table 20–7 shows the results of this query.

Compare the result set of Table 20–7 with that in Table 20–3 to see how Table 20–7 is

a precisely specified group: it contains only the yearly totals, regional totals

aggregated over time and department, and the grand total.

Other Considerations when Using ROLLUP and CUBE
This section discusses the following topics.

■ Hierarchy Handling in ROLLUP and CUBE

■ Column Capacity in ROLLUP and CUBE

■ HAVING Clause Used with ROLLUP and CUBE

Hierarchy Handling in ROLLUP and CUBE
The ROLLUP and CUBE extensions work independently of any hierarchy metadata

in your system. Their calculations are based entirely on the columns specified in the

Table 20–7 Example of GROUPING Function Used to Filter Results to Subtotals and
Grand Total

Time Region Department Profit

1996 [NULL] [NULL] 526,000

1997 [NULL] [NULL] 598,000

[NULL] Central [NULL] 316,000

[NULL] East [NULL] 442,000

[NULL] West [NULL] 366,000

[NULL] [NULL] [NULL] 1,124,000
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-17

Other Considerations when Using ROLLUP and CUBE
SELECT statement in which they appear. This approach enables CUBE and ROLLUP
to be used whether or not hierarchy metadata is available. The simplest way to

handle levels in hierarchical dimensions is by using the ROLLUP extension and

indicating levels explicitly through separate columns. The code below shows a

simple example of this with months rolled up to quarters and quarters rolled up to

years.

SELECT Year, Quarter, Month,
 SUM(Profit) AS Profit FROM sales
 GROUP BY ROLLUP(Year, Quarter, Month)

This query returns the rows in Table 20–8.

Table 20–8 Example of ROLLUP across Time Levels

Year Quarter Month Profit

1997 Winter Jan 55,000

1997 Winter Feb 64,000

1997 Winter March 71,000

1997 Winter [NULL] 190,000

1997 Spring April 75,000

1997 Spring May 86,000

1997 Spring June 88,000

1997 Spring [NULL] 249,000

1997 Summer July 91,000

1997 Summer August 87,000

1997 Summer September 101,000

1997 Summer [NULL] 279,000

1997 Fall October 109,000

1997 Fall November 114,000

1997 Fall December 133,000

1997 Fall [NULL] 356,000

1997 [NULL] [NULL] 1,074,000
20-18 Application Developer’s Guide - Fundamentals

Optimized "Top-N" Analysis
Column Capacity in ROLLUP and CUBE
CUBE and ROLLUP do not restrict the GROUP BY clause column capacity. The GROUP
BY clause, with or without the extensions, can work with up to 255 columns.

However, the combinatorial explosion of CUBE makes it unwise to specify a large

number of columns with the CUBE extension. Consider that a 20-column list for

CUBE would create 220 combinations in the result set. A very large CUBE list could

strain system resources, so any such query needs to be tested carefully for

performance and the load it places on the system.

HAVING Clause Used with ROLLUP and CUBE
The HAVING clause of SELECT statements is unaffected by the use of ROLLUP and

CUBE. Note that the conditions specified in the HAVING clause apply to both the

subtotal and non-subtotal rows of the result set. In some cases a query may need to

exclude the subtotal rows or the non-subtotal rows from the HAVING clause. This

can be achieved by using the GROUPING function together with the HAVING clause.

See Table 20–7 and its associated SQL for an example.

Optimized "Top-N" Analysis
Top-N queries ask for the n largest or smallest values of a column. An example is

"What are the top ten best selling products in the U.S.?" Of course, we may also

want to ask "What are the 10 worst selling products?" Both largest-values and

smallest-values sets are considered Top-N queries.

Details
Top-N queries use a consistent nested query structure with the elements described

below.

■ Subquery to generate the sorted list of data. The subquery includes the ORDER
BY clause to ensure that the ranking is in the desired order. For results

retrieving the largest values, a DESC parameter is needed.

■ Outer Query to limit the number of rows in the final result set. The outer query

includes:

Note: The numbers in this example differ from the set used in the

other figures.
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-19

Optimized "Top-N" Analysis
– ROWNUM pseudo-column which assigns a sequential value starting with 1 to

each of the rows returned from the subquery.

– WHEREclause used to specify the n returned rows. The outer WHEREclause

must use a "<" or "<=" operator.

The high-level structure of these queries is:

SELECT column_list ROWNUM FROM
 (SELECT column_list FROM table
 ORDER BY Top-N_column)
WHERE ROWNUM <= N

Examples
To illustrate the concepts here, we extend the scenario used in our earlier examples.

We will now access the name of the sales representative associated with each sale,

stored in the "name" column. and the sales commission earned on every sale. The

SQL below returns the top 10 sales representatives ordered by dollar sales, with

sample data shown in Table 20–9:

SELECT ROWNUM AS Rank, Name, Region, Sales FROM
 (SELECT Name, Region, sum(Sales) AS Sales

FROM Sales GROUP BY Name, Region
ORDER BY sum(Sales) DESC)

WHERE ROWNUM <= 10

Table 20–9 Example of Top-10 Query

Rank Name Region Sales

1 Jim Smith West 2,321,000

2 Jane Riley South 2,002,000

3 Paul Hernandez South 1,951,000

4 Tammy Dewerr East 1,874,000

5 Lisa Ishiru Central 1,508,000

6 Phil Fabrese East 1,467,000

7 Mary Adams West 1,309,000

8 Linda Garton South 1,211,000

9 Tom Cook North 1,189,000

10 David Wu West 1,043,000
20-20 Application Developer’s Guide - Fundamentals

Optimized "Top-N" Analysis
This example can be augmented to show the sales representatives' ranks both for

sales and commissions in a single query. We now extend our query to include the

sales commission earned on every sale, stored in the "commission" column. The

extra information requires another layer of nested subquery. Although interpreting

several layers of queries can be challenging, the SQL below has been formatted to

clarify the meaning.

Below is the SQL needed for our scenario, with the sample results shown in

Table 20–10. To understand the query, please step through the code following the

number sequence shown at the left edge:

4) SELECT ROWNUM as SalesRank, Name, Region, SalesDollars,
 CommRank from
2) (SELECT Name, Region, SalesDollars,
 ROWNUM AS CommRank from
1) (SELECT Name, Region, sum(Sales) AS SalesDollars,
 sum(commission)
 FROM Sales GROUP BY Name, Region
 ORDER BY sum(Commission) DESC)
3) ORDER BY Sales DESC)
5) WHERE ROWNUM <=10

Note that the results in Table 20–10 show how commission ranks are not identical to

sales ranks in this data set: some representatives had higher or lower commission

rates tied to specific sales.

Table 20–10 Example of Top-N query with Ranks on Two Columns

SalesRank Name Region SalesDollars CommRank

1 Jim Smith West 2,321,000 1

2 Jane Riley South 2,002,000 3

3 Paul Hernandez South 1,951,000 2

4 Tammy Dewer East 1,874,000 5

5 Lisa Ishiru Central 1,508,000 4

6 Phil Fabrese East 1,467,000 8

7 Mary Adams West 1,309,000 6

8 Linda Garton South 1,211,000 7

9 Tom Cook North 1,189,000 12

10 David Wu West 1,043,000 11
Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES 20-21

Reference
Reference
Joint Technical Committee ISO/IEC JTC 1, Information Technology. ISO Working Draft

Database Language SQL —Part 2: Foundation (SQL/Foundation), Document ID:
ISO/IEC FCD 9075-2:199x, September 1997.
20-22 Application Developer’s Guide - Fundamentals

Oracle
A

Oracle XA

This chapter describes how to use the Oracle XA library. The chapter includes the

following topics:

■ XA Library-Related Information

■ Changes from Release 8.0 to Release 8.1

■ Changes from Release 7.3 to Release 8.0

■ General Issues and Restrictions

■ Developing and Installing Applications That Use the XA Libraries

■ Defining the xa_open String

■ Interfacing to Precompilers and OCIs

■ Transaction Control

■ Migrating Precompiler or OCI Applications to TPM Applications

■ XA Library Thread Safety

■ Troubleshooting
 XA A-1

XA Library-Related Information
XA Library-Related Information

General Information about the Oracle XA
For preliminary reading and additional reference information regarding the Oracle

XA library, see the following documents:

■ Oracle Call Interface Programmer’s Guide

README.doc
A README.doc file is located in a directory specified in the Oracle operating

system-specific documentation and describes changes, bugs, or restrictions in the

Oracle XA library for your platform since the last version.

See Also: For information on library linking filenames, see the

Oracle operating system-specific documentation.
A-2 Application Developer’s Guide - Fundamentals

Changes from Release 7.3 to Release 8.0
Changes from Release 8.0 to Release 8.1
There are no changes for Release 8.1.

Changes from Release 7.3 to Release 8.0
The following changes have been made:

■ Session Caching Is No Longer Needed

■ Dynamic Registration Is Supported

■ Loosely Coupled Transaction Branches Are Supported

■ SQLLIB Is Not Needed for OCI Applications

■ No Installation Script Is Needed to Run XA

■ The XA Library Can Be Used with the Oracle Parallel Server Option on All

Platforms

■ Transaction Recovery for Oracle Parallel Server Has Been Improved

■ Both Global and Local Transactions Are Possible

■ The xa_open String Has Been Modified

Session Caching Is No Longer Needed
Session caching is unnecessary with the new OCI. Therefore, the old xa_open
string parameter, SesCacheSz , has been eliminated. Consequently, you can also

reduce the sessions init .ora parameter. Instead, set the transactions init .ora
parameter to the expected number of concurrent global transactions. Because

sessions are not migrated when global transactions are resumed, applications must

not refer to any session state beyond the scope of a service.

For information on how to organize your application into services, refer to the

documentation provided with the transaction processing monitor. In particular,

savepoints and cursor fetch state are cancelled when a transaction is suspended.

This means that a savepoint taken by the application in a service is invalid in

another service, even though the two services may belong to the same global

transaction.
Oracle XA A-3

Changes from Release 7.3 to Release 8.0
Dynamic Registration Is Supported
Dynamic registration can be used if both the XA application and the Oracle Server

are Version 8.

Loosely Coupled Transaction Branches Are Supported
The Oracle8 Server supports both loosely and tightly coupled transaction branches

in a single Oracle instance. The Oracle7 Server supported only tightly coupled

transaction branches in a single instance, and loosely coupled transaction branches

in different instances.

SQLLIB Is Not Needed for OCI Applications
OCI applications used to require the use of SQLLIB . This means that OCI

programmers had to buy SQLLIB , even if they had no desire to develop Pro*

applications. This is no longer the case.

No Installation Script Is Needed to Run XA
The SQL script XAVIEW.SQL is not needed to run XA applications in Oracle Version

8. It is, however, still necessary for Version 7.3 applications.

The XA Library Can Be Used with the Oracle Parallel Server Option on All Platforms
It was not possible with Version 7 to use the Oracle XA library together with the

Oracle Parallel Server option on certain platforms. (Only if the platform’s

implementation of the distributed lock manager supported transaction-based rather

than process-based locking would the two work together.) This limitation is no

longer the case; if you can run the Oracle Parallel Server option, then you can run

the Oracle XA library.

Transaction Recovery for Oracle Parallel Server Has Been Improved
All transactions can be recovered from any instance of Oracle Parallel Server. Use

the xa_recover call to provide a snapshot of the pending transactions.

See Also: "Extensions to the XA Interface" on page A-14

See Also: "Responsibilities of the DBA or System Administrator"

on page A-17
A-4 Application Developer’s Guide - Fundamentals

Changes from Release 7.3 to Release 8.0
Both Global and Local Transactions Are Possible
It is now possible to have both global and local transactions within the same XA

connection. Local transactions are transactions that are completely coordinated by

the Oracle Server. For example, the update below belongs to a local transaction.

CONNECT scott/tiger;
UPDATE Emp_tab SET Sal = Sal + 1; /* begin local transaction*/
COMMIT; /* commit local transaction*/

Global transactions, on the other hand, are coordinated by an external transaction

manager such as a transaction processing monitor. In these transactions, the Oracle

Server acts as a subordinate and processes the XA commands issued by the

transaction manager. The update shown below belongs to a global transaction.

xa_open(oracle_xa+acc=p/SCOTT/TIGER+sestm=10", 1, TMNOFLAGS);
 /* Transaction manager opens */
 /* connection to the Oracle server*/
tpbegin(); /* begin global transaction, the transaction*/
 /* manager issues XA commands to the oracle*/
 /* server to start a global transaction */
UPDATE Emp_tab SET Sal = Sal + 1;
 /* Update is performed in the */
 /* global transaction*/
tpcommit(); /* commit global transaction, */
 /* the transaction manager issues XA commands*/
 /* to the Oracle server to commit */
 /* the global transaction */

The Oracle7 Server forbids a local transaction from being started in an XA

connection. The update shown below would return an ORA-2041 error code.

xa_open("oracle_xa+acc=p/SCOTT/TIGER+sestm=10" , 1, TMNOFLAGS);
 /* Transaction manager opens */
 /*connection to the Oracle server */
UPDATE Emp_tab SET Sal = Sal + 1; /* Oracle 7 returns an error */

The Oracle8 Server, on the other hand, allows local transactions to be started in an

XA connection. The only restriction is that the local transaction must be ended

(committed or rolled back) before starting a global transaction in the connection.
Oracle XA A-5

Changes from Release 7.3 to Release 8.0
The xa_open String Has Been Modified
Two new parameters have been added. They are:

■ Loose_Coupling

This parameter has a Boolean value and should not be set to true when

connected to an Oracle7 Server. If set to true, then global transaction branches

are loosely coupled; in other words, locks are not shared between branches.

■ SesWt

This parameter’s value indicates the time-out limit when waiting for a

transaction branch that is being used by another session. If Oracle cannot switch

to the transaction branch within SesWt seconds, then XA_RETRY is returned.

Two parameters have been made obsolete and should only be used when connected

to an Oracle Server Release 7.3.

■ GPWD

The group password is not used by Oracle8. A session that is logged in with the

same user name as the session that created a transaction branch is allowed to

switch to the transaction branch.

■ SesCacheSz

This parameter is not used by Oracle8 because session caching has been

eliminated.
A-6 Application Developer’s Guide - Fundamentals

General Issues and Restrictions
General Issues and Restrictions

Database Links
Oracle XA applications can access other Oracle Server databases through database

links, with the following restrictions:

■ Use the Multi-Threaded Server configuration.

This means that the transaction processing monitors (TPMs) use shared servers

to open the connection to Oracle. The O/S network connection required for the

database link is opened by the dispatcher, instead of the Oracle server process.

Thus, when a particular service or RPC completes, the transaction can be

detached from the server so that it can be used by other services or RPCs.

■ Access to the other database must use SQL*Net Version 2 or Net8.

■ The other database being accessed should be another Oracle Server database.

Assuming that these restrictions are satisfied, Oracle Server allows such links and

propagates the transaction protocol (prepare, rollback, and commit) to the other

Oracle Server databases.

If using the Multi-Threaded Server configuration is not possible, then access the

remote database through the Pro*C/C++ application using EXEC SQL AT syntax.

The parameter open_links_per_instance specifies the number of migratable

open database link connections. These dblink connections are used by XA

transactions so that the connections are cached after a transaction is committed.

Another transaction is free to use the dblink connection provided the user that

created the connection is the same as the user who created the transaction. This

parameter is different from the open_links parameter, which is the number of

dblink connections from a session. The open_links parameter is not applicable to

XA applications.

Caution: If these restrictions are not satisfied, then when you
use database links within an XA transaction, it creates an O/S
network connection in the Oracle Server that is connected to the
TPM server process. Because this O/S network connection cannot
be moved from one process to another, you cannot detach from
this server. When you access a database through a database link,
you receive an ORA#24777 error.
Oracle XA A-7

General Issues and Restrictions
Oracle Parallel Server Option
You can recover failed transactions from any instance of Oracle Parallel Server. You

can also heuristically commit in-doubt transactions from any instance. An XA

recover call gives a list of all prepared transactions for all instances.

SQL-based Restrictions

Rollbacks and Commits
Because the transaction manager is responsible for coordinating and monitoring the

progress of the global transaction, the application should not contain any Oracle

Server-specific statement that independently rolls back or commits a global

transaction. However, you can use rollbacks and commits in a local transaction.

Do not use EXEC SQL ROLLBACK WORK for precompiler applications when you are

in the middle of a global transaction. Similarly, an OCI application should not

execute OCITransRollback (), or the Version 7 equivalent orol (). You can roll

back a global transaction by calling tx_rollback ().

Similarly, a precompiler application should not have the EXEC SQL COMMIT WORK
statement in the middle of a global transaction. An OCI application should not

execute OCITransCommit () or the Version 7 equivalent ocom(). Instead, use tx_
commit () or tx_rollback () to end a global transaction.

DDL Statements
Because a DDL SQL statement, such as CREATE TABLE, implies an implicit commit,

the Oracle XA application cannot execute any DDL SQL statements.

Session State
Oracle does not guarantee that session state will be valid between services. For

example, if a service updates a session variable (such as a global package variable),

then another service that executes as part of the same global transaction may not see

the change. Use savepoints only within a service. The application must not refer to a

savepoint that was created in another service. Similarly, an application must not

attempt to fetch from a cursor that was executed in another service.

SET TRANSACTION
Do not use the SET TRANSACTION READ ONLY | READ WRITE | USE ROLLBACK
SEGMENT SQL statement.
A-8 Application Developer’s Guide - Fundamentals

General Issues and Restrictions
Connecting or Disconnecting with EXEC SQL
Do not use the EXEC SQL command to connect or disconnect. That is, do not use

EXEC SQL COMMIT WORK RELEASE or EXEC SQL ROLLBACK WORK RELEASE.

Miscellaneous XA Issues
Note the following additional information about Oracle XA:

Transaction Branches
Oracle Server transaction branches within the same global transaction can share

locks in either a tightly or loosely coupled manner. However, if the branches are on

different instances when running Oracle Parallel Server, then they will be loosely

coupled.

In tightly coupled transaction branches, the locks are shared between the

transaction branches. This means that updates performed in one transaction branch

can be seen in other branches that belong to the same global transaction before the

update is committed. The Oracle Server obtains the DX lock before executing any

statement in a tightly coupled branch. Hence, the advantage of using loosely

coupled transaction branches is that there is more concurrency (because a lock is not

obtained before the statement is executed). The disadvantage is that all the

transaction branches must go through the two phases of commit, that is, XA one

phase optimization cannot be used. These trade-offs between tightly coupled

branches and loosely coupled branches are illustrated in Table A–1.

.

Association Migration
The Oracle Server does not support association migration (a means whereby a

transaction manager may resume a suspended branch association in another

branch).

Table A–1 Tightly and Loosely Coupled Transaction Branches

Attribute Tightly Coupled Branches Loosely Coupled Branches

Two Phase Commit Read-only Optimization

[prepare for all branches,
commit for last branch]

Two phases

 [prepare and commit for all
branches]

Serialization Database Call None
Oracle XA A-9

General Issues and Restrictions
Asynchronous Calls
The optional XA feature asynchronous XA calls is not supported.

Initialization Parameters
Set the transactions init .ora parameter to the expected number of concurrent

global transactions.

The parameter open_links_per_instance specifies the number of migratable

open database link connections. These dblink connections are used by XA

transactions so that the connections are cached after a transaction is committed.

Maximum Connections per Thread
The maximum number of xa_opens per thread is now 32. Previously, it was 8.

Installation
No scripts need be executed to use XA. It is necessary, however, to run the

xaview.sql script to run Release 7.3 applications with the Oracle8 Server. Grant the

SELECT privilege on SYS.DBA_PENDING_TRANSACTIONS to all users that connect

to Oracle through the XA interface.

Compatibility
The XA library supplied with Release 7.3 can be used with a Release 8.0 Oracle

Server. You must use the Release 7.2 XA library with a Release 7.2 Oracle Server.

You can use the 8.0 library with a Release 7.3 Oracle Server. There is only one case of

backward compatibility: an XA application that uses Release 8.0 OCI works with a

Release 7.3 Oracle Server, but only if you use sqlld2 and obtain an lda_def
before executing SQL statements. Client applications must remember to convert the

Version 7 LDA to a service handle using OCILdaToSvcCtx () after completing the

OCI calls.

Basic Architecture
The Oracle XA library is an external interface that allows global transactions to be

coordinated by a transaction manager other than the Oracle8 Server. This allows

inclusion of non-Oracle8 Server entities called resource managers (RM) in

distributed transactions.

See Also: "Database Links" on page A-7
A-10 Application Developer’s Guide - Fundamentals

General Issues and Restrictions
The Oracle XA library conforms to the X/Open Distributed Transaction Processing

(DTP) software architecture’s XA interface specification.

X/Open Distributed Transaction Processing (DTP)
The X/Open DTP architecture defines a standard architecture or interface that

allows multiple application programs to share resources, provided by multiple, and

possibly different, resource managers. It coordinates the work between application

programs and resource managers into global transactions.

Figure A–1 illustrates a possible X/Open DTP model.

A resource manager (RM) controls a shared, recoverable resource that can be

returned to a consistent state after a failure. For example, Oracle8 Server is an RM

and uses its redo log and undo segments to return to a consistent state after a

failure. An RM provides access to shared resources such as a database, file systems,

printer servers, and so forth.

A transaction manager (TM) provides an application program interface (API) for

specifying the boundaries of the transaction and manages the commit and recovery

procedures.

Normally, Oracle8 Server acts as its own TM and manages its own commit and

recovery. However, using a standards-based TM allows Oracle8 Server to cooperate

with other heterogeneous RMs in a single transaction.

A TM is usually a component provided by a transaction processing monitor (TPM)

vendor. The TM assigns identifiers to transactions, and monitors and coordinates

their progress. It uses Oracle XA library subroutines to tell Oracle8 Server how to

process the transaction, based on its knowledge of all RMs in the transaction. You

can find a list of the XA subroutines and their descriptions later in this section.

An application program (AP) defines transaction boundaries and specifies actions

that constitute a transaction. For example, an AP can be a precompiler or OCI

program. The AP operates on the RM’s resource through the RM’s native interface,

for example SQL. However, it starts and completes all transaction operations via the

See Also: For a general overview of XA, including basic

architecture, see X/Open CAE Specification - Distributed Transaction
Processing: The XA Specification. You can obtain a copy of this

document by requesting X/Open Document No. XO/CAE/91/300

or ISBN 1 872630 24 3 from:

■ X/Open Company, Ltd., 1010 El Camino Real, Suite 380, Menlo

Park, CA 94025, U.S.A.
Oracle XA A-11

General Issues and Restrictions
transaction manager through an interface called TX. The AP itself does not directly

use the XA interface

Figure A–1 One Possible DTP Model

Transaction
Manager

Application Program

XA Interface

TX Interface

XA Interface

Native
Interface

Manager

Resources

Resource

Other
Oracle

Resource
Manager
A-12 Application Developer’s Guide - Fundamentals

General Issues and Restrictions
.

Transaction Recovery Management
The Oracle XA library interface follows the two-phase commit protocol, consisting

of a prepare phase and a commit phase, to commit transactions.

In phase one, the prepare phase, the TM asks each RM to guarantee the ability to

commit any part of the transaction. If this is possible, then the RM records its

prepared state and replies affirmatively to the TM. If it is not possible, then the RM

may roll back any work, reply negatively to the TM, and forget any knowledge

about the transaction. The protocol allows the application, or any RM, to roll back

the transaction unilaterally until the prepare phase is complete.

In phase two, the commit phase, the TM records the commit decision. Then the TM

issues a commit or rollback to all RMs which are participating in the transaction.

Oracle XA Library Interface Subroutines
The Oracle XA library subroutines allow a TM to instruct an Oracle8 Server what to

do about transactions. Generally, the TM must "open" the resource (using xa_
open). Typically, this results from the AP’s call to tx_open . Some TMs may call

xa_open implicitly, when the application begins. Similarly, there is a close (using

xa_close) that occurs when the application is finished with the resource. This may

be when the AP calls tx_close or when the application terminates.

There are several other tasks the TM instructs the RMs to do. These include among

others:

■ Starting a new transaction and associating it with an ID

■ Rolling back a transaction

■ Preparing and committing a transaction

Note: The naming conventions for the TX interface and associated

subroutines are vendor-specific, and may differ from those used

here. For example, you may find that the tx_open call is referred

to as tp_open on your system. To check terminology, see the

documentation supplied with the transaction processing monitor.

Note: TM can issue a commit for an RM only if all RMs have

replied affirmatively to phase one.
Oracle XA A-13

General Issues and Restrictions
XA Library Subroutines
The following XA Library subroutines are available:

In general, the AP does not need to worry about these subroutines except to

understand the role played by the xa_open string.

Extensions to the XA Interface
Two functions have been added to the XA interface, one for returning the OCI

service handle associated with an XA connection, and one for returning an XA error

code.

1. OCISvcCtx *xaoSvcCtx(text *dbname) :

This function returns the OCI service handle for a given XA connection. The

dbname parameter must be the same as the dbname parameter passed in the

xa_open string. OCI applications can use this routing instead of the sqlld2
calls to obtain the connection handle. Hence, OCI applications need not link

with the SQLLIB library. The service handle can be converted to the Version 7

OCI logon data area (LDA) using OCISvcCtxToLda () [Version 8 OCI]. Client

applications must remember to convert the Version 7 LDA to a service handle

using OCILdaToSvcCtx () after completing the OCI calls.

xa_open Connects to the resource manager.

xa_close Disconnects from the resource manager.

xa_start Starts a new transaction and associate it with the given

transaction ID (XID), or associates the process with an existing

transaction.

xa_end Disassociates the process from the given XID.

xa_rollback Rolls back the transaction associated with the given XID.

xa_prepare Prepares the transaction associated with the given XID. This is

the first phase of the two-phase commit protocol.

xa_commit Commits the transaction associated with the given XID. This

is the second phase of the two-phase commit protocol.

xa_recover Retrieves a list of prepared, heuristically committed or

heuristically rolled back transaction.

xa_forget Forgets the heuristic transaction associated with the given

XID.
A-14 Application Developer’s Guide - Fundamentals

General Issues and Restrictions
2. OCIEnv *xaoEnv(text *dbname) :

This function returns the OCI environment handle for a given XA connection.

The dbname parameter must be the same as the dbname parameter passed in

the xa_open string.

3. int xaosterr(OCISvcCtx *SvcCtx, sb4 error) :

This function, only applicable to dynamic registration, converts an Oracle error

code to an XA error code. The first parameter is the service handle used to

execute the work in the database. The second parameter is the error code that

was returned from Oracle. Use this function to determine if the error returned

from an OCI command was caused because the xa_start failed. The function

returns XA_OK if the error was not generated by the XA module and a valid XA

error if the error was generated by the XA module.

Transaction Processing Monitors (TPMs)
A transaction processing monitor (TPM) coordinates the flow of transaction

requests between the client processes that issue requests and the back-end servers

that process them. Basically, it coordinates transactions that require the services of

several different types of back-end processes, such as application servers and

resource managers that are distributed over a network.

The TPM synchronizes any commits and rollbacks required to complete a

distributed transaction. The transaction manager (TM) portion of the TPM is

responsible for controlling when distributed commits and rollbacks take place.

Thus, if a distributed application program is written to take advantage of a TPM,

then the TM portion of the TPM is responsible for controlling the two-phase commit

protocol. The RMs enable the TMs to do this.

Because the TM controls distributed commits or rollbacks, it must communicate

directly with Oracle (or any other resource manager) through the Oracle XA library

interface.

Required Public Information
As a resource manager, Oracle is required to publish the following information.
Oracle XA A-15

General Issues and Restrictions
Registration
Dynamic and static registration are supported by the Oracle8 Server. The basic

possibilities are shown in Table A–2.

xa_switch_t structures The Oracle Server xa_switch_t structure name for

static registration is xaosw. The Oracle Server xa_
switch_t structure name for dynamic registration is

xaoswd . These structures contain entry points and

other information for the resource manager.

xa_switch_t resource

mgr

The Oracle Server resource manager name within the

xa_switch_t structure is Oracle_XA .

close string The close string used by xa_close () is ignored and is

allowed to be null.

open string The format of the open string used by xa_open () is

described in detail in "Developing and Installing

Applications That Use the XA Libraries" on page A-17.

libraries Libraries needed to link applications using Oracle XA

have operating system-specific names. It is similar to

linking an ordinary precompiler or OCI program

except you may have to link any TPM-specific libraries.

If you are not using sqllib , then be sure to link with

$ORACLE_HOME/lib/xaonsl.o .

requirements A purchased and installed distributed database option.

Table A–2 XA Registration

Client Server XA Registration

8.0 XA application 8.0 Dynamic

8.0 XA application 7.3 Static

7.3 XA application 8.0 Static
A-16 Application Developer’s Guide - Fundamentals

Developing and Installing Applications That Use the XA Libraries
Developing and Installing Applications That Use the XA Libraries
This section discusses developing and installing Oracle8 Server applications. It

describes the responsibilities of both the DBA, or system administrator, and the

application developer. It also defines how to construct the open string.

Responsibilities of the DBA or System Administrator
The responsibilities of the DBA or system administrator are

1. Define the open string with the application developer’s help.

This is described in "Defining the xa_open String" on page A-19.

2. Make sure the DBA_PENDING_TRANSACTIONS view exists on the database.

For Oracle Server Release 7.3:
Make sure V$XATRANS$ exists.

This view should have been created during the XA library installation. You

can manually create the view, if needed, by running the SQL script

XAVIEW.SQL. This SQL script should be executed as the Oracle user SYS.

Grant the SELECT privilege to the V$XATRANS$ view for all Oracle Server

accounts which will be used by Oracle XA library applications.

For Oracle Server Release 8.0:
Grant the select privilege to the DBA_PENDING_TRANSACTIONS view for

all Oracle Server user(s) specified in the xa_open string.

3. Install the resource manager, using the open string information, into the TPM

configuration, following the TPM vendor instructions.

The DBA or system administrator should be aware that a TPM system starts the

process that connects to an Oracle8 Server. See your TPM documentation to

determine what environment exists for the process and what user ID it will

have.

Be sure that correct values are set for ORACLE_HOME and ORACLE_SID.

See Also: Your Oracle operating system-specific documentation

contains the location of the XAVIEW.SQL script.
Oracle XA A-17

Developing and Installing Applications That Use the XA Libraries
Next, grant the user ID write permission to the directory in which the XA trace file will be written.

Also be sure to grant the user the SELECT privilege on DBA_PENDING_
TRANSACTIONS.

4. Start up the relevant databases to bring Oracle XA applications on-line.

This should be done before starting any TPM servers.

Responsibilities of the Application Developer
The application developer’s responsibilities are

1. Define the open string with the DBA or system administrator’s help.

Defining the open string is described later in this section.

2. Develop the applications.

Observe special restrictions on transaction-oriented SQL statements for

precompilers.

3. Link the application according to TPM vendor instructions.

See Also: "Defining the xa_open String" on page A-19 has

information on how to specify a sid or a trace directory that is

different from the defaults.

See Also: "Interfacing to Precompilers and OCIs" on page A-25
A-18 Application Developer’s Guide - Fundamentals

Defining the xa_open String
Defining the xa_open String
The open string is used by the transaction monitor to open the database. The

maximum number of characters in an open string is 256.

This section covers:

■ Syntax of the xa_open String

■ Required Fields

■ Optional Fields

Syntax of the xa_open String
Oracle_XA{+ required_fields ...} [+ optional_fields.. .]
where required_fields are:

Acc=P//

Or

Acc=P/user/password

SesTm=session_time_limit

and where optional_fields are:

DB=db_name

LogDir =log_dir

MaxCur=maximum_#_of_open_cursors

SqlNet =connect_string

Loose_Coupling =true/false

SesWt=session_wait_limit

Threads =true/false
Oracle XA A-19

Defining the xa_open String
Required Fields
Required fields for the open string are described in this section.

 Acc=P //

or

 Acc=P/user/password

For example, Acc=P/scott/tiger indicates that user and password information

is provided. In this case, the user is scott and the password is tiger .

As previously mentioned, make sure that scott has the SELECTprivilege on the

DBA_PENDING_TRANSACTIONS table.

Acc=P// indicates that no user or password information is provided, thus defaulting

to operating system authentication.

SesTm=session_time_limit

Note:

■ You can enter the required fields and optional fields in any order
when constructing the open string.

■ All field names are case insensitive. Their values may or may

not be case-sensitive depending on the platform.

■ There is no way to use the "+" character as part of the actual

information string.

Acc Specifies user access information

P Indicates that explicit user and password information is

provided.

P// Indicates that no explicit user or password information is

provided, and that the operating system authentication form

will be used.

For more information see Oracle8i Administrator’s Guide.

user A valid Oracle Server account.

password The corresponding current password.
A-20 Application Developer’s Guide - Fundamentals

Defining the xa_open String
Optional Fields
Optional fields are described below.

DB=db_name

SesTm Specifies the maximum length of time a transaction can be

inactive before it is automatically aborted by the system.

session_time_limit This value should be the maximum time allowed in a

transaction between one service and the next, or a service

and the commit or rollback of the transaction.

For example, if the TPM uses remote procedure calls

between the client and the servers, then SesTM applies to

the time between the completion of one RPC and the

initiation of the next RPC, or the tx_commit , or the tx_
rollback .

The unit for this time limit is in seconds. The value of 0

indicates no limit, but entering a value of 0 is strongly

discouraged. For example, SesTM=15 indicates that the

session idle time limit is 15 seconds.

DB Specifies the database name.
Oracle XA A-21

Defining the xa_open String
For example, DB=payroll indicates that the database name is "payroll", and that the

application server program will use that name in AT clauses.

LogDir =log_dir

For example, LogDir=/xa_trace indicates that the error and tracing information is

located under the /xa_trace directory.

db_name Indicates the name used by Oracle precompilers to identify

the database.

Application programs that use only the default database for

the Oracle precompiler (that is, they do not use the AT clause in

their SQL statements) should omit the DB=db_name clause in the

open string.

Applications that use explicitly named databases should

indicate that database name in their DB=db_name field.

Version 7 OCI programs need to call the sqlld2 () function to

obtain the correct lda_def , which is the equivalent of a service

context. Version 8 OCI programs need to call the xaoSvcCtx
function to get the OCISvcCtx service context.

The db_name is not the sid and is not used to locate the database to

be opened. Rather, it correlates the database opened by this open

string with the name used in the application program to execute

SQL statements. The sid is set from either the environment variable

ORACLE_SID of the TPM application server or the sid given in the

Net8 (formerly, SQL*Net) clause in the open string. The Net8 clause

is described later in this section.

Some TPM vendors provide a way to name a group of servers

that use the same open string. The DBA may find it

convenient to choose the same name both for that purpose

and for db_name.

LogDir Specifies the directory on a local machine where the Oracle

XA library error and tracing information may be logged.

log_dir Indicates the pathname of the directory where the tracing

information should be stored. The default is $ORACLE_
HOME/rdbms/log if ORACLE_HOME is set; otherwise, it is the

current directory.
A-22 Application Developer’s Guide - Fundamentals

Defining the xa_open String
MaxCur=maximum_#_of_open_cursors

For example, MaxCur=5 indicates that the precompiler should try to keep five open

cursors cached.

SqlNet=db_link

For example, SqlNet=hqfin@NEWDB indicates the database with sid=NEWDB
accessed at host hqfin by TCP/IP.

The SqlNet parameter can be used to specify the ORACLE_SID in cases where you

cannot control the server environment variable. It must also be used when the

server needs to access more than one Oracle Server database. To use the Net8 string

without actually accessing a remote database, use the Pipe driver.

Note: Ensure that the directory you specify for logging exists and

the application server can write to it.

MaxCur Specifies the number of cursors to be allocated when the

database is opened. It serves the same purpose as the

precompiler option maxopencursors .

maximum_#_of_

open_cursors

Indicates the number of open cursors to be cached.

Note: This parameter overrides the precompiler option

maxopencursors that you might have specified in your source code

or at compile time.

See Also: Pro*C/C++ Precompiler Programmer’s Guide

SqlNet Specifies the Net8 (formerly, SQL*Net) database link.

db_link Indicates the string to use to log on to the system. The syntax

for this string is the same as that used to set the TWO-TASK
environment variable.
Oracle XA A-23

Defining the xa_open String
For example:

 SqlNet=localsid1

Where:

Make sure that all databases to be accessed with a Net8 database link have an entry

in /etc/oratab .

Loose_Coupling =true/false

SesWt=session_wait_limit

Threads =true/false

localsid1 An alias defined in the Net8 tnsnames .ora file.

SesWt Specifies the time-out limit when waiting for a transaction

branch that is being used by another session. The default

value is 60 seconds.

session_wait_limit The number of seconds Oracle waits before XA_RETRY is
returned.

Threads Specifies whether the application is multi-threaded. The

default value is False.

true/false If the application is multi-threaded, then the setting is true.
A-24 Application Developer’s Guide - Fundamentals

Interfacing to Precompilers and OCIs
Interfacing to Precompilers and OCIs
This section describes how to use the Oracle XA library with precompilers and

Oracle Call Interfaces (OCIs).

Using Precompilers with the Oracle XA Library
When used in an Oracle XA application, cursors are valid only for the duration of

the transaction. Explicit cursors should be opened after the transaction begins, and

closed before the commit or rollback.

There are two options to choose from when interfacing with precompilers:

■ Using precompilers with the default database

■ Using precompilers with a named database

The following examples use the precompiler Pro*C/C++.

Using Precompilers with the Default Database
To interface to a precompiler with the default database, make certain that the

DB=db_name field, used in the open string, is not present. The absence of this field

indicates the default connection, and only one default connection is allowed per

process.

The following is an example of an open string identifying a default Pro*C/C++

connection.

ORACLE_XA+SqlNet=host@MAIL+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/logs

Note that the DB=db_name is absent, indicating an empty database ID string.

The syntax of a SQL statement would be:

EXEC SQL UPDATE Emp_tab SET Sal = Sal*1.5;

Using Precompilers with a Named Database
To interface to a precompiler with a named database, include the DB=db_name field
in the open string. Any database you refer to must reference the same db_name you

specified in the corresponding open string.

An application may include the default database, as well as one or more named

databases, as shown in the following examples.
Oracle XA A-25

Interfacing to Precompilers and OCIs
For example, suppose you want to update an employee’s salary in one database, his

department number (DEPTNO) in another, and his manager in a third database. You

would configure the following open strings in the transaction manager:

ORACLE_XA+DB=MANAGERS+SqlNet=hqfin@SID1+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+DB=PAYROLL+SqlNet=SID2+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+SqlNet=hqemp@SID3+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog

Note that there is no DB=db_name field in the last open string.

In the application server program, you would enter declarations, such as:

EXEC SQL DECLARE PAYROLL DATABASE;
EXEC SQL DECLARE MANAGERS DATABASE;

Again, the default connection (corresponding to the third open string that does not

contain the db_name field) needs no declaration.

When doing the update, you would enter statements similar to the following:

EXEC SQL AT PAYROLL UPDATE Emp_Tab SET Sal=4500 WHERE Empno=7788;
EXEC SQL AT MANAGERS UPDATE Emp_Tab SET Mgr=7566 WHERE Empno=7788;
EXEC SQL UPDATE Emp_Tab SET Deptno=30 WHERE Empno=7788;

There is no AT clause in the last statement because it is referring to the default

database.

In Oracle precompilers release 1.5.3 or later, you can use a character host variable in

the AT clause, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
 DB_NAME1 CHARACTER(10);
 DB_NAME2 CHARACTER(10);
EXEC SQL END DECLARE SECTION;
 .
 .
SET DB_NAME1 = ’PAYROLL’
SET DB_NAME2 = ’MANAGERS’
 .
 .
EXEC SQL AT :DB_NAME1 UPDATE...
EXEC SQL AT :DB_NAME2 UPDATE...
A-26 Application Developer’s Guide - Fundamentals

Interfacing to Precompilers and OCIs
Using OCI with the Oracle XA Library
OCI applications that use the Oracle XA library should not call

OCISessionBegin () (olon () or orlon () in Version 7) to log on to the resource

manager. Rather, the logon should be done through the TPM. The applications can

execute the function xaoSvcCtx () (sqlld2 () in Version 7) to obtain the service

context (lda in Version 7) structure they need to access the resource manager.

Because an application server can have multiple concurrent open Oracle Server

resource managers, it should call the function xaoSvcCtx () with the correct

arguments to obtain the correct service context.

Release 7.3
If DB=db_name is not present in the open string, then execute:

sqlld2(lda, NULL, 0);

This obtains the lda for this resource manager.

Alternatively, if DB=db_name is present in the open string, then execute:

sqlld2(lda, db_name, strlen(db_name));

This obtains the lda for this resource manager.

Release 8.0
If DB=db_name is not present in the open string, then execute:

xaoSvcCtx(NULL);

to obtain the xaoSvcCtx for this resource manager.

Alternatively, if DB=db_name is present in the open string, then execute:

xaoSvcCtx(db_name);

This obtains the OCISvcCtx for this resource manager.

Caution: Oracle recommends against using XA applications to
create connections. Any work performed would be outside the
global transaction and would have to be committed separately.
Oracle XA A-27

Transaction Control
Transaction Control
This section explains how to use transaction control within the Oracle XA library

environment.

When the XA library is used, transactions are not controlled by the SQL statements

which commit or roll back transactions. Rather, they are controlled by an API

accepted by the TM which starts and stops transactions. Most of the TMs use the TX

interface for this. It includes the following functions:

Most TPM applications are written using a client-server architecture where an

application client requests services and an application server provides services. The

examples that follow use such a client-server model. A service is a logical unit of

work, which in the case of the Oracle Server as the resource manager, comprises a

set of SQL statements that perform a related unit of work.

For example, when a service named "credit" receives an account number and the

amount to be credited, it executes SQL statements to update information in certain

tables in the database. In addition, a service might request other services. For

example, a "transfer fund" service might request services from a "credit" and "debit"

service.

Usually application clients request services from the application servers to perform

tasks within a transaction. However, for some TPM systems, the application client

itself can offer its own local services.

You can encode transaction control statements within either the client or the server;

as shown in the examples.

To have more than one process participating in the same transaction, the TPM

provides a communication API that allows transaction information to flow between

the participating processes. Examples of communications APIs include RPC,

pseudo-RPC functions, and send/receive functions.

See Also: Oracle Call Interface Programmer’s Guide. has more

information about using the OCISvcCtx .

tx_open Logs into the resource manager(s)

tx_close Logs out of the resource manager(s)

tx_begin Starts a new transaction

tx_commit Commits a transaction

tx_rollback Rolls back the transaction
A-28 Application Developer’s Guide - Fundamentals

Transaction Control
Because the leading vendors support different communication functions, the

examples that follow use the communication pseudo-function tpm_service to

generalize the communications API.

X/Open has included several alternative methods for providing communication

functions in their preliminary specification. At least one of these alternatives is

supported by each of the leading TPM vendors.

Examples of Precompiler Applications
The following examples illustrate precompiler applications. Assume that the

application servers have already logged onto the TPM system, in a TPM-specific

manner.

The first example shows a transaction started by an application server, and the

second example shows a transaction started by an application client.

Example 1: Transaction started by an application server
Client:

tpm_service("ServiceName"); /*Request Service*/

Server:

ServiceName()
{
<get service specific data>
tx_begin(); /* Begin transaction boundary*/
EXEC SQL UPDATE;

/*This application server temporarily becomes*/
/*a client and requests another service.*/

tpm_service("AnotherService");
tx_commit(); /*Commit the transaction*/
<return service status back to the client>
}

Example 2: Transaction started by an application client.
Client:

tx_begin(); /* Begin transaction boundary */
tpm_service("Service1");
tpm_service("Service2");
Oracle XA A-29

Transaction Control
tx_commit(); /* Commit the transaction */

Server:

Service1()
{
<get service specific data>
EXEC SQL UPDATE;
<return service status back to the client>
}
Service2()
{
<get service specific data>
EXEC SQL UPDATE;
...
<return service status back to client>
}

A-30 Application Developer’s Guide - Fundamentals

Migrating Precompiler or OCI Applications to TPM Applications
Migrating Precompiler or OCI Applications to TPM Applications
To migrate existing precompiler or OCI applications to a TPM application using the

Oracle XA library, you must do the following:

1. Reorganize the application into a framework of "services".

This means that application clients request services from application servers.

Some TPMs require the application to use the tx_open and tx_close
functions, whereas other TPMs do the logon and logoff implicitly.

If you do not specify the sqlnet parameter in your open string, then the

application uses the default Net8 driver. Thus, you must be sure that the

application server is brought up with the ORACLE_HOME and ORACLE_SID
environment variables properly defined. This is accomplished in a TPM-specific

fashion. See your TPM vendor documentation for instructions on how to

accomplish this.

2. Ensure that the application replaces the regular connect and disconnect

statements.

For example, replace the connect statements EXEC SQL CONNECT (for

precompilers) or OCISessionBegin () (for OCIs) by tx_open (). Replace the

disconnect statements EXEC SQL COMMIT/ROLLBACK RELEASE WORK (for

precompilers), or OCISessionEnd () (for OCIs) by tx_close() . The V7

equivalent for OCISessionBegin () was olon() and for OCISessionEnd (),

ologof ().

3. Ensure that the application replaces the regular commit/rollback statements

and begins the transaction explicitly.

For example, replace the commit/rollback statements EXEC SQL
COMMIT/ROLLBACK WORK (for precompilers), or ocom()/oro l() (for OCIs) by

tx_commit ()/tx_rollback () and start the transaction by calling tx_begin ().

4. Ensure that the application resets the fetch state prior to ending a transaction. In

general, release_cursor=no should be used. Use release_cursor=yes
only when you are certain that a statement will be executed only once.

Table A–3 lists the TPM functions that replace regular Oracle commands when

migrating precompiler or OCI applications to TPM applications.
Oracle XA A-31

Migrating Precompiler or OCI Applications to TPM Applications
Table A–3 TPM Replacement Commands

Regular Oracle Commands TPM Functions

CONNECTuser/password tx_open (possibly implicit)

implicit start of transaction tx_begin

SQL Service that executes the SQL

COMMIT tx_commit

ROLLBACK tx_rollback

disconnect tx_close (possibly implicit)

SET TRANSACTION READ ONLY Illegal
A-32 Application Developer’s Guide - Fundamentals

XA Library Thread Safety
XA Library Thread Safety
If you use a transaction monitor that supports threads, then the Oracle XA library

allows you to write applications that are thread safe. Certain issues must be kept in

mind, however.

A thread of control (or thread) refers to the set of connections to resource managers.

In an unthreaded system, each process could be considered a thread of control,

because each process has its own set of connections to resource managers and each

process maintains its own independent resource manager table.

In a threaded system, each thread has an autonomous set of connections to resource

managers and each thread maintains a private resource manager table. This private

resource manager table must be allocated for each new thread and de-allocated

when the thread terminates, even if the termination is abnormal.

The Open String Specification
The xa_open string parameter, xa_info , provides the clause, Threads=, which

must be specified as true to enable the use of threads by the transaction monitor.

The default is false. Note that, in most cases, threads are created by the transaction

monitor, and the application does not know when a new thread is created.

Therefore, it is advisable to allocate a service context (lda in Version 7) on the stack

within each service that is written for a transaction monitor application. Before

doing any Oracle-related calls in that service, the xaoSvcCtx (sqlld2 for Version

7 OCI) function must be called and the service context initialized. This LDA can

then be used for all OCI calls within that service.

Restrictions
The following restrictions apply when using threads:

■ Any Pro* or OCI code that executes as part of the application server process on

the transaction monitor cannot be threaded unless the transaction monitor is

explicitly told when each new application thread is started. This is typically

accomplished by using a special C compiler provided by the transaction

monitor vendor.

Note: In an Oracle system, once a thread has been started and

establishes a connection, only that thread can use that connection.

No other thread can make a call on that connection.
Oracle XA A-33

XA Library Thread Safety
■ The Pro* statements, EXEC SQL ALLOCATE and EXEC SQL USE are not

supported. Therefore, when threading is enabled, embedded SQL statements

cannot be used across non-XA connections.
A-34 Application Developer’s Guide - Fundamentals

Troubleshooting
Troubleshooting
This section discusses how to find information in case of problems or system failure.

It also discusses trace files and recovery of pending transactions.

Trace Files
The Oracle XA library logs any error and tracing information to its trace file. This

information is useful in supplementing the XA error codes. For example, it can

indicate whether an xa_open failure is caused by an incorrect open string, failure

to find the Oracle Server instance, or a logon authorization failure.

The name of the trace file is:

xa _db_namedate.trc

where db_name is the database name you specified in the open string field DB=db_
name, and date is the date when the information is logged to the trace file.

If you do not specify DB=db_name in the open string, then it automatically defaults to

the name NULL.

The xa_open string DbgFl
Normally, the XA trace file is opened only if an error is detected. The xa_open
string DbgFl provides a tracing facility to record additional detail about the XA

library. By default, its value is zero. It can be set to any combination of the following

values. Note that they are independent, so to get printout from two or more flags,

each must be set.

■ 0x1 Trace the entry and exit to each procedure in the XA interface. This can be

useful in seeing exactly what XA calls the TP Monitor is making and what

transaction identifier it is generating.

■ 0x2 Trace the entry to and exit from other non-public XA library routines.

This is generally of use only to Oracle developers.

■ 0x4 Trace various other "interesting" calls made by the XA library, such as

specific calls to the Oracle Call Interface. This is generally of use only to Oracle

developers.

Trace File Locations
The trace file can be placed in one of the following locations:
Oracle XA A-35

Troubleshooting
■ The trace file can be created in the LogDir directory as specified in the open

string.

■ If you do not specify LogDir in the open string, then the Oracle XA application

attempts to create the trace file in the $ORACLE_HOME/rdbms/log directory, if

it can determine where $ORACLE_HOMEis located.

■ If the Oracle XA application cannot determine where $ORACLE_HOMEis
located, then the trace file is created in the current working directory.

Trace File Examples
Examples of two types of trace files are discussed below:

The example, xa_NULL040292.trc, shows a trace file that was created on April 2,

1992. Its DB field was not specified in the open string when the resource manager

was opened.

The example, xa_Finance121591.trc, shows a trace file was created on December 15,

1991. Its DB field was specified as "Finance" in the open string when the resource

manager was opened.

Each entry in the trace file contains information that looks like this:

1032.12345.2: ORA-01017: invalid username/password; logon denied
1032.12345.2: xaolgn: XAER_INVAL; logon denied

Where "1032" is the time when the information is logged, "12345" is the process ID

(PID), "2" is the resource manager ID, xaolgn is the module name, XAER_INVAL
was the error returned as specified in the XA standard, and ORA-1017 is the Oracle

Server information that was returned.

In-doubt or Pending Transactions
In-doubt or pending transactions are transactions that have been prepared, but not

yet committed to the database.

Generally, the transaction manager provided by the TPM system should resolve any

failure and recovery of in-doubt or pending transactions. However, the DBA may

Note: multiple Oracle XA library resource managers with the

same DB field and LogDir field in their open strings log all trace

information that occurs on the same day to the same trace file.
A-36 Application Developer’s Guide - Fundamentals

Troubleshooting
have to override an in-doubt transaction in certain circumstances, such as when the

in-doubt transaction is:

■ Locking data that is required by other transactions

■ Not resolved in a reasonable amount of time

For more information about overriding in-doubt transactions in the circumstances

described above, or about how to decide whether the in-doubt transaction should

be committed or rolled back, see the TPM documentation.

Oracle Server SYS Account Tables
There are four tables under the Oracle Server SYS account that contain transactions

generated by regular Oracle Server applications and Oracle XA applications. They

are DBA_PENDING_TRANSACTIONS, V$GLOBAL_TRANSACTIONS, DBA_2PC_
PENDING and DBA_2PC_NEIGHBORS

For transactions generated by Oracle XA applications, the following column

information applies specifically to the DBA_2PC_NEIGHBORS table.

■ The DBID column is always xa_orcl

■ The DBUSER_OWNER column is always db_namexa.oracle.com

Remember that the db_name is always specified as DB=db_name in the open string. If

you do not specify this field in the open string, then the value of this column is

NULLxa.oracle.com for transactions generated by Oracle XA applications.

For example, you could use the SQL statement below to obtain more information

about in-doubt transactions generated by Oracle XA applications.

SELECT * FROM Dba_2pc_pending p, Dba_2pc_neighbors n
 WHERE p.Local_tran_id = n.Local_tran_id
 AND
 n.Dbid = ’xa_orcl’;

Alternatively, if you know the format ID used by the transaction processing

monitor, then you can use DBA_PENDING_TRANSACTIONS or V$GLOBAL_
TRANSACTIONS. While DBA_PENDING_TRANSACTIONS gives a list of both active

and failed prepared transactions, V$GLOBAL_TRANSACTIONS gives a list of all

active global transactions.
Oracle XA A-37

Troubleshooting
A-38 Application Developer’s Guide - Fundamentals

Index

Symbols
%ROWTYPE attribute, 10 - 7

used in stored functions, 10 - 8

%TYPE attribute, 10 - 7

A
access

database

granting privileges, 12 - 16

revoking privileges, 12 - 18

objects

sequences, 3 - 37

schema objects

granting privileges, 12 - 17

remote integrity constraints, 5 - 14

revoking privileges, 12 - 19

triggers, 13 - 3, 13 - 48

advantages

object views, 17 - 3

OCI, 1 - 8

AFTER triggers

auditing and, 13 - 35, 13 - 38

correlation names and, 13 - 16

specifying, 13 - 7

ALL_ERRORS view

debugging stored procedures, 10 - 43

ALL_SOURCE view, 10 - 43

allocation

extents, 6 - 17

ALTER CLUSTER command, 3 - 6

ALLOCATE EXTENT option, 6 - 17

ALTER INDEX command, 3 - 6

ALTER SEQUENCE command, 3 - 37

ALTER SESSION command

SERIALIZABLE, 8 - 19, 8 - 26

ALTER TABLE command, 3 - 6, 3 - 9

defining integrity constraints, 5 - 18

DISABLE ALL TRIGGERS option, 13 - 31

DISABLE integrity constraint option, 5 - 23

DROP integrity constraint option, 5 - 29

ENABLE ALL TRIGGERS option, 13 - 30

ENABLE integrity constraint option, 5 - 23

INITRANS parameter, 8 - 26

ALTER TRIGGER command

DISABLE option, 13 - 30

ENABLE option, 13 - 30

altering

storage parameters, 3 - 9

tables, 3 - 9

American National Standards Institute (ANSI)

ANSI-compatible locking, 8 - 19

anonymous PL/SQL blocks

about, 10 - 2

compared to triggers, 10 - 26

ANSI SQL92

FIPS flagger, 8 - 2

application context, 12 - 22

application roles, 12 - 3

applications

calling stored procedures and packages, 10 - 52

roles, 12 - 4

security, 12 - 7

unhandled exceptions in, 10 - 46

arrays, 16 - 28

auditing

triggers and, 13 - 34
Index-1

autonomous routine, 8 - 33

autonomous scope

versus autonomous transaction, 8 - 33

autonomous transactions, 8 - 33

defining, 8 - 41

AUTONOMOUS_TRANSACTION, 8 - 33

B
BEFORE triggers

complex security authorizations, 13 - 48

correlation names and, 13 - 16

derived column values, 13 - 49

specifying, 13 - 7

binary data

RAW and LONG RAW, 4 - 18

blank padding data

performance considerations, 4 - 6

body

triggers, 13 - 14, 13 - 17, 13 - 18, 13 - 20

Boolean expressions, 4 - 27

bulk binds, 10 - 22

DML statements, 10 - 23

FOR loops, 10 - 25

SELECT statements, 10 - 24

usage, 10 - 23

BY REF phrase, 11 - 28

C
CACHE option

CREATE SEQUENCE command, 3 - 41

caches

sequence cache, 3 - 40

sequence numbers, 3 - 36

callback, 11 - 44

example, 11 - 44

restrictions, 11 - 46

cancelling a cursor, 8 - 10

CASCADE option

integrity constraints, 6 - 18

CATPROC.SQL script, 13 - 4, 14 - 2

CC date format, 4 - 12

century, 4 - 10

date format masks, 4 - 8

CHAR datatype, 4 - 2, 4 - 5

column length, 4 - 6

increasing column length, 3 - 9

when to use, 4 - 5

CHARSETFORM property, 11 - 24

CHARSETID property, 11 - 24

CHARTOROWID function, 4 - 25

CHECK constraint

data integrity, 5 - 22

designing, 5 - 16

NOT NULL constraint and, 5 - 16

number of, 5 - 16

restricting nulls using, 5 - 16

restrictions on, 5 - 15

triggers and, 13 - 40, 13 - 47

when to use, 5 - 15

client events, 14 - 5

clusters

allocating extents, 6 - 17

choosing data, 6 - 14, 6 - 15

creating, 6 - 15

dropped tables and, 3 - 10

dropping, 6 - 17

index creation, 6 - 16

integrity constraints and, 6 - 16

keys, 6 - 14

performance considerations, 6 - 15

privileges for creating, 6 - 16

collections, 18 - 13

nesting, 18 - 22

querying, 18 - 13

column objects

storage, 18 - 2

vs. row objects, 18 - 2

columns

accessing in triggers, 13 - 15

default values, 5 - 4

generating derived values with triggers, 13 - 49

granting privileges for selected, 12 - 17

increasing length, 3 - 9

listing in an UPDATE trigger, 13 - 6, 13 - 18

multiple FOREIGN KEY constraints, 5 - 10

number of CHECK constraints limit, 5 - 16

revoking privileges from, 12 - 19

COMMIT command, 8 - 5
Index-2

comparison methods, 16 - 22

comparison operators

blank padding data, 4 - 6

comparing dates, 4 - 9

compile-time errors, 10 - 42

complex object retrieval

for Oracle Call Interface, 19 - 8

composite keys

restricting nulls in, 5 - 16

COMPRESS clause

nested tables, 18 - 18

concurrency, 8 - 23

conditional predicates

trigger bodies, 13 - 14, 13 - 17

consistency

read-only transactions, 8 - 8

constraining tables, 13 - 22

constraints, 16 - 27

composite UNIQUE keys, 5 - 6

on Oracle objects, 18 - 39

REFs, 18 - 10

restriction on stored functions, 10 - 57

SCOPE FOR constraint, 16 - 30, 16 - 34

conversion functions, 4 - 25

TO_CHAR function, 4 - 11, 4 - 12, 4 - 28

TO_DATE function, 4 - 11

TO_LABEL function, 4 - 28

Trusted Oracle Server, 4 - 28

converting data, 4 - 25

ANSI datatypes, 4 - 24

assignments, 4 - 25

expression evaluation, 4 - 27

SQL/DS and DB2 datatypes, 4 - 24

Trusted Oracle Server, 4 - 28

correlation names, 13 - 13, 13 - 15, 13 - 16, 13 - 17

NEW, 13 - 16

OLD, 13 - 16

REFERENCING option and, 13 - 17

when preceded by a colon, 13 - 16

COUNT attribute of collection types, 16 - 24

CREATE CLUSTER command, 3 - 6, 6 - 15

hash clusters, 6 - 20

HASH IS option, 6 - 21

HASHKEYS option, 6 - 21

CREATE INDEX command, 3 - 6, 6 - 5

ON CLUSTER option, 6 - 16

CREATE PACKAGE BODY command, 10 - 14

CREATE PACKAGE command, 10 - 14

CREATE ROLE command, 12 - 11

CREATE SCHEMA command, 3 - 45

privileges required, 3 - 46

CREATE SEQUENCE command

CACHE option, 3 - 36, 3 - 41

examples, 3 - 41

NOCACHE option, 3 - 41

CREATE TABLE command, 3 - 3, 3 - 4, 3 - 6

CLUSTER option, 6 - 16

defining integrity constraints, 5 - 18

INITRANS parameter in, 8 - 26

CREATE TRIGGER command, 13 - 3

REFERENCING option, 13 - 17

CREATE TYPE statement

object types, 16 - 16

varray, 16 - 17

CREATE VIEW command, 3 - 22

OR REPLACE option, 3 - 24

WITH CHECK OPTION, 3 - 22, 3 - 26

creating

clusters, 6 - 15

hash clusters, 6 - 20

indexes, 6 - 5

integrity constraints, 5 - 2

multiple objects, 3 - 45

packages, 10 - 14

sequences, 3 - 41

synonyms, 3 - 43

tables, 3 - 3, 3 - 4

triggers, 13 - 3, 13 - 20

views, 3 - 22

CURRVAL pseudo-column, 3 - 38

restrictions, 3 - 39

cursor variables, 10 - 38

declaring and opening, 10 - 38

cursors, 8 - 9

cancelling, 8 - 10

closing, 8 - 10

maximum number of, 8 - 9

pointers to, 10 - 38

private SQL areas and, 8 - 9
Index-3

D
data blocks

factors affecting size of, 3 - 6

shown in ROWIDs, 4 - 20

data control in OO4O, 1 - 19

data conversion, 4 - 25

ANSI datatypes, 4 - 24

assignments, 4 - 25

expression evaluation, 4 - 27

SQL/DS and DB2 datatypes, 4 - 24

Trusted Oracle labels, 4 - 28

data dictionary

compile-time errors, 10 - 43

dropped tables and, 3 - 10

integrity constraints in, 5 - 32

procedure source code, 10 - 43

schema object views, 3 - 50

data object number

extended ROWID, 4 - 19, 4 - 20

database

administrator

application administrator vs., 12 - 3

global name in a distributed system, 3 - 46

security

applications and, 12 - 3

schemas and, 12 - 9

database event notification, 14 - 1, 15 - 5

datafiles

shown in ROWIDs, 4 - 20

datatypes, 4 - 2

ANSI/ISO, 4 - 24

CHAR, 4 - 2, 4 - 5

choosing a character datatype, 4 - 5

column lengths for character types, 4 - 6

data conversion, 4 - 25

DATE, 4 - 8, 4 - 10

DB2, 4 - 24

LONG, 4 - 15

LONG RAW, 4 - 16, 4 - 18

MLSLABEL, 4 - 23

NCHAR, 4 - 2, 4 - 5

NUMBER, 4 - 7

NVARCHAR2, 4 - 2, 4 - 5

RAW, 4 - 18

ROWID, 4 - 18

SQL/DS, 4 - 24

summary of datatypes, 4 - 2

VARCHAR, 4 - 5

VARCHAR2, 4 - 2, 4 - 5

date arithmetic, 4 - 27

DATE datatype, 4 - 8

centuries, 4 - 10

data conversion, 4 - 25

DBA_ERRORS view

debugging stored procedures, 10 - 43

DBA_ROLE_PRIVS view, 12 - 4

DBA_SOURCE view, 10 - 43

DBMS_LOCK package, 8 - 21

DBMS_SQL package

advantages of, 9 - 17

bulk SQL, 9 - 17

client-side programs, 9 - 17

DESCRIBE, 9 - 17

differences with native dynamic SQL, 9 - 12

multiple row updates and deletes, 9 - 18

RETURNING clause, 9 - 18

See Also dynamic SQL

DDL statements

package state and, 10 - 15

DEBUG_EXTPROC package, 11 - 48

debugging

stored procedures, 10 - 49

triggers, 13 - 29

default

column values, 5 - 4, 10 - 57

maximum savepoints, 8 - 6

parameters in stored functions, 10 - 60

PCTFREE option, 3 - 4

PCTUSED option, 3 - 6

role, 12 - 13

defining autonomous transactions, 8 - 41

DELETE command

column values and triggers, 13 - 16

data consistency, 8 - 11

triggers for referential integrity, 13 - 43, 13 - 44

dependencies

among PL/SQL library objects, 10 - 28

in stored triggers, 13 - 27

schema objects
Index-4

trigger management, 13 - 20

the timestamp model, 10 - 29

dereferencing, 16 - 24

implicit, 16 - 24

DESC function, 6 - 8

DETERMINISTIC keyword, 10 - 63

disabling

integrity constraints, 5 - 22

triggers, 13 - 30

distributed databases

referential integrity and, 5 - 14

remote stored procedures, 10 - 54, 10 - 55

triggers and, 13 - 20

distributed queries

handling errors, 10 - 47

DML_LOCKS parameter, 8 - 11

DROP CLUSTER command, 6 - 18, 6 - 21

DROP INDEX command, 6 - 6

privileges required, 6 - 6

DROP ROLE command, 12 - 16

DROP TABLE command, 3 - 10

DROP TRIGGER command, 13 - 29

dropping

clusters, 6 - 17

hash clusters, 6 - 21

indexes, 6 - 6

integrity constraints, 5 - 29

packages, 10 - 11

procedures, 10 - 11

roles, 12 - 16

sequences, 3 - 41

synonyms, 3 - 44

tables, 3 - 10

triggers, 13 - 29

views, 3 - 27

dynamic SQL

application development languages, 9 - 24

DML statements, 9 - 3

invoker-rights, 9 - 8

invoking PL/SQL blocks, 9 - 7

optimization, 9 - 6

queries, 9 - 4

scenario, 9 - 9

See Also DBMS_SQL package

See Also native dynamic SQL

usage, 9 - 3

dynamically modified statement, 12 - 27

E
embedded SQL, 10 - 2

enabling

integrity constraints, 5 - 22

at creation, 5 - 20, 5 - 22

reporting exceptions, 5 - 25

when violations exist, 5 - 21

roles, 12 - 14

triggers, 13 - 30

errors

application errors raised by Oracle packages, 10

- 44

creating views with errors, 3 - 23

remote procedures, 10 - 47

user-defined, 10 - 44, 10 - 45

establishing, 12 - 1

event attribute functions, 14 - 2

event publication, 13 - 55, 14 - 1

advanced queueing, 13 - 54

context, 13 - 55

error handling, 13 - 55

execution model, 13 - 55

framework, 13 - 54

triggering, 13 - 54

example, purchase order, 16 - 3

exception handlers

in PL/SQL, 10 - 2

exceptions

anonymous blocks, 10 - 3

during trigger execution, 13 - 18

effects on applications, 10 - 46

remote procedures, 10 - 47

unhandled, 10 - 46

exclusive locks

LOCK TABLE command, 8 - 16

explicit locking

manual locking, 8 - 11

Export

Oracle objects, 18 - 41

extended ROWID format, 4 - 19

extents
Index-5

allocating, 6 - 17

dropped tabled and, 3 - 10

external procedure, 11 - 3

DEBUG_EXTPROC package, 11 - 48

debugging, 11 - 47

maximum number of parameters, 11 - 50

restrictions, 11 - 50

specifying datatypes, 11 - 16

extproc process, 11 - 33

F
fine-grained access control, 12 - 26

FIPS flagger

interactive SQL statements and, 8 - 2

FIXED_DATE initialization parameter, 4 - 9

FOR EACH ROW clause, 13 - 12

foreign key

representing many-to-one entity relationship

with, 16 - 7

FOREIGN KEY constraint

defining, 5 - 30, 5 - 31

enabling, 5 - 22, 5 - 31

NOT NULL constraint and, 5 - 9

number of rows referencing parent table, 5 - 9

one-to-many relationship, 5 - 9

one-to-one relationship, 5 - 9

UNIQUE key constraint and, 5 - 9

updating tables, 5 - 10, 5 - 11

format masks

TO_DATE function, 4 - 8

function-based indexes

returning values of type methods, 18 - 32

functions

See Also PL/SQL

G
GRANT command, 12 - 16

object privileges, 12 - 17

system privileges, 12 - 16

when in effect, 12 - 22

granting privileges and roles, 12 - 16

H
hash clusters

choosing key, 6 - 20

creating, 6 - 20

dropping, 6 - 21

root block, 6 - 20

when to use, 6 - 20

HEXTORAW function, 4 - 25

hiding PL/SQL code, 10 - 27

I
implicit dereferencing, 16 - 24

Import

Oracle objects, 18 - 41

IN OUT parameter mode, 10 - 6

IN parameter mode, 10 - 6

incomplete object types, 16 - 16

indexes

creating, 6 - 5

dropped tables and, 3 - 10

dropping, 6 - 6

function-based, 6 - 6

guidelines, 6 - 3

order of columns, 6 - 4

privileges, 6 - 5

specifying PCTFREE for, 3 - 6

SQL*Loader and, 6 - 2

temporary segments and, 6 - 2

when to create, 6 - 2

index-organized tables

storing nested tables as, 18 - 17

INDICATOR property, 11 - 23

inheritance, 18 - 33

dual subtype/super-type reference, 18 - 38

subtype contains super-type, 18 - 35

super-type contains all subtypes, 18 - 37

initialization parameters

DML_LOCKS, 8 - 11

OPEN_CURSORS, 8 - 9

REMOTE_DEPENDENCIES_MODE, 10 - 35

ROW_LOCKING, 8 - 11, 8 - 19

SERIALIZABLE, 8 - 11

INITRANS parameter, 8 - 26
Index-6

INSERT command

column values and triggers, 13 - 16

read consistency, 8 - 11

INSTEAD OF triggers, 13 - 7

object views, 17 - 16, 17 - 17

on nested table view columns, 13 - 16

integrity constraints

application uses, 5 - 2

clusters and, 6 - 16

defining, 5 - 18

disabling, 5 - 20, 5 - 21, 5 - 22, 5 - 23

dropping, 5 - 29

enabling, 5 - 21

enabling at creation, 5 - 20

enabling when violations exist, 5 - 21

examples, 5 - 2

exceptions to, 5 - 25

listing definitions of, 5 - 32

naming, 5 - 20

performance considerations, 5 - 3

privileges required for creating, 5 - 19

restrictions for adding or dropping, 5 - 19

triggers vs., 13 - 2, 13 - 40

violations, 5 - 21

when to disable, 5 - 21

when to use, 5 - 2

interactive block execution, 10 - 51

invalid views, 3 - 27

invoker-rights

dynamic SQL, 9 - 8

object types, 18 - 30

ISOLATION LEVEL

changing, 8 - 26

SERIALIZABLE, 8 - 26

J
Java

in the RDBMS, 1 - 29

Oracle JDBC and Oracle objects, 19 - 19

Oracle SQLJ and Oracle objects, 19 - 19

with Oracle objects, 19 - 19

JDBCSee Oracle JDBC

join view, 3 - 28

DELETE statements, 3 - 31

key-preserved tables in, 3 - 29

mergeable, 3 - 29

modifying

rule for, 3 - 30

UPDATE statements, 3 - 30

when modifiable, 3 - 28

JPublisher, 1 - 35

K
key-preserved tables

in join views, 3 - 29

in outer joins, 3 - 34

keys

foreign keys, 5 - 30, 16 - 7

unique

composite, 5 - 6

L
labels

data conversion, 4 - 28

MLSLABEL datatype, 4 - 23

library units

remote dependencies, 10 - 28

loading

Oracle objects, 18 - 41

loadjava utility, 1 - 37

LOB datatype

support in OO4O, 1 - 17

use in triggers, 13 - 20

LOB support in OO4O, 1 - 17

locators, 16 - 33, 18 - 20

LOCK TABLE command, 8 - 12

locking

indexed foreign keys and, 5 - 11

manual (explicit), 8 - 11

row locking mode, 8 - 19

serializable mode, 8 - 19

unindexed foreign keys and, 5 - 10

locks

distributed, 8 - 11

LOCK TABLE command, 8 - 12, 8 - 13

privileges for manual acquirement, 8 - 16

user locks, 8 - 21
Index-7

UTLLOCKT.SQL script, 8 - 22

LONG datatype, 4 - 15

restrictions on, 4 - 16

use in triggers, 13 - 20

LONG RAW datatype, 4 - 16, 4 - 18

restrictions on, 4 - 16

use in triggers, 13 - 20

LOWER function, 6 - 8

M
manual locking, 8 - 11

LOCK TABLE command, 8 - 12

map methods, 16 - 19, 18 - 8

MAX_ENABLED_ROLES parameter

default roles and, 12 - 13

MAXTRANS option, 3 - 6

memory

scalability, 10 - 70

methods, 18 - 27

choosing a language for, 18 - 27

comparison, 16 - 22

function-based indexes, 18 - 32

map, 16 - 19, 18 - 8

of object types, 16 - 23

order, 16 - 19, 16 - 25, 18 - 8

static, 18 - 29

migration

ROWID format, 4 - 21

MLSLABEL datatype, 4 - 23

modes

of parameters, 10 - 6

modifiable join view

definition of, 3 - 28

mutating tables, 13 - 22

N
name resolution, 3 - 46

native dynamic SQL

advantages of, 9 - 13

differences with DBMS_SQL package, 9 - 12

fetching into records, 9 - 16

performance, 9 - 15

See Also dynamic SQL

user-defined types, 9 - 16

NCHAR datatype, 4 - 2, 4 - 5

nested tables, 18 - 13, 18 - 16

COMPRESS clause, 18 - 18

creating indexes on, 18 - 19

DML operations on, 18 - 21

in an index-organized table, 18 - 17

querying, 16 - 20

returning as locators, 16 - 33, 18 - 20

storage, 16 - 32, 18 - 16

uniqueness in, 16 - 33

vs VARRAY, 16 - 17, 16 - 20

NESTED_TABLE_ID, 16 - 32, 18 - 19

NEW correlation name, 13 - 16

NEXTVAL pseudo-column, 3 - 38

restrictions, 3 - 39

NLS_DATE_FORMAT parameter, 4 - 8

NLSSORT order, and indexes, 6 - 8

NOCACHE option

CREATE SEQUENCE statement, 3 - 41

NOT NULL constraint

CHECK constraint and, 5 - 16

data integrity, 5 - 22

when to use, 5 - 3

NOWAIT option, 8 - 12

NUMBER datatype, 4 - 7

NVARCHAR2 datatype, 4 - 2, 4 - 5

O
object cache

flushing an object, 19 - 13

object columns, indexes on, 6 - 7

object identifiers, 16 - 28

primary-key based, 18 - 8

REFs, 18 - 9

storage, 18 - 8

object support in OO4O, 1 - 17

object tables, 16 - 26, 18 - 8

deleting values, 16 - 41

inserting values, 16 - 36

querying, 16 - 39

object types

column objects vs. row objects, 18 - 2

comparison methods for, 16 - 22
Index-8

incomplete, 16 - 16

invoker-rights, 18 - 30

methods of, 16 - 23

object views, 17 - 2

advantages, 17 - 3

updating, 17 - 15

object-relational model, 16 - 1

comparing objects, 18 - 8

constraints, 18 - 39

design considerations, 18 - 1

embedded objects, 16 - 28

implementing with object tables, 16 - 16

inheritance, 18 - 33

limiations of relational model, 16 - 13

methods, 18 - 27

new object format, 18 - 33

partitioning, 16 - 41

programmatic environments for, 19 - 1

replication, 18 - 33

type evolution, 18 - 40

objects

collection objects, 17 - 6

in columns, 17 - 4

object references, 17 - 8

row objects and object identifiers, 17 - 6

objects, schema

granting privileges, 12 - 17

listing information, 3 - 50

name resolution, 3 - 46

renaming, 3 - 48

revoking privileges, 12 - 19

when revoking object privileges, 12 - 21

OCI

advantages, 1 - 8

object cache, 17 - 23

overview, 1 - 7

parts of, 1 - 8

OID, See object identifiers

OLD correlation name, 13 - 16

one-to-many relationship

with foreign keys, 5 - 9

one-to-one relationship

with foreign keys, 5 - 9

OO4O

features, 1 - 12

Oracle Objects for OLE, 1 - 11

OPEN_CURSORS parameter, 8 - 9

operating system

roles and, 12 - 15

OR REPLACE clause

for creating packages, 10 - 14

OraAQ object, 1 - 16

OraAQAgent object, 1 - 17

OraAQMsg object, 1 - 17

OraBFILE object, 1 - 18

OraBLOB object, 1 - 18

Oracle Call Interface, 10 - 2

applications, 10 - 4

associative access, 19 - 2

cancelling cursors, 8 - 10

closing cursors, 8 - 10

complex object retrieval (COR), 19 - 8

controlling object cache size, 19 - 5

creating a new object, 19 - 10

deleting an object, 19 - 12

for Oracle objects

building a program, 19 - 4

initializing object manipulation, 19 - 5

lock options, 19 - 7

locking an object, 19 - 12

navigational access, 19 - 3

object cache, 19 - 3

flushing an object, 19 - 13

pin options, 19 - 6

pinning and unpinning objects, 19 - 5

See OCI

updating an object, 19 - 12

with Oracle objects, 19 - 2

Oracle Data Control (ODC), 1 - 19

Oracle errors, 10 - 3

Oracle JDBC

accessing Oracle object data, 19 - 19

definition, 1 - 26

example, 1 - 27

OCI driver, 1 - 26

Oracle extensions, 1 - 27

server driver, 1 - 27

stored procedures, 1 - 29

thin driver, 1 - 26

Oracle Objects for OLE
Index-9

automation server, 1 - 12

C++ Class Library, 1 - 19

data control, 1 - 19

LOB and object support, 1 - 17

object model, 1 - 13

OraCollection interface, 19 - 18

OraObject interface, 19 - 17

OraRef interface, 19 - 17

overview, 1 - 11

with Oracle objects, 19 - 16

Oracle objects, See object-relational model

Oracle Precompilers

calling stored procedures and packages, 10 - 52

Oracle SQLJ

advantages over JDBC, 1 - 32

compiling custom Java classes, 19 - 24

creating custom Java classes, 19 - 24

custom Java classess, 19 - 21

CustomDatum interface, 19 - 21

definition, 1 - 31

design, 1 - 32

example, 1 - 34

in the server, 1 - 37

JPublisher, 19 - 24

Oracle object methods, 19 - 23

stored programs, 1 - 37

strongly types objects, 19 - 25

support for Oracle objects, 19 - 19

weakly types objects, 19 - 26

Oracle supplied packages, 10 - 16

OraCLOB object, 1 - 18

OraCollection interface, 19 - 18

OraDatabase object, 1 - 14

OraDynaset object, 1 - 15

OraField object, 1 - 15

OraMeta Data object, 1 - 15

OraObject interface, 19 - 17

OraParamArray object, 1 - 16

OraParameter object, 1 - 15

OraRef interface, 19 - 17

OraServer object, 1 - 14

OraSession object, 1 - 13

OraSQLStmt object, 1 - 16

order methods, 16 - 19, 16 - 25, 18 - 8

OUT parameter mode, 10 - 6

outer joins, 3 - 33

key-preserved tables in, 3 - 34

overloading

of packaged functions, 10 - 70

stored procedure names, 10 - 12

using RESTRICT_REFERENCES, 10 - 70

P
package body, 10 - 12

package specification, 10 - 12

packages

creating, 10 - 14

DBMS_OUTPUT

example of use, 10 - 3

DEBUG_EXTPROC, 11 - 48

dropping, 10 - 11

in PL/SQL, 10 - 12

naming of, 10 - 15

privileges for execution, 10 - 53

privileges required to create, 10 - 15

privileges required to create procedures in, 10 -

10

serially reusable packages, 10 - 70

session state and, 10 - 15

synonyms, 10 - 56

where documented, 10 - 16

parallel query

restrictions for Oracle objects, 18 - 41

parallel server

distributed locks, 8 - 11

sequence numbers and, 3 - 37

PARALLEL_ENABLE keyword, 10 - 63

parameter

default values, 10 - 9

with stored functions, 10 - 60

modes, 10 - 6

parse tree, 13 - 27

partitioning

Oracle objects, 16 - 41

Pascal Calling Standard, 11 - 9

pcode

when generated for triggers, 13 - 27

PCTFREE storage parameter

altering, 3 - 9
Index-10

block overhead and, 3 - 7

default, 3 - 4

guidelines for setting, 3 - 4, 3 - 5, 3 - 6

indexes for, 3 - 6

non-clustered tables, 3 - 5

PCTUSED storage parameter

altering, 3 - 9

block overhead and, 3 - 7

default, 3 - 6

guidelines for setting, 3 - 6

non-clustered tables, 3 - 6

performance

clusters, 6 - 15

index column order, 6 - 4

native dynamic SQL, 9 - 15

ROW_LOCKING parameter, 8 - 19

SERIALIZABLE option, 8 - 19

PL/SQL, 10 - 2

advantages, 1 - 3

anonymous blocks, 10 - 2

calling remote stored procedures, 10 - 55

cursor variables, 10 - 38

dependencies among library units, 10 - 28

exception handlers, 10 - 2

features, 1 - 3

functions

arguments, 10 - 60

overloading, 10 - 70

parameter default values, 10 - 60

purity level, 10 - 69

RESTRICT_REFERENCES pragma, 10 - 66

using, 10 - 57

hiding source code, 10 - 27

invoking with dynamic SQL, 9 - 7

objects, 1 - 5

packages, 10 - 12

program units, 10 - 2

dropped tables and, 3 - 10

replaced views and, 3 - 25

RAISE statement, 10 - 45

sample code, 1 - 2

serially reusable packages, 10 - 70

tables, 10 - 9

of records, 10 - 9

trigger bodies, 13 - 14, 13 - 15

user-defined errors, 10 - 45

wrapper to hide code, 10 - 27

pragma, 8 - 33, 8 - 41, 16 - 22

RESTRICT_REFERENCES pragma, 10 - 66

SERIALLY_REUSABLE pragma, 10 - 70, 10 - 71

precompilers, 10 - 52

applications, 10 - 4

preface

Send Us Your Comments, xxi

PRIMARY KEY constraint

choosing a primary key, 5 - 5

disabling, 5 - 22

enabling, 5 - 22

multiple columns in, 5 - 6

UNIQUE key constraint vs., 5 - 6

private SQL areas

cursors and, 8 - 9

privileges

altering sequences, 3 - 37

altering tables, 3 - 10

cluster creation, 6 - 16

creating integrity constraints, 5 - 19

creating tables, 3 - 8

creating triggers, 13 - 25

dropping a view, 3 - 27

dropping sequences, 3 - 42

dropping tables, 3 - 11

dropping triggers, 13 - 29

enabling roles and, 12 - 13

granting, 12 - 16, 12 - 17

index creation, 6 - 5

managing, 12 - 10, 12 - 16

manually acquiring locks, 8 - 16

on selected columns, 12 - 19

recompiling triggers, 13 - 28

renaming objects, 3 - 48

replacing views, 3 - 25

revoking, 12 - 16, 12 - 18, 12 - 19

sequence creation, 3 - 37

stored procedure execution, 10 - 53

synonym creation, 3 - 43

triggers, 13 - 25

using a view, 3 - 27

using sequences, 3 - 41

view creation, 3 - 24
Index-11

Pro*C/C++

applications, 1 - 20

associative access, 19 - 14

converting between Oracle and C types, 19 - 15

features, 1 - 21

navigational access, 19 - 14

new features, 1 - 22

with Oracle objects, 19 - 14

Pro*COBOL

applications, 1 - 23

features, 1 - 24

new features, 1 - 25

procedures

called by triggers, 13 - 20

external, 11 - 3

program units in PL/SQL, 10 - 2

programmatic environments

for Oracle objects, 19 - 1

Java, 19 - 19

OCI, 19 - 2

Oracle Objects for OLE, 19 - 16

Pro*C/C++, 19 - 14

property

CHARSETFORM, 11 - 24

CHARSETID, 11 - 24

INDICATOR, 11 - 23

pseudocolumns

modifying views, 13 - 8

PUBLIC user group

granting and revoking privileges to, 12 - 21

procedures and, 12 - 22

publish-subscribe

advanced queueing, 15 - 3

client notifications, 15 - 3

concepts, 15 - 4

database events, 15 - 3

examples, 15 - 6

introduction, 15 - 2

purchase order example, 16 - 3

purity level, 10 - 61

Q
queries

errors in distributed queries, 10 - 47

set memebership

optimizing, 18 - 20

unnesting, 18 - 13

VARRAY, 18 - 16

R
RAISE statement, 10 - 45

RAISE_APPLICATION_ERROR procedure, 10 - 44

remote procedures, 10 - 47

raising exceptions

triggers, 13 - 18

RAW datatype, 4 - 18

RAWTOHEX function, 4 - 25

read-only transactions, 8 - 8

REF columns, indexes on, 6 - 7

REFERENCING option, 13 - 17

referential integrity

distributed databases and, 5 - 14

one-to-many relationship, 5 - 9

one-to-one relationship, 5 - 9

privileges required to create foreign keys, 5 - 30

self-referential constraints, 13 - 44

triggers and, 13 - 41, 13 - 43, 13 - 44, 13 - 45

REFs, 18 - 9

constraints on, 18 - 10

dereferencing of, 16 - 24

implicit dereferencing of, 16 - 24

indexing, 18 - 12

object identifiers, 16 - 28

scoped, 18 - 10

storage, 18 - 10

WITH ROWID option, 18 - 11

remote dependencies, 10 - 28

signatures, 10 - 29

specifying timestamps or signatures, 10 - 35

remote exception handling, 10 - 47, 13 - 18

REMOTE_DEPENDENCIES_MODE parameter, 10

- 35

RENAME command, 3 - 48

renaming objects, 3 - 48

repeatable reads, 8 - 8, 8 - 11

resource manager events, 14 - 4

RESTRICT_REFERENCES pragma

syntax for, 10 - 66
Index-12

using to control side effects, 10 - 66

restrictions

system triggers, 13 - 24

returning nested tables as, 16 - 33, 18 - 20

reusable packages, 10 - 70

REVOKE command, 12 - 18

when in effect, 12 - 22

revoking privileges and roles

on selected columns, 12 - 19

REVOKE command, 12 - 18

RNDS argument, 10 - 67

RNPS argument, 10 - 67

ROLE_SYS_PRIVS view, 12 - 4

ROLE_TAB_PRIVS view, 12 - 4

roles

ADMIN OPTION and, 12 - 17

advantages, 12 - 4

application, 12 - 3, 12 - 4, 12 - 7, 12 - 10

application security policy, 12 - 3, 12 - 7

creating, 12 - 11

default, 12 - 13

dropping, 12 - 16

enabling, 12 - 4, 12 - 14

GRANT and REVOKE commands, 12 - 15

granting, 12 - 16

managing, 12 - 10

operating system granting of, 12 - 15

privileges for creating, 12 - 12

SET ROLE command, 12 - 15

user, 12 - 4, 12 - 7, 12 - 10

user privileges and enabling, 12 - 13

when to enable, 12 - 12

WITH GRANT OPTION and, 12 - 18

ROLLBACK command, 8 - 6

rolling back transactions

to savepoints, 8 - 6

routines

autonomous, 8 - 33

external, 11 - 3

service, 11 - 35

row locking

manually locking, 8 - 17

row objects

storage, 18 - 8

row triggers

defining, 13 - 12

REFERENCING option, 13 - 17

timing, 13 - 7

UPDATE statements and, 13 - 6, 13 - 18

ROW_LOCKING parameter, 8 - 11, 8 - 19

ROWID datatype, 4 - 18

extended ROWID format, 4 - 19

migration, 4 - 21

ROWIDTOCHAR function, 4 - 25

ROWLABEL column, 4 - 23

rows

chaining across blocks, 3 - 5

format, 3 - 2

header, 3 - 2

shown in ROWIDs, 4 - 20

size, 3 - 2

violating integrity constraints, 5 - 21

ROWTYPE_MISMATCH exception, 10 - 41

RR date format, 4 - 11

RS locks

LOCK TABLE command, 8 - 13

run-time error handling, 10 - 44

RX locks

LOCK TABLE command, 8 - 13

S
S locks

LOCK TABLE command, 8 - 13

SAVEPOINT command, 8 - 6

savepoints

maximum number of, 8 - 6

rolling back to, 8 - 6

scalability

serially reusable packages, 10 - 70

schemas, 12 - 9

SCOPE FOR constraint, 16 - 30, 16 - 34

scope, autonomous, 8 - 33

security

application context, 12 - 22

fine-grained access control, 12 - 26

policy for applications, 12 - 3, 12 - 7

roles, advantages, 12 - 4

table- or view-based, 12 - 26

security policy, 12 - 1
Index-13

SELECT command

read consistency, 8 - 11

SELECT ... FOR UPDATE, 8 - 17

Send Us Your Comments

boilerplate, xxi

SEQUENCE_CACHE_ENTRIES parameter, 3 - 40

sequences

accessing, 3 - 37

altering, 3 - 37

caching numbers, 3 - 36

caching sequence numbers, 3 - 40

creating, 3 - 36, 3 - 41

CURRVAL, 3 - 37, 3 - 39

dropping, 3 - 41

initialization parameters, 3 - 36

NEXTVAL, 3 - 38

parallel server, 3 - 37

privileges for creating, 3 - 37

privileges to alter, 3 - 37

privileges to drop, 3 - 42

privileges to use, 3 - 41

reducing serialization, 3 - 38

SERIALIZABLE option, 8 - 19

for ISOLATION LEVEL, 8 - 26

SERIALIZABLE parameter, 8 - 11

serializable transactions, 8 - 23

serially reusable PL/SQL packages, 10 - 70

SERIALLY_REUSABLE pragma, 10 - 71

service routine, 11 - 35

examples, 11 - 35

sessions

package state and, 10 - 15

SET ROLE command, 12 - 4, 12 - 14

when using operating system roles, 12 - 15

SET TRANSACTION command, 8 - 8

ISOLATION LEVEL clause, 8 - 26

SERIALIZABLE, 8 - 19, 8 - 26

SGA

See Also system global area

share locks (S)

LOCK TABLE command, 8 - 13

share row exclusive locks (SRX)

LOCK TABLE command, 8 - 15

side effects, 10 - 6, 10 - 61

signatures

PL/SQL library unit dependencies, 10 - 28

to manage remote dependencies, 10 - 29

SORT_AREA_SIZE parameter

index creation and, 6 - 2

SQL statements

execution, 8 - 2

in trigger bodies, 13 - 15, 13 - 20

not allowed in triggers, 13 - 20

privileges required for, 12 - 11

when constraint checking occurs, 5 - 18

SQL*Loader

indexes and, 6 - 2

SQL*Module

applications, 10 - 4

SQL*Plus

anonymous blocks, 10 - 4

compile-time errors, 10 - 42

invoking stored procedures, 10 - 50

loading a procedure, 10 - 10

SET SERVEROUTPUT ON command, 10 - 3

SHOW ERRORS command, 10 - 42

SQLJSee Oracle SQLJ

SQLStmt object, 1 - 16

SRX locks

LOCK Table command, 8 - 15

standards

ANSI, 8 - 19

state

session, of package objects, 10 - 15

statement triggers

conditional code for statements, 13 - 17

row evaluation order, 13 - 21

specifying SQL statement, 13 - 5

timing, 13 - 7

trigger evaluation order, 13 - 21

UPDATE statements and, 13 - 6, 13 - 18

valid SQL statements, 13 - 20

storage parameters

PCTFREE, 3 - 9

PCTUSED, 3 - 9

STORE AS clause, 16 - 32

stored functions, 10 - 5

creating, 10 - 9

stored procedures, 10 - 5

argument values, 10 - 53
Index-14

creating, 10 - 9

distributed query creation, 10 - 47

exceptions, 10 - 44, 10 - 45

invoking, 10 - 50

names of, 10 - 5

overloading names of, 10 - 12

parameter

default values, 10 - 9

privileges, 10 - 53

remote, 10 - 54

remote objects and, 10 - 55

storing, 10 - 9

synonyms, 10 - 56

using privileges granted to PUBLIC, 12 - 22

synonyms

creating, 3 - 43

dropped tables and, 3 - 10

dropping, 3 - 44

privileges, 3 - 43

stored procedures and packages, 10 - 56

using, 3 - 43

SYSDATE function, 4 - 9

system events, 14 - 1

attributes, 14 - 2

client events, 14 - 5

resource manager events, 14 - 4

tracking, 13 - 52, 14 - 1

system global area

holds sequence number cache, 3 - 40

system-specific Oracle documentation, 13 - 4

PL/SQL wrapper, 10 - 27

T
table- or view-based security, 12 - 26

TABLE syntax, 18 - 13

tables

altering, 3 - 9

constraining, 13 - 22

creating, 3 - 3, 3 - 4

designing, 3 - 3

dropping, 3 - 10

guidelines, 3 - 2, 3 - 4

in PL/SQL, 10 - 9

increasing column length, 3 - 9

key-preserved, 3 - 29

location, 3 - 4

mutating, 13 - 22

privileges for creation, 3 - 8

privileges for dropping, 3 - 11

privileges to alter, 3 - 10

schema of clustered, 6 - 16

specifying PCTFREE for, 3 - 5

specifying PCTUSED for, 3 - 6

specifying tablespace, 3 - 4

truncating, 3 - 10

tables, object, See object tables

temporary segments

index creation and, 6 - 2

third generation language, 10 - 2

timestamps

PL/SQL library unit dependencies, 10 - 28

TO_CHAR function, 4 - 25

CC date format, 4 - 12

converting Trusted Oracle labels, 4 - 28

RR date format, 4 - 11

TO_DATE function, 4 - 8, 4 - 25

RR date format, 4 - 11

TO_LABEL function

converting Trusted Oracle labels, 4 - 28

TO_NUMBER function, 4 - 25

transactions

autonomous, 8 - 33

manual locking, 8 - 11

read-only, 8 - 8

serializable, 8 - 23

SET TRANSACTION command, 8 - 8

triggers

about, 10 - 26

accessing column values, 13 - 15

AFTER, 13 - 7, 13 - 16, 13 - 35, 13 - 38

auditing with, 13 - 34, 13 - 36

BEFORE, 13 - 7, 13 - 16, 13 - 48, 13 - 49

body, 13 - 14, 13 - 17, 13 - 18, 13 - 20

check constraints, 13 - 47, 13 - 48

client events, 14 - 5

column list in UPDATE, 13 - 6, 13 - 18

compiled, 13 - 27

conditional predicates, 13 - 14, 13 - 17

creating, 13 - 3, 13 - 20, 13 - 25
Index-15

data access restrictions, 13 - 48

debugging, 13 - 29

designing, 13 - 2

disabling, 13 - 30

distributed query creation, 10 - 47

dropped tables and, 3 - 10

enabling, 13 - 30

error conditions and exceptions, 13 - 18

events, 13 - 5

examples, 13 - 34, 13 - 36, 13 - 38, 13 - 41, 13 - 47,

13 - 48, 13 - 50

FOR EACH ROW clause, 13 - 12

generating derived column values, 13 - 49

illegal SQL statements, 13 - 20

INSTEAD OF triggers, 13 - 7

integrity constraints vs., 13 - 2, 13 - 40

listing information about, 13 - 32

migration issues, 13 - 28

modifying, 13 - 29

multiple same type, 13 - 21

mutating tables and, 13 - 22

naming, 13 - 5

package variables and, 13 - 21

prerequisites before creation, 13 - 4

privileges, 13 - 25

to drop, 13 - 29

procedures and, 13 - 20

recompiling, 13 - 28

REFERENCING option, 13 - 17

referential integrity and, 13 - 41, 13 - 43, 13 - 44,

13 - 45

remote dependencies and, 13 - 20

remote exceptions, 13 - 18

resource manager events, 14 - 4

restrictions, 13 - 13, 13 - 20

row, 13 - 12

row evaluation order, 13 - 21

scan order, 13 - 21

stored, 13 - 27

system triggers, 13 - 4

on DATABASE, 13 - 4

on SCHEMA, 13 - 4

trigger evaluation order, 13 - 21

use of LONG, LONG RAW, and LOB

datatypes, 13 - 20

username reported in, 13 - 25

WHEN clause, 13 - 13

TRUNC function, 4 - 9

TRUNCATE TABLE command, 3 - 10

TRUST keyword, 10 - 68

Trusted Oracle Server

converting labels, 4 - 28

MLSLABEL datatype, 4 - 23

tuning

using LONGs, 4 - 17

type evolution, 18 - 40

U
unhandled exceptions, 10 - 46

UNIQUE key constraints

combining with NOT NULL constraint, 5 - 4

composite keys and nulls, 5 - 6

disabling, 5 - 22

enabling, 5 - 22

PRIMARY KEY constraint vs., 5 - 6

when to use, 5 - 6

unnesting queries, 18 - 13

UPDATE command

column values and triggers, 13 - 16

data consistency, 8 - 11

triggers and, 13 - 6, 13 - 18

triggers for referential integrity, 13 - 43, 13 - 44

updating tables

with parent keys, 5 - 10, 5 - 11

UPPER function, 6 - 8

USER function, 5 - 4

user locks

requesting, 8 - 21

USER_ERRORS view

debugging stored procedures, 10 - 43

USER_SOURCE view, 10 - 43

user-defined datatypes, See object-relational model

user-defined errors, 10 - 44, 10 - 45

usernames

as reported in a trigger, 13 - 25

schemas and, 12 - 9

users

dropped roles and, 12 - 16

enabling roles for, 12 - 4
Index-16

PUBLIC group, 12 - 21

restricting application roles, 12 - 7

UTLEXCPT.SQL file, 5 - 25

UTLLOCKT.SQL script, 8 - 22

V
VARCHAR datatype, 4 - 5

VARCHAR2 datatype, 4 - 2, 4 - 5

column length, 4 - 6

when to use, 4 - 5

VARRAY, 18 - 13, 18 - 15

accessing, 18 - 15

querying, 18 - 16

See Also arrays

storage, 18 - 15

updating, 18 - 16

vs nested tables, 16 - 17, 16 - 20

views

containing expressions, 13 - 8

creating, 3 - 22

creating with errors, 3 - 23

dropped tables and, 3 - 10

dropping, 3 - 27

FOR UPDATE clause and, 3 - 22

inherently modifiable, 13 - 8

invalid, 3 - 27

join views, 3 - 28

modifiable, 13 - 8

ORDER BY clause and, 3 - 22

privileges, 3 - 24

pseudocolumns, 13 - 8

replacing, 3 - 24

restrictions, 3 - 26

using, 3 - 25

when to use, 3 - 22

WITH CHECK OPTION, 3 - 22

violating integrity constraints, 5 - 21

W
WHEN clause, 13 - 13

cannot contain PL/SQL expressions, 13 - 13

correlation names, 13 - 16

examples, 13 - 3, 13 - 12, 13 - 32, 13 - 41

EXCEPTION examples, 13 - 18, 13 - 41, 13 - 47,

13 - 48

WITH CONTEXT clause, 11 - 28

WITH GRANT OPTION, 12 - 18

WNDS argument, 10 - 67

WNPS argument, 10 - 67

wrapper to hide PL/SQL code, 10 - 27

X
X locks

LOCK TABLE command, 8 - 16

Y
year 2000, 4 - 10
Index-17

Index-18

	PDF Directory
	Application Developer’s Guide - Fundamentals
	Send Us Your Comments
	Preface
	Part I� Part I� Introduction To Working With The Server
	1 Programmatic Environments
	What Can PL/SQL Do?
	How Does PL/SQL Work?
	What Advantages Does PL/SQL Offer?

	Overview of OCI
	Advantages of OCI
	Parts of the OCI
	Procedural and Non-Procedural Elements
	Building an OCI Application

	Overview of Oracle Objects for OLE
	The OO4O Automation Server
	OO4O Object Model
	Support for Oracle LOB and Object Datatypes
	The Oracle Data Control
	The Oracle Objects for OLE C++ Class Library
	Additional Sources of Information

	Pro*C/C++
	How You Implement a Pro*C/C++ Application
	Highlights of Pro*C/C++ Features
	New Oracle8i Features Supported

	Pro*COBOL
	How You Implement a Pro*COBOL Application
	Highlights of Pro*COBOL Features
	New Oracle8i Features Supported

	Oracle JDBC
	JDBC Thin Driver
	JDBC OCI Driver
	The JDBC Server Driver
	Extensions of JDBC
	Sample Program for the JDBC Thin Driver
	Java in the RDBMS
	Why Use Stored Procedures?
	JDBC in SQLJ Applications

	Oracle SQLJ
	SQLJ Tool
	SQLJ Design Goals
	Strengths of Oracle’s SQLJ Implementation
	Comparison of SQLJ with JDBC
	SQLJ Example for Object Types
	SQLJ Stored Procedures in the Server

	2 Visual Modelling for Software Development
	Why Employ Visual Modelling?
	Unified Modelling Language
	Illustrations and Diagrams

	Use Cases
	Use Case Diagrams
	State Diagrams

	Part II� Designing the Database
	3 Managing Schema Objects
	Managing Tables
	Designing Tables
	Creating Tables
	Altering Tables
	Dropping Tables

	Managing Temporary Tables
	Creating Temporary Tables
	Using Temporary Tables
	Examples: Using Temporary Tables

	Managing Views
	Creating Views
	Replacing Views
	Using Views
	Dropping Views

	Modifying a Join View
	Key-Preserved Tables
	Rule for DML Statements on Join Views
	Using the UPDATABLE_COLUMNS Views
	Outer Joins

	Managing Sequences
	Creating Sequences
	Altering Sequences
	Using Sequences
	Dropping Sequences

	Managing Synonyms
	Creating Synonyms
	Using Synonyms
	Dropping Synonyms

	Miscellaneous Management Topics for Schema Objects
	Creating Multiple Tables and Views in One Operation
	Naming Schema Objects
	Name Resolution in SQL Statements
	Renaming Schema Objects
	Renaming the Schema
	Listing Information about Schema Objects

	4 Selecting a Datatype
	Oracle Built-In Datatypes
	Using Character Datatypes
	Using the NUMBER Datatype
	Using the DATE Datatype
	Establishing Year 2000 Compliance
	Using the LONG Datatype
	Using RAW and LONG RAW Datatypes
	ROWIDs and the ROWID Datatype

	Trusted Oracle MLSLABEL Datatype
	ANSI/ISO, DB2, and SQL/DS Datatypes
	Data Conversion
	Rule 1: Assignments
	Rule 2: Expression Evaluation
	Data Conversion for Trusted Oracle

	5 Maintaining Data Integrity
	Using Integrity Constraints
	When to Use Integrity Constraints
	Taking Advantage of Integrity Constraints
	Using NOT NULL Integrity Constraints
	Setting Default Column Values
	Choosing a Table’s Primary Key
	Using UNIQUE Key Integrity Constraints

	Using Referential Integrity Constraints
	Nulls and Foreign Keys
	Relationships Between Parent and Child Tables
	Multiple FOREIGN KEY Constraints
	Concurrency Control, Indexes, and Foreign Keys

	Referential Integrity in a Distributed Database
	Using CHECK Integrity Constraints
	Restrictions on CHECK Constraints
	Designing CHECK Constraints
	Multiple CHECK Constraints
	CHECK and NOT NULL Integrity Constraints

	Defining Integrity Constraints
	The CREATE TABLE Command
	The ALTER TABLE Command
	Required Privileges
	Naming Integrity Constraints
	Enabling and Disabling Constraints Upon Definition
	UNIQUE Key, PRIMARY KEY, and FOREIGN KEY

	Enabling and Disabling Integrity Constraints
	Why Enable or Disable Constraints?
	Integrity Constraint Violations
	On Definition
	Enabling and Disabling Defined Integrity Constraints
	Enabling and Disabling Key Integrity Constraints
	Enabling Constraints after a Parallel Direct Path Load
	Exception Reporting

	Altering Integrity Constraints
	Examples of MODIFY CONSTRAINT

	Dropping Integrity Constraints
	Managing FOREIGN KEY Integrity Constraints
	Defining FOREIGN KEY Integrity Constraints
	Enabling FOREIGN KEY Integrity Constraints

	Listing Integrity Constraint Definitions
	Examples

	6 Selecting an Index Strategy
	Managing Indexes
	Creating Indexes
	Dropping Indexes

	Function-Based Indexes
	Using Function-Based Indexes
	Example Function-Based Indexes
	Restrictions on Function-Based Indexes

	Managing Clusters, Clustered Tables, and Cluster Indexes
	Guidelines for Creating Clusters
	Performance Considerations
	Creating Clusters, Clustered Tables, and Cluster Indexes
	Manually Allocating Storage for a Cluster
	Dropping Clusters, Clustered Tables, and Cluster Indexes

	Managing Hash Clusters and Clustered Tables
	Creating Hash Clusters and Clustered Tables
	Controlling Space Usage Within a Hash Cluster
	Dropping Hash Clusters
	When to Use Hashing

	7 Managing Index-Organized Tables
	Overview of Index-Organized Tables
	Index-Organized Tables versus Ordinary Tables
	Advantages of Index-Organized Tables

	Features of Index-Organized Tables
	When to Use Index-Organized Tables
	Example

	8 Processing SQL Statements
	SQL Statement Execution
	FIPS Flagging

	Controlling Transactions
	Improving Performance
	Committing a Transaction
	Rolling Back a Transaction
	Defining a Transaction Savepoint
	Privileges Required for Transaction Management

	Read-Only Transactions
	Using Cursors
	Declaring and Opening Cursors
	Using a Cursor to Re-Execute Statements
	Closing Cursors
	Cancelling Cursors

	Explicit Data Locking
	Explicitly Acquiring Table Locks
	Privileges Required

	Explicitly Acquiring Row Locks
	SERIALIZABLE and ROW_LOCKING Parameters
	Summary of Non-Default Locking Options

	User Locks
	Creating User Locks
	Sample User Locks
	Viewing and Monitoring Locks

	Concurrency Control Using Serializable Transactions
	Serializable Transaction Interaction
	Setting the Isolation Level
	Referential Integrity and Serializable Transactions
	READ COMMITTED and SERIALIZABLE Isolation
	Application Tips

	Autonomous Transactions
	Examples
	Defining Autonomous Transactions

	9 Dynamic SQL
	What Is Dynamic SQL?
	When to Use Dynamic SQL
	To Execute Dynamic DML Statements
	To Execute Statements Not Supported by Static SQL in PL/SQL
	To Execute Dynamic Queries
	To Reference Database Objects that Do Not Exist at Compilation
	To Optimize Execution Dynamically
	To Invoke Dynamic PL/SQL Blocks
	To Perform Dynamic Operations Using Invoker-Rights

	A Dynamic SQL Scenario Using Native Dynamic SQL
	Data Model
	Sample DML Operation
	Sample DDL Operation
	Sample Dynamic Single-Row Query
	Sample Dynamic Multiple-Row Query

	Native Dynamic SQL vs. the DBMS_SQL Package
	Advantages of Native Dynamic SQL
	Advantages of the DBMS_SQL Package
	Examples of DBMS_SQL Package Code and Native Dynamic SQL Code

	Application Development Languages Other Than PL/SQL

	10 Using Procedures and Packages
	PL/SQL Program Units
	Anonymous Blocks
	Stored Program Units (Procedures, Functions, and Packages)

	Wrapping PL/SQL Code
	Remote Dependencies
	Timestamps
	Signatures
	Controlling Remote Dependencies

	Cursor Variables
	Declaring and Opening Cursor Variables
	Examples of Cursor Variables

	Compile-Time Errors
	Run-Time Error Handling
	Declaring Exceptions and Exception Handling Routines
	Unhandled Exceptions
	Handling Errors in Distributed Queries
	Handling Errors in Remote Procedures

	Debugging
	Calling Stored Procedures
	Calling Remote Procedures
	Synonyms for Procedures and Packages

	Calling Stored Functions from SQL Expressions
	Using PL/SQL Functions
	Syntax
	Naming Conventions
	Meeting Basic Requirements
	Controlling Side Effects
	Overloading
	Serially Reusable PL/SQL Packages

	11 External Routines
	The Need to Work with Multiple Languages
	What is an External Routine?
	The Call Specification
	Loading External Routines
	Loading Java Class Methods
	Loading External C Routines

	Publishing an External Routine
	The AS LANGUAGE Clause for Java Class Methods
	The AS LANGUAGE Clause for External C Routines

	Publishing Java Class Methods
	Publishing External C Routines
	Locations of Call Specifications
	Passing Parameters to Java Class Methods with Call Specifications
	Passing Parameters to External C Routines with Call Specifications
	Specifying Datatypes
	External Datatype Mappings
	BY VALUE/REFERENCE for IN and IN OUT Parameter Modes
	The PARAMETERS Clause
	Overriding Default Datatype Mapping
	Specifying Properties

	Executing External Routines: the CALL Statement
	Preliminaries
	CALL Statement Syntax
	Calling Java Class Methods
	Calling External C Routines

	Errors and Exceptions
	Generic Compile Time Call specification Errors
	Java Exception Handling
	C Exception Handling

	Using Service Routines with External C Routines
	Doing Callbacks with External C Routines
	Object Support for OCI Callbacks
	Restrictions on Callbacks
	Debugging External Routines
	Demo Program
	Guidelines for External C Routines
	Restrictions on External C Routines

	12 Establishing Security Policies
	About Security Policies
	Application Security
	Application Administrators
	Roles and Application Privilege Management
	Enabling Application Roles
	Restricting Application Roles from Tool Users
	Schemas
	Managing Privileges and Roles

	Application Context
	Features of Application Context
	Using Application Context

	Fine-Grained Access Control
	Features of Fine-Grained Access Control
	Example of a Dynamically Modified Statement

	Using Application Context within a Fine-Grained Access Control Package
	Examples
	Example 1: Order Entry Application
	Example 2: Human Resources Application #1
	Example 3: Human Resources Application #2

	Part III� The Active Database
	13 Using Triggers
	Designing Triggers
	Creating Triggers
	Prerequisites for Creating Triggers
	Types of Triggers
	Naming Triggers
	Triggering Statement
	BEFORE and AFTER Options
	INSTEAD OF Triggers
	FOR EACH ROW Option
	WHEN Clause
	The Trigger Body
	Triggers and Handling Remote Exceptions
	Restrictions on Creating Triggers
	Who Is the Trigger User?
	Privileges

	Compiling Triggers
	Dependencies
	Recompiling Triggers
	Migration Issues

	Modifying Triggers
	Debugging Triggers

	Enabling and Disabling Triggers
	Enabling Triggers
	Disabling Triggers

	Listing Information About Triggers
	Examples of Trigger Applications
	Triggering Event Publication
	Publication Framework

	14 14 Working With System Events
	Event Attribute Functions
	List of Events
	Resource Manager Events
	Client Events

	15 Using Publish-Subscribe
	Introduction to Publish-Subscribe
	Publish-Subscribe Infrastructure
	Publish-Subscribe Concepts
	Examples

	Part IV� The Object-Relational Database Management System
	16 User-Defined Datatypes
	Introduction
	A Purchase Order Example
	Implementing the Application Under The Relational Model
	Entities and Relationships
	Creating Tables Under the Relational Model
	Schema Plan Under the Relational Model
	Inserting Values Under the Relational Model
	Querying Data Under The Relational Model
	Updating Data Under The Relational Model
	Deleting Data Under The Relational Model
	Limitations of a Purely Relational Model
	The Evolution of the Object-Relational Database System

	Implementing the Application Under The Object-Relational Model
	Defining Types
	Method Definitions
	Creating Object Tables
	Object Datatypes as a Template for Object Tables
	Object Identifiers and References
	Object Tables with Embedded Objects

	Partitioning Tables with Oracle Objects

	17 Objects in Views
	Introduction
	Advantages of Using Views to Synthesize Objects
	Fundamental Elements of Using Objects in Views
	Objects in Columns
	Collection Objects
	Row Objects and Object Identifiers
	Object References
	Inverse Relationships
	Mutating Objects and Validation

	Extending the Purchase Order Example
	Stock Object View
	Customer Object View
	Purchase order view
	Selecting
	Updating Views
	Inserting into the Nested Table
	INSTEAD-OF Trigger for Customer_objview
	INSTEAD-OF Trigger for Stock_objview
	Inserting Values
	Deleting

	Using the OCI Object Cache
	Views on Remote Tables
	Partitioning Tables with Objects
	Parallel Query with Objects
	Circular View References
	Creation of Tables and Types
	View Creation

	18 Design Considerations for Oracle Objects
	Object Types
	Column Objects vs. Row Objects
	Comparing Objects

	REFs
	Object Identifiers (OIDs)
	Storage of REFs
	Constraints on REFs
	WITH ROWID Option
	Indexing REFs

	Collections
	Unnesting Queries
	Varrays
	Nested Tables
	Nesting Collections

	Methods
	Choosing a Language
	Static Methods
	Invoker and Definer Rights
	Function-Based Indexes on the Return Values of Type Methods

	Other Considerations
	New Object Format in Release 8.1
	Replication
	Inheritance
	Constraints on Objects
	Type Evolution
	Performance Tuning
	Parallel Query with Oracle Objects
	Support for Exporting, Importing, and Loading Oracle Objects

	19 Programmatic Environments for Oracle�Objects
	Oracle Call Interface (OCI)
	Associative Access
	Navigational Access
	Building an OCI Program that Manipulates Objects
	OCI Tips and Techniques
	Demonstration of OCI and Oracle Objects

	Pro*C/C++
	Associative Access in Pro*C/C++
	Navigational Access in Pro*C/C++
	Converting Between Oracle Types and C Types

	Oracle Objects For OLE
	OraObject
	OraRef
	OraCollection

	Java: JDBC and Oracle SQLJ
	JDBC Access to Oracle Object Data
	Support for Objects in Oracle SQLJ

	Part V� CUBE and ROLLUP Extensions to SQL
	20 Analyzing Data with ROLLUP, CUBE, AND TOP-N QUERIES
	Overview of CUBE, ROLLUP, and Top-N Queries
	Analyzing across Multiple Dimensions
	Optimized Performance
	A Scenario

	ROLLUP
	Syntax
	Details
	Example
	Interpreting “[NULL]” Values in Results
	Calculating Subtotals without ROLLUP
	When to Use ROLLUP

	CUBE
	Syntax
	Details
	Example
	Calculating subtotals without CUBE
	When to Use CUBE

	Using Other Aggregate Functions with ROLLUP and CUBE
	GROUPING Function
	Syntax
	Examples
	When to Use GROUPING

	Other Considerations when Using ROLLUP and CUBE
	Hierarchy Handling in ROLLUP and CUBE
	Column Capacity in ROLLUP and CUBE
	HAVING Clause Used with ROLLUP and CUBE

	Optimized "Top-N" Analysis
	Details
	Examples

	Reference

	A Oracle XA
	XA Library-Related Information
	General Information about the Oracle XA
	README.doc

	Changes from Release 8.0 to Release 8.1
	Changes from Release 7.3 to Release 8.0
	Session Caching Is No Longer Needed
	Dynamic Registration Is Supported
	Loosely Coupled Transaction Branches Are Supported
	SQLLIB Is Not Needed for OCI Applications
	No Installation Script Is Needed to Run XA
	The XA Library Can Be Used with the Oracle Parallel Server Option on All Platforms
	Transaction Recovery for Oracle Parallel Server Has Been Improved
	Both Global and Local Transactions Are Possible
	The xa_open String Has Been Modified

	General Issues and Restrictions
	Database Links
	Oracle Parallel Server Option
	SQL-based Restrictions
	Miscellaneous XA Issues
	Basic Architecture
	X/Open Distributed Transaction Processing (DTP)
	Transaction Recovery Management
	Oracle XA Library Interface Subroutines
	XA Library Subroutines
	Extensions to the XA Interface
	Transaction Processing Monitors (TPMs)
	Required Public Information
	Registration

	Developing and Installing Applications That Use the XA Libraries
	Responsibilities of the DBA or System Administrator
	Responsibilities of the Application Developer

	Defining the xa_open String
	Syntax of the xa_open String
	Required Fields
	Optional Fields

	Interfacing to Precompilers and OCIs
	Using Precompilers with the Oracle XA Library
	Using OCI with the Oracle XA Library

	Transaction Control
	Examples of Precompiler Applications

	Migrating Precompiler or OCI Applications to TPM Applications
	XA Library Thread Safety
	The Open String Specification
	Restrictions

	Troubleshooting
	Trace Files
	Trace File Examples
	In-doubt or Pending Transactions
	Oracle Server SYS Account Tables

	Index

