
Oracle8 i

Concepts

Release 8.1.5

February 1999

Part No. A67781-01

Oracle8i Concepts, Release 8.1.5

Part No. A67781-01

Copyright © 1999, Oracle Corporation. All rights reserved.

Primary Authors: Lefty Leverenz, Diana Rehfield

Contributing Authors: Steve Bobrowski, Cynthia Chin-Lee, Cindy Closkey, Bill Creekbaum, Jason
Durbin, John Frazzini, Richard Mateosian, Denis Raphaely, Danny Sokolsky

Contributors: Richard Allen, David Anderson, Andre Bakker, Bill Bridge, Atif Chaudry, Jeff Cohen,
Benoit Dageville, Sandy Dreskin, Ahmed Ezzat, Jim Finnerty, Diana Foch-Lorentz, Anurag Gupta, Gary
Hallmark, Michael Hartstein, Terry Hayes, Alex Ho, Chin Hong, Ken Jacobs, Sandeep Jain, Amit Jasuja,
Hakan Jakobsson, Robert Jenkins, Jr., Ashok Joshi, Mohan Kamath, Jonathan Klein, R. Kleinro, Robert
Kooi, Vishu Krishnamurthy, Muralidhar Krishnaprasad, Andre Kruglikov, Tirthankar Lahiri, Juan
Loaiza, Brom Mahbod, William Maimone, Andrew Mendelsohn, Reza Monajjemi, Mark Moore, Rita
Moran, Denise Oertel, Mark Porter, Maria Pratt, Tuomas Pystynen, Patrick Ritto, Hasan Rizvi, Sriram
Samu, Hari Sankar, Gordon Smith, Leng Leng Tan, Lynne Thieme, Alvin To, Alex Tsukerman, William
Waddington, Joyo Wijaya, Linda Willis, Andrew Witkowski, Mohamed Zait

Graphic Designer: Valarie Moore

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by such
use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are "restricted computer software"
and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle8i, Oracle
Designer, Oracle Enterprise Manager, Oracle Forms, Oracle Parallel Server, Oracle Server Manager,
Oracle SQL*Loader, LogMiner, PL/SQL, Pro*C, Pro*C/C++, SQL*Net and SQL*Plus, and Trusted Oracle
are trademarks or registered trademarks of Oracle Corporation. All other company or product names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments .. xxv

Preface ... xxvii

Part I What Is Oracle?

1 Introduction to the Oracle Server

Databases and Information Management.. 1-2
The Oracle Server ... 1-4
Oracle Databases... 1-8

Database Structure and Space Management ... 1-8
Logical Database Structures.. 1-9
Physical Database Structures .. 1-11

Memory Structure and Processes... 1-14
Memory Structures... 1-14
Process Architecture... 1-17
The Program Interface ... 1-20
An Example of How Oracle Works.. 1-21

The Object-Relational Model for Database Management.. 1-22
The Relational Model ... 1-22
The Object-Relational Model .. 1-22
Schemas and Schema Objects ... 1-23
The Data Dictionary ... 1-30

Data Concurrency and Consistency .. 1-30
iii

Concurrency .. 1-30
Read Consistency.. 1-31
Locking Mechanisms.. 1-32

Distributed Processing and Distributed Databases... 1-33
Client/Server Architecture: Distributed Processing ... 1-33
Multi-Tier Architecture: Application Servers... 1-34
Distributed Databases .. 1-34
Table Replication .. 1-36
Oracle and Net8 .. 1-37

Startup and Shutdown Operations.. 1-37
Database Security.. 1-38

Security Mechanisms.. 1-39
Privileges.. 1-41

Database Backup and Recovery ... 1-45
Why Is Recovery Important? .. 1-45
Types of Failures ... 1-45
Structures Used for Recovery ... 1-47
Basic Recovery Steps .. 1-50
The Recovery Manager .. 1-51

Data Access... 1-51
SQL—The Structured Query Language .. 1-52
Transactions... 1-53
PL/SQL .. 1-55
Data Integrity... 1-57

Part II Database Structures

2 The Data Dictionary

An Introduction to the Data Dictionary ... 2-2
The Structure of the Data Dictionary.. 2-2
SYS, the Owner of the Data Dictionary.. 2-3
How the Data Dictionary Is Used .. 2-3

How Oracle Uses the Data Dictionary... 2-3
How Users and DBAs Can Use the Data Dictionary... 2-5

The Dynamic Performance Tables ... 2-7
iv

3 Tablespaces and Datafiles

Databases, Tablespaces, and Datafiles.. 3-2
Allocating More Space for a Database... 3-3

Tablespaces... 3-6
The SYSTEM Tablespace ... 3-6
Using Multiple Tablespaces .. 3-7
Space Management in Tablespaces.. 3-7
Online and Offline Tablespaces.. 3-9
Read-Only Tablespaces.. 3-10
Temporary Tablespaces ... 3-12
Transporting Tablespaces between Databases... 3-13

Datafiles .. 3-16
Datafile Contents .. 3-16
Size of Datafiles... 3-16
Offline Datafiles .. 3-17
Temporary Datafiles... 3-17

4 Data Blocks, Extents, and Segments

The Relationships Among Data Blocks, Extents, and Segments .. 4-2
Data Blocks .. 4-3

Data Block Format .. 4-3
An Introduction to PCTFREE, PCTUSED, and Row Chaining.. 4-5

Extents ... 4-11
When Extents Are Allocated... 4-11
Determining the Number and Size of Extents.. 4-11
How Extents Are Allocated... 4-12
When Extents Are Deallocated... 4-14

Segments... 4-16
Data Segments... 4-16
Index Segments ... 4-17
Temporary Segments ... 4-17
Rollback Segments.. 4-19
v

Part III The Oracle Instance

5 Database and Instance Startup and Shutdown

Overview of an Oracle Instance ... 5-2
The Instance and the Database ... 5-2
Connecting with Administrator Privileges... 5-3
Parameter Files.. 5-4

Instance and Database Startup ... 5-5
Starting an Instance .. 5-5
Mounting a Database .. 5-6
Opening a Database.. 5-7

Database and Instance Shutdown ... 5-9
Closing a Database ... 5-10
Dismounting a Database.. 5-10
Shutting Down an Instance ... 5-10

6 Distributed Processing

Oracle Client/Server Architecture.. 6-2
Distributed Processing... 6-2
Net8 .. 6-5

How Net8 Works .. 6-5
The Network Listener .. 6-6

Multi-Tier Architecture.. 6-7
Clients... 6-8
Application Servers .. 6-8
Database Servers ... 6-8

7 Memory Architecture

Introduction to Oracle Memory Structures.. 7-2
System Global Area (SGA) ... 7-2

The Database Buffer Cache.. 7-3
The Redo Log Buffer... 7-6
The Shared Pool .. 7-6
The Large Pool .. 7-12
vi

Size of the SGA.. 7-12
Controlling the SGA’s Use of Memory.. 7-13

Program Global Areas (PGA) ... 7-14
Contents of a PGA .. 7-14
Size of a PGA... 7-15

Sort Areas ... 7-16
Virtual Memory ... 7-17
Software Code Areas .. 7-17

8 Process Architecture

Introduction to Processes .. 8-2
Multiple-Process Oracle Systems ... 8-2
Types of Processes .. 8-2

User Processes.. 8-4
Connections and Sessions.. 8-4

Oracle Processes .. 8-5
Server Processes.. 8-5
Background Processes.. 8-5
Trace Files and the ALERT File .. 8-14

Multi-Threaded Server Configuration.. 8-16
Dispatcher Request and Response Queues... 8-17
Shared Server Processes... 8-19
Artificial Deadlocks.. 8-19
Restricted Operations of the Multi-Threaded Server .. 8-20
An Example of Oracle Using the Multi-Threaded Server .. 8-20

Dedicated Server Configuration .. 8-22
An Example of Oracle Using Dedicated Server Processes ... 8-24

The Program Interface ... 8-25
Program Interface Structure.. 8-25
The Program Interface Drivers ... 8-26
Operating System Communications Software ... 8-26

9 Database Resource Management

Introduction to the Database Resource Manager ... 9-2
Resource Consumer Groups and Resource Plans .. 9-3
vii

What Are Resource Consumer Groups? ... 9-3
What Are Resource Plans?... 9-4

Resource Allocation Methods... 9-6
CPU Resource Allocation Method: Emphasis .. 9-6
Maximum Degree of Parallelism Resource Allocation Method: Absolute 9-7

Resource Plan Directives ... 9-7
Examples ... 9-7

Using Resource Consumer Groups and Resource Plans .. 9-8
Using Subplans ... 9-9
Using Multi-Level Resource Plans ... 9-10
Using the Parallel Degree Limit Resource Directive ... 9-10
Summary.. 9-11

Using the Database Resource Manager .. 9-11

Part IV The Object-Relational DBMS

10 Schema Objects

Overview of Schema Objects.. 10-2
Tables... 10-3

How Table Data Is Stored.. 10-4
Nulls.. 10-7
Default Values for Columns.. 10-8
Nested Tables .. 10-9
Temporary Tables ... 10-10

Views ... 10-11
Storage for Views.. 10-12
How Views Are Used... 10-13
The Mechanics of Views .. 10-14
Dependencies and Views... 10-15
Updatable Join Views... 10-15
Object Views .. 10-16
Inline Views ... 10-16

Materialized Views ... 10-17
Refreshing Materialized Views... 10-18
Materialized View Logs ... 10-18
viii

Dimensions .. 10-18
The Sequence Generator ... 10-19
Synonyms ... 10-20
Indexes .. 10-21

Unique and Nonunique Indexes .. 10-22
Composite Indexes ... 10-22
Indexes and Keys.. 10-23
Indexes and Nulls... 10-24
Function-Based Indexes... 10-24
How Indexes Are Stored ... 10-26
Key Compression.. 10-29
Reverse Key Indexes .. 10-31
Bitmap Indexes.. 10-32

Index-Organized Tables .. 10-36
Benefits of Index-Organized Tables... 10-38
Index-Organized Tables with Row Overflow Area... 10-38
Secondary Indexes on Index-Organized Tables... 10-39
Additional Features of Index-Organized Tables.. 10-39
Applications of Interest for Index-Organized Tables.. 10-40

Application Domain Indexes ... 10-42
Indextypes ... 10-43
Domain Indexes .. 10-43
User-Defined Operators .. 10-44

Clusters ... 10-46
Performance Considerations... 10-48
Format of Clustered Data Blocks.. 10-49
The Cluster Key .. 10-49
The Cluster Index ... 10-50

Hash Clusters... 10-50
How Data Is Stored in a Hash Cluster... 10-51
Hash Key Values... 10-53
Hash Functions ... 10-54
Allocation of Space for a Hash Cluster.. 10-55
Single Table Hash Clusters.. 10-57
ix

11 Partitioned Tables and Indexes

Introduction to Partitioning .. 11-2
What Is Partitioning?.. 11-2
Advantages of Partitioning ... 11-5
Manual Partitioning with Partition Views.. 11-11

Basic Partitioning Model ... 11-13
Range Partitioning .. 11-15
Hash Partitioning.. 11-16
Composite Partitioning.. 11-17
Partition and Subpartition Names ... 11-18
Partitioning and Subpartitioning Columns and Keys... 11-19
Partition Bounds for Range Partitioning... 11-20
Equipartitioning.. 11-24

Rules for Partitioning Tables and Indexes ... 11-27
Table Partitioning ... 11-27
Index Partitioning ... 11-29
Partitioning of Tables with LOB Columns.. 11-38
Partitioning Index-Organized Tables and Their Secondary Indexes 11-42

DML Partition Locks and Subpartition Locks .. 11-45
DML Partition Locks .. 11-46
DML Subpartition Locks ... 11-46
Performance Considerations for Oracle Parallel Server ... 11-47

Maintenance Operations ... 11-48
Partition Maintenance Operations ... 11-48
Managing Indexes... 11-59
Privileges for Partitioned Tables and Indexes .. 11-62
Auditing for Partitioned Tables and Indexes ... 11-63

Partition-Extended and Subpartition-Extended Table Names... 11-63
PARTITION and SUBPARTITION Specifications ... 11-63
Viewing Partitions or Subpartitions as Tables ... 11-64
Using Partition- and Subpartition-Extended Table Names.. 11-64

12 Built-In Datatypes

Overview of Oracle Datatypes ... 12-2
Character Datatypes.. 12-5
x

CHAR Datatype.. 12-5
VARCHAR2 and VARCHAR Datatypes .. 12-5
Column Lengths for Character Datatypes and NLS Character Sets 12-6
NCHAR and NVARCHAR2 Datatypes .. 12-6
LOB Character Datatypes.. 12-7
LONG Datatype.. 12-7

NUMBER Datatype .. 12-8
Internal Numeric Format... 12-9

DATE Datatype ... 12-10
Using Julian Dates .. 12-11
Date Arithmetic... 12-11
Centuries and the Year 2000 ... 12-12

LOB Datatypes .. 12-12
BLOB Datatype ... 12-13
CLOB and NCLOB Datatypes .. 12-13
BFILE Datatype... 12-14

RAW and LONG RAW Datatypes ... 12-14
ROWID and UROWID Datatypes... 12-15

The ROWID Pseudocolumn.. 12-15
Physical Rowids.. 12-16
Logical Rowids.. 12-20
Rowids in Non-Oracle Databases .. 12-22

ANSI, DB2, and SQL/DS Datatypes .. 12-22
Data Conversion.. 12-23

13 User-Defined Datatypes

Introduction ... 13-2
Complex Data Models ... 13-2
Multimedia Datatypes ... 13-3

User-Defined Datatypes .. 13-3
Object Types .. 13-4
Collection Types ... 13-10

Application Interfaces.. 13-13
SQL ... 13-13
PL/SQL .. 13-13
xi

Pro*C/C++... 13-14
OCI.. 13-14
OTT ... 13-15
JPublisher ... 13-15
JDBC.. 13-16
SQLJ .. 13-16

14 Using User-Defined Datatypes

Introduction ... 14-2
Object Types and References.. 14-3

Properties of Object Attributes ... 14-3
Object References .. 14-7
Name Resolution... 14-8

Collections .. 14-10
Querying Collections.. 14-10
Collection Unnesting.. 14-10
Nested Table Locators.. 14-11
DML on Collections.. 14-12

Privileges on User-Defined Types and Their Methods ... 14-13
System Privileges .. 14-13
Schema Object Privileges... 14-13
Using Types in New Types or Tables .. 14-13
Example.. 14-14
Privileges on Type Access and Object Access .. 14-15

Dependencies and Incomplete Types ... 14-16
Completing Incomplete Types.. 14-17
Type Dependencies of Tables ... 14-17

Storage of User-Defined Types ... 14-18
Leaf-Level Attributes.. 14-18
Row Objects ... 14-18
Column Objects... 14-19
REFs .. 14-19
Nested Tables .. 14-19
VARRAYs .. 14-20

Utilities.. 14-20
xii

Import/Export of User-Defined Types ... 14-20
Loading User-defined Types .. 14-20

15 Object Views

Introduction ... 15-2
Advantages of Object Views ... 15-2

Defining Object Views... 15-3
Using Object Views .. 15-4
Updating Object Views ... 15-5

Updating Nested Table Columns in Views .. 15-5

Part V Data Access

16 SQL and PL/SQL

Structured Query Language (SQL).. 16-2
SQL Statements ... 16-3
Identifying Nonstandard SQL .. 16-6
Recursive SQL ... 16-6
Cursors ... 16-6
Shared SQL .. 16-7
Parsing.. 16-7

SQL Processing.. 16-8
Overview of SQL Statement Execution ... 16-8
DML Statement Processing ... 16-10
DDL Statement Processing.. 16-14
Controlling Transactions ... 16-14

PL/SQL .. 16-15
How PL/SQL Executes.. 16-15
Language Constructs for PL/SQL ... 16-17
Stored Procedures... 16-18
External Procedures ... 16-20

17 Transaction Management

Introduction to Transactions... 17-2
xiii

Statement Execution and Transaction Control... 17-3
Statement-Level Rollback .. 17-4

Oracle and Transaction Management.. 17-4
Committing Transactions .. 17-5
Rolling Back Transactions ... 17-6
Savepoints .. 17-7
The Two-Phase Commit Mechanism... 17-7

Discrete Transaction Management .. 17-8
Autonomous Transactions ... 17-9

Autonomous PL/SQL Blocks ... 17-9
Transaction Control Statements in Autonomous Blocks .. 17-10

18 Procedures and Packages

An Introduction to Stored Procedures and Packages... 18-2
Stored Procedures and Functions... 18-2
Packages ... 18-4

Procedures and Functions ... 18-6
Procedure Guidelines... 18-7
Benefits of Procedures.. 18-7
Anonymous PL/SQL Blocks versus Stored Procedures... 18-9
Standalone Procedures... 18-9
Definer Rights and Invoker Rights... 18-9
Dependency Tracking for Stored Procedures... 18-11
External Procedures.. 18-11

Packages .. 18-11
Benefits of Packages ... 18-15
Dependency Tracking for Packages... 18-16
Oracle Supplied Packages ... 18-16

How Oracle Stores Procedures and Packages.. 18-17
Compiling Procedures and Packages .. 18-17
Storing the Compiled Code in Memory .. 18-17
Storing Procedures or Packages in Database.. 18-17

How Oracle Executes Procedures and Packages ... 18-18
Verifying User Access .. 18-18
Verifying Procedure Validity.. 18-18
xiv

Executing a Procedure ... 18-19

19 Advanced Queuing

Introduction to Message Queuing... 19-2
Oracle Advanced Queuing.. 19-3

Queuing Entities ... 19-4
Features of Advanced Queuing.. 19-6

20 Triggers

An Introduction to Triggers .. 20-2
How Triggers Are Used... 20-3

Parts of a Trigger ... 20-5
Triggering Event or Statement.. 20-6
Trigger Restriction.. 20-7
Trigger Action ... 20-7

Types of Triggers ... 20-8
Row Triggers and Statement Triggers... 20-8
BEFORE and AFTER Triggers .. 20-9
Trigger Type Combinations .. 20-9
INSTEAD-OF Triggers... 20-12
Triggers on System Events and User Events .. 20-18

Trigger Execution .. 20-21
The Execution Model for Triggers and Integrity Constraint Checking............................ 20-21
Data Access for Triggers.. 20-23
Storage of PL/SQL Triggers ... 20-25
Execution of Triggers ... 20-25
Dependency Maintenance for Triggers ... 20-25

21 Oracle Dependency Management

An Introduction to Dependency Issues.. 21-2
Resolving Schema Object Dependencies .. 21-4

Compiling Views and PL/SQL Program Units ... 21-5
Function-Based Index Dependencies... 21-7

Dependency Management and Nonexistent Schema Objects ... 21-8
xv

Shared SQL Dependency Management ... 21-10
Local and Remote Dependency Management... 21-10

Managing Local Dependencies... 21-10
Managing Remote Dependencies... 21-11

Part VI Optimization of SQL Statements

22 The Optimizer

What Is Optimization? ... 22-2
Execution Plans ... 22-2
Execution Order .. 22-5
Optimizer Plan Stability... 22-6

Cost-Based Optimization .. 22-7
Goal of the Cost-Based Approach .. 22-7
Statistics for Cost-Based Optimization .. 22-8
When to Use the Cost-Based Approach .. 22-15

Extensible Optimization.. 22-16
User-Defined Statistics ... 22-17
User-Defined Selectivity .. 22-17
User-Defined Costs... 22-17

Rule-Base Optimization .. 22-18

23 Optimizer Operations

Overview of Optimizer Operations .. 23-2
Optimizer Operations .. 23-2
Types of SQL Statements ... 23-3

Evaluation of Expressions and Conditions .. 23-4
Constants.. 23-5
LIKE Operator ... 23-5
IN Operator.. 23-5
ANY or SOME Operator.. 23-6
ALL Operator .. 23-6
BETWEEN Operator... 23-7
NOT Operator ... 23-7
xvi

Transitivity .. 23-8
DETERMINISTIC Functions ... 23-9

Transforming and Optimizing Statements .. 23-10
Transforming ORs into Compound Queries .. 23-10
Transforming Complex Statements into Join Statements... 23-13
Optimizing Statements That Access Views .. 23-15
Optimizing Compound Queries... 23-27
Optimizing Distributed Statements ... 23-30

Choosing an Optimization Approach and Goal ... 23-31
The OPTIMIZER_MODE Initialization Parameter.. 23-31
Statistics in the Data Dictionary ... 23-32
The OPTIMIZER_GOAL Parameter of the ALTER SESSION Command........................ 23-32
The FIRST_ROWS, ALL_ROWS, CHOOSE, and RULE Hints... 23-33
PL/SQL and the Optimizer Goal ... 23-33

Choosing Access Paths... 23-33
Access Methods .. 23-34
Access Paths .. 23-36
Choosing Among Access Paths .. 23-50

24 Optimization of Joins

Optimizing Join Statements ... 24-2
Join Operations ... 24-2
Choosing Execution Plans for Join Statements .. 24-8
Views in Outer Joins... 24-11

Optimizing Anti-Joins and Semi-Joins .. 24-13
Optimizing "Star" Queries .. 24-14

Star Query Example ... 24-14
Tuning Star Queries ... 24-15
Star Transformation ... 24-16

Part VII Parallel SQL and Direct-Load INSERT

25 Direct-Load INSERT

Introduction to Direct-Load INSERT.. 25-2
xvii

Advantages of Direct-Load INSERT.. 25-2
INSERT ... SELECT Statements... 25-3

Varieties of Direct-Load INSERT Statements.. 25-3
Serial and Parallel INSERT.. 25-3
Logging Mode ... 25-5

Additional Considerations for Direct-Load INSERT... 25-8
Index Maintenance ... 25-8
Space Considerations ... 25-8
Locking Considerations ... 25-11

Restrictions on Direct-Load INSERT .. 25-11

26 Parallel Execution

Overview of Parallel Execution.. 26-2
Operations That Can Be Parallelized ... 26-2
How Oracle Parallelizes Operations .. 26-3

Process Architecture for Parallel Execution ... 26-5
The Parallel Execution Server Pool .. 26-7
How Parallel Execution Servers Communicate ... 26-9
Parallelizing SQL Statements .. 26-10

Setting the Degree of Parallelism .. 26-15
How Oracle Determines the Degree of Parallelism for Operations 26-16
Balancing the Work Load .. 26-19
Parallelization Rules for SQL Statements.. 26-20

Parallel Query .. 26-28
Parallel Queries on Index-Organized Tables.. 26-29
Parallel Queries on Object Types.. 26-29

Parallel DDL .. 26-30
DDL Statements That Can Be Parallelized.. 26-30
CREATE TABLE ... AS SELECT in Parallel... 26-31
Recoverability and Parallel DDL.. 26-32
Space Management for Parallel DDL... 26-33

Parallel DML.. 26-35
Advantages of Parallel DML over Manual Parallelism .. 26-36
When to Use Parallel DML.. 26-37
Enabling Parallel DML... 26-38
xviii

Transaction Model for Parallel DML... 26-39
Recovery for Parallel DML.. 26-40
Space Considerations for Parallel DML .. 26-41
Lock and Enqueue Resources for Parallel DML .. 26-42
Restrictions on Parallel DML .. 26-43

Parallel Execution of Functions.. 26-46
Affinity .. 26-48

Affinity and Parallel Queries .. 26-48
Affinity and Parallel DML... 26-49

Other Types of Parallelism ... 26-50

Part VIII Data Protection

27 Data Concurrency and Consistency

Data Concurrency and Consistency in a Multiuser Environment .. 27-2
Preventable Phenomena and Transaction Isolation Levels.. 27-2
Locking Mechanisms.. 27-3

How Oracle Manages Data Concurrency and Consistency .. 27-4
Multiversion Concurrency Control.. 27-4
Statement-Level Read Consistency.. 27-5
Transaction-Level Read Consistency... 27-6
Read Consistency in the Oracle Parallel Server ... 27-6
Oracle Isolation Levels... 27-6
Setting the Isolation Level ... 27-7
Comparing Read Committed and Serializable Isolation .. 27-9
Choosing an Isolation Level.. 27-12

How Oracle Locks Data ... 27-15
Transactions and Data Concurrency ... 27-15
Deadlocks... 27-17
Types of Locks... 27-19
DML (Data) Locks .. 27-20
DDL Locks (Dictionary Locks) ... 27-28
Latches and Internal Locks.. 27-29
Explicit (Manual) Data Locking.. 27-31
Oracle Lock Management Services .. 27-39
xix

28 Data Integrity

Definition of Data Integrity .. 28-2
Types of Data Integrity .. 28-3
How Oracle Enforces Data Integrity.. 28-4

An Introduction to Integrity Constraints ... 28-5
Advantages of Integrity Constraints.. 28-5
The Performance Cost of Integrity Constraints.. 28-7

Types of Integrity Constraints .. 28-7
NOT NULL Integrity Constraints .. 28-7
UNIQUE Key Integrity Constraints ... 28-8
PRIMARY KEY Integrity Constraints.. 28-11
FOREIGN KEY (Referential) Integrity Constraints ... 28-13
CHECK Integrity Constraints ... 28-17

The Mechanisms of Constraint Checking.. 28-18
Default Column Values and Integrity Constraint Checking.. 28-20

Deferred Constraint Checking ... 28-20
Constraint Attributes.. 28-21
SET CONSTRAINTS Mode ... 28-21
Unique Constraints and Indexes .. 28-22

Constraint States ... 28-22
Modifying Constraint States ... 28-23

29 Controlling Database Access

Database Security.. 29-2
Schemas, Database Users, and Security Domains.. 29-2
User Authentication.. 29-3

Authentication by the Operating System.. 29-4
Authentication by the Network.. 29-4
Authentication by the Oracle Database... 29-7
Multi-Tier Authentication and Authorization.. 29-9
Authentication of Database Administrators... 29-12

User Tablespace Settings and Quotas ... 29-13
Default Tablespace.. 29-13
Temporary Tablespace... 29-13
Tablespace Access and Quotas ... 29-14
xx

The User Group PUBLIC... 29-14
User Resource Limits and Profiles... 29-15

Types of System Resources and Limits ... 29-16
Profiles.. 29-18

Licensing... 29-19
Concurrent Usage Licensing... 29-20
Named User Licensing... 29-21

30 Privileges, Roles, and Security Policies

Privileges .. 30-2
System Privileges.. 30-2
Schema Object Privileges... 30-3
Table Security Topics ... 30-5
View Security Topics.. 30-6
Procedure Security Topics... 30-7
Type Security Topics .. 30-11

Roles .. 30-16
Common Uses for Roles .. 30-17
The Mechanisms of Roles .. 30-18
Granting and Revoking Roles... 30-18
Who Can Grant or Revoke Roles?.. 30-19
Naming Roles.. 30-19
Security Domains of Roles and Users.. 30-19
PL/SQL Blocks and Roles ... 30-20
Data Definition Language Statements and Roles .. 30-20
Predefined Roles ... 30-22
The Operating System and Roles ... 30-22
Roles in a Distributed Environment .. 30-22

Fine-Grained Access Control.. 30-22
Dynamic Predicates.. 30-23
Security Policy Example .. 30-23

Application Context ... 30-24

31 Auditing

Introduction to Auditing ... 31-2
xxi

Auditing Features ... 31-2
Auditing Mechanisms.. 31-4

Statement Auditing .. 31-7
Privilege Auditing .. 31-7
Schema Object Auditing ... 31-8

Schema Object Audit Options for Views and Procedures.. 31-8
Focusing Statement, Privilege, and Schema Object Auditing ... 31-9

Auditing Successful and Unsuccessful Statement Executions... 31-9
Auditing BY SESSION versus BY ACCESS .. 31-10
Auditing By User .. 31-12

32 Database Recovery

An Introduction to Database Recovery... 32-2
Errors and Failures ... 32-2

Structures Used for Database Recovery ... 32-6
Database Backups ... 32-6
The Redo Log... 32-7
Rollback Segments.. 32-8
Control Files... 32-8

Rolling Forward and Rolling Back .. 32-8
The Redo Log and Rolling Forward... 32-9
Rollback Segments and Rolling Back... 32-9

Improving Recovery Performance ... 32-10
Performing Recovery in Parallel... 32-10
Fast-Start Recovery... 32-13
Masking Failures with Transparent Application Failover.. 32-14

Recovery Manager .. 32-15
Recovery Catalog .. 32-15
Parallelization.. 32-16
Report Generation .. 32-17

Database Archiving Modes... 32-18
NOARCHIVELOG Mode (Media Recovery Disabled) ... 32-18
ARCHIVELOG Mode (Media Recovery Enabled)... 32-18

Control Files ... 32-21
Control File Contents ... 32-21
xxii

Multiplexed Control Files.. 32-22
Database Backups ... 32-23

Whole Database Backups .. 32-23
Partial Database Backups .. 32-24
The Export and Import Utilities ... 32-25
Read-Only Tablespaces and Backup.. 32-26

Survivability .. 32-26
Planning for Disaster Recovery .. 32-26
Automated Standby Database .. 32-26

Part IX Distributed Databases and Replication

33 Distributed Databases

Oracle’s Distributed Database Architecture.. 33-2
Clients and Servers.. 33-2
The Network.. 33-4
Databases and Database Links ... 33-4
Database Links .. 33-6
Schema Object Name Resolution ... 33-6
Connecting Between Oracle Server Versions ... 33-7
Distributed Databases and Distributed Processing... 33-7
Distributed Databases and Database Replication.. 33-7

Heterogeneous Distributed Databases... 33-8
Heterogeneous Services... 33-8
Heterogeneous Services Agents ... 33-9
Features .. 33-9

Developing Distributed Database Applications .. 33-10
Distributed Query Optimization.. 33-10
Remote and Distributed SQL Statements ... 33-11
Remote Procedure Calls (RPCs) ... 33-12
Remote and Distributed Transactions ... 33-12
Transparency in a Distributed Database System .. 33-14

Administering an Oracle Distributed Database System .. 33-16
Site Autonomy ... 33-16
Distributed Database Security .. 33-17
xxiii

Tools for Administering Oracle Distributed Databases.. 33-19
Enterprise Manager .. 33-19
Third-Party Administration Tools ... 33-20
SNMP Support .. 33-20

National Language Support .. 33-20

34 Database Replication

What Is Replication?... 34-2
Replication Objects, Groups, and Sites .. 34-2
Multimaster Replication.. 34-6

Uses for Multimaster Replication... 34-6
Snapshot Replication ... 34-8

Read-Only Snapshots ... 34-8
Updateable Snapshots.. 34-9
Uses of Snapshot Replication.. 34-11

Multimaster and Snapshot Hybrid Configurations ... 34-13
Administering a Replicated Environment ... 34-14

Replication Catalog... 34-14
Replication Management API and Administration Requests .. 34-14
Oracle Replication Manager.. 34-14

Replication Conflicts .. 34-15
Specialized Replication Options ... 34-15

Part X Appendix

A Operating System-Specific Information

Index
xxiv

Send Us Your Comments

Oracle8 i Concepts, Release 8.1.5

Part No. A67781-01

Oracle Corporation welcomes your comments and suggestions on the quality and

usefulness of this publication. Your input is an important part of the information

used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please

indicate the chapter, section, and page number (if available). You can send

comments to the Information Development department in the following ways:

■ Electronic mail - infodev@us.oracle.com

■ FAX - (650) 506-7228 Attn: Oracle Server Documentation

■ Postal service:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number

below.
xxv

If you have problems with the software, please contact your local Oracle World

Wide Support Center.
xxvi

Preface

This manual describes all features of the Oracle server, an object-relational database

management system. It describes how the Oracle server functions and lays a

conceptual foundation for much of the practical information contained in other

Oracle server manuals. Information in this manual applies to the Oracle server

running on all operating systems.

Oracle8 i and Oracle8 i Enterprise Edition
Oracle8i Concepts contains information that describes the features and functionality

of the Oracle8i and the Oracle8i Enterprise Edition products. Oracle8i and Oracle8i
Enterprise Edition have the same basic features. However, several advanced

features are available only with the Enterprise Edition, and some of these are

optional. For example, to partition tables, you must have the Enterprise Edition and

the Partitioning Option.

For information about the differences between Oracle8i and the Oracle8i Enterprise

Edition and the features and options that are available to you, see Getting to Know
Oracle8i.
xxvii

Audience
This manual is written for database administrators, system administrators, and

database application developers.

What You Should Already Know
You should be familiar with relational database concepts and with the operating

system environment under which you are running Oracle.

As a prerequisite, all readers should read Chapter 1, "Introduction to the Oracle
Server". That chapter is a comprehensive introduction to the concepts and

terminology used throughout the remainder of this manual.

If You’re Interested in Installation and Migration
This manual is not an installation or migration guide. Therefore, if your primary

interest is installation, refer to your operating system-specific Oracle

documentation, or if your primary interest is database and application migration,

refer to Oracle8i Migration.

If You’re Interested in Database Administration
While this manual describes the architecture, processes, structures, and other

concepts of the Oracle server, it does not explain how to administer the Oracle

server. For that information, see Oracle8i Administrator’s Guide.

If You’re Interested in Application Design
In addition to administrators, experienced users of Oracle and advanced database

application designers will find information in this manual useful. However,

database application developers should also refer to Oracle8i Application Developer’s
Guide - Fundamentals and to the documentation for the tool or language product

they are using to develop Oracle database applications.

How This Manual Is Organized
This manual is divided into the following parts:

■ Part I: What Is Oracle?

■ Part II: Database Structures

■ Part III: The Oracle Instance

■ Part IV: The Object-Relational DBMS
xxviii

■ Part V: Data Access

■ Part VI: Optimization of SQL Statements

■ Part VII: Parallel SQL and Direct-Load INSERT

■ Part VIII: Data Protection

■ Part IX: Distributed Databases and Replication

■ Part X: Appendix

Part I: What Is Oracle?
Chapter 1, "Introduction to the Oracle Server"

This chapter provides an overview of the concepts and terminology you need for

understanding the Oracle data server. You should read this overview before using

the detailed information in the remainder of this manual.

Part II: Database Structures
Chapter 2, "The Data Dictionary"

This chapter describes the data dictionary, which is a set of reference tables and

views that contain read-only information about an Oracle database.

Chapter 3, "Tablespaces and Datafiles"

This chapter discusses how physical storage space in an Oracle database is divided

into logical divisions called tablespaces. The physical operating system files

associated with tablespaces, called datafiles, are also discussed.

Chapter 4, "Data Blocks, Extents, and Segments"

This chapter discusses how data is stored and how storage space is allocated for

and consumed by various objects within an Oracle database. The space

management background information here supplements that in the following

chapter and in Chapter 10, "Schema Objects".

Part III: The Oracle Instance
Chapter 5, "Database and Instance Startup and Shutdown"

This chapter describes an Oracle instance and explains how the database

administrator can control the accessibility of an Oracle database system. This

chapter also describes the parameters that control how the database operates.
xxix

Chapter 6, "Distributed Processing"

This chapter discusses distributed processing environments in which the Oracle

data server can operate.

Chapter 7, "Memory Architecture"

This chapter describes the memory structures used by an Oracle database system.

Chapter 8, "Process Architecture"

This chapter describes the process architecture of an Oracle instance and the

different process configurations available for Oracle.

Chapter 9, "Database Resource Management"

This chapter describes how the Database Resource Manager can be used to control

resource use.

Part IV: The Object-Relational DBMS
Chapter 10, "Schema Objects"

This chapter describes the database objects that can be created in the domain of a

specific user (a schema), including tables, views, numeric sequences, and

synonyms. Optional structures that make data retrieval more efficient, including

indexes, materialized views, dimensions, and clusters, are also described.

Chapter 11, "Partitioned Tables and Indexes"

This chapter describes how partitioning can be used to split large tables and indexes

into more manageable pieces.

Chapter 12, "Built-In Datatypes"

This chapter describes the types of relational data that can be stored in an Oracle

database table, such as fixed- and variable-length character strings, numbers, dates,

and binary large objects (BLOBs).

Chapter 13, "User-Defined Datatypes"

This chapter gives an overview of the object extensions that Oracle provides.

Chapter 14, "Using User-Defined Datatypes"

This chapter describes the user-defined object types that are available in the Oracle

data server.

Chapter 15, "Object Views"

This chapter describes the extensions to views provided by the Oracle data server.
xxx

Part V: Data Access
Chapter 16, "SQL and PL/SQL"

This chapter briefly describes SQL (the Structured Query Language), the language

used to communicate with Oracle, as well as PL/SQL, the Oracle procedural

language extension to SQL.

Chapter 17, "Transaction Management"

This chapter defines the concept of transactions and explains the SQL statements

used to control them. Transactions are logical units of work that are executed

together as a unit.

Chapter 18, "Procedures and Packages"

This chapter discusses the procedural language constructs called procedures,

functions, and packages, which are PL/SQL program units that are stored in the

database.

Chapter 19, "Advanced Queuing"

This chapter describes the Oracle Advanced Queuing feature, which allows users to

store messages in queues for deferred retrieval and processing by the Oracle server.

Chapter 20, "Triggers"

This chapter describes the procedural language constructs called triggers,

procedures that are implicitly executed when anyone inserts rows into, updates, or

deletes rows from a database table.

Chapter 21, "Oracle Dependency Management"

This chapter explains how Oracle manages the dependencies for objects such as

procedures, packages, triggers, and views.

Part VI: Optimization of SQL Statements
Chapter 22, "The Optimizer"

This chapter introduces the optimizer, which is the part of Oracle that chooses the

most efficient way to execute each SQL statement.

Chapter 23, "Optimizer Operations"

This chapter explains how the optimizer chooses the best way to execute SQL

statements.
xxxi

Chapter 24, "Optimization of Joins"

This chapter discusses how the optimizer executes SQL statements that contain

joins, anti-joins, and semi-joins. It also describes how the optimizer can use bitmap

indexes to execute star queries, which join a fact table to multiple dimension tables.

Part VII: Parallel SQL and Direct-Load INSERT
Chapter 25, "Direct-Load INSERT"

This chapter describes the direct-load insert path, which can be performed serially

or in parallel, and the NOLOGGING option.

Chapter 26, "Parallel Execution"

This chapter describes parallel execution of SQL statements (queries, DML, and

DDL statements) and explains the rules for parallelizing SQL statements.

Part VIII: Data Protection
Chapter 27, "Data Concurrency and Consistency"

This chapter explains how Oracle provides concurrent access to and maintains the

accuracy of shared information in a multiuser environment. It describes the

automatic mechanisms that Oracle uses to guarantee that the concurrent operations

of multiple users do not interfere with each other.

Chapter 28, "Data Integrity"

This chapter discusses data integrity and the declarative integrity constraints that

you can use to enforce data integrity.

Chapter 29, "Controlling Database Access"

This chapter describes how to control user access to data and database resources.

Chapter 30, "Privileges, Roles, and Security Policies"

This chapter discusses security at the system and schema object levels.

Chapter 31, "Auditing"

This chapter discusses how the Oracle auditing feature tracks database activity.

Chapter 32, "Database Recovery"

This chapter describes the files and structures used for database recovery and

discusses how to protect an Oracle database from possible failures.
xxxii

Part IX: Distributed Databases and Replication
Chapter 33, "Distributed Databases"

This chapter discusses distributed database architecture, remote data access, and

table replication.

Chapter 34, "Database Replication"

This chapter discusses replication of Oracle databases in a distributed database

system.

Part X: Appendix
Appendix A, "Operating System-Specific Information"

This appendix lists all the operating system-specific references within this manual.

How to Use This Manual
Every reader of this manual should read Chapter 1, "Introduction to the Oracle

Server". This overview of the concepts and terminology related to Oracle provides a

foundation for the more detailed information that follows in later chapters.

Each part of this manual addresses a specific audience within the general audiences

previously described. For example, after reading Chapter 1, administrators who are

interested primarily in managing security should focus on the information

presented in Part VII, "Data Protection", particularly Chapter 29, "Controlling

Database Access", Chapter 30, "Privileges, Roles, and Security Policies", and

Chapter 31, "Auditing".

Conventions Used in This Manual
This manual uses different fonts to represent different types of information.

Text of the Manual
The text of this manual uses the following conventions.

UPPERCASE Characters
Uppercase text is used to call attention to command keywords, database object

names, parameters, filenames, and so on.

For example, "After inserting the default value, Oracle checks the FOREIGN KEY

integrity constraint defined on the DEPTNO column," or "If you create a private
xxxiii

rollback segment, the name must be included in the ROLLBACK_SEGMENTS

initialization parameter."

Italicized Characters
Italicized words within text are book titles or emphasized words.

Code Examples
Commands or statements of SQL, Oracle Enterprise Manager line mode (Server

Manager), and SQL*Plus appear in a monospaced font.

For example:

INSERT INTO emp (empno, ename) VALUES (1000, ’SMITH’);
ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.

All punctuation in example statements is required. All example statements

terminate with a semicolon (;). Depending on the application, a semicolon or other

terminator may or may not be required to end a statement.

UPPERCASE in Code Examples
Uppercase words in example statements indicate the keywords within Oracle SQL.

When you issue statements, however, keywords are not case sensitive.

lowercase in Code Examples
Lowercase words in example statements indicate words supplied only for the

context of the example. For example, lowercase words may indicate the name of a

table, column, or file.
xxxiv

Your Comments Are Welcome
We value and appreciate your comment as an Oracle user and reader of our

manuals. As we write, revise, and evaluate our documentation, your opinions are

the most important feedback we receive.

You can send comments and suggestions about this manual to the Information

Development department at the following e-mail address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway Redwood Shores, CA 94065

Fax: (650) 506-7228
xxxv

xxxvi

Part I

 What Is Oracle?

Part I provides an overview of Oracle server concepts and terminology. It contains

one chapter:

■ Chapter 1, "Introduction to the Oracle Server"

The rest of this manual describes the concepts that are summarized in Chapter 1

more thoroughly.

Introduction to the Oracle S
1

Introduction to the Oracle Server

I am Sir Oracle,

And when I ope my lips, let no dog bark!

Shakespeare: The Merchant of Venice

This chapter provides an overview of the Oracle server. The topics include:

■ Databases and Information Management

■ Database Structure and Space Management

■ Memory Structure and Processes

■ The Object-Relational Model for Database Management

■ Data Concurrency and Consistency

■ Distributed Processing and Distributed Databases

■ Startup and Shutdown Operations

■ Database Security

■ Database Backup and Recovery

■ Data Access

Attention: This chapter contains information relating to both

Oracle8i and the Oracle8i Enterprise Edition. Some of the features

and options documented in this chapter are available only if you

have purchased the Oracle8i Enterprise Edition. See Getting to Know
Oracle8i for information about the differences between Oracle8i and

the Oracle8i Enterprise Edition.
erver 1-1

Databases and Information Management
Databases and Information Management
A database server is the key to solving the problems of information management. In

general, a server must reliably manage a large amount of data in a multiuser

environment so that many users can concurrently access the same data. All this

must be accomplished while delivering high performance. A database server must

also prevent unauthorized access and provide efficient solutions for failure

recovery.

The Oracle server provides efficient and effective solutions with the following

features:

client/server

environments

(distributed

processing)

To take full advantage of a given computer system or

network, Oracle allows processing to be split between the

database server and the client application programs. The

computer running the database management system handles

all of the database server responsibilities while the

workstations running the database application concentrate

on the interpretation and display of data.

large databases and

space management

Oracle supports the largest of databases, which can contain

terabytes of data. To make efficient use of expensive

hardware devices, Oracle allows full control of space usage.

many concurrent

database users

Oracle supports large numbers of concurrent users executing

a variety of database applications operating on the same

data. It minimizes data contention and guarantees data

concurrency.

connectibility Oracle software allows different types of computers and

operating systems to share information across networks.

high transaction

processing

performance

Oracle maintains the preceding features with a high degree

of overall system performance. Database users do not suffer

from slow processing performance.

high availability At some sites, Oracle works 24 hours per day with no down

time to limit database throughput. Normal system

operations such as database backup and partial computer

system failures do not interrupt database use.
1-2 Oracle8i Concepts

Databases and Information Management
controlled

availability

Oracle can selectively control the availability of data, at the

database level and sub-database level. For example, an

administrator can disallow use of a specific application so

that the application’s data can be reloaded, without affecting

other applications.

openness, industry

standards

Oracle adheres to industry accepted standards for the data

access language, operating systems, user interfaces, and

network communication protocols. It is an "open" system

that protects a customer’s investment.

Oracle also supports the Simple Network Management

Protocol (SNMP) standard for system management. This

protocol allows administrators to manage heterogeneous

systems with a single administration interface.

manageable

security

To protect against unauthorized database access and use,

Oracle provides fail-safe security features to limit and

monitor data access. These features make it easy to manage

even the most complex design for data access.

database enforced

integrity

Oracle enforces data integrity, "business rules" that dictate

the standards for acceptable data. This reduces the costs of

coding and managing checks in many database applications.

portability Oracle software works under different operating systems.

Applications developed for Oracle can be ported to any

operating system with little or no modification.

compatibility Oracle software is compatible with industry standards,

including most industry standard operating systems.

Applications developed for Oracle can be used on virtually

any system with little or no modification.

distributed systems For networked, distributed environments, Oracle combines

the data physically located on different computers into one

logical database that can be accessed by all network users.

Distributed systems have the same degree of user

transparency and data consistency as non-distributed

systems, yet receive the advantages of local database

management.

Oracle also offers the heterogeneous option that allows users

to access data on some non-Oracle databases transparently.
Introduction to the Oracle Server 1-3

Databases and Information Management
The following sections provide a comprehensive overview of the Oracle

architecture. Each section describes a different part of the overall architecture.

The Oracle Server
The Oracle server is an object-relational database management system that provides

an open, comprehensive, and integrated approach to information management. An

Oracle server consists of an Oracle database and an Oracle server instance. The

following sections describe the relationship between the database and the instance.

Structured Query Language (SQL)
SQL (pronounced SEQUEL) is the programming language that defines and

manipulates the database. SQL databases are relational databases; this means

simply that data is stored in a set of simple relations. A database can have one or

more tables. And each table has columns and rows. A table that has an employee

database, for example, might have a column called employee number and each row

in that column would be an employee’s employee number.

You can define and manipulate data in a table with SQL commands. You use data

definition language (DDL) commands to set up the data. DDL commands include

commands for creating and altering databases and tables.

You can update, delete, or retrieve data in a table with data manipulation

commands (DML). DML commands include commands to alter and fetch data. The

most common SQL command is the SELECT command, which allows you to

retrieve data from the database.

In addition to SQL commands, the Oracle server has a procedural language called

PL/SQL. PL/SQL enables the programmer to program SQL statements. It allows

you to control the flow of a SQL program, to use variables, and to write

error-handling procedures.

replicated

environments

Oracle software lets you replicate groups of tables and their

supporting objects to multiple sites. Oracle supports

replication of both data- and schema-level changes to these

sites. Oracle’s flexible replication technology supports basic

primary site replication as well as advanced dynamic and

shared-ownership models.
1-4 Oracle8i Concepts

Databases and Information Management
Database Structure
An Oracle database has both a physical and a logical structure. Because the physical

and logical server structure are separate, the physical storage of data can be

managed without affecting the access to logical storage structures.

Physical Database Structure An Oracle database’s physical structure is determined by

the operating system files that constitute the database. Each Oracle database is

made of three types of files: one or more datafiles, two or more redo log files, and

one or more control files. The files of an Oracle database provide the actual physical

storage for database information.

Logical Database Structure An Oracle database’s logical structure is determined by:

■ one or more tablespaces

A tablespace is a logical area of storage explained later in this chapter.

■ the database’s schema objects

A schema is a collection of objects. Schema objects are the logical structures that

directly refer to the database’s data. Schema objects include such structures as

tables, views, sequences, stored procedures, synonyms, indexes, clusters, and

database links.

The logical storage structures, including tablespaces, segments, and extents, dictate

how the physical space of a database is used. The schema objects and the

relationships among them form the relational design of a database.

For more information about database structures, see "Database Structure and Space

Management" on page 1-8.

Data Utilities
There are three utilities for moving a subset of an Oracle database from one

database to another: Export, Import, and SQL*Loader.

Export The Export utility provides a simple way for you to transfer data objects

between Oracle databases, even if they reside on platforms with different hardware

and software configurations. Export extracts the object definitions and table data

from an Oracle database and stores them in an Oracle binary-format Export dump

file located typically on disk or tape.

Such files can then be copied via ftp or physically transported (in the case of tape) to

a different site and used, with the Import utility, to transfer data between databases
Introduction to the Oracle Server 1-5

Databases and Information Management
that are on machines not connected via a network or as backups in addition to

normal backup procedures.

When you run Export against an Oracle database, objects (such as tables) are

extracted, followed by their related objects (such as indexes, comments, and grants)

if any, and then written to the Export file.

Import The Import utility inserts the data objects extracted from one Oracle

database by the Export utility (and stored in an Export dump file) into another

Oracle database. Export dump files can only be read by Import.

Import reads the object definitions and table data that the Export utility extracted

from an Oracle database and stored in an Oracle binary-format Export dump file

located typically on disk or tape.

The Export and Import utilities can also facilitate certain aspects of Oracle

Advanced Replication functionality like offline instantiation.

SQL*Loader Export dump files can only be read by the Oracle Import utility. If you

need to read load data from ASCII fixed-format or delimited files, you can use the

SQL*Loader utility. SQL*Loader loads data from external files into tables in an

Oracle database. SQL*Loader accepts input data in a variety of formats, can

perform filtering (selectively loading records based upon their data values), and can

load data into multiple Oracle database tables during the same load session.

An Oracle Instance
Every time a database is started, a system global area (SGA) is allocated and Oracle

background processes are started. The system global area is an area of memory used

for database information shared by the database users. The combination of the

background processes and memory buffers is called an Oracle instance.

An Oracle instance has two types of processes: user processes and Oracle processes.

■ A user process executes the code of an application program (such as an Oracle

Forms application) or an Oracle Tool (such as Oracle Enterprise Manager).

Additional Information: See Oracle8i Replication for more

information about Oracle Advanced Replication.

Additional Information: See Oracle8i Utilities for detailed

information about Export, Import, and SQL*Loader.
1-6 Oracle8i Concepts

Databases and Information Management
■ Oracle processes are server processes that perform work for the user processes

and background processes that perform maintenance work for the Oracle

server.

Figure 1–1 illustrates a multiple-process Oracle instance.

Figure 1–1 An Oracle Instance

Communications Software and Net8
If the user and server processes are on different computers of a network or if user

processes connect to shared server processes through dispatcher processes, the user

process and server process communicate using Net8. Dispatchers are optional

background processes, present only in the multi-threaded server configuration. Net8
is Oracle’s interface to standard communications protocols that allows for the

proper transmission of data between computers.

See "Oracle and Net8" on page 1-37 for more information.

Oracle
Processes
(background
processes)

User
processesUser User User User

Archiver
(ARC0)

Log
Writer

(LGWR)

Recoverer
(RECO)

Process
Monitor
(PMON)

System
Monitor
(SMON)

Database
Writer

(DBW0)

System Global Area
(SGA)
Introduction to the Oracle Server 1-7

Database Structure and Space Management
The Oracle Parallel Server: Multiple Instance Systems

Some hardware architectures (for example, shared disk systems) allow multiple

computers to share access to data, software, or peripheral devices. Oracle with the

Parallel Server option can take advantage of such architecture by running multiple

instances that "share" a single physical database. In appropriate applications, the

Oracle Parallel Server allows access to a single database by the users on multiple

machines with increased performance.

Oracle Databases
An Oracle database is a collection of data that is treated as a unit. The general

purpose of a database is to store and retrieve related information.

The database has logical structures and physical structures. See "Logical Database

Structures" on page 1-9 and "Physical Database Structures" on page 1-11 for an

overview of the logical and physical structures of the Oracle database.

Open and Closed Databases
An Oracle database can be open (accessible) or closed (not accessible). In normal

situations, the database is open and available for use. However, the database is

sometimes closed for specific administrative functions that require the database’s

data to be unavailable to users.

Database Structure and Space Management
This section describes the structures that make up an Oracle database. This

discussion provides an understanding of Oracle’s solutions to controlled data

availability, the separation of logical and physical data structures, and fine-grained

control of disk space management.

Attention: The Oracle Parallel Server option is available only if

you have purchased the Oracle8i Enterprise Edition. See Getting to
Know Oracle8i for details about the features and options available

with Oracle8i Enterprise Edition.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information on the Oracle Parallel Server.
1-8 Oracle8i Concepts

Database Structure and Space Management
An Oracle database is a collection of data that is treated as a unit. The general

purpose of a database is to store and retrieve related information. The database has

logical structures and physical structures.

Logical Database Structures
The logical structures of an Oracle database include tablespaces, schema objects,

data blocks, extents, and segments.

Tablespaces
A database is divided into logical storage units called tablespaces, which group

related logical structures together. For example, tablespaces commonly group all of

an application’s objects to simplify some administrative operations.

Databases, Tablespaces, and Datafiles The relationship among databases, tablespaces,

and datafiles (datafiles are described in the next section) is illustrated in Figure 1–2.

Figure 1–2 Databases, Tablespaces, and Datafiles

This figure illustrates the following:

■ Each database is logically divided into one or more tablespaces.

■ One or more datafiles are explicitly created for each tablespace to physically

store the data of all logical structures in a tablespace.

DATA1.ORA
1 Mb

DATA2.ORA
1 Mb

DATA3.ORA
4 Mb

System Tablespace USERS Tablespace

Database
Introduction to the Oracle Server 1-9

Database Structure and Space Management
■ The combined size of a tablespace’s datafiles is the total storage capacity of the

tablespace (SYSTEM tablespace has 2 MB storage capacity while USERS

tablespace has 4 MB).

■ The combined storage capacity of a database’s tablespaces is the total storage

capacity of the database (6 MB).

Online and Offline Tablespaces A tablespace can be online (accessible) or offline (not

accessible). A tablespace is normally online so that users can access the information

within the tablespace. However, sometimes a tablespace may be taken offline to

make a portion of the database unavailable while allowing normal access to the

remainder of the database. This makes many administrative tasks easier to perform.

Schemas and Schema Objects
A schema is a collection of database objects. Schema objects are the logical structures

that directly refer to the database’s data. Schema objects include such structures as

tables, views, sequences, stored procedures, synonyms, indexes, clusters, and

database links. (There is no relationship between a tablespace and a schema; objects

in the same schema can be in different tablespaces, and a tablespace can hold

objects from different schemas.) For more information about schema objects, see

"Schemas and Schema Objects" on page 1-23.

Data Blocks, Extents, and Segments
Oracle allows fine-grained control of disk space usage through the logical storage

structures, including data blocks, extents, and segments. For more information on

these, see Chapter 4, "Data Blocks, Extents, and Segments".

Oracle Data Blocks At the finest level of granularity, an Oracle database’s data is

stored in data blocks. One data block corresponds to a specific number of bytes of

physical database space on disk. A data block size is specified for each Oracle

database when the database is created. A database uses and allocates free database

space in Oracle data blocks.

Extents The next level of logical database space is called an extent. An extent is a

specific number of contiguous data blocks, obtained in a single allocation, used to

store a specific type of information.
1-10 Oracle8i Concepts

Database Structure and Space Management
Segments The level of logical database storage above an extent is called a segment.

A segment is a set of extents allocated for a certain logical structure. For example, the

different types of segments include:

Oracle dynamically allocates space when the existing extents of a segment become

full. Therefore, when the existing extents of a segment are full, Oracle allocates

another extent for that segment as needed. Because extents are allocated as needed,

the extents of a segment may or may not be contiguous on disk.

Physical Database Structures
The following sections explain the physical database structures of an Oracle

database, including datafiles, redo log files, and control files.

data segment Each non-clustered table has a data segment. All of the

table’s data is stored in the extents of its data segment. For a

partitioned table, each partition has a data segment.

Each cluster has a data segment. The data of every table in

the cluster is stored in the cluster’s data segment.

index segment Each index has an index segment that stores all of its data.

For a partitioned index, each partition has an index segment.

rollback segment One or more rollback segments for a database are created by

the database administrator to temporarily store "undo"

information.

The information in a rollback segment is used

■ to generate read-consistent database information (see

"Read Consistency" on page 1-31)

■ during database recovery (see "Database Backup and

Recovery" on page 1-45)

■ to rollback uncommitted transactions for users.

temporary segment Temporary segments are created by Oracle when a SQL

statement needs a temporary work area to complete

execution. When the statement finishes execution, the

temporary segment’s extents are returned to the system for

future use.
Introduction to the Oracle Server 1-11

Database Structure and Space Management
Datafiles
Every Oracle database has one or more physical datafiles. A database’s datafiles

contain all the database data. The data of logical database structures such as tables

and indexes is physically stored in the datafiles allocated for a database.

The characteristics of datafiles are:

■ A datafile can be associated with only one database.

■ Datafiles can have certain characteristics set to allow them to automatically

extend when the database runs out of space.

■ One or more datafiles form a logical unit of database storage called a tablespace,

as discussed earlier in this chapter.

The Use of Datafiles The data in a datafile is read, as needed, during normal database

operation and stored in the memory cache of Oracle. For example, assume that a

user wants to access some data in a table of a database. If the requested information

is not already in the memory cache for the database, it is read from the appropriate

datafiles and stored in memory.

Modified or new data is not necessarily written to a datafile immediately. To reduce

the amount of disk access and increase performance, data is pooled in memory and

written to the appropriate datafiles all at once, as determined by the DBWn
background process of Oracle. (For more information about Oracle’s memory and

process structures and the algorithm for writing database data to the datafiles, see

"Memory Structure and Processes" on page 1-14.)

Redo Log Files
Every Oracle database has a set of two or more redo log files. The set of redo log files

for a database is collectively known as the database’s redo log. A redo log is made up

of redo entries (also called redo records), each of which is a group of change vectors

describing a single atomic change to the database.

The primary function of the redo log is to record all changes made to data. Should a

failure prevent modified data from being permanently written to the datafiles, the

changes can be obtained from the redo log and work is never lost.

Redo log files are critical in protecting a database against failures. To protect against

a failure involving the redo log itself, Oracle allows a multiplexed redo log so that two

or more copies of the redo log can be maintained on different disks.
1-12 Oracle8i Concepts

Database Structure and Space Management
The Use of Redo Log Files The information in a redo log file is used only to recover

the database from a system or media failure that prevents database data from being

written to a database’s datafiles.

For example, if an unexpected power outage abruptly terminates database

operation, data in memory cannot be written to the datafiles and the data is lost.

However, any lost data can be recovered when the database is opened, after power

is restored. By applying the information in the most recent redo log files to the

database’s datafiles, Oracle restores the database to the time at which the power

failure occurred.

The process of applying the redo log during a recovery operation is called rolling
forward. See "Database Backup and Recovery" on page 1-45.

Control Files
Every Oracle database has a control file. A control file contains entries that specify

the physical structure of the database. For example, it contains the following types

of information:

■ database name

■ names and locations of a database’s datafiles and redo log files

■ time stamp of database creation

Like the redo log, Oracle allows the control file to be multiplexed for protection of

the control file.

The Use of Control Files Every time an instance of an Oracle database is started, its

control file is used to identify the database and redo log files that must be opened

for database operation to proceed. If the physical makeup of the database is altered

(for example, a new datafile or redo log file is created), the database’s control file is

automatically modified by Oracle to reflect the change.

A database’s control file is also used if database recovery is necessary. See "Database

Backup and Recovery" on page 1-45 and Chapter 32, "Database Recovery" for more

information.
Introduction to the Oracle Server 1-13

Memory Structure and Processes
Memory Structure and Processes
This section discusses the memory and process structures used by an Oracle server

to manage a database. Among other things, the architectural features discussed in

this section provide an understanding of the capabilities of the Oracle server to

support:

■ many users concurrently accessing a single database

■ the high performance required by concurrent multi-user, multi-application

database systems

An Oracle server uses memory structures and processes to manage and access the

database. All memory structures exist in the main memory of the computers that

constitute the database system.

Processes are jobs or tasks that work in the memory of these computers.

Figure 1–3 on page 1-15 shows a typical variation of the Oracle server memory and

process structures.

Memory Structures
Oracle creates and uses memory structures to complete several jobs. For example,

memory stores program code being executed and data that is shared among users.

Several basic memory structures are associated with Oracle: the system global area

(which includes the database buffers, redo log buffers, and the shared pool) and the

program global areas. The following subsections explain each in detail.
1-14 Oracle8i Concepts

Memory Structure and Processes
Figure 1–3 Memory Structures and Processes of Oracle

Datafiles

Redo Log
Files

Control
Files

Offline
Storage
Device

SMONPMONRECO

System Global Area

Database
Buffer Cache

Redo Log
Buffer

User
Process

User Processes

D000

User
Process

LGWR

Dedicated
Server

Process

CKPT

DBW0

Legend:

LCK0
RECO
PMON
SMON
CKPT
ARC0
DBW0
LGWR

Lock process
Recoverer process
Process monitor
System monitor
Checkpoint
Archiver
Database writer
Log writer

ARC0

Shared
Server

Process

DBW0

ARC0

LGWR

LCK0
Introduction to the Oracle Server 1-15

Memory Structure and Processes
System Global Area (SGA)
The System Global Area (SGA) is a shared memory region that contains data and

control information for one Oracle instance. An SGA and the Oracle background

processes constitute an Oracle instance. (See "An Oracle Instance" on page 1-6 and

"Background Processes" on page 1-18 for more information.)

Oracle allocates the system global area when an instance starts and deallocates it

when the instance shuts down. Each instance has its own system global area.

Users currently connected to an Oracle server share the data in the system global

area. For optimal performance, the entire system global area should be as large as

possible (while still fitting in real memory) to store as much data in memory as

possible and minimize disk I/O.

The information stored within the system global area is divided into several types

of memory structures, including the database buffers, redo log buffer, and the

shared pool. These areas have fixed sizes and are created during instance startup.

Database Buffer Cache Database buffers of the system global area store the most

recently used blocks of database data; the set of database buffers in an instance is

the database buffer cache. The buffer cache contains modified as well as unmodified

blocks. Because the most recently (and often the most frequently) used data is kept

in memory, less disk I/O is necessary and performance is improved.

Redo Log Buffer The redo log buffer of the system global area stores redo entries—a log

of changes made to the database. The redo entries stored in the redo log buffers are

written to an online redo log file, which is used if database recovery is necessary. Its

size is static.

Shared Pool The shared pool is a portion of the system global area that contains

shared memory constructs such as shared SQL areas. A shared SQL area is required

to process every unique SQL statement submitted to a database (see "SQL

Statements" on page 1-52). A shared SQL area contains information such as the

parse tree and execution plan for the corresponding statement. A single shared SQL

area is used by multiple applications that issue the same statement, leaving more

shared memory for other uses.

Large Pool The large pool is an optional area in the SGA that provides large memory

allocations for Oracle backup and restore operations, I/O server processes, and

session memory for the multi-threaded server and Oracle XA.
1-16 Oracle8i Concepts

Memory Structure and Processes
Statement Handles or Cursors A cursor is a handle (a name or pointer) for the memory

associated with a specific statement. (The Oracle Call Interface, OCI, refers to these

as statement handles.) Although most Oracle users rely on the automatic cursor

handling of the Oracle utilities, the programmatic interfaces offer application

designers more control over cursors.

For example, in precompiler application development, a cursor is a named resource

available to a program and can be specifically used for the parsing of SQL

statements embedded within the application. The application developer can code

an application so that it controls the phases of SQL statement execution and thus

improve application performance.

Program Global Area (PGA)
The Program Global Area (PGA) is a memory buffer that contains data and control

information for a server process. A PGA is created by Oracle when a server process

is started. The information in a PGA depends on the configuration of Oracle.

Process Architecture
A process is a "thread of control" or a mechanism in an operating system that can

execute a series of steps. Some operating systems use the terms job or task. A process

normally has its own private memory area in which it runs.

An Oracle server has two general types of processes: user processes and Oracle

processes.

User (Client) Processes
A user process is created and maintained to execute the software code of an

application program (such as a Pro*C/C++ program) or an Oracle tool (such as

Oracle Enterprise Manager). The user process also manages the communication

with the server processes.

User processes communicate with the server processes through the program

interface, which is described in a later section.

Oracle Process Architecture
Oracle processes are called by other processes to perform functions on behalf of the

invoking process. The different types of Oracle processes and their specific

functions are discussed in the following sections. They include server processes and

background processes.
Introduction to the Oracle Server 1-17

Memory Structure and Processes
Server Processes
Oracle creates server processes to handle requests from connected user processes. A

server process is in charge of communicating with the user process and interacting

with Oracle to carry out requests of the associated user process. For example, if a

user queries some data that is not already in the database buffers of the system

global area, the associated server process reads the proper data blocks from the

datafiles into the system global area.

Oracle can be configured to vary the number of user processes per server process. In

a dedicated server configuration, a server process handles requests for a single user

process. A multi-threaded server configuration allows many user processes to share a

small number of server processes, minimizing the number of server processes and

maximizing the utilization of available system resources.

On some systems, the user and server processes are separate, while on others they

are combined into a single process. If a system uses the multi-threaded server or if

the user and server processes run on different machines, the user and server

processes must be separate. Client/server systems separate the user and server

processes and execute them on different machines.

Background Processes
Oracle creates a set of background processes for each instance. They consolidate

functions that would otherwise be handled by multiple Oracle programs running

for each user process. The background processes asynchronously perform I/O and

monitor other Oracle processes to provide increased parallelism for better

performance and reliability.

An SGA and the set of Oracle background processes constitute an Oracle instance.

(For information about the SGA, see "An Oracle Instance" on page 1-6 and "System

Global Area (SGA)" on page 1-16.) Each Oracle instance may use several

background processes. The names of these processes are DBWn, LGWR, CKPT,

SMON, PMON, ARCn, RECO, Dnnn, LCK0, SNPn, and QMNn.

Database Writer (DBW n) The Database Writer writes modified blocks from the

database buffer cache to the datafiles. Although one database writer process

(DBW0) is sufficient for most systems, you can configure additional processes

(DBW1 through DBW9) to improve write performance for a system that modifies

data heavily. The initialization parameter DB_WRITER_PROCESSES specifies the

number of DBWn processes.

Since Oracle uses write-ahead logging, DBWn does not need to write blocks when a

transaction commits (see "Transactions" on page 1-53). Instead, DBWn is designed
1-18 Oracle8i Concepts

Memory Structure and Processes
to perform batched writes with high efficiency. In the most common case, DBWn
writes only when more data needs to be read into the system global area and too

few database buffers are free. The least recently used data is written to the datafiles

first. DBWn also performs writes for other functions such as checkpointing.

Log Writer (LGWR) The Log Writer writes redo log entries to disk. Redo log entries are

generated in the redo log buffer of the system global area (SGA), and LGWR writes

the redo log entries sequentially into an online redo log file. If the database has a

multiplexed redo log, LGWR writes the redo log entries to a group of online redo

log files.

Checkpoint (CKPT) At specific times, all modified database buffers in the system

global area are written to the datafiles by DBWn; this event is called a checkpoint.

The Checkpoint process is responsible for signalling DBWn at checkpoints and

updating all the datafiles and control files of the database to indicate the most recent

checkpoint.

System Monitor (SMON) The system monitor performs crash recovery when a failed

instance starts up again. In a multiple instance system (one that uses Oracle Parallel

Server), the SMON process of one instance can perform instance recovery for other

instances that have failed. SMON also cleans up temporary segments that are no

longer in use and recovers dead transactions skipped during crash and instance

recovery because of file-read or offline errors. These transactions are eventually

recovered by SMON when the tablespace or file is brought back online. SMON also

coalesces free extents within the database’s dictionary-managed tablespaces to

make free space contiguous and easier to allocate.

Process Monitor (PMON) The process monitor performs process recovery when a user

process fails. PMON is responsible for cleaning up the cache and freeing resources

that the process was using. PMON also checks on dispatcher (see below) and server

processes and restarts them if they have failed.

Archiver (ARC n) The archiver copies the online redo log files to archival storage

when they are full or a log switch occurs. Although a single ARCn process (ARC0)

is sufficient for most systems, you can specify up to ten ARCn processes by using

the dynamic initialization parameter LOG_ARCHIVE_MAX_PROCESSES. If the

workload becomes too great for the current number of ARCn processes, LGWR

automatically starts another ARCn process up to the maximum of ten processes.

ARCn is active only when a database is in ARCHIVELOG mode and automatic

archiving is enabled. (See "The Redo Log" on page 1-47.)
Introduction to the Oracle Server 1-19

Memory Structure and Processes
Recoverer (RECO) The recoverer is used to resolve distributed transactions that are

pending due to a network or system failure in a distributed database. At timed

intervals, the local RECO attempts to connect to remote databases and

automatically complete the commit or rollback of the local portion of any pending

distributed transactions.

Dispatcher (D nnn) Dispatchers are optional background processes, present only when

a multi-threaded server configuration is used. At least one dispatcher process is

created for every communication protocol in use (D000, . . ., Dnnn). Each dispatcher

process is responsible for routing requests from connected user processes to

available shared server processes and returning the responses back to the

appropriate user processes.

Lock (LCK0) The lock process (LCK0) is used for inter-instance locking in the Oracle

Parallel Server; see "The Oracle Parallel Server: Multiple Instance Systems" on

page 1-8 for information about this configuration.

Job Queue (SNP n) In a distributed database configuration, up to thirty-six job queue
processes (SNP0, ..., SNP9, SNPA, ..., SNPZ) can automatically refresh table

snapshots. These processes wake up periodically and refresh any snapshots that are

scheduled to be automatically refreshed. If more than one job queue process is used,

the processes share the task of refreshing snapshots. These processes also execute

job requests created by the DBMS_JOB package and propagate queued messages to

queues on other databases.

Queue Monitor (QMN n) The queue monitor(s) are optional background processes that

monitor the message queues for Oracle Advanced Queuing (Oracle AQ). You can

configure up to ten queue monitor processes.

The Program Interface
The program interface is the mechanism by which a user process communicates

with a server process. It serves as a method of standard communication between

any client tool or application (such as Oracle Forms) and Oracle software. Its

functions are to:

■ act as a communications mechanism, by formatting data requests, passing data,

and trapping and returning errors

■ perform conversions and translations of data, particularly between different

types of computers or to external user program datatypes
1-20 Oracle8i Concepts

Memory Structure and Processes
An Example of How Oracle Works
The following example illustrates an Oracle configuration where the user and

associated server process are on separate machines (connected via a network).

1. An instance is currently running on the computer that is executing Oracle (often

called the host or database server).

2. A computer running an application (a local machine or client workstation) runs

the application in a user process. The client application attempts to establish a

connection to the server using the proper Net8 driver.

3. The server is running the proper Net8 driver. The server detects the connection

request from the application and creates a (dedicated) server process on behalf

of the user process.

4. The user executes a SQL statement and commits the transaction. For example,

the user changes a name in a row of a table.

5. The server process receives the statement and checks the shared pool for any

shared SQL area that contains an identical SQL statement. If a shared SQL area

is found, the server process checks the user’s access privileges to the requested

data and the previously existing shared SQL area is used to process the

statement; if not, a new shared SQL area is allocated for the statement so that it

can be parsed and processed.

6. The server process retrieves any necessary data values from the actual datafile

(table) or those stored in the system global area.

7. The server process modifies data in the system global area. The DBWn process

writes modified blocks permanently to disk when doing so is efficient. Because

the transaction committed, the LGWR process immediately records the

transaction in the online redo log file.

8. If the transaction is successful, the server process sends a message across the

network to the application. If it is not successful, an appropriate error message

is transmitted.

9. Throughout this entire procedure, the other background processes run,

watching for conditions that require intervention. In addition, the database

server manages other users’ transactions and prevents contention between

transactions that request the same data.

These steps describe only the most basic level of operations that Oracle performs.

(See Chapter 8, "Process Architecture".)
Introduction to the Oracle Server 1-21

The Object-Relational Model for Database Management
The Object-Relational Model for Database Management
Database management systems have evolved from hierarchical to network to

relational models. The most widely accepted database model is the relational model.
Oracle extends the relational model to an object-relational model, which makes it

possible to store complex business models in a relational database.

The Relational Model
The relational model has three major aspects:

Relational database management systems offer benefits such as:

■ independence of physical data storage and logical database structure

■ variable and easy access to all data

■ complete flexibility in database design

■ reduced data storage and redundancy

The Object-Relational Model
The object-relational model allows users to define object types, specifying both the

structure of the data and the methods of operating on the data, and to use these

datatypes within the relational model.

structures Structures are well-defined objects (such as tables,

views, indexes, and so on) that store or access the

data of a database. Structures and the data

contained within them can be manipulated by

operations.

operations Operations are clearly defined actions that allow

users to manipulate the data and structures of a

database. The operations on a database must

adhere to a predefined set of integrity rules.

integrity rules Integrity rules are the laws that govern which

operations are allowed on the data and structures

of a database. Integrity rules protect the data and

the structures of a database.
1-22 Oracle8i Concepts

The Object-Relational Model for Database Management
Object types are abstractions of the real-world entities—for example, purchase

orders—that application programs deal with. An object type has three kinds of

components:

■ A name, which serves to identify the object type uniquely.

■ Attributes, which are built-in datatypes or other user-defined types. Attributes

model the structure of the real world entity.

■ Methods, which are functions or procedures written in PL/SQL and stored in

the database, or written in a language like C and stored externally. Methods

implement specific operations that an application can perform on the data.

Every object type has a constructor method that makes a new object according to

the datatype’s specification.

Schemas and Schema Objects
A schema is a collection of database objects that are available to a user. Schema objects
are the logical structures that directly refer to the database’s data. Schema objects

include such structures as tables, views, sequences, stored procedures, synonyms,

indexes, clusters, and database links. (There is no relationship between a tablespace

and a schema; objects in the same schema can be in different tablespaces, and a

tablespace can hold objects from different schemas.)

Tables
A table is the basic unit of data storage in an Oracle database. The tables of a

database hold all of the user-accessible data.

Table data is stored in rows and columns. Every table is defined with a table name and

set of columns. Each column is given a column name, a datatype (such as CHAR,

DATE, or NUMBER), and a width (which may be predetermined by the datatype, as

in DATE) or scale and precision (for the NUMBER datatype only). Once a table is

created, valid rows of data can be inserted into it. The table’s rows can then be

queried, deleted, or updated.

Attention: User-defined object types are available only if you have

purchased the Oracle8i Enterprise Edition. See Getting to Know
Oracle8i for details about the features available with Oracle8i
Enterprise Edition.
Introduction to the Oracle Server 1-23

The Object-Relational Model for Database Management
The Partitioning Option of Oracle8i Enterprise Edition enables you to partition
tables. For more information, see Chapter 11, "Partitioned Tables and Indexes".

To enforce defined business rules on a table’s data, integrity constraints and triggers

can also be defined for a table. For more information, see "Data Integrity" on

page 1-57.

Views
A view is a custom-tailored presentation of the data in one or more tables. A view

can also be thought of as a "stored query".

Views do not actually contain or store data; rather, they derive their data from the

tables on which they are based, referred to as the base tables of the views. Base tables

can in turn be tables or can themselves be views.

Like tables, views can be queried, updated, inserted into, and deleted from, with

some restrictions. All operations performed on a view actually affect the base tables

of the view.

Views are often used to do the following:

■ Provide an additional level of table security by restricting access to a

predetermined set of rows and columns of a table. For example, a view of a

table can be created so that columns with sensitive data (for example, salary

information) are not included in the definition of the view.

■ Hide data complexity. For example, a single view can combine 12 monthly sales

tables to provide a year of data for analysis and reporting. A single view can

also be used to create a join, which is a display of related columns or rows in

multiple tables. However, the view hides the fact that this data actually

originates from several tables.

■ Simplify commands for the user. For example, views allow users to select

information from multiple tables without requiring the users to actually know

how to perform a correlated subquery.

■ Present the data in a different perspective from that of the base table. For

example, views provide a means to rename columns without affecting the

tables on which the view is based.

■ Store complex queries. For example, a query might perform extensive

calculations with table information. By saving this query as a view, the

calculations are performed only when the view is queried.
1-24 Oracle8i Concepts

The Object-Relational Model for Database Management
Views that involve a join (a SELECT statement that selects data from multiple

tables) of two or more tables can only be updated under certain conditions. See

"Updatable Join Views" on page 10-15 for more information.

Materialized Views
A materialized view provides indirect access to table data by storing the results of a

query in a separate schema object. Unlike an ordinary view, which does not take up

any storage space or contain any data, a materialized view contains the rows

resulting from a query against one or more base tables or views. A materialized

view can be stored in the same database as its base table(s) or in a different

database.

Materialized views stored in the same database as their master tables can improve

query performance through query rewrites. For queries that involve aggregate data

or joins, the optimizer can rewrite the query to access the precomputed results

stored in a materialized view. Query rewrites are particularly useful in a data

warehouse environment.

Another name for materialized view is snapshot. This term generally refers to a

materialized view used for replicating data in a remote database. (See "Table

Replication" on page 1-36.) In SQL statements, the keywords SNAPSHOT and

MATERIALIZED VIEW are synonymous.

Sequences
A sequence generates a serial list of unique numbers for numeric columns of a

database’s tables. Sequences simplify application programming by automatically

generating unique numerical values for the rows of a single table or multiple tables.

For example, assume two users are simultaneously inserting new employee rows

into the EMP table. By using a sequence to generate unique employee numbers for

the EMPNO column, neither user has to wait for the other to input the next

available employee number. The sequence automatically generates the correct

values for each user.

Sequence numbers are independent of tables, so the same sequence can be used for

one or more tables. After creation, a sequence can be accessed by various users to

generate actual sequence numbers.

Program Units
The term "program unit" is used in this manual to refer to stored procedures,

functions, packages, triggers, and anonymous blocks.
Introduction to the Oracle Server 1-25

The Object-Relational Model for Database Management
A procedure or function is a set of SQL and PL/SQL (Oracle’s procedural language

extension to SQL) statements grouped together as an executable unit to perform a

specific task. For more information about SQL and PL/SQL, see "Data Access" on

page 1-51.

Procedures and functions allow you to combine the ease and flexibility of SQL

with the procedural functionality of a structured programming language. Using

PL/SQL, such procedures and functions can be defined and stored in the database

for continued use. Procedures and functions are identical, except that functions

always return a single value to the caller, while procedures do not return a value to

the caller.

Packages provide a method of encapsulating and storing related procedures,

functions, and other package constructs together as a unit in the database. While

packages provide the database administrator or application developer

organizational benefits, they also offer increased functionality and database

performance.

Synonyms
A synonym is an alias for a table, view, sequence, or program unit. A synonym is not

actually a schema object itself, but instead is a direct reference to a schema object.

Synonyms are used to

■ mask the real name and owner of a schema object

■ provide public access to a schema object

■ provide location transparency for tables, views, or program units of a remote

database

■ simplify the SQL statements for database users

A synonym can be public or private. An individual user can create a private
synonym, which is available only to that user. Database administrators most often

create public synonyms that make the base schema object available for general,

system-wide use by any database user.

Indexes
Indexes are optional structures associated with tables, which can be created to

increase the performance of data retrieval. Just as the index in this manual helps

you locate specific information faster than if there were no index, an Oracle index

provides a faster access path to table data.
1-26 Oracle8i Concepts

The Object-Relational Model for Database Management
When processing a request, Oracle can use some or all of the available indexes to

locate the requested rows efficiently. Indexes are useful when applications often

query a table for a range of rows (for example, all employees with a salary greater

than 1000 dollars) or a specific row.

Indexes are created on one or more columns of a table. Once created, an index is

automatically maintained and used by Oracle. Changes to table data (such as

adding new rows, updating rows, or deleting rows) are automatically incorporated

into all relevant indexes with complete transparency to the users.

Indexes are logically and physically independent of the data. They can be dropped

and created any time with no effect on the tables or other indexes. If an index is

dropped, all applications continue to function; however, access to previously

indexed data may be slower.

The Partitioning Option of Oracle8i Enterprise Edition enables you to partition
indexes. For more information, see Chapter 11, "Partitioned Tables and Indexes".

Clusters and Hash Clusters
Clusters and hash clusters are optional structures for storing table data. They can be

created to increase the performance of data retrieval.

Clustered Tables Clusters are groups of one or more tables physically stored together

because they share common columns and are often used together. Because related

rows are physically stored together, disk access time improves.

The related columns of the tables in a cluster are called the cluster key. The cluster

key is indexed so that rows of the cluster can be retrieved with a minimum amount

of I/O. Because the data in a cluster key of an index cluster (a non-hash cluster) is

stored only once for multiple tables, clusters may store a set of tables more

efficiently than if the tables were stored individually (not clustered).

Figure 1–4 illustrates how clustered and non-clustered data are physically stored.

Clusters also can improve performance of data retrieval, depending on data

distribution and what SQL operations are most often performed on the data. In

particular, clustered tables that are queried in joins benefit from the use of clusters

because the rows common to the joined tables are retrieved with the same I/O

operation.

Like indexes, clusters do not affect application design. Whether or not a table is part

of a cluster is transparent to users and to applications. Data stored in a clustered

table is accessed via SQL in the same way as data stored in a non-clustered table.
Introduction to the Oracle Server 1-27

The Object-Relational Model for Database Management
Figure 1–4 Clustered and Non-clustered Tables

Related data stored
together, more

efficiently

Related data stored
apart, taking up

more space

Clustered Tables Unclustered Tables

DNAME10 LOC

SALES BOSTON

EMPNO ENAME

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

. . .

DNAME20 LOC

ADMIN NEW YORK

EMPNO ENAME

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

. . .

Clustered Key
(DEPTO)

ENAMEEMPNO

932
100
1139
1277
1321
1841

DEPTNO

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

. . .

EMP Table

DNAMEDEPTNO

10
20

LOC

SALES
ADMIN

BOSTON
NEW YORK

DEPT Table
1-28 Oracle8i Concepts

The Object-Relational Model for Database Management
Hash Clusters Hash clusters also cluster table data in a manner similar to normal,

index clusters (clusters keyed with an index rather than a hash function). However,

a row is stored in a hash cluster based on the result of applying a hash function to the

row’s cluster key value. All rows with the same key value are stored together on

disk.

Hash clusters are a better choice than using an indexed table or index cluster when

a table is often queried with equality queries (for example, return all rows for

department 10). For such queries, the specified cluster key value is hashed. The

resulting hash key value points directly to the area on disk that stores the rows.

Dimensions
A dimension defines hierarchical (parent/child) relationships between pairs of

columns or column sets. Each value at the child level is associated with one and

only one value at the parent level.

A dimension schema object is a container of logical relationships between tables

and does not have any data storage assigned to it. The CREATE DIMENSION

statement specifies:

■ multiple LEVEL clauses, each of which identifies a column or column set in the

dimension

■ one or more HIERARCHY clauses that specify the parent/child relationships

between adjacent LEVELs

■ optional ATTRIBUTE clauses, each of which identifies an additional column or

column set associated with an individual LEVEL

The columns in a dimension can come either from the same table (denormalized) or

from multiple tables (fully or partially normalized). To define a dimension over

columns from multiple tables, you connect the tables by inner equijoins using the

JOIN KEY option of the HIERARCHY clause.

Database Links
A database link is a named schema object that describes a "path" from one database

to another. Database links are implicitly used when a reference is made to a global
object name in a distributed database. See "Distributed Databases" on page 1-34 and

Chapter 33, "Distributed Databases" for more information.
Introduction to the Oracle Server 1-29

Data Concurrency and Consistency
The Data Dictionary
Each Oracle database has a data dictionary. An Oracle data dictionary is a set of

tables and views that are used as a read-only reference about the database. For

example, a data dictionary stores information about both the logical and physical

structure of the database. In addition to this valuable information, a data dictionary

also stores such information as:

■ the valid users of an Oracle database

■ information about integrity constraints defined for tables in the database

■ how much space is allocated for a schema object and how much of it is in use

A data dictionary is created when a database is created. To accurately reflect the

status of the database at all times, the data dictionary is automatically updated by

Oracle in response to specific actions (such as when the structure of the database is

altered). The data dictionary is critical to the operation of the database, which relies

on the data dictionary to record, verify, and conduct ongoing work. For example,

during database operation, Oracle reads the data dictionary to verify that schema

objects exist and that users have proper access to them.

Data Concurrency and Consistency
This section explains the software mechanisms used by Oracle to fulfill the

following important requirements of an information management system:

■ Data must be read and modified in a consistent fashion.

■ Data concurrency of a multi-user system must be maximized.

■ High performance is required for maximum productivity from the many users

of the database system.

Concurrency
A primary concern of a multiuser database management system is how to control

concurrency, or the simultaneous access of the same data by many users. Without

adequate concurrency controls, data could be updated or changed improperly,

compromising data integrity.

If many people are accessing the same data, one way of managing data concurrency

is to make each user wait his or her turn. The goal of a database management

system is to reduce that wait so it is either non-existent or negligible to each user.

All data manipulation (DML) statements should proceed with as little interference
1-30 Oracle8i Concepts

Data Concurrency and Consistency
as possible and destructive interactions between concurrent transactions must be

prevented. Destructive interaction is any interaction that incorrectly updates data or

incorrectly alters underlying data structures. Neither performance nor data

integrity can be sacrificed.

Oracle resolves such issues by using various types of locks and a multiversion

consistency model. Both features are discussed later in this section. These features

are based on the concept of a transaction. As discussed in "Data Consistency Using

Transactions" on page 1-55, it is the application designer’s responsibility to ensure

that transactions fully exploit these concurrency and consistency features.

Read Consistency
Read consistency, as supported by Oracle, does the following:

■ guarantees that the set of data seen by a statement is consistent with respect to a

single point-in-time and does not change during statement execution

(statement-level read consistency)

■ ensures that readers of database data do not wait for writers or other readers of

the same data

■ ensures that writers of database data do not wait for readers of the same data

■ ensures that writers only wait for other writers if they attempt to update

identical rows in concurrent transactions

The simplest way to think of Oracle’s implementation of read consistency is to

imagine each user operating a private copy of the database, hence the multiversion

consistency model.

Read Consistency, Rollback Segments, and Transactions
To manage the multiversion consistency model, Oracle must create a

read-consistent set of data when a table is being queried (read) and simultaneously

updated (written). When an update occurs, the original data values changed by the

update are recorded in the database’s rollback segments. As long as this update

remains part of an uncommitted transaction, any user that later queries the

modified data views the original data values—Oracle uses current information in

the system global area and information in the rollback segments to construct a

read-consistent view of a table’s data for a query.

Only when a transaction is committed are the changes of the transaction made

permanent. Statements that start after the user’s transaction is committed only see

the changes made by the committed transaction.
Introduction to the Oracle Server 1-31

Data Concurrency and Consistency
Note that a transaction is key to Oracle’s strategy for providing read consistency.

This unit of committed (or uncommitted) SQL statements:

■ dictates the start point for read-consistent views generated on behalf of readers

■ controls when modified data can be seen by other transactions of the database

for reading or updating.

Read-Only Transactions
By default, Oracle guarantees statement-level read consistency. The set of data

returned by a single query is consistent with respect to a single point in time.

However, in some situations, you may also require transaction-level read

consistency—the ability to run multiple queries within a single transaction, all of

which are read-consistent with respect to the same point in time, so that queries in

this transaction do not see the effects of intervening committed transactions.

If you want to run a number of queries against multiple tables and if you are doing

no updating, you may prefer a read-only transaction. After indicating that your

transaction is read-only, you can execute as many queries as you like against any

table, knowing that the results of each query are consistent with respect to the same

point in time.

Locking Mechanisms
Oracle also uses locks to control concurrent access to data. Locks are mechanisms

intended to prevent destructive interaction between users accessing Oracle data.

Locks are used to achieve two important database goals:

Locks guarantee data integrity while allowing maximum concurrent access to the

data by unlimited users.

Automatic Locking
Oracle locking is performed automatically and requires no user action. Implicit

locking occurs for SQL statements as necessary, depending on the action requested.

consistency Ensures that the data a user is viewing or changing

is not changed (by other users) until the user is

finished with the data.

integrity Ensures that the database’s data and structures

reflect all changes made to them in the correct

sequence.
1-32 Oracle8i Concepts

Distributed Processing and Distributed Databases
Oracle’s sophisticated lock manager automatically locks table data at the row level.

By locking table data at the row level, contention for the same data is minimized.

Oracle’s lock manager maintains several different types of row locks, depending on

what type of operation established the lock. In general, there are two types of locks:

exclusive locks and share locks. Only one exclusive lock can be obtained on a resource

(such as a row or a table); however, many share locks can be obtained on a single

resource. Both exclusive and share locks always allow queries on the locked

resource, but prohibit other activity on the resource (such as updates and deletes).

Manual Locking
Under some circumstances, a user may want to override default locking. Oracle

allows manual override of automatic locking features at both the row level (by

first querying for the rows that will be updated in a subsequent statement) and the

table level.

Distributed Processing and Distributed Databases
As computer networking becomes more and more prevalent in today’s computing

environments, database management systems must be able to take advantage of

distributed processing and storage capabilities. This section explains the

architectural features of Oracle that meet these requirements.

Client/Server Architecture: Distributed Processing
Distributed processing uses more than one processor to divide the processing for a set

of related jobs. Distributed processing reduces the processing load on a single

processor by allowing different processors to concentrate on a subset of related

tasks, thus improving the performance and capabilities of the system as a whole.

An Oracle database system can easily take advantage of distributed processing by

using its client/server architecture. In this architecture, the database system is divided

into two parts: a front-end or a client portion and a back-end or a server portion.

The Client
The client portion is the front-end database application and interacts with a user

through the keyboard, display, and pointing device such as a mouse. The client

portion has no data access responsibilities; it concentrates on requesting, processing,

and presenting data managed by the server portion. The client workstation can be

optimized for its job. For example, it might not need large disk capacity or it might

benefit from graphic capabilities.
Introduction to the Oracle Server 1-33

Distributed Processing and Distributed Databases
The Server
The server portion runs Oracle software and handles the functions required for

concurrent, shared data access. The server portion receives and processes the SQL

and PL/SQL statements that originate from client applications. The computer that

manages the server portion can be optimized for its duties. For example, it can have

large disk capacity and fast processors.

Multi-Tier Architecture: Application Servers
A multi-tier architecture has the following components:

■ A client or initiator process that starts an operation.

■ One or more application servers that perform parts of the operation. An

application server is a process that provides access to the data for the client and

performs some of the query processing, thus removing some of the load from

the database server. It can serve as an interface between clients and multiple

database servers, including providing an additional level of security.

■ An end or database server that serves as the repository for most of the data

used in the operation.

This architecture allows you to use an application server to:

■ validate the credentials of a client, such as a web browser

■ connect to an Oracle database server

■ perform the requested operation on behalf of the client

The identity of the client is maintained throughout all tiers of the connection. The

Oracle database server audits operations that the application server performs on

behalf of the client separately from operations that the application server performs

on its own behalf (such as a request for a connection to the database server). The

application server’s privileges are limited to prevent it from performing unneeded

and unwanted operations during a client operation.

Distributed Databases
A distributed database is a network of databases managed by multiple database

servers that appears to a user as a single logical database. The data of all databases

in the distributed database can be simultaneously accessed and modified. The

primary benefit of a distributed database is that the data of physically separate

databases can be logically combined and potentially made accessible to all users on

a network.
1-34 Oracle8i Concepts

Distributed Processing and Distributed Databases
Each computer that manages a database in the distributed database is called a node.

The database to which a user is directly connected is called the local database. Any

additional databases accessed by this user are called remote databases. When a local

database accesses a remote database for information, the local database is a client of

the remote server (client/server architecture, discussed previously).

While a distributed database allows increased access to a large amount of data

across a network, it must also provide the ability to hide the location of the data and

the complexity of accessing it across the network. The distributed DBMS must also

preserve the advantages of administrating each local database as though it were

non-distributed.

Location Transparency
Location transparency occurs when the physical location of data is transparent to the

applications and users of a database system. Several Oracle features, such as views,

procedures, and synonyms, can provide location transparency. For example, a view

that joins table data from several databases provides location transparency because

the user of the view does not need to know from where the data originates.

Site Autonomy
Site autonomy means that each database participating in a distributed database is

administered separately and independently from the other databases, as though

each database were a non-networked database. Although each database can work

with others, they are distinct, separate systems that are cared for individually.

Distributed Data Manipulation
The Oracle distributed database architecture supports all DML operations,

including queries, inserts, updates, and deletes of remote table data. To access

remote data, a reference is made including the remote object’s global object

name—no coding or complex syntax is required to access remote data.

For example, to query a table named EMP in the remote database named SALES,

you reference the table’s global object name:

SELECT * FROM emp@sales;

Two-Phase Commit
Oracle provides the same assurance of data consistency in a distributed

environment as in a nondistributed environment. Oracle provides this assurance

using the transaction model and a two-phase commit mechanism.
Introduction to the Oracle Server 1-35

Distributed Processing and Distributed Databases
As in nondistributed systems, transactions should be carefully planned to include a

logical set of SQL statements that should all succeed or fail as a unit. Oracle’s

two-phase commit mechanism guarantees that no matter what type of system or

network failure might occur, a distributed transaction either commits on all

involved nodes or rolls back on all involved nodes to maintain data consistency

across the global distributed database.

Complete Transparency to Database Users The Oracle two-phase commit mechanism is

completely transparent to users that issue distributed transactions. A simple

COMMIT statement denoting the end of a transaction automatically triggers the

two-phase commit mechanism to commit the transaction; no coding or complex

statement syntax is required to include distributed transactions within the body of a

database application.

Automatic Recovery from System or Network Failures The RECO (recoverer) background

process automatically resolves the outcome of in-doubt distributed
transactions—distributed transactions in which the commit was interrupted by any

type of system or network failure. After the failure is repaired and communication

is reestablished, the RECO of each local Oracle server automatically commits or

rolls back any in-doubt distributed transactions consistently on all involved nodes.

Optional Manual Override Capability In the event of a long-term failure, Oracle allows

each local administrator to manually commit or roll back any distributed

transactions that are in doubt as a result of the failure. This option allows the local

database administrator to free up any locked resources that may be held indefinitely

as a result of the long-term failure.

Facilities for Distributed Recovery If a database must be recovered to a point in the

past, Oracle’s recovery facilities allow database administrators at other sites to

return their databases to the earlier point in time also. This ensures that the global

database remains consistent.

Table Replication
Distributed database systems often locally replicate remote tables that are

frequently queried by local users. By having copies of heavily accessed data on

several nodes, the distributed database does not need to send information across a

network repeatedly, thus helping to maximize the performance of the database

application.

Data can be replicated using materialized views (snapshots).
1-36 Oracle8i Concepts

Startup and Shutdown Operations
Oracle and Net8
Net8 is Oracle’s mechanism for interfacing with the communication protocols used

by the networks that facilitate distributed processing and distributed databases.

Communication protocols define the way that data is transmitted and received on a

network. In a networked environment, an Oracle database server communicates

with client workstations and other Oracle database servers using Oracle software

called Net8.

Net8 supports communications on all major network protocols, ranging from

those supported by PC LANs to those used by the largest of mainframe computer

systems.

Using Net8, the application developer does not have to be concerned with

supporting network communications in a database application. If a new protocol is

used, the database administrator makes some minor changes, while the application

requires no modifications and continues to function.

Startup and Shutdown Operations
An Oracle database is not available to users until the Oracle server has been started

up and the database has been opened. These operations must be performed by the

database administrator. Starting a database and making it available for systemwide

use takes three steps:

1. Start an instance of the Oracle server.

2. Mount the database.

3. Open the database.

These steps are described in "Instance and Database Startup" on page 5-5.

When the Oracle server starts up, it uses a parameter file that contains initialization

parameters. These parameters specify the name of the database, the amount of

memory to allocate, the names of control files, and various limits and other system

parameters. See "Parameter Files" on page 5-4 for a sample parameter file.

Shutting down an instance and the database to which it is connected takes three

steps:

1. Close the database.

Additional Information: Refer to Oracle8i Reference for more

information about initialization parameters.
Introduction to the Oracle Server 1-37

Database Security
2. Dismount the database.

3. Shut down the instance of the Oracle server.

Oracle automatically performs all three steps when an instance is shut down. See

"Database and Instance Shutdown" on page 5-9 for more information.

Database Security
Multiuser database systems, such as Oracle, include security features that control

how a database is accessed and used. For example, security mechanisms:

■ prevent unauthorized database access

■ prevent unauthorized access to schema objects

■ control disk usage

■ control system resource usage (such as CPU time)

■ audit user actions

Associated with each database user is a schema by the same name. A schema is a

logical collection of database objects (tables, views, sequences, synonyms, indexes,

clusters, procedures, functions, packages, and database links). By default, each

database user creates and has access to all objects in the corresponding schema.

Database security can be classified into two distinct categories: system security and

data security.

System security includes the mechanisms that control the access and use of the

database at the system level. For example, system security includes:

■ valid username/password combinations

■ the amount of disk space available to a user’s schema objects

■ the resource limits for a user

System security mechanisms check whether a user is authorized to connect to the

database, whether database auditing is active, and which system operations a user

can perform.

Data security includes the mechanisms that control the access and use of the

database at the schema object level. For example, data security includes:

■ which users have access to a specific schema object and the specific types of

actions allowed for each user on the schema object (for example, user SCOTT
1-38 Oracle8i Concepts

Database Security
can issue SELECT and INSERT statements but not DELETE statements using

the EMP table)

■ the actions, if any, that are audited for each schema object

Security Mechanisms
The Oracle server provides discretionary access control, which is a means of restricting

access to information based on privileges. The appropriate privilege must be

assigned to a user in order for that user to access a schema object. Appropriately

privileged users can grant other users privileges at their discretion; for this reason,

this type of security is called "discretionary".

Oracle manages database security using several different facilities:

■ database users and schemas

■ privileges

■ roles

■ storage settings and quotas

■ resource limits

■ auditing

Figure 1–5 illustrates the relationships of the different Oracle security facilities, and

the following sections provide an overview of users, privileges, and roles.
Introduction to the Oracle Server 1-39

Database Security
Figure 1–5 Oracle Security Features

Database Users and Schemas
Each Oracle database has a list of usernames. To access a database, a user must use

a database application and attempt a connection with a valid username of the

database. Each username has an associated password to prevent unauthorized use.

Security Domain Each user has a security domain—a set of properties that determine

such things as the:

■ actions (privileges and roles) available to the user

■ tablespace quotas (available disk space) for the user

■ system resource limits (for example, CPU processing time) for the user

Each property that contributes to a user’s security domain is discussed in the

following sections.

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users
1-40 Oracle8i Concepts

Database Security
Privileges
A privilege is a right to execute a particular type of SQL statement. Some examples

of privileges include the:

■ right to connect to the database (create a session)

■ right to create a table in your schema

■ right to select rows from someone else’s table

■ right to execute someone else’s stored procedure

The privileges of an Oracle database can be divided into two distinct categories:

system privileges and schema object privileges.

System Privileges System privileges allow users to perform a particular systemwide

action or a particular action on a particular type of schema object. For example, the

privileges to create a tablespace or to delete the rows of any table in the database are

system privileges. Many system privileges are available only to administrators and

application developers because the privileges are very powerful.

Schema Object Privileges Schema object privileges allow users to perform a particular

action on a specific schema object. For example, the privilege to delete rows of a

specific table is an object privilege. Object privileges are granted (assigned) to

end-users so that they can use a database application to accomplish specific tasks.

Granting Privileges Privileges are granted to users so that users can access and

modify data in the database. A user can receive a privilege two different ways:

■ Privileges can be granted to users explicitly. For example, the privilege to insert

records into the EMP table can be explicitly granted to the user SCOTT.

■ Privileges can be granted to roles (a named group of privileges), and then the

role can be granted to one or more users. For example, the privilege to insert

records into the EMP table can be granted to the role named CLERK, which in

turn can be granted to the users SCOTT and BRIAN.

Because roles allow for easier and better management of privileges, privileges are

normally granted to roles and not to specific users. The following section explains

more about roles and their use.

Roles
Oracle provides for easy and controlled privilege management through roles. Roles
are named groups of related privileges that are granted to users or other roles.
Introduction to the Oracle Server 1-41

Database Security
The following properties of roles allow for easier privilege management:

Database administrators often create roles for a database application. The DBA

grants an application role all privileges necessary to run the application. The DBA

then grants the application role to other roles or users. An application can have

several different roles, each granted a different set of privileges that allow for more

or less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the

privileges granted to the role. Typically, an application is designed so that when it

starts, it enables the proper role. As a result, an application user does not need to

know the password for an application’s role.

Storage Settings and Quotas
Oracle provides means for directing and limiting the use of disk space allocated to

the database on a per user basis, including default and temporary tablespaces and

tablespace quotas.

Default Tablespace Each user is associated with a default tablespace. When a user

creates a table, index, or cluster and no tablespace is specified to physically contain

the schema object, the user’s default tablespace is used if the user has the privilege

to create the schema object and a quota in the specified default tablespace. The

reduced granting of

privileges

Rather than explicitly granting the same set of

privileges to many users, a database administrator

can grant the privileges for a group of related users to

a role. And then the database administrator can grant

the role to each member of the group.

dynamic privilege

management

When the privileges of a group must change, only the

privileges of the role need to be modified. The

security domains of all users granted the group’s role

automatically reflect the changes made to the role.

selective availability

of privileges

The roles granted to a user can be selectively enabled

(available for use) or disabled (not available for use).

This allows specific control of a user’s privileges in

any given situation.

application awareness A database application can be designed to enable and

disable selective roles automatically when a user

attempts to use the application.
1-42 Oracle8i Concepts

Database Security
default tablespace feature provides Oracle with information to direct space usage in

situations where schema object’s location is not specified.

Temporary Tablespace Each user has a temporary tablespace. When a user executes a

SQL statement that requires the creation of temporary segments (such as the

creation of an index), the user’s temporary tablespace is used. By directing all users’

temporary segments to a separate tablespace, the temporary tablespace feature can

reduce I/O contention among temporary segments and other types of segments.

Tablespace Quotas Oracle can limit the collective amount of disk space available to

the objects in a schema. Quotas (space limits) can be set for each tablespace available

to a user. The tablespace quota security feature permits selective control over the

amount of disk space that can be consumed by the objects of specific schemas.

Profiles and Resource Limits
Each user is assigned a profile that specifies limitations on several system resources

available to the user, including the

■ number of concurrent sessions the user can establish

■ CPU processing time

– available to the user’s session

– available to a single call to Oracle made by a SQL statement

■ amount of logical I/O

– available to the user’s session

– available to a single call to Oracle made by a SQL statement

■ amount of idle time for the user’s session allowed

■ amount of connect time for the user’s session allowed

■ password restrictions

– account locking after multiple unsuccessful login attempts

– password expiration and grace period

– password reuse and complexity restrictions

Different profiles can be created and assigned individually to each user of the

database. A default profile is present for all users not explicitly assigned a profile.
Introduction to the Oracle Server 1-43

Database Security
The resource limit feature prevents excessive consumption of global database

system resources.

Auditing
Oracle permits selective auditing (recorded monitoring) of user actions to aid in the

investigation of suspicious database use. Auditing can be performed at three

different levels: statement auditing, privilege auditing, and schema object auditing.

For all types of auditing, Oracle allows the selective auditing of successful

statement executions, unsuccessful statement executions, or both. This allows

monitoring of suspicious statements, regardless of whether the user issuing a

statement has the appropriate privileges to issue the statement.

The results of audited operations are recorded in a table referred to as the audit trail.
Predefined views of the audit trail are available so that you can easily retrieve audit

records.

statement auditing Statement auditing is the auditing of specific SQL

statements without regard to specifically named

schema objects. (In addition, database triggers

allow a DBA to extend and customize Oracle’s

built-in auditing features.)

Statement auditing can be broad and audit all users

of the system or can be focused to audit only

selected users of the system. For example,

statement auditing by user can audit connections

to and disconnections from the database by the

users SCOTT and LORI.

privilege auditing Privilege auditing is the auditing of the use of

powerful system privileges without regard to

specifically named schema objects. Privilege

auditing can be broad and audit all users or can be

focused to audit only selected users.

schema object auditing Schema object auditing is the auditing of accesses

to specific schema objects without regard to user.

Object auditing monitors the statements permitted

by object privileges, such as SELECT or DELETE

statements on a given table.
1-44 Oracle8i Concepts

Database Backup and Recovery
Database Backup and Recovery
This section covers the structures and software mechanisms used by Oracle

to provide:

■ database recovery required by different types of failures

■ flexible recovery operations to suit any situation

■ availability of data during backup and recovery operations so that users of the

system can continue to work

Why Is Recovery Important?
In every database system, the possibility of a system or hardware failure always

exists. Should a failure occur and affect the database, the database must be

recovered. The goals after a failure are to ensure that the effects of all committed

transactions are reflected in the recovered database and to return to normal

operation as quickly as possible while insulating users from problems caused by the

failure.

Types of Failures
Several circumstances can halt the operation of an Oracle database. The most

common types of failure are described below:

user error User errors can require a database to be recovered to a

point in time before the error occurred. For example, a

user might accidentally drop a table. To allow

recovery from user errors and accommodate other

unique recovery requirements, Oracle provides for

exact point-in-time recovery. For example, if a user

accidentally drops a table, the database can be

recovered to the instant in time before the table was

dropped.

statement and

process failure

Statement failure occurs when there is a logical failure

in the handling of a statement in an Oracle program

(for example, the statement is not a valid SQL

construction). When statement failure occurs, the

effects (if any) of the statement are automatically

undone by Oracle and control is returned to the user.
Introduction to the Oracle Server 1-45

Database Backup and Recovery
A process failure is a failure in a user process accessing

Oracle, such as an abnormal disconnection or process

termination. The failed user process cannot continue

work, although Oracle and other user processes can.

The Oracle background process PMON automatically

detects the failed user process or is informed of it by

SQL*Net. PMON resolves the problem by rolling back

the uncommitted transaction of the user process and

releasing any resources that the process was using.

Common problems such as erroneous SQL statement

constructions and aborted user processes should

never halt the database system as a whole.

Furthermore, Oracle automatically performs

necessary recovery from uncommitted transaction

changes and locked resources with minimal impact

on the system or other users.

instance failure Instance failure occurs when a problem arises that

prevents an instance (system global area and

background processes) from continuing work.

Instance failure may result from a hardware problem

such as a power outage, or a software problem such

as an operating system crash. When an instance

failure occurs, the data in the buffers of the system

global area is not written to the datafiles.

Instance failure requires crash recovery or instance
recovery. Crash recovery is automatically performed

by Oracle when the instance restarts; in an Oracle

Parallel Server, the SMON process of another instance

performs instance recovery. The redo log is used to

recover the committed data in the SGA’s database

buffers that was lost due to the instance failure.

media (disk) failure An error can arise when trying to write or read a file

that is required to operate the database. This is called

disk failure because there is a physical problem

reading or writing physical files on disk. A common

example is a disk head crash, which causes the loss of

all files on a disk drive.
1-46 Oracle8i Concepts

Database Backup and Recovery
Oracle provides for complete and quick recovery from all possible types of

hardware failures including disk crashes. Options are provided so that a database

can be completely recovered or partially recovered to a specific point in time.

If some datafiles are damaged in a disk failure but most of the database is intact and

operational, the database can remain open while the required tablespaces are

individually recovered. Therefore, undamaged portions of a database are available

for normal use while damaged portions are being recovered.

Structures Used for Recovery
Oracle uses several structures to provide complete recovery from an instance or

disk failure: the redo log, rollback segments, a control file, and database backups.

The Redo Log
As described in "Redo Log Files" on page 1-12, the redo log is a set of files that

protect altered database data in memory that has not been written to the datafiles.

The redo log can consist of two parts: the online redo log and the archived redo log.

The Online Redo Log The online redo log is a set of two or more online redo log files that

record all changes made to the database, including both uncommitted and

committed changes. Redo entries are temporarily stored in redo log buffers of the

system global area, and the background process LGWR writes the redo entries

sequentially to an online redo log file. LGWR writes redo entries continually; it also

writes a commit record every time a user process commits a transaction.

Different files may be affected by this type of disk

failure, including the datafiles, the redo log files, and

the control files. Also, because the database instance

cannot continue to function properly, the data in the

database buffers of the system global area cannot be

permanently written to the datafiles.

A disk failure requires media recovery. Media recovery

restores a database’s datafiles so that the information

in them corresponds to the most recent time point

before the disk failure, including the committed data

in memory that was lost because of the failure. To

complete a recovery from a disk failure, the following

is required: backups of the database’s datafiles, and

all online and necessary archived redo log files.
Introduction to the Oracle Server 1-47

Database Backup and Recovery
The online redo log files are used in a cyclical fashion; for example, if two files

constitute the online redo log, the first file is filled, the second file is filled, the first

file is reused and filled, the second file is reused and filled, and so on. Each time a

file is filled, it is assigned a log sequence number to identify the set of redo entries.

To avoid losing the database due to a single point of failure, Oracle can maintain

multiple sets of online redo log files. A multiplexed online redo log consists of copies

of online redo log files physically located on separate disks; changes made to one

member of the group are made to all members.

If a disk that contains an online redo log file fails, other copies are still intact and

available to Oracle. System operation is not interrupted and the lost online redo log

files can be easily recovered using an intact copy.

The Archived Redo Log Optionally, filled online redo files can be archived before

being reused, creating an archived redo log. Archived (offline) redo log files constitute

the archived redo log.

The presence or absence of an archived redo log is determined by the mode that the

redo log is using:

In ARCHIVELOG mode, the database can be completely recovered from both

instance and disk failure. The database can also be backed up while it is open and

available for use. However, additional administrative operations are required to

maintain the archived redo log.

If the database’s redo log operates in NOARCHIVELOG mode, the database can be

completely recovered from instance failure but not from disk failure. Also, the

database can be backed up only while it is completely closed. Because no archived

redo log is created, no extra work is required by the database administrator.

LogMiner SQL-Based Log Analyzer LogMiner is a relational tool that allows you to

read, analyze, and interpret online and archived log files using SQL. Analysis of the

log files with LogMiner can be used to:

■ Track specific sets of changes based on transaction, user, table, time, and so on.

You can determine who modified a database object and what the object data

was before and after the modification. The ability to trace and audit database

ARCHIVELOG The filled online redo log files are archived before

they are reused in the cycle.

NOARCHIVELOG The filled online redo log files are not archived.
1-48 Oracle8i Concepts

Database Backup and Recovery
changes back to their source and undo the changes provides data security and

control.

■ Pinpoint when an incorrect modification was introduced into the database. This

allows you to perform logical recovery at the application level, instead of at the

database level.

■ Provide supplemental information for tuning and capacity planning. You can

also perform historical analysis to determine trends and data access patterns.

■ Retrieve critical information for debugging complex applications.

Control Files
The control files of a database keep, among other things, information about the file

structure of the database and the current log sequence number being written by

LGWR. During normal recovery procedures, the information in a control file is used

to guide the automated progression of the recovery operation.

Multiplexed Control Files Oracle can maintain a number of identical control files,

updating all of them simultaneously.

Rollback Segments
As described in "Data Blocks, Extents, and Segments" on page 1-10, rollback

segments record rollback information used by several functions of Oracle. During

database recovery, after all changes recorded in the redo log have been applied,

Oracle uses rollback segment information to undo any uncommitted transactions.

Because rollback segments are stored in the database buffers, this important

recovery information is automatically protected by the redo log.

Database Backups
Because one or more files can be physically damaged as the result of a disk failure,

media recovery requires the restoration of the damaged files from the most recent

operating system backup of a database. There are several ways to back up the files

of a database.

Note: LogMiner can only read and analyze log files from Oracle8

or later.

Additional Information: See the Oracle8i Administrator’s Guide for

more information about the LogMiner.
Introduction to the Oracle Server 1-49

Database Backup and Recovery
Whole Database Backups A whole database backup is an operating system backup of

all datafiles, online redo log files, and the control file of an Oracle database. A whole

database backup is performed when the database is closed and unavailable for use.

Partial Backups A partial backup is an operating system backup of part of a database.

The backup of an individual tablespace’s datafiles or the backup of a control file are

examples of partial backups. Partial backups are useful only when the database’s

redo log is operated in ARCHIVELOG mode.

A variety of partial backups can be taken to accommodate any backup strategy. For

example, you can back up datafiles and control files when the database is open or

closed, or when a specific tablespace is online or offline. Because the redo log is

operated in ARCHIVELOG mode, additional backups of the redo log are not

necessary; the archived redo log is a backup of filled online redo log files.

Basic Recovery Steps
Due to the way in which DBWn writes database buffers to datafiles, at any given

time a datafile may contain some tentative modifications by uncommitted

transactions and may not contain some modifications by committed transactions.

Therefore, two potential situations can result after a failure:

■ Data blocks containing committed modifications were not written to the

datafiles, so the changes may only appear in the redo log. Therefore, the redo

log contains committed data that must be applied to the datafiles.

■ Since the redo log may have contained data that was not committed,

uncommitted transaction changes applied by the redo log during recovery must

be erased from the datafiles.

To solve this situation, two separate steps are always used by Oracle during

recovery from an instance or media failure: rolling forward and rolling back.

Rolling Forward
The first step of recovery is to roll forward, that is, reapply to the datafiles all of the

changes recorded in the redo log. Rolling forward proceeds through as many redo

log files as necessary to bring the datafiles forward to the required time.

If all needed redo information is online, Oracle rolls forward automatically when

the database starts. After roll forward, the datafiles contain all committed changes

as well as any uncommitted changes that were recorded in the redo log.
1-50 Oracle8i Concepts

Data Access
Rolling Back
The roll forward is only half of recovery. After the roll forward, any changes that

were not committed must be undone. After the redo log files have been applied,

then the rollback segments are used to identify and undo transactions that were

never committed, yet were recorded in the redo log. This process is called rolling
back. Oracle completes this step automatically.

The Recovery Manager
The Recovery Manager is an Oracle utility that manages backup and recovery

operations, creating backups of database files (datafiles, control files, and archived

redo log files) and restoring or recovering a database from backups.

Recovery Manager maintains a repository called the recovery catalog, which contains

information about backup files and archived log files. Recovery Manager uses the

recovery catalog to automate both restore operations and media recovery.

The recovery catalog contains:

■ information about backups of datafiles and archive logs

■ information about datafile copies

■ information about archived redo logs and copies of them

■ information about the physical schema of the target database

■ named sequences of commands called stored scripts.

Data Access
This section introduces how Oracle meets the general requirements for a DBMS to:

■ adhere to industry accepted standards for a data access language

■ control and preserve the consistency of a database’s information while

manipulating its data

■ provide a system for defining and enforcing rules to maintain the integrity of a

database’s information

■ provide high performance

Additional Information: See the Oracle8i Backup and Recovery Guide
for more information about the Recovery Manager.
Introduction to the Oracle Server 1-51

Data Access
SQL—The Structured Query Language
SQL is a simple, powerful database access language that is the standard language

for relational database management systems. The SQL implemented by Oracle

Corporation for Oracle is 100 percent compliant with the ANSI/ISO standard SQL

data language.

SQL Statements
All operations on the information in an Oracle database are performed using SQL

statements. A SQL statement is a string of SQL text that is given to Oracle to execute.

A statement must be the equivalent of a complete SQL sentence, as in:

SELECT ename, deptno FROM emp;

Only a complete SQL statement can be executed, whereas a sentence fragment, such

as the following, generates an error indicating that more text is required before a

SQL statement can execute:

SELECT ename

A SQL statement can be thought of as a very simple, but powerful, computer

program or instruction. SQL statements are divided into the following categories:

■ Data Definition Language (DDL) statements

■ Data Manipulation Language (DML) statements

■ transaction control statements

■ session control statements

■ system control statements

■ embedded SQL statements

Data Definition Statements (DDL) DDL statements define, maintain, and drop schema

objects when they are no longer needed. DDL statements also include statements

that permit a user to grant other users the privileges, or rights, to access the database

and specific objects within the database. (See "Database Security" on page 1-38.)

Data Manipulation Statements (DML) DML statements manipulate the database’s data.

For example, querying, inserting, updating, and deleting rows of a table are all

DML operations; locking a table or view and examining the execution plan of an

SQL statement are also DML operations.
1-52 Oracle8i Concepts

Data Access
Transaction Control Statements Transaction control statements manage the changes

made by DML statements. They allow the user or application developer to group

changes into logical transactions. (See "Transactions" on page 1-53.) Examples

include COMMIT, ROLLBACK, and SAVEPOINT.

Session Control Statements Session control statements allow a user to control the

properties of his current session, including enabling and disabling roles and

changing language settings. The two session control statements are ALTER

SESSION and SET ROLE.

System Control Statements System control commands change the properties of the

Oracle server instance. The only system control command is ALTER SYSTEM; it

allows you to change such settings as the minimum number of shared servers, to

kill a session, and to perform other tasks.

Embedded SQL Statements Embedded SQL statements incorporate DDL, DML, and

transaction control statements in a procedural language program (such as those

used with the Oracle Precompilers). Examples include OPEN, CLOSE, FETCH, and

EXECUTE.

Transactions
A transaction is a logical unit of work that comprises one or more SQL statements

executed by a single user. According to the ANSI/ISO SQL standard, with which

Oracle is compatible, a transaction begins with the user’s first executable SQL

statement. A transaction ends when it is explicitly committed or rolled back (both

terms are discussed later in this section) by that user.

Consider a banking database. When a bank customer transfers money from a

savings account to a checking account, the transaction might consist of three

separate operations: decrease the savings account, increase the checking account,

and record the transaction in the transaction journal.

Oracle must guarantee that all three SQL statements are performed to maintain the

accounts in proper balance. When something prevents one of the statements in the

transaction from executing (such as a hardware failure), the other statements of the

transaction must be undone; this is called "rolling back." If an error occurs in

making either of the updates, then neither update is made.

Figure 1–6 illustrates the banking transaction example.
Introduction to the Oracle Server 1-53

Data Access
Figure 1–6 A Banking Transaction

Committing and Rolling Back Transactions
The changes made by the SQL statements that constitute a transaction can be either

committed or rolled back. After a transaction is committed or rolled back, the next

transaction begins with the next SQL statement.

Committing a transaction makes permanent the changes resulting from all SQL

statements in the transaction. The changes made by the SQL statements of a

transaction become visible to other user sessions’ transactions that start only after

the transaction is committed.

Rolling back a transaction retracts any of the changes resulting from the SQL

statements in the transaction. After a transaction is rolled back, the affected data is

left unchanged as if the SQL statements in the transaction were never executed.

Transaction Ends

UPDATE savings_accounts
 SET balance = balance - 500
 WHERE account = 3209;

UPDATE checking_accounts
 SET balance = balance + 500
 WHERE account = 3208;

INSERT INTO journal VALUES
 (journal_seq.NEXTVAL, '1B'
 3209, 3208, 500);

COMMIT WORK;

Decrement Savings Account

Increment Checking Account

Record in Transaction Journal

End Transaction
1-54 Oracle8i Concepts

Data Access
Savepoints
For long transactions that contain many SQL statements, intermediate markers, or

savepoints, can be declared. Savepoints can be used to divide a transaction into

smaller parts.

By using savepoints, you can arbitrarily mark your work at any point within a long

transaction. This allows you the option of later rolling back all work performed

from the current point in the transaction to a declared savepoint within the

transaction. For example, you can use savepoints throughout a long complex series

of updates, so if you make an error, you do not need to resubmit every statement.

Data Consistency Using Transactions
Transactions provide the database user or application developer with the capability

of guaranteeing consistent changes to data, as long as the SQL statements within a

transaction are grouped logically.

A transaction should consist of all of the necessary parts for one logical unit of

work—no more and no less. Data in all referenced tables are in a consistent state

before the transaction begins and after it ends. Transactions should consist of only

the SQL statements that make one consistent change to the data.

For example, recall the banking example. A transfer of funds between two accounts

(the transaction) should include increasing one account (one SQL statement),

decreasing another account (one SQL statement), and the record in the transaction

journal (one SQL statement). All actions should either fail or succeed together; the

credit should not be committed without the debit. Other non-related actions, such

as a new deposit to one account, should not be included in the transfer of funds

transaction; such statements should be in other transactions.

PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL combines the

ease and flexibility of SQL with the procedural functionality of a structured

programming language, such as IF ... THEN, WHILE, and LOOP.

When designing a database application, a developer should consider the

advantages of using stored PL/SQL:

■ Because PL/SQL code can be stored centrally in a database, network traffic

between applications and the database is reduced, so application and system

performance increases.
Introduction to the Oracle Server 1-55

Data Access
■ Data access can be controlled by stored PL/SQL code. In this case, the users of

PL/SQL can access data only as intended by the application developer (unless

another access route is granted).

■ PL/SQL blocks can be sent by an application to a database, executing complex

operations without excessive network traffic.

Even when PL/SQL is not stored in the database, applications can send blocks of

PL/SQL to the database rather than individual SQL statements, thereby again

reducing network traffic.

The following sections describe the different program units that can be defined and

stored centrally in a database.

Procedures and Functions
Procedures and functions consist of a set of SQL and PL/SQL statements that are

grouped together as a unit to solve a specific problem or perform a set of related

tasks. A procedure is created and stored in compiled form in the database and can

be executed by a user or a database application.

Procedures and functions are identical except that functions always return a single

value to the caller, while procedures do not return values to the caller.

Packages
Packages provide a method of encapsulating and storing related procedures,

functions, variables, and other package constructs together as a unit in the database.

While packages allow the administrator or application developer the ability to

organize such routines, they also offer increased functionality (for example, global

package variables can be declared and used by any procedure in the package) and

performance (for example, all objects of the package are parsed, compiled, and

loaded into memory once).

Database Triggers
Oracle allows you to write procedures that are automatically executed as a result

of an insert in, update to, or delete from a table. These procedures are called

database triggers.

Database triggers can be used in a variety of ways for the information management

of your database. For example, they can be used to automate data generation, audit

data modifications, enforce complex integrity constraints, and customize complex

security authorizations.
1-56 Oracle8i Concepts

Data Access
Methods
A method is a procedure or function that is part of the definition of a user-defined

datatype (object type, nested table, or variable array).

Methods are different from stored procedures in two ways:

■ You invoke a method by referring to an object of its associated type.

■ A method has complete access to the attributes of its associated object and to

information about its type.

Every user-defined datatype has a system-defined constructor method, that is, a

method that makes a new object according to the datatype’s specification. The name

of the constructor method is the name of the user-defined type. In the case of an

object type, the constructor method’s parameters have the names and types of the

object type’s attributes. The constructor method is a function that returns the new

object as its value. Nested tables and arrays also have constructor methods.

Comparison methods define an order relationship among objects of a given object

type. A map method uses Oracle’s ability to compare built-in types. For example,

Oracle can compare two rectangles by comparing their areas if an object type called

RECTANGLE has attributes HEIGHT and WIDTH and you define a map method

area that returns a number, namely the product of the rectangle’s HEIGHT and

WIDTH attributes. An order method uses its own internal logic to compare two

objects of a given object type. It returns a value that encodes the order relationship.

For example, it may return -1 if the first is smaller, 0 if they are equal, and 1 if the

first is larger.

Data Integrity
It is very important to guarantee that data adheres to certain business rules, as

determined by the database administrator or application developer. For example,

assume that a business rule says that no row in the INVENTORY table can contain a

numeric value greater than 9 in the SALE_DISCOUNT column. If an INSERT or

UPDATE statement attempts to violate this integrity rule, Oracle must roll back the

invalid statement and return an error to the application. Oracle provides integrity

constraints and database triggers as solutions to manage a database’s data integrity

rules.

Attention: User-defined datatypes are available only if you have

purchased the Oracle8i Enterprise Edition. See Getting to Know
Oracle8i for more information.
Introduction to the Oracle Server 1-57

Data Access
Integrity Constraints
An integrity constraint is a declarative way to define a business rule for a column of

a table. An integrity constraint is a statement about a table’s data that is always true:

■ If an integrity constraint is created for a table and some existing table data does

not satisfy the constraint, the constraint cannot be enforced.

■ After a constraint is defined, if any of the results of a DML statement violate the

integrity constraint, the statement is rolled back and an error is returned.

Integrity constraints are defined with a table and are stored as part of the table’s

definition, centrally in the database’s data dictionary, so that all database

applications must adhere to the same set of rules. If a rule changes, it need only be

changed once at the database level and not many times for each application.

The following integrity constraints are supported by Oracle:

Keys
The term "key" is used in the definitions of several types of integrity constraints. A

key is the column or set of columns included in the definition of certain types of

NOT NULL Disallows nulls (empty entries) in a table’s column.

UNIQUE Disallows duplicate values in a column or set of

columns.

PRIMARY KEY Disallows duplicate values and nulls in a column

or set of columns.

FOREIGN KEY Requires each value in a column or set of columns

match a value in a related table’s UNIQUE or

PRIMARY KEY (FOREIGN KEY integrity

constraints also define referential integrity actions

that dictate what Oracle should do with dependent

data if the data it references is altered).

CHECK Disallows values that do not satisfy the logical

expression of the constraint.
1-58 Oracle8i Concepts

Data Access
integrity constraints. Keys describe the relationships between the different tables

and columns of a relational database. The different types of keys include:

Individual values in a key are called key values.

Database Triggers
Centralized actions can be defined using a non-declarative approach (writing

PL/SQL code) with database triggers. A database trigger is a stored procedure that is

fired (implicitly executed) when an INSERT, UPDATE, or DELETE statement is

issued against the associated table. Database triggers can be used to customize a

database management system with such features as value-based auditing and the

enforcement of complex security checks and integrity rules. For example, a database

trigger might be created to allow a table to be modified only during normal

business hours.

primary key The column or set of columns included in the

definition of a table’s PRIMARY KEY constraint. A

primary key’s values uniquely identify the rows in

a table. Only one primary key may be defined per

table.

unique key The column or set of columns included in the

definition of a UNIQUE constraint.

foreign key The column or set of columns included in the

definition of a referential integrity constraint.

referenced key The unique key or primary key of the same or

different table that is referenced by a foreign key.

Note: While database triggers allow you to define and enforce

integrity rules, a database trigger is not the same as an integrity

constraint. Among other things, a database trigger defined to

enforce an integrity rule does not check data already loaded into a

table. Therefore, it is strongly recommended that you use database

triggers only when the integrity rule cannot be enforced by

integrity constraints.
Introduction to the Oracle Server 1-59

Data Access
1-60 Oracle8i Concepts

Part II

Database Structures

Part II describes the basic structural architecture of the Oracle database, including

physical and logical storage structures. Part II contains the following chapters:

■ Chapter 2, "The Data Dictionary"

■ Chapter 3, "Tablespaces and Datafiles"

■ Chapter 4, "Data Blocks, Extents, and Segments"

Additional Information: The following chapters describe other

logical database structures:

■ Chapter 10, "Schema Objects"

■ Chapter 11, "Partitioned Tables and Indexes"

The Data Dicti
2

The Data Dictionary

LEXICOGRAPHER—A writer of dictionaries, a harmless drudge.

Samuel Johnson: Dictionary

This chapter describes the central set of read-only reference tables and views of each

Oracle database, known collectively as the data dictionary. The chapter includes:

■ An Introduction to the Data Dictionary

■ The Structure of the Data Dictionary

■ SYS, the Owner of the Data Dictionary

■ How the Data Dictionary Is Used

■ The Dynamic Performance Tables
onary 2-1

An Introduction to the Data Dictionary
An Introduction to the Data Dictionary
One of the most important parts of an Oracle database is its data dictionary, which is

a read-only set of tables that provides information about its associated database. A

data dictionary contains:

■ the definitions of all schema objects in the database (tables, views, indexes,

clusters, synonyms, sequences, procedures, functions, packages, triggers,

and so on)

■ how much space has been allocated for, and is currently used by, the

schema objects

■ default values for columns

■ integrity constraint information

■ the names of Oracle users

■ privileges and roles each user has been granted

■ auditing information, such as who has accessed or updated various

schema objects

■ other general database information

The data dictionary is structured in tables and views, just like other database data.

All the data dictionary tables and views for a given database are stored in that

database’s SYSTEM tablespace (see "The SYSTEM Tablespace" on page 3-6).

Not only is the data dictionary central to every Oracle database, it is an important

tool for all users, from end users to application designers and database

administrators. To access the data dictionary, you use SQL statements. Because the

data dictionary is read-only, you can issue only queries (SELECT statements)

against the tables and views of the data dictionary.

The Structure of the Data Dictionary
A database’s data dictionary consists of:

base tables The underlying tables that store information about

the associated database. Only Oracle should write

to and read these tables. Users rarely access them

directly because they are normalized, and most of

the data is stored in a cryptic format.
2-2 Oracle8i Concepts

How the Data Dictionary Is Used
SYS, the Owner of the Data Dictionary
The Oracle user SYS owns all base tables and user-accessible views of the data

dictionary. Therefore, no Oracle user should ever alter (update, delete, or insert) any

rows or schema objects contained in the SYS schema, because such activity can

compromise data integrity. The security administrator should keep strict control of

this central account.

How the Data Dictionary Is Used
The data dictionary has three primary uses:

■ Oracle accesses the data dictionary to find information about users, schema

objects, and storage structures.

■ Oracle modifies the data dictionary every time that a data definition language

(DDL) statement is issued.

■ Any Oracle user can use the data dictionary as a read-only reference for

information about the database.

How Oracle Uses the Data Dictionary
Data in the base tables of the data dictionary is necessary for Oracle to function.
Therefore, only Oracle should write or change data dictionary information.

During database operation, Oracle reads the data dictionary to ascertain that

schema objects exist and that users have proper access to them. Oracle also updates

user-accessible views The views that summarize and display the

information stored in the base tables of the data

dictionary. These views decode the base table data

into useful information, such as user or table

names, using joins and WHERE clauses to simplify

the information. Most users are given access to the

views rather than the base tables.

WARNING: Altering or manipulating the data in underlying data
dictionary tables can permanently and detrimentally affect the
operation of a database.
The Data Dictionary 2-3

How the Data Dictionary Is Used
the data dictionary continuously to reflect changes in database structures, auditing,

grants, and data.

For example, if user KATHY creates a table named PARTS, new rows are added to

the data dictionary that reflect the new table, columns, segment, extents, and the

privileges that KATHY has on the table. This new information is then visible the

next time the dictionary views are queried.

Public Synonyms for Data Dictionary Views
Oracle creates public synonyms on many data dictionary views so that users can

access them conveniently. (The security administrator can also create additional

public synonyms for schema objects that are used systemwide.) Users should avoid

naming their own schema objects with the same names as those used for public

synonyms.

Caching of the Data Dictionary for Fast Access
Much of the data dictionary information is cached in the SGA (the dictionary cache),

because Oracle constantly accesses the data dictionary during database operation to

validate user access and to verify the state of schema objects. All information is

stored in memory using the LRU (least recently used) algorithm.

Information typically kept in the caches is that required for parsing. The

COMMENTS columns describing the tables and their columns are not cached

unless they are accessed frequently.

Other Programs and the Data Dictionary
Other Oracle products can reference existing views and create additional data

dictionary tables or views of their own. Application developers who write

programs that refer to the data dictionary should refer to the public synonyms

rather than the underlying tables: the synonyms are less likely to change between

software releases.

Adding New Data Dictionary Items
You can add new tables or views to the data dictionary. If you add new data

dictionary objects, the owner of the new objects should be the user SYSTEM or a

third Oracle user.
2-4 Oracle8i Concepts

How the Data Dictionary Is Used
Deleting Data Dictionary Items
All changes to the data dictionary are performed by Oracle in response to DDL

statements, therefore no data in any data dictionary tables should be deleted or
altered by any user.

The single exception to this rule is the table SYS.AUD$. When auditing is enabled,

this table can grow without bound. Although you should not drop the

AUDIT_TRAIL table, the security administrator can safely delete data from it

because the rows are for information only and are not necessary for Oracle to run.

How Users and DBAs Can Use the Data Dictionary
The views of the data dictionary serve as a reference for all database users. You

access the data dictionary views via the SQL language. Some views are accessible to

all Oracle users; others are intended for database administrators only.

The data dictionary is always available when the database is open. It resides in the

SYSTEM tablespace, which is always online.

The data dictionary consists of sets of views. In many cases, a set consists of three

views containing similar information and distinguished from each other by their

prefixes:

The set of columns is identical across views with these exceptions:

■ Views with the prefix USER usually exclude the column OWNER. This column

is implied in the USER views to be the user issuing the query.

■ Some DBA views have additional columns containing information useful to the

administrator.

Caution: Never create new objects belonging to user SYS, except

by running the script provided by Oracle Corporation for creating

data dictionary objects.

Table 2–1 Data Dictionary View Prefixes

Prefix Scope

USER user’s view (what is in the user’s schema)

ALL expanded user’s view (what the user can access)

DBA database administrator’s view (what is in all users’ schemas)
The Data Dictionary 2-5

How the Data Dictionary Is Used
Views with the Prefix USER
The views most likely to be of interest to typical database users are those with the

prefix USER. These views

■ refer to the user’s own private environment in the database, including

information about schema objects created by the user, grants made by the user,

and so on

■ display only rows pertinent to the user

■ have columns identical to the other views, except that the column OWNER is

implied (the current user)

■ return a subset of the information in the ALL_ views

■ can have abbreviated PUBLIC synonyms for convenience

For example, the following query returns all the objects contained in your schema:

SELECT object_name, object_type FROM user_objects;

Views with the Prefix ALL
Views with the prefix ALL refer to the user’s overall perspective of the database.

These views return information about schema objects to which the user has access

via public or explicit grants of privileges and roles, in addition to schema objects

that the user owns. For example, the following query returns information about all

the objects to which you have access:

SELECT owner, object_name, object_type FROM all_objects;

Views with the Prefix DBA
Views with the prefix DBA show a global view of the entire database. Therefore,

they are meant to be queried only by database administrators. Any user granted the

system privilege SELECT ANY TABLE can query the DBA-prefixed views of the

data dictionary.

Synonyms are not created for these views, because the DBA views should be

queried only by administrators. Therefore, to query the DBA views, administrators

must prefix the view name with its owner, SYS, as in

SELECT owner, object_name, object_type FROM sys.dba_objects;

Additional Information: See the Oracle8i Reference for a complete

list of data dictionary views and their columns.
2-6 Oracle8i Concepts

The Dynamic Performance Tables
Administrators can run the script file DBA_SYNONYMS.SQL to create private

synonyms for the DBA views in their accounts if they have the SELECT ANY

TABLE system privilege. Executing this script creates synonyms for the current user

only.

The DUAL Table
The table named DUAL is a small table in the data dictionary that Oracle and

user-written programs can reference to guarantee a known result. This table has one

column called DUMMY and one row containing the value "X".

The Dynamic Performance Tables
Throughout its operation, Oracle maintains a set of "virtual" tables that record

current database activity. These tables are called dynamic performance tables.

Dynamic performance tables are not true tables, and they should not be accessed by

most users. However, database administrators can query and create views on the

tables and grant access to those views to other users. These views are sometimes

called fixed views because they cannot be altered or removed by the database

administrator.

SYS owns the dynamic performance tables; their names all begin with V_$. Views

are created on these tables, and then public synonyms are created for the views. The

synonym names begin with V$. For example, V$DATAFILE contains information

about the database’s datafiles and V$FIXED_TABLE contains information about all

of the dynamic performance tables and views in the database.

Additional Information: See the description of the SELECT

command in the Oracle8i SQL Reference for more information about

the DUAL table.

Additional Information: See the Oracle8i Reference for a complete

list of the dynamic performance views’ synonyms and their

columns.
The Data Dictionary 2-7

The Dynamic Performance Tables
2-8 Oracle8i Concepts

Tablespaces and Da
3

Tablespaces and Datafiles

Space—the final frontier . . .

Gene Roddenberry: Star Trek

This chapter describes tablespaces, the primary logical database structures of any

Oracle database, and the physical datafiles that correspond to each tablespace. The

chapter includes:

■ Databases, Tablespaces, and Datafiles

■ Tablespaces

■ Datafiles
tafiles 3-1

Databases, Tablespaces, and Datafiles
Databases, Tablespaces, and Datafiles
Oracle stores data logically in tablespaces and physically in datafiles associated with

the corresponding tablespace. Figure 3–1 illustrates this relationship.

Figure 3–1 Datafiles and Tablespaces

Databases, tablespaces, and datafiles are closely related, but they have important

differences:

databases and

tablespaces

An Oracle database consists of one or more logical storage units

called tablespaces, which collectively store all of the database’s

data.

tablespaces and

datafiles

Each tablespace in an Oracle database consists of one or more

files called datafiles, which are physical structures that conform

with the operating system in which Oracle is running.

Tablespace
(one or more datafiles)

Table

Index

Index

Index

Index

Index

Index

Index

Table

Table

Index

Index

Index

Datafiles
(physical structures associated
with only one tablespace)

Objects
(stored in tablespaces-
may span several datafiles)
3-2 Oracle8i Concepts

Databases, Tablespaces, and Datafiles
Allocating More Space for a Database
You can enlarge a database in three ways:

■ add a datafile to a tablespace

■ add a new tablespace

■ increase the size of a datafile

When you add another datafile to an existing tablespace, you increase the amount

of disk space allocated for the corresponding tablespace. Figure 3–2 illustrates this

kind of space increase.

Figure 3–2 Enlarging a Database by Adding a Datafile to a Tablespace

databases and

datafiles

A database’s data is collectively stored in the datafiles that

constitute each tablespace of the database. For example, the

simplest Oracle database would have one tablespace and one

datafile. Another database might have three tablespaces, each

consisting of two datafiles (for a total of six datafiles).

DATA1.ORA DATA3.ORADATA2.ORA

System Tablespace

Database

ALTER TABLESPACE system
ADD DATAFILE 'DATA2.ORA'

ALTER TABLESPACE system
ADD DATAFILE 'DATA3.ORA'

Single Tablespace

Database size and
tablespace size increase
with the addition of
datafiles
Tablespaces and Datafiles 3-3

Databases, Tablespaces, and Datafiles
Alternatively, you can create a new tablespace (which contains at least one

additional datafile) to increase the size of a database. Figure 3–3 illustrates this.

Figure 3–3 Enlarging a Database by Adding a New Tablespace

The size of a tablespace is the size of the datafile(s) that constitute the tablespace;

the size of a database is the collective size of the tablespaces that constitute the

database.

The third option for enlarging a database is to change a datafile’s size or allow

datafiles in existing tablespaces to grow dynamically as more space is needed. You

accomplish this by altering existing files or by adding files with dynamic extension

properties. Figure 3–4 illustrates this.

DATA1.ORA DATA2.ORA DATA3.ORA

System Tablespace USERS Tablespace

Database

Two Tablespaces

CREATE TABLESPACE users
DATAFILE 'DATA3.ORA'
3-4 Oracle8i Concepts

Databases, Tablespaces, and Datafiles
Figure 3–4 Enlarging a Database by Dynamically Sizing Datafiles

Additional Information: See the Oracle8i Administrator’s Guide for

more information about increasing the amount of space in your

database.

DATA1.ORA DATA2.ORA

System Tablespace USERS Tablespace

DATA3.ORA

Database

ALTER DATABASE
DATAFILE 'DATA3.ORA'
 AUTOEXTEND ON NEXT 20M
 MAXSIZE 1000M;

20 M

20 M
Tablespaces and Datafiles 3-5

Tablespaces
Tablespaces
A database is divided into one or more logical storage units called tablespaces.

Tablespaces are divided into logical units of storage called segments, which are

further divided into extents (see Chapter 4, "Data Blocks, Extents, and Segments").

This section includes the following topics about tablespaces:

■ The SYSTEM Tablespace

■ Using Multiple Tablespaces

■ Space Management in Tablespaces

■ Online and Offline Tablespaces

■ Read-Only Tablespaces

■ Temporary Tablespaces

■ Transporting Tablespaces between Databases

The SYSTEM Tablespace
Every Oracle database contains a tablespace named SYSTEM, which Oracle creates

automatically when the database is created.

The Data Dictionary
The SYSTEM tablespace always contains the data dictionary tables for the entire

database. The data dictionary tables are stored in datafile 1.

PL/SQL Program Units
All data stored on behalf of stored PL/SQL program units (procedures, functions,

packages, and triggers) resides in the SYSTEM tablespace. If the database will

contain many of these program units, the database administrator needs to allow for

the space they use in the SYSTEM tablespace.

For more information about PL/SQL program units and the space that they require,

see Chapter 18, "Procedures and Packages", and Chapter 20, "Triggers".

Note: The SYSTEM tablespace is always online when the database

is open. See "Online and Offline Tablespaces" on page 3-9.
3-6 Oracle8i Concepts

Tablespaces
Using Multiple Tablespaces
A small database might need only the SYSTEM tablespace; however, Oracle

Corporation recommends that you create at least one additional tablespace to store

user data separate from data dictionary information. This gives you more flexibility

in various database administration operations and reduces contention among

dictionary objects and schema objects for the same datafiles.

You can use multiple tablespaces to:

■ control disk space allocation for database data

■ assign specific space quotas for database users

■ control availability of data by taking individual tablespaces online or offline

■ perform partial database backup or recovery operations

■ allocate data storage across devices to improve performance

A database administrator (DBA) can create new tablespaces, add datafiles to

tablespaces, set and alter default segment storage settings for segments created in a

tablespace, make a tablespace read-only or read-write, make a tablespace temporary

or permanent, and drop tablespaces.

Space Management in Tablespaces
Tablespaces allocate space in extents (see "Extents" on page 4-11). Tablespaces can

use two different methods to keep track of their free and used space:

■ extent management by the data dictionary (dictionary-managed tablespaces)

■ extent management by the tablespace (locally-managed tablespaces)

When you create a tablespace, you choose one of these methods of space

management. You cannot alter the method at a later time.

Dictionary-Managed Tablespaces
For a tablespace that uses the data dictionary to manage its extents, Oracle updates

the appropriate tables in the data dictionary whenever an extent is allocated or

freed for reuse. Oracle also stores rollback information about each update of the

dictionary tables. (See "Rollback Segments" on page 4-19.) Because dictionary tables

and rollback segments are part of the database, the space that they occupy is subject

to the same space management operations as all other data.
Tablespaces and Datafiles 3-7

Tablespaces
This is the default method of space management in a tablespace. It was the only

method available in Oracle releases 8.0 and earlier.

Locally-Managed Tablespaces
A tablespace that manages its own extents maintains a bitmap in each datafile to

keep track of the free or used status of blocks in that datafile. Each bit in the bitmap

corresponds to a block or a group of blocks. When an extent is allocated or freed for

reuse, Oracle changes the bitmap values to show the new status of the blocks. These

changes do not generate rollback information because they do not update tables in

the data dictionary (except for special cases such as tablespace quota information).

Locally-managed tablespaces have the following advantages over

dictionary-managed tablespaces:

■ Local management of extents avoids recursive space management operations,

which can occur in dictionary-managed tablespaces if consuming or releasing

space in an extent results in another operation that consumes or releases space

in a rollback segment or data dictionary table.

■ Local management of extents automatically tracks adjacent free space,

eliminating the need to coalesce free extents.

The sizes of extents that are managed locally can be determined automatically by

the system. Alternatively, all extents can have the same size in a locally-managed

tablespace. See "Extents Managed Locally" on page 4-12 for more information.

The LOCAL option of the EXTENT MANAGEMENT clause specifies this method of

space management in various CREATE commands:

■ For the SYSTEM tablespace, you can specify EXTENT MANGEMENT LOCAL

in the CREATE DATABASE command. If the SYSTEM tablespace is locally

managed, other tablespaces in the database can be dictionary-managed but you

must create all rollback segments in locally-managed tablespaces.

■ For a permanent tablespace other than SYSTEM, you can specify EXTENT

MANGEMENT LOCAL in the CREATE TABLESPACE command.

■ For a temporary tablespace, you can specify EXTENT MANGEMENT LOCAL

in the CREATE TEMPORARY TABLESPACE command. (See "Temporary

Tablespaces" on page 3-12.)

Additional Information: See the Oracle8i SQL Reference for details

about these commands.
3-8 Oracle8i Concepts

Tablespaces
Online and Offline Tablespaces
A database administrator can bring any tablespace other than the SYSTEM

tablespace online (accessible) or offline (not accessible) whenever the database is

open. The SYSTEM tablespace is always online when the database is open because

the data dictionary must always be available to Oracle.

A tablespace is normally online so that the data contained within it is available to

database users. However, the database administrator might take a tablespace offline

■ to make a portion of the database unavailable, while allowing normal access to

the remainder of the database

■ to perform an offline tablespace backup (although a tablespace can be backed

up while online and in use)

■ to make an application and its group of tables temporarily unavailable while

updating or maintaining the application

You cannot take a tablespace offline if it contains any rollback segments that are in

use. See "Rollback Segments" on page 4-19 for more information.

When a Tablespace Goes Offline
When a tablespace goes offline, Oracle does not permit any subsequent SQL

statements to reference objects contained in that tablespace. Active transactions

with completed statements that refer to data in that tablespace are not affected at

the transaction level. Oracle saves rollback data corresponding to those completed

statements in a deferred rollback segment (in the SYSTEM tablespace). When the

tablespace is brought back online, Oracle applies the rollback data to the tablespace,

if needed.

When a tablespace goes offline or comes back online, this is recorded in the data

dictionary in the SYSTEM tablespace. If a tablespace was offline when you shut

down a database, the tablespace remains offline when the database is subsequently

mounted and reopened.

You can bring a tablespace online only in the database in which it was created

because the necessary data dictionary information is maintained in the SYSTEM

tablespace of that database. An offline tablespace cannot be read or edited by any

utility other than Oracle. Thus, offline tablespaces cannot be transferred from

database to database. (See "Temporary Tablespaces" on page 3-12 for a way to

transfer online tablespaces between databases.)
Tablespaces and Datafiles 3-9

Tablespaces
Oracle automatically switches a tablespace from online to offline when certain

errors are encountered (for example, when the database writer process, DBWn, fails

in several attempts to write to a datafile of the tablespace). Users trying to access

tables in the offline tablespace receive an error. If the problem that causes this disk

I/O to fail is media failure, you must recover the tablespace after you correct the

hardware problem.

Using Tablespaces for Special Procedures
If you create multiple tablespaces to separate different types of data, you take

specific tablespaces offline for various procedures; other tablespaces remain online

and the information in them is still available for use. However, special

circumstances can occur when tablespaces are taken offline. For example, if two

tablespaces are used to separate table data from index data, the following is true:

■ If the tablespace containing the indexes is offline, queries can still access table

data because queries do not require an index to access the table data.

■ If the tablespace containing the tables is offline, the table data in the database is

not accessible because the tables are required to access the data.

In summary, if Oracle has enough information in the online tablespaces to execute a

statement, it will do so. If it needs data in an offline tablespace, then it causes the

statement to fail.

Read-Only Tablespaces
The primary purpose of read-only tablespaces is to eliminate the need to perform

backup and recovery of large, static portions of a database. Oracle never updates

the files of a read-only tablespace, and therefore the files can reside on read-only

media, such as CD ROMs or WORM drives.

Whenever you create a new tablespace, it is always created as read-write. You can

change the tablespace to read-only with the READ ONLY option of the ALTER

Additional Information: Transfer of Oracle data between

databases can be achieved with tools described in Oracle8i Utilities.

Note: Because you can only bring a tablespace online in the

database in which it was created, read-only tablespaces are not

meant to satisfy archiving or data publishing requirements.
3-10 Oracle8i Concepts

Tablespaces
TABLESPACE command, making all of the tablespace’s associated datafiles

read-only as well.

The ALTER TABLESPACE ... READ ONLY command places the tablespace in a

transitional read-only mode and waits for existing transactions to complete (commit

or roll back). This transitional state does not allow any further write operations to

the tablespace except for the rollback of existing transactions that previously

modified blocks in the tablespace. Hence, in transition the tablespace behaves like a

read-only tablespace for all user commands except ROLLBACK. After all of the

existing transactions have either committed or rolled back, the ALTER

TABLESPACE ... READ ONLY command completes and the tablespace is placed in

read-only mode.

You can use the READ WRITE option of the ALTER TABLESPACE command to

make a read-only tablespace read-write again.

Making a tablespace read-only does not change its offline or online status. Offline

datafiles cannot be accessed. Bringing a datafile in a read-only tablespace online

makes the file only readable. The file cannot be written to unless its associated

tablespace is returned to the read-write state. You can take the files of a read-only

tablespace online or offline independently using the DATAFILE option of the

ALTER DATABASE command.

Read-only tablespaces cannot be modified. To update a read-only tablespace, you

must first make the tablespace read-write. After updating the tablespace, you can

then reset it to be read-only.

Because read-only tablespaces cannot be modified, they do not need repeated

backup. Also, should you need to recover your database, you do not need to

recover any read-only tablespaces, because they could not have been modified.

Note: The transitional read-only state only occurs if the value of

the initialization parameter COMPATIBLE is 8.1.0 or greater. For

parameter values less than 8.1.0, the ALTER TABLESPACE ... READ

ONLY command will fail if any active transactions exist.

Additional Information: See the Oracle8i Administrator’s Guide for

more information on changing a tablespace to read-only or

read-write mode, and see the Oracle8i SQL Reference for information

on the ALTER TABLESPACE command.
Tablespaces and Datafiles 3-11

Tablespaces
However, read-only tablespaces may need attention during instance or media

recovery, depending upon whether and when they have ever been read-write.

You can drop items, such as tables and indexes, from a read-only tablespace, just as

you can drop items from an offline tablespace. However, you cannot create or alter

objects in a read-only tablespace.

You cannot add datafiles to a read-only tablespace, even if you take the tablespace

offline. When you add a datafile, Oracle must update the file header, and this write

operation is not allowed in a read-only tablespace.

Temporary Tablespaces
You can manage space for sort operations more efficiently by designating temporary
tablespaces exclusively for sorts. Doing so effectively eliminates serialization of space

management operations involved in the allocation and deallocation of sort space.

All operations that use sorts—including joins, index builds, ordering (ORDER BY),

the computation of aggregates (GROUP BY), and the ANALYZE command for

collecting optimizer statistics—benefit from temporary tablespaces. The

performance gains are significant in Oracle Parallel Server environments.

Sort Segments
A temporary tablespace can be used only for sort segments. (See Chapter 4, "Data

Blocks, Extents, and Segments" for information about segments.) A temporary

tablespace is not the same as a tablespace that a user designates for temporary

segments, which can be any tablespace available to the user. No permanent schema

objects can reside in a temporary tablespace.

Sort segments are used when a segment is shared by multiple sort operations. One

sort segment exists for every instance that performs a sort operation in a given

tablespace.

Temporary tablespaces provide performance improvements when you have

multiple sorts that are too large to fit into memory. The sort segment of a given

temporary tablespace is created at the time of the first sort operation. The sort

segment expands by allocating extents until the segment size is equal to or greater

than the total storage demands of all of the active sorts running on that instance.

Additional Information: See the Oracle8i Backup and Recovery Guide
for more information about recovery.
3-12 Oracle8i Concepts

Tablespaces
Creating and Altering Temporary Tablespaces
You create temporary tablespaces by using the CREATE TABLESPACE or CREATE

TEMPORARY TABLESPACE command:

■ For a locally managed temporary tablespace, use CREATE TEMPORARY

TABLESPACE. This command specifies TEMPFILES instead of DATAFILES (see

"Temporary Datafiles" on page 3-17).

■ For a dictionary-managed temporary tablespace, use the TEMPORARY option

of CREATE TABLESPACE.

You can also change a tablespace from PERMANENT to TEMPORARY or vice versa

by using the ALTER TABLESPACE command for any temporary tablespace (either

locally managed or dictionary-managed). See "Space Management in Tablespaces"

on page 3-7 for information about locally managed and dictionary-managed

tablespaces.

Transporting Tablespaces between Databases
The transportable tablespace feature enables you to move a subset of an Oracle

database from one Oracle database to another. You can clone a tablespace from one

tablespace and plug it into another database, copying the tablespace between

databases, or you can unplug a tablespace from one Oracle database and plug it

into another Oracle database, moving the tablespace between databases.

Moving data by transporting tablespaces can be orders of magnitude faster than

either export/import or unload/load of the same data, because transporting a

tablespace involves only copying datafiles and integrating the tablespace metadata.

When you transport tablespaces you can also move index data, so that you do not

have to rebuild the indexes after importing or loading the table data.

In the current release, you can transport tablespaces only between Oracle databases

that use the same data block size and character set, and that run on compatible

platforms from the same hardware vendor.

Additional Information: See Oracle8i SQL Reference for more

information on the CREATE TABLESPACE, CREATE TEMPORARY

TABLESPACE, and ALTER TABLESPACE commands, and see

Oracle8i Tuning for information about how to set up temporary

tablespaces for sorts and hash joins.
Tablespaces and Datafiles 3-13

Tablespaces
Moving or Copying a Tablespace to Another Database
To move or copy a set of tablespaces, you must make the tablespaces read-only,

copy the datafiles of these tablespaces, and use export/import to move the database

information (metadata) stored in data dictionary. Both the datafiles and the metadata

export file must be copied to the target database. The transport of these files can be

done using any facility for copying flat files, such as the operating system copying

facility, ftp, or publishing on CDs.

After copying the datafiles and importing the metadata, you can optionally put the

tablespaces in read-write mode.

Transportable Data Sets You can transport a data set consisting of one or more

tablespaces, as long as the set of schema objects in the data set is self-contained

(except for object references—see "REFs" on page 13-9). If you transport a data set

that contains a pointer to a BFILE, you must also move the BFILE and set the

directory correctly in the target database.

If the data set includes a partitioned table, it must contain all of the table’s

partitions. To transport a subset of a partitioned table, you can exchange the

partitions into tables before transporting them.

Tablespace Metadata The metadata that you export can include or omit information

about triggers, grants, and constraints, depending on which export options you use.

Primary key constraints are always exported.

Benefits of Transporting Tablespaces
Transporting tablespaces is particularly useful for:

■ data warehouses

■ data marts

■ data publication

You can also transport tablespaces to move or copy data between Oracle databases

that have different compatibility or release levels.

Additional Information: See Oracle8i Administrator’s Guide for

details about how to move or copy tablespaces to another database.

Additional Information: See Oracle8i Migration for details about

how to move or copy tablespaces between Oracle releases or

compatibility levels.
3-14 Oracle8i Concepts

Tablespaces
Data Warehouses and Data Marts An enterprise data warehouse contains historical

detailed data about the company. Typically, data flows from one or more online

transaction processing (OLTP) databases into the data warehouse on a monthly,

weekly, or daily basis. The data is usually processed in a staging database before

being added to the data warehouse.

A data mart contains a subset of corporate data that is of value to a specific business

unit, department, or set of users. Typically, a data mart is derived from an enterprise

data warehouse.

Transporting tablespaces can be useful for many purposes in a data warehouse

environment:

■ to move data from an OLTP database to a staging database, where the data can

be cleaned and transformed before going into the data warehouse

■ to move data from the staging database to the enterprise data warehouse (the

new data can become a partition of the historical data by exchanging tables

with partitions)

■ to move data from a data warehouse to a data mart

■ to archive obsolete data from the data warehouse, keeping the archived data

together with its metadata so that the tablespace could be restored if necessary

Data Publication Content providers acquire data and make it available in a useful

format. For example, a content provider might acquire statistical data from

hospitals and provide it to insurance companies, or a telephone company might

give large customers their billing data on CDs. Content providers can transport

tablespaces to publish structured data on CD or other media, enabling customers to

integrate the published data into their Oracle databases.

Additional Information: See Oracle8i Tuning for more information

about data warehouses and data marts.
Tablespaces and Datafiles 3-15

Datafiles
Datafiles
A tablespace in an Oracle database consists of one or more physical datafiles. A

datafile can be associated with only one tablespace and only one database.

Oracle creates a datafile for a tablespace by allocating the specified amount of disk

space plus the overhead required for the file header. When a datafile is created, the

operating system in which Oracle is running is responsible for clearing old

information and authorizations from a file before allocating it to Oracle. If the file is

large, this process might take a significant amount of time.

The first tablespace in any database is always the SYSTEM tablespace, so Oracle

automatically allocates the first datafiles of any database for the SYSTEM tablespace

during database creation.

Datafile Contents
When a datafile is first created, the allocated disk space is formatted but does not

contain any user data; however, Oracle reserves the space to hold the data for future

segments of the associated tablespace—it is used exclusively by Oracle. As the data

grows in a tablespace, Oracle uses the free space in the associated datafiles to

allocate extents for the segment. See Chapter 4, "Data Blocks, Extents, and

Segments", for more information.

The data associated with schema objects in a tablespace is physically stored in one

or more of the datafiles that constitute the tablespace. Note that a schema object

does not correspond to a specific datafile; rather, a datafile is a repository for the

data of any schema object within a specific tablespace. Oracle allocates space for the

data associated with a schema object in one or more datafiles of a tablespace.

Therefore, a schema object can "span" one or more datafiles. Unless table "striping"

is used (where data is spread across more than one disk), the database

administrator and end users cannot control which datafile stores a schema object.

Size of Datafiles
You can alter the size of a datafile after its creation or you can specify that a datafile

should dynamically grow as schema objects in the tablespace grow. This

functionality enables you to have fewer datafiles per tablespace and can simplify

administration of datafiles.

Additional Information: For information on the amount of space

required for the file header of datafiles on your operating system,

see your Oracle operating system specific documentation.
3-16 Oracle8i Concepts

Datafiles
Offline Datafiles
You can take tablespaces offline (make unavailable) or bring them online (make

available) at any time, except for the SYSTEM tablespace. All of the datafiles

making up a tablespace are taken offline or brought online as a unit when you take

the tablespace offline or bring it online, respectively.

You can take individual datafiles offline; however, this is normally done only

during some database recovery procedures.

Temporary Datafiles
Locally managed temporary tablespaces have temporary datafiles (tempfiles), which

are similar to ordinary datafiles except that:

■ Tempfiles are always set to NOLOGGING mode.

■ You cannot make a tempfile read-only.

■ You cannot rename a tempfile.

■ You cannot create a tempfile with the ALTER DATABASE command.

■ Media recovery does not recognize tempfiles.

– BACKUP CONTROLFILE does not generate any information for tempfiles.

– CREATE CONTROLFILE cannot specify any information about tempfiles.

■ Tempfile information is shown in the dictionary view DBA_TEMP_FILES and

the dynamic performance view V$TEMPFILE, but not in DBA_DATA_FILES or

V$DATAFILE.

See "Space Management in Tablespaces" on page 3-7 for more information about

locally managed tablespaces.

Additional Information: See the Oracle8i Administrator’s Guide for

more information about resizing datafiles.
Tablespaces and Datafiles 3-17

Datafiles
3-18 Oracle8i Concepts

Data Blocks, Extents, and Segm
4

Data Blocks, Extents, and Segments

He was not merely a chip of the old block, but the old block itself.

Edmund Burke: On Pitt’s first speech

This chapter describes the nature of and relationships among the logical storage

structures in the Oracle server. It includes:

■ The Relationships Among Data Blocks, Extents, and Segments

■ Data Blocks

■ Extents

■ Segments
ents 4-1

The Relationships Among Data Blocks, Extents, and Segments
The Relationships Among Data Blocks, Extents, and Segments
Oracle allocates logical database space for all data in a database. The units of

database space allocation are data blocks, extents, and segments. The following

illustration shows the relationships among these data structures:

Figure 4–1 The Relationships Among Segments, Extents, and Data Blocks

At the finest level of granularity, Oracle stores data in data blocks (also called logical
blocks, Oracle blocks, or pages). One data block corresponds to a specific number of

bytes of physical database space on disk.

The next level of logical database space is an extent. An extent is a specific number

of contiguous data blocks allocated for storing a specific type of information.

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

2Kb

Data Blocks

Extent
28Kb

Extent
84Kb

Segment
112Kb
4-2 Oracle8i Concepts

Data Blocks
The level of logical database storage above an extent is called a segment. A segment

is a set of extents, each of which has been allocated for a specific data structure, and

all of which are stored in the same tablespace. For example, each table’s data is

stored in its own data segment, while each index’s data is stored in its own index
segment. If the table or index is partitioned, each partition is stored in its own

segment.

Oracle allocates space for segments in units of one extent. When the existing extents

of a segment are full, Oracle allocates another extent for that segment. Because

extents are allocated as needed, the extents of a segment may or may not be

contiguous on disk.

A segment and all its extents are stored in one tablespace. Within a tablespace, a

segment can include extents from more than one file, that is, the segment can span

datafiles. However, each extent can contain data from only one datafile.

Data Blocks
Oracle manages the storage space in the datafiles of a database in units called

data blocks. A data block is the smallest unit of I/O used by a database. In contrast,

at the physical, operating system level, all data is stored in bytes. Each operating

system has what is called a block size. Oracle requests data in multiples of Oracle

data blocks, not operating system blocks.

You set the data block size for each Oracle database when you create the database.

This data block size should be a multiple of the operating system’s block size within

the maximum (operating-system-specific) limit to avoid unnecessary I/O. Oracle

data blocks are the smallest units of storage that Oracle can use or allocate.

Data Block Format
The Oracle data block format is similar regardless of whether the data block

contains table, index, or clustered data. Figure 4–2 illustrates the format of a

data block.

Additional Information: See your Oracle operating-system-specific

documentation for more information about data block sizes.
Data Blocks, Extents, and Segments 4-3

Data Blocks
Figure 4–2 Data Block Format

Header (Common and Variable)
The header contains general block information, such as the block address and the

type of segment (for example, data, index, or rollback).

Table Directory
This portion of the data block contains information about the tables having rows in

this block.

Row Directory
This portion of the data block contains information about the actual rows in the

block (including addresses for each row piece in the row data area).

Once the space has been allocated in the row directory of a data block’s overhead,

this space is not reclaimed when the row is deleted. Therefore, a block that is

currently empty but had up to 50 rows at one time continues to have 100 bytes

allocated in the header for the row directory. Oracle reuses this space only when

new rows are inserted in the block.

Database Block

Common and Variable Header

Table Directory

Row Directory

Free Space

Row Data
4-4 Oracle8i Concepts

Data Blocks
Overhead
The data block header, table directory, and row directory are referred to collectively

as overhead. Some block overhead is fixed in size; the total block overhead size is

variable. On average, the fixed and variable portions of data block overhead total 84

to 107 bytes.

Row Data
This portion of the data block contains table or index data. Rows can span blocks;

see "Row Chaining and Migrating" on page 4-10.

Free Space
Free space is allocated for insertion of new rows and for updates to rows that

require additional space (for example, when a trailing null is updated to a non-null

value). Whether issued insertions actually occur in a given data block is a function

of current free space in that data block and the value of the space management

parameter PCTFREE. The next section, "An Introduction to PCTFREE, PCTUSED,

and Row Chaining" on page 4-5, contains more information on space management

parameters.

In data blocks allocated for the data segment of a table or cluster, or for the index

segment of an index, free space can also hold transaction entries. A transaction entry
is required in a block for each INSERT, UPDATE, DELETE, and SELECT...FOR

UPDATE statement accessing one or more rows in the block. The space required for

transaction entries is operating system dependent; however, transaction entries in

most operating systems require approximately 23 bytes.

An Introduction to PCTFREE, PCTUSED, and Row Chaining
Two space management parameters, PCTFREE and PCTUSED, enable you to

control the use of free space for inserts of and updates to the rows in all the data

blocks of a particular segment. You specify these parameters when creating or

altering a table or cluster (which has its own data segment). You can also specify the

storage parameter PCTFREE when creating or altering an index (which has its own

index segment).

Note: This discussion does not apply to LOB datatypes (BLOB,

CLOB, NCLOB, and BFILE)—they do not use the PCTFREE storage

parameter or free lists. See "LOB Datatypes" on page 12-12 for more

information.
Data Blocks, Extents, and Segments 4-5

Data Blocks
The PCTFREE Parameter
The PCTFREE parameter sets the minimum percentage of a data block to be reserved
as free space for possible updates to rows that already exist in that block. For

example, assume that you specify the following parameter within a CREATE

TABLE statement:

PCTFREE 20

This states that 20% of each data block in this table’s data segment will be kept free

and available for possible updates to the existing rows already within each block.

New rows can be added to the row data area, and corresponding information can

be added to the variable portions of the overhead area, until the row data and

overhead total 80% of the total block size. Figure 4–3 illustrates PCTFREE.

Figure 4–3 PCTFREE

The PCTUSED Parameter
The PCTUSED parameter sets the minimum percentage of a block that can be used
for row data plus overhead before new rows will be added to the block. After a data

PCTFREE = 20
Data Block

20% Free Space

Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block
4-6 Oracle8i Concepts

Data Blocks
block is filled to the limit determined by PCTFREE, Oracle considers the block

unavailable for the insertion of new rows until the percentage of that block falls

below the parameter PCTUSED. Until this value is achieved, Oracle uses the free

space of the data block only for updates to rows already contained in the data block.

For example, assume that you specify the following parameter in a CREATE TABLE

statement:

PCTUSED 40

In this case, a data block used for this table’s data segment is considered

unavailable for the insertion of any new rows until the amount of used space in the

block falls to 39% or less (assuming that the block’s used space has previously

reached PCTFREE). Figure 4–4 illustrates this.

Figure 4–4 PCTUSED

61% Free
Space

No new rows are
inserted until amount
of used space falls
below 40%

PCTUSED = 40
Data Block
Data Blocks, Extents, and Segments 4-7

Data Blocks
How PCTFREE and PCTUSED Work Together
PCTFREE and PCTUSED work together to optimize the utilization of space in the

data blocks of the extents within a data segment. Figure 4–5 illustrates the

interaction of these two parameters.

Figure 4–5 Maintaining the Free Space of Data Blocks with PCTFREE and PCTUSED

Rows are
inserted up to
80% only,
because
PCTFREE
specifies that
20% of the
block must
remain open
for updates of
existing rows.
This cycle
continues . . .

Updates to
exisiting rows
use the free
space
reserved in
the block.
No new rows
can be
inserted into
the block
until the
amount of
used
space is 39%
or less.

After the
amount of
used space
falls below
40%, new
rows can
again be
inserted into
this block.

Rows are
inserted up to
80% only,
because
PCTFREE
specifies that
20% of the
block must
remain open
for updates of
existing rows.

1

3

2

4

4-8 Oracle8i Concepts

Data Blocks
In a newly allocated data block, the space available for inserts is the block size

minus the sum of the block overhead and free space (PCTFREE). Updates to

existing data can use any available space in the block; therefore, updates can reduce

the available space of a block to less than PCTFREE, the space reserved for updates

but not accessible to inserts.

For each data and index segment, Oracle maintains one or more free lists—lists of

data blocks that have been allocated for that segment’s extents and have free space

greater than PCTFREE; these blocks are available for inserts. When you issue an

INSERT statement, Oracle checks a free list of the table for the first available data

block and uses it if possible. If the free space in that block is not large enough to

accommodate the INSERT statement, and the block is at least PCTUSED, Oracle

takes the block off the free list. Multiple free lists per segment can reduce contention

for free lists when concurrent inserts take place.

After you issue a DELETE or UPDATE statement, Oracle processes the statement

and checks to see if the space being used in the block is now less than PCTUSED. If

it is, the block goes to the beginning of the transaction free list, and it is the first of

the available blocks to be used in that transaction. When the transaction commits,

free space in the block becomes available for other transactions.

Availability and Compression of Free Space in a Data Block
Two types of statements can increase the free space of one or more data blocks:

DELETE statements, and UPDATE statements that update existing values to smaller

values. The released space from these types of statements is available for

subsequent INSERT statements under the following conditions:

■ If the INSERT statement is in the same transaction and subsequent to the

statement that frees space, the INSERT statement can use the space made

available.

■ If the INSERT statement is in a separate transaction from the statement that

frees space (perhaps being executed by another user), the INSERT statement can

use the space made available only after the other transaction commits, and only

if the space is needed.

Released space may or may not be contiguous with the main area of free space in a

data block. Oracle coalesces the free space of a data block only when (1) an INSERT

or UPDATE statement attempts to use a block that contains enough free space to

contain a new row piece, and (2) the free space is fragmented so that the row piece

cannot be inserted in a contiguous section of the block. Oracle does this

compression only in such situations, because otherwise the performance of a
Data Blocks, Extents, and Segments 4-9

Data Blocks
database system would decrease due to the continuous compression of the free

space in data blocks.

Row Chaining and Migrating
In two circumstances, the data for a row in a table may be too large to fit into a

single data block. In the first case, the row is too large to fit into one data block

when it is first inserted. In this case, Oracle stores the data for the row in a chain of

data blocks (one or more) reserved for that segment. Row chaining most often

occurs with large rows, such as rows that contain a column of datatype LONG or

LONG RAW. Row chaining in these cases is unavoidable.

However, in the second case, a row that originally fit into one data block is updated

so that the overall row length increases, and the block’s free space is already

completely filled. In this case, Oracle migrates the data for the entire row to a new

data block, assuming the entire row can fit in a new block. Oracle preserves the

original row piece of a migrated row to point to the new block containing the

migrated row; the rowid of a migrated row does not change. See "Rowids of Row

Pieces" on page 10-7 and "Physical Rowids" on page 12-16 for information about

rowids.

When a row is chained or migrated, I/O performance associated with this row

decreases because Oracle must scan more than one data block to retrieve the

information for the row.

Note: The format of a row and a row piece are described in "Row

Format and Size" on page 10-5.

Additional Information: See Oracle8i Tuning for information about

reducing chained and migrated rows and improving I/O

performance.
4-10 Oracle8i Concepts

Extents
Extents
An extent is a logical unit of database storage space allocation made up of a number

of contiguous data blocks. One or more extents in turn make up a segment. When

the existing space in a segment is completely used, Oracle allocates a new extent for

the segment.

When Extents Are Allocated
When you create a table, Oracle allocates to the table’s data segment an initial extent
of a specified number of data blocks. Although no rows have been inserted yet,

the Oracle data blocks that correspond to the initial extent are reserved for that

table’s rows.

If the data blocks of a segment’s initial extent become full and more space is

required to hold new data, Oracle automatically allocates an incremental extent for

that segment. An incremental extent is a subsequent extent of the same or greater

size than the previously allocated extent in that segment. (The next section explains

the factors controlling the size of incremental extents.)

For maintenance purposes, the header block of each segment contains a directory of

the extents in that segment.

Rollback segments always have at least two extents. For more information, see

"How Extents Are Used and Allocated for Rollback Segments" on page 4-22.

Determining the Number and Size of Extents
Storage parameters expressed in terms of extents define every segment. Storage

parameters apply to all types of segments. They control how Oracle allocates free

database space for a given segment. For example, you can determine how much

space is initially reserved for a table’s data segment or you can limit the number of

extents the table can allocate by specifying the storage parameters of a table in the

STORAGE clause of the CREATE TABLE statement. If you do not specify a table’s

storage parameters, it uses the default storage parameters of the tablespace.

Note: This chapter applies to serial operations, in which one

server process parses and executes a SQL statement. Extents are

allocated somewhat differently in parallel SQL statements, which

entail multiple server processes. See "Free Space and Parallel DDL"

on page 26-33 for more information.
Data Blocks, Extents, and Segments 4-11

Extents
Tablespaces can manage their extents either locally or through the data dictionary

(see "Space Management in Tablespaces" on page 3-7). Some storage parameters

apply only to extents in dictionary-managed tablespaces, and other storage

parameters apply to all extents.

Extents Managed Locally
A tablespace that manages its extents locally can have either uniform extent sizes or

variable extent sizes that are determined automatically by the system. When you

create the tablespace, the UNIFORM or AUTOALLOCATE (system-managed)

option specifies the type of allocation.

■ For system-managed extents, you can specify the size of the initial extent and

Oracle determines the optimal size of additional extents, with a minimum

extent size of 64 KB. This is the default for permanent tablespaces.

■ For uniform extents, you can specify an extent size or use the default size,

which is 1 MB. Temporary tablespaces that manage their extents locally can

only use this type of allocation.

The storage parameters NEXT, PCTINCREASE, MINEXTENTS, MAXEXTENTS,

and DEFAULT STORAGE are not valid for extents that are managed locally.

Extents Managed by the Data Dictionary
A tablespace that uses the data dictionary to manage its extents has incremental

extent sizes, which are determined by the storage parameters INITIAL, NEXT, and

PCTINCREASE. When you create a schema object in the tablespace, its first extent is

allocated with the INITIAL size. When additional space is needed, the NEXT and

PCTINCREASE parameters determine the sizes of new extents. You can modify the

values of NEXT and PCTINCREASE after creating a schema object.

How Extents Are Allocated
Oracle uses different algorithms to allocate extents, depending on whether they are

locally managed or dictionary managed.

Allocating Extents in Locally-Managed Tablespaces
In locally-managed tablespaces, Oracle looks for free space to allocate to a new

extent by first determining a candidate datafile in the tablespace and then searching

Additional Information: See Oracle8i Administrator’s Guide and

Oracle8i SQL Reference for more information on storage parameters.
4-12 Oracle8i Concepts

Extents
the datafile’s bitmap for the required number of adjacent free blocks. If that datafile

does not have enough adjacent free space, Oracle looks in another datafile.

Allocating Extents in Dictionary-Managed Tablespaces
In dictionary-managed tablespaces, Oracle controls the allocation of incremental

extents for a given segment as follows:

1. Oracle searches through the free space (in the tablespace that contains the

segment) for the first free, contiguous set of data blocks of an incremental

extent’s size or larger, using the following algorithm:

a. Oracle searches for a contiguous set of data blocks that matches the size of

new extent plus one block to reduce internal fragmentation. (The size is

rounded up to the size of the minimal extent for that tablespace, if

necessary.) For example, if a new extent requires 19 data blocks, Oracle

searches for exactly 20 contiguous data blocks. If the new extent is 5 or

fewer blocks, Oracle does not add an extra block to the request.

b. If an exact match is not found, Oracle then searches for a set of contiguous

data blocks greater than the amount needed. If Oracle finds a group of

contiguous blocks that is at least 5 blocks greater than the size of the extent

needed, it splits the group of blocks into separate extents, one of which is

the size it needs. If Oracle finds a group of blocks that is larger than the size

it needs, but less than 5 blocks larger, it allocates all the contiguous blocks

to the new extent.

In the current example, if Oracle does not find a set of exactly 20 contiguous

data blocks, Oracle searches for a set of contiguous data blocks greater than

20. If the first set it finds contains 25 or more blocks, it breaks the blocks up

and allocates 20 of them to the new extent and leaves the remaining 5 or

more blocks as free space. Otherwise, it allocates all of the blocks (between

21 and 24) to the new extent.

c. If Oracle does not find an equal or larger set of contiguous data blocks, it

coalesces any free, adjacent data blocks in the corresponding tablespace to

form larger sets of contiguous data blocks. (The SMON background process

also periodically coalesces adjacent free space.) After coalescing a

tablespace’s data blocks, Oracle performs the searches described in 1a and

1b again.

d. If an extent cannot be allocated after the second search, Oracle tries to resize

the files by autoextension. If Oracle cannot resize the files, it returns an

error.
Data Blocks, Extents, and Segments 4-13

Extents
2. Once Oracle finds and allocates the necessary free space in the tablespace, it

allocates a portion of the free space that corresponds to the size of the

incremental extent. If Oracle found a larger amount of free space than was

required for the extent, Oracle leaves the remainder as free space (no smaller

than 5 contiguous blocks).

3. Oracle updates the segment header and data dictionary to show that a new

extent has been allocated and that the allocated space is no longer free.

The blocks of a newly allocated extent, although they were free, may not be empty

of old data. Usually, Oracle formats the blocks of a newly allocated extent when it

starts using the extent, but only as needed (starting with the blocks on the segment

free list). In a few cases, however, such as when a database administrator forces

allocation of an incremental extent with the ALLOCATE EXTENT option of an

ALTER TABLE or ALTER CLUSTER statement, Oracle formats the extent’s blocks

when it allocates the extent.

When Extents Are Deallocated
In general, the extents of a segment do not return to the tablespace until you drop

the schema object whose data is stored in the segment (using a DROP TABLE or

DROP CLUSTER statement). Exceptions to this include the following:

■ The owner of a table or cluster, or a user with the DELETE ANY privilege, can

truncate the table or cluster with a TRUNCATE...DROP STORAGE statement.

■ Periodically, Oracle may deallocate one or more extents of a rollback segment if

it has the OPTIMAL size specified.

■ A database administrator (DBA) can deallocate unused extents using the

following SQL syntax:

ALTER TABLE table_name DEALLOCATE UNUSED;

When extents are freed, Oracle modifies the bitmap in the datafile (for locally

managed tablespaces) or updates the data dictionary (for dictionary-managed

tablespaces) to reflect the regained extents as available space. Any data in the blocks

of freed extents becomes inaccessible, and Oracle clears the data when the blocks

are subsequently reused for other extents.

Additional Information: See Oracle8i Administrator’s Guide and

Oracle8i SQL Reference for more information on deallocating extents.
4-14 Oracle8i Concepts

Extents
Extents in Nonclustered Tables
As long as a nonclustered table exists or until you truncate the table, any data block

allocated to its data segment remains allocated for the table. Oracle inserts new

rows into a block if there is enough room. Even if you delete all rows of a table,

Oracle does not reclaim the data blocks for use by other objects in the tablespace.

After you drop a nonclustered table, this space can be reclaimed when other extents

require free space. Oracle reclaims all the extents of the table’s data and index

segments for the tablespaces that they were in and makes the extents available for

other schema objects in the same tablespace.

In dictionary-managed tablespaces, when a segment requires an extent larger than

the available extents, Oracle identifies and combines contiguous reclaimed extents

to form a larger one. This is called coalescing extents.

Coalescing extents is not necessary in locally-managed tablespaces, because all

contiguous free space is available for allocation to a new extent regardless of

whether it was reclaimed from one or more extents.

Extents in Clustered Tables
Clustered tables store their information in the data segment created for the cluster.

Therefore, if you drop one table in a cluster, the data segment remains for the other

tables in the cluster, and no extents are deallocated. You can also truncate clusters

(except for hash clusters) to free extents.

Extents in Materialized Views and Their Logs
Oracle deallocates the extents of materialized views and materialized view logs

(which are known as snapshots and snapshot logs in a replication environment) in

the same manner as for tables and clusters. See "Materialized Views" on page 10-17

for a description of materialized views and their logs.

Extents in Indexes
All extents allocated to an index segment remain allocated as long as the index

exists. When you drop the index or associated table or cluster, Oracle reclaims the

extents for other uses within the tablespace.

Extents in Rollback Segments
Oracle periodically checks to see if the rollback segments of the database have

grown larger than their optimal size. If a rollback segment is larger than is optimal

(that is, it has too many extents), Oracle automatically deallocates one or more
Data Blocks, Extents, and Segments 4-15

Segments
extents from the rollback segment. See "How Extents Are Deallocated from a

Rollback Segment" on page 4-25 for more information.

Extents in Temporary Segments
When Oracle completes the execution of a statement requiring a temporary

segment, Oracle automatically drops the temporary segment and returns the extents

allocated for that segment to the associated tablespace. A single sort allocates its

own temporary segment, in the temporary tablespace of the user issuing the

statement, and then returns the extents to the tablespace.

Multiple sorts, however, can use sort segments in a temporary tablespace

designated exclusively for sorts. These sort segments are allocated only once for the

instance, and they are not returned after the sort but remain available for other

multiple sorts. For more information, see "Temporary Segments" on page 4-17.

A temporary segment in a temporary table contains data for multiple statements of

a single transaction or session (see "Temporary Tables" on page 10-10). Oracle drops

the temporary segment at the end of the transaction or session, returning the extents

allocated for that segment to the associated tablespace.

Segments
A segment is a set of extents that contains all the data for a specific logical storage

structure within a tablespace. For example, for each table, Oracle allocates one or

more extents to form that table’s data segment; for each index, Oracle allocates one

or more extents to form its index segment.

Oracle databases use four types of segments, which are described in the following

sections:

■ Data Segments

■ Index Segments

■ Temporary Segments

■ Rollback Segments

Data Segments
A single data segment in an Oracle database holds all of the data for one of the

following:

■ a table that is not partitioned or clustered
4-16 Oracle8i Concepts

Segments
■ a partition of a partitioned table

■ a cluster of tables

Oracle creates this data segment when you create the table or cluster with the

CREATE command.

The storage parameters for a table or cluster determine how its data segment’s

extents are allocated. You can set these storage parameters directly with the

appropriate CREATE or ALTER command. These storage parameters affect the

efficiency of data retrieval and storage for the data segment associated with the

object.

Index Segments
Every nonpartitioned index in an Oracle database has a single index segment to

hold all of its data. For a partitioned index, every partition has a single index

segment to hold its data.

Oracle creates the index segment for an index or an index partition when you issue

the CREATE INDEX command. In this command, you can specify storage

parameters for the extents of the index segment and a tablespace in which to create

the index segment. (The segments of a table and an index associated with it do not

have to occupy the same tablespace.) Setting the storage parameters directly affects

the efficiency of data retrieval and storage.

Temporary Segments
When processing queries, Oracle often requires temporary workspace for

intermediate stages of SQL statement parsing and execution. Oracle automatically

allocates this disk space called a temporary segment. Typically, Oracle requires a

temporary segment as a work area for sorting. Oracle does not create a segment if

the sorting operation can be done in memory or if Oracle finds some other way to

perform the operation using indexes.

Note: Oracle creates segments for snapshots and snapshot logs in

the same manner as for tables and clusters.

Additional Information: See Oracle8i Replication for information on

snapshots and snapshot logs, and see Oracle8i SQL Reference for

information on the CREATE and ALTER commands.
Data Blocks, Extents, and Segments 4-17

Segments
Operations Requiring Temporary Segments
The following commands may require the use of a temporary segment:

■ CREATE INDEX

■ SELECT ... ORDER BY

■ SELECT DISTINCT ...

■ SELECT ... GROUP BY

■ SELECT ... UNION

■ SELECT ... INTERSECT

■ SELECT ... MINUS

Some unindexed joins and correlated subqueries may also require use of a

temporary segment. For example, if a query contains a DISTINCT clause, a GROUP

BY, and an ORDER BY, Oracle can require as many as two temporary segments. If

applications often issue commands in the list above, the database administrator

may want to improve performance by adjusting the initialization parameter

SORT_AREA_SIZE.

Segments in Temporary Tables and Their Indexes
Oracle can also allocate temporary segments for temporary tables and indexes

created on temporary tables. Temporary tables hold data that exists only for the

duration of a transaction or session (see "Temporary Tables" on page 10-10).

How Temporary Segments Are Allocated
Oracle allocates temporary segments differently for queries and temporary tables.

Allocation of Temporary Segments for Queries Oracle allocates temporary segments as

needed during a user session, in the temporary tablespace of the user issuing the

statement. You specify this tablespace with a CREATE USER or an ALTER USER

command using the TEMPORARY TABLESPACE option. If no temporary

tablespace has been defined for the user, the default temporary tablespace is the

SYSTEM tablespace. The default storage characteristics of the containing tablespace

determine those of the extents of the temporary segment.

Oracle drops temporary segments when the statement completes.

Additional Information: See the Oracle8i Reference for information

on SORT_AREA_SIZE and other initialization parameters.
4-18 Oracle8i Concepts

Segments
Because allocation and deallocation of temporary segments occur frequently, it is

reasonable to create a special tablespace for temporary segments. By doing so, you

can distribute I/O across disk devices, and you may avoid fragmentation of the

SYSTEM and other tablespaces that otherwise would hold temporary segments.

For more information about assigning a user’s temporary segment tablespace, see

Chapter 29, "Controlling Database Access".

Entries for changes to temporary segments used for sort operations are not stored in

the redo log, except for space management operations on the temporary segment.

Allocation of Temporary Segments for Temporary Tables and Indexes Oracle allocates

segments for a temporary table when the first INSERT into that table is issued. (This

can be an insert operation internally issued by CREATE TABLE AS SELECT.) The

first INSERT into a temporary table allocates the segments for the table and its

indexes, creates the root page for the indexes, and allocates any LOB segments.

Segments for a temporary table are allocated in the temporary tablespace of the user

who created the temporary table.

Oracle drops segments for a transaction-specific temporary table at the end of the

transaction and drops segments for a session-specific temporary table at the end of

the session. If other transactions or sessions share the use of that temporary table,

the segments containing their data remain in the table.

For more information, see "Temporary Tables" on page 10-10.

Rollback Segments
Each database contains one or more rollback segments. A rollback segment records

the old values of data that was changed by each transaction (whether or not

committed). Rollback segments are used to provide read consistency, to roll back

transactions, and to recover the database.

For specific information about how rollback segments function in each of these

situations, see the appropriate sections of this book:

Topic Section

Read Consistency "Multiversion Concurrency Control" on page 27-4

Transaction Rollback "Rolling Back Transactions" on page 17-6

Database Recovery "Rollback Segments and Rolling Back" on page 32-9
Data Blocks, Extents, and Segments 4-19

Segments
Contents of a Rollback Segment
Information in a rollback segment consists of several rollback entries. Among other

information, a rollback entry includes block information (the filenumber and block

ID corresponding to the data that was changed) and the data as it existed before an

operation in a transaction. Oracle links rollback entries for the same transaction, so

the entries can be found easily if necessary for transaction rollback.

Neither database users nor administrators can access or read rollback segments;

only Oracle can write to or read them. (They are owned by the user SYS, no matter

which user creates them.)

Logging Rollback Entries
Rollback entries change data blocks in the rollback segment, and Oracle records all

changes to data blocks, including rollback entries, in the redo log. This second

recording of the rollback information is very important for active transactions (not

yet committed or rolled back) at the time of a system crash. If a system crash occurs,

Oracle automatically restores the rollback segment information, including the

rollback entries for active transactions, as part of instance or media recovery. Once

the recovery is complete, Oracle performs the actual rollbacks of transactions that

had been neither committed nor rolled back at the time of the system crash.

When Rollback Information Is Required
For each rollback segment, Oracle maintains a transaction table—a list of all

transactions that use the associated rollback segment and the rollback entries for

each change performed by these transactions. Oracle uses the rollback entries in a

rollback segment to perform a transaction rollback and to create read-consistent

results for queries.

Rollback segments record the data prior to change on a per-transaction basis. For

every transaction, Oracle links each new change to the previous change. If you must

roll back the transaction, Oracle applies the changes in a chain to the data blocks in

an order that restores the data to its previous state.

Similarly, when Oracle needs to provide a read-consistent set of results for a query,

it can use information in rollback segments to create a set of data consistent with

respect to a single point in time.

Transactions and Rollback Segments
Each time a user’s transaction begins, the transaction is assigned to a rollback

segment in one of two ways:
4-20 Oracle8i Concepts

Segments
■ Oracle can assign a transaction automatically to the next available rollback

segment. The transaction assignment occurs when you issue the first DML or

DDL statement in the transaction. Oracle never assigns read-only transactions

(transactions that contain only queries) to a rollback segment, regardless of

whether the transaction begins with a SET TRANSACTION READ ONLY

statement.

■ An application can assign a transaction explicitly to a specific rollback segment.

At the start of a transaction, an application developer or user can specify a

particular rollback segment that Oracle should use when executing the

transaction. This allows the application developer or user to select a large or

small rollback segment, as appropriate for the transaction.

For the duration of a transaction, the associated user process writes rollback

information only to the assigned rollback segment.

When you commit a transaction, Oracle releases the rollback information but does

not immediately destroy it. The information remains in the rollback segment to

create read-consistent views of pertinent data for queries that started before the

transaction committed. To guarantee that rollback data is available for as long as

possible for such views, Oracle writes the extents of rollback segments sequentially.

When the last extent of the rollback segment becomes full, Oracle continues writing

rollback data by wrapping around to the first extent in the segment. A long-running

transaction (idle or active) may require a new extent to be allocated for the rollback

segment. See Figure 4–6 on page 4-23, Figure 4–7 on page 4-24, and Figure 4–8 on

page 4-25 for more information about how transactions use the extents of a rollback

segment.

Each rollback segment can handle a fixed number of transactions from one instance.

Unless you explicitly assign transactions to particular rollback segments, Oracle

distributes active transactions across available rollback segments so that all rollback

segments are assigned approximately the same number of active transactions.

Distribution does not depend on the size of the available rollback segments.

Therefore, in environments where all transactions generate the same amount of

rollback information, all rollback segments can be the same size.

Additional Information: The number of transactions that a

rollback segment can handle is a function of the data block size,

which depends on the operating system. See your Oracle

operating-system-specific documentation for more information.
Data Blocks, Extents, and Segments 4-21

Segments
How Extents Are Used and Allocated for Rollback Segments
When you create a rollback segment, you can specify storage parameters to control

the allocation of extents for that segment. Each rollback segment must have at least

two extents allocated.

One transaction writes sequentially to a single rollback segment. Each transaction

writes to only one extent of the rollback segment at any given time. Many active
transactions can write concurrently to a single rollback segment—even the same

extent of a rollback segment; however, each data block in a rollback segment’s

extent can contain information for only a single transaction.

When a transaction runs out of space in the current extent and needs to continue

writing, Oracle finds an available extent of the same rollback segment in one of

two ways:

■ It can reuse an extent already allocated to the rollback segment.

■ It can acquire (and allocate) a new extent for the rollback segment.

The first transaction that needs to acquire more rollback space checks the next

extent of the rollback segment. If the next extent of the rollback segment does not

contain information from an active transaction, Oracle makes it the current extent,

and all transactions that need more space from then on can write rollback

information to the new current extent. Figure 4–6 illustrates two transactions, T1

and T2, which begin writing in the third extent (E3) and continue writing to the

fourth extent (E4) of a rollback segment.
4-22 Oracle8i Concepts

Segments
Figure 4–6 Use of Allocated Extents in a Rollback Segment

As the transactions continue writing and fill the current extent, Oracle checks the

next extent already allocated for the rollback segment to determine if it is available.

In Figure 4–7, when E4 is completely full, T1 and T2 continue any further writing to

the next extent allocated for the rollback segment that is available; in this figure, E1

is the next extent. This figure shows the cyclical nature of extent use in rollback

segments.

E1

E2

E3

E4

E1

E2

E3

E4
update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .

Rollback Segment

Active extent without space

Non-active extent with space

T2

T1
Data Blocks, Extents, and Segments 4-23

Segments
Figure 4–7 Cyclical Use of the Allocated Extents in a Rollback Segment

To continue writing rollback information for a transaction, Oracle always tries to

reuse the next extent in the ring first. However, if the next extent contains data from

active transaction, then Oracle must allocate a new extent. Oracle can allocate new

extents for a rollback segment until the number of extents reaches the value set for

the rollback segment’s storage parameter MAXEXTENTS.

Figure 4–8 shows a new extent allocated for a rollback segment. The uncommitted

transactions are long running (either idle, active, or persistent in-doubt distributed

transactions). At this time, they are writing to the fourth extent, E4, in the rollback

segment. However, when E4 is completely full, the transactions cannot continue

E
1

E
2

E
3

E
4

E1

E2

E3

E4

E
1

E
2

E
3

E
4

E2

E3

E4

E1

Rollback Segment

Active extent without space

Non-active extent with space

T1

T2
update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .
4-24 Oracle8i Concepts

Segments
further writing to the next extent in sequence, E1, because it contains active rollback

entries. Therefore, Oracle allocates a new extent, E5, for this rollback segment, and

the transactions continue writing to this new extent.

Figure 4–8 Allocation of a New Extent for a Rollback Segment

How Extents Are Deallocated from a Rollback Segment
When you drop a rollback segment, Oracle returns all extents of the rollback

segment to its tablespace. The returned extents are then available to other segments

in the tablespace.

When you create or alter a rollback segment, you can use the storage parameter

OPTIMAL (which applies only to rollback segments) to specify the optimal size of

E2

E3

E4

E5

E1

New Extent

Active extent without space

Non-active extent with space

Rollback Segment

T1

T2
update

update

insert

insert

update

. . .

update

update

insert

insert

update

. . .
Data Blocks, Extents, and Segments 4-25

Segments
the segment in bytes. If a transaction needs to continue writing rollback information

from one extent to another extent in the rollback segment, Oracle compares the

current size of the rollback segment to the segment’s optimal size. If the rollback

segment is larger than its optimal size and the extents immediately following the

extent just filled are inactive, Oracle deallocates consecutive nonactive extents from

the rollback segment until the total size of the rollback segment is equal to or close

to but not less than its optimal size. Oracle always frees the oldest inactive extents,

as these are the least likely to be used by consistent reads.

A rollback segment’s OPTIMAL setting cannot be less than the combined space

allocated for the minimum number of extents for the segment:

(INITIAL + NEXT + NEXT + ... up to MINEXTENTS) bytes

The Rollback Segment SYSTEM
Oracle creates an initial rollback segment called SYSTEM whenever a database is

created. This segment is in the SYSTEM tablespace and uses that tablespace’s

default storage parameters. You cannot drop the SYSTEM rollback segment. An

instance always acquires the SYSTEM rollback segment in addition to any other

rollback segments it needs.

If there are multiple rollback segments, Oracle tries to use the SYSTEM rollback

segment only for special system transactions and distributes user transactions

among other rollback segments; if there are too many transactions for the

non-SYSTEM rollback segments, Oracle uses the SYSTEM segment as necessary. In

general, after database creation, you should create at least one additional rollback

segment in the SYSTEM tablespace.

Oracle Instances and Types of Rollback Segments
When an Oracle instance opens a database, it must acquire one or more rollback

segments so that the instance can handle rollback information produced by

subsequent transactions. An instance can acquire both private and public rollback

segments. A private rollback segment is acquired explicitly by an instance when the

instance opens a database. Public rollback segments form a pool of rollback segments

that any instance requiring a rollback segment can use.

Any number of private and public rollback segments can exist in a database. As an

instance opens a database, the instance attempts to acquire one or more rollback

segments according to the following rules:

1. The instance must acquire at least one rollback segment. If the instance is the

only instance accessing the database, it acquires the SYSTEM segment. If the

instance is one of several instances accessing the database in an Oracle Parallel
4-26 Oracle8i Concepts

Segments
Server, it acquires the SYSTEM rollback segment and at least one other rollback

segment. If it cannot, Oracle returns an error, and the instance cannot open the

database.

2. The instance always attempts to acquire at least the number of rollback

segments equal to the quotient of the values for the following initialization

parameters:

CEIL(TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT)

CEIL is a SQL function that returns the smallest integer greater than or equal to

the numeric input. In the example above, if TRANSACTIONS equal 155 and

TRANSACTIONS_PER_ROLLBACK_SEGMENT equal 10, then the instance

will try to acquire at least 16 rollback segments. (However, an instance can open

the database even if the instance cannot acquire the number of rollback

segments given by the division above.)

3. After acquiring the SYSTEM rollback segment, the instance next tries to

acquire all private rollback segments specified by the instance’s

ROLLBACK_SEGMENTS parameter. If one instance in an Oracle Parallel Server

opens a database and attempts to acquire a private rollback segment already

claimed by another instance, the second instance trying to acquire the rollback

segment receives an error during startup. An error is also returned if an

instance attempts to acquire a private rollback segment that does not exist.

4. If the instance has acquired enough private rollback segments in number 3, no

further action is required. However, if an instance requires more rollback

segments, the instance attempts to acquire public rollback segments.

Once an instance claims a public rollback segment, no other instance can use

that segment until either the rollback segment is taken offline or the instance

that claimed the rollback segment is shut down.

A database used by the Oracle Parallel Server optionally can have only public and

no private segments, as long as the number of segments in the database is high

enough to ensure that each instance that opens the database can acquire at least two

Note: The TRANSACTIONS_PER_ROLLBACK_SEGMENT

parameter does not limit the number of transactions that can use a

rollback segment. Rather, it determines the number of rollback

segments an instance attempts to acquire when opening a database.
Data Blocks, Extents, and Segments 4-27

Segments
rollback segments, one of which is the SYSTEM rollback segment. However, when

using the Oracle Parallel Server, you may want to use private rollback segments.

Rollback Segment States
A rollback segment is always in one of several states, depending on whether it is

offline, acquired by an instance, involved in an unresolved transaction, in need of

recovery, or dropped. The state of the rollback segment determines whether it can

be used in transactions, as well as which administrative procedures a DBA can

perform on it.

The rollback segment states are:

The data dictionary table DBA_ROLLBACK_SEGS lists the state of each rollback

segment, along with other rollback information. Figure 4–9 shows how a rollback

segment moves from one state to another.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information about rollback segment use in

an Oracle Parallel Server.

OFFLINE Has not been acquired (brought online) by any

instance.

ONLINE Has been acquired (brought online) by an instance;

may contain data from active transactions.

NEEDS RECOVERY Contains data from uncommitted transactions that

cannot be rolled back (because the data files

involved are inaccessible), or is corrupted.

PARTLY AVAILABLE Contains data from an in-doubt transaction (that is,

an unresolved distributed transaction).

INVALID Has been dropped (The space once allocated to this

rollback segment will later be used when a new

rollback segment is created.)
4-28 Oracle8i Concepts

Segments
Figure 4–9 Rollback Segment States and State Transitions

PARTLY AVAILABLE and NEEDS RECOVERY Rollback Segments The PARTLY AVAILABLE

and NEEDS RECOVERY states are very similar. A rollback segment in either state

usually contains data from an unresolved transaction.

PARTLY
AVAILABLE

OFFLINE INVALID

NEEDS
RECOVERYONLINE

Network failure
causes transaction
holding data to be
in-doubt

Media failure
makes data
inaccessible,
or segment
is corrupted

Data is
successfully
recovered

Rollback
segment
is brought
offline

Rollback segment is dropped

Distributed
transaction
is resolved

Rollback
segment is
brought
online

Rollback
segment
is dropped

In-doubt
transaction
is resolved

Media failure makes data held by
in-doubt transaction inaccessible
Data Blocks, Extents, and Segments 4-29

Segments
■ A PARTLY AVAILABLE rollback segment is being used by an in-doubt

distributed transaction that cannot be resolved because of a network failure. A

NEEDS RECOVERY rollback segment is being used by a transaction (local or

distributed) that cannot be resolved because of a local media failure, such as a

missing or corrupted datafile, or is itself corrupted.

■ Oracle or a DBA can bring a PARTLY AVAILABLE rollback segment online. In

contrast, you must take a NEEDS RECOVERY rollback segment OFFLINE

before it can be brought online. (If you recover the database and thereby resolve

the transaction, Oracle automatically changes the state of the NEEDS

RECOVERY rollback segment to OFFLINE.)

■ A DBA can drop a NEEDS RECOVERY rollback segment. (This allows the DBA

to drop corrupted segments.) A PARTLY AVAILABLE segment cannot be

dropped; you must first resolve the in-doubt transaction, either automatically

by the RECO process or manually.

If you bring a PARTLY AVAILABLE rollback segment online (by a command or

during instance startup), Oracle can use it for new transactions. However, the

in-doubt transaction still holds some of its transaction table entries, so the number

of new transactions that can use the rollback segment is limited. (See "When

Rollback Information Is Required" on page 4-20 for information on the transaction

table.)

Also, until you resolve the in-doubt transaction, the transaction continues to hold

the extents it acquired in the rollback segment, preventing other transactions from

using them. Thus, the rollback segment might need to acquire new extents for the

active transactions, and therefore grow. To prevent the rollback segment from

growing, a database administrator might prefer to create a new rollback segment for

transactions to use until the in-doubt transaction is resolved, rather than bring the

PARTLY AVAILABLE segment online.

Deferred Rollback Segments
When a tablespace goes offline so that transactions cannot be rolled back

immediately, Oracle writes to a deferred rollback segment. The deferred rollback

segment contains the rollback entries that could not be applied to the tablespace, so

that they can be applied when the tablespace comes back online. These segments

disappear as soon as the tablespace is brought back online and recovered. Oracle

automatically creates deferred rollback segments in the SYSTEM tablespace.

Additional Information: See Oracle8i Distributed Database Systems
for information about failures in distributed transactions.
4-30 Oracle8i Concepts

Part III

The Oracle Instance

Part III describes the architecture of the Oracle instance and explains the different

client/server configurations it can have in a network environment. Part III also

explains the Oracle startup and shutdown procedures.

Part III contains the following chapters:

■ Chapter 5, "Database and Instance Startup and Shutdown"

■ Chapter 6, "Distributed Processing"

■ Chapter 7, "Memory Architecture"

■ Chapter 8, "Process Architecture"

■ Chapter 9, "Database Resource Management"

Database and Instance Startup and Shu
5

Database and Instance Startup

and Shutdown

Greetings, Prophet; The Great Work begins: The Messenger has arrived.

Tony Kushner: Angels in America, Part I

This chapter explains the procedures involved in starting and stopping an Oracle

instance and database. It includes:

■ Overview of an Oracle Instance

– Connecting with Administrator Privileges

– Parameter Files

■ Instance and Database Startup

■ Database and Instance Shutdown
tdown 5-1

Overview of an Oracle Instance
Overview of an Oracle Instance
Every running Oracle database is associated with an Oracle instance. When a

database is started on a database server (regardless of the type of computer), Oracle

allocates a memory area called the System Global Area (SGA) and starts one or

more Oracle processes. This combination of the SGA and the Oracle processes is

called an Oracle instance. The memory and processes of an instance manage the

associated database’s data efficiently and serve the one or multiple users of the

database.

Figure 5–1 shows an Oracle instance. Also see Chapter 7, "Memory Architecture"

and Chapter 8, "Process Architecture" for details about the SGA and Oracle

processes.

Figure 5–1 An Oracle Instance

The Instance and the Database
After starting an instance, Oracle associates the instance with the specified database.

This is called mounting the database. The database is then ready to be opened, which

makes it accessible to authorized users.

Oracle Processes

System Global Area (SGA)

Redo Log
Buffer

Context Areas

Database Buffer
Cache
5-2 Oracle8i Concepts

Overview of an Oracle Instance
Multiple instances can execute concurrently on the same computer, each accessing

its own physical database. In clustered and massively parallel systems (MPP), the

Oracle Parallel Server allows multiple instances to mount a single database.

Only the database administrator can start up an instance and open the database. If a

database is open, the database administrator can shut down the database so that it

is closed. When a database is closed, users cannot access the information that it

contains.

Security for database startup and shutdown is controlled via connections to Oracle

with administrator privileges. Normal users do not have control over the current

status of an Oracle database.

Connecting with Administrator Privileges
Database startup and shutdown are powerful administrative options and are

restricted to users who connect to Oracle with administrator privileges. Depending

on the operating system, one of the following conditions establishes administrator

privileges for a user:

■ The user’s operating system privileges allow him or her to connect using

administrator privileges.

■ The user is granted the SYSDBA or SYSOPER privileges and the database uses

password files to authenticate database administrators.

■ The database has a password for the INTERNAL login, and the user knows the

password.

For additional security, users who connect with administrator privileges can only

connect to dedicated servers (not shared servers).

When you connect with administrator privileges, you are placed in the schema

owned by SYS. This gives you access to all the objects in the SYS schema.

For more information about password files and authentication schemes for database

administrators, see Chapter 29, "Controlling Database Access".

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for information about the Oracle Parallel Server.

Additional Information: For information on how administrator

privileges work on your operating system, see your operating

system-specific Oracle documentation.
Database and Instance Startup and Shutdown 5-3

Overview of an Oracle Instance
Parameter Files
To start an instance, Oracle must read a parameter file—a text file containing a list of

configuration parameters (initialization parameters) for that instance and database.

You set these parameters to particular values to initialize many of the memory and

process settings of an Oracle instance. Most initialization parameters belong to one

of the following groups:

■ parameters that name things (such as files)

■ parameters that set limits (such as maximums)

■ parameters that affect capacity (such as the size of the SGA), which are called

variable parameters

Among other things, the initialization parameters tell Oracle:

■ the name of the database for which to start up an instance

■ how much memory to use for memory structures in the SGA

■ what to do with filled online redo log files

■ the names and locations of the database’s control files

■ the names of private rollback segments in the database

An Example of a Parameter File
The following is an example of a typical parameter file:

db_block_buffers = 550
db_name = ORA8PROD
db_domain = US.ACME.COM
#
license_max_users = 64
#
control_files = filename1, filename2
#
log_archive_dest = c:\logarch
log_archive_format = arch%S.ora
log_archive_start = TRUE
log_buffer = 64512
log_checkpoint_interval = 256000
rollback_segments = rs_one, rs_two
5-4 Oracle8i Concepts

Instance and Database Startup
Changing Parameter Values
The database administrator can adjust variable parameters to improve the

performance of a database system. Exactly which parameters most affect a system is

a function of numerous database characteristics and variables.

Modified parameter values take effect only when the instance starts up and reads

the parameter file. Some parameters can also be changed dynamically by using the

ALTER SESSION or ALTER SYSTEM command while the instance is running.

NLS Parameters
Oracle treats string literals defined for National Language Support (NLS)

parameters in the file as if they are in the database character set.

Instance and Database Startup
The three steps to starting a Oracle database and making it available for

systemwide use are:

1. Start an instance.

2. Mount the database.

3. Open the database.

A database administrator can perform these steps using Oracle Enterprise Manager.

Starting an Instance
When Oracle starts an instance, first it reads a parameter file to determine the

values of initialization parameters and then it allocates an SGA—a shared area of

memory used for database information—and creates background processes. At this

point, no database is associated with these memory structures and processes.

Additional Information: For descriptions of all initialization

parameters, see Oracle8i Reference. For information about

parameters that affect the SGA, see "Size of the SGA" on page 7-12.

Additional Information: See the Oracle8i National Language Support
Guide for more information about National Language Support.

Additional Information: See the Oracle Enterprise Manager
Administrator’s Guide.
Database and Instance Startup and Shutdown 5-5

Instance and Database Startup
See Chapter 7, "Memory Architecture", for information about the SGA and

Chapter 8, "Process Architecture", for information about background processes.

Restricted Mode of Instance Startup
You can start an instance in restricted mode (or later alter an existing instance to be

in restricted mode). This restricts connections to only those users who have been

granted the RESTRICTED SESSION system privilege.

Forcing an Instance to Startup in Abnormal Situations
In unusual circumstances, a previous instance might not have been shut down

"cleanly", for example, one of the instance’s processes might not have terminated

properly. In such situations, the database might return an error during normal

instance startup. To resolve this problem, you must terminate all remnant Oracle

processes of the previous instance before starting the new instance.

Mounting a Database
The instance mounts a database to associate the database with that instance. After

mounting the database, the instance finds the database control files and opens them.

(Control files are specified in the CONTROL_FILES initialization parameter in the

parameter file used to start the instance.) Oracle then reads the control files to get

the names of the database’s datafiles and redo log files.

At this point, the database is still closed and is accessible only to the database

administrator. The database administrator can keep the database closed while

completing specific maintenance operations. However, the database is not yet

available for normal operations.

Mounting a Database with the Oracle Parallel Server

If Oracle allows multiple instances to mount the same database concurrently, the

database administrator can use the initialization parameter PARALLEL_SERVER to

make the database available to multiple instances. The default value of the

PARALLEL_SERVER parameter is FALSE. Versions of Oracle that do not support

the Parallel Server Option only allow PARALLEL_SERVER to be FALSE.

Attention: The features described in this section are available only

if you have purchased Oracle8i Enterprise Edition with the Parallel

Server Option. See Getting to Know Oracle8i for more information.
5-6 Oracle8i Concepts

Instance and Database Startup
If PARALLEL_SERVER is FALSE for the first instance that mounts a database, only

that instance can mount the database. If PARALLEL_SERVER is set to TRUE,

however, other instances can also mount the database with PARALLEL_SERVER set

to TRUE. The number of instances that can mount the database is subject to a

predetermined maximum, which you can specify when creating the database.

Mounting a Standby Database
A standby database maintains a duplicate copy of your primary database and

provides continued availability in the event of a disaster.

The standby database is constantly in recovery mode. To maintain your standby

database, you must mount it in standby mode using the ALTER DATABASE

command and apply the archived redo logs that your primary database generates.

See "Survivability" on page 32-26 for more information about standby databases

and disaster recovery.

You can open a standby database in read-only mode to use it as a temporary

reporting database. (See "Opening a Database in Read-Only Mode" on page 5-9.)

You cannot open a standby database in read-write mode.

Mounting a Clone Database
A clone database is a specialized copy of a database that can be used for tablespace

point-in-time recovery. When you perform tablespace point-in-time recovery, you

mount the clone database and recover the tablespaces to the desired time, then

export metadata from the clone to the primary database and copy the datafiles from

the recovered tablespaces.

Opening a Database
Opening a mounted database makes it available for normal database operations.

Any valid user can connect to an open database and access its information. Usually

a database administrator opens the database to make it available for general use.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information about the use of multiple

instances with a single database.

Additional Information: See the Oracle8i Backup and Recovery Guide
for detailed information about clone databases and tablespace

point-in-time recovery.
Database and Instance Startup and Shutdown 5-7

Instance and Database Startup
When you open the database, Oracle opens the online datafiles and online redo log

files. If a tablespace was offline when the database was previously shut down, the

tablespace and its corresponding datafiles will still be offline when you reopen the

database. See "Online and Offline Tablespaces" on page 3-9.

If any of the datafiles or redo log files are not present when you attempt to open the

database, Oracle returns an error. You must perform recovery on a backup of any

damaged or missing files before you can open the database.

Crash Recovery
If the database was last closed abnormally, either because the database

administrator aborted its instance or because of a power failure, Oracle

automatically performs crash recovery when the database is reopened. See

"Database Instance Failure" on page 32-4.

Rollback Segment Acquisition
When you open the database, the instance attempts to acquire one or more rollback

segments. See "The Rollback Segment SYSTEM" and "Oracle Instances and Types of

Rollback Segments" on page 4-26.

Resolution of In-Doubt Distributed Transaction
Occasionally a database may close abnormally with one or more distributed

transactions in doubt (neither committed nor rolled back). When you reopen the

database and crash recovery is complete, the RECO background process

automatically, immediately, and consistently resolves any in-doubt distributed

transactions. For more information, see Chapter 33, "Distributed Databases".

Additional Information: See Oracle8i Distributed Database Systems
for information on recovery from distributed transaction failures.
5-8 Oracle8i Concepts

Database and Instance Shutdown
Opening a Database in Read-Only Mode
You can open a database in read-only mode to prevent its data contents from being

modified by user transactions. Read-only mode restricts database access to

read-only transactions, which cannot write to the datafiles or to the redo log files.

Disk writes to other files, such as control files, operating system audit trails, trace

files, and alert files, can continue in read-only mode. Temporary tablespaces for sort

operations are not affected by the database being open in read-only mode.

However, you cannot take permanent tablespaces offline while a database is open in

read-only mode. Job queues are not available in read-only mode.

Read-only mode does not restrict database recovery or operations that change the

database’s state without generating redo data. For example, in read-only mode:

■ datafiles can be taken offline and online

■ recovery of offline datafiles and tablespaces can be performed

■ the control file remains available for updates about the state of the database

Read-only mode is useful for standby databases functioning as temporary reporting

databases.

In an Oracle Parallel Server, all instances must open the database either in

read-write mode or in read-only mode.

Database and Instance Shutdown
The three steps to shutting down a database and its associated instance are:

1. Close the database.

2. Dismount the database.

3. Shut down the instance.

A database administrator can perform these steps using Oracle Enterprise

Manager. Oracle automatically performs all three steps whenever an instance is

shut down.

Additional Information: See the Oracle8i Administrator’s Guide for

information about how to open a database in read-only mode.

Additional Information: See the Oracle Enterprise Manager
Administrator’s Guide.
Database and Instance Startup and Shutdown 5-9

Database and Instance Shutdown
Closing a Database
When you close a database, Oracle writes all database data and recovery data in the

SGA to the datafiles and redo log files, respectively. Next, Oracle closes all online

datafiles and online redo log files. (Any offline datafiles of any offline tablespaces

will have been closed already. If you subsequently reopen the database, any

tablespace that was offline and its datafiles remain offline and closed, respectively.)

At this point, the database is closed and inaccessible for normal operations. The

control files remain open after a database is closed but still mounted.

Closing the Database by Aborting the Instance
In rare emergency situations, you can abort the instance of an open database to

close and completely shut down the database instantaneously. This process is fast,

because the operation of writing all data in the buffers of the SGA to the datafiles

and redo log files is skipped. The subsequent reopening of the database requires

crash recovery, which Oracle performs automatically.

Dismounting a Database
Once the database is closed, Oracle dismounts the database to disassociate it from

the instance. At this point, the instance remains in the memory of your computer.

After a database is dismounted, Oracle closes the control files of the database.

Shutting Down an Instance
The final step in database shutdown is shutting down the instance. When you shut

down an instance, the SGA is removed from memory and the background processes

are terminated.

Abnormal Instance Shutdown
In unusual circumstances, shutdown of an instance might not occur cleanly; all

memory structures might not be removed from memory or one of the background

processes might not be terminated. When remnants of a previous instance exist,

subsequent instance startup most likely will fail. In such situations, the database

administrator can force the new instance to start up by first removing the remnants

Note: If a system crash or power failure occurs while the database

is open, the instance is, in effect, "aborted", and crash recovery is

performed when the database is reopened.
5-10 Oracle8i Concepts

Database and Instance Shutdown
of the previous instance and then starting a new instance, or by issuing a

SHUTDOWN ABORT command in Oracle Enterprise Manager.

Additional Information: For more detailed information on

instance and database startup and shutdown, see Oracle8i
Administrator’s Guide.
Database and Instance Startup and Shutdown 5-11

Database and Instance Shutdown
5-12 Oracle8i Concepts

Distributed Proce
6

Distributed Processing

We must try to trust one another. Stay and cooperate.

Jomo Kenyatta

This chapter defines distributed processing and describes how the Oracle server

and database applications work in a distributed processing environment. This

material applies to almost every type of Oracle database system environment.

This chapter includes:

■ Oracle Client/Server Architecture

■ Distributed Processing

■ Net8

■ Multi-Tier Architecture
ssing 6-1

Oracle Client/Server Architecture
Oracle Client/Server Architecture
In the Oracle database system environment, the database application and the

database are separated into two parts: a front-end or client portion, and a back-end

or server portion—hence the term client/server architecture. The client executes the

database application that accesses database information and interacts with a user

through the keyboard, screen, and pointing device such as a mouse. The server

executes the Oracle software and handles the functions required for concurrent,

shared data access to an Oracle database.

Although the client application and Oracle can be executed on the same computer,

greater efficiency can often be achieved when the client portion(s) and server

portion are executed by different computers connected via a network. The following

sections discuss possible variations in the Oracle client/server architecture.

Distributed Processing
Distributed processing is the use of more than one processor to perform the

processing for an individual task. Examples of distributed processing in Oracle

database systems appear in Figure 6–1.

■ In Part A of the figure, the client and server are located on different computers;

these computers are connected via a network. The server and clients of an

Oracle database system communicate via Net8, Oracle’s network interface. See

"Net8" on page 6-5 for more information.

■ In Part B of the figure, a single computer has more than one processor, and

different processors separate the execution of the client application from Oracle.

Note: This chapter applies to environments with one database on

one server. In a distributed database, one server (Oracle) may need to

access a database on another server. See Chapter 33, "Distributed

Databases", for more information about clients and servers in

distributed databases.
6-2 Oracle8i Concepts

Distributed Processing
Figure 6–1 The Client/Server Architecture and Distributed Processing

NetworkA

B

client
client

Database Server

Database Server

Client Client
Distributed Processing 6-3

Distributed Processing
Oracle client/server architecture in a distributed processing environment provides

the following benefits:

■ Client applications are not responsible for performing any data processing.

Rather, they request input from users, request data from the server, and then

analyze and present this data using the display capabilities of the client

workstation or the terminal (for example, using graphics or spreadsheets).

■ Client applications are not dependent on the physical location of the data. If the

data is moved or distributed to other database servers, the application

continues to function with little or no modification.

■ Oracle exploits the multitasking and shared-memory facilities of its underlying

operating system. As a result, it delivers the highest possible degree of

concurrency, data integrity, and performance to its client applications.

■ Client workstations or terminals can be optimized for the presentation of data

(for example, by providing graphics and mouse support) and the server can be

optimized for the processing and storage of data (for example, by having large

amounts of memory and disk space).

■ In networked environments, you can use inexpensive client workstations to

access the remote data of the server effectively.

■ If necessary, Oracle can be scaled as your system grows. You can add multiple

servers to distribute the database processing load throughout the network

(horizontally scaled), or you can move Oracle to a minicomputer or mainframe, to

take advantage of a larger system’s performance (vertically scaled). In either case,

all data and applications are maintained with little or no modification, since

Oracle is portable between systems.

■ In networked environments, shared data is stored on the servers, rather than on

all computers in the system. This makes it easier and more efficient to manage

concurrent access.

■ In networked environments, client applications submit database requests to the

server using SQL statements. Once received, the SQL statement is processed by

the server, and the results are returned to the client application. Network traffic

is kept to a minimum because only the requests and the results are shipped

over the network.
6-4 Oracle8i Concepts

Net8
Net8
Net8 is the Oracle network interface that allows Oracle tools running on network

workstations and servers to access, modify, share, and store data on other servers.

Net8 is considered part of the program interface in network communications. See

Chapter 8, "Process Architecture", for more information about the program

interface.

Net8 uses the communication protocols or application programmatic interfaces

(APIs) supported by a wide range of networks to provide a distributed database

and distributed processing for Oracle.

■ A communication protocol is a set of standards, implemented in software, that

govern the transmission of data across a network.

■ An API is a set of subroutines that provide, in the case of networks, a means

to establish remote process-to-process communication via a communication

protocol.

Communication protocols define the way that data is transmitted and received on a

network. In a networked environment, an Oracle server communicates with client

workstations and other Oracle servers using Net8. Net8 supports communications

on all major network protocols, ranging from those supported by PC LANs to those

used by the largest mainframe computer systems.

Without the use of Net8, an application developer must manually code all

communications in an application that operates in a networked distributed

processing environment. If the network hardware, topology, or protocol changes,

the application has to be modified accordingly.

However, by using Net8, the application developer does not have to be concerned

with supporting network communications in a database application. If the

underlying protocol changes, the database administrator makes some minor

changes, while the application requires no modifications and will continue to

function.

How Net8 Works
Net8 drivers provide an interface between Oracle processes running on the

database server and the user processes of Oracle tools running on other computers

of the network.

The Net8 drivers take SQL statements from the interface of the Oracle tools and

package them for transmission to Oracle via one of the supported

industry-standard higher level protocols or programmatic interfaces. The drivers
Distributed Processing 6-5

Net8
also take replies from Oracle and package them for transmission to the tools via the

same higher level communications mechanism. This is all done independently of

the network operating system.

The Network Listener
When an instance starts, a network listener process establishes a communication

pathway to Oracle. When a user process makes a connection request, the listener

determines whether it should use a shared server process or a dedicated server

process and establishes an appropriate connection. See "Multi-Threaded Server

Configuration" on page 8-16 and "Dedicated Server Configuration" on page 8-22 for

more information about server processes.

The listener process also establishes a communication pathway between databases.

When multiple databases or instances run on one machine, as in an Oracle Parallel

Server, service names allow instances to register automatically with other listeners on

the same machine. A service name can identify multiple instances, and an instance

can belong to multiple services. Clients connecting to a service do not have to

specify which instance they require.

Automatic instance registration reduces the administrative overhead for multiple

databases or instances. The system identifiers (SIDs) of other instances on the

network must be registered in a LISTENER.ORA file.

The initialization parameter SERVICE_NAMES identifies which services an instance

belongs to. On startup, each instance registers with the listeners of other instances

belonging to the same services. During database operations, the instances of each

service pass information about CPU usage and current connection counts to all of

the listeners in the same services. This enables dynamic load balancing and

connection failover.

Additional Information: Depending on the operating system that

executes Oracle, the Net8 software of the database server may

include the driver software and start an additional Oracle

background process; see your Oracle operating system-specific

documentation for details. Also refer to the Net8 Administrator’s
Guide for additional information on Net8.

Additional Information: See the Net8 Administrator’s Guide for

more information about the network listener, and see Oracle8i
Parallel Server Concepts and Administration for information about

instance registration and client/service connections in an Oracle

Parallel Server.
6-6 Oracle8i Concepts

Multi-Tier Architecture
Multi-Tier Architecture
In a multi-tier architecture environment, an application server provides data for

clients and serves as an interface between clients and database servers.

This architecture allows you to use an application server to:

■ validate the credentials of a client, such as a web browser

■ connect to a database server

■ perform the requested operation

An example of a multi-tier architecture appears in Figure 6–2.

Figure 6–2 A Multi-Tier Architecture Environment Example

Database Server

Database Server

Thin Client

Thin Client

Thin Client

Application
Server 1

Database Server

Database Server

Application
Server n

Database Server

Database Server

Application
Server 2

Request

Data

Query
Distributed Processing 6-7

Multi-Tier Architecture
Clients
A client initiates a request for an operation to be performed on the database server.

The client can be a web browser or other end-user process. In a multi-tier

architecture, the client connects to the database server through one or more

application servers.

Application Servers
An application server provides access to the data for the client. It serves as an

interface between the client and one or more database servers, which provides an

additional level of security. It can also perform some of the query processing for the

client, thus removing some of the load from the database server.

The application server assumes the identity of the client when it is performing

operations on the database server for that client. The application server’s privileges

are restricted to prevent it from performing unneeded and unwanted operations

during a client operation.

Database Servers
A database server provides the data requested by an application server on behalf of

a client. The database server does all of the remaining query processing.

The Oracle database server can audit operations performed by the application

server on behalf of individual clients as well as operations performed by the

application server on its own behalf. For example, a client operation might be a

request for information to be displayed on the client whereas an application server

operation might be a request for a connection to the database server.

See "Multi-Tier Authentication and Authorization" on page 29-9 for more

information about security issues in a multi-tier environment.
6-8 Oracle8i Concepts

Memory Archite
7

Memory Architecture

Yea, from the table of my memory I’ll wipe away all trivial fond records.

Shakespeare: Hamlet

This chapter discusses the memory architecture of an Oracle instance. It includes:

■ Introduction to Oracle Memory Structures

■ System Global Area (SGA)

■ Program Global Areas (PGA)

■ Sort Areas

■ Virtual Memory

■ Software Code Areas
cture 7-1

Introduction to Oracle Memory Structures
Introduction to Oracle Memory Structures
Oracle uses memory to store various information:

■ program code being executed

■ information about a connected session, even if it is not currently active

■ information needed during program execution (for example, the current state of

a query from which rows are being fetched)

■ information that is shared and communicated among Oracle processes (for

example, locking information)

■ cached data that is also permanently stored on peripheral memory (for

example, data blocks and redo log entries)

The basic memory structures associated with Oracle include:

■ Software Code Areas

■ System Global Area (SGA):

– the database buffer cache

– the redo log buffer

– the shared pool

■ Program Global Areas (PGA):

– the stack areas

– the data areas

System Global Area (SGA)
A system global area (SGA) is a group of shared memory structures that contain

data and control information for one Oracle database instance. If multiple users are

concurrently connected to the same instance, the data in the instance’s SGA is

"shared" among the users. Consequently, the SGA is sometimes referred to as the

"shared global area".

As described in "Overview of an Oracle Instance" on page 5-2, an SGA and Oracle

processes constitute an Oracle instance. Oracle automatically allocates memory for

an SGA when you start an instance and the operating system reclaims the memory

when you shut down the instance. Each instance has its own SGA.
7-2 Oracle8i Concepts

System Global Area (SGA)
The SGA is read-write; all users connected to a multiple-process database instance

may read information contained within the instance’s SGA, and several processes

write to the SGA during execution of Oracle.

The SGA contains the following data structures:

■ the database buffer cache

■ the redo log buffer

■ the shared pool

■ the large pool (optional)

■ the data dictionary cache

■ other miscellaneous information

Part of the SGA contains general information about the state of the database and the

instance, which the background processes need to access; this is called the fixed
SGA. No user data is stored here. The SGA also includes information

communicated between processes, such as locking information.

If the system uses multi-threaded server architecture the request and response

queues, and some contents of the program global areas, are in the SGA. (See

"Program Global Areas (PGA)" on page 7-14 and "Dispatcher Request and Response

Queues" on page 8-17.)

The Database Buffer Cache
The database buffer cache is the portion of the SGA that holds copies of data blocks

read from datafiles. All user processes concurrently connected to the instance share

access to the database buffer cache.

The database buffer cache and the shared SQL cache are logically segmented into

multiple sets. This organization into multiple sets reduces contention on

multiprocessor systems.

Organization of the Database Buffer Cache
The buffers in the cache are organized in two lists: the dirty list and the least

recently used (LRU) list. The dirty list holds dirty buffers, which contain data that has

been modified but has not yet been written to disk. The least recently used (LRU) list
holds free buffers, pinned buffers, and dirty buffers that have not yet been moved to

the dirty list. Free buffers have not been modified and are available for use. Pinned
buffers are currently being accessed.
Memory Architecture 7-3

System Global Area (SGA)
When an Oracle process accesses a buffer, the process moves the buffer to the most

recently used (MRU) end of the LRU list. As more buffers are continually moved to

the MRU end of the LRU list, dirty buffers "age" towards the LRU end of the LRU

list.

The first time an Oracle user process requires a particular piece of data, it searches

for the data in the database buffer cache. If the process finds the data already in the

cache (a cache hit), it can read the data directly from memory. If the process cannot

find the data in the cache (a cache miss), it must copy the data block from a datafile

on disk into a buffer in the cache before accessing the data. Accessing data through

a cache hit is faster than data access through a cache miss.

Before reading a data block into the cache, the process must first find a free buffer.

The process searches the LRU list, starting at the least recently used end of the list.

The process searches either until it finds a free buffer or until it has searched the

threshold limit of buffers.

If the user process finds a dirty buffer as it searches the LRU list, it moves that

buffer to the dirty list and continues to search. When the process finds a free buffer,

it reads the data block from disk into the buffer and moves the buffer to the MRU

end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without finding a

free buffer, the process stops searching the LRU list and signals the DBW0

background process to write some of the dirty buffers to disk. For more information

about the DBW0 process (or multiple DBWn processes), see "Database Writer

(DBWn)" on page 8-8.

The LRU Algorithm and Full Table Scans
When the user process is performing a full table scan, it reads the blocks of the table

into buffers and puts them on the LRU end (instead of the MRU end) of the LRU

list. This is because a fully scanned table usually is needed only briefly, so the blocks

should be moved out quickly to leave more frequently used blocks in the cache.

You can control this default behavior of blocks involved in table scans on a

table-by-table basis. To specify that blocks of the table are to be placed at the MRU

end of the list during a full table scan, use the CACHE clause when creating or

altering a table or cluster. You may want to specify this behavior for small lookup

tables or large static historical tables to avoid I/O on subsequent accesses of the

table.

Additional Information: See Oracle8i SQL Reference for information

on the CACHE clause.
7-4 Oracle8i Concepts

System Global Area (SGA)
Size of the Database Buffer Cache
The initialization parameter DB_BLOCK_BUFFERS specifies the number of buffers

in the database buffer cache. Each buffer in the cache is the size of one Oracle data

block (which is specified by the initialization parameter DB_BLOCK_SIZE);

therefore, each database buffer in the cache can hold a single data block read from a

datafile.

The cache has a limited size, so not all the data on disk can fit in the cache. When

the cache is full, subsequent cache misses cause Oracle to write dirty data already in

the cache to disk to make room for the new data. (If a buffer is not dirty, it does not

need to be written to disk before a new block can be read into the buffer.)

Subsequent access to any data that was written to disk results in additional cache

misses.

The size of the cache affects the likelihood that a request for data will result in a

cache hit. If the cache is large, it is more likely to contain the data that is requested.

Increasing the size of a cache increases the percentage of data requests that result in

cache hits.

Multiple Buffer Pools
You can configure the database buffer cache with separate buffer pools that either

keep data in the buffer cache or make the buffers available for new data

immediately after using the data blocks. Particular schema objects (tables, clusters,

indexes, and partitions) can then be assigned to the appropriate buffer pool to

control the way their data blocks age out of the cache.

■ The KEEP buffer pool retains the schema object’s data blocks in memory.

■ The RECYCLE buffer pool eliminates data blocks from memory as soon as they

are no longer needed.

■ The DEFAULT buffer pool contains data blocks from schema objects that are not

assigned to any buffer pool, as well as schema objects that are explicitly

assigned to the DEFAULT pool.

The initialization parameters that configure the KEEP and RECYCLE buffer pools

are BUFFER_POOL_KEEP and BUFFER_POOL_RECYCLE.

Additional Information: See Oracle8i Tuning for more information

on the buffer cache.
Memory Architecture 7-5

System Global Area (SGA)
The Redo Log Buffer
The redo log buffer is a circular buffer in the SGA that holds information about

changes made to the database. This information is stored in redo entries. Redo entries

contain the information necessary to reconstruct, or redo, changes made to the

database by INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP operations.

Redo entries are used for database recovery, if necessary.

Redo entries are copied by Oracle server processes from the user’s memory space to

the redo log buffer in the SGA. The redo entries take up continuous, sequential

space in the buffer. The background process LGWR writes the redo log buffer to the

active online redo log file (or group of files) on disk.

The initialization parameter LOG_BUFFER determines the size (in bytes) of the

redo log buffer. In general, larger values reduce log file I/O, particularly if

transactions are long or numerous. The default setting is four times the maximum

data block size for the host operating system.

The Shared Pool
The shared pool portion of the SGA contains three major areas: library cache,

dictionary cache, and control structures. Figure 7–1 shows the contents of the shared

pool.

The total size of the shared pool is determined by the initialization parameter

SHARED_POOL_SIZE. The default value of this parameter is 3,500,000 bytes.

Increasing the value of this parameter increases the amount of memory reserved for

the shared pool, and therefore increases the space reserved for shared SQL areas.

Additional Information: See Oracle8i Tuning for more information

on buffer pools, and see Oracle8i SQL Reference for the syntax of the

BUFFER_POOL option of the STORAGE clause.

Additional Information: See "Log Writer Process (LGWR)" on

page 8-9 for more information about how the redo log buffer is

written to disk, and see Oracle8i Backup and Recovery Guide for

information about online redo log files and groups.
7-6 Oracle8i Concepts

System Global Area (SGA)
Figure 7–1 Contents of the Shared Pool

Library Cache
The library cache includes the shared SQL areas, private SQL areas, PL/SQL

procedures and packages, and control structures such as locks and library cache

handles.

Shared SQL areas must be available to multiple users, so the library cache is

contained in the shared pool within the SGA. The size of the library cache (along

with the size of the data dictionary cache) is limited by the size of the shared pool.

Control Structures
for example:

Locks

Shared SQL Area

PL/SQL Procedures
and Packages

Control Structures
for example:

Character Set
Conversion Memory

Network Security
Attributes

and so on . . .

Dictionary Cache

Library
Cache handles
and so on . . .

Shared
Pool

Library
Cache

Reusable Runtime
Memory

Memory Architecture 7-7

System Global Area (SGA)
Shared SQL Areas and Private SQL Areas
Oracle represents each SQL statement it executes with a shared SQL area and a

private SQL area. Oracle recognizes when two users are executing the same SQL

statement and reuses the shared SQL area for those users. However, each user must

have a separate copy of the statement’s private SQL area.

Shared SQL Areas A shared SQL area contains the parse tree and execution plan for a

single SQL statement, or for identical SQL statements. Oracle saves memory by

using one shared SQL area for multiple identical DML statements, particularly

when many users execute the same application. A shared SQL area is always in the

shared pool.

Oracle allocates memory from the shared pool when a SQL statement is parsed; the

size of this memory depends on the complexity of the statement. If a SQL statement

requires a new shared SQL area and the entire shared pool has already been

allocated, Oracle can deallocate items from the pool using a modified least recently

used algorithm until there is enough free space for the new statement’s shared SQL

area. If Oracle deallocates a shared SQL area, the associated SQL statement must be

reparsed and reassigned to another shared SQL area when it is next executed.

Private SQL Areas A private SQL area contains data such as bind information and

runtime buffers. Each session that issues a SQL statement has a private SQL area.

Each user that submits an identical SQL statement has his or her own private SQL

area that uses a single shared SQL area; many private SQL areas can be associated

with the same shared SQL area. (See "Connections and Sessions" on page 8-4 for

more information about sessions.)

A private SQL area has a persistent area and a runtime area:

■ The persistent area contains bind information that persists across executions,

code for datatype conversion (in case the defined datatype is not the same as

the datatype of the selected column), and other state information (like recursive

or remote cursor numbers or the state of a parallel query). The size of the

persistent area depends on the number of binds and columns specified in the

statement. For example, the persistent area is larger if many columns are

specified in a query.

■ The runtime area contains information used while the SQL statement is being

executed. The size of the runtime area depends on the type and complexity of

Additional Information: See Oracle8i Tuning for information about

the criteria that determine identical SQL statements.
7-8 Oracle8i Concepts

System Global Area (SGA)
the SQL statement being executed and on the sizes of the rows that are

processed by the statement. In general, the runtime area is somewhat smaller

for INSERT, UPDATE, and DELETE statements than it is for SELECT

statements, particularly when the SELECT statement requires a sort (see "Sort

Areas" on page 7-16).

Oracle creates the runtime area as the first step of an execute request. For INSERT,

UPDATE, and DELETE statements, Oracle frees the runtime area after the statement

has been executed. For queries, Oracle frees the runtime area only after all rows are

fetched or the query is canceled.

The location of a private SQL area depends on the type of connection established

for a session. If a session is connected via a dedicated server, private SQL areas are

located in the user’s PGA. However, if a session is connected via the multi-threaded

server, the persistent areas and, for SELECT statements, the runtime areas, are kept

in the SGA.

Cursors and SQL Areas The application developer of an Oracle Precompiler program

or OCI program can explicitly open cursors, or handles to specific private SQL areas,

and use them as a named resource throughout the execution of the program.

Recursive cursors that Oracle issues implicitly for some SQL statements also use

shared SQL areas. For more information, see "Cursors" on page 16-6.

The management of private SQL areas is the responsibility of the user process. The

allocation and deallocation of private SQL areas depends largely on which

application tool you are using, although the number of private SQL areas that a user

process can allocate is always limited by the initialization parameter

OPEN_CURSORS. The default value of this parameter is 50.

A private SQL area continues to exist until the corresponding cursor is closed or the

statement handle is freed. Although Oracle frees the runtime area after the

statement completes, the persistent area remains waiting. Application developers

should close all open cursors that will not be used again to free the persistent area

and to minimize the amount of memory required for users of the application.

For queries that process large amounts of data requiring sorts, application

developers should cancel the query if a partial result of a fetch is satisfactory. For

example, in an Oracle Office application, a user can select from a list of over 60

templates for creating a mail message. When Oracle Office displays the first ten

template names, if the user chooses one of these templates the application should

cancel the processing of the rest of the query, rather than continue trying to display

more template names.
Memory Architecture 7-9

System Global Area (SGA)
PL/SQL Program Units and the Shared Pool
Oracle processes PL/SQL program units (procedures, functions, packages,

anonymous blocks, and database triggers) much the same way it processes

individual SQL statements. Oracle allocates a shared area to hold the parsed,

compiled form of a program unit. Oracle allocates a private area to hold values

specific to the session that executes the program unit, including local, global, and

package variables (also known as package instantiation) and buffers for executing

SQL. If more than one user executes the same program unit, then a single, shared

area is used by all users, while each user maintains a separate copy of his or her

private SQL area, holding values specific to his or her session.

Individual SQL statements contained within a PL/SQL program unit are processed

as described in the previous sections. Despite their origins within a PL/SQL

program unit, these SQL statements use a shared area to hold their parsed

representations and a private area for each session that executes the statement.

Dictionary Cache
The data dictionary is a collection of database tables and views containing reference

information about the database, its structures, and its users. Oracle accesses the data

dictionary frequently during the parsing of SQL statements. This access is essential

to the continuing operation of Oracle. See Chapter 2, "The Data Dictionary" for

more information.

The data dictionary is accessed so often by Oracle that two special locations in

memory are designated to hold dictionary data. One area is called the data dictionary
cache, also known as the row cache because it holds data as rows instead of buffers

(which hold entire blocks of data). The other area in memory to hold dictionary data

is the library cache (see "Library Cache" on page 7-7). All Oracle user processes

share these two caches for access to data dictionary information.

Allocation and Reuse of Memory in the Shared Pool
In general, any item (shared SQL area or dictionary row) in the shared pool remains

until it is flushed according to a modified LRU algorithm. The memory for items

that are not being used regularly is freed if space is required for new items that

must be allocated some space in the shared pool. A modified LRU algorithm allows

shared pool items that are used by many sessions to remain in memory as long as

they are useful, even if the process that originally created the item terminates. As a

result, the overhead and processing of SQL statements associated with a multiuser

Oracle system is minimized.
7-10 Oracle8i Concepts

System Global Area (SGA)
When a SQL statement is submitted to Oracle for execution, Oracle automatically

performs the following memory allocation steps:

1. Oracle checks the shared pool to see if a shared SQL area already exists for an

identical statement. If so, that shared SQL area is used for the execution of the

subsequent new instances of the statement. Alternatively, if there is no shared

SQL area for a statement, Oracle allocates a new shared SQL area in the shared

pool. In either case, the user’s private SQL area is associated with the shared

SQL area that contains the statement.

2. Oracle allocates a private SQL area on behalf of the session. The exact location

of the private SQL area depends on the connection established for a session (see

"Shared SQL Areas and Private SQL Areas" on page 7-8).

Oracle also flushes a shared SQL area from the shared pool in these circumstances:

■ When the ANALYZE command is used to update or delete the statistics of a

table, cluster, or index, all shared SQL areas that contain statements referencing

the analyzed schema object are flushed from the shared pool. The next time a

flushed statement is executed, the statement is parsed in a new shared SQL area

to reflect the new statistics for the schema object.

■ If a schema object is referenced in a SQL statement and that object is later

modified in any way, the shared SQL area is invalidated (marked invalid) and

the statement must be reparsed the next time it is executed. See Chapter 21,

"Oracle Dependency Management", for more information about the

invalidation of SQL statements and dependency issues.

■ If you change a database’s global database name, all information is flushed from

the shared pool.

■ The administrator can manually flush all information in the shared pool to

assess the performance (with respect to the shared pool, not the data buffer

cache) that can be expected after instance startup without shutting down the

current instance.

Note: A shared SQL area can be flushed from the shared pool,

even if the shared SQL area corresponds to an open cursor that has

not been used for some time. If the open cursor is subsequently

used to execute its statement, Oracle reparses the statement and a

new shared SQL area is allocated in the shared pool.
Memory Architecture 7-11

System Global Area (SGA)
The Large Pool
The database administrator can configure an optional memory area called the large
pool to provide large memory allocations for:

■ session memory for the multi-threaded server and the Oracle XA interface

■ I/O server processes

■ Oracle backup and restore operations

By allocating session memory from the large pool for the multi-threaded server (see

"Multi-Threaded Server Configuration" on page 8-16) or for Oracle XA, Oracle can

use the shared pool primarily for caching shared SQL and avoid the performance

overhead caused by shrinking the shared SQL cache.

The memory for Oracle backup and restore operations and for I/O server processes

is allocated in buffers of a few hundred kilobytes. The large pool is better able to

satisfy such requests than the shared pool.

The large pool does not have an LRU list. It is different from reserved space in the

shared pool, which uses the same LRU list as other memory allocated from the

shared pool.

Size of the SGA
The size of the SGA is determined at instance start up. For optimal performance in

most systems, the entire SGA should fit in real memory. If it does not fit in real

memory and virtual memory (see "Virtual Memory" on page 7-17) is used to store

parts of it, overall database system performance can decrease dramatically because

portions of the SGA are paged (written to and read from disk) by the operating

system. The amount of memory dedicated to all shared areas in the SGA also has

performance impact; see Oracle8i Tuning for more information.

The size of the SGA is determined by several initialization parameters. The

parameters that most affect SGA size are:

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for information about Oracle XA.

Additional Information: See Oracle8i Tuning for more information

about the large pool, reserve space in the shared pool, and I/O

server processes.
7-12 Oracle8i Concepts

System Global Area (SGA)
The memory allocated for an instance’s SGA is displayed on instance startup when

using Oracle Enterprise Manager (or SQL*Plus). You can also display the current

instance’s SGA size by using the SQL*Plus command SHOW with the SGA option.

Controlling the SGA’s Use of Memory
You can use several initialization parameters to control how the SGA uses memory.

Physical Memory
The LOCK_SGA parameter locks the SGA into physical memory.

SGA Starting Address
The SHARED_MEMORY_ADDRESS and HI_SHARED_MEMORY_ADDRESS

parameters specify the SGA’s starting address at runtime. These parameters are

used only on platforms that do not specify the SGA’s starting address at link time.

For 64-bit platforms, HI_SHARED_MEMORY_ADDRESS specifies the high order

32 bits of the 64-bit address.

DB_BLOCK_SIZE The size, in bytes, of a single data block and database

buffer.

DB_BLOCK_BUFFERS The number of database buffers, each the size of

DB_BLOCK_SIZE, allocated for the SGA.

The total amount of space allocated for the database

buffer cache in the SGA is DB_BLOCK_SIZE times

DB_BLOCK_BUFFERS.

LOG_BUFFER The number of bytes allocated for the redo log buffer.

SHARED_POOL_SIZE The size in bytes of the area devoted to shared SQL and

PL/SQL statements.

Additional Information: See the Oracle Enterprise Manager
Administrator’s Guide for more information about showing the SGA

size with Oracle Enterprise Manager (or the SQL*Plus User’s Guide
and Reference for SQL*Plus).

See Oracle8i Tuning for discussions of the above initialization

parameters and how they affect the SGA. Also see your Oracle

installation or user’s guide for information specific to your

operating system.
Memory Architecture 7-13

Program Global Areas (PGA)
Extended Buffer Cache Mechanism
The USE_INDIRECT_DATA_BUFFERS parameter enables the extended buffer

cache mechanism for 32-bit platforms that can support more than 4 GB of physical

memory.

Program Global Areas (PGA)
A program global area (PGA) is a memory region containing data and control

information for a single process (server or background). Consequently, a PGA is

sometimes called a "process global area."

A PGA is nonshared memory area to which a process can write. One PGA is

allocated for each server process; the PGA is exclusive to that server process and is

read and written only by Oracle code acting on behalf of that process.

A PGA is allocated by Oracle when a user connects to an Oracle database and a

session is created, though this varies by operating system and configuration. (See

"Connections and Sessions" on page 8-4 for information about sessions.)

Contents of a PGA
The contents of a PGA vary, depending on whether the associated instance is

running the multi-threaded server. (See "Multi-Threaded Server Configuration" on

page 8-16 for more information on the multi-threaded server.)

Stack Space
A PGA always contains a stack space, which is memory allocated to hold a session’s

variables, arrays, and other information.

Session Information
If the instance is running without the multi-threaded server, the PGA also contains

information about the user’s session, such as private SQL areas. If the instance is

running in multi-threaded server configuration, this session information is not in

the PGA, but is instead allocated in the SGA.

Figure 7–2 shows where the session information is stored in different

configurations.

Additional Information: See Oracle8i Reference for details about

these parameters. Also see your Oracle installation or user’s guide

for information specific to your operating system.
7-14 Oracle8i Concepts

Program Global Areas (PGA)
Figure 7–2 Location of Session Information with and without Multi-Threaded Server

Size of a PGA
A PGA’s initial size is fixed and operating-system specific. When the client and

server are on different machines, the PGA is allocated on the database server at

connect time; if sufficient memory is not available to connect, an Oracle error occurs

with an error number in the range for that operating system. Once connected, a user

can never run out of PGA space; there is either enough or not enough memory to

connect in the first place.

The initialization parameters OPEN_LINKS and DB_FILES affect the sizes of PGAs.

The size of the stack space in each PGA created on behalf of Oracle background

processes (such as DBW0 and LGWR) is affected by some additional parameters.

Stack
Space

PGA

Stack
Space

Shared SQL Areas

SGA

Session
Information

Shared SQL Areas

SGA

PGA

Oracle Dedicated
Server

Oracle Multithreaded
Server

Session
Information
Memory Architecture 7-15

Sort Areas
Sort Areas
Sorting requires space in memory. Portions of memory in which Oracle sorts data

are called sort areas. Sort areas use memory from the PGA of the Oracle server

process that performs the sort on behalf of the user process. However, a part of the

sort area (up to SORT_AREA_RETAINED_SIZE) exists in the runtime area of the

process's private SQL area. As mentioned in "Private SQL Areas" on page 7-8, for

SELECT statements this memory in the private SQL area comes from different

places depending on the connection configuration:

■ from the PGA for connections through a dedicated server

■ from the SGA for connections through the multi-threaded server.

For a discussion of these configurations, see "Multi-Threaded Server Configuration"

on page 8-16 and "Dedicated Server Configuration" on page 8-22.

A sort area can grow to accommodate the amount of data to be sorted but is limited

by the value of the initialization parameter SORT_AREA_SIZE. The default value,

expressed in bytes, is operating system specific.

During a sort, Oracle may perform some tasks that do not involve referencing data

in the sort area. In such cases, Oracle may decrease the size of the sort area by

writing some of the data to a temporary segment on disk and then deallocating the

portion of the sort area that contained that data. Such deallocation may occur, for

example, if Oracle returns control to the application.

The initialization parameter SORT_AREA_RETAINED_SIZE determines the size to

which the sort area is reduced. The default value of this parameter is the value of

the SORT_AREA_SIZE parameter.

Memory released during a sort is freed for use by the same Oracle process, but it is

not released to the operating system.

If the amount of data to be sorted does not fit into a sort area, then the data is

divided into smaller pieces that do fit. Each piece is then sorted individually. The

individual sorted pieces are called "runs". After sorting all the runs, Oracle merges

them to produce the final result.

Additional Information: See your Oracle operating-system-specific

documentation for more information about the PGA.
7-16 Oracle8i Concepts

Software Code Areas
Virtual Memory
On many operating systems, Oracle takes advantage of virtual memory—an

operating system feature that offers more apparent memory than is provided by

real memory alone and more flexibility in using main memory.

Virtual memory simulates memory using a combination of real (main) memory and

secondary storage (usually disk space). The operating system accesses virtual

memory by making secondary storage look like main memory to application

programs.

Software Code Areas
Software code areas are portions of memory used to store code that is being executed

or may be executed. Oracle code is stored in a software area that is typically at a

different location from users’ programs—a more exclusive or protected location.

Software areas are usually static in size, changing only when software is updated or

reinstalled. The required size of these areas varies by operating system.

Software areas are read-only and may be installed shared or nonshared. When

possible, Oracle code is shared so that all Oracle users can access it without having

multiple copies in memory. This results in a saving of real main memory, and

improves overall performance.

User programs can be shared or nonshared. Some Oracle tools and utilities (such as

SQL*Forms and SQL*Plus) can be installed shared, but some cannot. Multiple

instances of Oracle can use the same Oracle code area with different databases if

running on the same computer.

Suggestion: Usually, it is best to keep the entire SGA in real

memory. On many platforms, you can lock the SGA into real

memory with the LOCK_SGA parameter.

Additional Information: The option of installing software shared is

not available for all operating systems (for example, on PCs

operating MS DOS). See your Oracle operating-system-specific

documentation for more information.
Memory Architecture 7-17

Software Code Areas
7-18 Oracle8i Concepts

Process Archite
8

Process Architecture

If the good people, in their wisdom, shall see fit to keep me in the background, I have been too
familiar with disappointments to be very much chagrined.

Abraham Lincoln, Address at New Salem (1832)

This chapter discusses the processes in an Oracle database system and the different

configurations available for an Oracle system. It includes:

■ Introduction to Processes

■ User Processes

■ Oracle Processes

■ Multi-Threaded Server Configuration

■ Dedicated Server Configuration

■ The Program Interface
cture 8-1

Introduction to Processes
Introduction to Processes
All connected Oracle users must execute two modules of code to access an Oracle

database instance:

These code modules are executed by processes. A process is a "thread of control" or a

mechanism in an operating system that can execute a series of steps. (Some

operating systems use the terms job or task.) A process normally has its own private

memory area in which it runs.

Multiple-Process Oracle Systems
Multiple-process Oracle (also called multiuser Oracle) uses several processes to execute

different parts of the Oracle code and additional processes for the users—either one

process for each connected user or one or more processes shared by multiple users.

Most database systems are multiuser, because one of the primary benefits of a

database is managing data needed by multiple users at the same time.

Each process in an Oracle instance performs a specific job. By dividing the work of

Oracle and database applications into several processes, multiple users and

applications can connect to a single database instance simultaneously while the

system maintains excellent performance.

Types of Processes
The processes in an Oracle system can be categorized into two major groups:

■ User processes execute the application or Oracle tool code (see "User Processes"

on page 8-4).

■ Oracle processes execute the Oracle server code. They include server processes

and background processes (see "Oracle Processes" on page 8-5).

The process structure varies for different Oracle configurations, depending on the

operating system and the choice of Oracle options. The code for connected users can

be configured in one of two ways:

application or

Oracle tool

A database user executes a database application (such as a

precompiler program) or an Oracle tool (such as SQL*Plus),

which issues SQL statements to an Oracle database.

Oracle server code Each user has some Oracle server code executing on his or

her behalf, which interprets and processes the application’s

SQL statements.
8-2 Oracle8i Concepts

Introduction to Processes
Figure 8–1 illustrates a dedicated server configuration. Each connected user has a

separate user process, and several background processes execute Oracle.

Figure 8–1 A Multiple-Process Oracle Instance

dedicated server

(two-task Oracle)

For each user, the database application is run by a different

process (a user process) than the one that executes the Oracle

server code (a dedicated server process). See "Dedicated

Server Configuration" on page 8-22.

multi-threaded

server

The database application is run by a different process (a user

process) than the one that executes the Oracle server code;

each server process that executes Oracle server code (a shared
server process) can serve multiple user processes. See

"Multi-Threaded Server Configuration" on page 8-16.

Additional Information: Some operating systems offer a choice of

configurations; see your Oracle operating-system-specific

documentation for more details on your options.

Oracle
Processes
(background
processes)

User
processesUser User User User

Archiver
(ARC0)

Log
Writer

(LGWR)

Recoverer
(RECO)

Process
Monitor
(PMON)

System
Monitor
(SMON)

Database
Writer

(DBW0)

System Global Area
(SGA)
Process Architecture 8-3

User Processes
This figure might represent multiple concurrent users running an application on the

same machine as Oracle; this particular configuration usually runs on a mainframe

or minicomputer.

User Processes
When a user runs an application program (such as a Pro*C program) or an Oracle

tool (such as Oracle Enterprise Manager or SQL*Plus) Oracle creates a user process to

run the user’s application.

Connections and Sessions
The terms "connection" and "session" are closely related to the term "user process",

but are very different in meaning.

A connection is a communication pathway between a user process and an Oracle

instance. A communication pathway is established using available interprocess

communication mechanisms (on a computer that executes both the user process and

Oracle) or network software (when different computers execute the database

application and Oracle, and communicate via a network).

A session is a specific connection of a user to an Oracle instance via a user process.

For example, when a user starts SQL*Plus, the user must provide a valid username

and password and then a session is established for that user. A session lasts from

the time the user connects until the time the user disconnects or exits the database

application.

Multiple sessions can be created and exist concurrently for a single Oracle user

using the same username. For example, a user with the username/password of

SCOTT/TIGER can connect to the same Oracle instance several times.

In configurations without the multi-threaded server, Oracle creates a server process

on behalf of each user session; however, with the multi-threaded server, many user

sessions can share a single server process. See "Multi-Threaded Server

Configuration" on page 8-16 for more information.
8-4 Oracle8i Concepts

Oracle Processes
Oracle Processes
This section describes the two types of processes that execute the Oracle server code

(server processes and background processes). It also describes the trace files and

alert file, which record database events for the Oracle processes.

Server Processes
Oracle creates server processes to handle the requests of user processes connected to

the instance. In some situations when the application and Oracle operate on the

same machine, it is possible to combine the user process and corresponding server

process into a single process to reduce system overhead. However, when the

application and Oracle operate on different machines, a user process always

communicates with Oracle via a separate server process.

Server processes (or the server portion of combined user/server processes) created

on behalf of each user’s application may perform one or more of the following:

■ Parse and execute SQL statements issued via the application.

■ Read necessary data blocks from datafiles on disk into the shared database

buffers of the SGA, if the blocks are not already present in the SGA.

■ Return results in such a way that the application can process the information.

Background Processes
To maximize performance and accommodate many users, a multiprocess Oracle

system uses some additional Oracle processes called background processes.

An Oracle instance may have many background processes; not all are always

present. The background processes in an Oracle instance include the following:

■ Database Writer (DBW0 or DBWn)

■ Log Writer (LGWR)

■ Checkpoint (CKPT)

■ System Monitor (SMON)

■ Process Monitor (PMON)

■ Archiver (ARCn)

■ Recoverer (RECO)

■ Lock (LCK0)
Process Architecture 8-5

Oracle Processes
■ Job Queue (SNPn)

■ Queue Monitor (QMNn)

■ Dispatcher (Dnnn)

■ Server (Snnn)

On many operating systems, background processes are created automatically when

an instance is started.

Figure 8–2 illustrates how each background process interacts with the different

parts of an Oracle database, and the rest of this section describes each process.

Additional Information: See your Oracle operating-system-specific

documentation for details on how these processes are created.

Additional Information: The Oracle Parallel Server is not

illustrated in Figure 8–2; see Oracle8i Parallel Server Concepts and
Administration for more information.
8-6 Oracle8i Concepts

Oracle Processes
Figure 8–2 The Background Processes of a Multiple-Process Oracle Instance

Datafiles

Redo Log
Files

Control
Files

Offline
Storage
Device

SMONPMONRECO

System Global Area

Database
Buffer Cache

Redo Log
Buffer

User
Process

User Processes

D000

User
Process

LGWR

Dedicated
Server

Process

CKPT

DBW0

Legend:

LCK0
RECO
PMON
SMON
CKPT
ARC0
DBW0
LGWR

Lock process
Recoverer process
Process monitor
System monitor
Checkpoint
Archiver
Database writer
Log writer

ARC0

Shared
Server

Process

DBW0

ARC0

LGWR

LCK0
Process Architecture 8-7

Oracle Processes
Database Writer (DBW n)
The database writer process (DBWn) writes the contents of buffers to datafiles. The

DBWn processes are responsible for writing modified (dirty) buffers in the database

buffer cache to disk. (See "The Database Buffer Cache" on page 7-3.) Although one

database writer process (DBW0) is adequate for most systems, you can configure

additional processes (DBW1 through DBW9) to improve write performance if your

system modifies data heavily. These additional DBWn processes are not useful on

uniprocessor systems.

When a buffer in the database buffer cache is modified, it is marked "dirty". The

primary job of the DBWn process is to keep the buffer cache "clean" by writing dirty

buffers to disk. As buffers are dirtied by user processes, the number of free buffers

diminishes. If the number of free buffers drops too low, user processes that must

read blocks from disk into the cache are not able to find free buffers. DBWn
manages the buffer cache so that user processes can always find free buffers.

The DBWn process writes the least recently used (LRU) buffers to disk. By writing

the least recently used dirty buffers to disk, DBWn improves the performance of

finding free buffers while keeping recently used buffers resident in memory. For

example, blocks that are part of frequently accessed small tables or indexes are kept

in the cache so that they do not need to be read in again from disk. The LRU

algorithm keeps more frequently accessed blocks in the buffer cache so that when a

buffer is written to disk, it is unlikely to contain data that may be useful soon.

The initialization parameter DB_WRITER_PROCESSES specifies the number of

DBWn processes. If your system uses multiple DBWn processes, you should adjust

the value of the DB_BLOCK_LRU_LATCHES parameter so that each DBWn process

has the same number of latches (LRU buffer lists).

The DBWn process writes dirty buffers to disk under the following conditions:

■ When a server process cannot find a clean reusable buffer after scanning a

threshold number of buffers, it signals DBWn to write. DBWn writes dirty

buffers to disk with a single multiblock write.

■ DBWn periodically writes buffers to advance the checkpoint, which is the

position in the redo thread (log) from which crash or instance recovery would

need to begin. This log position is determined by the oldest dirty buffer in the

buffer cache. See "Fast-Start Checkpointing" on page 32-13 for more

information.

Additional Information: See Oracle8i Tuning for advice on setting

DB_WRITER_PROCESSES and DB_BLOCK_LRU_LATCHES.
8-8 Oracle8i Concepts

Oracle Processes
In all cases, DBWn performs batched (multiblock) writes to improve efficiency. The

number of blocks written in a multiblock write varies by operating system.

Log Writer Process (LGWR)
The log writer process (LGWR) is responsible for redo log buffer

management—writing the redo log buffer to a redo log file on disk (see "The Redo

Log Buffer" on page 7-6). LGWR writes all redo entries that have been copied into

the buffer since the last time it wrote.

The redo log buffer is a circular buffer. When LGWR writes redo entries from the

redo log buffer to a redo log file, server processes can then copy new entries over

the entries in the redo log buffer that have been written to disk. LGWR normally

writes fast enough to ensure that space is always available in the buffer for new

entries, even when access to the redo log is heavy.

LGWR writes one contiguous portion of the buffer to disk. LGWR writes:

■ a commit record when a user process commits a transaction

■ redo log buffers

– every three seconds

– when the redo log buffer is one-third full

– when a DBWn process writes modified buffers to disk, if necessary

LGWR writes synchronously to the active mirrored group of online redo log files. If

one of the files in the group is damaged or unavailable, LGWR continues writing to

other files in the group and logs an error in the LGWR trace file and in the system

ALERT file (see "Trace Files and the ALERT File" on page 8-14). If all files in a group

Additional Information: See Oracle8i Tuning for information about

how to monitor and tune the performance of a single DBW0

process or multiple DBWn processes.

Note: Before DBWn can write a modified buffer, all redo records

associated with the changes to the buffer must be written to disk

(the write-ahead protocol). If DBWn finds that some redo records

have not been written, it signals LGWR to write the redo records to

disk and waits for LGWR to complete writing the redo log buffer

before it can write out the data buffers.
Process Architecture 8-9

Oracle Processes
are damaged, or the group is unavailable because it has not been archived, LGWR

cannot continue to function.

When a user issues a COMMIT statement, LGWR puts a commit record in the redo

log buffer and writes it to disk immediately, along with the transaction’s redo

entries. The corresponding changes to data blocks are deferred until it is more

efficient to write them. This is called a "fast commit" mechanism. The atomic write

of the redo entry containing the transaction’s commit record is the single event that

determines the transaction has committed. Oracle returns a success code to the

committing transaction, even though the data buffers have not yet been written to

disk.

When a user commits a transaction, the transaction is assigned a system change
number (SCN), which Oracle records along with the transaction’s redo entries in the

redo log. SCNs are recorded in the redo log so that recovery operations can be

synchronized in Oracle Parallel Server configurations and distributed databases.

In times of high activity, LGWR may write to the online redo log file using group
commits. For example, assume that a user commits a transaction—LGWR must write

the transaction’s redo entries to disk and as this happens, other users issue

COMMIT statements. However, LGWR cannot write to the online redo log file to

commit these transactions until it has completed its previous write operation. After

the first transaction’s entries are written to the online redo log file, the entire list of

redo entries of waiting transactions (not yet committed) can be written to disk in

one operation, requiring less I/O than would transaction entries handled

individually. Therefore, Oracle minimizes disk I/O and maximizes performance of

LGWR. If requests to commit continue at a high rate, then every write (by LGWR)

from the redo log buffer may contain multiple commit records.

Note: Sometimes, if more buffer space is needed, LGWR writes

redo log entries before a transaction is committed. These entries

become permanent only if the transaction is later committed.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration and the Oracle8i Administrator’s Guide for more

information about SCNs and how they are used.

Additional Information: See Oracle8i Tuning for information about

how to monitor and tune the performance of LGWR.
8-10 Oracle8i Concepts

Oracle Processes
Checkpoint Process (CKPT)
When a checkpoint occurs, Oracle must update the headers of all datafiles to record

the details of the checkpoint. This is done by the CKPT process. The CKPT process

does not write blocks to disk; DBWn always performs that work.

The statistic DBWR checkpoints displayed by the System_Statistics monitor in Oracle

Enterprise Manager indicates the number of checkpoint requests completed.

System Monitor (SMON)
The system monitor process (SMON) performs crash recovery, if necessary, at instance

startup. SMON is also responsible for cleaning up temporary segments that are no

longer in use and for coalescing contiguous free extents within dictionary-managed

tablespaces. If any dead transactions were skipped during crash and instance

recovery because of file-read or offline errors, SMON recovers them when the

tablespace or file is brought back online. SMON "wakes up" regularly to check

whether it is needed. Other processes can call SMON if they detect a need for

SMON to wake up.

In an Oracle Parallel Server environment, the SMON process of one instance can

perform instance recovery for a failed CPU or instance.

Process Monitor (PMON)
The process monitor (PMON) performs process recovery when a user process fails.

PMON is responsible for cleaning up the database buffer cache and freeing

resources that the user process was using. For example, it resets the status of the

active transaction table, releases locks, and removes the process ID from the list of

active processes.

PMON periodically checks the status of dispatcher and server processes, and

restarts any that have died (but not any that Oracle has terminated intentionally).

PMON also registers information about the instance and dispatcher processes with

the network listener.

Additional Information: See the Oracle8i Administrator’s Guide for

information about the effects of changing the checkpoint interval.

See Oracle8i Parallel Server Concepts and Administration for

information about CKPT in an Oracle Parallel Server.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information about SMON.
Process Architecture 8-11

Oracle Processes
Like SMON, PMON "wakes up" regularly to check whether it is needed, and can be

called if another process detects the need for it.

Recoverer Process (RECO)
The recoverer process (RECO) is a background process used with the distributed

database configuration that automatically resolves failures involving distributed

transactions. The RECO process of a node automatically connects to other databases

involved in an in-doubt distributed transaction. When the RECO process

reestablishes a connection between involved database servers, it automatically

resolves all in-doubt transactions, removing from each database’s pending

transaction table any rows that correspond to the resolved in-doubt transactions.

If the RECO process fails to connect with a remote server, RECO automatically tries

to connect again after a timed interval. However, RECO waits an increasing amount

of time (growing exponentially) before it attempts another connection.

The RECO process is present only if the instance permits distributed transactions

and if the DISTRIBUTED_TRANSACTIONS parameter is greater than zero. If this

initialization parameter is zero, RECO is not created during instance startup.

Archiver Processes (ARC n)
The archiver process (ARCn) copies online redo log files to a designated storage

device once they become full or when the ALTER SYSTEM SWITCH LOGFILE

command forces a log switch. ARCn processes are present only when the database

is in ARCHIVELOG mode and automatic archiving is enabled (see "Database

Archiving Modes" on page 32-18).

An Oracle instance can have up to ten ARCn processes (ARC0 to ARC9). The

LGWR process starts a new ARCn process whenever the current number of ARCn
processes is insufficient to handle the workload. The ALERT file keeps a record of

when LGWR starts a new ARCn process. (See "Trace Files and the ALERT File" on

page 8-14.)

If you anticipate a heavy workload for archiving, such as during bulk loading of

data, you can specify multiple archiver processes with the initialization parameter

LOG_ARCHIVE_MAX_PROCESSES. The ALTER SYSTEM command can change

the value of this parameter dynamically to increase or decrease the number of

ARCn processes. However, you do not need to change this parameter from its

default value of 1, because the system determines how many ARCn processes are

Additional Information: For more information about distributed

transaction recovery, see Oracle8i Distributed Database Systems.
8-12 Oracle8i Concepts

Oracle Processes
needed and LGWR automatically starts up more ARCn processes when the

database workload requires more.

Lock Process (LCK0)
In an Oracle Parallel Server, a lock process (LCK0) provides inter-instance locking.

Job Queue Processes (SNP n)
With the distributed database configuration, up to thirty-six job queue processes
(SNP0, ..., SNP9, SNPA, ..., SNPZ) can automatically refresh table snapshots. These

processes wake up periodically and refresh any snapshots that are scheduled to be

automatically refreshed. If more than one job queue process is used, the processes

share the task of refreshing snapshots.

Unlike other Oracle background processes, failure of an SNPn process does not

cause the instance to fail. If an SNPn process fails, Oracle restarts it.

These processes also execute job requests created by the DBMS_JOB package and

propagate queued messages to queues on other databases (see "Oracle Advanced

Queuing" on page 19-3).

Queue Monitor Processes (QMN n)
The queue monitor process is an optional background process for Oracle Advanced

Queuing (Oracle AQ) which monitors the message queues. You can configure up to

ten queue monitor processes. These processes, like the SNPn processes, are different

from other Oracle background processes in that process failure does not cause the

instance to fail.

See "Oracle Advanced Queuing" on page 19-3 for more information on message

queues and the queue monitor process.

Additional Information: For information on archiving the online

redo log, see "The Redo Log" on page 32-7 and the Oracle8i Backup
and Recovery Guide. See your Oracle operating system-specific

documentation for details about using the ARCn processes.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information about this background process.

Additional Information: See Oracle8i Administrator’s Guide for

more information about this background process and job queues.
Process Architecture 8-13

Oracle Processes
Dispatcher Processes (D nnn)
The dispatcher processes support multi-threaded configuration by allowing user

processes to share a limited number of server processes. (See "Multi-Threaded

Server Configuration" on page 8-16.) With the multi-threaded server, fewer shared

server processes are required for the same number of users; therefore, the

multi-threaded server can support a greater number of users, particularly in

client/server environments where the client application and server operate on

different machines.

You can create multiple dispatcher processes for a single database instance; at least

one dispatcher must be created for each network protocol used with Oracle. The

database administrator should start an optimal number of dispatcher processes

depending on the operating system limitation on the number of connections per

process, and can add and remove dispatcher processes while the instance runs.

In a multi-threaded server configuration, a network listener process waits for

connection requests from client applications, and routes each to a dispatcher

process. If it cannot connect a client application to a dispatcher, the listener process

starts a dedicated server process, and connects the client application to the

dedicated server. The listener process is not part of an Oracle instance; rather, it is

part of the networking processes that work with Oracle.

Shared Server Processes (S nnn)
Each shared server process serves multiple client requests in the multi-threaded server

configuration. For more information, see "Shared Server Processes" on page 8-19.

Trace Files and the ALERT File
Each server and background process can write to an associated trace file. When a

process detects an internal error, it dumps information about the error to its trace

file. If an internal error occurs and information is written to a trace file, the

administrator should contact Oracle support.

Note: Each user process that connects to a dispatcher must do so

through Net8 or SQL*Net Version 2, even if both processes are

running on the same machine.

Additional Information: See "Multi-Threaded Server

Configuration" on page 8-16 and the Net8 Administrator’s Guide for

more information about the network listener.
8-14 Oracle8i Concepts

Oracle Processes
All filenames of trace files associated with a background process contain the name

of the process that generated the trace file. The one exception to this is trace files

generated by job queue processes (SNPn).

Additional information in trace files can provide guidance for tuning applications

or an instance. Background processes always write this information to a trace file

when appropriate. However, server processes write tuning information to a trace

file only if the initialization parameter SQL_TRACE is set to TRUE for the instance

or session. (Information about internal errors is always written to trace files.)

Each session can enable or disable trace logging on behalf of the associated server

process by using the SQL command ALTER SESSION with the SQL_TRACE

parameter. For example, the following statement enables writing to a trace file for

the session:

ALTER SESSION SET SQL_TRACE = TRUE;

Each database also has an ALERT file. The ALERT file of a database is a

chronological log of messages and errors, including

■ all internal errors (ORA-600), block corruption errors (ORA-1578), and deadlock

errors (ORA-60) that occur

■ administrative operations, such as the SQL statements CREATE/ALTER/DROP

DATABASE/TABLESPACE/ROLLBACK SEGMENT and the Oracle Enterprise

Manager or SQL*Plus statements STARTUP, SHUTDOWN, ARCHIVE LOG,

and RECOVER

■ several messages and errors relating to the functions of shared server and

dispatcher processes

■ errors during the automatic refresh of a snapshot

Oracle uses the ALERT file to keep a record of these events as an alternative to

displaying the information on an operator’s console. (Many systems also display

this information on the console.) If an administrative operation is successful, a

message is written in the ALERT file as "completed" along with a timestamp.

Additional Information: See Oracle8i Error Messages for

information about error messages.
Process Architecture 8-15

Multi-Threaded Server Configuration
Multi-Threaded Server Configuration
The multi-threaded server configuration allows many user processes to share very

few server processes. The user processes connect to a dispatcher background

process, which routes client requests to the next available shared server process.

The advantage of the multi-threaded server configuration is that system overhead is

reduced, increasing the number of users that can be supported. A small number of

shared server processes can perform the same amount of processing as many

dedicated server processes, and the amount of memory required for each user is

relatively small.

A number of different processes are needed in a multi-threaded server system:

■ a network listener process that connects the user processes to dispatchers or

dedicated servers (the listener process is part of Net8, not Oracle).

■ one or more dispatcher processes

■ one or more shared server processes

The multi-threaded server requires Net8 or SQL*Net Version 2.

When an instance starts, the network listener process opens and establishes a

communication pathway through which users connect to Oracle. Then, each

dispatcher process gives the listener process an address at which the dispatcher

listens for connection requests. At least one dispatcher process must be configured

and started for each network protocol that the database clients will use.

When a user process makes a connection request, the listener examines the request

and determines whether the user process can use a shared server process. If so, the

listener returns the address of the dispatcher process that has the lightest load and

the user process connects to the dispatcher directly.

Some user processes cannot communicate with the dispatcher (such as those that

connect using pre-Version 2 SQL*Net) so the network listener process cannot

connect them to a dispatcher. In this case, or if the user process requests a dedicated

server (see "Restricted Operations of the Multi-Threaded Server" on page 8-20), the

listener creates a dedicated server and establishes an appropriate connection.

Note: To use shared servers, a user process must connect through

Net8 or SQL*Net Version 2, even if the process runs on the same

machine as the Oracle instance.
8-16 Oracle8i Concepts

Multi-Threaded Server Configuration
Dispatcher Request and Response Queues
A request from a user is a single program interface call that is part of the user’s SQL

statement. When a user makes a call, its dispatcher places the request on the request
queue, where it is picked up by the next available shared server process.

The request queue is in the SGA and is common to all dispatcher processes of an

instance. The shared server processes check the common request queue for new

requests, picking up new requests on a first-in-first-out basis. One shared server

process picks up one request in the queue and makes all necessary calls to the

database to complete that request.

When the server completes the request, it places the response on the calling

dispatcher’s response queue. Each dispatcher has its own response queue in the SGA. The

dispatcher then returns the completed request to the appropriate user process.

For example, in an order entry system each clerk’s user process connects to a

dispatcher and each request made by the clerk is sent to that dispatcher, which

places the request in the request queue. The next available shared server process

picks up the request, services it, and puts the response in the response queue. When

a clerk’s request is completed, the clerk remains connected to the dispatcher but the

shared server process that processed the request is released and available for other

requests. While one clerk is talking to a customer, another clerk can use the same

shared server process.

Figure 8–3 illustrates how user processes communicate with the dispatcher across

the program interface and how the dispatcher communicates users’ requests to

shared server processes.

Additional Information: See the Net8 Administrator’s Guide for

more information about the network listener.
Process Architecture 8-17

Multi-Threaded Server Configuration
Figure 8–3 The Multi-Threaded Server Configuration and Shared Server Processes

4
3

6

1

7

Application
Code

System Global Area

User
Process

Database Server

Client Workstation

Shared
Server

Processes

2 5

Dispatcher Processes

Oracle
Server Code

Request
Queues

Response
Queues
8-18 Oracle8i Concepts

Multi-Threaded Server Configuration
Shared Server Processes
Shared server processes and dedicated server processes provide the same

functionality, except that shared server processes are not associated with a specific

user process. Instead, a shared server process serves any client request in the

multi-threaded server configuration.

The PGA of a shared server process does not contain user-related data (which needs

to be accessible to all shared server processes). The PGA of a shared server process

contains only stack space and process-specific variables. "Program Global Areas

(PGA)" on page 7-14 provides more information about the content of a PGA in

different types of instance configurations.

All session-related information is contained in the SGA. Each shared server process

needs to be able to access all sessions’ data spaces so that any server can handle

requests from any session. Space is allocated in the SGA for each session’s data

space. You can limit the amount of space that a session can allocate by setting the

resource limit PRIVATE_SGA to the desired amount of space in the user’s profile.

See Chapter 29, "Controlling Database Access" for more information about resource

limits and profiles.

Oracle dynamically adjusts the number of shared server processes based on the

length of the request queue. The number of shared server processes that can be

created ranges between the values of the initialization parameters MTS_SERVERS

and MTS_MAX_SERVERS.

Artificial Deadlocks
With a limited number of shared server processes, the possibility of an "artificial"

deadlock can arise. An artificial deadlock can occur in the following situation:

1. One user acquires an exclusive lock on a resource by issuing a SELECT

statement with the FOR UPDATE clause or a LOCK TABLE statement.

2. The shared server process that processes the locking request is released once the

statement completes.

3. Other users attempt to access the locked resource. Each shared server process is

bound to the user process it is serving until the necessary locked resource

becomes available. Eventually, all shared servers may be bound to user

processes waiting for locked resources.

4. The original user attempts to submit a new request (such as a COMMIT or

ROLLBACK statement) to release the previously acquired lock, but cannot

because all shared server processes are currently being used.
Process Architecture 8-19

Multi-Threaded Server Configuration
When Oracle detects an artificial deadlock, new shared server processes are

automatically created as needed until the original user submits a request that

releases the locked resources causing the artificial deadlocks. If the maximum

number of shared server processes (as specified by the MTS_MAX_SERVERS

parameter) have been started, the database administrator must manually resolve

the deadlock by disconnecting a user. This releases a shared server process,

resolving the artificial deadlock.

If artificial deadlocks occur too frequently on your system, you should increase the

value of MTS_MAX_SERVERS.

Restricted Operations of the Multi-Threaded Server
Certain administrative activities cannot be performed while connected to a

dispatcher process, including shutting down or starting an instance and media

recovery. An error message is issued if you attempt to perform these activities while

connected to a dispatcher process.

These activities are typically performed when connected with administrator

privileges. When you want to connect with administrator privileges in a system

configured with multi-threaded servers, you must state in your connect string that

you want to use a dedicated server process (SRVR=DEDICATED) instead of a

dispatcher process.

An Example of Oracle Using the Multi-Threaded Server
The following steps illustrate how Oracle works in the multi-threaded server

configuration. These steps show only the most basic level of operations that Oracle

performs.

1. A database server is currently running Oracle using the multi-threaded server

configuration.

2. A user process on a client workstation runs a database application such as

SQL*Forms. The client application attempts to establish a connection to the

database server using the proper Net8 driver.

3. The database server machine is currently running the proper Net8 driver. The

network listener process on the database server detects the connection request

of the user process and determines how the user process should be connected.

Additional Information: See your Oracle operating-system-specific

documentation or the Net8 Administrator’s Guide for the proper

connect string syntax.
8-20 Oracle8i Concepts

Multi-Threaded Server Configuration
If the user is using Net8 or SQL*Net Version 2, the listener informs the user

process to reconnect using the address of an available dispatcher process.

4. The user issues a single SQL statement, for example, updating a row in a table.

5. The dispatcher process places the user process’s request on the request queue,

which is in the SGA and shared by all dispatcher processes.

6. An available shared server process checks the common dispatcher request

queue and picks up the next SQL statement on the queue. At this point, two

paths can be followed to continue processing the SQL statement:

– If the shared pool contains a shared SQL area for an identical SQL

statement, the server process uses the existing shared SQL area to execute

the client’s SQL statement.

– If the shared pool does not contain a shared SQL area for an identical SQL

statement, a new shared SQL area is allocated for the statement in the

shared pool.

In either case, a private SQL area is created (partly in the session’s PGA and

partly in the SGA) and the shared server process checks the user’s access

privileges to the requested data.

7. The shared server process retrieves data blocks from the actual datafile, if

necessary, or uses data blocks already stored in the buffer cache in the SGA of

the instance.

8. The shared server process executes the SQL statement stored in the shared SQL

area. Data is first changed in the SGA. It is permanently written to disk when

the DBW0 process determines it is most efficient to do so. The LGWR process

records the transaction in the online redo log file only on a subsequent commit

request from the user.

9. Once the shared server process finishes processing the SQL statement, the

process places the result on the response queue of the dispatcher process that

sent the request.

Note: If the user process connects with SQL*Net Version 1 or 1.1,

the SQL*Net listener creates a dedicated server process on behalf of

the user process and the remainder of the example operates as

described in the preceding example. (User processes must connect

with Net8 or SQL*Net Version 2 to use a shared server process.)
Process Architecture 8-21

Dedicated Server Configuration
10. The dispatcher process checks its response queue and sends completed requests

back to the user process that made the request.

Dedicated Server Configuration
Figure 8–4 illustrates Oracle running on two computers using the dedicated server

architecture. In this configuration, a user process executes the database application

on one machine and a server process executes the associated Oracle server on

another machine.

Figure 8–4 Oracle Using Dedicated Server Processes

User
Process

Application
Code

System Global Area

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Database Server

Client Workstation

Dedicated
Server

Process

Oracle
Server Code
8-22 Oracle8i Concepts

Dedicated Server Configuration
The user and server processes are separate, distinct processes. The separate server

process created on behalf of each user process is called a dedicated server process (or

shadow process) because this server process acts only on behalf of the associated

user process.

This configuration maintains a one-to-one ratio between the number of user

processes and server processes. Even when the user is not actively making a

database request, the dedicated server process remains (though it is inactive and

may be paged out on some operating systems).

Figure 8–4 shows user and server processes running on separate computers

connected across a network. However, the dedicated server architechture is also

used if the same computer executes both the client application and the Oracle server

code but the host operating system could not maintain the separation of the two

programs if they were run in a single process. (UNIX is a common example of such

an operating system.)

In the dedicated server configuration, the user and server processes communicate

using different mechanisms:

■ If the system is configured so that the user process and the dedicated server

process run on the same computer, the program interface uses the host

operating system’s interprocess communication mechanism to perform its job.

■ If the user process and the dedicated server process run on different computers,

the program interface provides the communication mechanisms (such as the

network software and Net8) between the programs.

Dedicated server architecture can sometimes result in inefficiency. Consider an

order entry system with dedicated server processes. A customer places an order as a

clerk enters the order into the database. For most of the transaction, the clerk is

talking to the customer while the server process dedicated to the clerk’s user

process remains idle. The server process is not needed during most of the

transaction, and the system is slower for other clerks entering orders. For

applications such as this, the multi-threaded server architecture may be preferable.

Additional Information: These communications links are

operating system and installation dependent; see your Oracle

operating-system-specific documentation and the Net8

documentation for more information.
Process Architecture 8-23

Dedicated Server Configuration
An Example of Oracle Using Dedicated Server Processes
The following steps illustrate how Oracle works in the dedicated server

configuration. These steps show only the most basic level of operations that Oracle

performs.

1. A database server machine is currently running Oracle using multiple

background processes.

2. A user process on a client workstation runs a database application such as

SQL*Plus. The client application attempts to establish a connection to the server

using a Net8 driver.

3. The database server is currently running the proper Net8 driver. The network

listener process on the database server detects the connection request from the

client database application and creates a dedicated server process on the

database server on behalf of the user process.

4. The user executes a single SQL statement. For example, the user inserts a row

into a table.

5. The dedicated server process receives the statement. At this point, two paths

can be followed to continue processing the SQL statement:

– If the shared pool contains a shared SQL area for an identical SQL

statement, the server process uses the existing shared SQL area to execute

the client’s SQL statement.

– If the shared pool does not contain a shared SQL area for an identical SQL

statement, a new shared SQL area is allocated for the statement in the

shared pool.

In either case, a private SQL area is created in the session’s PGA and the

dedicated server process checks the user’s access privileges to the requested

data.

6. The server process retrieves data blocks from the actual datafile, if necessary, or

uses data blocks already stored in the buffer cache in the SGA of the instance.

7. The server process executes the SQL statement stored in the shared SQL area.

Data is first changed in the SGA. It is permanently written to disk when the

DBW0 process determines it is most efficient to do so. The LGWR process

records the transaction in the online redo log file only on a subsequent commit

request from the user.

8. If the request is successful, the server sends a message across the network to the

user. If it is not successful, an appropriate error message is transmitted.
8-24 Oracle8i Concepts

The Program Interface
9. Throughout this entire procedure, the other background processes are running

and watching for any conditions that require intervention. In addition, Oracle is

managing other transactions and preventing contention between different

transactions that request the same data.

The Program Interface
The program interface is the software layer between a database application and

Oracle. The program interface:

■ provides a security barrier, preventing destructive access to the SGA by client

user processes

■ acts as a communication mechanism, formatting information requests, passing

data, and trapping and returning errors

■ converts and translates data, particularly between different types of computers

or to external user program datatypes

The Oracle code acts as a server, performing database tasks on behalf of an application
(a client), such as fetching rows from data blocks. It consists of several parts,

provided by both Oracle software and operating-system-specific software.

Program Interface Structure
The program interface consists of the following pieces:

■ Oracle call interface (OCI) or the Oracle runtime library (SQLLIB)

■ the client or user side of the program interface (also called the UPI)

■ various Net8 drivers (protocol-specific communications software)

■ operating system communications software

■ the server or Oracle side of the program interface (also called the OPI)

Both the user and Oracle sides of the program interface execute Oracle software, as

do the drivers.

Net8 is the portion of the program interface that allows the client application

program and the Oracle server to reside on separate computers in your

communication network.
Process Architecture 8-25

The Program Interface
The Program Interface Drivers
Drivers are pieces of software that transport data, usually across a network. They

perform operations like connect, disconnect, signal errors, and test for errors.

Drivers are specific to a communications protocol. There is always a default driver.

You may install multiple drivers (such as the asynchronous or DECnet drivers), and

select one as the default driver, but allow an individual user to use other drivers by

specifying the desired driver at the time of connection. Different processes can use

different drivers. A single process can have concurrent connections to a single

database or to multiple databases (either local or remote) using different Net8

drivers.

The installation and configuration guide and Net8 documentation for your system

contains details about choosing and installing drivers and adding new drivers after

installation. The Net8 documentation describes selecting a driver at runtime while

accessing Oracle.

Operating System Communications Software
The lowest level software connecting the user side to the Oracle side of the program

interface is the communications software, which is provided by the host operating

system. DECnet, TCP/IP, LU6.2, and ASYNC are examples.

Additional Information: See Net8 Administrator’s Guide for more

information about Net8.

Additional Information: The communication software may be

supplied by Oracle Corporation but is usually purchased separately

from the hardware vendor or a third party software supplier. See

your Oracle operating-system-specific documentation for more

information about the communication software of your system.
8-26 Oracle8i Concepts

Database Resource Manage
9

Database Resource Management

Seek not, my soul, the life of the immortals; but enjoy to the full the resources that are
within thy reach.

Pindar: Pythian Odes

This chapter describes how you can use the Database Resource Manager to allocate

resources to different groups of users. This chapter includes the following topics:

■ Introduction to the Database Resource Manager

■ Resource Consumer Groups and Resource Plans

■ Resource Allocation Methods

■ Resource Plan Directives

■ Examples

■ Using the Database Resource Manager

Attention: The Database Resource Manager features described in

this chapter are available only if you have purchased the Oracle8i
Enterprise Edition. See Getting to Know Oracle8i for information

about Oracle8i Enterprise Edition.
ment 9-1

Introduction to the Database Resource Manager
Introduction to the Database Resource Manager
The Database Resource Manager allows the database administrator to have more

control over resource management than would normally be possible through

operating system resource management alone. Using this facility, the database

administrator can:

■ Guarantee groups of users a minimum amount of processing resources,

regardless of the load or number of users in other groups on the system.

■ Distribute available processing resources by allocating percentages of CPU time

to different users and applications. For example, in a data warehouse, a higher

priority may be given to ROLAP applications than to batch jobs.

■ Limit the degree of parallelism that a set of users can use.

■ Configure an instance to use a particular plan for allocating resources.

A database administrator can dynamically change the plan, for example, from a

daytime setup to a nighttime setup, without having to shutdown and restart the

instance.

To use the Database Resource Manager, a database administrator defines:

These items are described in detail in the following sections.

resource consumer groups A means of grouping user sessions that have similar

processing and resource usage requirements.

resource plans A means of allocating resources among the consumer

groups.

resource allocation methods A policy to use when allocating for any particular

resource. Resource allocation methods are used by both

plans and consumer groups.

resource plan directives A means of:

■ assigning consumer groups or subplans to resource

plans

■ allocating resources among consumer groups in the

plan by specifying parameters for each resource

allocation method.
9-2 Oracle8i Concepts

Resource Consumer Groups and Resource Plans
Resource Consumer Groups and Resource Plans
Resource consumer groups and resource plans provide a method for specifying

how to partition processing resources among different users. Currently, CPU is the

only resource that is controlled at the level of resource consumer groups. Resource

plans currently support control of two resources: CPU and degree of parallelism

limit.

This section describes resource consumer groups and plans, and explains how you

can use resource consumer groups and resource plans to control resources.

What Are Resource Consumer Groups?
To control resource consumption, you can assign user sessions to resource consumer
groups. A resource consumer group defines a set of users who have similar resource

usage requirements. A resource consumer group also specifies a resource allocation

method for each controlled resource.

You can view resource consumer groups and their associated attributes in the data

dictionary view DBA_RSRC_CONSUMER_GROUPS. Each entry contains the

following information:

■ resource consumer group name

■ the CPU resource allocation method for the group

■ comment

■ status (pending or active)

■ statement about whether or not the resource consumer group is mandatory

(and cannot be deleted)

Following are two sample entries in the DBA_RSRC_CONSUMER_GROUPS view:

CONSUMER_GROUP CPU_METHOD COMMENTS STATUS MANDATORY
-------------- ----------- -------------------------------------- ------- ---------
BUGUSERS ROUND-ROBIN Resource group/method for bug DB users ACTIVE 0
PQ ROUND-ROBIN Resource group/method for PQ slaves PENDING 0

Each user has a default resource consumer group. By default, all sessions owned by

a user belong to that user’s default resource consumer group.

Users can have the privilege to switch to different consumer groups. You can use

PL/SQL procedures to switch resource consumer groups for a particular session,

assuming you have the appropriate privileges. You also can dynamically change
Database Resource Management 9-3

Resource Consumer Groups and Resource Plans
resource allocation methods for a resource consumer group while the database is

running.

One consumer group named DEFAULT_CONSUMER_GROUP always exists in the

data dictionary. All sessions that do not explicitly belong to any group belong to

DEFAULT_CONSUMER_GROUP.

What Are Resource Plans?
Resource allocations are specified in a resource plan. Resource plans contain resource

plan directives, which specify the resources that are to be allocated to each resource

consumer group.

Conceptually, below the resource consumer groups are the actual sessions for each

user request. In other words, a session belongs to a resource consumer group, and

this resource consumer group is used by a resource plan to determine allocation of

processing resources.

You can use resource plans to:

■ group resource consumer groups and/or other resource plans together

■ partition resources among those resource consumer groups or plans

■ specify a resource allocation method for resource consumer groups

You can have multiple resource plans defined in the database, each allocating

resources to resource consumer groups in different ways, making resource

assignment flexible. However, only one plan can be active in one instance. For

example, you might define a daytime plan, a nighttime plan, and a weekend plan.

Different instances of an Oracle Parallel Server can use different resource plans.

You can specify resource plans in a hierarchical fashion using subplans. Activating a

plan also activates all of its subplans.

You can dynamically switch the top-level active plan while an instance is running.

This enables you to define resource plans for different situations, and to change the

plan depending upon the situation.

There are two special consumer groups:

■ OTHER_GROUPS applies to all sessions that belong to a consumer group that

is not part of the active plan schema. This group name always exists in the data

dictionary. OTHER_GROUPS must exist somewhere in the plan schema of any

active plan.
9-4 Oracle8i Concepts

Resource Consumer Groups and Resource Plans
Thus, if a session belonged to consumer group ’C’ and the instance used plan

’P’, servers would try to use the following entries in this order:

1. ’P’, ’C’,...

2. ’P’, ’OTHER_GROUPS’,...

■ DEFAULT_CONSUMER_GROUP applies to all sessions that do not explicitly

belong to any group.

You cannot modify or delete these special consumer groups.

There are two Oracle-provided consumer groups which you can modify, use as is,

not use, or delete as appropriate for your environment:

■ SYS_GROUP is the default group for the users SYS and SYSTEM.

■ LOW_GROUP is provided for use in the SYSTEM_PLAN (see Table 9–1,

"SYSTEM_PLAN Default Resource Plan"). Switch privilege is granted to

PUBLIC for this group.

You can view resource plans and their associated attributes in the data dictionary

view DBA_RSRC_PLANS. Each entry contains the following information:

■ plan name

■ number of plan directives

■ its CPU resource allocation method

■ its parallel degree limit method

■ comment

■ status (pending or active)

■ statement about whether the plan is mandatory

Following are sample resource plan entries:

PLAN NUM_PLAN_D CPU_METHOD PARALLEL_DEGREE_LIMIT_MTH COMMENTS STATUS MANDATORY
------ ---------- ----------- ------------------------------ -------------------------- ------- ---------
MAILDB 3 EMPHASIS PARALLEL_DEGREE_LIMIT_ABSOLUTE Plan/method for mail users ACTIVE 0
APPDB 3 ROUND-ROBIN MAX_ACTIVE_SESS_ABSOLUTE Plan/method for apps users ACTIVE 0

Changes to resource plans take immediate effect across all instances.

Additional Information: For details about data dictionary views

associated with resource plans and resource consumer groups, see

the Oracle8i Reference.
Database Resource Management 9-5

Resource Allocation Methods
Resource Allocation Methods
Resource allocation methods determine what method or policy the Database Resource

Manager uses when allocating for a particular resource, and are used by both

resource consumer groups and resource plans.

Oracle provides a single resource allocation method for each manageable resource,

including CPU and maximum degree of parallelism; these are the defaults. The

following sections describe the Oracle-provided default resource allocation

methods.

CPU Resource Allocation Method: Emphasis
The emphasis CPU resource allocation method determines how much emphasis is

given to sessions in different consumer groups. This is specified by assigning

emphasis percentages to each consumer group. CPU usage is assigned using levels,

from 1 to 8. Percentages specify how to partition the CPU at each level.

The following rules apply for the emphasis resource allocation method:

■ Sessions in resource consumer groups with non-zero percentages at lower levels

always get the first opportunity to run.

■ CPU resources are distributed at a given level based on the specified

percentages. The percentage of resources specified for a resource consumer

group is a maximum for how much that consumer group can use. If any CPU

resources are left after all resource consumer groups at a given level have been

given an opportunity to run, the remaining CPU resources fall through to the

next higher level. If a consumer group does not consume its allotted resources,

then the resources are passed to the next level, not given to the other consumer

groups at the same level.

■ The sum of percentages at any given level must be less than or equal to 100.

■ Any unused CPU time gets recycled; in other words, if no consumer groups are

immediately interested in a quantum (due to percentages), the consumer

groups get another opportunity to use the quantum, starting at level one.

■ Any levels that have no plan directives explicitly specified are implied to have

0% for all subplans/consumer groups.

The emphasis resource allocation method offers the following advantages:

■ The percentage method enables you to bring CPUs online and offline, and to

add and remove servers.
9-6 Oracle8i Concepts

Examples
■ The amount of CPU resources specified is not proportional to the number of

servers, so there is a fine level of control even with a small number of servers.

■ The percentage method avoids the starvation problem associated with

priorities. Users do not run at priorities; instead, they run based on the

percentages specified for their resource consumer group. In addition,

percentages can be used to simulate a priority scheme.

Maximum Degree of Parallelism Resource Allocation Method: Absolute
The parallel degree limit resource directive allows the administrator to specify a limit

on the degree of parallelism of any operation. This parameter is only allowed in

directives that refer to resource consumer groups. The default resource allocation

method for the maximum degree of parallelism is an absolute number.

If there are multiple plan directives referring to the same subplan/consumer group,

the parallel degree limit for that subplan/consumer group will be the minimum of

all the incoming values.

Resource Plan Directives
Resource plan directives are a means of:

■ assigning consumer groups or subplans to resource plans

■ allocating resources among consumer groups in the plan by specifying

parameters for each resource allocation method

There is one resource plan directive for each entry in the plan.

Examples
This section includes examples of using resource consumer groups, resource plans,

resource allocation methods, and resource plan directives.
Database Resource Management 9-7

Examples
Using Resource Consumer Groups and Resource Plans
The first step in using Database Resource Manager is to identify resource

requirements using resource consumer groups and resource plans.

Oracle provides one default resource plan, SYSTEM_PLAN, which is defined as

follows:

SYS and SYSTEM have SYS_GROUP as their default consumer group. You can

change this. SYSTEM_PLAN gives priority to system sessions. It also specifies a low

priority group, LOW_GROUP, which has lower priority than SYS_GROUP and

OTHER_GROUPS. It is up to you to decide which user sessions will be part of

LOW_GROUP. You can use this simple Oracle-provided plan if it is appropriate for

your environment.

Table 9–2 and Table 9–3 show sample resource plans for BUGDB and MAILDB:

Table 9–1 SYSTEM_PLAN Default Resource Plan

Entry Level 1 Level 2 Level 3

SYS_GROUP 100% 0% 0%

OTHER_GROUPS 0% 100% 0%

LOW_GROUP 0% 0% 100%

Table 9–2 BUGDB Sample Resource Plan

Entry Level 1 Level 2

Online resource consumer group 80% 0%

Batch resource consumer group 20% 0%

Bug_Maintenance resource consumer group 0% 100%

Table 9–3 MAILDB Sample Resource Plan

Entry Level 1 Level 2

Mailusers resource consumer group 0% 80%

Postman resource consumer group 40% 0%

Mail_Maintenance resource consumer group 0% 20%
9-8 Oracle8i Concepts

Examples
The data in the BUGDB and MAILDB sample resource plans adheres to the

emphasis CPU resource allocation method, which enables you to determine the

degree of emphasis for sessions in different resource consumer groups by assigning

an emphasis percentage for each resource consumer group.

If there were an infinite number of sessions to run in the MAILDB plan, the

Postman resource consumer group would run 40% of the time, while the Mailusers

resource consumer group and Mail_Maintenance resource consumer group would

split the remainder in a ratio of 80:20. Thus, the Mailusers resource consumer group

would run 48% (80% of 60%) of the time, and the Mail_Maintenance resource

consumer group would run 12% (20% of 60%) of the time. In this example, the

entries in Level 2 are guaranteed to get at least 60% of the CPU resource. They may

get more, depending on whether the Postman resource consumer group uses up all

of its allotted 40%.

Using Subplans
A resource plan that is referred to by another plan is called a "subplan". For

example, Table 9–4 is a plan that contains directives for two subplans:

If the MYDB resource plan were in effect and there were an infinite number of

runnable users in all resource consumer groups, the MAILDB plan would be in

effect 30% of the time, while the BUGDB plan would be in effect 70% of the time.

Breaking this down further, if the MAILDB plan allocates 40% of resources to the

Postman resource consumer group and the BUGDB plan allocates 80% of resources

to the Online resource consumer group, then users in the Postman group would be

run 12% (40% of 30%) of the time, while users in the Online group would be run

56% (80% of 70%) of the time. Figure 9–1 depicts this scenario.

Table 9–4 MYDB Resource Plan, CPU Plan Directives

Subplan/Group CPU_Level 1

MAILDB Plan 30%

BUGDB Plan 70%
Database Resource Management 9-9

Examples
Figure 9–1 Subplans: Resource Plans That Refer to Each Other

Using Multi-Level Resource Plans
A multi-level resource plan is more powerful than a single-level plan. When a

resource consumer group does not use its allotment in a level, the remainder falls

through to the next level, and you can specify explicitly what to do with it. In the

single-level scheme the only choice is to spread the unused time among all the

remaining resource consumer groups in the given ratios. Because of this difference,

a multi-level scheme cannot be collapsed into a single-level scheme if the

percentages for any given level less than the highest level add up to 100.

Using the Parallel Degree Limit Resource Directive
In the following example, the maximum degree of parallelism for any operation

issued from the Online Group is 0, 4 for the Batch Group, and 4 for the

Bug_Maintenance group. This specification is an example of how the parallel

degree limit plan directive can be used to restrict a group of sessions from running

parallel operations. Online Group’s parallel degree limit is 0. Therefore, all of its

operations must run serially.

MYDB
PLAN

MAILDB
PLAN

BUGDB
PLAN

100% @
Level 2

20% @
Level 1

80% @
Level 1

20% @
Level 2

80% @
Level 2

40% @
Level 1

70% @
Level 1

MAIL_MAINT.
GROUP

ONLINE
GROUP

BATCH
GROUP

BUG_MT.
GROUP

MAILUSERS
GROUP

POSTMAN
GROUP

30% @
Level 1
9-10 Oracle8i Concepts

Using the Database Resource Manager
Summary
The following example uses the BUGDB plan example, and combines all the plan

directives for the default resource allocation methods specified above:

Using the Database Resource Manager
To use the Database Resource Manager, the database administrator:

1. Creates resource plans using the PL/SQL package

DBMS_RESOURCE_MANAGER.

2. Creates resource consumer groups using the PL/SQL package

DBMS_RESOURCE_MANAGER.

3. Creates resource plan directives using the PL/SQL package

DBMS_RESOURCE_MANAGER.

4. Assigns users to consumer groups using the PL/SQL package

DBMS_RESOURCE_MANAGER_PRIVS.

5. Specifies the plan to be used by an instance. The initialization parameter

RESOURCE_MANAGER_PLAN specifies which top plan to use for a given

Table 9–5 Maximum Degree of Parallelism Plan Directives

Subplan/Group parallel_degree_limit

Online Group 0

Batch Group 4

Bug_Maintenance Group 4

CPU Resource Plan Directives (levels 1 - 8)

(Note that only levels that have some non-zero
directives need to be specified explicitly)

Parallel Degree
Limit Resource
Plan Directive

Subplan/Group CPU_level 1 CPU_level 2 ...
parallel_degree
_limit_1

ONLINE Group 80% 0% 0% 0

BATCH Group 20% 0% 0% 4

BUG_MT Group 0% 100% 0% 4
Database Resource Management 9-11

Using the Database Resource Manager
instance. The Database Resource Manager loads this top plan as well as all its

descendants (subplans, directives, and consumer groups).

If the RESOURCE_MANAGER_PLAN parameter is not specified, the Database

Resource Manager is disabled. The database administrator can set the

parameter dynamically using the ALTER SYSTEM command to enable the

Database Resource Manager (if it was previously disabled), disable the

Database Resource Manager, or change the current plan.

Additional Information: For information about using these

PL/SQL packages, see the Oracle8i Administrator’s Guide.
9-12 Oracle8i Concepts

Part IV

The Object-Relational DBMS

Part IV describes the Oracle relational model for database management and the

object extensions to that model.

Part IV contains the following chapters:

■ Chapter 10, "Schema Objects"

■ Chapter 11, "Partitioned Tables and Indexes"

■ Chapter 12, "Built-In Datatypes"

■ Chapter 13, "User-Defined Datatypes"

■ Chapter 14, "Using User-Defined Datatypes"

■ Chapter 15, "Object Views"

Schema
10

Schema Objects

My object all sublime I shall achieve in time—To let the punishment fit the crime.

Sir William Schwenck Gilbert: The Mikado

This chapter discusses the different types of database objects contained in a user’s

schema. It includes:

■ Overview of Schema Objects

■ Tables

■ Views

■ Materialized Views

■ Dimensions

■ The Sequence Generator

■ Synonyms

■ Indexes

■ Index-Organized Tables

■ Application Domain Indexes

■ Clusters

■ Hash Clusters

For information about additional schema objects, see "Database Links" on page 33-6,

"Stored Procedures and Functions" on page 18-2, "Packages" on page 18-11, and

Chapter 20, "Triggers".
 Objects 10-1

Overview of Schema Objects
Overview of Schema Objects
Associated with each database user is a schema. A schema is a collection of schema

objects. Examples of schema objects include tables, views, sequences, synonyms,

indexes, clusters, database links, snapshots, procedures, functions, and packages.

Schema objects are logical data storage structures. Schema objects do not have a

one-to-one correspondence to physical files on disk that store their information.

However, Oracle stores a schema object logically within a tablespace of the

database. The data of each object is physically contained in one or more of the

tablespace’s datafiles. For some objects such as tables, indexes, and clusters, you can

specify how much disk space Oracle allocates for the object within the tablespace’s

datafiles.

There is no relationship between schemas and tablespaces: a tablespace can contain

objects from different schemas, and the objects for a schema can be contained in

different tablespaces. Figure 10–1 illustrates the relationship among objects,

tablespaces, and datafiles.

Additional Information: This chapter describes tables, views,

materialized views, sequences, synonyms, indexes, and clusters.

Other kinds of schema objects are explained elsewhere in this

manual or in other manuals. Specifically:

■ Procedures, functions, and packages are described in

Chapter 18, "Procedures and Packages".

■ Triggers are described in Chapter 20, "Triggers".

■ Database links are described in "Distributed Databases" on

page 33-1.
10-2 Oracle8i Concepts

Tables
Figure 10–1 Schema Objects, Tablespaces, and Datafiles

Tables
Tables are the basic unit of data storage in an Oracle database. Data is stored in rows
and columns. You define a table with a table name (such as EMP) and set of columns.

You give each column a column name (such as EMPNO, ENAME, and JOB), a

datatype (such as VARCHAR2, DATE, or NUMBER), and a width (the width might

be predetermined by the datatype, as in DATE) or precision and scale (for columns of

the NUMBER datatype only). A row is a collection of column information

corresponding to a single record. See Chapter 12, "Built-In Datatypes", for a

discussion of the Oracle datatypes.

System Tablespace Data Tablespace

Index

Table

Index

Cluster

Index

Index

Index

Table Index

Index

Table

Index

Index

Index

Index

Index

Table

Index

Index

Table

Database

Drive 1

DBFILE3DBFILE2DBFILE1

Drive 1
Schema Objects 10-3

Tables
You can optionally specify rules for each column of a table. These rules are called

integrity constraints. One example is a NOT NULL integrity constraint. This

constraint forces the column to contain a value in every row. See Chapter 28, "Data

Integrity", for more information about integrity constraints.

Once you create a table, you insert rows of data using SQL statements. Table data

can then be queried, deleted, or updated using SQL.

Figure 10–2 shows a sample table named EMP.

Figure 10–2 The EMP Table

How Table Data Is Stored
When you create a table, Oracle automatically allocates a data segment in a

tablespace to hold the table’s future data. (However, clustered tables and temporary

tables are exceptions to this rule.) You can control the allocation of space for a

table’s data segment and use of this reserved space in the following ways:

■ You can control the amount of space allocated to the data segment by setting

the storage parameters for the data segment.

■ You can control the use of the free space in the data blocks that constitute the

data segment’s extents by setting the PCTFREE and PCTUSED parameters for

the data segment.

Oracle stores data for a clustered table in the data segment created for the cluster.

Storage parameters cannot be specified when a clustered table is created or altered;

the storage parameters set for the cluster always control the storage of all tables in

the cluster.

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Column not
allowing nulls

Column
allowing
nulls

Rows Columns

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CLERK
SALESMAN
SALESMAN
MANAGER

7902
7698
7698
7839

17–DEC–88
20–FEB–88
22–FEB–88
02–APR–88

800.00
1600.00
1250.00
2975.00

300.00
300.00
500.00

20
30
30
20

Column names
10-4 Oracle8i Concepts

Tables
The tablespace that contains a nonclustered table’s data segment is either the table

owner’s default tablespace or a tablespace specifically named in the CREATE

TABLE statement. See "User Tablespace Settings and Quotas" on page 29-13.

Row Format and Size
Oracle stores each row of a database table as one or more row pieces. If an entire

row can be inserted into a single data block, Oracle stores the row as one row piece.

However, if all of a row’s data cannot be inserted into a single data block or an

update to an existing row causes the row to outgrow its data block, Oracle stores the

row using multiple row pieces. A data block usually contains only one row piece

per row. When Oracle must store a row in more than one row piece, it is "chained"

across multiple blocks. A chained row’s pieces are chained together using the

rowids of the pieces. See "Row Chaining and Migrating" on page 4-10.

Each row piece, chained or unchained, contains a row header and data for all or some

of the row’s columns. Individual columns might also span row pieces and,

consequently, data blocks. Figure 10–3 shows the format of a row piece.

The row header precedes the data and contains information about

■ row pieces

■ chaining (for chained row pieces only)

■ columns in the row piece

■ cluster keys (for clustered data only)

A row fully contained in one block has at least three bytes of row header. After the

row header information, each row contains column length and data. The column

length requires one byte for columns that store 250 bytes or less, or three bytes for

columns that store more than 250 bytes, and precedes the column data. Space

required for column data depends on the datatype. If the datatype of a column is

variable length, the space required to hold a value can grow and shrink with

updates to the data.

To conserve space, a null in a column only stores the column length (zero). Oracle

does not store data for the null column. Also, for trailing null columns, Oracle does

not even store the column length. See "Nulls" on page 10-7.

Note: Each row also uses two bytes in the data block header’s row

directory. See "Row Directory" on page 4-4.
Schema Objects 10-5

Tables
Figure 10–3 The Format of a Row Piece

Clustered rows contain the same information as nonclustered rows. In addition,

they contain information that references the cluster key to which they belong. See

"Format of Clustered Data Blocks" on page 10-49.

Dropped or Unused Columns
You can drop a column from a table by using the DROP COLUMN option of the

ALTER TABLE command. This removes the column from the table description and

removes the column length and data from each row of the table, freeing space in the

data block.

Dropping a column in a large table takes a considerable amount of time. A quicker

alternative is to mark a column as unused with the SET UNUSED option of the

ALTER TABLE command. This makes the column data unavailable, although the

data remains in each row of the table. After marking a column as unused, you can

add another column that has the same name to the table. The unused column can

Row Header Column Data

Database
Block

Row Piece in a Database Block

Row Overhead

Number of Columns

Cluster Key ID (if clustered)

ROWID of Chained Row Pieces (if any)

Column Length

Column Value
10-6 Oracle8i Concepts

Tables
then be dropped at a later time when you want to reclaim the space occupied by the

column data.

Rowids of Row Pieces
The rowid identifies each row piece by its location or address. Once assigned, a

given row piece retains its rowid until the corresponding row is deleted, or

exported and imported using the Export and Import utilities. For clustered tables

(see "Clusters" on page 10-46) if the cluster key values of a row change, the row

keeps the same rowid, but also gets an additional pointer rowid for the new values.

Because rowids are constant for the lifetime of a row piece, it is useful to reference

rowids in SQL statements such as SELECT, UPDATE, and DELETE. See "Physical

Rowids" on page 12-16 for more information.

Column Order
The column order is the same for all rows in a given table. Columns are usually

stored in the order in which they were listed in the CREATE TABLE statement, but

this is not guaranteed. For example, if you create a table with a column of datatype

LONG, Oracle always stores this column last. Also, if a table is altered so that a new

column is added, the new column becomes the last column stored.

In general, you should try to place columns that frequently contain nulls last so that

rows take less space. Note, though, that if the table you are creating includes a

LONG column as well, the benefits of placing frequently null columns last are lost.

Nulls
A null is the absence of a value in a column of a row. Nulls indicate missing,

unknown, or inapplicable data. A null should not be used to imply any other value,

such as zero. A column allows nulls unless a NOT NULL or PRIMARY KEY

integrity constraint has been defined for the column, in which case no row can be

inserted without a value for that column.

Nulls are stored in the database if they fall between columns with data values. In

these cases they require one byte to store the length of the column (zero).

Additional Information: See the Oracle8i Administrator’s Guide for

information about how to drop columns or mark them as unused,

and see Oracle8i SQL Reference for details about the ALTER TABLE

command.
Schema Objects 10-7

Tables
Trailing nulls in a row require no storage because a new row header signals that the

remaining columns in the previous row are null (for example, if the last three

columns of a table are null, no information is stored for those columns). In tables

with many columns, the columns more likely to contain nulls should be defined last

to conserve disk space.

Most comparisons between nulls and other values are by definition neither true nor

false, but unknown. To identify nulls in SQL, use the IS NULL predicate. Use the

SQL function NVL to convert nulls to non-null values.

Nulls are not indexed, except when the cluster key column value is null or the index

is a bitmap index (see "Indexes and Nulls" on page 10-24 and "Bitmap Indexes and

Nulls" on page 10-35).

Default Values for Columns
You can assign a column of a table a default value so that when a new row is

inserted and a value for the column is omitted, a default value is supplied

automatically. Default column values work as though an INSERT statement actually

specifies the default value.

Legal default values include any literal or expression that does not refer to a

column, LEVEL, ROWNUM, or PRIOR. Default values can include the SQL

functions SYSDATE, USER, USERENV, and UID. The datatype of the default literal

or expression must match or be convertible to the column datatype.

If a default value is not explicitly defined for a column, the default for the column is

implicitly set to NULL.

Default Value Insertion and Integrity Constraint Checking
Integrity constraint checking occurs after the row with a default value is inserted.

For example, in Figure 10–4, a row is inserted into the EMP table that does not

include a value for the employee’s department number. Because no value is

supplied for the department number, Oracle inserts the DEPTNO column’s default

value "20". After inserting the default value, Oracle checks the FOREIGN KEY

integrity constraint defined on the DEPTNO column.

For more information about integrity constraints, see Chapter 28, "Data Integrity".

Additional Information: See Oracle8i SQL Reference for more

information about comparisons using IS NULL and the NVL

function.
10-8 Oracle8i Concepts

Tables
Figure 10–4 DEFAULT Column Values

Nested Tables
You can create a table with a column whose datatype is another table. That is, tables

can be nested within other tables as values in a column. The Oracle server stores

nested table data "out of line" from the rows of the parent table, using a store table
which is associated with the nested table column. The parent row contains a unique

set identifier value associated with a nested table instance.

Additional Information: See "Nested Tables" on page 13-12 and

Oracle8i Application Developer’s Guide - Fundamentals.

INSERT
INTO

Table DEPT

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Default Value
(if no value is given for
this column, the default
of 20 is used)

Table EMP

Foreign Key

New row to be inserted, without value
for DEPTNO column.

DEPTNO DNAME LOC

Parent Key

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7691 OSTER SALESMAN 7521 06–APR–90 2975.00 400.00

7329
7499
7521
7566
7691

SMITH
ALLEN
WARD
JONES
OSTER

CEO
VP_SALES
MANAGER
SALESMAN
SALESMAN

7329
7499
7521
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90
06–APR–90

9000.00
7500.00
5000.00
2975.00
2975.00

100.00
200.00
400.00
400.00

20
30
30
30
20
Schema Objects 10-9

Tables
Temporary Tables
In addition to permanent tables, Oracle can create temporary tables to hold

session-private data that exists only for the duration of a transaction or session.

The CREATE GLOBAL TEMPORARY TABLE command creates a temporary table

which can be transaction specific or session specific. For transaction-specific

temporary tables, data exists for the duration of the transaction while for

session-specific temporary tables, data exists for the duration of the session. Data in

a temporary table is private to the session. Each session can only see and modify its

own data. DML locks are not acquired on the data of the temporary tables. The

LOCK command has no effect on a temporary table as each session has its own

private data.

A TRUNCATE statement issued on a session-specific temporary table truncates

data in its own session; it does not truncate the data of other sessions that are using

the same table.

DML statements on temporary tables do not generate redo logs for the data

changes. However, undo logs for the data and redo logs for the undo logs are

generated. Data from the temporary table is automatically dropped in the case of

session termination, either when the user logs off or when the session terminates

abnormally such as during a session or instance crash.

You can create indexes for temporary tables using the CREATE INDEX command.

Indexes created on temporary tables are also temporary and the data in the index

has the same session or transaction scope as the data in the temporary table.

You can create views that access both temporary and permanent tables. You can also

create triggers on temporary tables.

The EXPORT and IMPORT utilities can export and import the definition of a

temporary table. However, no data rows are exported even if you use the ROWS

option. Similarly, you can replicate the definition of a temporary table but you

cannot replicate its data.

Segment Allocation
Temporary tables use temporary segments (see "Extents in Temporary Segments" on

page 4-16). Unlike permanent tables, temporary tables and their indexes do not

automatically allocate a segment when they are created. Instead, segments are

allocated when the first INSERT (or CREATE TABLE AS SELECT) is performed.

This means that if a SELECT, UPDATE, or DELETE is performed before the first

INSERT, then the table appears to be empty.
10-10 Oracle8i Concepts

Views
You can perform DDL commands (ALTER TABLE, DROP TABLE, CREATE INDEX,

and so on) on a temporary table only when no session is currently bound to it. A

session gets bound to a temporary table when an INSERT is performed on it. The

session gets unbound by a TRUNCATE, at session termination, or by doing a

COMMIT or ABORT for a transaction-specific temporary table.

Temporary segments are deallocated at the end of the transaction for

transaction-specific temporary tables and at the end of the session for

session-specific temporary tables.

Parent and Child Transactions
Transaction-specific temporary tables are accessible by user transactions and their

child transactions. However, a given transaction-specific temporary table cannot be

used concurrently by two transactions in the same session (although it can be used

by transactions in different sessions).

■ If a user transaction does an INSERT into the temporary table, then none of its

child transactions can use the temporary table afterwards.

■ If a child transaction does an INSERT into the temporary table, then at the end

of the child transaction, the data associated with the temporary table goes away.

After that, either the user transaction or any other child transaction can access

the temporary table.

Views
A view is a tailored presentation of the data contained in one or more tables (or

other views). A view takes the output of a query and treats it as a table; therefore, a

view can be thought of as a "stored query" or a "virtual table". You can use views in

most places where a table can be used.

For example, the EMP table has several columns and numerous rows of

information. If you only want users to see five of these columns, or only specific

rows, you can create a view of that table for other users to access.

Figure 10–5 shows an example of a view called STAFF derived from the base table

EMP. Notice that the view shows only five of the columns in the base table.
Schema Objects 10-11

Views
Figure 10–5 An Example of a View

Since views are derived from tables, they have many similarities. For example, you

can define views with up to 1000 columns, just like a table. You can query views,

and with some restrictions you can update, insert into, and delete from views. All

operations performed on a view actually affect data in some base table of the view

and are subject to the integrity constraints and triggers of the base tables.

Storage for Views
Unlike a table, a view is not allocated any storage space, nor does a view actually

contain data; rather, a view is defined by a query that extracts or derives data from

the tables the view references. These tables are called base tables. Base tables can in

turn be actual tables or can be views themselves (including snapshots). Because a

Additional Information: See Oracle8i SQL Reference.

Note: You cannot explicitly define integrity constraints and

triggers on views, but you can define them for the underlying base

tables referenced by the view.

EMPNO ENAME JOB

CLERK
SALESMAN
SALESMAN
MANAGER

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MGR

7902
7698
7698
7839

HIREDATE

17–DEC–88
20–FEB–88
22–FEB–88
02–APR–88

SAL COMM

800.00
1600.00
1250.00
2975.00

300.00
300.00
5.00

DEPTNO

20
30
30
20

EMPNO ENAME JOB

CLERK
SALESMAN
SALESMAN
MANAGER

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MGR

7902
7698
7698
7839

DEPTNO

20
30
30
20

EMP

STAFFView

Base
Table
10-12 Oracle8i Concepts

Views
view is based on other objects, a view requires no storage other than storage for the

definition of the view (the stored query) in the data dictionary.

How Views Are Used
Views provide a means to present a different representation of the data that resides

within the base tables. Views are very powerful because they allow you to tailor the

presentation of data to different types of users. Views are often used

■ to provide an additional level of table security by restricting access to a

predetermined set of rows and/or columns of a table

For example, Figure 10–5 shows how the STAFF view does not show the SAL or

COMM columns of the base table EMP.

■ to hide data complexity

For example, a single view might be defined with a join, which is a collection of

related columns or rows in multiple tables. However, the view hides the fact

that this information actually originates from several tables.

■ to simplify commands for the user

For example, views allow users to select information from multiple tables

without actually knowing how to perform a join.

■ to present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables

on which the view is based.

■ to isolate applications from changes in definitions of base tables

For example, if a view’s defining query references three columns of a four

column table and a fifth column is added to the table, the view’s definition is

not affected and all applications using the view are not affected.

■ to express a query that cannot be expressed without using a view

For example, a view can be defined that joins a GROUP BY view with a table, or

a view can be defined that joins a UNION view with a table.

■ to save complex queries

Additional Information: See the Oracle8i SQL Reference for

information about GROUP BY or UNION.
Schema Objects 10-13

Views
For example, a query could perform extensive calculations with table

information. By saving this query as a view, the calculations can be performed

each time the view is queried.

The Mechanics of Views
Oracle stores a view’s definition in the data dictionary as the text of the query that

defines the view. When you reference a view in a SQL statement, Oracle merges the

statement that references the view with the query that defines the view and then

parses the merged statement in a shared SQL area and executes it. Oracle parses a

statement that references a view in a new shared SQL area only if no existing shared

SQL area contains an identical statement. Therefore, you obtain the benefit of

reduced memory usage associated with shared SQL when you use views.

NLS Parameters
In evaluating views containing string literals or SQL functions that have NLS

parameters as arguments (such as TO_CHAR, TO_DATE, and TO_NUMBER),

Oracle takes default values for these parameters from the NLS parameters for the

session. You can override these default values by specifying NLS parameters

explicitly in the view definition.

Using Indexes
Oracle determines whether to use indexes for a query against a view by

transforming the original query when merging it with the view’s defining query.

Consider the view

CREATE VIEW emp_view AS
 SELECT empno, ename, sal, loc
 FROM emp, dept
 WHERE emp.deptno = dept.deptno AND
 dept.deptno = 10;

Now consider the following user-issued query:

SELECT ename
 FROM emp_view
 WHERE empno = 9876;

Additional Information: See the Oracle8i National Language Support
Guide for information about National Language Support.
10-14 Oracle8i Concepts

Views
The final query constructed by Oracle is

SELECT ename
 FROM emp, dept
 WHERE emp.deptno = dept.deptno AND
 dept.deptno = 10 AND
 emp.empno = 9876;

In all possible cases, Oracle merges a query against a view with the view’s defining

query (and those of any underlying views). Oracle optimizes the merged query as if

you issued the query without referencing the views. Therefore, Oracle can use

indexes on any referenced base table columns, whether the columns are referenced

in the view definition or in the user query against the view.

In some cases, Oracle cannot merge the view definition with the user-issued query.

In such cases, Oracle may not use all indexes on referenced columns.

See "Optimizing Statements That Access Views" on page 23-15 for more information

about query optimization.

Dependencies and Views
Because a view is defined by a query that references other objects (tables, snapshots,

or other views), a view is dependent on the referenced objects. Oracle automatically

handles the dependencies for views. For example, if you drop a base table of a view

and then recreate it, Oracle determines whether the new base table is acceptable to

the existing definition of the view. See Chapter 21, "Oracle Dependency

Management", for a complete discussion of dependencies in a database.

Updatable Join Views
A join view is defined as a view that has more than one table or view in its FROM

clause (a join) and that does not use any of these clauses: DISTINCT,

AGGREGATION, GROUP BY, START WITH, CONNECT BY, ROWNUM, and set

operations (UNION ALL, INTERSECT, and so on).

An updatable join view is a join view, which involves two or more base tables or

views, where UPDATE, INSERT, and DELETE operations are permitted. The data

dictionary views ALL_UPDATABLE_COLUMNS, DBA_UPDATABLE_COLUMNS,

and USER_UPDATABLE_COLUMNS contain information that indicates which of the

view columns are updatable.

Table 10–1 lists rules for updatable join views.
Schema Objects 10-15

Views
Views that are not updatable can be modified using INSTEAD OF triggers. See

"INSTEAD-OF Triggers" on page 20-12 for more information.

Object Views
In the Oracle object-relational database, object views allow you to retrieve, update,

insert, and delete relational data as if they were stored as object types. You can also

define views that have columns which are object datatypes, such as objects, REFs,

and collections (nested tables and VARRAYs).

Inline Views
An inline view is not a schema object, but rather it is a subquery with an alias

(correlation name) that you can use like a view within a SQL statement.

For example, this query joins the summary table SUMTAB to an inline view V

defined on the TIME table to obtain T.YEAR, and then rolls up the aggregates in

SUMTAB to the YEAR level:

SELECT v.year, s.prod_name, SUM(s.sum_sales)
FROM sumtab s,

(SELECT DISTINCT t.month, t.year FROM time t) v

Table 10–1 Rules for INSERT, UPDATE, and DELETE on Join Views

Rule Description

General Rule Any INSERT, UPDATE, or DELETE operation on a join view can
modify only one underlying base table at a time.

UPDATE Rule All updatable columns of a join view must map to columns of a key
preserved table. If the view is defined with the WITH CHECK
OPTION clause, then all join columns and all columns of repeated
tables are non-updatable.

DELETE Rule Rows from a join view can be deleted as long as there is exactly one
key-preserved table in the join. If the view is defined with the WITH
CHECK OPTION clause and the key preserved table is repeated, then
the rows cannot be deleted from the view.

INSERT Rule An INSERT statement must not explicitly or implicitly refer to the
columns of a non-key preserved table. If the join view is defined with
the WITH CHECK OPTION clause, INSERT statements are not
permitted.

Additional Information: See Chapter 15, "Object Views" and the

Oracle8i Application Developer’s Guide - Fundamentals.
10-16 Oracle8i Concepts

Materialized Views
WHERE s.month = v.month
GROUP BY v.year, s.prod_name;

Materialized Views
Materialized views are schema objects that can be used to summarize, precompute,

replicate, and distribute data. They are suitable in various computing environments

such as data warehousing, decision support, and distributed or mobile computing.

■ In data warehouses, materialized views are used to precompute and store

aggregated data such as sums and averages. Materialized views in these

environments are typically referred to as summaries since they store

summarized data. They can also be used to precompute joins with or without

aggregations.

Cost-based optimization can make use of materialized views to improve query

performance by automatically recognizing when a materialized view can and

should be used to satisfy a request. The optimizer transparently rewrites the

request to use the materialized view. Queries are then directed to the

materialized view and not to the underlying detail tables or views.

■ In distributed environments, materialized views (also called snapshots) are used

to replicate data at distributed sites and synchronize updates done at several

sites with conflict resolution methods. The materialized views as replicas

provide local access to data which otherwise would have to be accessed from

remote sites.

■ In mobile computing environments, materialized views are used to download a

subset of data from central servers to mobile clients, with periodic refreshes

from the central servers and propagation of updates by clients back to the

central servers.

Materialized views are similar to indexes in several ways: they consume storage

space, they must be refreshed when the data in their master tables changes, and,

when used for query rewrites, they improve the performance of SQL execution and

their existence is transparent to SQL applications and users. (See "Indexes" on

page 10-21.) Unlike indexes, materialized views can be accessed directly using a

SELECT statement and, depending on the types of refresh that are required, they

can also be accessed directly in an INSERT, UPDATE, or DELETE statement.

Additional Information: See the Oracle8i SQL Reference for

information about subqueries.
Schema Objects 10-17

Dimensions
A materialized view can be partitioned, and you can define a materialized view on

a partitioned table and one or more indexes on the materialized view. For more

information about partitioning, see Chapter 11, "Partitioned Tables and Indexes".

Refreshing Materialized Views
Oracle maintains the data in materialized views by refreshing them after changes

are made to their master tables. The refresh method can be incremental (fast refresh)
or complete. For materialized views that use the fast refresh method, a materialized
view log or direct loader log keeps a record of changes to the master tables.

Materialized views can be refreshed either on demand or at regular time intervals.

Alternatively, materialized views in the same database as their master tables can be

refreshed whenever a transaction commits its changes to the master tables.

Materialized View Logs
A materialized view log is a schema object that records changes to a master table’s

data so that a materialized view defined on the master table can be refreshed

incrementally. Another name for materialize view log is snapshot log.

Each materialized view log is associated with a single master table. The

materialized view log resides in the same database and schema as its master table.

Dimensions
A dimension is a schema object that defines hierarchical relationships between pairs

of columns or column sets. A hierarchical relationship is a functional dependency
from one level of a hierarchy to the next level in the hierarchy. A dimension is a

container of logical relationships between columns and does not have any data

storage assigned to it.

The CREATE DIMENSION statement specifies:

■ multiple LEVEL clauses, each of which identifies a column or column set in the

dimension

■ one or more HIERARCHY clauses that specify the parent/child relationships

between adjacent levels

Additional Information: Oracle8i Tuning describes materialized

views and materialized view logs in a warehousing environment

and Oracle8i Replication describes materialized views (snapshots)

used for replication.
10-18 Oracle8i Concepts

The Sequence Generator
■ optional ATTRIBUTE clauses, each of which identifies an additional column or

column set associated with an individual level

The columns in a dimension can come either from the same table (denormalized) or

from multiple tables (fully or partially normalized). To define a dimension over

columns from multiple tables, you connect the tables using the JOIN KEY option of

the HIERARCHY clause.

For example, a normalized time dimension might include a date table, a month

table, and a year table, with join conditions that connect each date row to a month

row, and each month row to a year row. In a fully denormalized time dimension,

the date, month, and year columns would all be in the same table. Whether

normalized or denormalized, the hierarchical relationships among the columns

need to be specified in the CREATE DIMENSION statement.

The Sequence Generator
The sequence generator provides a sequential series of numbers. The sequence

generator is especially useful in multi-user environments for generating unique

sequential numbers without the overhead of disk I/O or transaction locking.

Therefore, the sequence generator reduces "serialization" where the statements of

two transactions must generate sequential numbers at the same time. By avoiding

the serialization that results when multiple users wait for each other to generate and

use a sequence number, the sequence generator improves transaction throughput

and a user’s wait is considerably shorter.

Sequence numbers are Oracle integers defined in the database of up to 38 digits. A

sequence definition indicates general information: the name of the sequence,

whether it ascends or descends, the interval between numbers, and other

information. One important part of a sequence’s definition is whether Oracle should

cache sets of generated sequence numbers in memory.

Oracle stores the definitions of all sequences for a particular database as rows in a

single data dictionary table in the SYSTEM tablespace. Therefore, all sequence

definitions are always available, because the SYSTEM tablespace is always online.

Sequence numbers are used by SQL statements that reference the sequence. You can

issue a statement to generate a new sequence number or use the current sequence

number. Once a statement in a user’s session generates a sequence number, the

particular sequence number is available only to that session; each user that

references a sequence has access to its own, current sequence number.

Additional Information: Oracle8i Tuning describes how dimensions

are used in a warehousing environment.
Schema Objects 10-19

Synonyms
Sequence numbers are generated independently of tables. Therefore, the same

sequence generator can be used for one or for multiple tables. Sequence number

generation is useful to generate unique primary keys for your data automatically

and to coordinate keys across multiple rows or tables. Individual sequence numbers

can be skipped if they were generated and used in a transaction that was ultimately

rolled back. Applications can make provisions to catch and reuse these sequence

numbers, if desired.

Synonyms
A synonym is an alias for any table, view, snapshot, sequence, procedure, function,

or package. Because a synonym is simply an alias, it requires no storage other than

its definition in the data dictionary.

Synonyms are often used for security and convenience. For example, they can do

the following:

■ mask the name and owner of an object

■ provide location transparency for remote objects of a distributed database

■ simplify SQL statements for database users

You can create both public and private synonyms. A public synonym is owned by the

special user group named PUBLIC and every user in a database can access it. A private
synonym is in the schema of a specific user who has control over its availability to others.

Synonyms are very useful in both distributed and nondistributed database

environments because they hide the identity of the underlying object, including its

location in a distributed system. This is advantageous because if the underlying

object must be renamed or moved, only the synonym needs to be redefined and

applications based on the synonym continue to function without modification.

Synonyms can also simplify SQL statements for users in a distributed database

system. The following example shows how and why public synonyms are often

created by a database administrator to hide the identity of a base table and reduce

the complexity of SQL statements. Assume the following:

■ A table called SALES_DATA is in the schema owned by the user JWARD.

■ The SELECT privilege for the SALES_DATA table is granted to PUBLIC.

Additional Information: For performance implications when using

sequences, see the Oracle8i Application Developer’s Guide -
Fundamentals.
10-20 Oracle8i Concepts

Indexes
At this point, you would have to query the table SALES_DATA with a SQL

statement similar to the one below:

SELECT * FROM jward.sales_data;

Notice how you must include both the schema that contains the table along with the

table name to perform the query.

Assume that the database administrator creates a public synonym with the

following SQL statement:

CREATE PUBLIC SYNONYM sales FOR jward.sales_data;

After the public synonym is created, you can query the table SALES_DATA with a

simple SQL statement:

SELECT * FROM sales;

Notice that the public synonym SALES hides the name of the table SALES_DATA

and the name of the schema that contains the table.

Indexes
Indexes are optional structures associated with tables and clusters. You can create

indexes on one or more columns of a table to speed SQL statement execution on

that table. Just as the index in this manual helps you locate information faster than

if there were no index, an Oracle index provides a faster access path to table data.

Indexes are the primary means of reducing disk I/O when properly used.

You can create an unlimited number of indexes for a table provided that the

combination of columns differs for each index. You can create more than one index

using the same columns provided that you specify distinctly different combinations

of the columns. For example, the following statements specify valid combinations:

CREATE INDEX emp_idx1 ON emp (ename, job);
CREATE INDEX emp_idx2 ON emp (job, ename);

You cannot create an index that references only one column in a table if another

such index already exists.

Oracle provides several indexing schemes, which provide complementary

performance functionality: B*-tree indexes (currently the most common), B*-tree

cluster indexes, hash cluster indexes, reverse key indexes, and bitmap indexes.

Oracle also provides support for function-based indexes and domain indexes

specific to an application or cartridge.
Schema Objects 10-21

Indexes
The absence or presence of an index does not require a change in the wording of

any SQL statement. An index is merely a fast access path to the data; it affects only

the speed of execution. Given a data value that has been indexed, the index points

directly to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table.

You can create or drop an index at anytime without affecting the base tables or

other indexes. If you drop an index, all applications continue to work; however,

access of previously indexed data might be slower. Indexes, as independent

structures, require storage space.

Oracle automatically maintains and uses indexes once they are created. Oracle

automatically reflects changes to data, such as adding new rows, updating rows, or

deleting rows, in all relevant indexes with no additional action by users.

Retrieval performance of indexed data remains almost constant, even as new rows

are inserted. However, the presence of many indexes on a table decreases the

performance of updates, deletes, and inserts because Oracle must also update the

indexes associated with the table.

The optimizer can use an existing index to build another index. This results in a

much faster index build.

Unique and Nonunique Indexes
Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of

a table have duplicate values in the columns that define the index. Nonunique

indexes do not impose this restriction on the column values.

Oracle recommends that you do not explicitly define unique indexes on tables;

uniqueness is strictly a logical concept and should be associated with the definition

of a table. Alternatively, define UNIQUE integrity constraints on the desired

columns. Oracle enforces UNIQUE integrity constraints by automatically defining a

unique index on the unique key.

Composite Indexes
A composite index (also called a concatenated index) is an index that you create on multiple

columns in a table. Columns in a composite index can appear in any order and need not be

adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the

WHERE clause references all or the leading portion of the columns in the composite
10-22 Oracle8i Concepts

Indexes
index. Therefore, the order of the columns used in the definition is important;

generally, the most commonly accessed or most selective columns go first.

Figure 10–6 illustrates the VENDOR_PARTS table that has a composite index on the

VENDOR_ID and PART_NO columns.

Figure 10–6 Indexes, Primary Keys, Unique Keys, and Foreign Keys

No more than 32 columns can form a regular composite index, and for a bitmap

index the maximum number columns is 30. A key value cannot exceed roughly

one-half (minus some overhead) the available data space in a data block.

Indexes and Keys
Although the terms are often used interchangeably, you should understand the

distinction between "indexes" and "keys". Indexes are structures actually stored in the

database, which users create, alter, and drop using SQL statements. You create an index to

provide a fast access path to table data. Keys are strictly a logical concept. Keys correspond

to another feature of Oracle called integrity constraints, which enforce the business rules

of a database (see Chapter 28, "Data Integrity").

Because Oracle uses indexes to enforce some integrity constraints, the terms key

and index are often are used interchangeably; however, they should not be confused

with each other.

Additional Information: See Oracle8i Tuning for more information.

VENDOR_PARTS
VEND ID PART NO UNIT COST

.25

.39
4.95

.27
5.10
1.33
1.19
5.28

10–440
10–441

457
10–440

457
08–300
08–300

457

1012
1012
1012
1010
1010
1220
1012
1292

Concatenated Index
(index with multiple columns)
Schema Objects 10-23

Indexes
Indexes and Nulls
NULL values in indexes are considered to be distinct except when all the

non-NULL values in two or more rows of an index are identical, in which case the

rows are considered to be identical. Therefore, UNIQUE indexes prevent rows

containing NULL values from being treated as identical. This does not apply if there

are no non-NULL values—in other words, if the rows are entirely NULL.

Oracle does not index table rows in which all key columns are NULL, except in the

case of bitmap indexes (see "Bitmap Indexes and Nulls" on page 10-35) or when the

cluster key column value is null.

Function-Based Indexes
You can create indexes on functions and expressions that involve one or more

columns in the table being indexed. A function-based index precomputes the value of

the function or expression and stores it in the index. You can create a function-based

index as either B*-tree or bitmap index (see "Bitmap Indexes" on page 10-32).

The function used for building the index can be an arithmetic expression or an

expression that contains a PL/SQL function, package function, C callout, or SQL

function. The expression cannot contain any aggregate functions, and it must be

DETERMINISTIC (see "DETERMINISTIC Functions" on page 23-9). For building an

index on a column containing an object type, the function can be a method of that

object, such as a map method. However, you cannot build a function-based index

on a LOB column, REF, or nested table column; nor can you build a function-based

index if the object type contains a LOB, REF, or nested table.

Uses of Function-Based Indexes
Function-based indexes provide an efficient mechanism for evaluating statements

that contain functions in their WHERE clauses. You can create a function-based

index to materialize computational-intensive expressions in the index, so that

Oracle does not need to compute the value of the expression when processing

SELECT and DELETE statements. When processing INSERT and UPDATE

statements, however, Oracle must still evaluate the function to process the

statement.

For example, if you create the following index:

CREATE INDEX idx ON table_1 (a + b * (c - 1), a, b);

then Oracle can use it when processing queries such as this:

SELECT a FROM table_1 WHERE a + b * (c - 1) < 100;
10-24 Oracle8i Concepts

Indexes
Function-based indexes defined on UPPER(column_name) or LOWER(column_name)

can facilitate case-insensitive searches. For example, the following index:

CREATE INDEX uppercase_idx ON emp (UPPER(empname));

can facilitate processing queries such as this:

SELECT * FROM emp WHERE UPPER(empname) = ’RICHARD’;

A function-based index can also be used for an NLS sort index that provides

efficient linguistic collation in SQL statements.

Optimization with Function-Based Indexes
You must gather statistics about function-based indexes for the optimizer (see

"Statistics for Cost-Based Optimization" on page 22-8); otherwise, the indexes

cannot be used to process SQL statements. Rule-based optimization never uses

function-based indexes.

Cost-based optimization can use an index range scan on a function-based index for

queries with expressions in WHERE clause. (See "Index Scans" on page 23-35 and

"Access Paths" on page 23-36.) For example, in this query:

select * from T where a + b < 10;

the optimizer can use index range scan if an index is built on a+b. The range scan

access path is especially beneficial when the predicate (WHERE clause) has low

selectivity. In addition, the optimizer can estimate the selectivity of predicates

involving expressions more accurately if the expressions are materialized in a

function-based index.

The optimizer performs expression matching by parsing the expression in a SQL

statement and then comparing the expression trees of the statement and the

function-based index. This comparison is case-insensitive and ignores blank spaces.

See "Evaluation of Expressions and Conditions" on page 23-4 for details about how

the optimizer evaluates expressions.

Additional Information: See the Oracle8i National Language Support
Guide for information about NLS sort indexes.
Schema Objects 10-25

Indexes
Dependencies of Function-Based Indexes
Function-based indexes depend on the function used in the expression that defines

the index. If the function is a PL/SQL function or package function, the index will

be disabled by any changes to the function specification.

PL/SQL functions used in defining function-based indexes must be

DETERMINISTIC (see "DETERMINISTIC Functions" on page 23-9). The index

owner needs the EXECUTE privilege on the defining function. If the EXECUTE

privilege is revoked, the function-based index is marked DISABLED.

See "Function-Based Index Dependencies" on page 21-7 for more information about

dependencies and privileges for function-based indexes.

How Indexes Are Stored
When you create an index, Oracle automatically allocates an index segment to hold

the index’s data in a tablespace. You control allocation of space for an index’s

segment and use of this reserved space in the following ways:

■ Set the storage parameters for the index segment to control the allocation of the

index segment’s extents.

■ Set the PCTFREE parameter for the index segment to control the free space in

the data blocks that constitute the index segment’s extents.

The tablespace of an index’s segment is either the owner’s default tablespace or a

tablespace specifically named in the CREATE INDEX statement. You do not have to

place an index in the same tablespace as its associated table. Furthermore, you can

improve performance of queries that use an index by storing an index and its table

in different tablespaces located on different disk drives because Oracle can retrieve

both index and table data in parallel. See "User Tablespace Settings and Quotas" on

page 29-13.

Format of Index Blocks
Space available for index data is the Oracle block size minus block overhead, entry

overhead, rowid, and one length byte per value indexed. The number of bytes

required for the overhead of an index block is operating system dependent.

Additional Information: See your Oracle operating-system-specific

documentation for information about the overhead of an index

block.
10-26 Oracle8i Concepts

Indexes
When you create an index, Oracle fetches and sorts the columns to be indexed, and

stores the rowid along with the index value for each row. Then Oracle loads the

index from the bottom up. For example, consider the statement:

CREATE INDEX emp_ename ON emp(ename);

Oracle sorts the EMP table on the ENAME column. It then loads the index with the

ENAME and corresponding rowid values in this sorted order. When it uses the

index, Oracle does a quick search through the sorted ENAME values and then uses

the associated rowid values to locate the rows having the sought ENAME value.

Although Oracle accepts the keywords ASC, DESC, COMPRESS, and

NOCOMPRESS in the CREATE INDEX command, they have no effect on index

data, which is stored using rear compression in the branch nodes but not in the leaf

nodes.

The Internal Structure of Indexes
Oracle uses B*-tree indexes that are balanced to equalize access times to any row.

The theory of B*-tree indexes is beyond the scope of this manual; for more

information you can refer to computer science texts dealing with data structures.

Figure 10–7 illustrates the structure of a B*-tree index.
Schema Objects 10-27

Indexes
Figure 10–7 Internal Structure of a B*-Tree Index

The upper blocks (branch blocks) of a B*-tree index contain index data that points to lower

level index blocks. The lowest level index blocks (leaf blocks) contain every indexed data

value and a corresponding rowid used to locate the actual row; the leaf blocks are doubly

linked. Indexes in columns containing character data are based on the binary values of the

characters in the database character set.

For a unique index, there is one rowid per data value. For a nonunique index, the

rowid is included in the key in sorted order, so nonunique indexes are sorted by the

index key and rowid. Key values containing all nulls are not indexed, except for

cluster indexes. Two rows can both contain all nulls and not violate a unique index.

KING
MILLER
TURNER

JAMES
JONES

KING
MARTIN

BLAKE
CLARK
FORD

MILLER
SCOTT
SMITH

TURNER
WARD

ADAMS
ALLEN

<KING
KING

<BLAKE
BLAKE
JAMES

BLAKE–ROWID
CLARK–ROWID
FORD–ROWID
10-28 Oracle8i Concepts

Indexes
Advantages of B*-Tree Structure
The B*-tree structure has the following advantages:

■ All leaf blocks of the tree are at the same depth, so retrieval of any record from

anywhere in the index takes approximately the same amount of time.

■ B*-tree indexes automatically stay balanced.

■ All blocks of the B*-tree are three-quarters full on the average.

■ B*-trees provide excellent retrieval performance for a wide range of queries,

including exact match and range searches.

■ Inserts, updates, and deletes are efficient, maintaining key order for fast

retrieval.

■ B*-tree performance is good for both small and large tables, and does not

degrade as the size of a table grows.

Key Compression
Key compression allows you to compress portions of the primary key column

values in an index (or index-organized table), which reduces the storage overhead

of repeated values.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If

the key is not defined to have a unique piece, Oracle provides one in the form of a

rowid appended to the grouping piece. Key compression is a method of breaking

off the grouping piece and storing it so it can be shared by multiple unique pieces.

Prefix and Suffix Entries
Key compression breaks the index key into a prefix entry (the grouping piece) and a

suffix entry (the unique piece). Compression is achieved by sharing the prefix

entries among the suffix entries in an index block. Only keys in the leaf blocks of a

B*-tree index are compressed. In the branch blocks the key suffix can be truncated

but the key is not compressed.

Key compression is done within an index block but not across multiple index

blocks. Suffix entries form the compressed version of index rows. Each suffix entry

references a prefix entry, which is stored in the same index block as the suffix entry.

By default the prefix consists of all key columns excluding the last one. For

example, in a key made up of three columns (column1, column2, column3) the

default prefix is (column1, column2). For a list of values (1,2,3), (1,2,4), (1,2,7),
Schema Objects 10-29

Indexes
(1,3,5), (1,3,4), (1,4,4) the repeated occurrences of (1,2), (1,3) in the prefix are

compressed.

Alternatively, you can specify the prefix length, which is the number of columns in

the prefix. For example, if you specify prefix length 1 then the prefix is column1 and

the suffix is (column2, column3). For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5),

(1,3,4), (1,4,4) the repeated occurrences of 1 in the prefix are compressed.

The maximum prefix length for a non-unique index is the number of key columns,

and the maximum prefix length for a unique index is the number of key columns

minus one.

Prefix entries are written to the index block only if the index block does not already

contain a prefix entry whose value is equal to the present prefix entry. Prefix entries

are available for sharing immediately after being written to the index block and

remain available until the last deleted referencing suffix entry is cleaned out of the

index block.

Performance and Storage Considerations
Key compression can lead to a huge saving in space, allowing you to store more

keys per index block which can lead to less I/O and better performance.

Although key compression reduces the storage requirements of an index, it may

increase the CPU time required to reconstruct the key column values during an

index scan. It also incurs some additional storage overhead, because every prefix

entry has an overhead of four bytes associated with it.

Uses of Key Compression
Key compression is useful in many different scenarios, such as:

■ In a non-unique regular index, Oracle stores duplicate keys with the rowid

appended to the key to break the duplicate rows. If key compression is used,

Oracle stores the duplicate key as a prefix entry on the index block without the

rowid. The rest of the rows are suffix entries that consist of only the rowid.

■ This same behavior can be seen in a unique index that has a key of the form

(item, timestamp), for example (stock_ticker, transaction_time). Thousands of

rows might have the same stock_ticker value, with transaction_time preserving

uniqueness. On a particular index block a stock_ticker value is stored only once

as a prefix entry. Other entries on the index block are transaction_time values

stored as suffix entries that reference the common stock_ticker prefix entry.

■ In an index-organized table that contains a VARRAY or NESTED TABLE

datatype, the object ID (OID) is repeated for each element of the collection
10-30 Oracle8i Concepts

Indexes
datatype. Key compression allows you to compress the repeating OID values.

(See "Index-Organized Tables" on page 10-36.)

In some cases, however, key compression cannot be used. For example, in a unique

index with a single attribute key, key compression is not possible because there is a

unique piece but there are no grouping pieces to share.

Reverse Key Indexes
Creating a reverse key index, compared to a standard index, reverses the bytes of each

column indexed (except the rowid) while keeping the column order. Such an

arrangement can help avoid performance degradation in indexes in an Oracle

Parallel Server environment where modifications to the index are concentrated on a

small set of leaf blocks. By reversing the keys of the index, the insertions become

distributed across all leaf keys in the index.

Using the reverse key arrangement eliminates the ability to run an index range

scanning query on the index. Because lexically adjacent keys are not stored next to

each other in a reverse-key index, only fetch-by-key or full-index (table) scans can

be performed.

Under some circumstances using a reverse-key index can make an OLTP Oracle

Parallel Server application faster. For example, keeping the index of mail messages

in Oracle Office: some users keep old messages around, and the index must

maintain pointers to these as well as to the most recent.

The REVERSE keyword provides a simple mechanism for creating a reverse key

index. You can specify the keyword REVERSE along with the optional index

specifications in a CREATE INDEX statement:

CREATE INDEX i ON t (a,b,c) REVERSE;

You can specify the keyword NOREVERSE to REBUILD a reverse-key index into

one that is not reverse keyed:

ALTER INDEX i REBUILD NOREVERSE;

Rebuilding a reverse-key index without the NOREVERSE keyword produces a

rebuilt, reverse-key index. You cannot rebuild a normal index as a reverse key

index; you must use the CREATE command instead.
Schema Objects 10-31

Indexes
Bitmap Indexes

The purpose of an index is to provide pointers to the rows in a table that contain a

given key value. In a regular index, this is achieved by storing a list of rowids for

each key corresponding to the rows with that key value. (Oracle stores each key

value repeatedly with each stored rowid.) In a bitmap index, a bitmap for each key

value is used instead of a list of rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means

that the row with the corresponding rowid contains the key value. A mapping

function converts the bit position to an actual rowid, so the bitmap index provides

the same functionality as a regular index even though it uses a different

representation internally. If the number of different key values is small, bitmap

indexes are very space efficient.

Bitmap indexing efficiently merges indexes that correspond to several conditions in

a WHERE clause. Rows that satisfy some, but not all conditions are filtered out

before the table itself is accessed. This improves response time, often dramatically.

Benefits for Data Warehousing Applications
Bitmap indexing benefits data warehousing applications which have large amounts

of data and ad hoc queries, but a low level of concurrent transactions. For such

applications, bitmap indexing provides:

■ reduced response time for large classes of ad hoc queries

■ a substantial reduction of space usage compared to other indexing techniques

■ dramatic performance gains even on very low end hardware

■ very efficient parallel DML and loads

Fully indexing a large table with a traditional B*-tree index can be prohibitively

expensive in terms of space since the index can be several times larger than the data

in the table. Bitmap indexes are typically only a fraction of the size of the indexed

data in the table.

Attention: Bitmap indexes are available only if you have

purchased the Oracle8i Enterprise Edition. See Getting to Know
Oracle8i for more information about the features available in

Oracle8i and the Oracle8i Enterprise Edition.
10-32 Oracle8i Concepts

Indexes
Bitmap indexes are not suitable for OLTP applications with large numbers of

concurrent transactions modifying the data. These indexes are primarily intended

for decision support (DSS) in data warehousing applications where users typically

query the data rather than update it.

Bitmap indexes are integrated with the Oracle cost-based optimization approach

and execution engine. They can be used seamlessly in combination with other

Oracle execution methods. For example, the optimizer can decide to perform a hash

join between two tables using a bitmap index on one table and a regular B*-tree

index on the other. The optimizer considers bitmap indexes and other available

access methods, such as regular B*-tree indexes and full table scan, and chooses the

most efficient method, taking parallelism into account where appropriate.

Parallel query and parallel DML work with bitmap indexes as with traditional

indexes. (Bitmap indexes on partitioned tables must be local indexes; see "Index

Partitioning" on page 11-29 for more information.) Parallel create index and

concatenated indexes are also supported.

Cardinality
The advantages of using bitmap indexes are greatest for low cardinality columns:

that is, columns in which the number of distinct values is small compared to the

number of rows in the table. If the values in a column are repeated more than a

hundred times, the column is a candidate for a bitmap index. Even columns with a

lower number of repetitions (and thus higher cardinality), can be candidates if they

tend to be involved in complex conditions in the WHERE clauses of queries.

For example, on a table with one million rows, a column with 10,000 distinct values

is a candidate for a bitmap index. A bitmap index on this column can out-perform a

B*-tree index, particularly when this column is often queried in conjunction with

other columns.

B*-tree indexes are most effective for high-cardinality data: that is, data with many

possible values, such as CUSTOMER_NAME or PHONE_NUMBER. A regular

B*-tree index can be several times larger than the indexed data. Used appropriately,

bitmap indexes can be significantly smaller than a corresponding B*-tree index.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve

query performance. AND and OR conditions in the WHERE clause of a query can

be quickly resolved by performing the corresponding boolean operations directly

on the bitmaps before converting the resulting bitmap to rowids. If the resulting

number of rows is small, the query can be answered very quickly without resorting

to a full table scan of the table.
Schema Objects 10-33

Indexes
Bitmap Index Example
Table 10–2 shows a portion of a company’s customer data.

Since MARITAL_STATUS, REGION, GENDER, and INCOME_LEVEL are all

low-cardinality columns (there are only three possible values for marital status and

region, two possible values for gender, and four for income level) it is appropriate

to create bitmap indexes on these columns. A bitmap index should not be created

on CUSTOMER# because this is a high-cardinality column. Instead, a unique B*-tree

index on this column in order would provide the most efficient representation and

retrieval.

Table 10–3 illustrates the bitmap index for the REGION column in this example. It

consists of three separate bitmaps, one for each region.

Table 10–2 Bitmap Index Example

CUSTOMER #
MARITAL_
STATUS REGION GENDER

INCOME_
LEVEL

101 single east male bracket_1

102 married central female bracket_4

103 married west female bracket_2

104 divorced west male bracket_4

105 single central female bracket_2

106 married central female bracket_3

Table 10–3 Sample Bitmap

REGION=’east’ REGION=’central’ REGION=’west’

1 0 0

0 1 0

0 0 1

0 0 1

0 1 0

0 1 0
10-34 Oracle8i Concepts

Indexes
Each entry (or "bit") in the bitmap corresponds to a single row of the CUSTOMER

table. The value of each bit depends upon the values of the corresponding row in

the table. For instance, the bitmap REGION=’east’ contains a one as its first bit: this

is because the region is "east" in the first row of the CUSTOMER table. The bitmap

REGION=’east’ has a zero for its other bits because none of the other rows of the

table contain "east" as their value for REGION.

An analyst investigating demographic trends of the company’s customers might

ask, "How many of our married customers live in the central or west regions?" This

corresponds to the following SQL query:

SELECT COUNT(*) FROM CUSTOMER
 WHERE MARITAL_STATUS = ’married’ AND REGION IN (’central’,’west’);

Bitmap indexes can process this query with great efficiency by merely counting the

number of ones in the resulting bitmap, as illustrated in Figure 10–8. To identify the

specific customers who satisfy the criteria, the resulting bitmap would be used to

access the table.

Figure 10–8 Executing a Query Using Bitmap Indexes

Bitmap Indexes and Nulls
Bitmap indexes include rows that have NULL values, unlike most other types of

indexes. Indexing of nulls can be useful for some types of SQL statements, such as

queries with the aggregate function COUNT.

AND OR = AND =

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

0

1

0

1

1

1

1

1

0

1

1

0

0

1

status =
'married'

region =
'central'

region =
'west'
Schema Objects 10-35

Index-Organized Tables
Example 1

SELECT COUNT(*) FROM EMP;

Any bitmap index can be used for this query because all table rows are indexed,

including those that have NULL data. If nulls were not indexed, the optimizer

would only be able to use indexes on columns with NOT NULL constraints.

Example 2

SELECT COUNT(*) FROM EMP WHERE COMM IS NULL;

This query can be optimized with a bitmap index on COMM.

Example 3

SELECT COUNT(*) FROM CUSTOMER WHERE GENDER = ’M’ AND STATE != ’CA’;

This query can be answered by finding the bitmap for GENDER = ’M’ and

subtracting the bitmap for STATE = ’CA’. If STATE may contain null values (that is,

if it does not have a NOT NULL constraint), then the bitmaps for STATE = ’NULL’

must also be subtracted from the result.

Bitmap Indexes on Partitioned Tables
Like other indexes, you can create bitmap indexes on partitioned tables. The only

restriction is that bitmap indexes must be local to the partitioned table—they cannot

be global indexes. (Global bitmap indexes are supported only on nonpartitioned

tables).

For information about partitioned tables and descriptions of local and global

indexes, see Chapter 11, "Partitioned Tables and Indexes".

Index-Organized Tables
An index-organized table differs from an ordinary table in that the data for the table is

held in its associated index. Changes to the table data, such as adding new rows,

updating rows, or deleting rows, result only in updating the index.

The index-organized table is like an ordinary table with an index on one or more of

its columns, but instead of maintaining two separate storages for the table and the

B*-tree index, the database system only maintains a single B*-tree index which

Additional Information: Oracle8i Tuning contains information

about using bitmap indexes.
10-36 Oracle8i Concepts

Index-Organized Tables
contains both the encoded key value and the associated column values for the

corresponding row. Rather than having a row’s rowid as the second element of the

index entry, the actual data row is stored in the B*-tree index. The data rows are

built on the primary key for the table, and each B*-tree index entry contains

<primary_key_value, non_primary_key_column_values> .

Index-organized tables are suitable for accessing data by the primary key or any

key that is a valid prefix of the primary key. There is no duplication of key values

because only non-key column values are stored with the key. You can build

secondary indexes to provide efficient access by other columns (see "Secondary

Indexes on Index-Organized Tables" on page 10-39).

Applications manipulate the index-organized table just like an ordinary table, using

SQL statements. However, the database system performs all operations by

manipulating the corresponding B*-tree index.

Table 10–4 summarizes the differences between index-organized tables and

ordinary tables.

Table 10–4 Comparison of Index-Organized Tables with Ordinary Tables

Ordinary Table Index-Organized Table

Rowid uniquely identifies a row; primary
key can be optionally specified

Primary key uniquely identifies a row;
primary key must be specified

Physical rowid in ROWID pseudocolumn
allows building secondary indexes

Logical rowid in ROWID pseudocolumn
allows building secondary indexes

Rowid based access Primary key based access

Sequential scan returns all rows Full-index scan returns all rows in primary
key order

UNIQUE constraint and triggers allowed UNIQUE constraint not allowed but triggers
are allowed

Can be stored in a cluster with other tables Cannot be stored in a cluster

Can contain a column of the LONG datatype
and columns of LOB datatypes

Can contain LOB columns but not LONG
columns

Distribution and replication supported Distribution and replication not supported

Additional Information: See Oracle8i Administrator’s Guide for

information about how to create and maintain index-organized

tables.
Schema Objects 10-37

Index-Organized Tables
Benefits of Index-Organized Tables
Because data rows are stored in the index, index-organized tables provide faster

key-based access to table data for queries that involve exact match or range search,

or both. The storage requirements are reduced because key columns are not

duplicated as they are in an ordinary table and its index. The data row stored with

the key in an index-organized table only contains non-key column values. Also,

placing the data row with the key eliminates the additional storage that an index on

an ordinary table requires for physical rowids, which link the key values to

corresponding rows in the table.

Collection Datatypes and Key Compression
Index-organized tables can contain the collection datatypes VARRAY and NESTED

TABLE, which store an object ID (OID) for each element of the collection. The

storage overhead of 16 bytes per element for the OID is unnecessary, because OIDs

are repeated for all elements in a collection. Key compression allows you to

compress the repeating OID values in the leaf blocks of an index-organized table.

See "Key Compression" on page 10-29.

Index-Organized Tables with Row Overflow Area
B*-tree index entries are usually quite small since they only consist of the pair

<key, ROWID> . In index-organized tables, however, the B*-tree index entries can

be very large since they consist of the pair <key, non_key_column_values> .

If the index entry gets very large then the leaf nodes may end up storing one row or

row-piece thereby destroying the dense clustering property of the B*-tree index.

Oracle provides an OVERFLOW clause to handle this problem. You can specify an

overflow tablespace as well as a threshold value. The threshold is specified as a

percentage of the block size (PCTTHRESHOLD).

If the row size is greater than the specified threshold value, then the non-key

column values for the row that exceeds the threshold are stored in the specified

overflow tablespace. In such a case the index entry contains a <key, rowhead>
pair, where the rowhead contains the beginning portion of the rest of the columns. It

is like a regular row-piece, except it points to an overflow row-piece that contains

the remaining column values.

Additional Information: See the Oracle8i Administrator’s Guide for

examples of using the OVERFLOW clause.
10-38 Oracle8i Concepts

Index-Organized Tables
Secondary Indexes on Index-Organized Tables
Secondary index support on index-organized tables provides efficient access to

index-organized table using columns that are not the primary key nor a prefix of the

primary key.

Oracle constructs secondary indexes on index-organized tables using logical row

identifiers (logical rowids) that are based on the table’s primary key. A logical rowid

optionally includes a physical guess, which identifies the block location of the row.

Oracle can use these guesses to probe directly into the leaf block of the

index-organized table, bypassing the primary key search. But because rows in

index-organized tables do not have permanent physical addresses, the guesses can

become stale when rows are moved to new blocks.

For an ordinary table, access by a secondary index involves a scan of the secondary

index and an additional I/O to fetch the data block containing the row. For

index-organized tables, access by a secondary index varies, depending on the use

and accuracy of physical guesses:

■ Without guesses, access involves two index scans: a secondary index scan

followed by a scan of the primary key index.

■ With accurate guesses, access involves a secondary index scan and an

additional I/O to fetch the data block containing the row.

■ With inaccurate guesses, access involves a secondary index scan and an I/O to

fetch the wrong data block (as indicated by the guess), followed by a scan of the

primary key index.

For more information, see "Logical Rowids" on page 12-20.

Additional Features of Index-Organized Tables
This section describes some additional features that make index-organized tables

more useful.

Rebuilding an Index-Organized Table
You can rebuild an index-organized table to reduce fragmentation incurred due to

incremental updates. Use the MOVE option of the ALTER TABLE command to

rebuild an index-organized table.

The MOVE option rebuilds the primary key index B*-tree of the index-organized

table but does not rebuild the overflow data segment except when you specify the

OVERFLOW clause explicitly or you alter the PCTTHRESHOLD or INCLUDING
Schema Objects 10-39

Index-Organized Tables
column value as part of the ALTER TABLE statement. Also, index and data

segments associated with LOB columns are not rebuilt unless you specify the LOB

column explicitly.

Creating an Index-Organized Table in Parallel
The CREATE TABLE ... AS SELECT statement allows you to create an

index-organized table and load it in parallel using the PARALLEL clause in the

underlying subquery (AS SELECT). This statement provides an alternative to

parallel bulk-load using SQL*Loader.

Partitioning Index-Organized Tables and Their Secondary Indexes
You can partition an index-organized table by range of column values (see "Range

Partitioning" on page 11-15). The partitioning columns must form a subset of the

primary key columns.

The following types of secondary indexes on index-organized tables can be

partitioned by range of column values:

■ local prefixed index

■ local non-prefixed index

■ global prefixed index

See "Index Partitioning" on page 11-29 and on page 11-42 for more information.

Applications of Interest for Index-Organized Tables
Index-organized tables are especially useful for the following types of applications:

■ Information Retrieval (IR) applications

■ Spatial applications

■ OLAP applications

Information Retrieval Applications
Information Retrieval (IR) applications support content-based searches on document

collections. To provide such a capability, IR applications maintain an inverted index

for the document collection. An inverted index typically contains entries of the form

<token, document_id, occurrence_data> for each distinct word in a

document. The application performs a content-based search by scanning the

inverted index looking for tokens of interest.
10-40 Oracle8i Concepts

Index-Organized Tables
You can define an ordinary table to model the inverted index. To speed-up retrieval

of data from the table, you can also define an index on the column corresponding to

the token. However, this scheme has the following shortcomings:

■ Retrieval of occurrence data from the inverted index using the index incurs an

extra rowid-based fetch per row. A typical content-based IR query requires

fetching all the inverted index entries for the specified query terms. Since

duplicates are the norm rather than the exception in IR applications, a single

query term can contain thousands of duplicates. Thus, one rowid-based fetch

per row overhead can be very significant, severely impacting the IR search

performance.

■ Duplication of the key (token) column in the table and in the index leads to

wasted storage. Since the inverted index can be huge, storage demands would

not be acceptable.

In some cases, retrieval performance can be improved by defining a concatenated

index on multiple columns of the inverted index table. The concatenated index

allows for index-organized retrieval when the occurrence data is not required (that

is, for Boolean queries). In such cases, the rowid fetches of inverted table records is

avoided. When the query involves a proximity predicate (for example, the phrase

"Oracle Corporation"), the concatenated index approach still requires the inverted

index table to be accessed. Furthermore, building and maintaining a concatenated

index is much more time consuming than using a single column index on the token.

Also, the storage overhead is higher as multiple columns of the key (token) are

duplicated in the table and the index.

Using an index-organized table to model an inverted index overcomes the problems

described above. Namely:

■ Since the data row is stored along with the key, retrieval of occurrence data for

an inverted index involves traversing the index and getting the data rows from

the appropriate leaf nodes.

■ Only the non-key column values are stored with the key in the index. Thus,

there is no duplication of data. Also, this avoids the additional rowid storage

overhead which is required if an index is maintained on an ordinary table.

In addition, since index-organized tables are visible to the applications, they are

suitable for supporting cooperative indexing where the application and database

jointly manage the application-specific indexes.
Schema Objects 10-41

Application Domain Indexes
Spatial Applications
Spatial applications can benefit from index-organized tables as they use some form

of inverted index for maintaining application-specific indexes.

Spatial applications maintain inverted indexes for handling spatial queries. For

example, a spatial index for objects residing in a collection of grids can be modeled

as an inverted index where each entry is of the form:

<grid_id, spatial_object_id, spatial_object_data>

Index-organized tables are appropriate for modeling such inverted indexes because

they provide the required retrieval performance while minimizing storage costs.

OLAP Applications
On-line analytical processing (OLAP) applications typically manipulate

multi-dimensional blocks. To allow fast retrieval of portions of the

multi-dimensional blocks, they maintain an inverted index to map a set of

dimension values to a set of pages.

An entry in the inverted index is of the form:

<dimension_value, list_of_pages>

The inverted index maintained by OLAP applications can easily be modeled as an

index-organized table.

Application Domain Indexes
Oracle provides extensible indexing to accommodate indexes on complex data types

(such as documents, spatial data, images, and video clips) and make use of

specialized indexing techniques. With extensible indexing you can encapsulate

application-specific index management routines as an indextype schema object and

define a domain index (an application-specific index) on table columns or attributes

of an object type. (See "User-Defined Datatypes" on page 13-3 for information about

object types and their attributes.) Extensible indexing also provides efficient

processing of application-specific operators.

The application software, called the cartridge, controls the structure and content of a

domain index. The Oracle server interacts with the application to build, maintain,

and search the domain index. The index structure itself can be stored in the Oracle

database as an index-organized table or externally as a file.
10-42 Oracle8i Concepts

Application Domain Indexes
Indextypes
The indextype schema object encapsulates the set of routines that manage and access

a domain index. The purpose of an indextype is to enable efficient search and

retrieval functions for complex domains such as text, spatial, image, and OLAP data

using external application software.

The Oracle Data Cartridge Interface (ODCIIndex) specifies all the routines that have

to be implemented by the index designer. The routines can be implemented as type

methods (see "Object Types" on page 13-4).

Index Definition Routines
The index definition routines build the domain index when a CREATE INDEX

statement references the indextype, alter the domain index information when a

ALTER INDEX statement alters it, remove the index information when a DROP

INDEX statement drops it, and truncate the index when the base table is truncated.

Index Maintenance Routines
The index maintenance routines maintain the contents of the domain index when

the base table rows are inserted, deleted, updated, or loaded.

Index Scan Routines
The index scan routines implement access to the domain index to retrieve rows of

the base table that satisfy predicates containing built-in or user-defined operators in

the accessing SQL statement. See "User-Defined Operators" on page 10-44 for more

information about operators that can be used in scans of domain indexes.

An index scan is specified through three routines, istart, ifetch, and iclose, which

can initialize data structures, fetch rows satisfying the predicate, and close the

cursor once all rows satisfying the predicate are returned.

Domain Indexes
The domain index schema object is an application-specific index that is created,

managed, and accessed by routines supplied by an indextype. It is called a domain

index because it indexes data in application-specific domains.

Only single-column domain indexes are currently supported. You can build

single-column domain indexes on columns having scalar, object, or LOB datatypes.
Schema Objects 10-43

Application Domain Indexes
You can create multiple domain indexes on the same column only if their

indextypes are different. The built-in B*-tree index method can be viewed as a

distinct indextype in this respect.

Storage of Domain Indexes
A domain index can be stored in an index-organized table or in an external file. The

SQL interface for extensible indexing makes no restrictions on the location of the

index data, only that the application adhere to the protocol for index definition,

maintenance, and search operations.

Metadata for Domain Indexes
For B*-tree indexes, you can query the USER_INDEXES view to get index

information. To provide similar support for domain indexes, index designers can

add any domain-specific metadata in the following manner:

■ The index designer can define one or more tables to contain the metadata. The

key column of this table must be a unique identifier for the index. This unique

key could be the index name (schema.index). The remainder of the column

definitions are at the discretion of the index designer.

■ Views can be created that join the system-defined metadata tables with the

domain index metadata tables to provide a comprehensive set of information

for each instance of a domain index. It is the responsibility of the index designer

to provide the view definition.

User-Defined Operators
Oracle provides a set of built-in operators which include arithmetic operators (+, -,

*, /), comparison operators (=, >, <), logical operators (NOT, AND, OR), and set

operators (UNION). These operators take as input one or more arguments

(operands) and return a result. They are represented in SQL statements by special

characters (+) or keywords (AND). Users and domain cartridge writers can define

new operators, which can then be used in SQL statements like built-in operators.

A user-defined operator is a schema object identified by a name which could be a

character string or a special character or symbol. Like built-in operators, the

user-defined operator takes a set of operands as input and returns a result. The

implementation of the operator must be provided by the user or domain cartridge

writer.
10-44 Oracle8i Concepts

Application Domain Indexes
User-defined operators can be invoked anywhere built-in operators can be used,

that is, wherever expressions can occur in queries and data manipulation

statements, such as:

■ the select list of a SELECT command or subquery

■ the condition of a WHERE clause

■ the ORDER BY and GROUP BY clauses

For example, if you define a new operator named Contains, which takes as input a

text document and a keyword and returns TRUE if the document contains that

keyword, you can write a SQL query as:

SELECT * FROM employees WHERE Contains(resume, ’Oracle and UNIX’);

You create an operator by specifying the operator name and its bindings, if any, in a

CREATE OPERATOR statement. An operator’s binding associates it with a

user-defined function that provides an implementation for the operator. The

binding also identifies the operator with a unique signature (the sequence of

datatypes of the arguments to the function).

An operator can have multiple bindings as long as they differ in their signatures.

Oracle executes the appropriate function when the operator is invoked with a

particular signature. An operator created in a schema can be evaluated using

functions defined in the same or different schemas.

The user-defined function bound to an operator could be:

■ a stand-alone function

■ a package function

■ an object member method

For example, an operator Contains can be created in the Ordsys schema with two

bindings and the corresponding functions that providing the implementation in

Text and Spatial domains:

CREATE OPERATOR Ordsys.Contains
 BINDING
 (VARCHAR2, VARCHAR2) RETURN BOOLEAN USING text.contains,
 (Spatial.Geo, Spatial.Geo) RETURN BOOLEAN USING Spatial.contains;

Although the return datatype is specified as part of operator binding declaration, it

does not determine the uniqueness of the binding, However, the specified function

must have the same argument and return datatypes as the operator binding.
Schema Objects 10-45

Clusters
Operators can also be evaluated using indexes. Oracle uses indexes to efficiently

evaluate some built-in operators; for example, a B*-tree index can be used to

evaluate the comparison operators =, >, and <. Similarly, user-defined domain

indexes can be used to efficiently evaluate user-defined operators.

An indextype provides index-based implementation for the operators listed in the

indextype definition. The Oracle server can invoke routines specified in the

indextype to search the domain index to identify candidate rows and then do

further processing (filtering, selection, and fetching of rows).

Clusters
Clusters are an optional method of storing table data. A cluster is a group of tables

that share the same data blocks because they share common columns and are often used

together.

For example, the EMP and DEPT table share the DEPTNO column. When you

cluster the EMP and DEPT tables (Figure 10–9, "Clustered Table Data"), Oracle

physically stores all rows for each department from both the EMP and DEPT tables

in the same data blocks.

Additional Information: See Oracle8i Data Cartridge Developer’s
Guide for more information about indextypes, domain indexes, and

user-defined operators.
10-46 Oracle8i Concepts

Clusters
Figure 10–9 Clustered Table Data

Related data stored
together, more

efficiently

related data stored
apart, taking up

more space

Clustered Tables Unclustered Tables

DNAME10 LOC

SALES BOSTON

EMPNO ENAME

1000
1321
1841

SMITH
JONES
WARD

. . .

. . .

. . .

. . .

DNAME20 LOC

ADMIN NEW YORK

EMPNO ENAME

932
1139
1277

KEHR
WILSON
NORMAN

. . .

. . .

. . .

. . .

Clustered Key
(DEPTNO)

ENAMEEMPNO

932
100
1139
1277
1321
1841

DEPTNO

KEHR
SMITH
WILSON
NORMAN
JONES
WARD

20
10
20
20
10
10

. . .

. . .

. . .

. . .

. . .

. . .

. . .

EMP TABLE

DNAMEDEPTNO

10
20

LOC

SALES
ADMIN

BOSTON
NEW YORK

DEPT Table
Schema Objects 10-47

Clusters
Because clusters store related rows of different tables together in the same data

blocks, properly used clusters offer two primary benefits:

■ Disk I/O is reduced and access time improves for joins of clustered tables.

■ In a cluster, a cluster key value is the value of the cluster key columns for a

particular row. Each cluster key value is stored only once each in the cluster and

the cluster index, no matter how many rows of different tables contain the

value.

Therefore, less storage might be required to store related table and index data in

a cluster than is necessary in nonclustered table format. For example, in

Figure 10–9 notice how each cluster key (each DEPTNO) is stored just once for

many rows that contain the same value in both the EMP and DEPT tables.

Performance Considerations
Clusters can reduce the performance of INSERT statements as compared with

storing a table separately with its own index. This disadvantage relates to the use of

space and the number of blocks that must be visited to scan a table; because

multiple tables have data in each block, more blocks must be used to store a

clustered table than if that table were stored nonclustered.

To identify data that would be better stored in clustered form than nonclustered,

look for tables that are related via referential integrity constraints and tables that are

frequently accessed together using a join. If you cluster tables on the columns used

to join table data, you reduce the number of data blocks that must be accessed to

process the query; all the rows needed for a join on a cluster key are in the same

block. Therefore, performance for joins is improved. Similarly, it might be useful to

cluster an individual table. For example, the EMP table could be clustered on the

DEPTNO column to cluster the rows for employees in the same department. This

would be advantageous if applications commonly process rows department by

department.

Like indexes, clusters do not affect application design. The existence of a cluster is

transparent to users and to applications. You access data stored in a clustered table

via SQL just like data stored in a nonclustered table.

Additional Information: For more information about the

performance implications of using clusters, see Oracle8i Tuning.
10-48 Oracle8i Concepts

Clusters
Format of Clustered Data Blocks
In general, clustered data blocks have an identical format to nonclustered data

blocks with the addition of data in the table directory. However, Oracle stores all

rows that share the same cluster key value in the same data block.

When you create a cluster, specify the average amount of space required to store

all the rows for a cluster key value using the SIZE parameter of the CREATE

CLUSTER command. SIZE determines the maximum number of cluster keys that

can be stored per data block.

For example, if each data block has 1700 bytes of available space and the specified

cluster key size is 500 bytes, each data block can potentially hold rows for three

cluster keys. If SIZE is greater than the amount of available space per data block,

each data block holds rows for only one cluster key value.

Although the maximum number of cluster key values per data block is fixed by

SIZE, Oracle does not actually reserve space for each cluster key value nor does it

guarantee the number of cluster keys that are assigned to a block. For example, if

SIZE determines that three cluster key values are allowed per data block, this does

not prevent rows for one cluster key value from taking up all of the available space

in the block. If more rows exist for a given key than can fit in a single block, the

block is chained, as necessary.

A cluster key value is stored only once in a data block.

The Cluster Key
The cluster key is the column, or group of columns, that the clustered tables have in

common. You specify the columns of the cluster key when creating the cluster. You

subsequently specify the same columns when creating every table added to the

cluster.

For each column specified as part of the cluster key (when creating the cluster),

every table created in the cluster must have a column that matches the size and type

of the column in the cluster key. No more than 16 columns can form the cluster key,

and a cluster key value cannot exceed roughly one-half (minus some overhead) the

available data space in a data block. The cluster key cannot include a LONG or

LONG RAW column.

You can update the data values in clustered columns of a table. However, because

the placement of data depends on the cluster key, changing the cluster key for a row

might cause Oracle to physically relocate the row. Therefore, columns that are

updated often are not good candidates for the cluster key.
Schema Objects 10-49

Hash Clusters
The Cluster Index
You must create an index on the cluster key columns after you have created a

cluster. A cluster index is an index defined specifically for a cluster. Such an index

contains an entry for each cluster key value.

To locate a row in a cluster, the cluster index is used to find the cluster key value,

which points to the data block associated with that cluster key value. Therefore,

Oracle accesses a given row with a minimum of two I/Os (possibly more,

depending on the number of levels that must be traversed in the index).

You must create a cluster index before you can execute any DML statements

(including INSERT and SELECT statements) against the clustered tables. Therefore,

you cannot load data into a clustered table until you create the cluster index.

Like a table index, Oracle stores a cluster index in an index segment. Therefore, you

can place a cluster in one tablespace and the cluster index in a different tablespace.

A cluster index is unlike a table index in the following ways:

■ Keys that are all null have an entry in the cluster index.

■ Index entries point to the first block in the chain for a given cluster key value.

■ A cluster index contains one entry per cluster key value, rather than one entry

per cluster row.

■ The absence of a table index does not affect users, but clustered data cannot be

accessed unless there is a cluster index.

If you drop a cluster index, data in the cluster remains but becomes unavailable

until you create a new cluster index. You might want to drop a cluster index to

move the cluster index to another tablespace or to change its storage characteristics;

however, you must recreate the cluster’s index to allow access to data in the cluster.

Hash Clusters
Hashing is an optional way of storing table data to improve the performance of data

retrieval. To use hashing, you create a hash cluster and load tables into the cluster.

Oracle physically stores the rows of a table in a hash cluster and retrieves them

according to the results of a hash function.

Oracle uses a hash function to generate a distribution of numeric values, called hash
values, which are based on specific cluster key values. The key of a hash cluster (like

the key of an index cluster) can be a single column or composite key (multiple

column key). To find or store a row in a hash cluster, Oracle applies the hash
10-50 Oracle8i Concepts

Hash Clusters
function to the row’s cluster key value; the resulting hash value corresponds to a

data block in the cluster, which Oracle then reads or writes on behalf of the issued

statement.

A hash cluster is an alternative to a nonclustered table with an index or an index

cluster. With an indexed table or index cluster, Oracle locates the rows in a table

using key values that Oracle stores in a separate index.

To find or store a row in an indexed table or cluster, at least two I/Os must be

performed (but often more): one or more I/Os to find or store the key value in the

index, and another I/O to read or write the row in the table or cluster. In contrast,

Oracle uses a hash function to locate a row in a hash cluster (no I/O is required). As

a result, a minimum of one I/O operation is necessary to read or write a row in a

hash cluster.

How Data Is Stored in a Hash Cluster
A hash cluster stores related rows together in the same data blocks. Rows in a hash

cluster are stored together based on their hash value.

When you create a hash cluster, Oracle allocates an initial amount of storage for the

cluster’s data segment. Oracle bases the amount of storage initially allocated for a

hash cluster on the predicted number and predicted average size of the hash key’s

rows in the cluster.

Figure 10–10 illustrates data retrieval for a table in a hash cluster as well as a table

with an index. The following sections further explain the internal operations of hash

cluster storage.

Note: In contrast, an index cluster stores related rows of clustered

tables together based on each row’s cluster key value.
Schema Objects 10-51

Hash Clusters
Figure 10–10 Hashing vs. Indexing: Data Storage and Information

237 TRIALNO Other Columns ...

Hash

Cluster Holding the TRIAL Table

Key
Cluster
Key

238

TRIALNO Other Columns . . .

TRIAL Table

I/O
I/O

11103-rowid
I/O

TRIALNO Index

SELECT . . . FROM trial
WHERE trialno=11103;

I/O

Several I/Os with
use of index

Perhaps one I/O
with hash cluster

I/O

12917
13021
12981

. . .

. . .

. . .

11038
11021
11103

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

12917
13021
12981
11028
11021
11103
10-52 Oracle8i Concepts

Hash Clusters
Hash Key Values
To find or store a row in a hash cluster, Oracle applies the hash function to the row’s

cluster key value. The resulting hash value corresponds to a data block in the

cluster, which Oracle then reads or writes on behalf of an issued statement. The

number of hash values for a hash cluster is fixed at creation and is determined by

the HASHKEYS parameter of the CREATE CLUSTER command.

The value of HASHKEYS limits the number of unique hash values that can be

generated by the hash function used for the cluster. Oracle rounds the number you

specify for HASHKEYS to the nearest prime number. For example, setting

HASHKEYS to 100 means that for any cluster key value, the hash function

generates values between 0 and 100 (there will be 101 hash values).

Therefore, the distribution of rows in a hash cluster is directly controlled by the

value set for the HASHKEYS parameter. With a larger number of hash keys for a

given number of rows, the likelihood of a collision (two cluster key values having

the same hash value) decreases. Minimizing the number of collisions is important

because overflow blocks (thus extra I/O) might be necessary to store rows with

hash values that collide.

The maximum number of hash keys assigned per data block is determined by the

SIZE parameter of the CREATE CLUSTER command. SIZE is an estimate of the

total amount of space in bytes required to store the average number of rows

associated with each hash value. For example, if the available free space per data

block is 1700 bytes and SIZE is set to 500 bytes, three hash keys are assigned per

data block.

Although the maximum number of hash key values per data block is determined by

SIZE, Oracle does not actually reserve space for each hash key value in the block

(but see "Single Table Hash Clusters" on page 10-57 for an exception). For example,

if SIZE determines that three hash key values are allowed per block, this does not

prevent rows for one hash key value from taking up all of the available space in the

block. If there are more rows for a given hash key value than can fit in a single

block, the block is chained, as necessary.

Note: The importance of the SIZE parameter of hash clusters is

analogous to that of the SIZE parameter for index clusters.

However, with index clusters, SIZE applies to rows with the same

cluster key value instead of the same hash value.
Schema Objects 10-53

Hash Clusters
Note that each row’s hash value is not stored as part of the row; however, the

cluster key value for each row is stored. Therefore, when determining the proper

value for SIZE, the cluster key value must be included for every row to be stored.

Hash Functions
A hash function is a function applied to a cluster key value that returns a hash

value. Oracle then uses the hash value to locate the row in the proper data block of

the hash cluster. The job of a hash function is to provide the maximum distribution

of rows among the available hash values of the cluster. To achieve this goal, a hash

function must minimize the number of collisions.

Using Oracle’s Internal Hash Function
When you create a cluster, you can use the internal hash function of Oracle or

bypass the use of this function. The internal hash function allows the cluster key to

be a single column or composite key.

Furthermore, the cluster key can consist of columns of any datatype (except LONG

and LONG RAW). The internal hash function offers sufficient distribution of cluster

key values among available hash keys, producing a minimum number of collisions

for any type of cluster key.

Specifying the Cluster Key as the Hash Function
In cases where the cluster key is already a unique identifier that is uniformly

distributed over its range, you might want to bypass the internal hash function and

simply specify the column on which to hash.

Instead of using the internal hash function to generate a hash value, Oracle checks

the cluster key value. If the cluster key value is less than HASHKEYS, the hash

value is the cluster key value; however, if the cluster key value is equal to or greater

than HASHKEYS, Oracle divides the cluster key value by the number specified for

HASHKEYS, and the remainder is the hash value; that is, the hash value is the

cluster key value mod the number of hash keys.

Use the HASH IS parameter of the CREATE CLUSTER command to specify the

cluster key column if cluster key values are distributed evenly throughout the

cluster. The cluster key must be comprised of a single column that contains only

zero scale numbers (integers). If the internal hash function is bypassed and a

non-integer cluster key value is supplied, the operation (INSERT or UPDATE

statement) is rolled back and an error is returned.
10-54 Oracle8i Concepts

Hash Clusters
Specifying a User-Defined Hash Function
You can also specify any SQL expression as the hash function for a hash cluster. If

your cluster key values are not evenly distributed among the cluster, you should

consider creating your own hash function that more efficiently distributes cluster

rows among the hash values.

For example, if you have a hash cluster containing employee information and the

cluster key is the employee’s home area code, it is likely that many employees will

hash to the same hash value. To alleviate this problem, you can place the following

expression in the HASH IS clause of the CREATE CLUSTER command:

MOD((emp.home_area_code + emp.home_prefix + emp.home_suffix), 101)

The expression takes the area code column and adds the phone prefix and suffix

columns, divides by the number of hash values (in this case 101), and then uses the

remainder as the hash value. The result is cluster rows more evenly distributed

among the various hash values.

Allocation of Space for a Hash Cluster
As with other types of segments, the allocation of extents during the creation of a

hash cluster is controlled by the INITIAL, NEXT, and MINEXTENTS parameters of

the STORAGE clause. However, with hash clusters, an initial portion of space,

called the hash table, is allocated at creation so that all hash keys of the cluster can be

mapped, with the total space equal to SIZE * HASHKEYS. Therefore, initial

allocation of space for a hash cluster is also dependent on the values of SIZE and

HASHKEYS. The larger of (SIZE*HASHKEYS) and that specified by the STORAGE

clause (INITIAL, NEXT, and so on) is used.

Space subsequently allocated to a hash cluster is used to hold the overflow of rows

from data blocks that are already full. For example, assume the original data block

for a given hash key is full. A user inserts a row into a clustered table such that the

row’s cluster key hashes to the hash value that is stored in a full data block;

therefore, the row cannot be inserted into the root block (original block) allocated for

the hash key. Instead, the row is inserted into an overflow block that is chained to

the root block of the hash key.

Frequent collisions might or might not result in a larger number of overflow blocks

within a hash cluster (thus reducing data retrieval performance). If a collision

occurs and there is no space in the original block allocated for the hash key, an

overflow block must be allocated to hold the new row. The likelihood of this

happening is largely dependent on the average size of each hash key value and
Schema Objects 10-55

Hash Clusters
corresponding data, specified when the hash cluster is created, as illustrated in

Figure 10–11.

Figure 10–11 Collisions and Overflow Blocks in a Hash Cluster

If the average size is small and each row has a unique hash key value, many hash

key values can be assigned per data block. In this case, a small colliding row can

likely fit into the space of the root block for the hash key. However, if the average

Header

Row hash key = 0
Row hash key = 0

Row hash key = 2

Row hash key=3

Row hash key = 3

Row hash key = 4

Row hash key = 1

Row hash key = 7

Row hash key = 5

Row hash key=1

Collision for
these hash
key values

Stored
in an
overflow
block

Size=160; 12 has key
values per block.
Smaller rows fit in
remaining space, even
after collisions.

Size = 500; 3 hash key
values per block.
Larger rows cannot
fit in remaining spaces
after collisions.

Hash Keys:
0, 1, 2, 3, 4,
5, 6, 7, 8, 9

Row hash key 0,1, 2
10-56 Oracle8i Concepts

Hash Clusters
hash key value size is large or each hash key value corresponds to multiple rows,

only a few hash key values can be assigned per data block. In this case, it is likely

that the large row will not fit in the root block allocated for the hash key value and

an overflow block is allocated.

Single Table Hash Clusters
A single-table hash cluster can provide fast access to rows in a table. In an ordinary

hash cluster, Oracle scans all the rows for a given table in the block, even if there

actually happens to be just one row with the matching key. In a single-table hash

cluster, however, if there is a one-to-one mapping between hash keys and data rows

then Oracle can locate a row without scanning all the rows in the data block.

Oracle preallocates space for each hash key value when the single-table hash cluster

is created. There cannot be more than one row per hash value (not the underlying

cluster key value) and there cannot be any row chaining in the block; otherwise

Oracle scans all rows in that block to determine which rows match the cluster key.

Additional Information: See Oracle8i SQL Reference for details

about the SINGLE TABLE HASHKEYS option of the CREATE

CLUSTER command.
Schema Objects 10-57

Hash Clusters
10-58 Oracle8i Concepts

Partitioned Tables and
11

Partitioned Tables and Indexes

Like to a double cherry, seeming parted,

But yet an union in partition;

Two lovely berries molded on one stem.

Wm. Shakespeare: A Midsummer-Night’s Dream

This chapter describes partitioned tables and indexes, and explains some

administrative considerations for partitioning. It covers the following topics:

■ Introduction to Partitioning

■ Basic Partitioning Model

■ Rules for Partitioning Tables and Indexes

■ DML Partition Locks and Subpartition Locks

■ Maintenance Operations

■ Managing Indexes

■ Privileges for Partitioned Tables and Indexes

■ Auditing for Partitioned Tables and Indexes

■ Partition-Extended and Subpartition-Extended Table Names

Attention: The features described in this chapter are available

only if you have purchased Oracle8i Enterprise Edition with the

Partitioning Option. See Getting to Know Oracle8i for information

about the features and options available with Oracle8i Enterprise

Edition.
 Indexes 11-1

Introduction to Partitioning
Introduction to Partitioning
This section explains how partitioning can help you manage large tables and

indexes in an Oracle database. It includes the following sections:

■ What Is Partitioning?

■ Advantages of Partitioning

■ Manual Partitioning with Partition Views

What Is Partitioning?
Partitioning addresses the key problem of supporting very large tables and indexes

by allowing you to decompose them into smaller and more manageable pieces

called partitions. Once partitions are defined, SQL statements can access and

manipulate the partitions rather than entire tables or indexes. Partitions are

especially useful in data warehouse applications, which commonly store and

analyze large amounts of historical data.

Partitioning Methods
Two primary methods of partitioning are available: range partitioning, which

partitions the data in a table or index according to a range of values, and hash
partitioning, which partitions the data according to a hash function. Another

method, composite partitioning, partitions the data by range and further subdivides

the data into subpartitions using a hash function. See "Basic Partitioning Model" on

page 11-13 for more information about these partitioning methods.

Logical and Physical Attributes All partitions of a table or index have the same logical

attributes, although their physical attributes may be different. For example, all

partitions in a table share the same column and constraint definitions, and all

partitions in an index share the same index columns, but storage specifications

Note: Oracle supports partitioning only for tables, indexes on

tables, materialized views, and indexes on materialized views;

Oracle does not support partitioning of clustered tables or indexes

on clustered tables.

Additional Information: See Oracle8i Tuning for information about

partitioning materialized views.
11-2 Oracle8i Concepts

Introduction to Partitioning
and other physical attributes such as PCTFREE, PCTUSED, INITRANS, and

MAXTRANS may vary for different partitions of the same table or index.

Like partitions, all subpartitions of a table or index have the same logical attributes.

Unlike partitions, however, the subpartitions of a single partition cannot have

different physical attributes.

Storage of Partitions and Subpartitions A separate segment stores each partition of a

range-partitioned or hash-partitioned table or index, and each subpartition of a

composite-partitioned table or index. The partitions of a composite-partitioned table

or index are logical structures only—they do not occupy separate segments because

their data is stored in the segments of their subpartitions.

Optionally, you can store each partition (or subpartition of a composite-partitioned

table or index) in a separate tablespace, which has the following advantages:

■ You can contain the impact of data corruption.

■ You can back up and recover each partition (or subpartition) independently.

■ You can map partitions (or subpartitions) to disk drives to balance the I/O load.

Example of a Partitioned Table
In Figure 11–1, the SALES table contains historical data divided by week number

into 13 four-week partitions.

Figure 11–1 SALES Table Partitioned by Week

This SQL statement creates the range-partitioned table shown in Figure 11–1:

CREATE TABLE sales (acct_no NUMBER(5),
acct_name CHAR(30),

Weeks 0-3

TABLESPACE ts0

6, US Steel, 10000, 1
12, Motorola, 5000, 3
...

Weeks 4-7

TABLESPACE ts1

6, US Steel, 7000, 5
4, Oracle, 11000, 7
13, Fidelity, 3600, 5
...

Weeks 48-51

TABLESPACE ts12

1, Kodak, 9900, 51
17, Safeway, 8000, 51
12, Motorola, 5000, 51
...

. . .
Partitioned Tables and Indexes 11-3

Introduction to Partitioning
amount_of_sale NUMBER(6),
week_no INTEGER)

PARTITION BY RANGE (week_no) ...
(PARTITION sales1 VALUES LESS THAN (4) TABLESPACE ts0,
PARTITION sales2 VALUES LESS THAN (8) TABLESPACE ts1,
...
PARTITION sales13 VALUES LESS THAN (52) TABLESPACE ts12);

Partition Pruning
The Oracle server incorporates the intelligence to explicitly recognize partitions and

subpartitions. This knowledge is exploited in optimizing SQL statements to mark

the partitions or subpartitions that need to be accessed, eliminating ("pruning")
unnecessary partitions or subpartitions from access by those SQL statements.

For each SQL statement, depending on the selection criteria specified, unneeded

partitions or subpartitions can be eliminated. For example, if a query only involves

Q1 sales data, there is no need to retrieve data for the remaining three quarters.

Such intelligent pruning can dramatically reduce the data volume, resulting in

substantial improvements in query performance.

If the optimizer determines that the selection criteria used for pruning are satisfied

by all the rows in the accessed partition or subpartition, it removes those criteria

from the predicate list (WHERE clause) during evaluation in order to improve

performance. However, the optimizer cannot prune partitions if the SQL statement

applies a function to the partitioning column, with the exception of the TO_DATE

function. (Similarly, the optimizer cannot use an index if the SQL statement applies

a function to the indexed column, unless it is a function-based index.) See "DATE

Datatypes" on page 11-21.

Pruning can eliminate index partitions even when the underlying table’s partitions

cannot be eliminated, if the index and table are partitioned on different columns.

You can often improve the performance of operations on large tables by creating

partitioned indexes which reduce the amount of data that your SQL statements

need to access or modify.

The ability to prune unneeded partitions or subpartitions from SQL statements

increases performance and availability for many purposes, including partition-level

or subpartition-level load, purge, backup, restore, reorganization, and index

building.

Additional Information: For more examples of partitioned tables,

see the Oracle8i Administrator’s Guide.
11-4 Oracle8i Concepts

Introduction to Partitioning
Partition-Wise Joins
An additional area of optimization for partitioned tables is a partition-wise join,

which is a large join operation that is broken into smaller joins that are performed

sequentially or in parallel.

In order to use partition-wise joining, both tables must be equipartitioned (see

"Equipartitioning" on page 11-24).

If the optimizer determines that partition-wise joining provides a performance gain,

then it will be used. In some situations, the optimizer can combine pruning and

partition-wise joining.

Advantages of Partitioning
This section identifies the classes of databases that could benefit from the use of

partitioning, and characterizes them in terms of the problems they present:

■ Very Large Databases (VLDBs)

■ Reducing Downtime for Scheduled Maintenance

■ Reducing Downtime Due to Data Failures

■ DSS Performance

■ I/O Performance

■ Disk Striping: Performance versus Availability

■ Partition Transparency

Very Large Databases (VLDBs)
A Very Large Database (VLDB) contains hundreds of gigabytes or even a few

terabytes of data. Partitioning provides support for VLDBs that contain mostly

structured data, rather than unstructured data. These VLDBs typically owe their

size to the presence of a few very large data objects (tables and indexes) rather than

to the presence of a very large number of data objects.

There are two major categories of VLDB:

■ On-Line Transaction Processing (OLTP) databases are designed for large numbers

of concurrent transactions, where each transaction is a relatively simple

operation processing a small amount of data.

Additional Information: For detailed information about

partition-wise joins, see Oracle8i Tuning.
Partitioned Tables and Indexes 11-5

Introduction to Partitioning
■ Decision Support Systems (DSS) are designed for very complex queries that need

to access and process large amounts of data.

A VLDB can be characterized as an OLTP database if most of its workload is OLTP.

Similarly, a VLDB can be characterized as a DSS database if most of its workload

consists of DSS queries.

Partitioning efficiently supports both OLTP VLDBs and DSS VLDBs.

Historical Databases Historical databases are the most common type of DSS VLDB.

They contain two classes of tables: historical tables and enterprise tables.

■ Historical tables describe the business transactions of an enterprise over a recent

time interval, such as the last 24 months. There are two types of historical

tables:

– Base tables contain the baseline information (for example, sales, checks, and

orders).

– Rollup tables contain summary information derived from the base

information using operations such as GROUP BY, AVERAGE, and COUNT.

The time interval reflected in a historical table is a rolling window, so

periodically the database administrator (DBA) deletes the set of rows describing

the oldest transactions and allocates space for the set of rows describing new

transactions. For example, at the close of business on April 30, 1997 the DBA

deletes the rows (and all supporting index entries) that describe May 1995

transactions and allocates space for May 1997 transactions.

The vast majority of data in a historical VLDB is stored in few very large

historical tables that present special problems due to their size and the

requirement to smoothly roll out old data and roll in new data.

■ Enterprise tables describe the business entities of the enterprise (for example,

departments, locations, and products). This information changes slowly over

time and is not modified on a periodic schedule. Although enterprise tables are

not large, they affect the performance of many long-running DSS queries that

consist of joins of a historical table with enterprise tables.

Partitioning addresses the problem of supporting large historical tables and their

indexes by dividing historical data into time-related partitions that can be managed

independently and added or deleted conveniently.

Mission-Critical Databases Mission-critical OLTP databases present special availability

and performance problems even if they are not very large. For example, it may be

necessary to perform scheduled maintenance operations or recover a 10-gigabyte
11-6 Oracle8i Concepts

Introduction to Partitioning
table in a very short period of time, perhaps an hour or less. Also, the DBA may

need a degree of control over data placement that is hard to achieve when a table or

index is spread over multiple drives.

Partitioning can increase the availability of mission-critical databases if critical

tables and indexes are divided into partitions to reduce the maintenance windows,

recovery times, and impact of failures. You can also improve access performance to

a critical table or index by controlling performance parameters on a partition basis.

Reducing Downtime for Scheduled Maintenance
Partitions enable data management operations like data loads, index creation, and

data purges at the partition level, rather than on the entire table, resulting in

significantly reduced times for these operations.

Partitioning can significantly reduce the impact of scheduled downtime for

maintenance operations:

■ By introducing partition maintenance operations that operate on an individual

partition rather than on an entire table or index.

■ By providing partition independence so that maintenance operations can be

performed concurrently on different partitions.

Partition Maintenance Operations Partition maintenance operations are faster than full

table or index maintenance operations. A speedup can be achieved equal to the

ratio:

(# records in full table or index) / (# records in partition)

provided there are no interpartition stored constructs (global indexes and referential

integrity constraints).

To further reduce downtime, a partition maintenance operation can take advantage

of performance features that are available for table and index-level maintenance

operations, such as the PARALLEL, NOLOGGING, and DIRECT (or APPEND)

options where applicable.

Note: Composite-partitioned tables and indexes have subpartition
maintenance operations as well as partition maintenance operations,

and subpartition independence as well as partition independence. In

the discussion that follows, the general term "partition" refers to

both partitions and subpartitions.
Partitioned Tables and Indexes 11-7

Introduction to Partitioning
Partition Independence Partition independence for the partition maintenance operations

makes it possible to perform concurrent maintenance operations on different

partitions of the same table or index, as well as concurrent SELECT and DML

operations against partitions that are unaffected by maintenance operations.

For example, you can Direct Path Load into partitions PA and PB at the same time,

while applications are executing standard SQL SELECT and DML operations

against other partitions.

Partition independence is particularly important for operations that involve data

movement. Such operations can take a long time (minutes, hours, or even days).

Partitioning can reduce the window of unavailability on other partitions to a short

time (few seconds) during operations that involve data movement, provided there

are no inter-partition stored constructs (global indexes and referential integrity

constraints).

Partition independence is not needed for short operations (no data movement)

because these operations complete in a short time.

Reducing Downtime Due to Data Failures
Some maintenance operations are unplanned events, required to recover from

hardware or software failures that cause data loss or corruption. Recovery from

hardware failures and many system software failures is accomplished by running

the RECOVER command on a database, tablespace, or datafile. Any tables or

indexes that have records in a tablespace or datafile being recovered remain

unavailable during recovery. Increased availability is particularly important for

mission-critical OLTP databases.

Because partitions are independent of each other, the unavailability of a piece (or a

subset of pieces) does not affect access to the rest of the data.

Storing partitions in separate tablespaces provides the following benefits:

■ Downtime due to execution of the RECOVER command is reduced because the

unit of recovery (a tablespace) is smaller.

■ Disk resources needed for recovery of an offline tablespace (deferred rollback

segments) are reduced because the unit of recovery is smaller.

■ The amount of unavailable data is reduced, because only the partition(s) stored

in the recovered tablespace have to be taken offline. User applications and

maintenance operations can still access the other partitions. This is another

example of partition independence.
11-8 Oracle8i Concepts

Introduction to Partitioning
DSS Performance
DSS queries on very large tables present special performance problems. An ad-hoc

query that requires a table scan can take a long time, because it must inspect every

row in the table; there is no way to identify and skip subsets of irrelevant rows. The

problem is particularly important for historical tables, for which many queries

concentrate access on rows that were generated recently.

Partitions help solve this DSS performance problem. An ad-hoc query which only

requires rows that correspond to a single partition (or range of partitions) can be

executed using a partition scan rather than a table scan.

For example, a query that requests data generated in the month of October 1997

can scan just the rows stored in the October 1997 partition, rather than rows

generated over many years of activity. This improves response time and it can

also substantially reduce the temporary disk space requirement for queries that

require sorts.

I/O Performance
Partitioning can control how data is spread across physical devices. To balance I/O

utilization, you can specify where to store the partitions of a table or index.

With this level of location control, you can accommodate the special needs of

applications that require fast response time by reducing disk contention and using

faster devices. On the other hand, data that is accessed infrequently, such as old

historical data, can be moved to slow disks or stored in subsystems that support a

storage hierarchy.

Disk Striping: Performance versus Availability
Disk striping and partitioning are both tools that can improve performance through

the reduction of contention for disk arms. Which tool to use, or in which

proportions to use them together, is an important issue to consider when physically

designing databases. These issues should be considered not only with respect to

performance, but also with respect to availability and partition independence.

Figure 11–2 shows the two extremes of combining partitioning and striping. Both

(a) and (b) in Figure 11–2 show four partitions spread across eight disks, but (a)

stripes each partition onto its own pair of disks, whereas (b) stripes each partition

onto all eight disks.

■ The performance characteristics are better in (b), but if any single disk failure

occurs, all partitions are adversely affected.
Partitioned Tables and Indexes 11-9

Introduction to Partitioning
■ The availability characteristics are better in (a), because failure of a single disk

only affects one partition.

Intermediate configurations are also possible, where subsets of partitions are striped

over subsets of disks.

Figure 11–2 Partitions and Disk Striping

The trade-off between performance and availability must be decided when

determining how to partition tables and indexes, and how to stripe the disks on

which they are stored.

For mission-critical databases it is recommended that partition independence and

availability be favored, therefore each partition that you want to stripe across disks

should be striped onto its own set of disk drives, which should include enough

drives to achieve the required I/O parallelism for accesses to that partition.

Partition Transparency
The vast majority of application programs require partition transparency, that is the

programs should be insensitive to whether the data they access is partitioned and

how it is partitioned.

P1

d1 d2

P2

d3 d4

d2 d3 d4

P3

d5 d6

P4

d7 d8

(a) each partition resides on a stripe on a few disks

more availability
less performance

less availability
more performance P1 P2 P3 P4

d1 d5 d6 d7 d8
11-10 Oracle8i Concepts

Introduction to Partitioning
A few application programs, however, can take advantage of partitions by explicitly

requesting access to an individual partition, rather than the entire table. For

example, a user might want to break a long batch job on a very large table into a

sequence of short nightly batch jobs on individual partitions.

Manual Partitioning with Partition Views
Instead of using partitioned tables, you can build separate tables with identical

templates and define a view that does a UNION of these tables. This is known as

manual partitioning, and the view is known as a partition view. Partition views were

the only form of partitioning available in Oracle7 Release 7.3. They are not

recommended for new applications in Oracle8i.

Partition views that were created for Oracle7 databases can be converted to

partitioned tables by using the EXCHANGE PARTITION option of the ALTER

TABLE command.

The basic idea behind partition views is to divide a large table into multiple

physical tables using a WHERE clause or CHECK constraint as a partitioning

criterion, then glue the smaller tables together into a whole with a UNION ALL

view. You can then define sets of "base indexes" with identical key specifications on

the base tables, which provide indexing capabilities when the UNION ALL view is

used. (Partition views must be indexed to work properly.) Compared to

nonpartitioned tables, partition views should not add significant CPU overhead.

Queries that use a key range to select from a partition view access only the base

tables that lie within the key range. The optimizer can use separate execution plans

for a partition view’s base tables. (In contrast, the optimizer uses a single execution

plan for all partitions in a partitioned table.)

Disadvantages of Partition Views
Manual partitioning with partition views has many disadvantages in comparison

with partitioned tables:

Note: Oracle8i supports partition views solely for backwards

compatibility with Oracle7 Release 7.3. Future releases of Oracle

will not support partition views, starting with Oracle Release 9.

Additional Information: See the Oracle8i Administrator’s Guide for

instructions on converting partition views to partitioned tables.
Partitioned Tables and Indexes 11-11

Introduction to Partitioning
■ Configuration complexity

The database administrator is responsible for correctly defining the base tables

and indexes that correspond to partitions, and for maintaining these definitions.

The equivalent of DDL operations that move data across partitions (split, move,

and so on) must be implemented via Export/Import or SQL scripts.

■ Lack of partition transparency

Some SQL operations must be performed using the base tables rather than the

UNION ALL view. For example, INSERT refers to a base table, and user code is

needed to obtain the table name that appears in an INSERT statement.

■ Lack of performance

Some SQL operations on the UNION ALL view may perform badly because the

optimizer does not take advantage of all the existing base indexes.

■ Poor memory utilization

A SQL compiled query operating on a UNION ALL view internally replicates

descriptive information for all tables that support the view.

■ DDL restrictions

Global indexes and referential integrity constraints cannot be defined on the

UNION ALL view.

■ Load restrictions

It is not possible to perform direct loads on a UNION ALL view.

Guidelines for Partition Views
To create and maintain partition views, follow the guidelines in Table 11–1.

Table 11–1 Partition View Guidelines

To use partition views, the PARTITION_VIEW_ENABLED parameter must be set.

DDL commands must be issued separately for each underlying table. For example, to add
an index to a partition view, you must add indexes to all underlying tables. To analyze a
partition view, you must analyze all underlying tables. However, you can submit
operations on each partition in parallel.

Administrative operations must be performed as operations on the underlying tables of the
partition view, not on the partition view itself. For example, a split operation consists of
either one or two CREATE TABLE AS SELECT operations (one if the split is "in place"),
followed by a redefining of the partition view’s view text.
11-12 Oracle8i Concepts

Basic Partitioning Model
Basic Partitioning Model
This section describes the basic partitioning model, which includes these

partitioning methods:

■ Range Partitioning

■ Hash Partitioning

■ Composite Partitioning

and these additional topics:

■ Partition and Subpartition Names

■ Partitioning and Subpartitioning Columns and Keys

■ Partition Bounds for Range Partitioning

■ Equipartitioning

You can partition a table or index with options to the CREATE TABLE or CREATE

INDEX statement. After creating a partitioned table or index, you can use an

ALTER TABLE or ALTER INDEX statement to modify its partitioning attributes.

The partitioning syntax for CREATE TABLE and CREATE INDEX statements is

very similar. The CREATE TABLE statement specifies:

1. The logical attributes of the table, such as column and constraint definitions.

2. The physical attributes of the table.

You can create referential integrity constraints on underlying tables, but for the constraints
to be true for the partition view, the primary key must contain the partition column.

Similarly, you can have an unique index on underlying tables, but for uniqueness to be true
for the partition view, the partition column must be contained in the unique index. (You can
have only one unique index.)

Every partition has its own index, so any index lookup must be done in all indexes for
partitions that are not skipped.

A partition view cannot be the target of a DML statement (UPDATE, INSERT, or DELETE).

Partition views do not support concatenated partitioning keys.

SQL*Loader does not support partition views.

Table 11–1 Partition View Guidelines (Cont.)
Partitioned Tables and Indexes 11-13

Basic Partitioning Model
– If the table is nonpartitioned, these are the real physical attributes of the

segment associated with the table.

– If the table is partitioned, these table-level attributes specify defaults for the

individual partitions of the table.

3. For a partitioned table, there is also a partition specification that includes:

– the table-level algorithm used to map rows to partitions

– a list of partition descriptions, one for each partition in the table

– a list of subpartition descriptions (only for composite partitioning).

Each partition description includes a clause defining supplemental

partition-level information about the algorithm used to map rows to partitions.

This clause can also specify a partition name and physical attributes for the

partition.

Each subpartition description (for composite partitioning) can specify a

subpartition name and a tablespace for the subpartition.

Datatype Restrictions Partitioned tables cannot have any columns with LONG or

LONG RAW datatypes. If a table or index is partitioned on a column that has the

DATE datatype and if the NLS date format does not specify the century with the

year, the partition descriptions must use the TO_DATE function to specify the year

completely; otherwise you cannot create the table or index.

See "DATE Datatypes" on page 11-21 for examples.

Bitmap Restrictions You can create bitmap indexes on partitioned tables, with the

restriction that the bitmap indexes must be local to the partitioned table—they

cannot be global indexes. (See "Index Partitioning" on page 11-29.)

Cost Based Optimization Cost based optimization is used when a SQL statement

accesses partitioned tables or indexes; rule base optimization is not available for

partitions. A single execution plan is used for all partitions of a partitioned table.

Statistics can be gathered by partition or subpartition, using the DBMS_STATS

package or the ANALYZE command. It is important to gather statistics whenever

the nature of the data in a partitioned table changes significantly. The statistics can

be found in these data dictionary views:
11-14 Oracle8i Concepts

Basic Partitioning Model
Range Partitioning
Range partitioning maps rows to partitions based on ranges of column values. Range

partitioning is defined by the partitioning specification for a table or index:

PARTITION BY RANGE (column_list)

and by the partitioning specifications for each individual partition:

VALUES LESS THAN (value_list)

where:

■ column_list is an ordered list of columns that determines the partition to which a

row or an index entry belongs.

– These columns are called the partitioning columns.

– The values in the partitioning columns of a particular row constitute that

row’s partitioning key.

■ value_list is an ordered list of values for the columns in column_list.

– Each value in value_list must be either a literal or a TO_DATE() or RPAD()

function with constant arguments. (See "DATE Datatypes" on page 11-21.)

– The value_list contained in the partitioning specification for each partition

defines an open (noninclusive) upper bound for the partition, referred to as

the partition bound.

– The partition bound for each partition must compare less than the partition

bound for the next partition.

ALL_TAB_PARTITIONS, DBA_TAB_PARTITIONS, USER_TAB_PARTITIONS

ALL_TAB_SUBPARTITIONS, DBA_TAB_SUBPARTITIONS, USER_TAB_SUBPARTITIONS

ALL_IND_PARTITIONS, DBA_IND_PARTITIONS, USER_IND_PARTITIONS

ALL_IND_SUBPARTITIONS, DBA_IND_SUBPARTITIONS, USER_IND_SUBPARTITIONS

ALL_PART_COL_STATISTICS, DBA_PART_COL_STATISTICS,

USER_PART_COL_STATISTICS

ALL_SUBPART_COL_STATISTICS, DBA_SUBPART_COL_STATISTICS,

USER_SUBPART_COL_STATISTICS
Partitioned Tables and Indexes 11-15

Basic Partitioning Model
In each partition, all rows (or rows pointed to by index entries) have partitioning keys
that compare less than the partition bound for that partition. Unless the partition is

the first partition in the table or index, all of its partitioning keys also compare

greater than or equal to the partition bound for the previous partition. See "Partition

Bounds for Range Partitioning" on page 11-20 for more information about how

partitioning keys are compared to partition bounds, including how multicolumn

partitioning keys are handled.

For example, in the following table of four partitions (one for each quarter’s sales), a

row with SALE_YEAR=1997, SALE_MONTH=7, and SALE_DAY=18 has

partitioning key (1997, 7, 18); therefore it belongs in the third partition and would

be stored in tablespace TSC. A row with SALE_YEAR=1997, SALE_MONTH=7, and

SALE_DAY=1 has partitioning key (1997, 7, 1) and also belongs in the third

partition, stored in tablespace TSC.

CREATE TABLE sales
 (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
 PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (PARTITION sales_q1 VALUES LESS THAN (1997, 04, 01)
 TABLESPACE tsa,
 PARTITION sales_q2 VALUES LESS THAN (1997, 07, 01)
 TABLESPACE tsb,
 PARTITION sales_q3 VALUES LESS THAN (1997, 10, 01)
 TABLESPACE tsc,
 PARTITION sales_q4 VALUES LESS THAN (1998, 01, 01)
 TABLESPACE tsd);

You can use the ALTER TABLE MERGE PARTITIONS command to merge the

contents of two adjacent range partitions into one partition. You might want to do

this to keep historical data online in larger partitions. For example, you might want

to have daily partitions, with the oldest partition rolled up into weekly partitions,

which can then be rolled up into monthly partitions, and so on.

Hash Partitioning
Although partitioning by range is well-suited for historical databases, it may not be

the best choice for other purposes. Another method of partitioning, hash partitioning,

uses a hash function on the partitioning columns to stripe data into partitions. Hash

partitioning allows data that does not lend itself to range partitioning to be easily
11-16 Oracle8i Concepts

Basic Partitioning Model
partitioned for performance reasons (such as parallel DML, partition pruning, and

partition-wise joins).

Hash partitioning is a better choice than range partitioning when:

■ you do not know beforehand how much data will map into a given range

■ sizes of range partitions would differ quite substantially

■ partition pruning and partition-wise joins on a partitioning key are important

(see "Partition Pruning" and "Partition-Wise Joins" on page 11-5)

The number of partitions should be a power of two (2, 4, 8, and so on) to obtain the

most even data distribution. Hash partitions can be named and stored in specific

tablespaces. Local indexes on hash partitions are equipartitioned with the table

data. For local index partitions, you can specify the partition names and

tablespaces.

The following example creates a table that names and stores a hash partition in a

specific tablespace:

CREATE TABLE product(…)
 STORAGE (INITIAL 10M)
 PARTITION BY HASH(column_list)
 (PARTITION p1 TABLESPACE h1,
 PARTITION p2 TABLESPACE h2);

The concepts of splitting, dropping, and merging partitions do not apply to hash

partitions. However, you can increase or decrease the number of partitions by using

ALTER TABLE to ADD or COALESCE hash partitions.

Composite Partitioning
Composite partitioning partitions data using the range method and, within each

partition, subpartitions it using the hash method. This type of partitioning supports

historical operations data at the partition level and parallelism (parallel DML) and

data placement at the subpartition level.

Composite partitioning:

■ Provides ease-of-management advantages of range partitioning.

■ Provides data placement and parallelism advantages of hash partitioning.

■ Allows you to name the subpartitions and store them in specific tablespaces.

■ Allows you to build local indexes on composite-partitioned tables, which are

stored in the same tablespace as the table subpartition by default.
Partitioned Tables and Indexes 11-17

Basic Partitioning Model
■ Allows you to build range-partitioned global indexes.

■ Allows you to name the index subpartitions and specify their tablespaces.

The partitions of a composite-partitioned table or index are logical structures

only—their data is stored in the segments of their subpartitions.

The following example creates a table that uses composite partitioning (assuming

the NLS DATE format is DD-MON-YYYY):

CREATE TABLE orders(
 ordid NUMBER,
 orderdate DATE,
 productid NUMBER,
 quantity NUMBER)
 PARTITION BY RANGE(orderdate)
 SUBPARTITION BY HASH(productid) SUBPARTITIONS 8
 STORE IN(ts1,ts2,ts3,ts4,ts5,ts6,ts7,ts8)
 (PARTITION q1 VALUES LESS THAN(’01-APR-1998’),
 PARTITION q2 VALUES LESS THAN(’01-JUL-1998’),
 PARTITION q3 VALUES LESS THAN(’01-OCT-1998’),
 PARTITION q4 VALUES LESS THAN(MAXVALUE));

In this example, the ORDERS table is range partitioned on the ORDERDATE key, in

four separate ranges representing quarters of the year. Each range partition is

further subpartitioned on the PRODUCTID key into eight subpartitions, for a total

of 32 subpartitions. Each tablespace contains one subpartition from each partition.

The following example creates a table that uses composite partitioning with each

subpartition explicitly named and stored in a specified tablespace:

CREATE TABLE orders(…)
 PARTITION BY RANGE(orderdate)
 SUBPARTITION BY HASH(productid) SUBPARTITIONS 8
 STORE IN (ts1,ts2,ts3,ts4,ts5,ts6,ts7,ts8)
 (PARTITION q1 VALUES LESS THAN(’01-APR-1998’)
 (SUBPARTITION q1_h1 TABLESPACE ts1,
 …
 SUBPARTITION q1_h7 TABLESPACE ts7,
 SUBPARTITION q1_h8 TABLESPACE ts8)
 PARTITION q2 VALUES LESS THAN(’01-JUL-1998’), …);

Partition and Subpartition Names
Every partition or subpartition has a name, which must conform to the usual rules

for naming schema objects and their parts. In particular:
11-18 Oracle8i Concepts

Basic Partitioning Model
■ The name of a table partition or subpartition must be unique among all the

partitions or subpartition belonging to the same parent table.

■ The name of an index partition or subpartition must be unique among all the

partitions or subpartition belonging to the same parent index.

For composite partitioning, the names of subpartitions and partitions are in the

same namespace; that is, a partition and a subpartition belonging to the same

parent table or index cannot have the same name.

You can rename a partition or subpartition; however, you cannot create any

synonyms on a partition or subpartition name.

Referencing a Partition or Subpartition
Partition and subpartition names can optionally be referenced in DDL and DML

statements and in utility statements like Import/Export and SQL*Loader. They

always appear in context with the name of their parent table or index and they are

never qualified by a schema name. (The schema name can be used to qualify the

parent table or index.) For example:

ALTER TABLE admin.patient_visits DROP PARTITION pv_dec92;
SELECT * FROM sales PARTITION (s_nov97) s WHERE s.amount_of_sale > 1000;

See "Partition-Extended and Subpartition-Extended Table Names" on page 11-63 for

more information about referencing partitions and subpartitions in SQL statements.

Partitioning and Subpartitioning Columns and Keys
The partitioning columns (or subpartitioning columns) of a table or index consist of an

ordered list of columns whose values determine how the data is partitioned (or

subpartitioned). This list can include up to 16 columns, and cannot include any of

the following types of columns:

■ a LEVEL or ROWID pseudocolumn

■ a column of the ROWID datatype

■ a nested table, VARRAY, object type, or REF column

■ a LOB column (BLOB, CLOB, NCLOB, or BFILE datatype)

A row’s partitioning key is an ordered list of its values for the partitioning columns.

Similarly, in composite partitioning a row’s subpartitioning key is an ordered list of

Additional Information: See Oracle8i SQL Reference for more

information about the rules for naming schema objects.
Partitioned Tables and Indexes 11-19

Basic Partitioning Model
its values for the subpartitioning columns. Oracle applies either the range or hash

method to each row’s partitioning key (or subpartitioning key) to determine which

partition (or subpartition) the row belongs in.

Partition Bounds for Range Partitioning
In a range-partitioned table or index, the partitioning key of each row is compared

with a set of upper and lower bounds to determine which partition the row belongs

in. (See "Range Partitioning" on page 11-15 for a general description of range

partitioning.)

■ Every partition of a range-partitioned table or index has a noninclusive upper
bound, which is specified by the VALUES LESS THAN clause.

■ Every partition except the first partition also has an inclusive lower bound, which

is specified by the VALUES LESS THAN on the next-lower partition.

The partition bounds collectively define an ordering of the partitions in a table or

index. The "first" partition is the partition with the lowest VALUES LESS THAN

clause, and the "last" or "highest" partition is the partition with the highest VALUES

LESS THAN clause.

Comparing Partitioning Keys with Partition Bounds
If you attempt to insert a row into a table and the row’s partitioning key is greater

than or equal to the partition bound for the highest partition in the table, the insert

will fail.

When comparing character values in partitioning keys and partition bounds,

characters are compared according to their binary values. However, if a character

consists of more than one byte, Oracle compares the binary value of each byte, not

of the character. The comparison also uses the comparison rules associated with the

column data type (for example, blank-padded comparison is done for the ANSI

CHAR data type). The NLS parameters, specifically the initialization parameters

NLS_SORT and NLS_LANGUAGE and the environment variable NLS_LANG,

have no effect on the comparison.

See "Multicolumn Partitioning Keys" on page 11-22 for more information about

comparing partitioning keys.

MAXVALUE
You can specify the keyword MAXVALUE for any value in the partition bound

value_list. This keyword represents a virtual "infinite" value that sorts higher than

any other value for the data type, including the NULL value.
11-20 Oracle8i Concepts

Basic Partitioning Model
For example, you might partition the OFFICE table on STATE (a CHAR(10) column)

into three partitions with the following partition bounds:

■ VALUES LESS THAN (’I’): States whose names start with A through H.

■ VALUES LESS THAN (’S’): States whose names start with I through R.

■ VALUES LESS THAN (MAXVALUE): States whose names start with S

through Z, plus special codes for non-U.S. regions.

Nulls
NULL cannot be specified as a value in a partition bound value_list. An empty

string also cannot be specified as a value in a partition bound value_list, because it is

treated as NULL within the database server.

For the purpose of assigning rows to partitions, Oracle sorts nulls greater than all

other values except MAXVALUE. Nulls sort less than MAXVALUE.

This means that if a table is partitioned on a nullable column, and the column is to

contain nulls, then the highest partition should have a partition bound of

MAXVALUE for that column. Otherwise the rows that contain nulls will map above

the highest partition in the table and the insert will fail.

DATE Datatypes
If the partition key includes a column that has the DATE datatype and the NLS date

format does not specify the century with the year, you must specify partition

bounds using the TO_DATE() function with a 4-character format mask for the year;

otherwise you will not be able to create the table or index.

For example, you might create the SALES table using a DATE column:

CREATE TABLE sales
 (invoice_no NUMBER,
 sale_date DATE NOT NULL)
 PARTITION BY RANGE (sale_date)
 (PARTITION sales_q1
 VALUES LESS THAN (TO_DATE(’1997-04-01’,’YYYY-MM-DD’))
 TABLESPACE tsa,
 PARTITION sales_q2
 VALUES LESS THAN (TO_DATE(’1997-07-01’,’YYYY-MM-DD’))
 TABLESPACE tsb,
 PARTITION sales_q3
 VALUES LESS THAN (TO_DATE(’1997-10-01’,’YYYY-MM-DD’))
 TABLESPACE tsc,
Partitioned Tables and Indexes 11-21

Basic Partitioning Model
 PARTITION sales_q4
 VALUES LESS THAN (TO_DATE(’1998-01-01’,’YYYY-MM-DD’))
 TABLESPACE tsd);

When you query or modify data, it is recommended that you use the TO_DATE()

function in the WHERE clause so that the value of the date information can be

determined at compile time. However, the optimizer can prune partitions using a

selection criterion on partitioning columns of type DATE when you use another

format, as in the following examples:

SELECT * FROM sales
 WHERE s_saledate BETWEEN TO_DATE(’01-JUL-94’, ’DD-MON-YY’)
 AND TO_DATE(’01-OCT-94’, ’DD-MON-YY’);

SELECT * FROM sales
 WHERE s_saledate BETWEEN ’01-JUL-1994’ AND ’01-OCT-1994’;

In this case, the date value will be complete only at runtime. Therefore you will not

be able to see which partitions Oracle is accessing as is usually shown on the

partition_start and partition_stop columns of the EXPLAIN PLAN command

output on the SQL statement. Instead, you will see the keyword ’KEY’ for both

columns.

Multicolumn Partitioning Keys
When a table or index is partitioned by range on multiple columns, each partition

bound and partitioning key is a list (or vector) of values. The partition bounds and

keys are ordered according to ANSI SQL2 vector comparison rules. (This is also the

way Oracle orders multicolumn index keys.)

To compare a partitioning key with a partition bound, you compare the values of

their corresponding columns until you find an unequal pair and then that pair

determines which vector is greater. The values of any remaining columns have no

effect on the comparison.

In mathematical terms, for vectors V1 and V2 which contain the same number of

values, Vx[i] is the ith value in Vx. Assuming that V1[i] and V2[i] have compatible

datatypes:

■ V1 = V2 if and only if V1[i] = V2[i] for all i.

■ V1 < V2 if and only if V1[i] = V2[i] for all i < n and V1[n] < V2[n] for some n.

■ V1 > V2 if and only if V1[i] = V2[i] for all i < n and V1[n] > V2[n] for some n.
11-22 Oracle8i Concepts

Basic Partitioning Model
For example, if the partition bound for partition P is (7, 5, 10) and the partition

bound for the next lower partition is (6, 7, 3) then:

■ Key (6, 9, 11) belongs in partition P, because:

– key (6, x, x) is less than (7, x, x)

– key (6, 9, x) is greater than (6, 7, x)

Note that the value in the key’s third column can be greater than the

corresponding value in the partition bound—(x, x, 11) vs. (x, x, 10) in this

case—because the comparison does not consider values in the third column

after finding an inequality in the second column.

■ Key (7, 3, 15) belongs in partition P, because:

– key (7, 3, x) is less than (7, 5, x)

– key (7, x, x) is greater than (6, x, x)

Note that the value in the key’s first column can be equal to the value in the first

column of the partition bound. The VALUES LESS THAN clause applies to the

columns collectively, not to individual columns.

■ Keys (6, 5, 0) and (7, 5, 11) belong in other partitions.

If MAXVALUE appears as an element of a partition bound value_list, then the

values of all the following elements are irrelevant. For example, a partition bound of

(10, MAXVALUE, 5) is equivalent to a partition bound of (10, MAXVALUE, 6) or to

a partition bound of (10, MAXVALUE, MAXVALUE).

Multicolumn partitioning keys are useful when the primary key for the table

contains multiple columns, but rows are not distributed evenly over the most

significant column in the key. For example, suppose that the SUPPLIER_PARTS

table contains information about which suppliers provide which parts, and the

primary key for the table is (SUPPNUM, PARTNUM). It is not sufficient to partition

on SUPPNUM because some suppliers might provide hundreds of thousands of

parts, while others provide only a few specialty parts. Instead, you can partition the

table on (SUPPNUM, PARTNUM).

Multicolumn partitioning keys are also useful when you represent a date as three

CHAR columns instead of a DATE column.
Partitioned Tables and Indexes 11-23

Basic Partitioning Model
Implicit Constraints Imposed by Partition Bounds
If you specify a partition bound other than MAXVALUE for the highest partition in

a table, this imposes an implicit CHECK constraint on the table. This constraint is

not recorded in the data dictionary (but the partition bound itself is recorded).

Equipartitioning
Two tables or indexes are equipartitioned when:

■ They have the same partitioning method (range or hash), the same partitioning

columns, the same number of partitions, and, for range partitioning, the same

partition bounds.

■ If at least one table or index is composite partitioned, then the tables or indexes

are equipartitioned if they are equipartitioned on at least one partitioning

method (range or hash). In this case, they are equipartitioned on one dimension.

They do not have to be the same type of schema object; for example, a table and an

index can be equipartitioned.

Range Equipartitioning
If A and B are range-partitioned tables or indexes, where A[i] is the ith partition in

A and B[i] is the ith partition in B, then A and B are equipartitioned if all of the

following are true:

■ They have the same number of partitions N.

■ They have the same number of partitioning columns M.

■ For every 1 <= i <= N, A[i] and B[i] have the same partition bound.

If Apcol[i] is the ith partitioning column in A and Bpcol[i] is the ith partitioning

column in B, then the following must also be true:

■ For 1 <= i <= M, Apcol[i] and Bpcol[i] have the same data type, including

length, precision, and scale.

A[i] and B[i] may differ in their physical attributes; in particular they do not have to

reside in the same tablespace.

Equipartitioning is important to consider when designing the database.

■ It reduces the downtime and the amount of data that is unavailable during

partition maintenance operations and tablespace recovery operations. For

example, because a table and its local indexes are equipartitioned the effect of

splitting a partition is limited to one table partition and the corresponding
11-24 Oracle8i Concepts

Basic Partitioning Model
index partitions. If a table has an index that is not local, then splitting one

partition of the table makes it necessary to reorganize the entire index.

■ Equipartitioning enables partition-wise join.

■ It makes tablespace incomplete recovery (point-in-time recovery) on related

subsets of data easier. For example, you might equipartition a table and its

primary key index, or a parent table and a child table. You could then recover

corresponding partitions to a point in time.

Example of Equipartitioning
Figure 11–3 shows four logically related schema objects that are equipartitioned:

■ ACCOUNTS is a table with two partitions which is range-partitioned on

column ACCOUNT_NO. The first partition contains account numbers up to

1000. The second partition contains account numbers up to 2000.

■ ACCOUNTS_IX is an index on column ACCOUNT_NO in the ACCOUNTS

table. Like the table, the index is range-partitioned on ACCOUNT_NO into two

partitions, which have the same partition bounds as partitions of ACCOUNTS.

■ CHECKS is a table with two partitions which is range-partitioned on column

ACCT_NO. Its partitions have the same partition bounds as partitions of the

ACCOUNTS table. ACCT_NO is a foreign key that references ACCOUNT_NO

in ACCOUNTS.

■ CHECKS_IX is an index on columns (ACCT_NO, CHECK_NO) in CHECKS. It

is range-partitioned on ACCT_NO into two partitions, which have the same

partition bounds as partitions of ACCOUNTS.

The logical relationship between the four schema objects is shown on the left in

Figure 11–3; the physical partitioning is shown on the right. (Triangles represent

indexes and rectangles represent tables.)
Partitioned Tables and Indexes 11-25

Basic Partitioning Model
Figure 11–3 Equipartitioned Tables and Indexes

Acct #s 1 to 1000

acct_no

CHECKS_IX

CHECKS

account_no

ACCOUNTS_IX

ACCOUNTS

REFERENCES

Acct #s 1001 to 2000

Partition 1 Partition 2
11-26 Oracle8i Concepts

Rules for Partitioning Tables and Indexes
Rules for Partitioning Tables and Indexes
This section describes the rules for creating partitioned tables and indexes and the

physical attributes of partitions.

Table Partitioning
The rules for partitioning tables are simple:

■ A table can be partitioned, provided that:

– It is not part of a cluster.

– It does not contain LONG or LONG RAW datatypes.

■ You can mix partitioned and nonpartitioned indexes with partitioned and

nonpartitioned tables:

– A partitioned table can have partitioned and/or nonpartitioned indexes.

– A nonpartitioned table can have partitioned and/or nonpartitioned

indexes. (Only global indexes can be created on nonpartitioned tables—see

"Global Partitioned Indexes" on page 11-32.)

Physical Attributes of Table Partitions
This section discusses the physical attributes of table partitions for range, hash, and

composite partitioning.

Range and Hash Partitioning Default physical attributes are initially specified when

the CREATE TABLE statement creates a partitioned table. Since there is no segment

corresponding to the partitioned table itself, these attributes are only used in

derivation of physical attributes of member partitions. Default physical attributes

can later be modified using ALTER TABLE MODIFY DEFAULT ATTRIBUTES.

For hash partitioning, all partitions have the same physical characteristics and so

the only physical attribute you can specify for a partition is its tablespace.

Physical attributes of table partitions created by CREATE TABLE or ALTER TABLE

ADD PARTITION are determined as follows:

■ Whenever the value of a partition attribute is not specified, the values of the

physical attributes specified (explicitly or by default) for the corresponding base

table are used.

For hash partitioning, ALTER TABLE MOVE PARTITION can be used to move the

partition to a different tablespace. For range partitioning, this statement can move
Partitioned Tables and Indexes 11-27

Rules for Partitioning Tables and Indexes
the partition or modify its physical attributes. Resulting attributes are determined

as follows:

■ Whenever a new value is not specified, the values that existed before the

statement was issued are used.

For range partitioning, the physical attributes of table partitions created by ALTER

TABLE SPLIT PARTITION are determined as follows:

■ Whenever a new value is not specified, the values of physical attributes of the

partition being split are used. (This also applies to global index split—missing

attributes are inherited from the index partition being split.)

Physical attributes of all partitions of a table may be modified by ALTER TABLE, for

example, ALTER TABLE tablename NOLOGGING changes the logging mode of all

partitions of tablename to NOLOGGING.

See "Tablespace and Storage Attributes of LOB Data Partitions" on page 11-39 for

additional information about the physical attributes of table partitions that contain

LOB datatypes.

Composite Partitioning For composite partitioning, the partitions specify default

physical attributes for the subpartitions and the subpartitions are similar to hash

partitions, in that the only physical attribute you can specify explicitly for a

subpartition is its tablespace.

The default physical attributes are initially specified when the CREATE TABLE

statement creates a composite partitioned table. Since there is no segment

corresponding to the partitions or to the table itself, these attributes are only used in

derivation of the attributes for member subpartitions. The default attributes can

later be modified using ALTER TABLE MODIFY DEFAULT ATTRIBUTES or

ALTER TABLE MODIFY DEFAULT ATTRIBUTES FOR PARTITION.

The physical attributes for subpartitions created by CREATE TABLE or ALTER

TABLE ADD PARTITION are determined as follows:

■ Whenever the tablespace is not specified explicitly for a subpartition, the

tablespace specified (explicitly or by default) for the corresponding partition

is used.

■ Whenever the values of physical attributes for the partition are not specified,

the attributes specified (explicitly or by default) for the corresponding base

table are used.

ALTER TABLE MOVE SUBPARTITION can be used to move a subpartition to a

different tablespace, but it does not change other physical attributes of the
11-28 Oracle8i Concepts

Rules for Partitioning Tables and Indexes
subpartition. ALTER TABLE MODIFY PARTITION modifies the physical attributes

of all of that partition’s existing subpartitions as well as the default physical

attributes of the partition itself. You can use the FOR PARTITION clause of ALTER

TABLE MODIFY PARTITION to avoid changing the attributes of existing

subpartitions. Attributes modified at the table level affect the defaults at all three

levels: table, partition, and subpartition.

See "Tablespace and Storage Attributes of LOB Data Partitions" on page 11-39 for

additional information about the physical attributes of table subpartitions that

contain LOB datatypes.

Index Partitioning
The rules for partitioning indexes are similar to those for tables:

■ An index can be partitioned with these exceptions:

– The index is not a cluster index.

– The index is not defined on a clustered table.

– A bitmap index on a partitioned table must be a local index.

■ You can mix partitioned and nonpartitioned indexes with partitioned and

nonpartitioned tables:

– A partitioned table can have partitioned and/or nonpartitioned indexes.

– A nonpartitioned table can have partitioned and/or nonpartitioned B*-tree

indexes.

– Bitmap indexes on nonpartitioned tables cannot be partitioned.

However, partitioned indexes are more complicated than partitioned tables because

there are four types of partitioned indexes: local prefixed, local nonprefixed, global

prefixed, and global nonprefixed. These types are described below. Oracle supports

three of the four types (global nonprefixed indexes are not useful in real

applications).

Local Partitioned Indexes
In a local index, all keys in a particular index partition refer only to rows stored in a

single underlying table partition. A local index is created by specifying the LOCAL

attribute.

Oracle constructs the local index so that it is equipartitioned with the underlying

table. Oracle partitions the index on the same columns as the underlying table,
Partitioned Tables and Indexes 11-29

Rules for Partitioning Tables and Indexes
creates the same number of partitions or subpartitions, and gives them the same

partition bounds as corresponding partitions of the underlying table.

Oracle also maintains the index partitioning automatically when partitions in the

underlying table are added, dropped, merged, or split, or when hash partitions or

subpartitions are added or coalesced. This ensures that the index remains

equipartitioned with the table.

A local index can be created UNIQUE if the partitioning columns form a subset of

the index columns. This restriction guarantees that rows with identical index keys

always map into the same partition, where uniqueness violations can be detected.

Local indexes have the following advantages:

■ Only one index partition needs to be rebuilt when a maintenance operation

(other than SPLIT PARTITION, or ADD PARTITION for a hash partition) is

performed on an underlying table partition.

– The duration of a partition maintenance operation remains proportional to

partition size if the partitioned table has only local indexes.

– Local indexes support partition independence.

– Local indexes support smooth roll-out of old data and roll-in of new data in

historical tables.

■ Oracle can take advantage of the fact that a local index is equipartitioned with

the underlying table to generate better query access plans.

■ Local indexes simplify the task of tablespace incomplete recovery. In order to

recover a partition or subpartition of a table to a point in time, you must also

recover the corresponding index entries to the same point in time. The only way

to accomplish this is with a local index; then you can recover the corresponding

table and index partitions or subpartitions together.

■ You can build or rebuild local indexes on partitioned tables using intrapartition

parallelism (that is, multiple processes for each partition) with the

BUILD_PART_INDEX procedure of the DBMS_PCLXUTIL package.

Local Prefixed Indexes A local index is prefixed if it is partitioned on a left prefix of the

index columns.

For example, if the SALES table and its local index SALES_IX are partitioned on the

WEEK_NUM column, then index SALES_IX is local prefixed if it is defined on the

Additional Information: See Oracle8i Supplied Packages Reference for

a description of the DBMS_PCLXUTIL package.
11-30 Oracle8i Concepts

Rules for Partitioning Tables and Indexes
columns (WEEK_NUM,XACTION_NUM). On the other hand, if index SALES_IX is

defined on column PRODUCT_NUM then it is not prefixed.

Figure 11–4 shows another example of a local prefixed index.

Local prefixed indexes can be unique or nonunique.

Figure 11–4 Local Prefixed Index

Local Nonprefixed Indexes A local index is nonprefixed if it is not partitioned on a left

prefix of the index columns.

You cannot have a unique local nonprefixed index unless the partitioning key is a

subset of the index key.

Figure 11–5 shows an example of a local nonprefixed index.

DEPTNO 0-9Index IX1 on DEPTNO
Range Partitioned
on DEPTNO

Table EMP
Range Partitioned
on DEPTNO

DEPTNO
0-9

DEPTNO 10-19

DEPTNO
10-19

DEPTNO 90-99. . .

. . .

DEPTNO
90-99
Partitioned Tables and Indexes 11-31

Rules for Partitioning Tables and Indexes
Figure 11–5 Local Nonprefixed Index

Global Partitioned Indexes
In a global partitioned index, the keys in a particular index partition may refer to rows

stored in more than one underlying table partition or subpartition. A global index

can only be range-partitioned, but it can be defined on any type of partitioned table

(range, hash, or composite partitioned).

A global index is created by specifying the GLOBAL attribute. The database

administrator is responsible for defining the initial partitioning of a global index at

creation and for maintaining the partitioning over time. Index partitions can be

merged or split as necessary.

Normally, a global index is not equipartitioned with the underlying table. There is

nothing to prevent an index from being equipartitioned with the underlying table,

but Oracle does not take advantage of the equipartitioning when generating query

plans or executing partition maintenance operations. So an index that is

equipartitioned with the underlying table should be created as LOCAL.

A global partitioned index contains (conceptually) a single B*-tree with entries for

all rows in all partitions. Each index partition may contain keys that refer to many

different partitions or subpartitions in the table.

ACCTNO 31
ACCTNO 82Index IX3 on ACCTNO

Range Partitioned
on CHKDATE

Table CHECKS
Range Partitioned
on CHKDATE

CHKDATE
1/97

ACCTNO 54
ACCTNO 82

CHKDATE
2/97

ACCTNO 15
ACCTNO 35. . .

. . .

CHKDATE
12/97
11-32 Oracle8i Concepts

Rules for Partitioning Tables and Indexes
The highest partition of a global index must have a partition bound all of whose

values are MAXVALUE. This insures that all rows in the underlying table can be

represented in the index.

Prefixed and Nonprefixed Global Partitioned Indexes A global partitioned index is prefixed
if it is partitioned on a left prefix of the index columns. (See Figure 11–6 for an

example.) A global partitioned index is nonprefixed if it is not partitioned on a left

prefix of the index columns. Oracle does not support global nonprefixed partitioned

indexes.

Global prefixed partitioned indexes can be unique or nonunique.

Nonpartitioned indexes are treated as global prefixed nonpartitioned indexes.

Management of Global Partitioned Indexes Global partitioned indexes are harder to

manage than local indexes:

■ When the data in an underlying table partition is moved or removed (SPLIT,

MOVE, DROP, or TRUNCATE), all partitions of a global index are affected.

Consequently global indexes cause partition maintenance (including rebuilds of

global indexes or index partitions) to have duration proportional to table size

rather than partition size, and they do not support partition independence.

■ When an underlying table partition or subpartition is recovered to a point in

time, all corresponding entries in a global index must be recovered to the same

point in time. Because these entries may be scattered across all partitions or

subpartitions of the index (mixed in with entries for other partitions or

subpartitions that are not being recovered), there is no way to accomplish this

except by re-creating the entire global index.
Partitioned Tables and Indexes 11-33

Rules for Partitioning Tables and Indexes
Figure 11–6 Global Prefixed Partitioned Index

Summary of Partitioned Index Types
Table 11–2 summarizes the three types of partitioned indexes that Oracle supports.

■ If an index is local, it is equipartitioned with the underlying table; otherwise it is

global.

■ A prefixed index is partitioned on a left prefix of the index columns; otherwise it

is nonprefixed.

EMPNO 15
EMPNO 31Index IX3 on EMPNO

Range Partitioned
on EMPNO

Table EMP
Range Partitioned
on DEPTNO

EMPNO
0-39

EMPNO 54

EMPNO
40-69

EMPNO 73
EMPNO 82
EMPNO 96. . .

. . .

EMPNO
70-MAXVALUE

DEPTNO
0-9

DEPTNO
10-19

DEPTNO
90-99
11-34 Oracle8i Concepts

Rules for Partitioning Tables and Indexes
Importance of Nonprefixed Indexes
Nonprefixed indexes are particularly useful in historical databases. In a table

containing historical data, it is common for an index to be defined on one column to

support the requirements of fast access by that column, but partitioned on another

column (the same column as the underlying table) to support the time interval for

rolling out old data and rolling in new data.

Consider the SALES table presented in Figure 11–1 on page 11-3 ("SALES Table

Partitioned by Week"). It contains a year’s worth of data, divided into 13 partitions.

It is range partitioned on WEEK_NO, four weeks to a partition. You might create a

nonprefixed local index SALES_IX on SALES. The SALES_IX index is defined on

ACCT_NO because there are queries that need fast access to the data by account

number. However, it is partitioned on WEEK_NO to match the SALES table. Every

four weeks the oldest partitions of SALES and SALES_IX are dropped and new

ones are added.

Performance Implications of Prefixed and Nonprefixed Indexes
It is more expensive to probe into a nonprefixed index than to probe into a prefixed

index.

Table 11–2 Types of Partitioned Indexes

Type of Index Index
Equipartitioned

with Table

Index
Partitioned on
Left Prefix of

Index Columns

UNIQUE
Attribute
Allowed

Example

Table
Partitioning

Key
Index

Columns

Index
Partitioning

Key

Local Prefixed (any
partitioning method)

Yes Yes Yes A A,B A

Local Nonprefixed
(any partitioning
method)

Yes No Yes1

1 For a unique local nonprefixed index, the partitioning key must be a subset of the index key.

A B A

Global Prefixed
(range partitioning
only)

No2

2 Although a global partitioned index may be equipartitioned with the underlying table, Oracle does not take advantage of
the partitioning or maintain equipartitioning after partition maintenance operations such as DROP or SPLIT PARTITION.

Yes Yes A B B

Global Nonprefixed3

3 This type of index is not supported.

— — — — — —
Partitioned Tables and Indexes 11-35

Rules for Partitioning Tables and Indexes
If an index is prefixed (either local or global) and Oracle is presented with a

predicate involving the index columns, then partition pruning can restrict

application of the predicate to a subset of the index partitions.

For example, in Figure 11–4 on page 11-31 ("Local Prefixed Index"), if the predicate

is DEPTNO=15, the optimizer knows to apply the predicate only to the second

partition of the index. (If the predicate involves a bind variable, the optimizer will

not know exactly which partition but it may still know there is only one partition

involved, in which case at run time, only one index partition will be accessed.)

When an index is nonprefixed, Oracle often has to apply a predicate involving the

index columns to all N index partitions. This is required to look up a single key, or

to do an index range scan. For a range scan, Oracle must also combine information

from N index partitions. For example, in Figure 11–5 on page 11-32 ("Local

Nonprefixed Index"), a local index is partitioned on CHKDATE with an index key

on ACCTNO. If the predicate is ACCTNO=31, Oracle probes all 12 index partitions.

Of course, if there is also a predicate on the partitioning columns, then multiple

index probes might not be necessary. Oracle takes advantage of the fact that a local

index is equipartitioned with the underlying table to prune partitions based on the

partition key. For example, if the predicate in Figure 11–5 is CHKDATE<3/97,

Oracle only has to probe two partitions.

So for a nonprefixed index, if the partition key is a part of the WHERE clause (but

not of the index key) the optimizer determines which index partitions to probe

based on the underlying table partition.

When many queries and DML statements using keys of local, nonprefixed, indexes

have to probe all index partitions, this effectively reduces the degree of partition

independence provided by such indexes.

Guidelines for Partitioning Indexes
When deciding how to partition indexes on a table, consider the mix of applications

that need to access the table. There is a trade-off between performance on the one

hand and availability and manageability on the other. Here are some of the

guidelines you should consider:

■ For OLTP applications:

– Global indexes and local prefixed indexes provide better performance than

local nonprefixed indexes because they minimize the number of index

partition probes.
11-36 Oracle8i Concepts

Rules for Partitioning Tables and Indexes
– Local indexes support more availability when there are partition or

subpartition maintenance operations on the table. Local nonprefixed

indexes are very useful for historical databases.

■ For DSS applications, local nonprefixed indexes can improve performance

because many index partitions can be scanned in parallel by range queries on

the index key.

For example, a query using the predicate "ACCTNO between 40 and 45" on the

table CHECKS of Figure 11–5 on page 11-32 ("Local Nonprefixed Index") causes

parallel scans of all the partitions of the nonprefixed index IX3. On the other

hand, a query using the predicate "DEPTNO between 40 and 45" on the table

DEPTNO of Figure 11–4 on page 11-31 ("Local Prefixed Index") cannot be

parallelized because it accesses a single partition of the prefixed index IX1.

■ For historical tables, indexes should be local if possible. This limits the impact

of regularly scheduled drop partition operations.

■ Unique indexes on columns other than the partitioning columns must be global

because unique local nonprefixed indexes whose key does not contain the

partitioning key are not supported.

Physical Attributes of Index Partitions
Default physical attributes are initially specified when a CREATE INDEX statement

creates a partitioned index. Since there is no segment corresponding to the

partitioned index itself, these attributes are only used in derivation of physical

attributes of member partitions. Default physical attributes can later be modified

using ALTER INDEX MODIFY DEFAULT ATTRIBUTES.

Physical attributes of partitions created by CREATE INDEX are determined as

follows:

■ Values of physical attributes specified (explicitly or by default) for the index are

used whenever the value of a corresponding partition attribute is not specified.

Handling of the TABLESPACE attribute of partitions of a LOCAL index

constitutes an important exception to this rule in that in the absence of a

user-specified TABLESPACE value, that of the corresponding partition of the

underlying table is used.

Physical attributes (other than TABLESPACE, as explained above) of partitions of

local indexes created in the course of processing ALTER TABLE ADD PARTITION

are set to the default physical attributes of each index.
Partitioned Tables and Indexes 11-37

Rules for Partitioning Tables and Indexes
Physical attributes (other than TABLESPACE, as explained above) of index

partitions created by ALTER TABLE SPLIT PARTITION are determined as follows:

■ Values of physical attributes of the index partition being split are used.

Physical attributes of an existing index partition can be modified by ALTER INDEX

MODIFY PARTITION and ALTER INDEX REBUILD PARTITION. Resulting

attributes are determined as follows:

■ Values of physical attributes of the partition before the statement was issued are

used whenever a new value is not specified. Note that ALTER INDEX

REBUILD PARTITION can be used to change the tablespace in which a

partition resides.

Physical attributes of global index partitions created by ALTER INDEX SPLIT

PARTITION are determined as follows:

■ Values of physical attributes of the partition being split are used whenever a

new value is not specified.

Physical attributes of all partitions of an index (along with default values) may be

modified by ALTER INDEX, for example, ALTER INDEX indexname NOLOGGING

changes the logging mode of all partitions of indexname to NOLOGGING.

See "Tablespace and Storage Attributes of LOB Index Partitions" on page 11-40 for

additional information about the physical attributes of LOB index partitions.

Partitioning of Tables with LOB Columns
Tables that contain LOB columns (see "LOB Datatypes" on page 12-12) can be

partitioned; however, a partitioning key cannot contain a LOB column. The

LOB data and LOB index segments of a LOB column are equipartitioned with the

base table.

For every partition of a partitioned table that contains a LOB column, there is a LOB

data segment for the LOB data partition and a LOB index segment for the LOB

index partition. These data and index segments contain the LOBs that belong to the

rows in that partition.

Note: Although this section makes a distinction between the LOB

data and LOB index, they are not separate entities. The LOB index,

which is implicitly created and maintained by the system, contains

control information and is an integral part of LOB column storage.
11-38 Oracle8i Concepts

Rules for Partitioning Tables and Indexes
Similarly, for every subpartition of a composite-partitioned table that contains a

LOB column, there is a LOB data segment for the LOB data subpartition and a LOB

index segment for the LOB index subpartition. These data and index segments

contain the LOBs that belong to the rows in that subpartition. In the following

discussion, "partition" refers either to a partition of a range- or hash-partitioned

table or index or to a subpartition of a composite-partitioned table or index.

Equipartitioning of LOB data and LOB index segments localizes the effects of

maintenance operations, resulting in more efficient use of resources and improved

availability of data. See "Partition Maintenance Operations on Tables with LOB

Columns" on page 11-57.

Tablespace and Storage Attributes of LOB Data Partitions
The algorithm for determining a tablespace for a given LOB data partition is similar

to that for determining a tablespace for a LOCAL index partition. In determining

values of physical storage attributes other than TABLESPACE for LOB data

partitions, Oracle uses the same algorithm that determines the values of physical

attributes for table partitions. Note that you can explicitly specify the LOB storage

characteristics for a specific LOB column at the partition level or at the table level.

TABLESPACE Attribute of LOB Data Partitions The following rules determine the

tablespace of a LOB data partition:

1. If a tablespace is specified for a given LOB data partition, that value is used.

2. Otherwise, if a default TABLESPACE value, other than "TABLESPACE
DEFAULT", is specified at the table level for all LOB data partitions of a given

LOB column of the table, that value is used.

3. Otherwise, the LOB data partition is co-located with the table partition to which

it corresponds.

The following example illustrates these rules:

CREATE TABLE PT1 (A NUMBER, B BLOB, C CLOB, D CLOB)
 LOB (B,D) STORE AS (STORAGE (NEXT 15K))
 LOB (C) STORE AS (TABLESPACE TSB)
 PARTITION BY RANGE (A)
 (PARTITION P VALUES LESS THAN (MAXVALUE) TABLESPACE TS1
 LOB (B) STORE AS (TABLESPACE TSA), (Rule 1)
 LOB (C) STORE AS (PCTVERSION 20), (Rule 2)
 LOB (D) STORE AS (STORAGE (NEXT 10K))) (Rule 3)
 TABLESPACE TSX;
Partitioned Tables and Indexes 11-39

Rules for Partitioning Tables and Indexes
In this example, the tablespace for the LOB data partitions corresponding to

partition P are determined as follows:

■ The LOB data partition for column B is located in tablespace TSA (Rule 1).

■ The LOB data partition for column C is located in tablespace TSB (Rule 2).

■ The LOB data partition for column D is located in tablespace TS1 (Rule 3).

See "Tablespace and Storage Attributes of LOB Index Partitions" on page 11-40 for a

discussion of how to determine a tablespace in which a LOB index partition is

located.

Other Storage Attributes of LOB Data Partitions The values of the storage attributes

(other than TABLESPACE) for a LOB data partition are determined as follows:

1. If a value is specified for a given LOB data partition, that value is used.

2. Otherwise, if a default value is specified at the table level for all LOB data

partitions of a given LOB column of the table, that value is used.

3. Otherwise, the system or tablespace default value is used. However, in the case

of LOGGING, if CACHE is explicitly specified then LOGGING is used

regardless of the tablespace value (because CACHE NOLOGGING is not

supported).

See the next section for a discussion of how the storage attributes for a LOB index

partitions are determined.

Tablespace and Storage Attributes of LOB Index Partitions
LOB index partitions always reside in the same tablespace as the LOB data

partitions to which they correspond, that is, the LOB index partitions are co-located

with the LOB data partitions. All other attributes of a LOB index partition are

determined based on attributes of the LOB data partition to which they correspond

and default attributes of the tablespace in which both the LOB data and its

corresponding LOB index partition reside.

TABLESPACE Attribute of LOB Index Partitions The following example shows how LOB

index partitions collocate with the LOB data partitions to which they correspond:

CREATE TABLE PT1 (A NUMBER, B BLOB, C CLOB, D CLOB)

Note: You cannot specify any attributes for a LOB index or any of

its partitions.
11-40 Oracle8i Concepts

Rules for Partitioning Tables and Indexes
 LOB (B,D) STORE AS (STORAGE (NEXT 15K))
 LOB (C) STORE AS (TABLESPACE TSB);
 PARTITION BY RANGE (A)
 (PARTITION P VALUES LESS THAN (MAXVALUE) TABLESPACE TS1
 LOB (B) STORE AS (TABLESPACE TSA), (Rule 1)
 LOB (C) STORE AS (PCTVERSION 20), (Rule 2)
 LOB (D) STORE AS (STORAGE (NEXT 10K))) (Rule 3)
 TABLESPACE TSX;

In this example, the LOB index partitions that correspond to LOB data partitions

associated with partition P are located in the following tablespaces:

■ The LOB index partition for column B is located in tablespace TSA (Rule 1).

■ The LOB index partition for column C is located in tablespace TSB (Rule 2).

■ The LOB index partition for column D is located in tablespace TS1 (Rule 3).

Other Storage Attributes of LOB Index Partitions The values of the storage attributes

(other than TABLESPACE) for a LOB index partition are determined based on the

values of attributes of a corresponding LOB data partition and the default attributes

of the tablespace in which the LOB index partition is located.

Views and Partitioned LOBs
Regular views on partitioned tables with LOB columns work the same way that

they do on tables without LOB columns. Object views can also be created on top of

partitioned tables with LOB columns.

The same view-based privilege checking is performed on LOBs selected from views

on partitioned tables as for LOBs selected from views on nonpartitioned tables. The

user must have privileges to access the LOB through the view from which the LOB

locator is obtained (SELECTed). This view-based privilege checking is necessary for

snapshots (that is, materialized views used for replication).

BFILEs in Partitioned Tables
For BFILEs, only the LOB locator is stored in the table while the actual BFILE data

exists in an external operating system file. Therefore the BFILE locator is what gets

partitioned with the rest of the table, not the BFILE data. The BFILE locator is of

varying length and stores the directory alias and file name along with other control

information. Thus, a BFILE column in a partitioned table is similar to a VARCHAR2

column in a partitioned table.
Partitioned Tables and Indexes 11-41

Rules for Partitioning Tables and Indexes
Partitioning Index-Organized Tables and Their Secondary Indexes
You can partition an index-organized table by range of column values. An

index-organized table differs from a regular (heap-organized) table in the following

ways:

■ An index-organized table always has a primary key, whereas a regular table

may not have a primary key.

■ The rows of an index-organized table are stored in the leaf blocks of primary

key index segment as part of the index row.

■ An index-organized table can optionally have a row overflow data segment in

addition to the primary key index segment. Thus, a regular table (without

LOBs) is stored in a single data segment, whereas an index-organized table

(without LOBs) requires an index segment and (optionally) an overflow data

segment to store the data.

See "Index-Organized Tables" on page 10-36 for more information.

When partitioning an index-organized table, note the following:

■ Only range partitioning is supported.

■ Partition columns must be a subset of the primary key columns.

■ Secondary indexes may also be partitioned, both locally and globally.

■ OVERFLOW data segments are always equipartitioned with the table

partitions.

■ Storage attributes can be specified at the table level or individual partition level

for both table data and overflow data.

Range Partitioning and Primary Key Columns
Restricting the partitioning columns to a subset of the primary key columns ensures

that when you insert a row into a partition, the uniqueness of the primary key can

be verified by searching that partition. (Without this restriction, it would be

necessary to search other partitions as well, and so the partitions would not be

independent of each other.)

When the partitioning columns form a prefix of the primary key columns, the

partition bounds form a sequence in primary key order. For queries that require

data from more than one partition, a simple concatenation of resulting rows from

each partition preserves the primary key order. This is the optimal way of

partitioning an index-organized table.
11-42 Oracle8i Concepts

Rules for Partitioning Tables and Indexes
When the partitioning columns do not form a prefix of the primary key columns,

each partition’s data is sorted in primary key order but selecting rows from more

than one partition in primary key order requires a merge of the individually sorted

partition rows.

If you want to partition an index-organized table on columns that are not a subset

of the primary key columns, you can use this workaround:

1. Make the partitioning columns part of the primary key by adding them at

the end.

2. Define a unique constraint on the original primary key columns.

For example, for an index-organized table that has columns A, B, and C with a

primary key (A, B), if you want to partition the table on column C you should

change the primary key to (A, B, C) and define a unique constraint on (A, B). Then

an insert operation will insert the row into the target partition and insert the key

values for (A,B) into a nonpartitioned index on (A,B), which verifies the uniqueness

across all the partitions.

Index-Organized Tables without Row Overflow
To create a partitioned index-organized table without row overflow, you need to

specify ORGANIZATION INDEX at the table level only. All partitions inherit the

ORGANIZATION INDEX property from the table.

You can specify default values for physical attributes at the table level and can

override them at the partition level. These attributes apply to the primary key index

segment that is created for each partition. The tablespace for an index segment can

be specified at the partition level or at the table level; if it is not specified at either

level, the user’s default tablespace is used.

The following example shows the creation of an index-organized table with no row

overflow:

CREATE TABLE orders(
 id NUMBER, odate DATE, …
 PRIMARY KEY(id, odate))
 ORGANIZATION INDEX
 PARTITION BY RANGE(odate)
 (PARTITION p1 … TABLESPACE q1,
 PARTITION p2 … TABLESPACE q2);

In this example, the index organized table ORDERS is range partitioned on the

ODATE column, with each partition stored in its own tablespace. No overflow is

provided for.
Partitioned Tables and Indexes 11-43

Rules for Partitioning Tables and Indexes
Index-Organized Tables with Row Overflow
The overflow option allows storing the tail portion of a row in an overflow data

segment. The following are the key aspects for partitioned index-organized tables

with overflow:

■ For partitioned index-organized tables with overflow, each partition has an

index segment and an overflow data segment.

■ The overflow data segments are equipartitioned with the primary key index

segments.

■ Like physical attributes for the index segment, you can specify default values

for physical attribites for the overflow data segments at the table level and can

override them by specifying partition-level values.

■ All the attributes prior to the OVERFLOW keyword apply to the primary key

index segment, and all the attributes after the OVERFLOW keyword apply to

the overflow data segment.

■ The default values for PCTTHRESHOLD and INCLUDING column can only be

specified at the table level. These clauses control the breaking of the the non-key

portion into head and tail row-pieces. The head row-piece is stored in the index

row and the tail row-piece is stored in the overflow data segment.

■ The tablespace for an overflow data segment if not specified for a partition is set

to the table-level default. If the table-level default is not specified, then the

tablespace of the corresponding partition’s index segment is used.

■ The system-generated names for the index and overflow data segment are of

the form SYS_IOT_TOP_Pn and SYS_IOT_OVER_Pn, respectively.

The following example shows the creation of a partitioned index-organized table

with partitioned overflow stored in a single tablespace:

CREATE TABLE orders(
 id NUMBER, odate DATE, notes VARCHAR2(1000), …
 PRIMARY KEY(id, odate))
 ORGANIZATION INDEX INCLUDING odate
 OVERFLOW TABLESPACE all_overflow
 PARTITION BY RANGE(odate)
 (PARTITION p1 … TABLESPACE q1,
 PARTITION p2 … TABLESPACE q2);

In this example, the table has a separate tablespace for overflow data segments.

Even though they are stored in the same physical tablespace (ALL_OVERFLOW),

the overflow data segments are partitioned on the same partition columns as used
11-44 Oracle8i Concepts

DML Partition Locks and Subpartition Locks
in the index-organized table. Note the use of the INCLUDING ODATE clause—this

means that all data, past and including the ODATE column, will be stored in the

overflow.

The following example shows the creation of a partitioned index-organized table

with partitioned overflow stored in multiple tablespaces:

CREATE TABLE orders(
 id NUMBER, odate DATE, notes VARCHAR2(1000), …
 PRIMARY KEY(id, odate))
 ORGANIZATION INDEX INCLUDING odate
 PARTITION BY RANGE(odate)
 (PARTITION p1 … TABLESPACE q1
 OVERFLOW TABLESPACE q1_overflow,
 PARTITION p2 … TABLESPACE q2
 OVERFLOW TABLESPACE q2_overflow);

In this example, each partitioned overflow segment is stored in its own tablespace.

Partitioned Secondary Indexes on Index-Organized Tables
You can create local prefixed, local non-prefixed, and global prefixed partitioned

indexes on index-organized tables. Indexes on index-organized tables store primary

key-based (logical) rowids as opposed to physical rowids, and may contain

additional "guess"data as part of the rowid to speed up secondary index-based

access. See "Secondary Indexes on Index-Organized Tables" on page 10-39 and

"Logical Rowids" on page 12-20 for more information.

For accessing an index-organized table partition by its global partition index, Oracle

identifies the partition based on the logical rowid. This is possible because the

rowid contains primary key columns, which in turn contain all of the partitioning

columns. Once the partition is identiifed, Oracle can use the "guess" to directly

access the leaf block that would hold the index row. If the "guess" is invalid, an

index scan on the relevant partition B*-tree is required.

DML Partition Locks and Subpartition Locks
DML table locks synchronize DML statements (INSERT, UPDATE, and DELETE)

with DDL statements and LOCK TABLE statements. DML table locks also

synchronize DDL and LOCK TABLE statements among themselves. For partitioned

or subpartitioned tables, Oracle uses DML partition locks or DML subpartition

locks to provide partition independence for DDL and utility operations.
Partitioned Tables and Indexes 11-45

DML Partition Locks and Subpartition Locks
■ Range partitioned or hash partitioned tables have DML partition locks.

■ Tables that use composite partitioning have DML subpartition locks.

Partition independence (or subpartition independence) allows you to perform DDL

and utility operations on selected partitions or subpartitions without reducing

activity on other partitions or subpartitions.

DML Partition Locks
A partition lock protects the data in an individual partition of a partitioned table

while multiple users are accessing that partition or other partitions in the table

concurrently.

Partition locks fall between table locks and row locks in the DML locking hierarchy:

■ Table locks

– Partition locks

* Row locks

Partition locks can be acquired in the same modes as table locks: Share (S),

Exclusive (X), Row Share (SS), Row Exclusive (SX), and Share Row Exclusive (SSX).

See "Concurrency Model for Maintenance Operations" on page 11-50 for more

information about partition locking for DML and DDL statements.

Partition Locking During DML Operations on LOB Columns
When updating a LOB as a whole or only partially (using DBMS_LOB operations),

in addition to acquiring a DML SX-lock on a partitioned table, Oracle acquires DML

SX-lock(s) on one or more table partitions.

DML Subpartition Locks
DML subpartition locks allow you to perform DDL and utility operations on

selected subpartitions without reducing activity on other subpartitions of the same

partition (as well as on subpartitions of other partitions.)

A subpartition lock protects the data in an individual subpartition while multiple

users are accessing that subpartition or other subpartitions in the same partition, or

some subpartitions in other partitions of the table concurrently.
11-46 Oracle8i Concepts

DML Partition Locks and Subpartition Locks
Oracle does not acquire DML partition locks when performing DML or DDL

operations on composite partitioned tables:

■ A DML operation accessing data in a given subpartition acquires a DML lock

on that subpartition in the same mode as a similar DML operation accessing

data in a partition of a range partitioned table or hash partitioned table.

■ A subpartition maintenance operation acquires DML locks on subpartitions

involved in the operation.

■ A maintenance operation on a partition of a composite partitioned table (for

example, SPLIT PARTITION or TRUNCATE PARTITION) acquires DML locks

on all subpartitions belonging to the partition involved in the operation.

As with partition locks, subpartition locks fall between table locks and row locks in

the DML locking hierarchy:

■ Table locks

– Subpartition locks

* Row locks

Subpartition DML locks can be acquired in the same modes as table and partition

DML locks: Share (S), Exclusive (X), Row Share (SS), Row Exclusive (SX), and Share

Row Exclusive (SSX).

Performance Considerations for Oracle Parallel Server
Introducing an extra level of DML locking may affect the performance of short

transactions in the Oracle Parallel Server environment because extra messages are

sent to the Distributed Lock Manager.

To improve performance in the Oracle Parallel Server environment, you can turn off

DML locking on selected tables with the ALTER TABLE DISABLE TABLE LOCK

statement, which disables both table and partition DML locks. DDL statements are

not allowed when DML locking is disabled.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration.
Partitioned Tables and Indexes 11-47

Maintenance Operations
Maintenance Operations
This section covers the following topics:

■ Partition Maintenance Operations

■ Managing Indexes

■ Privileges for Partitioned Tables and Indexes

■ Auditing for Partitioned Tables and Indexes

For the purposes of this chapter, a maintenance operation is a DDL statement that

alters a table or index definition or a utility (such as Export, Import, or SQL*Loader)

that performs bulk load or unload of data.

Most maintenance operations on nonpartitioned tables and indexes also work on

partitioned tables and indexes. For example, DROP TABLE can drop a partitioned

table, and Export can export a partitioned table. However, some maintenance

operations must be performed on individual partitions rather than the whole

partitioned table or index. For example, ALTER TABLE ALLOCATE EXTENT

cannot be used for a range-partitioned table; instead, you use ALTER TABLE

MODIFY PARTITION ALLOCATE EXTENT for the partition or partitions that need

new extents.

Maintenance operations are considered fast if their expected duration is not affected

by the size (number of records) of the schema objects they operate upon. Fast

maintenance operations result only in dictionary and segment header changes, and

do not cause data scans and data updates. They are expected to complete in a short

time (order of seconds). For example, RENAME is a fast operation while CREATE

INDEX is not a fast operation.

Partition Maintenance Operations
A partition maintenance operation modifies one partition of a partitioned table or

index. For example, you might add a new partition to an existing table, or you

might move a partition to a different tablespace for better I/O load balancing, or

you might load a partition.

Some partition maintenance operations are planned events. For example, in a

historical database, the database administrator (DBA) periodically drops the oldest

partitions from the database and adds a set of new partitions. This drop and add

operation occurs on a regularly scheduled basis. Another example of a planned

maintenance operation is a periodic Export/Import to recluster data and reduce

fragmentation.
11-48 Oracle8i Concepts

Maintenance Operations
Other partition maintenance operations are unplanned events, required to recover

from application or system problems. For example, unexpected transaction activity

may force the DBA to split a partition to rebalance I/O load, or the DBA may need

to rebuild one or more index partitions.

The partition maintenance operations are:

■ add a table partition or subpartition to an existing table

■ merge table partitions (range or composite partitioning)

■ coalesce table partitions (hash partitioning) or subpartitions (composite

partitioning)—redistribute the contents of a partition or subpartition into one

or more remaining partitions or subpartitions

■ split an existing partition into two partitions (range or composite partitioning)

■ drop a partition (range or composite partitioning)

■ truncate a table partition or subpartition (with or without reclaiming space)

■ exchange a partition or subpartition—swap the data (and possibly local index

segments) of a table partition or subpartition with the data (and index

segments) of a non-partitioned table

■ modify a partition or subpartition—change the physical attributes of a partition

or subpartition

■ modify default attributes for a partition (composite partitioning)—specify

default attributes for new subpartitions of a partition

■ move a table partition or subpartition—move it to another tablespace, or

recluster it, or change any of its parameters (including any of its create-time

parameters)

■ rename a partition or subpartition

■ mark all local index partitions or subpartitions associated with a table partition

or subpartition as UNUSABLE

■ rebuild an index partition or subpartition

■ load data into one table partition or subpartition

■ export data from one table partition or subpartition

■ import a table partition or subpartition

For information about maintenance of LOB data, see "Partition Maintenance

Operations on Tables with LOB Columns" on page 11-57.
Partitioned Tables and Indexes 11-49

Maintenance Operations
Concurrency Model for Maintenance Operations
The concurrency model described in this section defines when it is possible to run

more than one DDL and utility operation on the same schema object at the same

time. It also defines which query and DML operations can be run concurrently with

DDL and utility operations.

The model applies to all DDL statements. It also applies to utilities like SQL*Loader.

One-Step and Three-Step Operations There are two types of maintenance operations,

one-step and three-step.

One-step operations:

■ These operations DML lock the affected table in Exclusive (X) mode. Index

operations lock the underlying table. They also hold Exclusive dictionary locks

for the duration of the operation.

■ These operations are either fast (for example, ALTER TABLE ADD PARTITION

for range partitioning) or they offer no possibility of running other operations

concurrently (for example, ALTER TABLE ADD column).

■ All index operations are one-step except:

– CREATE INDEX and ALTER INDEX REBUILD

– ALTER INDEX DROP or SPLIT PARTITION, if the global partition being

dropped or split is USABLE

■ All Oracle DDL statements are one-step except:

– CREATE INDEX

– MOVE, SPLIT, or REBUILD PARTITION or SUBPARTITION

– EXCHANGE PARTITION or SUBPARTITION WITH VALIDATION

– ADD PARTITION for hash partitioning and ADD SUBPARTITION for

composite partitioning (this is processed the same way as the SPLIT and

MOVE PARTITION or SUBPARTITION operations)

– COALESCE PARTITION or SUBPARTITION

– LOAD, EXPORT, or IMPORT PARTITION or SUBPARTITION

Additional Information: See ALTER TABLE and ALTER INDEX in

the Oracle8i SQL Reference for detailed information about partition

maintenance operations.
11-50 Oracle8i Concepts

Maintenance Operations
■ For composite-partitioned tables and local indexes, all partition maintenance

operations follow the same protocol as similar operations on range-partitioned

tables and local indexes.

Three-step operations:

■ These operations acquire less restrictive DML locks on the affected table. They

lock only one partition or subpartition in Exclusive (X) mode, or if they lock the

entire table, they lock it in an S or SS or SX mode.

■ These operations consist of three steps:

– Step 1: read dictionary while holding Share dictionary locks. Step 1 takes a

short time (seconds). At the end of this step, the appropriate DML locks are

acquired, then the dictionary locks are released.

– Step 2: scan or update table or index records. Step 2 may take a long time

(minutes or hours).

– Step 3: update dictionary while holding Exclusive dictionary locks. Step 3

takes a short time (seconds).

■ These operations are long running, but they allow other operations to run

concurrently. Exactly which operations can run concurrently depends on the

specific DML locks acquired by the statement, as explained below.

■ If a three-step operation on range-partitioned tables or local indexes acquires

DML locks on partitions, the same operation on composite-partitioned tables or

local indexes also acquires locks on all subpartitions of each partition involved

in the operation.

■ The following operations are three-step:

– ALTER TABLE MOVE PARTITION or SUBPARTITION, ALTER TABLE

SPLIT PARTITION, ALTER TABLE EXCHANGE PARTITION or

SUBPARTITION WITH VALIDATION, Direct Path Load Table Partition or

Subpartition: These statements lock the table in Row Exclusive (SX) mode

and the partition or subpartition in Exclusive (X) mode.

– CREATE INDEX and ALTER INDEX REBUILD PARTITION (for a global

index): These statements lock the table in Shared (S) mode.

– ALTER INDEX REBUILD PARTITION or SUBPARTITION (for a local

index): This statement locks the table in Row Share (SS) mode and the

partition or subpartition in Shared (S) mode.
Partitioned Tables and Indexes 11-51

Maintenance Operations
– ALTER TABLE MODIFY PARTITION REBUILD UNUSABLE LOCAL

INDEXES: This statement locks the table in Row Share (SS) mode and the

partition in Shared (S) mode.

– ALTER TABLE MODIFY PARTITION ADD SUBPARTITION. This

statement locks the table in Row Exclusive (SX) mode and the subpartition

in Exclusive (X) mode.

– ALTER TABLE COALESCE PARTITION. This statement locks the table in

Row Exclusive (SX) mode and locks the last partition of the table and the

partition into which rows from the last partition will be rehashed in

Exclusive (X) mode.

– ALTER TABLE MODIFY PARTITION COALESCE SUBPARTITION. This

statement locks the table in Row Exclusive (SX) mode and locks the last

subpartition of the partition and the subpartition into which rows from the

last subpartition will be rehashed in Exclusive (X) mode.

– LOAD PARTITION or SUBPARTITION. When run sequentially, this

statement locks the table in Row Exclusive (SX) mode and the partition or

subpartition being loaded in Exclusive (X) mode. When run in parallel, it

locks the table in Row Share (SS) mode and the partition or subpartition

being loaded in Shared (S) mode.

– EXPORT PARTITION or SUBPARTITION. This statement acquires no DML

locks (it runs a SELECT from a partition or subpartition).

– IMPORT PARTITION or SUBPARTITION. This statement locks the table

and the partition or subpartition into which data is being imported (by

INSERT into a subpartition) in Row Exclusive (SX) mode.

Finally, some operations may follow either one-step or three-step protocol:

■ ALTER TABLE DROP PARTITION and ALTER TABLE TRUNCATE

PARTITION

If the table being altered has no global indexes defined on it, or if it is referenced

by enabled referential constraints, statements in this group execute using the

one-step protocol and they are fast. Otherwise, they execute using the three-step

protocol. In the latter case, the base table is locked in Row Exclusive (SX) mode

and the partition is locked in Exclusive (X) mode.

■ ALTER INDEX SPLIT PARTITION (allowed for global indexes only)

If the partition to be split is USABLE, the statement follows the 3-step protocol,

and partitions resulting from the SPLIT are USABLE. If, on the other hand, the
11-52 Oracle8i Concepts

Maintenance Operations
partition being split is UNUSABLE, the operation follows the 1-step protocol,

and resulting partitions are also marked UNUSABLE.

■ ALTER INDEX DROP PARTITION (allowed for global indexes only)

If the partition to be dropped is USABLE, the statement follows the three-step

protocol; otherwise it follows the one-step protocol.

Conventional Path SQL*Loader and Import use SQL INSERT so they are classified

as DML operations for the purposes of the model. Export uses SQL SELECT so it is

classified as a query operation.

Operations That Can Run Concurrently The rules in this section can be derived from the

definitions of one-step and three-step operations.

While a one-step operation is in progress:

■ You can run queries on the table.

■ You cannot run any other operation (DDL, utility, or DML).

Since queries (READ operations) do not take DML locks, queries are allowed on a

partition which is being split or moved while the SPLIT or MOVE is being

processed. However, the current segments are dropped at the end of the operation,

and the space may be reused. An error is signalled if the space is reused.

While an ALTER TABLE MOVE PARTITION, ALTER TABLE SPLIT PARTITION,

ALTER TABLE EXCHANGE PARTITION, or Direct Path Load Table Partition is in

progress on a partition:

■ You can move, split, exchange, or direct path load other partitions in the

same table.

■ You can run queries on the table.

■ You can execute DML operations on the table provided that they do not write to

that partition.

■ You can rebuild any local index partition other than the ones that correspond

to that partition.

■ You cannot run any maintenance operation on the table or its indexes other

than the ones listed above.

While a CREATE INDEX or ALTER INDEX REBUILD PARTITION or ALTER

INDEX DROP/SPLIT PARTIITON applied to a USABLE partition (for a global

index) is in progress:

■ You can run queries on the underlying table.
Partitioned Tables and Indexes 11-53

Maintenance Operations
■ You can create other indexes on the table, rebuild partitions in existing indexes,

or drop or split USABLE partitions in existing indexes.

■ You cannot execute any DML operation on the table or run any maintenance

operation on the table or its indexes other than the ones listed above.

While an ALTER INDEX REBUILD PARTITION (for a local index) is in progress on

a partition which corresponds to an underlying table partition:

■ You can move, split, or direct path load any partition except the underlying

table partition.

■ You can run queries on the table.

■ You can execute DML operations on the table provided that they do not write to

the underlying table partition.

■ You can rebuild other partitions in the index. You can also create other indexes

on the table or rebuild partitions in other indexes.

■ You cannot run any maintenance operation on the table or its indexes other

than the ones listed above.

Some maintenance operations on a partition of a table cause the global indexes of

the table or the index partitions to become UNUSABLE. An example is ALTER

TABLE MOVE PARTITION. The DBA has to run a script that includes global index

rebuilds in addition to the partition maintenance operation. Consequently from a

user point of view these operations serialize access to the entire table. Operations

such as ALTER TABLE MOVE/SPLIT PARTITION make UNUSABLE any

nonpartitioned global indexes as well as all partitions of partitioned global indexes.

Note that table partition operations which mark all partitions of global indexes also

mark one partition of local index (the partition corresponding to the table partition

being operated on) UNUSABLE.

Similarly some partition maintenance operations require disabling Referential

Integrity Constraints before the operation, and re-enabling them afterwards. An

example is a ALTER TABLE DROP PARTITION of a nonempty partition. The DBA

has to run a script that includes constraint re-enabling in addition to the partition

maintenance operation. Consequently, from a user point of view these operations

serialize access to the entire table.
11-54 Oracle8i Concepts

Maintenance Operations
Table 11–3 shows the operations that can be performed concurrently with

maintenance operations on subpartitions.

Table 11–3 Concurrent Operations on Subpartitions

Maintenance Operation
Operations That Can Be Performed
Concurrently

ALTER TABLE/INDEX MODIFY
DEFAULT ATTRIBUTES OF PARTITION

ALTER TABLE EXCHANGE
SUBPARTITION WITHOUT VALIDATION

ALTER TABLE/INDEX MODIFY
SUBPARTITION (unless ALLOCATE
EXTENT is specified)

ALTER TABLE/INDEX RENAME
SUBPARTITION

Queries on the table

ALTER TABLE MODIFY PARTITION ADD
SUBPARTITION

ALTER TABLE MODIFY PARTITION
COALESCE SUBPARTITION

Queries on the table

DML as long as no attempt is made to modify
contents of the subpartitions affected by the
statement

Maintenance operations on other partitions
and their subpartitions

Maintenance operations on other
subpartitions of the partition

ALTER INDEX REBUILD SUBPARTITION on
subpartitions of local indexes corresponding
to other subpartitions of the same partition or
to subpartitions of other partitions of the table

ALTER TABLE EXCHANGE
SUBPARTITION WITH VALIDATION

ALTER TABLE/INDEX MODIFY
SUBPARTITION ALLOCATE EXTENT

ALTER TABLE MOVE SUBPARTITION

LOAD SUBPARTITION

Queries on the table

DML as long as no attempt is made to modify
contents of the subpartition(s) referenced by
the statement

Maintenance operations on other partitions
and their subpartitions

Maintenance operations on other
subpartitions of the partition

ALTER INDEX REBUILD SUBPARTITION on
subpartitions of local indexes corresponding
to other subpartitions of the same partition or
to subpartitions of other partitions of the table
Partitioned Tables and Indexes 11-55

Maintenance Operations
IMPORT SUBPARTITION Queries on the table

DML on the table

Maintenance operations on other partitions
and their subpartitions

Maintenance operations on other
subpartitions of the partition

ALTER INDEX REBUILD SUBPARTITION on
subpartitions of local indexes corresponding
to other subpartitions of the same partition or
to subpartitions of other partitions of the table

EXPORT PARTITION Any operation on the table and indexes
defined on it, their partitions, and
subpartitions

ALTER (local) INDEX REBUILD
SUBPARTITION

Queries on the table

DML as long as no attempt is made to modify
contents of the subpartition corresponding to
the index subpartition being rebuilt

Maintenance operations on subpartitions of
the index’s partitions, other than the partition
whose subpartition is being rebuilt

Maintenance operations on other
subpartitions of the index partition

CREATE new indexes on the underlying table

Maintenance operations on existing indexes
on the underlying table, as well as their
partitions and subpartitions (if applicable)

Maintenance operations on partitions of the
underlying table, other than the partition
corresponding to the index partition whose
subpartition is being rebuilt

Maintenance operations on subpartitions of
the underlying table, other than the one
corresponding to the index subpartition
being rebuilt

Table 11–3 Concurrent Operations on Subpartitions (Cont.)

Maintenance Operation
Operations That Can Be Performed
Concurrently
11-56 Oracle8i Concepts

Maintenance Operations
Partition Maintenance Operations on Tables with LOB Columns
Table partition maintenance operations handle partitioned tables with LOB columns

(see "Partitioning of Tables with LOB Columns" on page 11-38) as follows:

■ ADD PARTITION: For every LOB column in a table, a new LOB data partition

and LOB index partition are created. You can specify the physical attributes of

the new LOB data partitions.

■ DROP PARTITION: For every LOB column in a table, the LOB data partition

and LOB index partition corresponding to the table partition being dropped are

also dropped.

■ EXCHANGE PARTITION: The algorithm used to determine whether a given

nonpartitioned table may be exchanged with a partition of a partitioned table

can also handle LOB columns.

■ IMPORT/EXPORT PARTITION: You can import/export partitions of tables

containing LOB column(s).

■ LOAD PARTITION: In addition to loading data into the table partition, data is

also loaded into LOB data partitions (while making appropriate changes to LOB

index partitions) corresponding to that table partition.

■ MODIFY PARTITION: You can modify attributes of LOB data partitions

associated with a given table partition. Although you cannot specify attributes

for a LOB index partition, changes to an attribute of a LOB data partition may

result in changes to the corresponding attribute of a LOB index partition

associated with it.

■ MOVE PARTITION: For every LOB column in a table, a LOB data partition and

LOB index partition corresponding to the table partition being moved can also

be moved (although they do not have to be moved, for example, if a LOB data

partition resides on a read-only device). You can specify new physical attributes

of LOB data partitions.

■ SPLIT PARTITION: For every LOB column in a table, two new LOB data

partitions and LOB index partitions are created. LOB instances are divided

between the new partitions based on the values of the partitioning column(s) in

the row of which they are a part. You can specify physical attributes for the new

LOB data partitions.

■ TRUNCATE PARTITION: For every LOB column in a table, the LOB data

partition and LOB index partition corresponding to the table partition being

truncated are also truncated.
Partitioned Tables and Indexes 11-57

Maintenance Operations
Addition of LOB columns to partitioned tables has no effect on the concurrency

model for maintenance operations (see "Concurrency Model for Maintenance

Operations" on page 11-50).

Queries and Partition Maintenance Operations
Queries whose execution starts before invocation of a partition maintenance

operation, or before dictionary updates are done during a partition maintenance

operation, correctly access via Consistent Read the data of the affected partitions as

existing at query snapshot time. Such queries either successfully complete returning

all relevant data as present at snapshot time, or fail to complete returning error

ORA-8103 or ORA-1410. The application should reissue the query if one of these

errors is returned.

Queries that use a partitioned index, and that start with some of the index partitions

marked as INDEX UNUSABLE, return an error when they actually access one of

these partitions for the first time. This happens even if the partition has been made

USABLE after query start.

Cursor Invalidation
Although many of the new DDL statements are partition-based, cursor invalidation

is still table-based. This means that any DDL statement that modifies table T also

invalidates all cursors that depend on T, even if the statement affects only one

partition P of T and the cursors do not access partition P.

LOGGING and NOLOGGING Operations
All partition maintenance operations can be run in LOGGING mode. However,

some operations support a NOLOGGING option:

■ Parallel CREATE TABLE ... AS SELECT

■ CREATE INDEX

■ SPLIT, MOVE, or REBUILD PARTITION

■ Direct Path SQL*Loader

■ Direct-load INSERT

LOGGING is the default, except when the database operates in NOARCHIVELOG

mode in which case NOLOGGING is the default. DDL and utility statements that

do not support the LOGGING/NOLOGGING option always run in recoverable

mode (LOGGING).
11-58 Oracle8i Concepts

Maintenance Operations
Managing Indexes
You can always rename, change the physical storage attributes, or rebuild a

partition of a local or global index. Changing how an index is partitioned must be

handled differently depending on whether the index is local or global.

Local Indexes
Oracle guarantees that the partitioning of a local index matches the partitioning of

the underlying table. It does this by automatically creating or dropping index

partitions as necessary when you alter the underlying table. You cannot explicitly

add, drop, or split a partition in a local index.

For each local index:

■ When you add a partition to the underlying table, Oracle automatically creates

a new index partition with the same partition bound as the new table partition.

■ When you drop a partition in the underlying table, Oracle automatically drops

the corresponding index partition.

■ When you split a partition in the underlying table, Oracle automatically splits

the corresponding index partition. The two new index partitions have the same

partition bounds as the new table partitions.

Note that local index partitions produced as a result of splitting a parent table

partition are marked UNUSABLE if a corresponding table partition is

nonempty.

When Oracle creates a new local index partition (via ADD or SPLIT of the

corresponding table partition):

■ It tries to assign it the same name as the corresponding table partition. If that

fails, it generates a name with the form SYS_Pnnn (see "Partition and

Subpartition Names" on page 11-18). You can rename the partition later.

Note: LOGGING or NOLOGGING is not an attribute of an

operation but of a physical object; hence, you cannot specify

LOGGING or NOLOGGING in an INSERT statement. Instead, if

you want to alter the logging mode of a table or index(es) involved

in an insert operation, you need to issue ALTER TABLE/INDEX

[NO]LOGGING before issuing the INSERT statement. For more

information, see "Logging Mode" on page 25-5.
Partitioned Tables and Indexes 11-59

Maintenance Operations
■ For ADD PARTITION, Oracle creates a segment with the default physical

storage attributes of the base index. If a tablespace other than DEFAULT (which

causes local index partitions to be co-located with corresponding base table

partitions) has been specified for the parent index, the index partition is placed

in that tablespace. Otherwise, the tablespace in which the new index partition

resides is that of the corresponding partition of the underlying table. You can

modify these attributes later. (The only way to modify TABLESPACE is to

rebuild.)

■ For SPLIT PARTITION, attributes of the index partition being split are used for

the index partitions resulting from the split. Partition names are the exception,

although Oracle reuses table partition names when possible. For example, for a

table partition with name TP and a local index with name IP, if TP is split into

TP and TP1, then the names of the local index partitions are IP and TP1 (or a

system generated name if TP1 is already in use for that index). If TP is split into

TP1 and TP2, then the local index partitions are TP1 and TP2. That is, if the

table partition name is reused, Oracle tries to reuse the local index partition

name also. All other attributes, however, are inherited from the index partition

being split.

Rather than dropping a local index partition explicitly (for example, before loading

data into its corresponding table partition), you can EXCHANGE the table partition

into a nonpartitioned table, drop the index on that table and perform your load

operation, then create the index and EXCHANGE the table back into the partition

using the INCLUDING INDEXES option.

Global Partitioned Indexes
The DBA is responsible for maintaining the partitioning of a global index. You can

drop or split a partition in a global index. However, you cannot add a partition to a

global index because the high partition of a global index always has a partition

bound of MAXVALUE. See "Management of Global Partitioned Indexes" on

page 11-33 for more information on managing global indexes.

Rebuild Index Partition
The ALTER INDEX REBUILD PARTITION statement can be used to regenerate a

single partition in a local or global partitioned index. This saves you from having to

perform DROP INDEX and then CREATE INDEX, which would affect all partitions

in the index.

ALTER INDEX REBUILD PARTITION has four important applications:

■ To recluster an index partition to recover space and improve performance.
11-60 Oracle8i Concepts

Maintenance Operations
■ To repair an index partition in case of a media failure on the volume where the

index partition resides or a software corruption of the segment containing the

index partition.

■ To regenerate a local index partition after loading the underlying table partition

with Import or SQL*Loader. These utilities offer a performance option to bypass

index maintenance, mark the affected index partitions INDEX UNUSABLE, and

let the DBA rebuild them later. (INDEX UNUSABLE is explained in the next

section.) In other words, the strategy of "drop index then re-create index" can be

replaced by a strategy of "mark index partition UNUSABLE then rebuild index

partition."

■ To rebuild index partitions rendered UNUSABLE by partition maintenance

operations on the underlying table.

INDEX UNUSABLE Attribute
Some maintenance operations mark indexes INDEX UNUSABLE (IU). INDEX

UNUSABLE is an attribute of a nonpartitioned index and of a partition in a

partitioned index. When an index or index partition is marked IU, you get an error

if you try to execute a SELECT or DML statement that requires the index (or

partition).

When a single index partition is marked IU, you must rebuild the partition to make

it valid again before using it. However, while one partition is marked IU the other

partitions of the index are valid and you can execute SELECT or DML statements

that require the index as long as the statements do not access the IU partition.

You can also split or rename the IU partition before rebuilding it, and you can drop

an IU partition of a GLOBAL index.

When a nonpartitioned index is marked IU, you can drop the index. You can also

drop an IU partition of a GLOBAL index.x and re-create it, and you can use ALTER

INDEX REBUILD to rebuild a nonpartitioned index.

Six types of maintenance operations can mark index partitions INDEX UNUSABLE.

In all cases, you must rebuild the index partitions when the operation is complete.

■ Operations like Import Partition or conventional path SQL*Loader that offer an

option to bypass local index maintenance. When the Import is complete, the

affected local index partitions are marked IU.

■ Direct path SQL*Loader leaves affected local index partitions and global

indexes in an IU state if the index is out of date with respect to the data that it
Partitioned Tables and Indexes 11-61

Maintenance Operations
indexes. (INDEX UNUSABLE was previously known as Direct Load State.) The

index can be out of date for the following reasons:

– The index could not be maintained by the load due to a space management

error (for example, out of extents).

– The user requested the SKIP_INDEX_MAINTENANCE option.

■ Partition maintenance operations like ALTER TABLE MOVE PARTITION that

change rowids. These operations mark the affected local index partition and all

global index partitions IU.

■ Partition maintenance operations like ALTER TABLE TRUNCATE PARTITION

or DROP PARTITION that remove rows from the table. These operations mark

the affected local index partition and all global index partitions IU.

■ Partition maintenance operations like ALTER TABLE SPLIT PARTITION that

modify the partition definition of local indexes but do not automatically rebuild

the index data to match the new definitions. These operations mark the affected

local index partition(s) IU. (ALTER TABLE SPLIT PARTITION also marks all

global index partitions IU because it results in changes to rowids.)

■ Index maintenance operations like ALTER INDEX SPLIT PARTITION that

modify the partitioning definition of the index but do not automatically rebuild

the affected partitions. These operations mark the affected index partition(s) IU.

However, if you split a USABLE partition of a global index, resulting partitions

are created USABLE. If the partition which was split was marked IU, then so

are the partitions resulting from the split. (Note that dropping a partition of a

global index which is either IU or is not empty causes the next partition of the

index to become IU.)

Privileges for Partitioned Tables and Indexes
Privileges for partitions are granted on the parent table or index, not on individual

partitions. If you want to grant access to a table on a per-partition basis, you can

define a view on a partition of a table and then grant privileges on that view (see

"Viewing Partitions or Subpartitions as Tables" on page 11-64).

If a user or role has the privileges required to perform an Oracle operation on

nonpartitioned tables and indexes (including the necessary resource privileges),

then the same Oracle operations are allowed on partitioned tables and indexes. For

example:

■ If you can create nonpartitioned tables, then you can create partitioned tables.

■ If you can drop nonpartitioned indexes, then you can drop partitioned indexes.
11-62 Oracle8i Concepts

Partition-Extended and Subpartition-Extended Table Names
■ If you can add a column via ALTER to nonpartitioned tables, then you can add

a column via ALTER to partitioned tables.

If a user or role has the privileges required to perform an ALTER operation on a

table or index, then the ALTER operations on partitions of the table or index can be

invoked, with some exceptions.

Auditing for Partitioned Tables and Indexes
All of the ALTER TABLE PARTITION operations are audited just like ALTER

TABLE operations. No additional audit attributes are used for partitions.

Partition-Extended and Subpartition-Extended Table Names
You can perform bulk operations at the partition or subpartition level; that is, bulk

operations can be restricted to just the rows of a particular partition or subpartition.

For example, if you want to drop a partition without making all the global indexes

UNUSABLE, you would want to delete all the rows from just that partition.

Such operations are very naturally expressed with a SQL extension that provides

syntax for partition-extended table names and subpartition-extended table names.

Trying to phrase the same operations with a WHERE clause predicate is often

cumbersome, especially when a range partitioning key uses multiple columns.

PARTITION and SUBPARTITION Specifications
The table specification syntax for the following DML statements can contain an

optional PARTITION specification for partitioned tables, or an optional PARTITION

or SUBPARTITION specification for composite-partitioned tables:

■ SELECT

■ INSERT

■ UPDATE

■ DELETE

■ LOCK TABLE

Additional Information: See Oracle8i SQL Reference for information

about privileges for the ALTER TABLE and ALTER INDEX

commands.
Partitioned Tables and Indexes 11-63

Partition-Extended and Subpartition-Extended Table Names
For example:

SELECT * FROM schema.table PARTITION part_name;

For a composite-partitioned table, using the PARTITION specification restricts the

operation to data contained in all subpartitions of the specified partition.

Viewing Partitions or Subpartitions as Tables
The PARTITION or SUBPARTITION syntax for table specifications provides a

simple way of viewing individual partitions or subpartitions as tables: You can use

the partition-extended table name or subpartition-extended table name to create a

view that selects from just one partition or subpartition, and this view can then be

used in place of a table. For example:

CREATE VIEW sales_feb98_v1 AS
 SELECT * FROM sales SUBPARTITION (feb98_s1);

SELECT * FROM sales_feb98_v1;

With such views you can also build partition-level or subpartition-level access

control mechanisms by granting (revoking) privileges on these views to (from)

other users or roles.

Using Partition- and Subpartition-Extended Table Names
This section describes restrictions on the use of the PARTITION and

SUBPARTITION options in table specifications, and provides examples of SQL

statements that include the PARTITION or SUBPARTITION option.

Restrictions on Partition- and Subpartition-Extended Table Names
The use of partition- and subpartition-extended table names has the following

restrictions:

1. A partition- or subpartition-extended table name cannot refer to a remote schema object.

Additional Information: See Oracle8i SQL Reference for information

about the syntax of DML statements.

Note: For application portability and ANSI syntax compliance,

you should always use views to insulate your applications from

this Oracle proprietary extension.
11-64 Oracle8i Concepts

Partition-Extended and Subpartition-Extended Table Names
A partition- or subpartition-extended table name cannot contain a database link

or a synonym which translates to a table with a database link. If you need to use

remote partitions or subpartitions, you can create a view at the remote site

which uses the partition- or subpartition-extended table name syntax and refer

to that remote view.

2. The partition- or subpartition-extended table name syntax is not supported by PL/SQL.

A SQL statement that has the partition- or subpartition-extended table name

syntax cannot be used in a PL/SQL block, although it can be used through

dynamic SQL with the DBMS_SQL package. If you need to refer to a partition

or subpartition within a PL/SQL block, you can use views which in turn use

the partition- or subpartition-extended table name syntax.

3. Only base tables are allowed.

A partition or subpartition extension must be specified with a base table. No

synonyms, views, or any other schema objects are allowed.

Examples of Using the PARTITION Specification
The following statements contain valid partition-extended table names:

SELECT * FROM sales PARTITION (nov97) s
WHERE s.amount_of_sale > 1000;

UPDATE sales PARTITION (feb98) s
SET s.account_name = UPPER(s.account_name);

DELETE FROM sales PARTITION (nov97)
WHERE amount_of_sale != 0;

INSERT INTO sales PARTITION (oct97)
SELECT * FROM lastest_data;

INSERT INTO sales PARTITION (oct97)
 VALUES (...);

INSERT INTO sales PARTITION (oct97)
 (acct_no, ..., week_no)
 VALUES (...);

LOCK TABLE sales PARTITION (jun98) IN EXCLUSIVE MODE;

CREATE VIEW sales_feb98 AS
SELECT * FROM sales PARTITION (feb98);
Partitioned Tables and Indexes 11-65

Partition-Extended and Subpartition-Extended Table Names
Examples of Using the SUBPARTITION Specification
The following statements contain valid subpartition-extended table names:

SELECT * FROM sales SUBPARTITION (nov97_s1) s
 WHERE s.amount_of_sale > 1000;

UPDATE sales SUBPARTITION (feb98_s4) s
 SET s.account_name = UPPER(s.account_name);

DELETE FROM sales SUBPARTITION (nov97_s3)
 WHERE amount_of_sale != 0;

INSERT INTO sales SUBPARTITION (oct97_s5)
 SELECT * FROM lastest_data;

INSERT INTO sales SUBPARTITION (oct97_s2)
 VALUES (...);

INSERT INTO sales SUBPARTITION (oct97_s4)
 (acct_no, ..., week_no)
 VALUES (...);

LOCK TABLE sales SUBPARTITION (jun98_s1) IN EXCLUSIVE MODE;

CREATE VIEW sales_feb98_1 AS
 SELECT * FROM sales SUBPARTITION (feb98_s1);
11-66 Oracle8i Concepts

Built-In D
12

Built-In Datatypes

I am the voice of today, the herald of tomorrow. ... I am the leaden army that conquers the
world—I am TYPE.

Frederic William Goudy: The Type Speaks

This chapter discusses the Oracle built-in datatypes, their properties, and how they

map to non-Oracle datatypes. Topics include:

■ Overview of Oracle Datatypes

■ Character Datatypes

■ NUMBER Datatype

■ DATE Datatype

■ LOB Datatypes

■ RAW and LONG RAW Datatypes

■ ROWID and UROWID Datatypes

■ ANSI, DB2, and SQL/DS Datatypes

■ Data Conversion
atatypes 12-1

Overview of Oracle Datatypes
Overview of Oracle Datatypes
Each column value and constant in a SQL statement has a datatype, which is

associated with a specific storage format, constraints, and a valid range of values.

When you create a table, you must specify a datatype for each of its columns.

Oracle provides the following built-in datatypes:

■ Character Datatypes

– CHAR Datatype

– VARCHAR2 and VARCHAR Datatypes

– NCHAR and NVARCHAR2 Datatypes

– LONG Datatype

■ NUMBER Datatype

■ DATE Datatype

■ LOB Datatypes

– BLOB Datatype

– CLOB and NCLOB Datatypes

– BFILE Datatype

■ RAW and LONG RAW Datatypes

■ ROWID and UROWID Datatypes

– Physical Rowids

– Logical Rowids

– Rowids in Non-Oracle Databases

Additional Information: PL/SQL has additional datatypes for

constants and variables, which include BOOLEAN, reference types,

composite types (collections and records), and user-defined

subtypes. See the PL/SQL User’s Guide and Reference for information

about PL/SQL datatypes.
12-2 Oracle8i Concepts

Overview of Oracle Datatypes
Table 12–1 summarizes the characteristics of each Oracle datatype.

Table 12–1 Summary of Oracle Built-In Datatypes

Datatype Description Column Length and Default

CHAR (size) Fixed-length character
data of length size
bytes.

Fixed for every row in the table (with trailing
blanks); maximum size is 2000 bytes per row,
default size is 1 byte per row. Consider the
character set (one-byte or multibyte) before setting
size.

VARCHAR2
(size)

Variable-length
character data. A
maximum size must
be specified.

Variable for each row, up to 4000 bytes per row.
Consider the character set (one-byte or multibyte)
before setting size.

NCHAR(size) Fixed-length character
data of length size
characters or bytes,
depending on the
national character set.

Fixed for every row in the table (with trailing
blanks). Column size is the number of characters
for a fixed-width national character set or the
number of bytes for a varying-width national
character set. Maximum size is determined by the
number of bytes required to store one character,
with an upper limit of 2000 bytes per row. Default
is 1 character or 1 byte, depending on the character
set.

NVARCHAR2
(size)

Variable-length
character data of
length size characters
or bytes, depending
on national character
set. A maximum size
must be specified.

Variable for each row. Column size is the number
of characters for a fixed-width national character
set or the number of bytes for a varying-width
national character set. Maximum size is determined
by the number of bytes required to store one
character, with an upper limit of 4000 bytes per
row. Default is 1 character or 1 byte, depending on
the character set.

LONG Variable-length
character data.

Variable for each row in the table, up to 231 - 1
bytes, or 2 gigabytes, per row.

NUMBER
(p, s)

Variable-length
numeric data.
Maximum precision p
and/or scale s is 38.

Variable for each row. The maximum space
required for a given column is 21 bytes per row.

DATE Fixed-length date and
time data, ranging
from January 1, 4712
BCE to December 31,

9999 CE ("A.D.")

Fixed at 7 bytes for each row in the table. Default
format is a string (such as DD-MON-YY) specified
by NLS_DATE_FORMAT parameter.
Built-In Datatypes 12-3

Overview of Oracle Datatypes
The sections that follow describe each of the built-in datatypes in more detail.

RAW (size) Variable-length raw
binary data. A
maximum size must
be specified.

Variable for each row in the table, up to 2000 bytes
per row.

LONG RAW Variable-length raw
binary data.

Variable for each row in the table, up to 231 -
1 bytes, or 2 gigabytes, per row.

BLOB Binary data. Up to 232 - 1 bytes, or 4 gigabytes.

CLOB Single-byte character
data.

Up to 232 - 1 bytes, or 4 gigabytes.

NCLOB Single-byte or fixed-
or variable-width
multibyte national
character set
(NCHAR) data.

Up to 232 - 1 bytes, or 4 gigabytes.

BFILE Binary data stored in
an external file.

Up to 232 - 1 bytes, or 4 gigabytes.

ROWID Binary data
representing a
physical row address.

Fixed at 10 bytes (extended rowid) or 6 bytes
(restricted rowid) for each row in the table.

UROWID Binary data
representing any type
of row address:
physical, logical, or
foreign.

Up to 4000 bytes (but for a logical rowid, only 3950
bytes can be used for the primary key). The default
is 4000 bytes.

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for information about how to use the built-in

datatypes.

Table 12–1 Summary of Oracle Built-In Datatypes (Cont.)

Datatype Description Column Length and Default
12-4 Oracle8i Concepts

Character Datatypes
Character Datatypes
The character datatypes store character (alphanumeric) data in strings, with byte

values corresponding to the character encoding scheme (generally called a character

set or code page).

The database’s character set is established when you create the database, and never

changes. Examples of character sets are 7-bit ASCII (American Standard Code for

Information Interchange), EBCDIC (Extended Binary Coded Decimal Interchange

Code), Code Page 500, and Japan Extended UNIX. Oracle supports both single-byte

and multibyte encoding schemes.

CHAR Datatype
The CHAR datatype stores fixed-length character strings. When you create a table

with a CHAR column, you must specify a string length (in bytes, not characters)

between 1 and 2000 for the CHAR column width. (The default is 1.) Oracle then

guarantees that:

■ When you insert or update a row in the table, the value for the CHAR column

has the fixed length.

■ If you give a shorter value, the value is blank-padded to the fixed length.

■ If you give a longer value with trailing blanks, blanks are trimmed from the

value to the fixed length.

■ If a value is too large, Oracle returns an error.

Oracle compares CHAR values using blank-padded comparison semantics.

VARCHAR2 and VARCHAR Datatypes
The VARCHAR2 datatype stores variable-length character strings. When you create

a table with a VARCHAR2 column, you specify a maximum string length (in bytes,

not characters) between 1 and 4000 for the VARCHAR2 column. For each row,

Oracle stores each value in the column as a variable-length field (unless a value

exceeds the column’s maximum length, in which case Oracle returns an error).

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for information about how to select a character

datatype.

Additional Information: See the Oracle8i SQL Reference for details

about blank-padded comparison semantics.
Built-In Datatypes 12-5

Character Datatypes
For example, assume you declare a column VARCHAR2 with a maximum size of 50

characters. In a single-byte character set, if only 10 characters are given for the

VARCHAR2 column value in a particular row, the column in the row’s row piece

stores only the 10 characters (10 bytes), not 50.

Oracle compares VARCHAR2 values using nonpadded comparison semantics.

VARCHAR Datatype
The VARCHAR datatype is currently synonymous with the VARCHAR2 datatype.

However, in a future version of Oracle, VARCHAR might store variable-length

character strings compared with different comparison semantics. Therefore, to

avoid possible changes in behavior you should always use the VARCHAR2

datatype to store variable-length character strings.

Column Lengths for Character Datatypes and NLS Character Sets
The Oracle National Language Support (NLS) feature allows the use of various

character sets for the character datatypes. National Language Support enables you

to process single-byte and multi-byte character data and convert between character

sets. Client sessions can use national character sets different from the database

character set.

You should consider the size of characters when you specify the column length for

character datatypes. You must consider this issue when estimating space for tables

with columns that contain character data.

NCHAR and NVARCHAR2 Datatypes
The NCHAR and NVARCHAR2 datatypes store NLS character data. The NCHAR

datatype stores fixed-length character strings that correspond to a fixed-length or

variable-length national character set. The NVARCHAR2 datatype stores

variable-length character strings.

When you create a table with an NCHAR or NVARCHAR2 column, you specify a

maximum size that is either the number of characters (for a fixed-length national

character set) or the number of bytes (for a variable-length national character set).

Additional Information: See the Oracle8i SQL Reference for details

about nonpadded comparison semantics.

Additional Information: See the Oracle8i National Language Support
Guide for more information about the NLS feature of Oracle.
12-6 Oracle8i Concepts

Character Datatypes
■ The maximum length for an NCHAR column is 2000 bytes, or the number of

characters that can be stored in 2000 bytes.

■ The maximum length for an NVARCHAR2 column is 4000 bytes, or the number

of characters that can be stored in 4000 bytes.

LOB Character Datatypes
The LOB datatypes for character data are CLOB and NCLOB. They can store up to

four gigabytes of character data (CLOB) or national character set data (NCLOB).

These datatypes are described in "LOB Datatypes" on page 12-12.

LONG Datatype
Columns defined as LONG can store variable-length character data containing up

to two gigabytes of information. LONG data is text data that is to be appropriately

converted when moving among different systems.

LONG datatype columns are used in the data dictionary to store the text of view

definitions. You can use LONG columns in SELECT lists, SET clauses of UPDATE

statements, and VALUES clauses of INSERT statements.

Additional Information: See the Oracle8i National Language Support
Guide for more information about the NCHAR and NVARCHAR2

datatypes.

Note: The LONG datatype is provided for backward

compatibility with existing applications. In new applications, you

should use CLOB and NCLOB datatypes for large amounts of

character data.

Additional Information: The LONG datatype has many

restrictions—see the Oracle8i Application Developer’s Guide -
Fundamentals.

Also see "RAW and LONG RAW Datatypes" on page 12-14 for

information about the LONG RAW datatype.
Built-In Datatypes 12-7

NUMBER Datatype
NUMBER Datatype
The NUMBER datatype stores fixed and floating-point numbers. Numbers of

virtually any magnitude can be stored and are guaranteed portable among different

systems operating Oracle, up to 38 digits of precision.

The following numbers can be stored in a NUMBER column:

■ positive numbers in the range 1 x 10-130 to 9.99..9 x 10125 (with up to 38

significant digits)

■ negative numbers from -1 x 10-130 to 9.99..99 x 10125 (with up to 38 significant

digits)

■ zero

■ positive and negative infinity (generated only by importing from an Oracle

Version 5 database)

For numeric columns you can specify the column as:

column_name NUMBER

Optionally, you can also specify a precision (total number of digits) and scale
(number of digits to the right of the decimal point):

column_name NUMBER (precision, scale)

If a precision is not specified, the column stores values as given. If no scale is

specified, the scale is zero.

Oracle guarantees portability of numbers with a precision equal to or less than 38

digits. You can specify a scale and no precision:

column_name NUMBER (*, scale)

In this case, the precision is 38 and the specified scale is maintained.

When you specify numeric fields, it is a good idea to specify the precision and scale;

this provides extra integrity checking on input.
12-8 Oracle8i Concepts

NUMBER Datatype
Table 12–2 shows examples of how data would be stored using different

scale factors.

If you specify a negative scale, Oracle rounds the actual data to the specified

number of places to the left of the decimal point. For example, specifying (7,-2)

means Oracle should round to the nearest hundredths, as shown in Table 12–2.

For input and output of numbers, the standard Oracle default decimal character is a

period, as in the number "1234.56". (The decimal is the character that separates the

integer and decimal parts of a number.) You can change the default decimal

character with the initialization parameter NLS_NUMERIC_CHARACTERS. You

can also change it for the duration of a session with the ALTER SESSION statement.

To enter numbers that do not use the current default decimal character, use the

TO_NUMBER function.

Internal Numeric Format
Oracle stores numeric data in variable-length format. Each value is stored in

scientific notation, with one byte used to store the exponent and up to 20 bytes to

store the mantissa. (The resulting value is limited to 38 digits of precision.) Oracle

does not store leading and trailing zeros. For example, the number 412 is stored in a

format similar to 4.12 x 102, with one byte used to store the exponent (2) and two

bytes used to store the three significant digits of the mantissa (4, 1, 2).

Taking this into account, the column data size for a particular numeric data value

NUMBER (p), where p is the precision of a given value (scale has no effect), can be

calculated using the following formula:

Table 12–2 How Scale Factors Affect Numeric Data Storage

Input Data Specified As Stored As

7,456,123.89 NUMBER 7456123.89

7,456,123.89 NUMBER(*,1) 7456123.9

7,456,123.89 NUMBER(9) 7456124

7,456,123.89 NUMBER(9,2) 7456123.89

7,456,123.89 NUMBER(9,1) 7456123.9

7,456,123.89 NUMBER(6) (not accepted, exceeds precision)

7,456,123.89 NUMBER(7,-2) 7456100
Built-In Datatypes 12-9

DATE Datatype
 1 byte (exponent)
+ FLOOR(p/2)+1 bytes (mantissa)
+ 1 byte (only for a negative number where the number of
 significant digits is less than 38)

number of bytes of data

Zero and positive and negative infinity (only generated on import from Version 5

Oracle databases) are stored using unique representations: zero and negative

infinity each require one byte; positive infinity requires two bytes.

DATE Datatype
The DATE datatype stores point-in-time values (dates and times) in a table. The

DATE datatype stores the year (including the century), the month, the day, the

hours, the minutes, and the seconds (after midnight).

Oracle can store dates in the Julian era, ranging from January 1, 4712 BCE through

December 31, 4712 CE (Common Era). Unless BCE ('BC' in the format mask) is

specifically used, CE date entries are the default.

Oracle uses its own internal format to store dates. Date data is stored in fixed-length

fields of seven bytes each, corresponding to century, year, month, day, hour, minute,

and second.

For input and output of dates, the standard Oracle default date format is

DD-MON-YY, as below:

’13-NOV-92’

You can change this default date format for an instance with the parameter

NLS_DATE_FORMAT. You can also change it during a user session with the ALTER

SESSION statement. To enter dates that are not in standard Oracle date format, use

the TO_DATE function with a format mask:

TO_DATE (’November 13, 1992’, ’MONTH DD, YYYY’)

Note: If you use the standard date format DD-MON-YY, YY gives

the year in the 20th century (for example, 31-DEC-92 is December

31, 1992). If you want to indicate years in any century other than

the 20th century, use a different format mask, as shown above.
12-10 Oracle8i Concepts

DATE Datatype
Oracle stores time in 24-hour format—HH:MI:SS. By default, the time in a date field

is 00:00:00 A.M. (midnight) if no time portion is entered. In a time-only entry, the

date portion defaults to the first day of the current month. To enter the time portion

of a date, use the TO_DATE function with a format mask indicating the time

portion, as in

INSERT INTO birthdays (bname, bday) VALUES
 (’ANDY’,TO_DATE(’13-AUG-66 12:56 A.M.’,’DD-MON-YY HH:MI A.M.’));

Using Julian Dates
Julian dates allow continuous dating by the number of days from a common

reference. (The reference is 01-01-4712 years BCE, so current dates are somewhere in

the 2.4 million range.) A Julian date is nominally a noninteger, the fractional part

being a portion of a day. Oracle uses a simplified approach that results in integer

values. Julian dates can be calculated and interpreted differently; the calculation

method used by Oracle results in a seven-digit number (for dates most often used),

such as 2449086 for 08-APR-93.

The format mask "J" can be used with date functions (TO_DATE or TO_CHAR) to

convert date data into Julian dates. For example, the following query returns all

dates in Julian date format:

SELECT TO_CHAR (hiredate, ’J’) FROM emp;

You must use the TO_NUMBER function if you want to use Julian dates in

calculations. You can use the TO_DATE function to enter Julian dates:

INSERT INTO emp (hiredate) VALUES (TO_DATE(2448921, ’J’));

Date Arithmetic
Oracle date arithmetic takes into account the anomalies of the calendars used

throughout history. For example, the switch from the Julian to the Gregorian

calendar, 15-10-1582, eliminated the previous 10 days (05-10-1582 through

14-10-1582). The year 0 does not exist.

Note: Oracle Julian dates might not be compatible with Julian

dates generated by other date algorithms.
Built-In Datatypes 12-11

LOB Datatypes
You can enter missing dates into the database, but they are ignored in date

arithmetic and treated as the next "real" date. For example, the next day after

04-10-1582 is 15-10-1582, and the day following 05-10-1582 is also 15-10-1582.

Centuries and the Year 2000
Oracle stores year data with the century information. For example, the Oracle

database stores 1996 or 2001, and not just 96 or 01. The DATE datatype always

stores a four-digit year internally, and all other dates stored internally in the

database have four digit years. Oracle utilities such as import, export, and recovery

also deal properly with four-digit years.

However, some applications might be written with an assumption about the year

(such as assuming that everything is 19xx). Application programmers should

therefore review and test their code with regard to the year 2000.

LOB Datatypes
The LOB datatypes BLOB, CLOB, NCLOB, and BFILE enable you to store large

blocks of unstructured data (such as text, graphic images, video clips, and sound

waveforms) up to four gigabytes in size. They provide efficient, random, piece-wise

access to the data.

You can perform parallel queries (but not parallel DML or DDL) on LOB columns.

LOB datatypes differ from LONG and LONG RAW datatypes in several ways. For

example:

■ A table can contain multiple LOB columns but only one LONG column.

■ A table containing one or more LOB columns can be partitioned, but a table

containing a LONG column cannot be partitioned.

■ The maximum size of a LOB is four gigabytes, but the maximum size of a

LONG is two gigabytes.

Note: This discussion of date arithmetic may not apply to all

countries’ date standards (such as those in Asia).

Additional Information: For more information about centuries and

date format masks, see the Oracle8i Application Developer’s Guide -
Fundamentals. For general information about date format codes, see

the Oracle8i SQL Reference.
12-12 Oracle8i Concepts

LOB Datatypes
■ LOBs support random access to data, but LONGs support only sequential

access.

■ LOB datatypes (except NCLOB) can be attributes of a user-defined object type

but LONG datatypes cannot.

■ Temporary LOBs that act like local variables can be used to perform

transformations on LOB data. Temporary internal LOBs (BLOBs, CLOBs, and

NCLOBs) are created in the user’s temporary tablespace and are independent of

tables. For LONG datatypes, however, no temporary structures are available.

SQL statements define LOB columns in a table and LOB attributes in a user-defined

object type. See "Default Logging Mode" on page 25-7 for information about the

LOB attributes LOGGING and NOLOGGING. When defining LOBs in a table, you

can explicitly specify the tablespace and storage characteristics for each LOB.

LOB datatypes can be stored inline (within a table), out-of-line (within a tablespace,

using a LOB locator), or in an external file (BFILE datatypes).

BLOB Datatype
The BLOB datatype stores unstructured binary data in the database. BLOBs can

store up to four gigabytes of binary data.

BLOBs participate fully in transactions. Changes made to a BLOB value by the

DBMS_LOB package, PL/SQL, or the OCI can be committed or rolled back.

However, BLOB locators cannot span transactions or sessions.

CLOB and NCLOB Datatypes
The CLOB and NCLOB datatypes store up to four gigabytes of character data in the

database. CLOBs store single-byte character set data and NCLOBs store fixed-width

and varying-width multibyte national character set data (NCHAR data).

CLOBs and NCLOBs participate fully in transactions. Changes made to a CLOB or

NCLOB value by the DBMS_LOB package, PL/SQL, or the OCI can be committed

Additional Information: See the Oracle8i SQL Reference for a

complete list of differences between the LOB datatypes and the

LONG and LONG RAW datatypes.

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for more information about LOB storage and

LOB locators.
Built-In Datatypes 12-13

RAW and LONG RAW Datatypes
or rolled back. However, CLOB and NCLOB locators cannot span transactions or

sessions.

The CLOB or NCLOB value is stored in the database using the two-byte Unicode

character set, which has a fixed width. Oracle translates the stored Unicode value to

the character set requested on the client or on the server, which can be fixed-width

or varying-width. When you insert data into a CLOB or NCLOB column using a

varying-width character set, Oracle converts the data into Unicode before storing it

in the database.

You cannot create an object type with NCLOB attributes, but you can specify

NCLOB parameters in a method for an object type.

BFILE Datatype
The BFILE datatype stores unstructured binary data in operating-system files

outside the database. A BFILE column or attribute stores a file locator that points to

an external file containing the data. BFILEs can store up to four gigabytes of data.

BFILEs are read-only; you cannot modify them. They support only random (not

sequential) reads, and they do not participate in transactions. The underlying

operating system must maintain the file integrity and durability for BFILEs. The

database administrator must ensure that the file exists and that Oracle processes

have operating-system read permissions on the file.

RAW and LONG RAW Datatypes

The RAW and LONG RAW datatypes are used for data that is not to be interpreted

(not converted when moving data between different systems) by Oracle. These

datatypes are intended for binary data or byte strings. For example, LONG RAW

can be used to store graphics, sound, documents, or arrays of binary data; the

interpretation is dependent on the use.

Additional Information: See the Oracle8i National Language Support
Guide for more information about national character set data and

the Unicode character set.

Note: The RAW and LONG RAW datatypes are provided for

backward compatibility with existing applications. For new

applications, you should use the BLOB and BFILE datatypes for

large amounts of binary data.
12-14 Oracle8i Concepts

ROWID and UROWID Datatypes
RAW is a variable-length datatype like the VARCHAR2 character datatype, except

that Net8 (which connects user sessions to the instance) and the Import and Export

utilities do not perform character conversion when transmitting RAW or LONG

RAW data. In contrast, Net8 and Import/Export automatically convert CHAR,

VARCHAR2, and LONG data between the database character set and the user

session character set (set by the NLS_LANGUAGE parameter of the ALTER

SESSION command), if the two character sets are different.

When Oracle automatically converts RAW or LONG RAW data to and from CHAR

data, the binary data is represented in hexadecimal form with one hexadecimal

character representing every four bits of RAW data. For example, one byte of RAW

data with bits 11001011 is displayed and entered as ’CB’.

LONG RAW data cannot be indexed, but RAW data can be indexed.

ROWID and UROWID Datatypes
Oracle uses a ROWID datatype to store the address (rowid) of every row in the

database.

■ Physical rowids store the addresses of rows in ordinary tables (excluding

index-organized tables), clustered tables, table partitions and subpartitions,

indexes, and index partitions and subpartitions.

■ Logical rowids store the addresses of rows in index-organized tables.

A single datatype called the universal rowid, or UROWID, supports both logical and

physical rowids, as well as rowids of foreign tables (such as non-Oracle tables

accessed through a gateway—see "Rowids in Non-Oracle Databases" on

page 12-22).

A column of the UROWID datatype can store all kinds of rowids. The value of the

COMPATIBLE initialization parameter must be set to 8.1 or higher to use UROWID

columns.

The ROWID Pseudocolumn
Each table in an Oracle database internally has a pseudocolumn named ROWID. This

pseudocolumn is not evident when listing the structure of a table by executing a

SELECT * FROM . . . statement, or a DESCRIBE . . . statement using SQL*Plus.

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for information about other restrictions on the

LONG RAW datatype.
Built-In Datatypes 12-15

ROWID and UROWID Datatypes
However, each row’s address can be retrieved with a SQL query using the reserved

word ROWID as a column name, for example:

SELECT ROWID, ename FROM emp;

You cannot set the value of the pseudocolumn ROWID in INSERT or UPDATE

statements, and you cannot delete a ROWID value. Oracle uses the ROWID values

in the pseudocolumn ROWID internally for the construction of indexes (see "How

Rowids Are Used" on page 12-19).

You can reference rowids in the pseudocolumn ROWID like other table columns

(used in SELECT lists and WHERE clauses), but rowids are not stored in the

database, nor are they database data. However, you can create tables that contain

columns having the ROWID datatype, although Oracle does not guarantee that the

values of such columns are valid rowids.

Physical Rowids
Physical rowids provide the fastest possible access to a row of a given table. They

contain the physical address of a row (down to the specific block), and essentially

allow you to retrieve the row in a single block access. Oracle guarantees that as long

as the row exists, its rowid does not change. These performance and stability

qualities make rowids useful for applications that select a set of rows, perform some

operations on them, and then access some of the selected rows again, perhaps with

the purpose of updating them.

Every row in a nonclustered table is assigned a unique rowid that corresponds to

the physical address of a row’s row piece (or the initial row piece if the row is

chained among multiple row pieces). In the case of clustered tables, rows in

different tables that are in the same data block can have the same rowid.

A row’s assigned rowid remains unchanged unless the row is exported and

imported (using the IMPORT and EXPORT utilities). When you delete a row from a

table (and then commit the encompassing transaction), the deleted row’s associated

rowid can be assigned to a row inserted in a subsequent transaction.

A physical rowid datatype has one of two formats:

■ The extended rowid format supports tablespace-relative data block addresses and

efficiently identifies rows in partitioned tables and indexes as well as

nonpartitioned tables and indexes. Tables and indexes created by an Oracle8i
server always have extended rowids.

■ A restricted rowid format is also available for backward compatibility with

applications developed with Oracle7 or earlier releases.
12-16 Oracle8i Concepts

ROWID and UROWID Datatypes
Extended Rowids
Extended rowids use a base 64 encoding of the physical address for each row

selected. The encoding characters are A-Z, a-z, 0-9, +, and /. For example, the

following query

SELECT ROWID, ename FROM emp WHERE deptno = 20;

might return the following row information:

ROWID ENAME
------------------ ----------
AAAAaoAATAAABrXAAA BORTINS
AAAAaoAATAAABrXAAE RUGGLES
AAAAaoAATAAABrXAAG CHEN
AAAAaoAATAAABrXAAN BLUMBERG

An extended rowid has a four-piece format, OOOOOOFFFBBBBBBRRR:

■ OOOOOO: The data object number that identifies the database segment

(AAAAaoin the example). Schema objects in the same segment, such as a cluster

of tables, have the same data object number.

■ FFF: The tablespace-relative datafile number of the datafile that contains the

row (file AAT in the example).

■ BBBBBB: The data block that contains the row (block AAABrX in the example).

Block numbers are relative to their datafile, not tablespace. Therefore, two rows

with identical block numbers could reside in two different datafiles of the same

tablespace.

■ RRR: The row in the block.

You can retrieve the data object number from data dictionary views

USER_OBJECTS, DBA_OBJECTS, and ALL_OBJECTS. For example, the following

query returns the data object number for the EMP table in the SCOTT schema:

SELECT DATA_OBJECT_ID FROM DBA_OBJECTS
 WHERE OWNER = ’SCOTT’ AND OBJECT_NAME = ’EMP’;

You can also use the DBMS_ROWID package to extract information from an

extended rowid or to convert a rowid from extended format to restricted format (or

vice versa).

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for information about the DBMS_ROWID

package.
Built-In Datatypes 12-17

ROWID and UROWID Datatypes
Restricted Rowids
Restricted rowids use a binary representation of the physical address for each row

selected. When queried using SQL*Plus, the binary representation is converted to a

VARCHAR2/hexadecimal representation. The following query

SELECT ROWID, ename FROM emp
 WHERE deptno = 30;

might return the following row information:

ROWID ENAME
------------------ ----------
00000DD5.0000.0001 KRISHNAN
00000DD5.0001.0001 ARBUCKLE
00000DD5.0002.0001 NGUYEN

As shown above, a restricted rowid’s VARCHAR2/hexadecimal representation is in

a three-piece format, block.row.file:

■ The data block that contains the row (block DD5 in the example). Block

numbers are relative to their datafile, not tablespace. Therefore, two rows with

identical block numbers could reside in two different datafiles of the same

tablespace.

■ The row in the block that contains the row (rows 0, 1, 2 in the example). Row

numbers of a given block always start with 0.

■ The datafile that contains the row (file 1 in the example). The first datafile of

every database is always 1, and file numbers are unique within a database.

Examples of Using Rowids
You can use the function SUBSTR to break the data in a rowid into its components.

For example, you can use SUBSTR to break an extended rowid into its four

components (database object, file, block, and row):

SELECT ROWID,
 SUBSTR(ROWID,1,6) "OBJECT",
 SUBSTR(ROWID,7,3) "FIL",
 SUBSTR(ROWID,10,6) "BLOCK",
 SUBSTR(ROWID,16,3) "ROW"
 FROM products;

ROWID OBJECT FIL BLOCK ROW
------------------ ------ --- ------ ----
AAAA8mAALAAAAQkAAA AAAA8m AAL AAAAQk AAA
12-18 Oracle8i Concepts

ROWID and UROWID Datatypes
AAAA8mAALAAAAQkAAF AAAA8m AAL AAAAQk AAF
AAAA8mAALAAAAQkAAI AAAA8m AAL AAAAQk AAI

Or you can use SUBSTR to break a restricted rowid into its three components

(block, row, and file):

SELECT ROWID, SUBSTR(ROWID,15,4) "FILE",
 SUBSTR(ROWID,1,8) "BLOCK",
 SUBSTR(ROWID,10,4) "ROW"
 FROM products;

ROWID FILE BLOCK ROW
------------------ ---- -------- ----
00000DD5.0000.0001 0001 00000DD5 0000
00000DD5.0001.0001 0001 00000DD5 0001
00000DD5.0002.0001 0001 00000DD5 0002

Rowids can be useful for revealing information about the physical storage of a

table’s data. For example, if you are interested in the physical location of a table’s

rows (such as for table striping), the following query of an extended rowid tells how

many datafiles contain rows of a given table:

SELECT COUNT(DISTINCT(SUBSTR(ROWID,7,3))) "FILES" FROM tablename ;

FILES

2

How Rowids Are Used
Oracle uses rowids internally for the construction of indexes. Each key in an index

is associated with a rowid that points to the associated row’s address for fast access.

End users and application developers can also use rowids for several important

functions:

■ Rowids are the fastest means of accessing particular rows.

■ Rowids can be used to see how a table is organized.

■ Rowids are unique identifiers for rows in a given table.

Additional Information: See the Oracle8i SQL Reference, PL/SQL
User’s Guide and Reference, Oracle8i Tuning, and other books about

Oracle tools and utilities for more examples of using rowids.
Built-In Datatypes 12-19

ROWID and UROWID Datatypes
Before you use rowids in DML statements, they should be verified and guaranteed

not to change; the intended rows should be locked so they cannot be deleted. Under

some circumstances, requesting data with an invalid rowid could cause a statement

to fail.

You can also create tables with columns defined using the ROWID datatype. For

example, you can define an exception table with a column of datatype ROWID to

store the rowids of rows in the database that violate integrity constraints. Columns

defined using the ROWID datatype behave like other table columns; values can be

updated, and so on. Each value in a column defined as datatype ROWID requires

six bytes to store pertinent column data.

Logical Rowids
Rows in index-organized tables do not have permanent physical addresses—they

are stored in the index leaves and can move within the block or to a different block

as a result of insertions—therefore their row identifiers cannot be based on physical

addresses. Instead, Oracle provides index-organized tables with logical row

identifiers, called logical rowids, that are based on the table’s primary key. Oracle

uses these logical rowids for the construction of secondary indexes on

index-organized tables.

Each logical rowid used in a secondary index can include a physical guess, which

identifies the block location of the row in the index-organized table at the time the

guess was made (that is, when the secondary index was created or rebuilt).

Oracle can use guesses to probe into the leaf block directly, bypassing the full key

search. This ensures that rowid access of nonvolatile index-organized tables gives

comparable performance to the physical rowid access of ordinary tables. In a

volatile table, however, if the guess becomes stale the probe may fail, in which case

a primary key search must be performed.

The values of two logical rowids are considered equal if they have the same

primary key values but different guesses.

Comparison of Logical Rowids with Physical Rowids
Logical rowids are similar to the physical rowids in the following ways:

■ Logical rowids are accessible through the ROWID pseudocolumn.

– You can use the ROWID pseudocolumn to select logical rowids from an

index-organized table. The SELECT ROWID statement returns an opaque

structure, which internally consists of the table’s primary key and the

physical guess (if any) for the row, along with some control information.
12-20 Oracle8i Concepts

ROWID and UROWID Datatypes
– You can access a row using predicates of the form WHERE ROWID = value,

where value is the opaque structure returned by SELECT ROWID.

■ Access through the logical rowid is the fastest way to get to a specific row,

although it might require more than one block access.

■ A row’s logical rowid does not change as long as the primary key value does

not change. This is less stable than the physical rowid, which stays immutable

through all updates to the row.

■ Logical rowids can be stored in a column of the UROWID datatype (see

"ROWID and UROWID Datatypes" on page 12-15).

One difference between physical and logical rowids is that logical rowids cannot be

used to see how a table is organized.

Guesses in Logical Rowids
When a row’s physical location changes, the logical rowid remains valid even if it

contains a guess, although the guess could become stale and slow down access to

the row. Guess information cannot be updated dynamically. For secondary indexes

on index-organized tables, however, you can rebuild the index to obtain fresh

guesses. Note that rebuilding a secondary index on an index-organized table

involves reading the base table, unlike rebuilding an index on an ordinary table.

You should collect index statistics with the DBMS_STATS package or ANALYZE

command to keep track of the staleness of guesses, so that Oracle does not use them

unnecessarily. This is particularly important for applications that store rowids with

guesses persistently in a UROWID column, then retrieve the rowids later and use

them to fetch rows.

When you collect index statistics with the DBMS_STATS package or ANALYZE

command, Oracle checks whether the existing guesses are still valid and records the

percentage of stale/valid guesses in the data dictionary. After you rebuild a

secondary index (recomputing the guesses), you should collect index statistics

again. See "Statistics for Cost-Based Optimization" on page 22-8 for more

information about collecting statistics.

In general, logical rowids without guesses provide the fastest possible access for a

highly volatile table. If a table is static or if the time between getting a rowid and

using it is sufficiently short to make row movement unlikely, logical rowids with

guesses provide the fastest access.
Built-In Datatypes 12-21

ANSI, DB2, and SQL/DS Datatypes
Rowids in Non-Oracle Databases
Oracle database applications can be executed against non-Oracle database servers

using SQL*Connect or the Oracle Open Gateway. In such cases, the format of

rowids varies according to the characteristics of the non-Oracle system.

Furthermore, no standard translation to VARCHAR2/hexadecimal format is

available. Programs can still use the ROWID datatype; however, they must use a

nonstandard translation to hexadecimal format of length up to 256 bytes.

Rowids of a non-Oracle database can be stored in a column of the UROWID

datatype (see "ROWID and UROWID Datatypes" on page 12-15).

ANSI, DB2, and SQL/DS Datatypes
The ANSI datatype conversions to Oracle datatypes are shown in Table 12–3. The

ANSI/ISO datatypes NUMERIC, DECIMAL, and DEC can specify only fixed-point

numbers. For these datatypes, s (scale) defaults to 0.

The IBM products SQL/DS, and DB2 datatypes TIME, TIMESTAMP, GRAPHIC,

VARGRAPHIC, and LONG VARGRAPHIC have no corresponding Oracle datatype

and cannot be used. The TIME and TIMESTAMP datatypes are subcomponents of

the Oracle datatype DATE.

Additional Information: Refer to the relevant manual for OCIs or

precompilers for further details on handling rowids with

non-Oracle systems.

Table 12–3 ANSI Datatype Conversions to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

CHARACTER (n), CHAR (n) CHAR (n)

NUMERIC (p,s), DECIMAL (p,s), DEC (p,s) NUMBER (p,s)

INTEGER, INT, SMALLINT NUMBER (38)

FLOAT (p) FLOAT (p)

REAL FLOAT (63)

DOUBLE PRECISION FLOAT (126)

CHARACTER VARYING(n), CHAR VARYING(n) VARCHAR2 (n)
12-22 Oracle8i Concepts

Data Conversion
Table 12–4 shows the DB2 and SQL/DS conversions.

Data Conversion
In some cases, Oracle supplies data of one datatype where it expects data of a

different datatype. This is allowed when Oracle can automatically convert the data

to the expected datatype using one of the following functions:

■ TO_NUMBER()

■ TO_CHAR()

■ TO_DATE()

■ CHARTOROWID()

■ ROWIDTOCHAR()

■ HEXTORAW()

■ RAWTOHEX()

■ REFTOHEX()

Table 12–4 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype

CHARACTER (n) CHAR (n)

VARCHAR (n) VARCHAR2 (n)

LONG VARCHAR LONG

DECIMAL (p,s) NUMBER (p,s)

INTEGER, SMALLINT NUMBER (38)

FLOAT (p) FLOAT (p)

DATE DATE

Additional Information: The rules for implicit datatype

conversions are explained in the Oracle8i Application Developer’s
Guide - Fundamentals.
Built-In Datatypes 12-23

Data Conversion
12-24 Oracle8i Concepts

User-Defined D
13

User-Defined Datatypes

The Beautiful arises from the perceived harmony of an object, whether sight or sound, with
the inborn and constitutive rules of the judgment and imagination: and it is always
intuitive.

Samuel Taylor Coleridge, Genial Criticism

Object types and other user-defined datatypes allow you to define datatypes that

model the structure and behavior of the data in their applications.

This chapter contains the following major sections:

■ Introduction

■ User-Defined Datatypes

■ Application Interfaces

Attention: The features described in this chapter are available

only if you have purchased Oracle8i Enterprise Edition. Wherever

the term Oracle server appears in this chapter it refers to the

Oracle8i Enterprise Edition. See Getting to Know Oracle8i for

information about the features available with Oracle8i Enterprise

Edition.
atatypes 13-1

Introduction
Introduction
Relational database management systems (RDBMSs) are the standard tool for

managing business data. They provide fast, efficient, and completely reliable access

to huge amounts of data for millions of businesses around the world every day.

Oracle8i is an object-relational database management system (ORDBMS), which

means that users can define additional kinds of data—specifying both the structure

of the data and the ways of operating on it—and use these types within the

relational model. This approach adds value to the data stored in a database.

User-defined datatypes make it easier for application developers to work with

complex data like images, audio, and video. Object types store structured business

data in its natural form and allow applications to retrieve it that way. For that

reason they work efficiently with applications developed using object-oriented

programming techniques.

Complex Data Models
The Oracle server allows you to define complex business models in SQL and make

them part of your database schema. Applications that manage and share your data

need only contain the application logic, not the data logic.

An Example
For example, your firm may use purchase orders to organize its purchasing,

accounts payable, shipping, and accounts receivable functions.

A purchase order contains an associated supplier or customer and an indefinite

number of line items. In addition, applications often need dynamically computed

status information about purchase orders. For example, you may need the current

value of the shipped or unshipped line items.

Later sections of this chapter show how you can define a schema object, called an

object type, that serves as a template for all purchase order data in your applications.

An object type specifies the elements, called attributes, that make up a structured

data unit like a purchase order. Some attributes, such as the list of line items, may be

other structured data units. The object type also specifies the operations, called

methods, you can perform on the data unit, such as determining the total value of a

purchase order.

You can create purchase orders that match the template and store them in table

columns, just as you would numbers or dates.
13-2 Oracle8i Concepts

User-Defined Datatypes
You can also store purchase orders in object tables, where each row of the table

corresponds to a single purchase order and the table columns are the purchase

order’s attributes.

Since the logic of the purchase order’s structure and behavior is in your schema,

your applications don’t need to know the details and don’t have to keep up with

most changes.

Oracle uses schema information about object types to achieve substantial

transmission efficiencies. A client-side application can request a purchase order

from the server and receive all the relevant data in a single transmission. The

application can then, without knowing storage locations or implementation details,

navigate among related data items without further transmissions from the server.

Multimedia Datatypes
Many efficiencies of database systems arise from their optimized management of

basic datatypes like numbers, dates, and characters. Facilities exist for comparing

values, determining their distributions, building efficient indexes, and performing

other optimizations.

Text, video, sound, graphics, and spatial data are examples of important business

entities that don’t fit neatly into those basic types. Oracle8i Enterprise Edition

supports modeling and implementation of these complex datatypes.

User-Defined Datatypes
Chapter 12, "Built-In Datatypes" describes Oracle’s built-in datatypes. There are two

additional categories of user-defined datatypes:

■ object types

■ collection types

User-defined datatypes use the built-in datatypes and other user-defined datatypes

as the building blocks for datatypes that model the structure and behavior of data in

applications.

User-defined types are schema objects. Their use is subject to the same kinds of

administrative control as other schema objects (see Chapter 14, "Using User-Defined

Datatypes").
User-Defined Datatypes 13-3

User-Defined Datatypes
Object Types
Object types are abstractions of the real-world entities—for example, purchase

orders—that application programs deal with. An object type is a schema object with

three kinds of components:

■ A name, which serves to identify the object type uniquely within that schema.

■ Attributes, which model the structure and state of the real world entity.

Attributes are built-in types or other user-defined types.

■ Methods, which are functions or procedures written in PL/SQL and stored in

the database, or written in a language like C and stored externally. Methods

implement operations the application can perform on the real world entity.

An object type is a template. A structured data unit that matches the template is

called an object.

Purchase Order Example
Here is an example of how you might define object types called

EXTERNAL_PERSON, LINEITEM, and PURCHASE_ORDER.

The object types EXTERNAL_PERSON and LINEITEM have attributes of built-in

types. The object type PURCHASE_ORDER has a more complex structure, which

closely matches the structure of real purchase orders.

The attributes of PURCHASE_ORDER are ID, CONTACT, and LINEITEMS. The

attribute CONTACT is an object, and the attribute LINEITEMS is a nested table (see

"Nested Tables" on page 13-12).

CREATE TYPE external_person AS OBJECT (
 name VARCHAR2(30),
 phone VARCHAR2(20));

CREATE TYPE lineitem AS OBJECT (
 item_name VARCHAR2(30),
 quantity NUMBER,
 unit_price NUMBER(12,2));

CREATE TYPE lineitem_table AS TABLE OF lineitem;

CREATE TYPE purchase_order AS OBJECT (
 id NUMBER,
 contact external_person,
 lineitems lineitem_table,
13-4 Oracle8i Concepts

User-Defined Datatypes
 MEMBER FUNCTION
 get_value RETURN NUMBER);

This is a simplified example. It does not show how to specify the body of the

method GET_VALUE. Nor does it show the full complexity of a real purchase order.

An object type is a template. Defining it doesn’t result in storage allocation. You can

use LINEITEM, EXTERNAL_PERSON, or PURCHASE_ORDER in SQL statements

in most of the same places you can use types like NUMBER or VARCHAR2.

For example, you might define a relational table to keep track of your contacts:

CREATE TABLE contacts (
 contact external_person
 date DATE);

The CONTACT table is a relational table with an object type defining one of its

columns. Objects that occupy columns of relational tables are called column objects
(see "Row Objects and Column Objects" on page 13-8).

Methods
Methods of an object type model the behavior of objects. The methods of an object

type broadly fall into three categories: Member, Static, and Comparison.

A Member method is a function or a procedure that always has an implicit SELF

parameter as its first parameter, whose type is the containing object type. Such

methods may be invoked in a ’selfish’ style, as in OBJECT.METHOD(). Member

methods are useful for writing observer or mutator methods.

A Static method is a function or a procedure that does not have an implicit SELF

parameter. Such methods may be invoked by qualifying the method with the type

name, as in TYPE_NAME.METHOD(). Static methods are useful for specifying

user-defined constructors or cast methods.

Comparison methods are used for comparing instances of objects.

Oracle supports the choice of implementing type methods in PL/SQL, JAVA, and C.

In the example, PURCHASE_ORDER has a method named GET_VALUE. Each

purchase order object has its own GET_VALUE method. For example, if X and Y are

PL/SQL variables that hold purchase order objects and W and Z are variables that

Additional Information: See Oracle8i Application Developer’s Guide -
Fundamentals for a complete purchase order example.
User-Defined Datatypes 13-5

User-Defined Datatypes
hold numbers, the following two statements can leave W and Z with different

values:

w = x.get_value();
z = y.get_value();

After those statements, W has the value of the purchase order referred to by

variable X; Z has the value of the purchase order referred to by variable Y.

The term X.GET_VALUE () is an invocation of the method GET_VALUE. Method

definitions can include parameters, but GET_VALUE does not need them, because it

finds all of its arguments among the attributes of the object to which its invocation

is tied. That is, in the first of the sample statements, it computes its value using the

attributes of purchase order X. In the second it computes its value using the

attributes of purchase order Y. This is called the selfish style of method invocation.

Every object type also has one implicitly defined method that is not tied to specific

objects, the object type’s constructor method.

Object Type Constructor Methods Every object type has a system-defined constructor
method, that is, a method that makes a new object according to the object type’s

specification. The name of the constructor method is the name of the object type. Its

parameters have the names and types of the object type’s attributes. The constructor

method is a function. It returns the new object as its value.

For example, the expression

purchase_order(
 1000376,
 external_person ("John Smith","1-800-555-1212"),
 NULL)

represents a purchase order object with the following attributes:

id 1000376
contact external_person("John Smith","1-800-555-1212")
lineitems NULL

The expression external_person ("John Smith", "1-800-555-1212") is

an invocation of the constructor function for the object type EXTERNAL_PERSON.

The object that it returns becomes the contact attribute of the purchase order.

See "Nulls" on page 14-3 for a discussion of null objects and null attributes.

Comparison Methods Methods play a role in comparing objects. Oracle has facilities

for comparing two data items of a given built-in type (for example, two numbers),
13-6 Oracle8i Concepts

User-Defined Datatypes
and determining whether one is greater than, equal to, or less than the other. Oracle

cannot, however, compare two items of an arbitrary user-defined type without

further guidance from the definer. Oracle provides two ways to define an order

relationship among objects of a given object type: map methods and order methods.

Map methods use Oracle’s ability to compare built-in types. Suppose, for example,

that you have defined an object type called RECTANGLE, with attributes HEIGHT

and WIDTH. You can define a map method area that returns a number, namely the

product of the rectangle’s HEIGHT and WIDTH attributes. Oracle can then compare

two rectangles by comparing their areas.

Order methods are more general. An order method uses its own internal logic to

compare two objects of a given object type. It returns a value that encodes the order

relationship. For example, it may return -1 if the first is smaller, 0 if they are equal,

and 1 if the first is larger.

Suppose, for example, that you have defined an object type called ADDRESS, with

attributes STREET, CITY, STATE, and ZIP. The terms "greater than" and "less than"

may have no meaning for addresses in your application, but you may need to

perform complex computations to determine when two addresses are equal.

In defining an object type, you can specify either a map method or an order method

for it, but not both. If an object type has no comparison method, Oracle cannot

determine a greater than or less than relationship between two objects of that type.

It can, however, attempt to determine whether two objects of the type are equal.

Oracle compares two objects of a type that lacks a comparison method by

comparing corresponding attributes:

■ If all the attributes are non-null and equal, Oracle reports that the objects are

equal.

■ If there is an attribute for which the two objects have unequal non-null values,

Oracle reports them unequal.

■ Otherwise, Oracle reports that the comparison is not available (null).

Object Tables
An object table is a special kind of table that holds objects and provides a relational

view of the attributes of those objects.

Additional Information: For examples of how to specify and use

comparison methods, see Oracle8i Application Developer’s Guide -
Fundamentals.
User-Defined Datatypes 13-7

User-Defined Datatypes
For example, the following statement defines an object table for objects of the

EXTERNAL_PERSON type defined earlier:

CREATE TABLE external_person_table OF external_person;

Oracle allows you to view this table in two ways:

■ A single column table in which each entry is an EXTERNAL_PERSON object.

■ A multi-column table in which each of the attributes of the object type

EXTERNAL_PERSON, namely NAME and PHONE, occupies a column.

For example, you can execute the following instructions:

INSERT INTO external_person_table VALUES (
 "John Smith",
 "1-800-555-1212");

SELECT VALUE(p) FROM external_person_table p
 WHERE p.name = "John Smith";

The first instruction inserts an EXTERNAL_PERSON object into

EXTERNAL_PERSON_TABLE as a multi-column table. The second selects from

EXTERNAL_PERSON_TABLE as a single column table.

Row Objects and Column Objects Objects that appear in object tables are called row
objects. Objects that appear in table columns or as attributes of other objects are

called column objects.

Object Identifiers
Every row object in an object table has an associated logical object identifier (OID).

Oracle assigns a unique system-generated identifier of length sixteen bytes as the

OID for each row object by default. Oracle provides no documentation of or access

to the internal structure of object identifiers. This structure can change at any time.

The OID column of an object table is a hidden column. While the OID value in itself

is not very meaningful to an object-relational application, Oracle uses this value to

construct object references to the row objects. Applications need to be concerned

with only object references which, as discussed below, are used for fetching and

navigating objects.

The purpose of the OID for a row object is to uniquely identify it in an object table.

To do this Oracle implicitly creates and maintains an index on the OID column of an

object table. The system-generated unique identifier has many advantages among
13-8 Oracle8i Concepts

User-Defined Datatypes
which are the unambiguous identification of objects in a distributed and replicated

environment.

Primary-key Based Object Identifiers For applications that do not require the

functionality provided by globally unique system-generated identifiers, storing

sixteen extra bytes with each object and maintaining an index on it may not be

efficient. Oracle allows the option of specifying the primary key value of a row

object as the object identifier for the row object.

Primary-key based identifiers also have the advantage of enabling a more efficient

and easier loading of the object table. By contrast, system-generated object

identifiers need to be remapped using some user-specified keys, especially when

references to them are also stored persistently.

Object Views
An object view (see Chapter 16, "Object Views") is a virtual object table. Its rows are

row objects. Oracle materializes object identifiers, which it does not store

persistently, from primary keys in the underlying table or view.

REFs
In the relational model, foreign keys express many-to-one relationships. Oracle

object types provide a more efficient means of expressing many-to-one relationships

when the "one" side of the relationship is a row object.

Oracle provides a built-in datatype called REF to encapsulate references to row

objects of a specified object type. From a modeling perspective, REFs provide the

ability to capture an association between two row objects. Oracle uses object

identifiers to construct such REFs.

You can use a REF to examine or update the object it refers to. You can also use a

REF to obtain a copy of the object it refers to. The only changes you can make to a

REF are to replace its contents with a reference to a different object of the same

object type or to assign it a null value.

Scoped REFs In declaring a column type, collection element, or object type attribute

to be a REF, you can constrain it to contain only references to a specified object table.

Such a REF is called a scoped REF. Scoped REFs require less storage space and allow

more efficient access than unscoped REFs.

Dangling REFs It is possible for the object identified by a REF to become

unavailable—through either deletion of the object or a change in privileges. Such a
User-Defined Datatypes 13-9

User-Defined Datatypes
REF is called dangling. Oracle SQL provides a predicate (called IS DANGLING) to

allow testing REFs for this condition.

Dereferencing REFs Accessing the object referred to by a REF is called dereferencing
the REF. Oracle provides the DEREF operator to do this. Dereferencing a dangling

REF results in a null object.

Oracle provides implicit dereferencing of REFs. For example, consider the following:

CREATE TYPE person AS OBJECT (
 name VARCHAR2(30),
 manager REF person);

If x represents an object of type PERSON, then the expression

x.manager.name

represents a string containing the NAME attribute of the PERSON object referred to

by the MANAGER attribute of X. The above expression is a shortened form of:

y.name, where y = DEREF(x.manager)

Obtaining REFs You can obtain a REF to a row object by selecting the object from its

object table and applying the REF operator. For example, you can obtain a REF to

the purchase order with identification number 1000376 as follows:

DECLARE OrderRef REF to purchase_order;

SELECT REF(po) INTO OrderRef
 FROM purchase_order_table po
 WHERE po.id = 1000376;

For more on storage of objects and REFs, see "Collections" on page 14-10.

Collection Types
Each collection type describes a data unit made up of an indefinite number of

elements, all of the same datatype. The collection types are array types and table
types.

Array types and table types are schema objects. The corresponding data units are

called VARRAYs and nested tables. When there is no danger of confusion, we often

refer to the collection types as VARRAYs and nested tables.

Additional Information: For examples of how to use REFs, see

Oracle8i Application Developer’s Guide - Fundamentals.
13-10 Oracle8i Concepts

User-Defined Datatypes
Collection types have constructor methods. The name of the constructor method is

the name of the type, and its argument is a comma-separated list of the new

collection’s elements. The constructor method is a function. It returns the new

collection as its value.

An expression consisting of the type name followed by empty parentheses

represents a call to the constructor method to create an empty collection of that

type. An empty collection is different from a null collection.

VARRAYs
An array is an ordered set of data elements. All elements of a given array are of the

same datatype. Each element has an index, which is a number corresponding to the

element’s position in the array.

The number of elements in an array is the size of the array. Oracle allows arrays to

be of variable size, which is why they are called VARRAYs. You must specify a

maximum size when you declare the array type.

For example, the following statement declares an array type:

CREATE TYPE prices AS VARRAY(10) OF NUMBER(12,2);

The VARRAYs of type PRICES have no more than ten elements, each of datatype

NUMBER(12,2).

Creating an array type does not allocate space. It defines a datatype, which you can

use as

■ The datatype of a column of a relational table.

■ An object type attribute

■ A PL/SQL variable, parameter, or function return type.

A VARRAY is normally stored in line, that is, in the same tablespace as the other

data in its row. If it is sufficiently large, however, Oracle stores it as a BLOB (see

"Import/Export of User-Defined Types" on page 14-20).

Additional Information: For more information on using VARRAYs,

see Oracle8i Application Developer’s Guide - Fundamentals.
User-Defined Datatypes 13-11

User-Defined Datatypes
Nested Tables
A nested table is an unordered set of data elements, all of the same datatype. It has a

single column, and the type of that column is a built-in type or an object type. If an

object type, the table can also be viewed as a multi-column table, with a column for

each attribute of the object type.

For example, in the purchase order example, the following statement declares the

table type used for the nested tables of line items:

CREATE TYPE lineitem_table AS TABLE OF lineitem;

A table type definition does not allocate space. It defines a type, which you can use

as

■ The datatype of a column of a relational table.

■ An object type attribute.

■ A PL/SQL variable, parameter, or function return type.

When a table type appears as the type of a column in a relational table or as an

attribute of the underlying object type of an object table, Oracle stores all of the

nested table data in a single table, which it associates with the enclosing relational

or object table (see "Nested Tables" on page 14-19). For example, the following

statement defines an object table for the object type PURCHASE_ORDER:

CREATE TABLE purchase_order_table OF purchase_order
 NESTED TABLE lineitems STORE AS lineitems_table;

The second line specifies LINEITEMS_TABLE as the storage table for the

LINEITEMS attributes of all of the PURCHASE_ORDER objects in

PURCHASE_ORDER_TABLE.

A convenient way to access the elements of a nested table individually is to use a

nested cursor.

Additional Information: See Oracle8i Reference for information

about nested cursors, and see Oracle8i Application Developer’s Guide -
Fundamentals for more information on using nested tables.
13-12 Oracle8i Concepts

Application Interfaces
Application Interfaces
Oracle provides a number of facilities for using user-defined datatypes in

application programs:

■ SQL

■ PL/SQL

■ Pro*C/C++

■ OCI

■ OTT

■ JPublisher

■ JDBC

■ SQLJ

SQL
Oracle SQL DDL provides the following support for user-defined datatypes:

■ defining object types, nested tables, and arrays

■ specifying privileges

■ specifying table columns of user-defined types

■ creating object tables

Oracle SQL DML provides the following support for user-defined datatypes:

■ querying and updating objects and collections

■ manipulating REFs

PL/SQL
PL/SQL is a procedural language that extends SQL. It offers modern software

engineering features like packages, data encapsulation, information hiding,

overloading, and exception handling. Most stored procedures are written in

PL/SQL.

Additional Information: For a complete description of Oracle SQL

syntax, see Oracle8i SQL Reference.
User-Defined Datatypes 13-13

Application Interfaces
PL/SQL allows use from within functions and procedures of the SQL features that

support user-defined types.

The parameters and variables of PL/SQL functions and procedures can be of

user-defined types.

PL/SQL provides all the capabilities necessary to implement the methods

associated with object types. These methods (functions and procedures) reside on

the server as part of a user’s schema.

Pro*C/C++
The Oracle Pro*C/C++ precompiler allows programmers to use user-defined

datatypes in C and C++ programs.

Pro*C developers can use the Object Type Translator to map Oracle object types and

collections into C datatypes to be used in the Pro*C application.

Pro*C provides compile time type checking of object types and collections and

automatic type conversion from database types to C datatypes.

Pro*C includes an EXEC SQL syntax to create and destroy objects and offers two

ways to access objects in the server:

■ SQL statements and PL/SQL functions or procedures embedded in Pro*C

programs.

■ A simple interface to the object cache (described under "OCI" on page 13-14),

where objects can be accessed by traversing pointers, then modified and

updated on the server.

OCI
The Oracle call interface (OCI) is a set of C language interfaces to the Oracle server.

It provides programmers great flexibility in using the server’s capabilities.

An important component of OCI is a set of calls to allow application programs to

use a workspace called the object cache. The object cache is a memory block on the

client side that allows programs to store entire objects and to navigate among them

without round trips to the server.

Additional Information: For a complete description of PL/SQL,

see PL/SQL User’s Guide and Reference.

Additional Information: For a complete description of the Pro*C

precompiler, see Pro*C/C++ Precompiler Programmer’s Guide.
13-14 Oracle8i Concepts

Application Interfaces
The object cache is completely under the control and management of the application

programs using it. The Oracle server has no access to it. The application programs

using it must maintain data coherency with the server and protect the workspace

against simultaneous conflicting access.

OCI provides functions to

■ Access objects on the server using SQL.

■ Access, manipulate and manage objects in the object cache by traversing

pointers or REFs.

■ Convert Oracle dates, strings and numbers to C data types.

■ Manage the size of the object cache’s memory.

OCI improves concurrency by allowing individual objects to be locked. It improves

performance by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C datatypes

corresponding to a Oracle object types.

OTT
The Oracle type translator (OTT) is a program that automatically generates C

language structure declarations corresponding to object types. OTT facilitates using

the Pro*C precompiler and the OCI server access package.

JPublisher
The Java Publisher (JPublisher) is a program that automatically generates Java class

definitions corresponding to user-defined types in the database. JPublisher

facilitates using SQLJ and the JDBC server access package.

Additional Information: For a complete description of OCI, see

Oracle Call Interface Programmer’s Guide.

Additional Information: For complete information about OTT, see

Oracle Call Interface Programmer’s Guide and Pro*C/C++ Precompiler
Programmer’s Guide.

Additional Information: For complete information about

JPublisher, see Oracle8i JPublisher User’s Guide.
User-Defined Datatypes 13-15

Application Interfaces
JDBC
JDBC (Java Database Connectivity) is a set of Java interfaces to the Oracle server.

Oracle’s JDBC:

■ Allows access to objects and collection types (defined in the database) in Java

programs through dynamic SQL.

■ Provides for translation of types defined in the database into Java classes

through default or customizable mappings.

SQLJ
SQLJ allows developers to use user-defined datatypes in Java programs. Developers

can use JPublisher to map Oracle object and collection types into Java classes to be

used in the application.

SQLJ provides access to server objects using SQL statements embedded in the Java

code. SQLJ provides compile time type checking of object types and collections in

the SQL statements.

Additional Information: For complete information about JDBC,

see the Oracle8i JDBC Developer’s Guide and Reference.

Additional Information: For complete information about SQLJ, see

the Oracle8i Java Developer’s Guide.
13-16 Oracle8i Concepts

Using User-Defined D
14

Using User-Defined Datatypes

It is not enough to have a good mind. The main thing is to use it well.

René Descartes, Le Discours de la Méthode

This chapter covers the main concepts you need to understand to use user-defined

datatypes. It contains the following major sections:

■ Object Types and References

■ Collections

■ Privileges on User-Defined Types and Their Methods

■ Dependencies and Incomplete Types

■ Storage of User-Defined Types

■ Utilities

Attention: The features described in this chapter are available

only if you have purchased Oracle8i Enterprise Edition. See Getting
to Know Oracle8i for information about the features available with

Oracle8i Enterprise Edition.
atatypes 14-1

Introduction
Introduction
A data model for any application is comprised of entities, associations among these

entities, and attributes that describe both the entities and the associations.

For example, a purchase-order application will likely include entities such as

CUSTOMER, ORDER and LINE-ITEM. When a customer places an order consisting

of several line items in the physical world, these relationships delineate associations

among the entities in the data model. Each of these entities may have one or more

attributes: the entity CUSTOMER may have an attribute such as CUSTOMER

NAME and CUSTOMER ADDRESS; LINE-ITEMS may have attributes such as

QUANTITY and PRICE; and so on.

The attributes themselves may be structured or multi-valued. For example, NAME

may consist of FIRSTNAME and LASTNAME, while ADDRESS may be a

composite of STREET, CITY, STATE and ZIP. Similarly, LINE-ITEMS may be a set of

LINE-ITEMS.

In Oracle8i, release 8.1.x, you can define object types to model both entities and

structured attributes of such entities. You can utilize collection types to model

multi-valued attributes, and employ object references or a collection type of object

references to model associations among entities. If you model an association using

an object type which contains object references of the entities participating in the

association, the attributes delineated in the object type will describe the association.
14-2 Oracle8i Concepts

Object Types and References
Object Types and References
This section describes object types and references, including:

■ Properties of Object Attributes

■ Object References

■ Name Resolution

Properties of Object Attributes
Oracle allows you to specify some properties of object attributes:

■ Nulls

■ Defaults

■ Constraints

■ Indexes

■ Triggers

Nulls
One possible property of a table column, object, object attribute, collection, or

collection element is that it can be null. This means that the item has been initialized

to NULL or has been left uninitialized. Usually this means that the value of the item

is not yet known but might become available later.

An object whose value is NULL is called atomically null. In addition, attributes of an

object can be null. These two uses of nulls are different.

For example, consider the CONTACTS table defined as follows:

CREATE TYPE external_person AS OBJECT (
 name VARCHAR2(30),
 phone VARCHAR2(20));

CREATE TABLE contacts (
 contact external_person
 date DATE);

The statement

INSERT INTO contacts VALUES (
 external_person (NULL, NULL),
 ’24 Jun 1997’);
Using User-Defined Datatypes 14-3

Object Types and References
gives a different result from

INSERT INTO contacts VALUES (
 NULL,
 ’24 Jun 1997’);

In both cases, Oracle allocates space in CONTACTS for a new row and sets its

DATE column to the value given. In the first case, Oracle allocates space for an

object in the EXTERNAL_PERSON column and sets each of its attributes to NULL.

In the second case, it sets the EXTERNAL_PERSON column to NULL and does not

allocate space for an object.

A table row cannot be null. Therefore, Oracle does not allow you to set a row object

to NULL. Similarly, a nested table of objects cannot contain an element whose value

is NULL.

A nested table or array can be null. A null collection is different from an empty one,

that is, a collection containing no elements.

Defaults
When you declare a table column to be of an object type or collection type, you can

include a DEFAULT clause. This provides a value to use in cases where you do not

explicitly specify a value for the column. The default clause must contain a literal
invocation of the constructor method for that object or collection.

A literal invocation of a constructor method is defined recursively to be an invocation

of the constructor method in which any arguments are either literals or literal

invocations of constructor methods.

For example, consider the following statements:

CREATE TYPE person AS OBJECT (
 id NUMBER
 name VARCHAR2(30),
 address VARCHAR2(30));

CREATE TYPE people AS TABLE OF person;

The following is a literal invocation of the constructor method for the nested table

type PEOPLE:

people (person(1, ’John Smith’, ’5 Cherry Lane’),
 person(2, ’Diane Smith’, NULL))
14-4 Oracle8i Concepts

Object Types and References
The following example shows how to use literal invocations of constructor methods

to specify defaults:

CREATE TABLE department (
 d_no CHAR(5) PRIMARY KEY,
 d_name CHAR(20),
 d_mgr person DEFAULT person(1,’John Doe’,NULL),
 d_emps people DEFAULT people())
 NESTED TABLE d_emps STORE AS d_emps_tab;

Note that the term PEOPLE() is a literal invocation of the constructor method for an

empty PEOPLE table.

Constraints
You can define constraints on an object table just as you can on other tables.

You can define constraints on the leaf-level scalar attributes of a column object, with

the exception of REFs that are not scoped (see "Scoped REFs" on page 13-9).

The following examples illustrate the possibilities.

The first example places a primary key constraint on the SSNO column of the object

table PERSON_EXTENT:

CREATE TYPE location (
 building_no NUMBER,
 city VARCHAR2(40));

CREATE TYPE person (
 ssno NUMBER,
 name VARCHAR2(100),
 address VARCHAR2(100),
 office location);

CREATE TABLE person_extent OF person (
 ssno PRIMARY KEY);

The DEPARTMENT table in the next example has a column whose type is the object

type LOCATION defined in the previous example. The example defines constraints

on scalar attributes of the LOCATION objects that appear in the DEPT_LOC column

of the table.

CREATE TABLE department (
 deptno CHAR(5) PRIMARY KEY,
 dept_name CHAR(20),
Using User-Defined Datatypes 14-5

Object Types and References
 dept_mgr person,
 dept_loc location,
 CONSTRAINT dept_loc_cons1
 UNIQUE (dept_loc.building_no, dept_loc.city),
 CONSTRAINT dept_loc_cons2
 CHECK (dept_loc.city IS NOT NULL));

Indexes
You can define indexes on an object table or on the storage table for a nested table

column or attribute just as you can on other tables.

You can define indexes on leaf-level scalar attributes of column objects, except that

you can only define indexes on REF attributes or columns if the REF is scoped (see

"Scoped REFs" on page 13-9).

The following example defines an index on an attribute of an object column:

CREATE TABLE department (
 deptno CHAR(5) PRIMARY KEY,
 dept_name CHAR(20),
 dept_addr address);

CREATE INDEX i_dept_addr1
 ON department (dept_addr.city);

This code creates an index on the city attribute of the department address.

Wherever Oracle expects a column name in an index definition, you can also specify

a scalar attribute of an object column.

Triggers
You can define triggers on an object table just as you can on other tables. You cannot

define a trigger on the storage table for a nested table column or attribute.

You cannot modify LOB values in a trigger body. Otherwise, there are no special

restrictions on using user-defined types with triggers.

The following example defines a trigger on the PERSON_EXTENT table defined in

an earlier section:

CREATE TABLE movement (
 ssno NUMBER,
 old_office location,
 new_office location);
14-6 Oracle8i Concepts

Object Types and References
CREATE TRIGGER trig1
 BEFORE UPDATE
 OF office
 ON person_extent
 FOR EACH ROW
 WHEN new.office.city = ’REDWOOD SHORES’
 BEGIN
 IF :new.office.building_no = 600 THEN
 INSERT INTO movement (ssno, old_office, new_office)
 VALUES (:old.ssno, :old.office, :new.office);
 END IF;
 END;

Object References
In Oracle, a REF column or attribute can be unconstrained or constrained using a

SCOPE clause or a referential constraint clause. When a REF column is

unconstrained, it may store object references to row objects contained in any object

table of the corresponding object type.

Oracle does not ensure that the object references stored in such columns are valid in

that they ’point’ to valid and existing row objects. Therefore, REF columns may

contain object references that do not ’point’ to any existing row object. Such REF

values are referred to as "dangling references". Currently, Oracle does not permit

storing object references that contain a primary-key based OID in unconstrained

REF columns.

A REF column may be constrained to be ’scoped’ to a specific object table. All the

REF values stored in a column with a SCOPE constraint ’point’ at row objects of the

table specified in the SCOPE clause. The REF values may, however, be ’dangling’.

A REF column may be constrained with a REFERENTIAL constraint similar to the

specification for foreign keys. The rules for referential constraints apply to such

columns. That is, the object reference stored in these columns must point to a valid

and existing row object in the specified object table.

UNIQUE or PRIMARY KEY constraints may not be specified for REF columns.

However, you may specify NOT NULL constraints for such columns.
Using User-Defined Datatypes 14-7

Object Types and References
Name Resolution
Oracle SQL is designed to be easy to use. For example, if PROJECTS is a table with a

column called ASSIGNMENT, and DEPTS is a table that does not contain a column

called ASSIGNMENT, you can write:

SELECT *
FROM projects
WHERE EXISTS
 (SELECT * FROM depts
 WHERE assignment = task);

Oracle determines which table each column belongs to. You can, but do not have to,

qualify the column names with table names:

SELECT *
FROM projects
WHERE EXISTS
 (SELECT * FROM depts
 WHERE projects.assignment = depts.task);

You can, but do not have to, qualify the column names with table aliases:

SELECT *
FROM projects pj
WHERE EXISTS
 (SELECT * FROM depts dp
 WHERE pj.assignment = dp.task);

Table Aliases
The first form of the SELECT statement above is the easiest to write and

understand, but it can lead to undesired results if you later add an ASSIGNMENT

column to the DEPTS table and forget to change the query. Oracle automatically

recompiles the query and the new version uses the ASSIGNMENT column from the

DEPTS table. This situation is called inner capture.

In order to avoid inner capture and similar misinterpretations of the intended

meanings of SQL statements, Oracle requires you to use table aliases to qualify

references to methods or attributes of objects. This also applies to attribute

references via REFs. This requirement is called the capture avoidance rule.

For example, consider the following statements:

CREATE TYPE person AS OBJECT (ssno VARCHAR(20));
CREATE TABLE ptab1 OF person;
CREATE TABLE ptab2 (c1 person);
14-8 Oracle8i Concepts

Object Types and References
These define an object type PERSON and two tables. The first is an object table for

objects of type PERSON. The second has a single column of type PERSON.

Now consider the following queries:

SELECT ssno FROM ptab1 ; --Correct
SELECT c1.ssno FROM ptab2 ; --Wrong
SELECT p.c1.ssno FROM ptab2 p ; --Correct

■ In the first SELECT statement, SSNO is the name of a column of PTAB1. No

further qualification is required.

■ In the second SELECT statement, SSNO is the name of an attribute of the

PERSON object in the column named C1. This reference requires a table alias.

■ The third SELECT statement is the same as the second, but contains the

required table alias, P.

Qualifying references to object attributes with table names rather than table aliases,

even if the table names are further qualified by schema names, does not satisfy this

requirement.

For example, you cannot, in a query, use the expression

scott.projects.assignment.duedate

to refer to the DUEDATE attribute of the ASSIGNMENT column of the PROJECTS

table of the SCOTT schema.

Table aliases should be unique throughout a query and should not be the same as

schema names that could legally appear in the query.

Method Calls without Arguments
Methods are functions or subroutines. The proper syntax for invoking them uses

parentheses following the method name to enclose any calling arguments. In order

to avoid ambiguities, Oracle requires empty parentheses for method calls that do

not have arguments.

Note: Oracle recommends that you define table aliases in all

UPDATE, DELETE, and SELECT statements and subqueries and

use them to qualify column references, whether or not the columns

contain object types.
Using User-Defined Datatypes 14-9

Collections
For example, if TB is a table with column C of object type T, and T has a method m

that does not take arguments, the following query illustrates the correct syntax:

SELECT p.c.m() FROM tb p;

This differs from the rules for PL/SQL functions and procedures, where the

parentheses are optional for calls that have no arguments.

Collections
This section describes the use of collections, including:

■ Querying Collections

■ Collection Unnesting

■ Nested Table Locators

■ DML on Collections

Querying Collections
In Oracle8i, a collection column may be queried using the TABLE expression. For

example, a nested table column (PROJECTS) of the table (EMPLOYEES) can be

queried as follows:

SELECT * FROM TABLE(SELECT t.projects FROM employees t WHERE t.eno = 1000);

SELECT t.eno, CURSOR(SELECT * FROM TABLE(t.projects)) FROM employees t;

The TABLE expression can be used to query any collection value expression

including transient values such as variables and parameters.

Collection Unnesting
Many tools and applications are not equipped to deal with collection types, and

require a flattened view of the data. In order to view collection data in an Oracle

schema using these tools, the collection attribute of a row has to be unnested or

Note: TheTABLE expression takes the place ofTHE subquery
introduced in a previous release. TheTHE subquery expression will
eventually be deprecated.
14-10 Oracle8i Concepts

Collections
flattened into one or more relational rows. Consider the following object-relational

schema:

CREATE TYPE emp_set_t IS NESTED TABLE of emp_t;
CREATE TYPE dept_t(deptno NUMBER, emps emp_set_t);
CREATE TABLE depts OF dept_t NESTED TABLE emps STORE AS depts_emps;

The following query results in the data in the EMPS column being unnested with

respect to the DEPT table in that every row of EMPS is augmented with its parent

DEPTS row:

SELECT d.deptno, e.* FROM depts d, TABLE(d.emps) e;

Oracle8i also supports the following syntax to produce outer-join results:

SELECT d.*, e.* FROM depts d, TABLE(d.emps)(+) e;

The (+) indicates that the ’dependent’ join between DEPTS and D.EMPS should be

NULL-augmented. That is, there will be rows of DEPTS in the output for which

D.EMPS is NULL or empty, with NULL values for columns corresponding to

D.EMPS.

Nested Table Locators
In Oracle8i, the collection typed value is encapsulated. Consequently, a client must

access the contents of a collection via interfaces provided by Oracle.

Generally, when the client accesses a nested table explicitly or implicitly (by

fetching the containing object), Oracle returns the entire collection value to the client

process. However, for performance reasons, a client may wish to control when the

elements of a collection are to be materialized on the client side, if at all. This is

especially relevant when the collection value is very large. To facilitate this kind of

operation, Oracle supports the ability to return a nested table value as a locator.

A nested table locator is like a handle to the collection value. It attempts to preserve

the value or copy semantics of the nested table by containing the database snapshot

as of its time of retrieval. The snapshot helps the database retrieve the correct

instantiation of the nested table value at a later time when the collection elements

are fetched using the locator. The locator is scoped to a session and cannot be used

across sessions. Since database snapshots are used, it is possible to get a "snapshot

too old" error if there is a high update rate on the nested table. Unlike a LOB locator,

the nested table locator is truly a locator and cannot be used to modify the

collection instance.
Using User-Defined Datatypes 14-11

Collections
DML on Collections
Oracle supports the following DML operations on nested table columns

■ Inserts and updates that provide a new value for the entire collection

■ Piecewise Updates

■ Inserting new elements into the collection

■ Deleting elements from the collection

■ Updating elements of the collection.

Oracle does not support piecewise updates on VARRAY columns. However,

VARRAY columns can be inserted into or updated as an atomic unit.

For piecewise updates of nested table columns, the DML statement identifies the

nested table value to be operated on by using the TABLE expression. Note that

DML operations on a nested table value are serialized. That is, when a nested table

value is operated on by a DML statement in a transaction, modifications to the same

nested table value from other transactions are blocked until after the transaction

terminates.

The following DML statements demonstrate piecewise operations on nested table

columns.

INSERT INTO TABLE(SELECT e.projects
 FROM employees e
 WHERE e.eno = 100)
 VALUES (1, ‘Project Neptune’);

UPDATE TABLE(SELECT e.projects
 FROM employees e
 WHERE e.eno = 100) p
 SET VALUE(p) = project_t(1, ‘Project Pluto’)
 WHERE p.pno = 1;

DELETE FROM TABLE(SELECT e.projects
 FROM employee e
 WHERE e.eno = 100) p
 WHERE p.pno = 1;
14-12 Oracle8i Concepts

Privileges on User-Defined Types and Their Methods
Privileges on User-Defined Types and Their Methods
Privileges for user-defined types exist at the system level and schema object level.

System Privileges
Oracle defines the following system privileges for user-defined types:

■ CREATE TYPE allows you to create user-defined types in your own schema.

■ CREATE ANY TYPE allows you to create user-defined types in any schema.

■ ALTER ANY TYPE allows you to alter user-defined types in any schema.

■ DROP ANY TYPE allows you to drop named types in any schema.

■ EXECUTE ANY TYPE allows you to use and reference named types in any

schema.

The CONNECT and RESOURCE roles include the CREATE TYPE system privilege.

The DBA role includes all of the above privileges.

Schema Object Privileges
The only schema object privilege that applies to user-defined types is EXECUTE.

EXECUTE on a user-defined type allows you to use the type to:

■ Define a table.

■ Define a column in a relational table.

■ Declare a variable or parameter of the named type.

EXECUTE lets you invoke the type’s methods, including the constructor.

Method execution and the associated permissions are the same as for stored

PL/SQL procedures.

Using Types in New Types or Tables
In addition to the permissions detailed in the previous sections, you need specific

privileges to:

■ Create types or tables that use types created by other users.

■ Grant use of your new types or tables to other users.
Using User-Defined Datatypes 14-13

Privileges on User-Defined Types and Their Methods
You must have the EXECUTE ANY TYPE system privilege, or you must have the

EXECUTE object privilege for any type you use in defining a new type or table. You

must have received these privileges explicitly, not through roles.

If you intend to grant access to your new type or table to other users, you must

have either the required EXECUTE object privileges with the GRANT option or the

EXECUTE ANY TYPE system privilege with the option WITH ADMIN OPTION.

You must have received these privileges explicitly, not through roles.

Example
Assume that three users exist with the CONNECT and RESOURCE roles: USER1,

USER2, and USER3.

USER1 performs the following DDL in the USER1 schema:

CREATE TYPE type1 AS OBJECT (attr1 NUMBER);
CREATE TYPE type2 AS OBJECT (attr2 NUMBER);
GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

USER2 performs the following DDL in the USER2 schema:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (attr3 user1.type2);
CREATE TABLE tab2 (col1 user1.type2);

The following statements succeed, because USER2 has EXECUTE on USER1’s

TYPE2 with the GRANT option:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT on tab2 TO user3;

However, the following grant fails, because USER2 does not have EXECUTE on

USER1.TYPE1 with the GRANT option:

GRANT SELECT ON tab1 TO user3;

USER3 can successfully perform the following actions:

CREATE TYPE type4 AS OBJECT (attr4 user2.type3);
CREATE TABLE tab3 OF type4;
14-14 Oracle8i Concepts

Privileges on User-Defined Types and Their Methods
Privileges on Type Access and Object Access
The privileges that regulate use of tables apply equally to object tables:

■ SELECT lets you access an object and its attributes from the table.

■ UPDATE lets you modify attributes of objects in the table.

■ INSERT lets you add new objects to the table.

■ DELETE lets you delete objects from the table.

Similar table and column privileges regulate the use of table columns of

user-defined types.

Selecting columns of an object table does not require privileges on the type of the

object table. Selecting the entire row object, however, does.

Consider the following schema:

CREATE TYPE emp_type as object (
 eno NUMBER,
 ename CHAR(31),
 eaddr addr_t);

CREATE TABLE emp OF emp_type;

and the following two queries:

SELECT VALUE(e) FROM emp e;
SELECT eno, ename FROM emp;

For either query, Oracle checks the user’s SELECT privilege for the EMP table. For

the first query, the user needs to obtain the EMP_TYPE type information to interpret

the data. When the query accesses the EMP_TYPE type, Oracle checks the user’s

EXECUTE privilege.

Execution of the second query, however, does not involve named types, so Oracle

does not check type privileges.

Additionally, using the schema from the previous section, USER3 can perform the

following queries:

SELECT tab1.col1.attr2 from user2.tab1 tab1;
SELECT t.attr4.attr3.attr2 FROM tab3 t;

Note that in both selects by USER3, USER3 does not have explicit privileges on the

underlying types, but the statement succeeds because the type and table owners

have the necessary privileges with the GRANT option.
Using User-Defined Datatypes 14-15

Dependencies and Incomplete Types
Oracle checks privileges on the following requests, and returns an error if the

requestor does not have the privilege for the action:

■ Pinning an object in the object cache using its REF value causes Oracle to check

SELECT privilege on the object table containing the object and EXECUTE

privilege on the object type.

■ Modifying an existing object or flushing an object from the object cache, causes

Oracle to check UPDATE privilege on the destination object table. Flushing a

new object causes Oracle to check INSERT privilege on the destination object

table.

■ Deleting an object causes Oracle to check DELETE privilege on the destination

table.

■ Invoking a method causes Oracle to check EXECUTE privilege on the

corresponding object type.

 Oracle does not provide column level privileges for object tables.

Dependencies and Incomplete Types
Types can depend upon each other for their definitions. For example, you might

want to define object types EMPLOYEE and DEPARTMENT in such a way that one

attribute of EMPLOYEE is the department the employee belongs to and one

attribute of DEPARTMENT is the employee who manages the department.

Types that depend on each other in this way, either directly or via intermediate

types, are called mutually dependent. A diagram of mutually dependent types, with

arrows representing the dependencies, always reveals a path of arrows starting and

ending at one of the types.

Oracle allows such cyclic dependencies only when at least one branch of the cycle

uses REFs.

For example, you can define the following types:

CREATE TYPE department;

CREATE TYPE employee AS OBJECT (
 name VARCHAR2(30),
 dept REF department,
 supv REF employee);

CREATE TYPE emp_list AS TABLE OF employee;
14-16 Oracle8i Concepts

Dependencies and Incomplete Types
CREATE TYPE department AS OBJECT (
 name VARCHAR2(30),
 mgr REF employee,
 staff emp_list);

This is a legal set of mutually dependent types and a legal sequence of SQL DDL

statements. Oracle compiles it without errors. The first statement:

CREATE TYPE department;

is optional. It makes the compilation proceed without errors. It establishes

DEPARTMENT as an incomplete object type. A REF to an incomplete object type

compiles without error, so the compilation of EMPLOYEE proceeds.

When Oracle reaches the last statement, which completes the definition of

DEPARTMENT, all of the components of DEPARTMENT have compiled

successfully, so the compilation finishes without errors.

Without the optional declaration of DEPARTMENT as an incomplete type,

EMPLOYEE compiles with errors. Oracle then automatically adds EMPLOYEE to

its library of schema objects as an incomplete object type. This makes the

declarations of EMP_LIST and DEPARTMENT compile without errors. When

EMPLOYEE is recompiled after EMP_LIST and DEPARTMENT are complete,

EMPLOYEE compiles without errors and becomes a complete object type.

Completing Incomplete Types
Once you have declared an incomplete object type, you must complete it as an

object type. You cannot, for example, declare it to be a table type or an array type.

The only alternative is to drop the type.

This is also true if Oracle has made the type an incomplete object type for you—as it

did when EMPLOYEE failed to compile in the previous section.

Type Dependencies of Tables
The SQL commands REVOKE and DROP TYPE return an error and abort if the type

referred to in the command has tables or other types that depend on it.

The FORCE option with either of these commands overrides that behavior. The

command succeeds and the affected tables or types become invalid.

If a table contains data that relies on a type definition for access, any change to the

type causes the table’s data to become inaccessible. This happens if privileges
Using User-Defined Datatypes 14-17

Storage of User-Defined Types
required by the type are revoked or if the type or a type it depends on is dropped.

The table then becomes invalid and cannot be accessed.

A table that is invalid because of missing privileges automatically becomes valid

and accessible if the required privileges are re-granted.

A table that is invalid because a type it depends on has been dropped can never be

accessed again. The only permissible action is to drop the table.

Storage of User-Defined Types
Oracle stores and manages data of user-defined types in tables. It automatically

maps the complex structure of user-defined types into the simple rectangular

structure of tables.

Leaf-Level Attributes
The structure of an object type is like a tree. The branches that grow from the trunk

go to the attributes. If an attribute is of an object type, that branch sprouts

subbranches for the attributes of the new object type.

Ultimately, each branch comes to an end at an attribute that is of a built-in type or a

collection type. These are called leaf-level attributes of the original object type. Oracle

provides a table column for each leaf-level attribute.

The leaf-level attributes that not collection types are called the leaf-level scalar
attributes of the object type.

Row Objects
In an object table, every leaf-level scalar or REF attribute has a column in which

Oracle stores its actual data. This is also true of VARRAYs, unless they are too large

(see "VARRAYs" on page 14-19). Oracle stores leaf-level attributes of table types in

separate tables associated with the object table. You must declare these tables as

part of the object table declaration (see "Nested Tables" on page 14-19).

Access to individual attributes of objects in an object table is simply access to

columns of the table. Accessing the value of the object itself causes Oracle to invoke

the default constructor for the type, using the columns of the object table as

arguments. That is, Oracle supplies a copy of the object.

Oracle stores the system-generated object identifier in a hidden column. Oracle uses

the object identifier to construct REFs to the object.
14-18 Oracle8i Concepts

Storage of User-Defined Types
Column Objects
When a table is defined with a column of an object type, Oracle adds hidden

columns to the table for the object type’s leaf-level attributes. An additional column

stores the NULL information of the object (that is, the atomic nulls of the top-level

and the nested objects).

REFs
Oracle constructs a REF to a row object by invoking the built-in function REF on the

row object. The constructed REF is made up of the object identifier, some metadata

of the object table, and, optionally, the ROWID.

The size of a REF in a column of REF type depends on the storage properties

associated with the column. For example, if the column is declared as a REF WITH

ROWID, Oracle stores the ROWID in the REF column. The ROWID hint is ignored

for object references in constrained REF columns.

If column is declared as a REF with a SCOPE clause, then Oracle does not store the

object table metadata and the ROWID in the column. A scoped REF is 16 bytes long.

Oracle8i stores unconstrained REF values in a single column. If a REF column is

scoped or referentially constrained to an object table with a system-generated OID,

Oracle creates a single column to store the OID value. However, if the OID is

primary-key based, then Oracle may create one or more internal columns to store

the values of the primary key depending on how many columns comprise the

primary key. References to row objects containing primary key based OIDs may

only be stored in REF columns with scoped or referential constraints.

Nested Tables
The rows of a nested table are stored in a separate storage table. For each nested

table column, the associated storage table contains the elements of all instances of

the nested table (in all rows of the parent table). The storage table has a hidden

NESTED_TABLE_ID column that stores a system-generated value used by Oracle to

identify the rows of a particular nested table value.

Oracle allows the storage table to be an index-organized table. The index-only

organization of the storage table allows for the clustering of all rows of a nested

table value.

Oracle supports two forms of element types for a nested table type:

■ object type
Using User-Defined Datatypes 14-19

Utilities
■ scalar type, such as NUMBER, VARCHAR2, REF, and so on

If the type of the element is an object type, the storage table is very similar to an

object table in that the top-level attributes of the object type become the columns of

the storage table. One notable exception is that there is no OID column since there is

no OID value associated with a nested table row. Consequently, objects in a nested

table are not referenceable.

The storage table for a nested table whose element type is a scalar contains a single

column called COLUMN_VALUE which contains the values of the scalar.

VARRAYs
All the elements of a VARRAY are stored in a single column. If the size of the array

is smaller than 4000 bytes, Oracle stores it inline; if it is greater than 4000 bytes,

Oracle stores it in a BLOB.

Utilities
Oracle provides several methods for moving and loading data within Oracle

databases.

Import/Export of User-Defined Types
The Export and Import utilities move data into and out of Oracle databases. They

also back up or archive data and aid migration to different releases of the Oracle

RDBMS.

Export and Import support user-defined types. Export writes user-defined type

definitions and all of the associated data to the dump file. Import then re-creates

these items from the dump file.

Loading User-defined Types
The SQL*Loader supports loading row objects, column objects and objects with

collections and references. In Oracle8i, only conventional path loading is supported

for objects.

Additional Information: See Oracle8i Utilities for more information

about Export and Import.

Additional Information: See Oracle8i Utilities for more information

about SQL*Loader.
14-20 Oracle8i Concepts

Objec
15

Object Views

The choice of a point of view is the initial act of a culture.

José Ortega y Gasset, The Modern Theme

This chapter describes object views. It contains the following major sections:

■ Introduction

■ Defining Object Views

■ Using Object Views

■ Updating Object Views

Attention: The features described in this chapter are available

only if you have purchased Oracle8i Enterprise Edition. Wherever

the term Oracle server appears in this chapter it refers to Oracle8i
Enterprise Edition. See Getting to Know Oracle8i for information

about the features available with Oracle8i Enterprise Edition.
t Views 15-1

Introduction
Introduction
Just as a view is a virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view

mechanism. By using object views, you can create virtual object tables from

data—of either built-in or user-defined types—stored in the columns of relational or

object tables in the database.

Object views provide the ability to offer specialized or restricted access to the data

and objects in a database. For example, you might use an object view to provide a

version of an employee object table that doesn’t have attributes containing sensitive

data and doesn’t have a deletion method.

Object views allow the use of relational data in object-oriented applications. They

let users

■ Try object-oriented programming techniques without converting existing tables.

■ Convert data gradually and transparently from relational tables to

object-relational tables.

■ Use legacy RDBMS data with existing object-oriented applications.

Advantages of Object Views
Using object views can lead to better performance. Relational data that make up a

row of an object view traverse the network as a unit, potentially saving many round

trips.

You can fetch relational data into the client-side object cache and map it into C or
C++ structures so 3GL applications can manipulate it just like native structures.

Object views provide a gradual migration path for legacy data.

Object views provide for co-existence of relational and object-oriented applications.

They make it easier to introduce object-oriented applications to existing relational

data without having to make a drastic change from one paradigm to another.

Object views provide the flexibility of looking at the same relational or object data

in more than one way. Thus you can use different in-memory object representations

for different applications without changing the way you store the data in the

database.
15-2 Oracle8i Concepts

Defining Object Views
Defining Object Views
Conceptually, the procedure for defining an object view is simple:

1. Define an object type to be represented by rows of the object view.

2. Write a query that specifies which data in which relational tables contain the

attributes for objects of that type.

3. Specify an object identifier, based on attributes of the underlying data, to allow

REFs to the objects (rows) of the object view.

The object identifier corresponds to the unique object identifier that Oracle

generates automatically for rows of object tables. In the case of object views,

however, the declaration must specify something that is unique in the underlying

data (for example, a primary key).

If the object view is based on a table or another object view and you do not specify

an object identifier, Oracle uses the object identifier from the original table or object

view.

If you want to be able to update a complex object view, you may have to take

another step:

4. Write an INSTEAD OF trigger procedure (see "Updating Object Views" on

page 15-5) for Oracle to execute whenever an application program tries to

update data in the object view.

After these steps you can use an object view just like an object table.

For example, the following SQL statements define an object view:

CREATE TABLE emp_table (
 empnum NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9, 2),
 job VARCHAR2 (20));

CREATE TYPE employee_t (
 empno NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9, 2),
 job VARCHAR2 (20));

CREATE VIEW emp_view1 OF employee_t
 WITH OBJECT OID (empno) AS
 SELECT e.empnum, e.ename, e.salary, e.job
Object Views 15-3

Using Object Views
 FROM emp_table e
 WHERE job = ’Developer’;

The object view looks to the user like an object table whose underlying type is

employee_t . Each row contains an object of type employee_t . Each row has a

unique object identifier.

Oracle constructs the object identifier based on the specified key. In most cases it is

the primary key of the base table. If the query that defines the object view involves

joins, however, you must provide a key across all tables involved in the joins, so

that the key still uniquely identifies rows of the object view.

Using Object Views
Data in the rows of an object view may come from more than one table, but the

object still traverses the network in one operation. When the instance is in the client

side object cache, it appears to the programmer as a C or C++ structure or as a

PL/SQL object variable. You can manipulate it like any other native structure.

You can refer to object views in SQL statements the same way you refer to an object

table. For example, object views can appear in a SELECT list, in an UPDATE-SET

clause, or in a WHERE clause.

You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use

for objects from object tables. For example, you can use OCIObjectPin() for pinning a

REF and OCIObjectFlush() for flushing an object to the server. When you update or

flush to the server an object in an object view, Oracle updates the object view.

Note: Columns in the WITH OBJECT OID clause (empno in the

example) must also be attributes of the underlying object type

(employee_t in the example). This makes it easy for trigger

programs to identify the corresponding row in the base table

uniquely.

Additional Information: See Oracle Call Interface Programmer’s
Guide for more information about OCI calls.
15-4 Oracle8i Concepts

Updating Object Views
Updating Object Views
You can update, insert, and delete the data in an object view using the same SQL

DML you use for object tables. Oracle updates the base tables of the object view if

there is no ambiguity.

A view is not updatable if its view query contains joins, set operators, aggregate

functions, GROUP BY, or DISTINCT. If a view query contains pseudocolumns or

expressions, the corresponding view columns are not updatable. Object views often

involve joins.

To overcome these obstacles Oracle provides INSTEAD OF triggers (see Chapter 20,

"Triggers"). They are called INSTEAD OF triggers because Oracle executes the

trigger body instead of the actual DML statement.

INSTEAD OF triggers provide a transparent way to update object views or

relational views. You write the same SQL DML (INSERT, DELETE, and UPDATE)

statements as for an object table. Oracle invokes the appropriate trigger instead of

the SQL statement, and the actions specified in the trigger body take place.

Updating Nested Table Columns in Views
A nested table can be modified by inserting new elements and updating or deleting

existing elements. Nested table columns that are virtual or synthesized, as in a view,

are not usually updatable. To overcome this, Oracle allows INSTEAD OF triggers to

be created on these columns.

The INSTEAD OF trigger defined on a nested table column (of a view) is fired when

the column is modified. Note that if the entire collection is replaced (by an update

of the parent row), the INSTEAD OF trigger on the nested table column is not fired.

Additional Information: See Oracle8i Application Developer’s Guide -
Fundamentals for a purchase order/line item example that uses an

INSTEAD OF trigger.

Additional Information: See Oracle8i Application Developer’s Guide -
Fundamentals for a purchase order/line item example that uses an

INSTEAD OF trigger on a nested table column.
Object Views 15-5

Updating Object Views
15-6 Oracle8i Concepts

Part V

Data Access

Part V describes how to use transactions consisting of SQL statements to access data

in an Oracle database. It also describes the procedural language constructs that

provide additional functionality for data access.

Part V contains the following chapters:

■ Chapter 16, "SQL and PL/SQL"

■ Chapter 17, "Transaction Management"

■ Chapter 18, "Procedures and Packages"

■ Chapter 19, "Advanced Queuing"

■ Chapter 20, "Triggers"

■ Chapter 21, "Oracle Dependency Management"

SQL and
16

SQL and PL/SQL

High thoughts must have high language.

Aristophanes: Frogs

This chapter provides an overview of SQL, the Structured Query Language, and

PL/SQL, Oracle’s procedural extension to SQL. The chapter includes:

■ Structured Query Language (SQL)

■ SQL Processing

■ PL/SQL

Additional Information: For complete information on PL/SQL, see

the PL/SQL User’s Guide and Reference.
 PL/SQL 16-1

Structured Query Language (SQL)
Structured Query Language (SQL)
SQL is a very simple, yet powerful, database access language. SQL is a

nonprocedural language; users describe in SQL what they want done, and the SQL

language compiler automatically generates a procedure to navigate the database

and perform the desired task.

IBM Research developed and defined SQL, and ANSI/ISO has refined SQL as the

standard language for relational database management systems. The SQL

implemented by Oracle Corporation for Oracle is 100% compliant at the Entry Level

with the ANSI/ISO 1992 standard SQL data language.

Oracle SQL includes many extensions to the ANSI/ISO standard SQL language,

and Oracle tools and applications provide additional commands. The Oracle tools

SQL*Plus, Oracle Enterprise Manager, and Server Manager allow you to execute

any ANSI/ISO standard SQL statement against an Oracle database, as well as

additional commands or functions that are available for those tools.

Although some Oracle tools and applications simplify or mask the use of SQL, all

database operations are performed using SQL. Any other data access method

would circumvent the security built into Oracle and potentially compromise data

security and integrity.

This section includes the following topics:

■ SQL Statements

■ Identifying Nonstandard SQL

■ Recursive SQL

■ Cursors

■ Shared SQL

■ Parsing

Additional Information: See the Oracle8i SQL Reference for detailed

information about SQL commands and other parts of SQL (such as

operators, functions, and format models).

See the Oracle Enterprise Manager Administrator’s Guide for

information about Oracle Enterprise Manager and the SQL*Plus
User’s Guide and Reference for SQL*Plus commands, including their

distinction from SQL commands.
16-2 Oracle8i Concepts

Structured Query Language (SQL)
SQL Statements
All operations performed on the information in an Oracle database are executed

using SQL statements. A SQL statement is a specific instance of a valid SQL
command. A statement consists partially of SQL reserved words, which have special

meaning in SQL and cannot be used for any other purpose. For example, SELECT

and UPDATE are reserved words and cannot be used as table names.

A SQL statement can be thought of as a very simple, but powerful, computer

program or instruction. The statement must be the equivalent of a SQL "sentence,"

as in:

SELECT ename, deptno FROM emp;

Only a SQL statement can be executed, whereas a "sentence fragment" such as the

following generates an error indicating that more text is required before a SQL

statement can execute:

SELECT ename

Oracle SQL statements are divided into the following categories:

■ Data Manipulation Language statements (DML)

■ Data Definition Language statements (DDL)

■ Transaction Control statements

■ Session Control statements

■ System Control statements

■ Embedded SQL statements

Data Manipulation Language (DML) Statements
DML statements query or manipulate data in existing schema objects. They enable

you to

■ retrieve data from one or more tables or views (SELECT)

■ add new rows of data into a table or view (INSERT)

Note: Oracle also supports the use of SQL statements in PL/SQL

program units; see Chapter 18, "Procedures and Packages" and

Chapter 20, "Triggers" for information about this feature.
SQL and PL/SQL 16-3

Structured Query Language (SQL)
■ change column values in existing rows of a table or view (UPDATE)

■ remove rows from tables or views (DELETE)

■ see the execution plan for a SQL statement (EXPLAIN PLAN)

■ lock a table or view, temporarily limiting other users’ access (LOCK TABLE)

DML statements are the most frequently used SQL statements. Some examples of

DML statements follow:

SELECT ename, mgr, comm + sal FROM emp;

INSERT INTO emp VALUES
 (1234, ’DAVIS’, ’SALESMAN’, 7698, ’14-FEB-1988’, 1600, 500, 30);

DELETE FROM emp WHERE ename IN (’WARD’,’JONES’);

Data Definition Language (DDL) Statements
DDL statements define, alter the structure of, and drop schema objects. DDL

statements enable you to

■ create, alter, and drop schema objects and other database structures, including

the database itself and database users (CREATE, ALTER, DROP)

■ change the names of schema objects (RENAME)

■ delete all the data in schema objects without removing the objects’ structure

(TRUNCATE)

■ gather statistics about schema objects, validate object structure, and list chained

rows within objects (ANALYZE)

■ grant and revoke privileges and roles (GRANT, REVOKE)

■ turn auditing options on and off (AUDIT, NOAUDIT)

■ add a comment to the data dictionary (COMMENT)

DDL statements implicitly commit the preceding and start a new transaction.

Some examples of DDL statements follow:

CREATE TABLE plants
 (COMMON_NAME VARCHAR2 (15), LATIN_NAME VARCHAR2 (40));

DROP TABLE plants;

GRANT SELECT ON emp TO scott;
16-4 Oracle8i Concepts

Structured Query Language (SQL)
REVOKE DELETE ON emp FROM scott;

For specific information on DDL statements that correspond to database and data

access, see Chapter 29, "Controlling Database Access", Chapter 30, "Privileges,

Roles, and Security Policies", and Chapter 31, "Auditing".

Transaction Control Statements
Transaction control statements manage the changes made by DML statements and

group DML statements into transactions. They enable you to

■ make a transaction’s changes permanent (COMMIT)

■ undo the changes in a transaction, either since the transaction started or since a

savepoint (ROLLBACK)

■ set a point to which you can roll back (SAVEPOINT)

■ establish properties for a transaction (SET TRANSACTION)

Session Control Statements
Session control statements manage the properties of a particular user’s session. For

example, they enable you to

■ alter the current session by performing a specialized function, such as enabling

and disabling the SQL trace facility (ALTER SESSION)

■ enable and disable roles (groups of privileges) for the current session (SET

ROLE)

System Control Statements
System control statements change the properties of the Oracle server instance.

The only system control command is ALTER SYSTEM. It enables you to change

settings (such as the minimum number of shared servers), to kill a session, and to

perform other tasks.

Embedded SQL Statements
Embedded SQL statements incorporate DDL, DML, and transaction control

statements within a procedural language program. They are used with the Oracle

precompilers. Embedded SQL statements enable you to

■ define, allocate, and release cursors (DECLARE CURSOR, OPEN, CLOSE)
SQL and PL/SQL 16-5

Structured Query Language (SQL)
■ specify a database and connect to Oracle (DECLARE DATABASE, CONNECT)

■ assign variable names (DECLARE STATEMENT)

■ initialize descriptors (DESCRIBE)

■ specify how error and warning conditions are handled (WHENEVER)

■ parse and execute SQL statements (PREPARE, EXECUTE, EXECUTE

IMMEDIATE)

■ retrieve data from the database (FETCH).

Identifying Nonstandard SQL
Oracle provides extensions to the standard SQL "Database Language with Integrity

Enhancement". The Federal Information Processing Standard for SQL (FIPS 127-2)

requires vendors to supply a method for identifying SQL statements that use such

extensions. You can identify or "flag" Oracle extensions in interactive SQL, the

Oracle precompilers, or SQL*Module by using the FIPS flagger.

If you are concerned with the portability of your applications to other

implementations of SQL, use the FIPS flagger.

Recursive SQL
When a DDL statement is issued, Oracle implicitly issues recursive SQL statements
that modify data dictionary information. Users need not be concerned with the

recursive SQL internally performed by Oracle.

Cursors
A cursor is a handle or name for a private SQL area—an area in memory in which a

parsed statement and other information for processing the statement are kept.

Although most Oracle users rely on the automatic cursor handling of the Oracle

utilities, the programmatic interfaces offer application designers more control over

cursors. In application development, a cursor is a named resource available to a

program and can be used specifically for the parsing of SQL statements embedded

within the application.

Additional Information: For information on how to use the FIPS

flagger, see the Pro*C/C++ Precompiler Programmer’s Guide,
Pro*COBOL Precompiler Programmer’s Guide, or SQL*Module for Ada
Programmer’s Guide.
16-6 Oracle8i Concepts

Structured Query Language (SQL)
Each user session can open multiple cursors up to the limit set by the initialization

parameter OPEN_CURSORS. However, applications should close unneeded cursors

to conserve system memory. If a cursor cannot be opened due to a limit on the

number of cursors, the database administrator can alter the OPEN_CURSORS

initialization parameter.

Some statements (primarily DDL statements) require Oracle to implicitly issue

recursive SQL statements, which also require recursive cursors. For example, a

CREATE TABLE statement causes many updates to various data dictionary tables to

record the new table and columns. Recursive calls are made for those recursive

cursors; one cursor may execute several recursive calls. These recursive cursors also

use shared SQL areas.

Shared SQL
Oracle automatically notices when applications send identical SQL statements to

the database. The SQL area used to process the first occurrence of the statement is

shared—that is, used for processing subsequent occurrences of that same statement.

Therefore, only one shared SQL area exists for a unique statement. Since shared

SQL areas are shared memory areas, any Oracle process can use a shared SQL area.

The sharing of SQL areas reduces memory usage on the database server, thereby

increasing system throughput.

In evaluating whether statements are identical, Oracle considers SQL statements

issued directly by users and applications as well as recursive SQL statements issued

internally by a DDL statement.

Parsing
Parsing is one stage in the processing of a SQL statement. When an application

issues a SQL statement, the application makes a parse call to Oracle. During the

parse call, Oracle

■ checks the statement for syntactic and semantic validity

■ determines whether the process issuing the statement has privileges to

execute it

■ allocates a private SQL area for the statement

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for more information on shared SQL.
SQL and PL/SQL 16-7

SQL Processing
Oracle also determines whether there is an existing shared SQL area containing the

parsed representation of the statement in the library cache. If so, the user process

uses this parsed representation and executes the statement immediately. If not,

Oracle generates the parsed representation of the statement, and the user process

allocates a shared SQL area for the statement in the library cache and stores its

parsed representation there.

Note the difference between an application making a parse call for a SQL statement

and Oracle actually parsing the statement. A parse call by the application associates a

SQL statement with a private SQL area. Once a statement has been associated with

a private SQL area, it can be executed repeatedly without your application making a

parse call. A parse operation by Oracle allocates a shared SQL area for a SQL

statement. Once a shared SQL area has been allocated for a statement, it can be

executed repeatedly without being reparsed.

Both parse calls and parsing can be expensive relative to execution, so it is desirable

to perform them as seldom as possible.

This discussion applies also to the parsing of PL/SQL blocks and allocation of

PL/SQL areas. (See "PL/SQL" on page 16-15.) Stored procedures, functions, and

packages and triggers are assigned PL/SQL areas. Oracle also assigns each SQL

statement within a PL/SQL block a shared and a private SQL area.

SQL Processing
This section introduces the basics of SQL processing. Topics include:

■ Overview of SQL Statement Execution

■ DML Statement Processing

■ DDL Statement Processing

■ Controlling Transactions

Overview of SQL Statement Execution
Figure 16–1 outlines the stages commonly used to process and execute a SQL

statement. In some cases, Oracle might execute these stages in a slightly different

order. For example, the DEFINE stage could occur just before the FETCH stage,

depending on how you wrote your code.

For many Oracle tools, several of the stages are performed automatically. Most

users need not be concerned with or aware of this level of detail. However, you

might find this information useful when writing Oracle applications.
16-8 Oracle8i Concepts

SQL Processing
Figure 16–1 The Stages in Processing a SQL Statement

yes

yes

bind?reparse? no

OPEN

PARSE

query?

EXECUTE

PARALLELIZE

query?

execute
others?

CLOSE

yes

no

no

no

no

yes yes

no
no yes

describe?

DEFINE

more?

more?

BIND

more?

FETCH

more?no yes

no yes

yes

yes

no

DESCRIBE
SQL and PL/SQL 16-9

SQL Processing
DML Statement Processing
This section provides a simple example of what happens during the execution of a

SQL statement, in each stage of DML statement processing.

Assume that you are using a Pro*C program to increase the salary for all employees

in a department. Also assume that the program you are using has connected to

Oracle and that you are connected to the proper schema to update the EMP table.

You might embed the following SQL statement in your program:

EXEC SQL UPDATE emp SET sal = 1.10 * sal
 WHERE deptno = :dept_number;

DEPT_NUMBER is a program variable containing a value for department number.

When the SQL statement is executed, the value of DEPT_NUMBER is used, as

provided by the application program.

The following stages are necessary for each type of statement processing:

■ Stage 1: Create a Cursor

■ Stage 2: Parse the Statement

■ Stage 5: Bind Any Variables

■ Stage 7: Execute the Statement

■ Stage 9: Close the Cursor

Optionally, you can include another stage:

■ Stage 6: Parallelize the Statement

Queries (SELECTs) require several additional stages, as shown in Figure 16–1:

■ Stage 3: Describe Results of a Query

■ Stage 4: Define Output of a Query

■ Stage 8: Fetch Rows of a Query

■ Stage 9: Close the Cursor

See "Query Processing" on page 16-12 for more information.
16-10 Oracle8i Concepts

SQL Processing
Stage 1: Create a Cursor
A program interface call creates a cursor. The cursor is created independent of any

SQL statement; it is created in expectation of any SQL statement. In most

applications, cursor creation is automatic. However, in precompiler programs,

cursor creation can either occur implicitly or be explicitly declared.

Stage 2: Parse the Statement
During parsing, the SQL statement is passed from the user process to Oracle, and a

parsed representation of the SQL statement is loaded into a shared SQL area. Many

errors can be caught during this stage of statement processing.

Parsing is the process of:

■ translating a SQL statement, verifying it to be a valid statement

■ performing data dictionary lookups to check table and column definitions

■ acquiring parse locks on required objects so that their definitions do not change

during the statement’s parsing

■ checking privileges to access referenced schema objects

■ determining the optimal execution plan for the statement

■ loading it into a shared SQL area

■ for distributed statements, routing all or part of the statement to remote nodes

that contain referenced data

Oracle parses a SQL statement only if a shared SQL area for an identical SQL

statement does not exist in the shared pool. In this case, a new shared SQL area is

allocated and the statement is parsed. (See "Shared SQL" on page 16-7.)

The parse stage includes processing requirements that need to be done only once no

matter how many times the statement is executed. Oracle translates each SQL

statement only once, reexecuting that parsed statement during subsequent

references to the statement.

Although the parsing of a SQL statement validates that statement, parsing only

identifies errors that can be found before statement execution. Thus, some errors

cannot be caught by parsing. For example, errors in data conversion or errors in

data (such as an attempt to enter duplicate values in a primary key) and deadlocks

are all errors or situations that can be encountered and reported only during the

execution stage.
SQL and PL/SQL 16-11

SQL Processing
Query Processing
Queries are different from other types of SQL statements because, if successful, they

return data as results. Whereas other statements simply return success or failure, a

query can return one row or thousands of rows. The results of a query are always in
tabular format, and the rows of the result are fetched (retrieved), either a row at a

time or in groups.

Several issues relate only to query processing. Queries include not only explicit

SELECT statements but also the implicit queries (subqueries) in other SQL

statements. For example, each of the following statements requires a query as a part

of its execution:

INSERT INTO table SELECT...

UPDATE table SET x = y WHERE...

DELETE FROM table WHERE...

CREATE table AS SELECT...

In particular, queries:

■ require read consistency

■ can use temporary segments for intermediate processing

■ can require the describe, define, and fetch stages of SQL statement processing.

Stage 3: Describe Results of a Query
The describe stage is necessary only if the characteristics of a query’s result are not

known; for example, when a query is entered interactively by a user.

In this case, the describe stage determines the characteristics (datatypes, lengths,

and names) of a query’s result.

Stage 4: Define Output of a Query
In the define stage for queries, you specify the location, size, and datatype of

variables defined to receive each fetched value. Oracle performs datatype

conversion if necessary.

Stage 5: Bind Any Variables
At this point, Oracle knows the meaning of the SQL statement but still does not

have enough information to execute the statement. Oracle needs values for any
16-12 Oracle8i Concepts

SQL Processing
variables listed in the statement; in the example, Oracle needs a value for

DEPT_NUMBER. The process of obtaining these values is called binding variables.

A program must specify the location (memory address) where the value can be

found. End users of applications might be unaware that they are specifying bind

variables, because the Oracle utility might simply prompt them for a new value.

Because you specify the location (binding by reference), you need not rebind the

variable before re-execution. You can change its value and Oracle looks up the value

on each execution, using the memory address.

You must also specify a datatype and length for each value (unless they are implied

or defaulted) if Oracle needs to perform datatype conversion.

Stage 6: Parallelize the Statement
Oracle can parallelize queries (SELECTs), INSERTs, UPDATEs, DELETEs, and some

DDL operations such as index creation, creating a table with a subquery, and

operations on partitions. Parallelization causes multiple server processes to perform

the work of the SQL statement so that it can complete faster.

See Chapter 26, "Parallel Execution", for more information about parallel SQL.

Stage 7: Execute the Statement
At this point, Oracle has all necessary information and resources, so the statement is

executed. If the statement is a query or an INSERT statement, no rows need to be

locked because no data is being changed. If the statement is an UPDATE or DELETE

statement, however, all rows that the statement affects are locked from use by other

users of the database until the next COMMIT, ROLLBACK, or SAVEPOINT for the

transaction. This ensures data integrity.

For some statements you can specify a number of executions to be performed. This

is called array processing. Given n number of executions, the bind and define

locations are assumed to be the beginning of an array of size n.

Additional Information: For more information about specifying a

datatype and length for a value, refer to the following publications:

■ Oracle Call Interface Programmer’s Guide

■ Pro*C/C++ Precompiler Programmer’s Guide (see "Dynamic SQL

Method 4")

■ Pro*COBOL Precompiler Programmer’s Guide (see "Dynamic SQL

Method 4")
SQL and PL/SQL 16-13

SQL Processing
Stage 8: Fetch Rows of a Query
In the fetch stage, rows are selected and ordered (if requested by the query), and

each successive fetch retrieves another row of the result, until the last row has been

fetched.

Stage 9: Close the Cursor
The final stage of processing a SQL statement is closing the cursor.

DDL Statement Processing
The execution of DDL statements differs from the execution of DML statements and

queries because the success of a DDL statement requires write access to the data

dictionary. For these statements, parsing (Stage 2) actually includes parsing, data

dictionary lookup, and execution.

Transaction management, session management, and system management SQL

statements are processed using the parse and execute stages. To reexecute them,

simply perform another execute.

Controlling Transactions
In general, only application designers using the programming interfaces to Oracle

are concerned with the types of actions that should be grouped together as one

transaction. Transactions must be defined properly so that work is accomplished in

logical units and data is kept consistent. A transaction should consist of all of the

necessary parts for one logical unit of work, no more and no less.

■ Data in all referenced tables should be in a consistent state before the

transaction begins and after it ends.

■ Transactions should consist of only the SQL statements that make one

consistent change to the data.

For example, a transfer of funds between two accounts (the transaction or logical

unit of work) should include the debit to one account (one SQL statement) and the

credit to another account (one SQL statement). Both actions should either fail or

succeed together as a unit of work; the credit should not be committed without the

debit. Other nonrelated actions, such as a new deposit to one account, should not be

included in the transfer of funds transaction.

In addition to determining which types of actions form a transaction, when you

design an application you must also determine when it is useful to use the

BEGIN_DISCRETE_TRANSACTION procedure to improve the performance
16-14 Oracle8i Concepts

PL/SQL
of short, non-distributed transactions. See "Discrete Transaction Management" on

page 17-8 for more information.

PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL enables you to

mix SQL statements with procedural constructs. With PL/SQL, you can define and

execute PL/SQL program units such as procedures, functions, and packages.

PL/SQL program units generally are categorized as anonymous blocks and stored

procedures.

An anonymous block is a PL/SQL block that appears within your application and it is

not named or stored in the database. In many applications, PL/SQL blocks can

appear wherever SQL statements can appear.

A stored procedure is a PL/SQL block that Oracle stores in the database and can be

called by name from an application. When you create a stored procedure, Oracle

parses the procedure and stores its parsed representation in the database. Oracle

also allows you to create and store functions (which are similar to procedures) and

packages (which are groups of procedures and functions).

For information on stored procedures, functions, packages, and database triggers,

see Chapter 18, "Procedures and Packages", and Chapter 20, "Triggers".

How PL/SQL Executes
The PL/SQL engine, which processes PL/SQL program units, is a special component

of many Oracle products, including the Oracle server.

Figure 16–2 illustrates the PL/SQL engine contained in Oracle server.
SQL and PL/SQL 16-15

PL/SQL
Figure 16–2 The PL/SQL Engine and the Oracle Server

The procedure (or package) is stored in a database. When an application calls a

procedure stored in the database, Oracle loads the compiled procedure (or package)

into the shared pool in the system global area (SGA), and the PL/SQL and SQL

statement executors work together to process the statements within the procedure.

The following Oracle products contain a PL/SQL engine:

■ Oracle server

■ Oracle Forms (Version 3 and later)

■ SQL*Menu (Version 5 and later)

■ Oracle Reports (Version 2 and later)

■ Oracle Graphics (Version 2 and later)

SQL Statement
Executor

Database
Application

Oracle Server

SGA PL/SQL Engine

SQL

Procedural
Statement
Executor

Program code

Program code

Prodedure call

Program code

Program code

Database

Procedure

Begin
 Procedural
 Procedural
 SQL
 Prodedural
SQL
END;
16-16 Oracle8i Concepts

PL/SQL
You can call a stored procedure from another PL/SQL block, which can be either an

anonymous block or another stored procedure. For example, you can call a stored

procedure from Oracle Forms (Version 3 or later).

Also, you can pass anonymous blocks to Oracle from applications developed with

these tools:

■ Oracle precompilers (including user exits)

■ Oracle Call Interfaces (OCIs)

■ SQL*Plus

■ Server Manager

■ Oracle Enterprise Manager

Language Constructs for PL/SQL
PL/SQL blocks can include the following PL/SQL language constructs:

■ variables and constants

■ cursors

■ exceptions

This section gives a general description of each construct.

Variables and Constants
Variables and constants can be declared within a procedure, function, or package. A

variable or constant can be used in a SQL or PL/SQL statement to capture or

provide a value when one is needed.

Additional Information: See the PL/SQL User’s Guide and Reference.

Note: Some interactive tools, such as SQL*Plus, allow you to

define variables in your current session. You can use such variables

just as you would variables declared within procedures

or packages.
SQL and PL/SQL 16-17

PL/SQL
Cursors
Cursors can be declared explicitly within a procedure, function, or package to

facilitate record-oriented processing of Oracle data. Cursors also can be declared

implicitly (to support other data manipulation actions) by the PL/SQL engine.

Exceptions
PL/SQL allows you to explicitly handle internal and user-defined error conditions,

called exceptions, that arise during processing of PL/SQL code. Internal exceptions

are caused by illegal operations, such as division by zero, or Oracle errors returned

to the PL/SQL code. User-defined exceptions are explicitly defined and signaled

within the PL/SQL block to control processing of errors specific to the application

(for example, debiting an account and leaving a negative balance).

When an exception is raised (signaled), the normal execution of the PL/SQL code

stops, and a routine called an exception handler is invoked. Specific exception

handlers can be written to handle any internal or user-defined exception.

Stored Procedures
Oracle also allows you to create and call stored procedures. If your application calls

a stored procedure, the parsed representation of the procedure is retrieved from the

database and processed by the PL/SQL engine in Oracle.

You can call stored procedures from applications developed using these tools:

■ Oracle precompilers (including user exits)

■ Oracle Call Interfaces (OCIs)

■ SQL*Module

■ SQL*Plus

Note: While many Oracle products have PL/SQL components,

this manual specifically covers only the procedures and packages

that can be stored in an Oracle database and processed using the

PL/SQL engine of the Oracle server.

Additional Information: The PL/SQL capabilities of each Oracle

tool are described in the appropriate tool user guide.
16-18 Oracle8i Concepts

PL/SQL
■ Server Manager

■ Oracle Enterprise Manager

You can also call a stored procedure from another PL/SQL block, either an

anonymous block or another stored procedure. See Chapter 18, "Procedures and

Packages" for more information.

Dynamic SQL in PL/SQL
PL/SQL can execute dynamic SQL statements whose complete text is not known

until runtime. Dynamic SQL statements are stored in character strings that are

entered into, or built by, the program at runtime. This enables you to create general

purpose procedures. For example, using dynamic SQL allows you to create a

procedure that operates on a table whose name is not known until runtime.

You can write stored procedures and anonymous PL/SQL blocks that include

dynamic SQL in two ways:

■ by embedding dynamic SQL statements in the PL/SQL block

■ by using the DBMS_SQL package

Additionally, you can issue data manipulation language (DML) or data definition

language (DDL) statements using dynamic SQL. This helps solve the problem of not

being able to statically embed DDL statements in PL/SQL. For example, you might

choose to issue a DROP TABLE statement from within a stored procedure by using

the EXECUTE IMMEDIATE statement or the PARSE procedure supplied with the

DBMS_SQL package.

Additional Information: For information on how to call stored

procedures from each type of application, see the documentation

for the specific application tool, such as the Pro*C/C++ Precompiler
Programmer’s Guide or Pro*COBOL Precompiler Programmer’s Guide.

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for a comparison of the two approaches to

dynamic SQL, and see the PL/SQL User’s Guide and Reference for

details about dynamic SQL.
SQL and PL/SQL 16-19

PL/SQL
External Procedures
A PL/SQL procedure executing on an Oracle server can call an external procedure

or function that is written in the C programming language and stored in a shared

library. The C routine executes in a separate address space from that of the Oracle

server.

Additional Information: See Oracle8i Application Developer’s Guide -
Fundamentals for more information about external procedures and

Inter-Language Method Services (ILMS).
16-20 Oracle8i Concepts

Transaction Manag
17

Transaction Management

The pigs did not actually work, but directed and supervised the others.

George Orwell: Animal Farm

This chapter defines a transaction and describes how you can manage your work

using transactions. It includes:

■ Introduction to Transactions

■ Oracle and Transaction Management

■ Discrete Transaction Management

■ Autonomous Transactions
ement 17-1

Introduction to Transactions
Introduction to Transactions
A transaction is a logical unit of work that contains one or more SQL statements. A

transaction is an atomic unit; the effects of all the SQL statements in a transaction

can be either all committed (applied to the database) or all rolled back (undone from

the database).

A transaction begins with the first executable SQL statement. A transaction ends

when it is committed or rolled back, either explicitly (with a COMMIT or

ROLLBACK statement) or implicitly (when a DDL statement is issued).

To illustrate the concept of a transaction, consider a banking database. When a bank

customer transfers money from a savings account to a checking account, the

transaction might consist of three separate operations: decrement the savings

account, increment the checking account, and record the transaction in the

transaction journal.

Oracle must allow for two situations. If all three SQL statements can be performed

to maintain the accounts in proper balance, the effects of the transaction can be

applied to the database. However, if something (such as insufficient funds, invalid

account number, or a hardware failure) prevents one or two of the statements in the

transaction from completing, the entire transaction must be rolled back so that the

balance of all accounts is correct.

Figure 17–1 illustrates the banking transaction example.
17-2 Oracle8i Concepts

Introduction to Transactions
Figure 17–1 A Banking Transaction

Statement Execution and Transaction Control
A SQL statement that "executes successfully" is different from a "committed"

transaction.

Executing successfully means that a single statement was parsed and found to be a

valid SQL construction, and that the entire statement executed without error as an

atomic unit (for example, all rows of a multirow update are changed). However,

until the transaction that contains the statement is committed, the transaction can be

rolled back, and all of the changes of the statement can be undone. A statement,

rather than a transaction, executes successfully.

Committing means that a user has said either explicitly or implicitly "make the

changes in this transaction permanent". The changes made by the SQL statement(s)

Transaction Begins

Transaction Ends

UPDATE savings_accounts
 SET balance = balance - 500
 WHERE account = 3209;

UPDATE checking_accounts
 SET balance = balance + 500
 WHERE account = 3208;

INSERT INTO journal VALUES
 (journal_seq.NEXTVAL, '1B'
 3209, 3208, 500);

COMMIT WORK;

Decrement Savings Account

Increment Checking Account

Record in Transaction Journal

End Transaction
Transaction Management 17-3

Oracle and Transaction Management
of your transaction become permanent and visible to other users only after your

transaction has been committed. Only other users’ transactions that started after

yours will see the committed changes.

Statement-Level Rollback
If at any time during execution a SQL statement causes an error, all effects of the

statement are rolled back. The effect of the rollback is as if that statement were never

executed. This is a statement-level rollback.

Errors discovered during SQL statement execution cause statement-level rollbacks.

(An example of such an error is attempting to insert a duplicate value in a primary

key.) Errors discovered during SQL statement parsing (such as a syntax error) have

not yet been executed, so do not cause a statement-level rollback. Single SQL

statements involved in a deadlock (competition for the same data) may also cause a

statement-level rollback. See "Deadlocks" on page 27-17.

A SQL statement that fails causes the loss only of any work it would have

performed itself; it does not cause the loss of any work that preceded it in the current
transaction. If the statement is a DDL statement, the implicit commit that

immediately preceded it is not undone.

Oracle and Transaction Management
A transaction in Oracle begins when the first executable SQL statement is

encountered. An executable SQL statement is a SQL statement that generates calls to

an instance, including DML and DDL statements.

When a transaction begins, Oracle assigns the transaction to an available rollback

segment to record the rollback entries for the new transaction. See "Transactions and

Rollback Segments" on page 4-20 for more information about this topic.

A transaction ends when any of the following occurs:

■ You issue a COMMIT or ROLLBACK (without a SAVEPOINT clause)

statement.

■ You execute a DDL statement (such as CREATE, DROP, RENAME, ALTER). If

the current transaction contains any DML statements, Oracle first commits the

Note: Users cannot directly refer to implicit savepoints in rollback

statements.
17-4 Oracle8i Concepts

Oracle and Transaction Management
transaction, and then executes and commits the DDL statement as a new, single

statement transaction.

■ A user disconnects from Oracle. (The current transaction is committed.)

■ A user process terminates abnormally. (The current transaction is rolled back.)

After one transaction ends, the next executable SQL statement automatically starts

the following transaction.

Committing Transactions
Committing a transaction means making permanent the changes performed by the

SQL statements within the transaction.

Before a transaction that modifies data is committed, the following has occurred:

■ Oracle has generated rollback segment records in rollback segment buffers of

the system global area (SGA). The rollback information contains the old data

values changed by the SQL statements of the transaction.

■ Oracle has generated redo log entries in the redo log buffer of the SGA. These

changes may go to disk before a transaction is committed.

■ The changes have been made to the database buffers of the SGA. These changes

may go to disk before a transaction actually is committed.

When a transaction is committed, the following occurs:

■ The internal transaction table for the associated rollback segment records that

the transaction has committed, and the corresponding unique system change

number (SCN) of the transaction is assigned and recorded in the table.

Note: Applications should always explicitly commit or roll back

transactions before program termination.

Note: The data changes for a committed transaction, stored in

the database buffers of the SGA, are not necessarily written

immediately to the datafiles by the database writer (DBWn)

background process. This writing takes place when it is most

efficient to do so. It may happen before the transaction commits or,

alternatively, it may happen some time after the transaction

commits.
Transaction Management 17-5

Oracle and Transaction Management
■ The log writer process (LGWR) writes redo log entries in the SGA’s redo log

buffers to the online redo log file; it also writes the transaction’s SCN to the

online redo log file. This atomic event constitutes the commit of the transaction.

■ Oracle releases locks held on rows and tables. (See "Locking Mechanisms" on

page 27-3 for a discussion of locks.)

■ Oracle marks the transaction "complete".

See "Oracle Processes" on page 8-5 for more information about the background

processes LGWR and DBWn.

Rolling Back Transactions
Rolling back means undoing any changes to data that have been performed by SQL

statements within an uncommitted transaction.

Oracle allows you to roll back an entire uncommitted transaction. Alternatively, you

can roll back the trailing portion of an uncommitted transaction to a marker called a

savepoint; see "Savepoints" on page 17-7 for a complete explanation.

All types of rollbacks use the same procedures:

■ statement-level rollback (due to statement or deadlock execution error)

■ rollback to a savepoint

■ rollback of a transaction due to user request

■ rollback of a transaction due to abnormal process termination

■ rollback of all outstanding transactions when an instance terminates

abnormally

■ rollback of incomplete transactions during recovery

In rolling back an entire transaction, without referencing any savepoints, the

following occurs:

■ Oracle undoes all changes made by all the SQL statements in the transaction by

using the corresponding rollback segments.

■ Oracle releases all the transaction’s locks of data (see "Locking Mechanisms" on

page 27-3 for a discussion of locks).

■ The transaction ends.

In rolling back a transaction to a savepoint, the following occurs:

■ Oracle rolls back only the statements executed after the savepoint.
17-6 Oracle8i Concepts

Oracle and Transaction Management
■ The specified savepoint is preserved, but all savepoints that were established

after the specified one are lost.

■ Oracle releases all table and row locks acquired since that savepoint, but retains

all data locks acquired previous to the savepoint (see "Locking Mechanisms" on

page 27-3 for a discussion of locks).

■ The transaction remains active and can be continued.

Savepoints
You can declare intermediate markers called savepoints within the context of a

transaction. Savepoints divide a long transaction into smaller parts.

Using savepoints, you can arbitrarily mark your work at any point within a long

transaction. You then have the option later of rolling back work performed before

the current point in the transaction (the end of the transaction) but after a declared

savepoint within the transaction. For example, you can use savepoints throughout a

long complex series of updates so that if you make an error, you do not need to

resubmit every statement.

Savepoints are similarly useful in application programs. If a procedure contains

several functions, you can create a savepoint before each function begins. Then, if a

function fails, it is easy to return the data to its state before the function began and

reexecute the function with revised parameters or perform a recovery action.

After a rollback to a savepoint, Oracle releases the data locks obtained by rolled

back statements. Other transactions that were waiting for the previously locked

resources can proceed. Other transactions that want to update previously locked

rows can do so.

The Two-Phase Commit Mechanism
In a distributed database, Oracle must coordinate transaction control over a

network and maintain data consistency, even if a network or system failure occurs.

A two-phase commit mechanism guarantees that all database servers participating in

a distributed transaction either all commit or all roll back the statements in the

transaction. A two-phase commit mechanism also protects implicit DML operations

performed by integrity constraints, remote procedure calls, and triggers.

The Oracle two-phase commit mechanism is completely transparent to users who

issue distributed transactions. In fact, users need not even know the transaction is

distributed. A COMMIT statement denoting the end of a transaction automatically

triggers the two-phase commit mechanism to commit the transaction; no coding or
Transaction Management 17-7

Discrete Transaction Management
complex statement syntax is required to include distributed transactions within the

body of a database application.

The recoverer (RECO) background process automatically resolves the outcome of

in-doubt distributed transactions—distributed transactions in which the commit was

interrupted by any type of system or network failure. After the failure is repaired

and communication is reestablished, the RECO of each local Oracle server

automatically commits or rolls back any in-doubt distributed transactions

consistently on all involved nodes.

In the event of a long-term failure, Oracle allows each local administrator to

manually commit or roll back any distributed transactions that are in doubt as a

result of the failure. This option enables the local database administrator to free up

any locked resources that may be held indefinitely as a result of the long-term

failure.

If a database must be recovered to a point in the past, Oracle’s recovery facilities

enable database administrators at other sites to return their databases to the earlier

point in time also. This ensures that the global database remains consistent.

Discrete Transaction Management
Application developers can improve the performance of short, nondistributed

transactions by using the procedure BEGIN_DISCRETE_TRANSACTION. This

procedure streamlines transaction processing so that short transactions can execute

more rapidly.

During a discrete transaction, all changes made to any data are deferred until the

transaction commits. Of course, other concurrent transactions are unable to see the

uncommitted changes of a transaction whether the transaction is discrete or not.

Oracle generates redo information, but stores it in a separate location in memory.

When the transaction issues a commit request, Oracle writes the redo information to

the redo log file (along with other group commits), and applies the changes to the

database block directly to the block. Oracle returns control to the application once

the commit completes. This eliminates the need to generate undo information, since

the block actually is not modified until the transaction is committed, and the redo

information is stored in the redo log buffers.

There is no interaction between discrete transactions, which always generate redo,

and the NOLOGGING mode, which applies only to direct path operations. (See

"Logging Mode" on page 25-5.) Discrete transactions may therefore be issued

against tables that have the NOLOGGING attribute set.
17-8 Oracle8i Concepts

Autonomous Transactions
Autonomous Transactions
Autonomous transactions are independent transactions that can be called from

within another transaction. An autonomous transaction lets you "step out" of the

context of the calling transaction, perform some SQL operations, commit or roll

back those operations, and then return to the calling transaction’s context and

continue with that transaction.

Once invoked, an autonomous transaction is totally independent of the calling

transaction (the main transaction). It does not see any of the uncommitted changes

made by the main transaction and does not share any locks or resources with the

main transaction. Changes made by an autonomous transaction become visible to

other transactions upon commit of the autonomous transactions.

One autonomous transaction can call another. There are no limits, other than

resource limits, on how many levels of autonomous transactions may be called.

Deadlocks are possible between an autonomous transaction and its calling

transaction. Oracle detects such deadlocks and returns an error. The application

developer is responsible for avoiding deadlock situations.

Autonomous transactions are useful for implementing actions that need to be

performed independently, regardless of whether the calling transaction commits or

rolls back, such as transaction logging and retry counters.

Autonomous PL/SQL Blocks
You can call autonomous transactions from within a PL/SQL block. The

specification PRAGMA AUTONOMOUS_TRANSACTION can declare the

following kinds of PL/SQL blocks to be autonomous:

■ stored procedure or function

■ local procedure or function

■ package

■ type method

■ top-level anonymous block

Transactional operations performed in the "BEGIN .. END" section of an

autonomous block are done as part of an autonomous transaction, that is,

Additional Information: See Oracle8i Tuning for more information

on discrete transactions.
Transaction Management 17-9

Autonomous Transactions
independent of the transaction context of the calling block. When an autonomous

PL/SQL block is entered, the transaction context of the caller is suspended. This

ensures that SQL operations performed in this block (or other blocks called from it)

have no dependence or effect on the state of the caller’s transaction context.

An autonomous PL/SQL block is considered to have purity of RNDS (reads no

database state) and WNDS (writes no database state) even if SQL operations are

performed in the autonomous block or in other blocks called from it. Hence, such

blocks can be called from SQL contexts.

When an autonomous block invokes another autonomous block or itself, the called

block does not share any transaction context with the calling block. However, when

an autonomous block invokes a non-autonomous block (that is, one that is not

declared to be autonomous), the called block inherits the transaction context of the

calling autonomous block.

Transaction Control Statements in Autonomous Blocks
Transaction control statements in an autonomous PL/SQL block apply only to the

currently active autonomous transaction. Examples of such statements are:

■ SET TRANSACTION

■ COMMIT

■ ROLLBACK

■ SAVEPOINT

■ ROLLBACK TO SAVEPOINT

Similarly, transaction control statements in the main transaction apply only to that

transaction and not to any autonomous transaction that it calls. For example, rolling

back the main transaction to a savepoint taken before the beginning of an

autonomous transaction does not roll back the autonomous transaction.

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for more information on purity levels.

Additional Information: See the PL/SQL User’s Guide and Reference
for detailed information about autonomous transactions.
17-10 Oracle8i Concepts

Procedures and P
18

Procedures and Packages

We're dealing here with science, but it is science which has not yet been fully codified by
scientific minds. What we have are the memoirs of poets and occult adventurers...

Anne Rice: The Tale of the Body Thief

This chapter discusses the procedural capabilities of Oracle. It includes:

■ An Introduction to Stored Procedures and Packages

■ Procedures and Functions

■ Packages

■ How Oracle Stores Procedures and Packages

■ How Oracle Executes Procedures and Packages

For information about the dependencies of procedures, functions, and packages,

and how Oracle manages these dependencies, see Chapter 21, "Oracle Dependency

Management".
ackages 18-1

An Introduction to Stored Procedures and Packages
An Introduction to Stored Procedures and Packages
Oracle allows you to access and manipulate database information using procedural

schema objects called PL/SQL program units. Procedures, functions, and packages

are all examples of PL/SQL program units.

PL/SQL is Oracle's procedural language extension to SQL. It extends SQL with flow

control and other statements that make it possible to write complex programs in it.

The PL/SQL engine is the tool you use to define, compile, and execute PL/SQL

program units. This engine is a special component of many Oracle products,

including the Oracle server.

While many Oracle products have PL/SQL components, this chapter specifically

covers the procedures and packages that can be stored in an Oracle database and

processed using the Oracle server PL/SQL engine. The PL/SQL capabilities of each

Oracle tool are described in the appropriate tool's documentation. For more

information, see "PL/SQL" on page 16-15.

Stored Procedures and Functions
Procedures and functions are schema objects that logically group a set of SQL and

other PL/SQL programming language statements together to perform a specific

task. Procedures and functions are created in a user's schema and stored in a

database for continued use. You can execute a procedure or function interactively

using an Oracle tool, such as SQL*Plus, or call it explicitly in the code of a database

application, such as an Oracle Forms or Precompiler application, or in the code of

another procedure or trigger.

Figure 18–1 illustrates a simple procedure that is stored in the database and called

by several different database applications.

Procedures and functions are identical except that functions always return a single

value to the caller, while procedures do not. For simplicity, the term "procedure" as

used in the remainder of this chapter means "procedure or function".
18-2 Oracle8i Concepts

An Introduction to Stored Procedures and Packages
Figure 18–1 A Stored Procedure

The stored procedure in Figure 18–1, which inserts an employee record into the

EMP table, is shown in Figure 18–2.

Database
Applications

Program code
.
.
Program code
.
HIRE_EMP(...);
.
Program code

Program
.
.
Program code
.
HIRE_EMP(...);
.
Program code

code

Program code
.
.
Program code
.
HIRE_EMP(...);
.
Program code

HIRE_EMP(...)

BEGIN
.
.
END;

Database

Stored
Procedure
Procedures and Packages 18-3

An Introduction to Stored Procedures and Packages
Figure 18–2 The HIRE_EMP Procedure

All of the database applications in Figure 18–1 call the HIRE_EMP procedure.

Alternatively, a privileged user might use Oracle Enterprise Manager or SQL*Plus

to execute the HIRE_EMP procedure using the following statement:

EXECUTE hire_emp ('TSMITH', 'CLERK', 1037, SYSDATE, \
 500, NULL, 20);

This statement places a new employee record for TSMITH in the EMP table.

Packages
A package is a group of related procedures and functions, together with the cursors

and variables they use, stored together in the database for continued use as a unit.

Similar to standalone procedures and functions, packaged procedures and functions

can be called explicitly by applications or users.

Figure 18–3 illustrates a package that encapsulates a number of procedures used to

manage an employee database.

Procedure HIRE_EMP (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER,
 comm NUMBER, deptno NUMBER)

BEGIN
.
.
INSERT INTO emp VALUES
 (emp_sequence.NEXTVAL, name, job, mgr
 hiredate, sal, comm, deptno);
.
.
END;
18-4 Oracle8i Concepts

An Introduction to Stored Procedures and Packages
Figure 18–3 A Stored Package

Database
Applications

EMP_MGMT

FIRE_EMP(...)

BEGIN
.
.
END;

HIRE_EMP(...)

BEGIN
.
.
END;

SAL_RAISE(...)

BEGIN
.
.
END;

Program code
.
EMP_MGMT.FIRE_EMP(...);

Program code
.
EMP_MGMT.HIRE_EMP(...);
.
Program code

Program code
.
EMP_MGMT.HIRE_EMP(...);

Program code
.
EMP_MGMT.SAL_RAISE(...);
.
Program code

Database
Procedures and Packages 18-5

Procedures and Functions
Database applications explicitly call packaged procedures as necessary. After being

granted the privileges for the EMP_MGMT package, a user can explicitly execute

any of the procedures contained in it. For example, Oracle Enterprise Manager or

SQL*Plus might issue the following statement to execute the HIRE_EMP package

procedure:

EXECUTE emp_mgmt.hire_emp ('TSMITH', 'CLERK', 1037, SYSDATE, 500, NULL, 20);

Packages offer several development and performance advantages over standalone

stored procedures (see "Packages" on page 18-11).

Procedures and Functions
A procedure or function is a schema object that consists of a set of SQL statements

and other PL/SQL constructs, grouped together, stored in the database, and

executed as a unit to solve a specific problem or perform a set of related tasks.

Procedures and functions permit the caller to provide parameters that can be input

only, output only, or input and output values.

Procedures and functions allow you to combine the ease and flexibility of SQL with

the procedural functionality of a structured programming language. For example,

the following statement creates the CREDIT_ACCOUNT procedure, which credits

money to a bank account:

CREATE PROCEDURE credit_account
 (acct NUMBER, credit NUMBER) AS
/* This procedure accepts two arguments: an account number and an
 amount of money to credit to the specified account. If the
 specified account does not exist, a new account is created. */

 old_balance NUMBER;
 new_balance NUMBER;
 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance;

 new_balance := old_balance + credit;
 UPDATE accounts SET balance = new_balance
 WHERE acct_id = acct;
 COMMIT;
18-6 Oracle8i Concepts

Procedures and Functions
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO accounts (acct_id, balance)
 VALUES(acct, credit);
 WHEN OTHERS THEN
 ROLLBACK;
END credit_account;

Notice that this sample procedure includes both SQL and PL/SQL statements.

Procedure Guidelines
Use the following guidelines when designing stored procedures:

■ Define procedures to complete a single, focused task. Do not define long

procedures with several distinct subtasks, because subtasks common to many

procedures might be duplicated unnecessarily in the code of several

procedures.

■ Do not define procedures that duplicate the functionality already provided by

other features of Oracle. For example, do not define procedures to enforce

simple data integrity rules that you could easily enforce using declarative

integrity constraints.

Benefits of Procedures
Procedures provide advantages in the following areas.

Security
Stored procedures can help enforce data security. You can restrict the database

operations that users can perform by allowing them to access data only through

procedures and functions that execute with the definer’s privileges. (See "Definer

Rights and Invoker Rights" on page 18-9.) For example, you can grant users access

to a procedure that updates a table, but not grant them access to the table itself.

When a user invokes the procedure, the procedure executes with the privileges of

the procedure's owner. Users who have only the privilege to execute the procedure

(but not the privileges to query, update, or delete from the underlying tables) can

invoke the procedure, but they cannot manipulate table data in any other way.
Procedures and Packages 18-7

Procedures and Functions
Performance
Stored procedures can improve database performance in several ways:

■ The amount of information that must be sent over a network is small compared

to issuing individual SQL statements or sending the text of an entire PL/SQL

block to Oracle, because the information is sent only once and thereafter

invoked when it is used.

■ A procedure's compiled form is readily available in the database, so no

compilation is required at execution time.

■ If the procedure is already present in the shared pool of the SGA, retrieval from

disk is not required, and execution can begin immediately.

Memory Allocation
Because stored procedures take advantage of the shared memory capabilities of

Oracle, only a single copy of the procedure needs to be loaded into memory for

execution by multiple users. Sharing the same code among many users results in a

substantial reduction in Oracle memory requirements for applications.

Productivity
Stored procedures increase development productivity. By designing applications

around a common set of procedures, you can avoid redundant coding and increase

your productivity.

For example, procedures can be written to insert, update, or delete rows from the

EMP table. These procedures can then be called by any application without

rewriting the SQL statements necessary to accomplish these tasks. If the methods of

data management change, only the procedures need to be modified, not all of the

applications that use the procedures.

Integrity
Stored procedures improve the integrity and consistency of your applications. By

developing all of your applications around a common group of procedures, you can

reduce the likelihood of committing coding errors.

For example, you can test a procedure or function to guarantee that it returns an

accurate result and, once it is verified, reuse it in any number of applications

without testing it again. If the data structures referenced by the procedure are

altered in any way, only the procedure needs to be recompiled; applications that call

the procedure do not necessarily require any modifications.
18-8 Oracle8i Concepts

Procedures and Functions
Anonymous PL/SQL Blocks versus Stored Procedures
A stored procedure is created and stored in the database as a schema object. Once

created and compiled, it is a named object that can be executed without

recompiling. Additionally, dependency information is stored in the data dictionary

to guarantee the validity of each stored procedure.

As an alternative to a stored procedure, you can create an anonymous PL/SQL

block by sending an unnamed PL/SQL block to the Oracle server from an Oracle

tool or an application. Oracle compiles the PL/SQL block and places the compiled

version in the shared pool of the SGA, but does not store the source code or

compiled version in the database for reuse beyond the current instance. Shared SQL

allows anonymous PL/SQL blocks in the shared pool to be reused and shared until

they are flushed out of the shared pool.

In either case, moving PL/SQL blocks out of a database application and into

database procedures stored either in the database or in memory, you avoid

unnecessary procedure recompilations by Oracle at runtime, improving the overall

performance of the application and Oracle.

Standalone Procedures
Stored procedures not defined within the context of a package are called standalone
procedures. Procedures defined within a package are considered a part of the

package. (See "Packages" on page 18-11 for information on the advantages of

packages.)

Definer Rights and Invoker Rights
A PL/SQL procedure can be executed with the privileges of its owner (definer rights)
or with the privileges of the current user (invoker rights), depending on the

procedure definition.

■ A definer-rights procedures executes with its definer’s privileges. Roles are

disabled in a definer-rights procedure.

■ An invoker-rights procedure executes with all of the invoker’s privileges,

including enabled roles.

See "Procedure Security Topics" on page 30-7 for more information about privileges,

and see "PL/SQL Blocks and Roles" on page 30-20 for more information about roles.
Procedures and Packages 18-9

Procedures and Functions
The Current User
When an invoker-rights procedure is the first program called in a software bundle,

the invoker or current user is the session user, who is either the logged-in user or the

user associated with the remote procedure call session. On entering another

invoker-rights procedure, the current user does not change.

However, on entering a definer-rights procedure, the owner of that procedure

becomes the current user. If the definer-rights procedure then calls an invoker-rights

procedure, the current user remains the owner of the definer-rights procedure.

On exiting a definer-rights procedure, the current user reverts from the procedure’s

owner to the previous current user, that is, the current user of the procedure which

called the definer-rights procedure.

Resolution of External References
An external reference in a PL/SQL procedure is something that refers to an object

outside the program unit.

■ For a definer-rights procedure, all external references are resolved in the schema

that contains the procedure.

■ For an invoker-rights procedure, external references are resolved differently

depending on the kind of statement they appear in. The following names are

resolved in the schema associated with the invoker.

– names in DML statements, such as tables, views, and sequences

– names in cursors

– names in dynamic SQL statements and DBMS_SQL statements

The names of program units that the invoker-rights procedure calls are resolved

in the schema containing the procedure.

Name resolution in the invoker’s schema allows applications to access user-specific

tables by not specifying the schema. See "Name Resolution for Database Objects

and Program Units" on page 18-19 for more information.
18-10 Oracle8i Concepts

Packages
Dependency Tracking for Stored Procedures
A stored procedure is dependent on the objects referenced in its body. Oracle

automatically tracks and manages such dependencies. For example, if you alter the

definition of a table referenced by a procedure, the procedure must be recompiled to

validate that it will continue to work as designed. Usually, Oracle automatically

administers such dependency management.

See Chapter 21, "Oracle Dependency Management", for more information about

dependency tracking.

External Procedures
A PL/SQL procedure executing on an Oracle server can call an external procedure

or function that is written in the C programming language and stored in a shared

library. The C routine executes in a separate address space from that of the Oracle

server.

Packages
Packages encapsulate related procedures, functions, and associated cursors and

variables together as a unit in the database.

You create a package in two parts: the specification and the body. A package's

specification declares all public constructs of the package and the body defines all

constructs (public and private) of the package. This separation of the two parts

provides the following advantages:

■ The developer has more flexibility in the development cycle. You can create

specifications and reference public procedures without actually creating the

package body.

■ You can alter procedure bodies contained within the package body separately

from their publicly declared specifications in the package specification. As long

as the procedure specification does not change, objects that reference the altered

procedures of the package are never marked invalid; that is, they are never

marked as needing recompilation. (For more information about dependencies,

see Chapter 21, "Oracle Dependency Management".)

Additional Information: See Oracle8i Application Developer’s Guide -
Fundamentals for more information about external procedures and

Inter-Language Method Services (ILMS).
Procedures and Packages 18-11

Packages
The following example creates the specification and body for a package that

contains several procedures and functions that process banking transactions.

CREATE PACKAGE bank_transactions (null) AS
 minimum_balance CONSTANT NUMBER := 100.00;
 PROCEDURE apply_transactions;
 PROCEDURE enter_transaction (acct NUMBER,
 kind CHAR,
 amount NUMBER);
END bank_transactions;

CREATE PACKAGE BODY bank_transactions AS

/* Package to input bank transactions */

 new_status CHAR(20); /* Global variable to record status
 of transaction being applied. Used
 for update in APPLY_TRANSACTIONS. */

 PROCEDURE do_journal_entry (acct NUMBER,
 kind CHAR) IS

/* Records a journal entry for each bank transaction applied
 by the APPLY_TRANSACTIONS procedure. */

 BEGIN
 INSERT INTO journal
 VALUES (acct, kind, sysdate);
 IF kind = 'D' THEN
 new_status := 'Debit applied';
 ELSIF kind = 'C' THEN
 new_status := 'Credit applied';
 ELSE
 new_status := 'New account';
 END IF;
 END do_journal_entry;

 PROCEDURE credit_account (acct NUMBER, credit NUMBER) IS

/* Credits a bank account the specified amount. If the account
 does not exist, the procedure creates a new account first. */

 old_balance NUMBER;
 new_balance NUMBER;
18-12 Oracle8i Concepts

Packages
 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance; /* Locks account for credit update */

 new_balance := old_balance + credit;
 UPDATE accounts SET balance = new_balance
 WHERE acct_id = acct;
 do_journal_entry(acct, 'C');

 EXCEPTION
 WHEN NO_DATA_FOUND THEN /* Create new account if not found */
 INSERT INTO accounts (acct_id, balance)
 VALUES(acct, credit);
 do_journal_entry(acct, 'N');
 WHEN OTHERS THEN /* Return other errors to application */
 new_status := 'Error: ' || SQLERRM(SQLCODE);
 END credit_account;

 PROCEDURE debit_account (acct NUMBER, debit NUMBER) IS

/* Debits an existing account if result is greater than the
 allowed minimum balance. */

 old_balance NUMBER;
 new_balance NUMBER;
 insufficient_funds EXCEPTION;

 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance;
 new_balance := old_balance - debit;
 IF new_balance >= minimum_balance THEN
 UPDATE accounts SET balance = new_balance

 WHERE acct_id = acct;
 do_journal_entry(acct, 'D');
 ELSE
 RAISE insufficient_funds;
 END IF;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 new_status := 'Nonexistent account';
Procedures and Packages 18-13

Packages
 WHEN insufficient_funds THEN
 new_status := 'Insufficient funds';
 WHEN OTHERS THEN /* Returns other errors to application */
 new_status := 'Error: ' || SQLERRM(SQLCODE);
 END debit_account;

 PROCEDURE apply_transactions IS

/* Applies pending transactions in the table TRANSACTIONS to the
 ACCOUNTS table. Used at regular intervals to update bank
 accounts without interfering with input of new transactions. */

/* Cursor fetches and locks all rows from the TRANSACTIONS
 table with a status of 'Pending'. Locks released after all
 pending transactions have been applied. */

 CURSOR trans_cursor IS
 SELECT acct_id, kind, amount FROM transactions
 WHERE status = 'Pending'
 ORDER BY time_tag
 FOR UPDATE OF status;

 BEGIN
 FOR trans IN trans_cursor LOOP /* implicit open and fetch */
 IF trans.kind = 'D' THEN
 debit_account(trans.acct_id, trans.amount);
 ELSIF trans.kind = 'C' THEN
 credit_account(trans.acct_id, trans.amount);
 ELSE
 new_status := 'Rejected';
 END IF;
 /* Update TRANSACTIONS table to return result of applying
 this transaction. */
 UPDATE transactions SET status = new_status
 WHERE CURRENT OF trans_cursor;
 END LOOP;
 COMMIT; /* Release row locks in TRANSACTIONS table. */
 END apply_transactions;
 PROCEDURE enter_transaction (acct NUMBER,
 kind CHAR,
 amount NUMBER) IS

/* Enters a bank transaction into the TRANSACTIONS table. A new
 transaction is always put into this 'queue' before being
 applied to the specified account by the APPLY_TRANSACTIONS
18-14 Oracle8i Concepts

Packages
 procedure. Therefore, many transactions can be simultaneously
 input without interference. */

 BEGIN
 INSERT INTO transactions
 VALUES (acct, kind, amount, 'Pending', sysdate);
 COMMIT;
 END enter_transaction;

END bank_transactions;

Packages allow the database administrator or application developer to organize

similar routines. They also offer increased functionality and database performance.

Benefits of Packages
Packages are used to define related procedures, variables, and cursors and are often

implemented to provide advantages in the following areas:

■ encapsulation of related procedures and variables

■ declaration of public and private procedures, variables, constants, and cursors

■ better performance

Encapsulation
Stored packages allow you to encapsulate (group) related stored procedures,

variables, datatypes, and so forth in a single named, stored unit in the database.

This provides for better organization during the development process.

Encapsulation of procedural constructs in a package also makes privilege

management easier. Granting the privilege to use a package makes all constructs of

the package accessible to the grantee.

Public and Private Data and Procedures
The methods of package definition allow you to specify which variables, cursors,

and procedures are

public Directly accessible to the user of a package.

private Hidden from the user of a package.
Procedures and Packages 18-15

Packages
For example, a package might contain ten procedures. You can define the package

so that only three procedures are public and therefore available for execution by a

user of the package; the remainder of the procedures are private and can only be

accessed by the procedures within the package.

Do not confuse public and private package variables with grants to PUBLIC, which

are described in Chapter 29, "Controlling Database Access".

Performance Improvement
An entire package is loaded into memory when a procedure within the package is

called for the first time. This load is completed in one operation, as opposed to the

separate loads required for standalone procedures. Therefore, when calls to related

packaged procedures occur, no disk I/O is necessary to execute the compiled code

already in memory.

A package body can be replaced and recompiled without affecting the specification.

As a result, schema objects that reference a package's constructs (always via the

specification) need not be recompiled unless the package specification is also

replaced. By using packages, unnecessary recompilations can be minimized,

resulting in less impact on overall database performance.

Dependency Tracking for Packages
A package is dependent on the objects referenced by the procedures and functions

defined in its body. Oracle automatically tracks and manages such dependencies.

See Chapter 21, "Oracle Dependency Management", for more information about

dependency tracking.

Oracle Supplied Packages
Oracle supplies many PL/SQL packages that contain procedures for extending the

functionality of the database or PL/SQL. Most of these packages have names that

start with the "DBMS_" prefix, such as DBMS_SQL, DBMS_LOCK, and DBMS_JOB.

Some supplied packages have the "UTL_" prefix, such as UTL_HTTP and

UTL_FILE, or other prefixes including "DEBUG_" and "OUTLN_".

Additional Information: See Oracle8i Supplied Packages Reference for

detailed documentation of the Oracle supplied packages.
18-16 Oracle8i Concepts

How Oracle Stores Procedures and Packages
How Oracle Stores Procedures and Packages
When you create a procedure or package, Oracle

■ compiles the procedure or package

■ stores the compiled code in memory

■ stores the procedure or package in the database

Compiling Procedures and Packages
The PL/SQL compiler compiles the source code. The PL/SQL compiler is part of

the PL/SQL engine contained in Oracle. If an error occurs during compilation, a

message is returned.

Storing the Compiled Code in Memory
Oracle caches the compiled procedure or package in the shared pool of the system

global area (SGA). This allows the code to be executed quickly and shared among

many users. The compiled version of the procedure or package remains in the

shared pool according to the modified least-recently-used algorithm used by the

shared pool, even if the original caller of the procedure terminates his or her

session. See "The Shared Pool" on page 7-6 for specific information about the shared

pool buffer.

Storing Procedures or Packages in Database
At creation and compile time, Oracle automatically stores the following information

about a procedure or package in the database:

Additional Information: Information on identifying compilation

errors is contained in the Oracle8i Application Developer’s Guide -
Fundamentals.

schema object name This name identifies the procedure or package. You

specify this name in the CREATE PROCEDURE,

CREATE FUNCTION, CREATE PACKAGE, or

CREATE PACKAGE BODY statement.

source code and parse

tree

The PL/SQL compiler parses the source code and

produces a parsed representation of the source code,

called a parse tree.
Procedures and Packages 18-17

How Oracle Executes Procedures and Packages
To avoid unnecessary recompilation of a procedure or package, both the parse tree

and the P code of an object are stored in the database. This allows the PL/SQL

engine to read the compiled version of a procedure or package into the shared pool

buffer of the SGA when it is invoked and not currently in the SGA. The parse tree is

used when the code calling the procedure is compiled.

All parts of database procedures are stored in the data dictionary (which is in the

SYSTEM tablespace) of the corresponding database. When planning the size of the

SYSTEM tablespace, the database administrator should keep in mind that all stored

procedures require space in this tablespace.

How Oracle Executes Procedures and Packages
When you invoke a standalone or packaged procedure, Oracle verifies user access,

verifies procedure validity, and executes the procedure. The verification and

execution differs for definer-rights procedures and invoker-rights procedures (see

"Definer Rights and Invoker Rights" on page 18-9).

Verifying User Access
Oracle verifies that the calling user owns or has the EXECUTE privilege on the

procedure or encapsulating package. The user who executes a procedure does not

require access to any procedures or objects referenced within the procedure; only

the creator of a procedure or package requires privileges to access referenced

schema objects.

Verifying Procedure Validity
Oracle checks the data dictionary to determine whether the status of the procedure

or package is valid or invalid. A procedure or package is invalid when one of the

following has occurred since the procedure or package was last compiled:

pseudocode (P code) The PL/SQL compiler generates the pseudocode, or

P code, based on the parsed code. The PL/SQL engine

executes this when the procedure or package is

invoked.

error messages Oracle might generate errors during the compilation of

a procedure or package.
18-18 Oracle8i Concepts

How Oracle Executes Procedures and Packages
■ One or more of the schema objects referenced within the procedure or package

(such as tables, views, and other procedures) have been altered or dropped (for

example, if a user added a column to a table).

■ A system privilege that the package or procedure requires has been revoked

from PUBLIC or from the owner of the procedure or package.

■ A required schema object privilege for one or more of the schema objects

referenced by a procedure or package has been revoked from PUBLIC or from

the owner of the procedure or package.

A procedure is valid if it has not been invalidated by any of the above operations. If

a valid standalone or packaged procedure is called, the compiled code is executed.

If an invalid standalone or packaged procedure is called, it is automatically

recompiled before being executed.

For a complete discussion of valid and invalid procedures and packages,

recompiling procedures, and a thorough discussion of dependency issues, see

Chapter 21, "Oracle Dependency Management".

Executing a Procedure
The PL/SQL engine executes the procedure or package using different steps,

depending on the situation:

■ If the procedure is valid and currently in memory, the PL/SQL engine simply

executes the P code.

■ If the procedure is valid and currently not in memory, the PL/SQL engine loads

the compiled P code from disk to memory and executes it. For packages, all

constructs of the package (all procedures, variables, and so on, compiled as one

executable piece of code) are loaded as a unit.

The PL/SQL engine processes a procedure statement by statement, handling all

procedural statements by itself and passing SQL statements to the SQL statement

executor, as illustrated in Figure 16–2 on page 16-16.

Name Resolution for Database Objects and Program Units For a definer-rights procedure,

all external references are resolved in the definer’s schema. For an invoker-rights

procedure, the resolution of external references depends on the kind of statement

they appear in.

■ External references in DML statements and dynamic SQL statements are

resolved in the invoker’s schema, and Oracle checks for access privileges at

runtime using the invoker’s rights. This rule applies to the names of database
Procedures and Packages 18-19

How Oracle Executes Procedures and Packages
objects (such as tables, views, and sequences) in any of the following types of

statements:

– SELECT, UPDATE, INSERT, and DELETE statements

– OPEN cursor (SELECT statements in a cursor declaration are resolved

at OPEN)

– LOCK TABLE statements

– dynamic SQL statements: EXECUTE IMMEDIATE and PREPARE

– DBMS_SQL statements: any statement parsed using DBMS_SQL.PARSE()

Although the names of schema objects are resolved at run time, the compiler

identifies a type for each such reference at compile time by temporarily

resolving the name to a template object in the definer’s schema.

■ External references in all statements other than DML or dynamic SQL are

resolved in the definer’s schema, and Oracle checks for access privileges using

the definer’s rights at compile time. This rule applies to names of other program

units called by the procedure (such as packages, procedures, functions, and

types).

For example, in an assignment statement involving an external function call

"x := func(1)", the function name "func" resolves in the schema of the

procedure’s definer and the access to "func" is checked at compile time with the

definer’s privileges.

Name Resolution for Database Links Database link names in PL/SQL procedures are

resolved following the rules in the previous section. The authorization ID used to

connect to the remote database is one of the following:

1. For named links, Oracle uses the username specified in the link to connect to

the remote database. This behavior is the same in definer-rights procedures and

invoker-rights procedures.

CREATE DATABASE LINK link1
 CONNECT TO scott IDENTIFIED BY tiger
 USING connect_string ;

If a procedure owned by JOE uses LINK1, no matter who invokes the

procedure, the connection is as SCOTT because that is the name specified in

the link.
18-20 Oracle8i Concepts

How Oracle Executes Procedures and Packages
2. For anonymous links, Oracle uses the session username to connect to the

remote database. This behavior is the same in definer-rights procedures and

invoker-rights procedures.

CREATE DATABASE LINK link2
 USING connect_string ;

If a procedure owned by JOE uses an anonymous link LINK2, and a user

SCOTT invokes the procedure, the connection to the remote database is as

SCOTT.

3. For current user links, the behavior differs for definer-rights procedures and

invoker-rights procedures:

– For an invoker-rights procedure, Oracle uses the invoker’s authorization ID

to connect as a remote user.

CREATE DATABASE LINK link3
 CONNECT TO CURRENT_USER
 USING connect_string ;

If a global user SCOTT invokes the invoker-rights procedure owned by JOE,

then LINK3 connects to the remote database as user SCOTT because SCOTT

is the current user.

– For a definer-rights procedure, Oracle uses the owner’s authorization ID to

connect as a remote user. If the definer-rights procedure is owned by JOE,

LINK3 connects to the remote database as global user JOE who then

becomes the current user.

Note: The global user functionality that was available in Oracle8

is being modified, and is currently available to beta customers only.

It will be part of Oracle8i in a later release.
Procedures and Packages 18-21

How Oracle Executes Procedures and Packages
18-22 Oracle8i Concepts

Advanced Q
19

Advanced Queuing

Many that are first shall be last; and the last shall be first.

Matthew 19:30: The Bible

This chapter describes the Oracle Advanced Queuing (Oracle AQ) feature. The

chapter includes:

■ Introduction to Message Queuing

■ Oracle Advanced Queuing

– Queuing Entities

– Features of Advanced Queuing

Attention: The features described in this chapter are available

only if you have purchased Oracle8i Enterprise Edition. See Getting
to Know Oracle8i for information about the features available with

Oracle8i Enterprise Edition.

Additional Information: For more information about Oracle AQ,

see Oracle8i Application Developer’s Guide - Advanced Queuing.
ueuing 19-1

Introduction to Message Queuing
Introduction to Message Queuing
Communication between programs can be classified into one of two types:

■ synchronous communication (online or connected model)

■ asynchronous communication (disconnected or deferred model)

Synchronous Communication

Synchronous communication is based on the request/reply paradigm—a program

sends a request to another program and waits until the reply arrives.

This model of communication (also called online or connected) is suitable for

programs that need to get the reply before they can proceed with their work.

Traditional client/server architectures are based on this model.

The major drawback of the synchronous model of communication is that the

programs must be available and running for the application to work. In the event of

network or machine failure, programs cease to function.

Asynchronous Communication

In the disconnected or deferred model programs communicate asynchronously,

placing requests in a queue and then proceeding with their work.

For example, an application might require entry of data or execution of an operation

at a later time, after specific conditions are met. The recipient program retrieves the

request from the queue and acts on it. This model is suitable for applications that

can continue with their work after placing a request in the queue — they are not

blocked waiting for a reply.

For deferred execution to work correctly even in the presence of network, machine

and application failures, the requests must be stored persistently, and processed

exactly once. This can be achieved by combining persistent queuing with

transaction protection.

Processing each client/server request exactly once is often important to preserve

both the integrity and flow of a transaction. For example, if the request is an order

for a number of shares of stock at a particular price, then execution of the request

zero or two times is unacceptable even if a network or system failure occurs during

transmission, receipt, or execution of the request.
19-2 Oracle8i Concepts

Oracle Advanced Queuing
Oracle Advanced Queuing
Oracle Advanced Queuing (Oracle AQ) integrates a message queuing system with

the Oracle database. This allows you to store messages into queues for deferred

retrieval and processing by the Oracle server.

Applications can access the queuing functionality through interfaces defined in

PL/SQL, Java, C/C++ and Visual Basic. This provides a reliable and efficient

queuing system without additional software like transaction processing (TP)

monitors or Message Oriented Middleware.

Oracle AQ offers the following functionality:

■ structured payload for messages

■ priority and ordering of messages in queues

■ ability to specify a window of execution for each message

■ ability to query queues using standard SQL

■ integrated transactions to simplify application development and management

■ ability to dequeue multiple messages as a bundle

■ ability to specify multiple recipients

■ ability to propagate messages to queues in local or remote Oracle databases

■ rule based publish/subscribe with content based filtering

■ ability to wait for messages on multiple queues

■ persistent and non-persistent queuing

■ statistics on messages stored in queues and propagated to other queues

■ retention of messages and message history for analysis purposes

■ queue level access control

■ exception handling support

■ support for Oracle Parallel Server environment to achieve higher performance

■ asynchronous notification using callback functions

Since Oracle AQ queues are implemented in database tables, all the operational

benefits of high availability, scalability, and reliability are applicable to queue data.

In addition, database development and management tools can be used with queues.
Advanced Queuing 19-3

Oracle Advanced Queuing
Queuing Entities
Oracle AQ has several basic entities: messages, queues, queue tables, agents,

recipients, recipient and subscription lists, rules, rule-based subscribers and the

queue monitor.

Messages
A message is the smallest unit of information being inserted into and retrieved from

a queue. A message consists of control information and payload data. The control

information represents message properties used by Oracle AQ to manage messages.

The payload data is the information stored in the queue and is transparent to Oracle

AQ. The datatype of the payload can be either RAW or an object type.

A message can reside in only one queue. A message is created by the enqueue call

and consumed by the dequeue call. Enqueue and dequeue calls are part of the

DBMS_AQ package.

Queues
A queue is the repository for messages. There are two types of queues: user (normal)

queues and exception queues. The user queue is for normal message processing. All

messages in a queue must have the same datatype. Messages are transferred to an

exception queue if they cannot be retrieved and processed for some reason.

Queues can be created, altered, started, stopped, and dropped by using the

DBMS_AQADM package.

Queue Tables
Queues are stored in queue tables. Each queue table is a database table and contains

one or more queues. Each queue table contains a default exception queue.

Creating a queue table creates a database table with approximately 25 columns.

These columns store Oracle AQ metadata and the user-defined payload.

A view and two indexes are created on the queue table. The view allows you to

query the message data. The indexes are used to accelerate access to message data.

Agents
An agent is a queue user. There are two types of agents: producers who place

messages in a queue (enqueuing) and consumers who retrieve messages

(dequeuing). Any number of producers and consumers can access the queue at a

given time.
19-4 Oracle8i Concepts

Oracle Advanced Queuing
An agent is identified by its name, address, and protocol. For an agent on a remote

database, the only protocol currently supported is an Oracle database link, using an

address of the form queue_name@dblink.

Recipient
The recipient of a message may be specified by its name only, in which case the

recipient must dequeue the message from the queue in which the message was

enqueued. The recipient may be specified by name and an address with a protocol

value of 0. The address should be the name of another queue in the same database

or another Oracle8 database (identified by the database link) in which case the

message is propagated to the specified queue and can be dequeued by a consumer

with the specified name. If the recipient's name is NULL, the message is propagated

to the specified queue in the address and can be dequeued by the subscribers of the

queue specified in the address. If the protocol field is nonzero, the name and

address field is not interpreted by the system and the message can be dequeued by

special consumer (see third party support in the propagation section).

Recipient and Subscription Lists
A single message can be designed for consumption by multiple consumers. There

are two ways to do this:

■ The enqueuer can explicitly specify the consumers who may retrieve the

message as recipients of the message. A recipient is an agent identified by a

name, address and protocol.

■ A queue administrator can specify a default list of recipients who can

retrieve messages from a queue. The recipients specified in the default list

are known as subscribers. If a message is enqueued without specifying the

recipients the message is implicitly sent to all the subscribers.

Different queues can have different subscribers, and the same recipient can be a

subscriber to more than one queue. Further, specific messages in a queue can be

directed toward specific recipients who may or may not be subscribers to the queue,

thereby over-riding the subscriber list.

Rule
A rule is used to define one or more subscribers’ interest in subscribing to messages

that conform to that rule. The messages that meet this criterion are then delivered to

the interested subscribers. Put another way: a rule filters for messages in a queue on

a subject in which a subscriber is interested.
Advanced Queuing 19-5

Oracle Advanced Queuing
A rule is specified as a boolean expression (one that evaluates to true or false) using

syntax similar to the WHERE clause of a SQL query. This boolean expression can

include conditions on

■ message properties (currently priority and corrid),

■ user data properties (object payloads only), and

■ functions (as specified in the where clause of a SQL query).

Rule Based Subscriber
A rule-based subscriber is a subscriber that has rule associated with it in the default

recipient list. A rule-based subscriber is sent a message that has no explicit

recipients specified if the associated rule evaluates to TRUE for the message.

Queue Monitor
The queue monitor is an optional background process that monitors messages in

the queue. It provides the mechanism for message expiration, retry, and delay (see

"Windows of Execution" on page 19-7) and allows you to collect interval statistics

(see "Queuing Statistics" on page 19-11).

The queue monitor process is different from most other Oracle background

processes in that process failure does not cause the instance to fail.

The initialization parameter AQ_TM_PROCESSES specifies creation of one or more

queue monitor processes at instance startup.

Features of Advanced Queuing
This section describes the major features of Oracle Advanced Queuing.

Structured Payload
You can use object types to structure and manage the payload. (The RAW datatype

can be used for unstructured payloads.)

Integrated Database Level Operational Support
Oracle AQ stores messages in tables. All standard database features such as

recovery, restart, and Oracle Enterprise Manager are supported.
19-6 Oracle8i Concepts

Oracle Advanced Queuing
SQL Access
Messages are stored as database records. You can use SQL to access the message

properties, the message history, and the payload. All available SQL technology, such

as indexes, can be used to optimize the access to messages.

The AQ_ADMINISTRATOR role provides access to information about queues.

Windows of Execution
You can specify that the consumption of a message has to occur in a specific time

window. A message can be marked as available for processing only after a specified

time elapses (a delay time) and as having to be consumed before a specified time

limit expires.

The initialization parameter AQ_TM_PROCESS enables time monitoring on queue

messages, which is used for messages that specify delay and expiration properties.

Time monitoring must also be enabled if you want to collect interval statistics (see

"Queuing Statistics" on page 19-11).

If this parameter is set to 1, Oracle creates one queue monitor process (QMN0) as a

background process to monitor the messages. If it is set to 2 through 10, Oracle

creates that number of QMNn processes; if the parameter is not specified or is set to

0, then queue monitor processes are not created. The procedures in the

DBMS_AQADM package for starting and stopping queue monitor operations are

only valid if at least one queue monitor process was started with this parameter as

part of instance startup.

Multiple Consumers per Message
A single message can be consumed by multiple consumers.

Navigation
You have several options for selecting a message from a queue. You can select the

first message or, once you have selected a message and established a consistent-read

snapshot, you can retrieve the next message based on the current snapshot. You will

acquire a new consistent-read snapshot every time you select the first message from

the queue.

You can also retrieve a specific message using the message’s correlation identifier.

Priority and Ordering of Messages
You have three options for specifying the order in which messages are consumed: A

sort order that specifies which properties are used to order all message in a queue, a
Advanced Queuing 19-7

Oracle Advanced Queuing
priority that can be assigned to each message, and a sequence deviation that allows

you to position a message in relation to other messages.

If several consumers act on the same queue, a consumer will get the first message

that is available for immediate consumption. A message that is in the process of

being consumed by another consumer will be skipped.

Modes of Dequeue
A DEQUEUE request can either browse or remove a message. If a message is

browsed it remains available for further processing. If a message is removed, it is

not available any more for DEQUEUE requests. Depending on the queue properties

a removed message may be retained in the queue table.

Waiting for the Arrival of Messages
A DEQUEUE could be issued against an empty queue. You can specify if and for

how long the request is allowed to wait for the arrival of a message.

Retries with Delays
A message has to be consumed exactly once. If an attempt to dequeue a message

fails and the transaction is rolled back, the message will be made available for

reprocessing after a user-specified delay elapses. Reprocessing will be attempted up

to the specified limit.

Exception Queues
A message may not be consumed within the given constraints, that is, within the

window of execution or within the limits of the retries. If such a condition arises,

the message will be moved to a user-specified exception queue.

Visibility
ENQUEUE/DEQUEUE requests are normally part of a transaction that contains the

requests. This provides the desired transactional behavior. However, you can

specify that a request is a transaction by itself, making the result of that request

immediately visible to other transactions.

Message Grouping
Messages belonging to one queue can be grouped to form a set that can only be

consumed by one user at a time. This requires that the queue be created in a queue

table that is enabled for message grouping.
19-8 Oracle8i Concepts

Oracle Advanced Queuing
All messages belonging to a group have to be created in the same transaction and

all messages created in one transaction belong to the same group. This feature

allows you to segment complex messages into simple messages, for example,

messages directed to a queue containing invoices could be constructed as a group of

messages starting with the header message, followed by messages representing

details, followed by the trailer message.

Retention
You can specify that messages be retained after consumption. This allows you to

keep a history of relevant messages. The history can be used for tracking, data

warehouse, and data mining operations.

Message History
Oracle AQ stores information about the history of each message. The information

contains the ENQUEUE/DEQUEUE time and the identification of the transaction

that executed each request.

Tracking
If messages are retained they can be related to each other; for example, if a message

m2 is produced as a result of the consumption of message m1, m1 is related to m2.

This allows you to track sequences of related messages. These sequences represent

"event journals" which are often constructed by applications. Oracle AQ is designed

to let applications create event journals automatically.

Queue Level Access Control
With Oracle 8i, an owner of an 8.1 style queue can grant or revoke queue level

privileges on the queue. DBAs can grant or revoke new AQ system level privileges

to any database user. DBAs can also make any database user an AQ administrator.

Propagating Messages to Other Databases
Messages enqueued in one database can be propagated to queues on another

database. The datatypes of the source and destination queues must match each

other.

Message propagation enables applications to communicate with each other without

being connected to the same database or the same queue. Propagation uses

database links and Net8 between local or remote databases, both of which must

have Oracle AQ enabled.
Advanced Queuing 19-9

Oracle Advanced Queuing
You can schedule (or unschedule) message propagation and specify the start time,

the propagation window, and a date function for later propagation windows in

periodic schedules. The data dictionary view DBA_QUEUE_SCHEDULES describes

the current schedules for propagating messages.

The job queue background processes (SNPn) handle message propagation. To

enable propagation, you must start at least one job queue process with the

initialization parameter JOB_QUEUE_PROCESSES.

Propagation Statistics
Propagation statistics are available in the form of total/average number of

messages/bytes propagated in a schedule. This information can be used to tune the

performance of propagation of messages.

Non-Persistent Queues
AQ can deliver non-persistent messages asynchronously to subscribers. These

messages can be event-driven and do not persist beyond the failure of the system

(or instance). AQ supports persistent and non-persistent messages with a common

API.

Publish/Subscribe Support
A combination of features are introduced to allow a publish/subscribe style of

messaging between applications. These features include rule-based subscribers,

message propagation, the listen feature and notification capabilities. Triggers can be

used to publish system events and user events (see "Triggers on System Events and

User Events" on page 20-18).

Support for Oracle Parallel Server Environments
An application can specify the instance affinity for a queue-table. When AQ is used

with parallel server and multiple instances, this information is used to partition the

queue-tables between instances for queue-monitor scheduling. The queue-table is

monitored by the queue-monitors of the instance specified by the user. If an

instance affinity is not specified, the queue-tables will be arbitrarily partitioned

among the available instances. There can be ’pinging’ between the application

accessing the queue-table and the queue-monitor monitoring it. Specifying the

instance-affinity does not prevent the application from accessing the queue-table

and its queues from other instances.

This feature prevents ’pinging’ between queue monitors and AQ propagation jobs

running in different instances. In Oracle8i release 8.1.5 an instance affinity (primary
19-10 Oracle8i Concepts

Oracle Advanced Queuing
and secondary) can be specified for a queue table. When AQ is used with parallel

server and multiple instances, this information is used to partition the queue-tables

between instances for queue-monitor scheduling as well as for propagation. At any

time, the queue table is affiliated to one instance. In the absence of an explicitly

specified affinity, any available instance is made the owner of the queue table. If the

owner of the queue table dies, the secondary instance or some available instance

takes over the ownership for the queue table.

Queuing Statistics
Oracle AQ keeps statistics about the current state of the queuing system as well as

time-interval statistics in the dynamic table GV$AQ.

Statistics about the current state of the queuing system include the numbers of

ready, waiting, and expired messages.

One or more queue monitor processes must be started to keep interval statistics,

which include:

■ the number of messages in each state (ready, waiting, and expired)

■ the average wait time of waiting messages

■ the total wait time of waiting messages

Asynchronous Notification
OCI clients can use the new call OCISubscriptionRegister to register a callback for

message notification. The client issues a registration call which specifies a

subscription name and a callback. When messages for the subscription are received,

the callback is invoked. The callback may then issue an explicit dequeue to retrieve

the message.

Listen Capability (Wait for Messages on Multiple Queues)
The listen call is a blocking call that can be used to wait for messages on multiple

queues. It can be used by a gateway application to monitor a set of queues. An

application can also use it to wait for messages on a list of subscriptions. If the listen

returns successfully, a dequeue must be used to retrieve the message.

Correlation Identifier
You can assign an identifier to each message. This identifier can be used to retrieve

specific messages.
Advanced Queuing 19-11

Oracle Advanced Queuing
Import/Export
The import/export of queues constitutes the import/export of the underlying

queue tables and related dictionary tables. Import and export of queues can only be

done at queue table granularity.

When a queue table is exported, both the table definition information and the queue

data are exported. When a queue table is imported, export action procedures

maintain the queue dictionary. Because the queue table data is also exported, the

user is responsible for maintaining application-level data integrity when queue

table data are being transported.

For every queue table that supports multiple recipients, there is an index-organized

table that contains important queue metadata. This metadata is essential to the

operations of the queue, so you must export and import this index-organized table

as well as the queue table for the queues in this table to work after import.

When the schema containing the queue table is exported, the index-organized table

is also automatically exported. The behavior is similar at import time. Because the

metadata table contains rowids of some rows in the queue table, import issues a

note about the rowids being obsolete when importing the metadata table. This

message can be ignored, as the queuing system automatically corrects the obsolete

rowids as a part of the import process. However, if another problem is encountered

while doing the import (such as running out of rollback segment space), the

problem should be corrected and the import should be rerun.

Additional Information: For detailed information about Oracle

AQ, see Oracle8i Application Developer’s Guide - Advanced Queuing.
19-12 Oracle8i Concepts

20

Triggers

You may fire when you are ready, Gridley.

George Dewey: at the battle of Manila Bay

This chapter discusses triggers, which are procedures written in PL/SQL, Java, or C

that execute ("fire") implicitly whenever a table or view is modified, or when some

user actions or database system actions occur. You can write triggers that fire

whenever one of the following operations occurs: DML statements on a particular

schema object, DDL statements issued within a schema or database, user logon or

logoff events, server errors, database startup, or instance shutdown.

This chapter includes:

■ An Introduction to Triggers

■ Parts of a Trigger

■ Types of Triggers

■ Trigger Execution
Triggers 20-1

An Introduction to Triggers
An Introduction to Triggers
Oracle allows you to define procedures called triggers that execute implicitly when

an INSERT, UPDATE, or DELETE statement is issued against the associated table

(or, in some cases, against a view) or when database system actions occur. These

procedures can be written in PL/SQL or Java and stored in the database, or they

can be written as C callouts.

Triggers are similar to stored procedures, which are discussed in Chapter 18,

"Procedures and Packages". A trigger stored in the database can include SQL and

PL/SQL or Java statements to execute as a unit and can invoke stored procedures.

However, procedures and triggers differ in the way that they are invoked. A

procedure is explicitly executed by a user, application, or trigger. Triggers (one or

more) are implicitly fired (executed) by Oracle when a triggering event occurs, no

matter which user is connected or which application is being used.

Figure 20–1 shows a database application with some SQL statements that implicitly

fire several triggers stored in the database. Notice that the database stores triggers

separately from their associated tables.

Figure 20–1 Triggers

Applications

Database

Update Trigger

BEGIN
. . .

Insert Trigger

BEGIN
. . .

Delete Trigger

BEGIN
. . .

Table t

UPDATE t SET . . . ;

INSERT INTO t . . . ;

DELETE FROM t . . . ;
20-2 Oracle8i Concepts

An Introduction to Triggers
A trigger can also call out to a C procedure, which is useful for computationally

intensive operations.

The events which fire a trigger can be DML statements that modify data in a table

(INSERT, UPDATE, or DELETE), DDL statements, system events such as startup,

shutdown, and error messages, or user events such as logon and logoff. See

"Triggering Event or Statement" on page 20-6 for more information.

How Triggers Are Used
Triggers can supplement the standard capabilities of Oracle to provide a highly

customized database management system. For example, a trigger can restrict DML

operations against a table to those issued during regular business hours. A trigger

could also restrict DML operations to occur only at certain times during weekdays.

Other uses for triggers are to

■ automatically generate derived column values

■ prevent invalid transactions

■ enforce complex security authorizations

■ enforce referential integrity across nodes in a distributed database

■ enforce complex business rules

■ provide transparent event logging

■ provide sophisticated auditing

■ maintain synchronous table replicates

■ gather statistics on table access

■ modify table data when DML statements are issued against views

■ publish information about database events, user events, and SQL statements to

subscribing applications

Note: Oracle Forms can define, store, and execute triggers of a

different sort. However, do not confuse Oracle Forms triggers with

the triggers discussed in this chapter.

Additional Information: The Oracle8i Application Developer’s Guide -
Fundamentals includes examples of many of these trigger uses.
Triggers 20-3

An Introduction to Triggers
Some Cautionary Notes about Triggers
Although triggers are useful for customizing a database, you should use them only

when necessary. Excessive use of triggers can result in complex interdependencies,

which may be difficult to maintain in a large application. For example, when a

trigger fires, a SQL statement within its trigger action potentially can fire other

triggers, resulting in cascading triggers. Figure 20–2 illustrates cascading triggers.

Figure 20–2 Cascading Triggers

etc.

Fires the
INSERT_T2
Trigger

Fires the
UPDATE_T1
Trigger

SQL Statement

UPDATE t1 SET ...;

INSERT_T2 Trigger

BEFORE INSERT ON t2
FOR EACH ROW
BEGIN

.

.
INSERT INTO ... VALUES (...);
.
.

END;

UPDATE_T1 Trigger

BEFORE UPDATE ON t1
FOR EACH ROW
BEGIN
 .
 .
 INSERT INTO t2 VALUES (...);
 .
 .
END;
20-4 Oracle8i Concepts

Parts of a Trigger
Triggers versus Declarative Integrity Constraints
You can use both triggers and integrity constraints to define and enforce any type of

integrity rule. However, Oracle Corporation strongly recommends that you use

triggers to constrain data input only in the following situations:

■ to enforce referential integrity when child and parent tables are on different

nodes of a distributed database

■ to enforce complex business rules not definable using integrity constraints

■ when a required referential integrity rule cannot be enforced using the

following integrity constraints:

– NOT NULL, UNIQUE key

– PRIMARY KEY

– FOREIGN KEY

– CHECK

– DELETE CASCADE

– DELETE SET NULL

For more information about integrity constraints, see "How Oracle Enforces Data

Integrity" on page 28-4.

Parts of a Trigger
A trigger has three basic parts:

■ a triggering event or statement

■ a trigger restriction

■ a trigger action

Figure 20–3 represents each of these parts of a trigger and is not meant to show

exact syntax. The sections that follow explain each part of a trigger in greater detail.
Triggers 20-5

Parts of a Trigger
Figure 20–3 The REORDER Trigger

Triggering Event or Statement
A triggering event or statement is the SQL statement, database event, or user event

that causes a trigger to be fired. A triggering event can be one or more of the

following:

■ an INSERT, UPDATE, or DELETE statement on a specific table (or view, in

some cases)

■ a CREATE, ALTER, or DROP statement on any schema object

■ a database startup or instance shutdown

■ a specific error message or any error message

■ a user logon or logoff

REORDER Trigger

Triggering Statement

Trigger Restriction

AFTER UPDATE OF parts_on_hand ON inventory

WHEN (new.parts_on_hand < new.reorder_point)

FOR EACH ROW
DECLARE
 NUMBER X;
BEGIN
 SELECT COUNT(*) INTO X
 FROM pending_orders
 WHERE part_no=:new.part_no;

IF x = 0
THEN
 INSET INTO pending_orders
 VALUES (new.part_no, new.reorder_quantity, sysdate);
 END IF;
END;

/* a dummy variable for counting */

/* query to find out if part has already been */
/* reordered–if yes, x=1, if no, x=0 */

/* part has not been reordered yet, so reorder */

/* part has already been reordered */

Triggered Action
20-6 Oracle8i Concepts

Parts of a Trigger
For example, in Figure 20–3, the triggering statement is

. . . UPDATE OF parts_on_hand ON inventory . . .

which means: when the PARTS_ON_HAND column of a row in the INVENTORY

table is updated, fire the trigger. Note that when the triggering event is an UPDATE

statement, you can include a column list to identify which columns must be

updated to fire the trigger. You cannot specify a column list for INSERT and

DELETE statements, because they affect entire rows of information.

A triggering event can specify multiple SQL statements, as in

. . . INSERT OR UPDATE OR DELETE OF inventory . . .

which means: when an INSERT, UPDATE, or DELETE statement is issued against

the INVENTORY table, fire the trigger. When multiple types of SQL statements can

fire a trigger, you can use conditional predicates to detect the type of triggering

statement. In this way, you can create a single trigger that executes different code

based on the type of statement that fires the trigger.

Trigger Restriction
A trigger restriction specifies a Boolean (logical) expression that must be TRUE for

the trigger to fire. The trigger action is not executed if the trigger restriction

evaluates to FALSE or UNKNOWN. In the example, the trigger restriction is

new.parts_on_hand < new.reorder_point

Trigger Action
A trigger action is the procedure (PL/SQL block, Java program, or C callout) that

contains the SQL statements and code to be executed when a triggering statement is

issued and the trigger restriction evaluates to TRUE.

Like stored procedures, a trigger action can contain SQL and PL/SQL or Java

statements, define PL/SQL language constructs (variables, constants, cursors,

exceptions, and so on) or Java language constructs, and call stored procedures.

Additionally, for row triggers (described in the next section), the statements in a

trigger action have access to column values (new and old) of the current row being

processed by the trigger. Correlation names provide access to the old and new

values for each column.
Triggers 20-7

Types of Triggers
Types of Triggers
This section describes the different types of triggers:

■ Row Triggers and Statement Triggers

■ BEFORE and AFTER Triggers

■ INSTEAD-OF Triggers

■ Triggers on System Events and User Events

Row Triggers and Statement Triggers
When you define a trigger, you can specify the number of times the trigger action is

to be executed: once for every row affected by the triggering statement (such as

might be fired by an UPDATE statement that updates many rows), or once for the

triggering statement, no matter how many rows it affects.

Row Triggers
A row trigger is fired each time the table is affected by the triggering statement. For

example, if an UPDATE statement updates multiple rows of a table, a row trigger is

fired once for each row affected by the UPDATE statement. If a triggering statement

affects no rows, a row trigger is not executed at all.

Row triggers are useful if the code in the trigger action depends on data provided

by the triggering statement or rows that are affected. For example, Figure 20–3

illustrates a row trigger that uses the values of each row affected by the triggering

statement.

Statement Triggers
A statement trigger is fired once on behalf of the triggering statement, regardless of

the number of rows in the table that the triggering statement affects (even if no rows

are affected). For example, if a DELETE statement deletes several rows from a table,

a statement-level DELETE trigger is fired only once, regardless of how many rows

are deleted from the table.

Statement triggers are useful if the code in the trigger action does not depend on the

data provided by the triggering statement or the rows affected. For example, if a

trigger makes a complex security check on the current time or user, or if a trigger

generates a single audit record based on the type of triggering statement, a

statement trigger is used.
20-8 Oracle8i Concepts

Types of Triggers
BEFORE and AFTER Triggers
When defining a trigger, you can specify the trigger timing—whether the trigger

action is to be executed before or after the triggering statement. BEFORE and

AFTER apply to both statement and row triggers. (Another type of trigger is

described in "INSTEAD-OF Triggers" on page 20-12.)

BEFORE and AFTER triggers fired by DML statements can be defined only on

tables, not on views. However, triggers on the base table(s) of a view are fired if an

INSERT, UPDATE, or DELETE statement is issued against the view. BEFORE and

AFTER triggers fired by DDL statements can be defined only on the database or a

schema, not on particular tables. "Triggers on System Events and User Events" on

page 20-18 describes how BEFORE and AFTER triggers can be used to publish

information about DML and DDL statements to subscribers.

BEFORE Triggers
BEFORE triggers execute the trigger action before the triggering statement is

executed. This type of trigger is commonly used in the following situations:

■ When the trigger action should determine whether the triggering statement

should be allowed to complete. Using a BEFORE trigger for this purpose, you

can eliminate unnecessary processing of the triggering statement and its

eventual rollback in cases where an exception is raised in the trigger action.

■ To derive specific column values before completing a triggering INSERT or

UPDATE statement.

AFTER Triggers
AFTER triggers execute the trigger action after the triggering statement is executed.

AFTER triggers are used when you want the triggering statement to complete

before executing the trigger action.

Trigger Type Combinations
Using the options listed above, you can create four types of row and statement

triggers:

■ BEFORE statement trigger

Before executing the triggering statement, the trigger action is executed.

■ BEFORE row trigger

Before modifying each row affected by the triggering statement and before
Triggers 20-9

Types of Triggers
checking appropriate integrity constraints, the trigger action is executed

provided that the trigger restriction was not violated.

■ AFTER row trigger

After modifying each row affected by the triggering statement and possibly

applying appropriate integrity constraints, the trigger action is executed for the

current row provided the trigger restriction was not violated. Unlike BEFORE

row triggers, AFTER row triggers lock rows.

■ AFTER statement trigger

After executing the triggering statement and applying any deferred integrity

constraints, the trigger action is executed.

You can have multiple triggers of the same type for the same statement for any

given table. For example you may have two BEFORE statement triggers for

UPDATE statements on the EMP table. Multiple triggers of the same type permit

modular installation of applications that have triggers on the same tables. Also,

Oracle snapshot logs use AFTER row triggers, so you can design your own AFTER

row trigger in addition to the Oracle-defined AFTER row trigger.

You can create as many triggers of the preceding different types as you need for

each type of DML statement (INSERT, UPDATE, or DELETE).

For example, suppose you have a table, SAL, and you want to know when the table

is being accessed and the types of queries being issued. The example below contains

a sample package and trigger that tracks this information by hour and type of

action (for example, UPDATE, DELETE, or INSERT) on table SAL. A global session

variable, STAT.ROWCNT, is initialized to zero by a BEFORE statement trigger. Then

it is increased each time the row trigger is executed. Finally the statistical

information is saved in the table STAT_TAB by the AFTER statement trigger.

Sample Package and Trigger for SAL Table
DROP TABLE stat_tab;
CREATE TABLE stat_tab(utype CHAR(8),
 rowcnt INTEGER, uhour INTEGER);

CREATE OR REPLACE PACKAGE stat IS
 rowcnt INTEGER;
END;
/

20-10 Oracle8i Concepts

Types of Triggers
CREATE TRIGGER bt BEFORE UPDATE OR DELETE OR INSERT ON sal
BEGIN
 stat.rowcnt := 0;
END;
/

CREATE TRIGGER rt BEFORE UPDATE OR DELETE OR INSERT ON sal
FOR EACH ROW BEGIN
 stat.rowcnt := stat.rowcnt + 1;
END;
/

CREATE TRIGGER at AFTER UPDATE OR DELETE OR INSERT ON sal
DECLARE
 typ CHAR(8);
 hour NUMBER;
BEGIN
 IF updating
 THEN typ := ’update’; END IF;
 IF deleting THEN typ := ’delete’; END IF;
 IF inserting THEN typ := ’insert’; END IF;

 hour := TRUNC((SYSDATE - TRUNC(SYSDATE)) * 24);
 UPDATE stat_tab
 SET rowcnt = rowcnt + stat.rowcnt
 WHERE utype = typ
 AND uhour = hour;
 IF SQL%ROWCOUNT = 0 THEN
 INSERT INTO stat_tab VALUES (typ, stat.rowcnt, hour);
 END IF;

EXCEPTION
 WHEN dup_val_on_index THEN
 UPDATE stat_tab
 SET rowcnt = rowcnt + stat.rowcnt
 WHERE utype = typ
 AND uhour = hour;
END;
/

Triggers 20-11

Types of Triggers
INSTEAD-OF Triggers

INSTEAD-OF triggers provide a transparent way of modifying views that cannot be

modified directly through SQL DML statements (INSERT, UPDATE, and DELETE).

These triggers are called INSTEAD-OF triggers because, unlike other types of

triggers, Oracle fires the trigger instead of executing the triggering statement.

You can write normal INSERT, UPDATE, and DELETE statements against the view

and the INSTEAD-OF trigger is fired to update the underlying tables appropriately.

INSTEAD-OF triggers are activated for each row of the view that gets modified.

Modifying Views
Modifying views has inherent problems of ambiguity.

■ Deleting a row in a view could either mean deleting it from the base table or

updating some column values so that it will no longer be selected by the view.

■ Inserting a row in a view could either mean inserting a new row into the base

table or updating an existing row so that it will be projected by the view.

■ Updating a column in a view that involves joins might change the semantics of

other columns that are not projected by the view.

Object views present additional problems (see Chapter 15, "Object Views"). For

example, a key use of object views is to represent master/detail relationships. This

inevitably involves joins, but modifying joins is inherently ambiguous.

As a result of these ambiguities, there are many restrictions on which views are

modifiable (see the next section). An INSTEAD-OF trigger can be used on object

views as well as relational views that are not otherwise modifiable.

Even if the view is inherently modifiable, you might want to perform validations on

the values being inserted, updated or deleted. INSTEAD-OF triggers can also be

used in this case. Here the trigger code would perform the validation on the rows

being modified and if valid, propagate the changes to the underlying tables.

Attention: INSTEAD-OF triggers are available only if you have

purchased the Oracle8i Enterprise Edition. They can be used with

relational views and object views. See Getting to Know Oracle8i for

information about the features available in Oracle8i Enterprise

Edition.
20-12 Oracle8i Concepts

Types of Triggers
INSTEAD-OF triggers also enable you to modify object view instances on the

client-side through OCI. To modify an object materialized by an object view in the

client-side object cache and flush it back to the persistent store, you must specify

INSTEAD-OF triggers, unless the object view is inherently modifiable. However, it

is not necessary to define these triggers for just pinning and reading the view object

in the object cache.

Views That Are Not Modifiable
A view is inherently modifiable if it can be inserted, updated, or deleted without

using INSTEAD-OF triggers and if it conforms to the restrictions listed below. If the

view query contains any of the following constructs, the view is not inherently

modifiable and you therefore cannot perform inserts, updates, or deletes on the

view:

■ set operators

■ aggregate functions

■ GROUP BY, CONNECT BY, or START WITH clauses

■ the DISTINCT operator

■ joins (however, a subset of join views are updatable—see "Updatable Join

Views" on page 10-15)

If a view contains pseudocolumns or expressions, you can only update the view

with an UPDATE statement that does not refer to any of the pseudocolumns or

expressions.

Example of an INSTEAD OF Trigger
The following example shows an INSTEAD OF trigger for updating rows in the

manager_info view, which lists all the departments and their managers.

Let dept be a relational table containing a list of departments,

CREATE TABLE dept (
 deptno NUMBER PRIMARY KEY,
 deptname VARCHAR2(20),
 manager_num NUMBER
);

Additional Information: See Oracle Call Interface Programmer’s
Guide for more information.
Triggers 20-13

Types of Triggers
Let empbe a relational table containing the list of employees and the departments in

which they work.

CREATE TABLE emp (
 empno NUMBER PRIMARY KEY,
 empname VARCHAR2(20),
 deptno NUMBER REFERENCES dept(deptno),
 startdate DATE
);
ALTER TABLE dept ADD (FOREIGN KEY(manager_num) REFERENCES emp(empno));

Create the manager_info view that lists all the managers for each department:

CREATE VIEW manager_info AS
 SELECT d.deptno, d.deptname, e.empno, e.empname
 FROM emp e, dept d
 WHERE e.empno = d.manager_num;

Now, define an INSTEAD-OF trigger to handle the inserts on the view. An insert

into the manager_info view can be translated into an update to the

manager_num column of the dept table.

In the trigger, you can also enforce the constraint that there must be at least one

employee working in the department for a person to be a manager of that

department.

CREATE TRIGGER manager_info_insert
 INSTEAD OF INSERT ON manager_info
 REFERENCING NEW AS n -- new manager information
 FOR EACH ROW
 DECLARE
 empCount NUMBER;
 BEGIN

 /* First check to make sure that the number of employees
 * in the department is greater than one */
 SELECT COUNT(*) INTO empCount
 FROM emp e
 WHERE e.deptno = :n.deptno;

 /* If there are enough employees then make him or her the manager */
 IF empCount >= 1 THEN

 UPDATE dept d
 SET manager_num = :n.empno
 WHERE d.deptno = :n.deptno;
20-14 Oracle8i Concepts

Types of Triggers
 END IF;
 END;
 /

Any inserts to the manager_info view, such as:

INSERT INTO manager_info VALUES (200,’Sports’,1002,’Jack’);

will fire the manager_info_insert trigger and update the underlying tables.

Similar triggers can specify appropriate actions for INSERT and DELETE on the

view.

Usage Notes
The INSTEAD OF option to the CREATE TRIGGER statement can only be used for

triggers created over views. The BEFORE and AFTER options cannot be used for

triggers created over views.

The CHECK option for views is not enforced when inserts or updates to the view

are done using INSTEAD OF triggers. The INSTEAD OF trigger body must enforce

the check.

INSTEAD-OF Triggers on Nested Tables
You cannot modify the elements of a nested table column in a view directly with the

TABLE clause. However, you can do so by defining an INSTEAD OF trigger on the

nested table column of the view. The triggers on the nested tables fire if a nested

table element is updated, inserted, or deleted and handle the actual modifications to

the underlying tables.

Consider the department-employee example again. Let the department view

contain the list of departments and the set of employees in each department. The

following example shows how to modify the elements of the nested table of

employee objects in the department view using INSTEAD-OF triggers.

/* Create an employee type */
CREATE TYPE emp_t AS OBJECT
(
 empno NUMBER,
 empname VARCHAR2(20),

Additional Information: See Oracle8i Application Developer’s Guide -
Fundamentals and the CREATE TRIGGER command in Oracle8i SQL
Reference for more information about INSTEAD-OF triggers.
Triggers 20-15

Types of Triggers
 days_worked NUMBER
);
/
/* Create a nested table type of employees */
CREATE TYPE emplist_t AS TABLE OF emp_t;
/
/* Now, create the department type */
CREATE TYPE dept_t AS OBJECT
(
 deptno NUMBER,
 deptname VARCHAR2(20),
 emplist emplist_t
);
/
/* The dept_view can now be created based on the dept (department) and emp
 * (employee) tables. */
CREATE VIEW dept_view OF dept_t WITH OBJECT OID(deptno)
 AS SELECT d.deptno, d.deptname, -- department number and name
 CAST (MULTISET (
 SELECT e.empno, e.empname, (SYSDATE - e.startdate)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS emplist_t) -- emplist - nested table of employees
 FROM dept d;

To be able to insert into the nested table emplist in the view using the TABLE

syntax:

INSERT INTO TABLE
 (SELECT d.emplist FROM dept_view d WHERE d.deptno = 10)
 VALUES (10,’Harry Mart’,334);

you can define an INSTEAD-OF trigger on the nested table emplist to handle the

insert, such as:

CREATE TRIGGER dept_empinstr INSTEAD OF INSERT ON
 NESTED TABLE emplist OF dept_view FOR EACH ROW
BEGIN
 INSERT INTO emp VALUES(:NEW.empno, :NEW.empname,
 :PARENT.deptno, SYSDATE - :NEW.days_worked);
END;
/

Similarly you can define triggers to handle updates and deletes on the nested table

elements.
20-16 Oracle8i Concepts

Types of Triggers
Accessing the Attributes of the Parent Row Inside a Nested Table Trigger In regular triggers,

the current row’s values can be accessed using the NEW and OLD qualifiers. For

triggers on nested table columns of views, these qualifiers refer to the attributes of

the nested table element being modified. In order to access the values of the parent

row containing this nested table column, you can use the PARENT qualifier.

This qualifier can be used only inside these nested table triggers. The parent row’s

values obtained using this PARENT qualifier cannot be modified (that is, they are

read-only).

Consider the dept_empinstr trigger example shown above. The NEW qualifier

refers to the row of the nested table being inserted (that is, it contains empno,
empname and days_worked) and does not include the department number

(deptno) where the employee works. But you need to insert the department

number into the employee table inside the trigger. This deptno value can be

obtained from the parent row that contains the list of employees, using the PARENT

qualifier.

Firing of Nested Table and View Triggers As explained before, if a nested table column in

a view has an INSTEAD-OF trigger defined over it, then when an element of that

nested table is inserted, updated, or deleted, the trigger is fired to do the actual

modification.

The view containing the nested table column need not have any INSTEAD-OF

triggers defined over it for this to work. Any triggers defined on the view will not

fire for any modifications to the nested table elements.

Conversely, a statement that modifies a row in the view would only fire the triggers

defined on the view and not those on the nested table columns of that view. For

instance if the emplist nested table column is updated through the dept_view
as in:

UPDATE dept_view SET emplist = emplist_t(emp_t(1001,’John’,234));

it will fire the INSTEAD-OF update triggers defined over the dept_view , if any,

but not the dept_empinstr nested table trigger.

Additional Information: See Oracle8i Application Developer’s Guide -
Fundamentals for more information about INSTEAD OF triggers on

nested tables.
Triggers 20-17

Types of Triggers
Triggers on System Events and User Events
You can use triggers to publish information about database events to subscribers.

Applications can subscribe to database events just as they subscribe to messages

from other applications. These database events can include:

■ system events

– database startup and shutdown

– server error message events

■ user events

– user logon and logoff

– DDL statements (CREATE, ALTER, and DROP)

– DML statements (INSERT, DELETE, and UPDATE)

Triggers on system events can be defined at the database level or schema level. For

example, a database shutdown trigger is defined at the database level:

CREATE TRIGGER register_shutdown
 ON DATABASE
 SHUTDOWN
 BEGIN
 ...
 DBMS_AQ.ENQUEUE(...);
 ...
 END;

Triggers on DDL statements or logon/logoff events can also be defined at the

database level or schema level. Triggers on DML statements can be defined on a

table or view. A trigger defined at the database level fires for all users, and a trigger

defined at the schema or table level fires only when the triggering event involves

that schema or table.

Event Publication
Event publication uses the publish/subscribe mechanism of Oracle Advanced

Queuing (see Chapter 19, "Advanced Queuing"). A queue serves as a message

repository for subjects of interest to various subscribers. Triggers use the DBMS_AQ

package to enqueue a message when specific system or user events occur.
20-18 Oracle8i Concepts

Types of Triggers
Event Attributes
Each event allows the use of attributes within the trigger text. For example, the

database startup and shutdown triggers have attributes for the instance number

and the database name, and the logon and logoff triggers have attributes for the

username. You can specify a function with the same name as an attribute when you

create a trigger if you want to publish that attribute when the event occurs. The

attribute’s value is then passed to the function or payload when the trigger fires. For

triggers on DML statements, this is done with the :NEW and :OLD column values.

System Events
System events that can fire triggers are related to instance startup and shutdown

and error messages. Triggers created on startup and shutdown events have to be

associated with the database; triggers created on error events can be associated with

the database or with a schema.

■ STARTUP triggers fire when the database is opened by an instance. Their

attributes include the system event, instance number, and database name.

■ SHUTDOWN triggers fire just before the server starts shutting down an

instance. You can use these triggers to make subscribing applications shut

down completely when the database shuts down. (For abnormal instance

shutdown these triggers may not be fired.) The attributes of SHUTDOWN

triggers include the system event, instance number, and database name.

■ SERVERERROR triggers fire when a specified error occurs, or when any error

occurs if no error number is specified. Their attributes include the system event

and error number.

User Events
User events that can fire triggers are related to user logon and logoff, DDL

statements, and DML statements.

Triggers on LOGON and LOGOFF Events LOGON and LOGOFF triggers can be

associated with the database or with a schema. Their attributes include the system

event and username, and they can specify simple conditions on USERID and

USERNAME.

■ LOGON triggers fire after a successful logon of a user.

■ LOGOFF triggers fire at the start of a user logoff.
Triggers 20-19

Types of Triggers
Triggers on DDL Statements DDL triggers can be associated with the database or with

a schema. Their attributes include the system event, the type of schema object, and

its name. They can specify simple conditions on the type and name of the schema

object, as well as functions like USERID and USERNAME.

■ BEFORE CREATE and AFTER CREATE triggers fire when a schema object is

created in the database or schema.

■ BEFORE ALTER and AFTER ALTER triggers fire when a schema object is

altered in the database or schema.

■ BEFORE DROP and AFTER DROP triggers fire when a schema object is

dropped from the database or schema.

Triggers on DML Statements DML triggers for event publication are associated with a

table. They can be either BEFORE or AFTER triggers that fire for each row on which

the specified DML operation occurs (see "Row Triggers" on page 20-8 and "BEFORE

and AFTER Triggers" on page 20-9). You cannot use INSTEAD OF triggers on views

to publish events related to DML statements—instead, you can publish events using

BEFORE or AFTER triggers for the DML operations on a view’s underlying tables

that are caused by INSTEAD OF triggers.

The attributes of DML triggers for event publication include the system event and

the columns defined by the user in the SELECT list. They can specify simple

conditions on the type and name of the schema object, as well as functions (such as

UID, USER, USERENV, and SYSDATE), pseudocolumns, and columns. The

columns may be prefixed by :OLD and :NEW for old and new values.

■ BEFORE INSERT and AFTER INSERT triggers fire for each row inserted into

the table.

■ BEFORE UPDATE and AFTER UPDATE triggers fire for each row updated in

the table.

■ BEFORE DELETE and AFTER DELETE triggers fire for each row deleted from

the table.

Additional Information: The Oracle8i Application Developer’s Guide -
Fundamentals provides further information about event publication

using triggers on system events and user events.
20-20 Oracle8i Concepts

Trigger Execution
Trigger Execution
A trigger can be in either of two distinct modes:

For enabled triggers, Oracle automatically

■ executes triggers of each type in a planned firing sequence when more than one

trigger is fired by a single SQL statement

■ performs integrity constraint checking at a set point in time with respect to the

different types of triggers and guarantees that triggers cannot compromise

integrity constraints

■ provides read-consistent views for queries and constraints

■ manages the dependencies among triggers and schema objects referenced in the

code of the trigger action

■ uses two-phase commit if a trigger updates remote tables in a distributed

database

■ fires multiple triggers in an unspecified order, if more than one trigger of the

same type exists for a given statement

The Execution Model for Triggers and Integrity Constraint Checking
A single SQL statement can potentially fire up to four types of triggers: BEFORE

row triggers, BEFORE statement triggers, AFTER row triggers, and AFTER

statement triggers. A triggering statement or a statement within a trigger can cause

one or more integrity constraints to be checked. Also, triggers can contain

statements that cause other triggers to fire (cascading triggers).

Oracle uses the following execution model to maintain the proper firing sequence of

multiple triggers and constraint checking:

1. Execute all BEFORE statement triggers that apply to the statement.

2. Loop for each row affected by the SQL statement.

enabled An enabled trigger executes its trigger action if a

triggering statement is issued and the trigger restriction

(if any) evaluates to TRUE.

disabled A disabled trigger does not execute its trigger action,

even if a triggering statement is issued and the trigger

restriction (if any) would evaluate to TRUE.
Triggers 20-21

Trigger Execution
a. Execute all BEFORE row triggers that apply to the statement.

b. Lock and change row, and perform integrity constraint checking. (The lock

is not released until the transaction is committed.)

c. Execute all AFTER row triggers that apply to the statement.

3. Complete deferred integrity constraint checking.

4. Execute all AFTER statement triggers that apply to the statement.

The definition of the execution model is recursive. For example, a given SQL

statement can cause a BEFORE row trigger to be fired and an integrity constraint to

be checked. That BEFORE row trigger, in turn, might perform an update that causes

an integrity constraint to be checked and an AFTER statement trigger to be fired.

The AFTER statement trigger causes an integrity constraint to be checked. In this

case, the execution model executes the steps recursively, as follows:

1. Original SQL statement issued.

2. BEFORE row triggers fired.

3. AFTER statement triggers fired by UPDATE in BEFORE row trigger.

4. Statements of AFTER statement triggers executed.

5. Integrity constraint checked on tables changed by AFTER statement

triggers.

6. Statements of BEFORE row triggers executed.

7. Integrity constraint checked on tables changed by BEFORE row triggers.

8. SQL statement executed.

9. Integrity constraint from SQL statement checked.

There are two exceptions to this recursion:

■ When a triggering statement modifies one table in a referential constraint

(either the primary key or foreign key table), and a triggered statement modifies

the other, only the triggering statement will check the integrity constraint. This

allows row triggers to enhance referential integrity.

■ Statement triggers fired due to DELETE CASCADE and DELETE SET NULL

are fired before and after the user DELETE statement, not before and after the

individual enforcement statements. This prevents those statement triggers from

encountering mutating errors.
20-22 Oracle8i Concepts

Trigger Execution
An important property of the execution model is that all actions and checks done as

a result of a SQL statement must succeed. If an exception is raised within a trigger,

and the exception is not explicitly handled, all actions performed as a result of the

original SQL statement, including the actions performed by fired triggers, are rolled

back. Thus, integrity constraints cannot be compromised by triggers. The execution

model takes into account integrity constraints and disallows triggers that violate

declarative integrity constraints.

For example, in the previously outlined scenario, suppose that Steps 1 through 8

succeed; however, in Step 9 the integrity constraint is violated. As a result of this

violation, all changes made by the SQL statement (in Step 8), the fired BEFORE row

trigger (in Step 6), and the fired AFTER statement trigger (in Step 4) are rolled back.

Data Access for Triggers
When a trigger is fired, the tables referenced in the trigger action might be currently

undergoing changes by SQL statements in other users’ transactions. In all cases, the

SQL statements executed within triggers follow the common rules used for

standalone SQL statements. In particular, if an uncommitted transaction has

modified values that a trigger being fired either needs to read (query) or write

(update), the SQL statements in the body of the trigger being fired use the following

guidelines:

■ Queries see the current read-consistent snapshot of referenced tables and any

data changed within the same transaction.

■ Updates wait for existing data locks to be released before proceeding.

The following examples illustrate these points.

Example: Assume that the SALARY_CHECK trigger (body) includes the following

SELECT statement:

SELECT minsal, maxsal INTO minsal, maxsal
 FROM salgrade
 WHERE job_classification = :new.job_classification;

Note: Although triggers of different types are fired in a specific

order, triggers of the same type for the same statement are not

guaranteed to fire in any specific order. For example, all BEFORE

row triggers for a single UPDATE statement may not always fire in

the same order. Design your applications so they do not rely on the

firing order of multiple triggers of the same type.
Triggers 20-23

Trigger Execution
For this example, assume that transaction T1 includes an update to the MAXSAL

column of the SALGRADE table. At this point, the SALARY_CHECK trigger is fired

by a statement in transaction T2. The SELECT statement within the fired trigger

(originating from T2) does not see the update by the uncommitted transaction T1,

and the query in the trigger returns the old MAXSAL value as of the read-consistent

point for transaction T2.

Example: Assume that the TOTAL_SALARY trigger maintains a derived column

that stores the total salary of all members in a department:

CREATE TRIGGER total_salary
AFTER DELETE OR INSERT OR UPDATE OF deptno, sal ON emp
 FOR EACH ROW BEGIN
 /* assume that DEPTNO and SAL are non-null fields */
 IF DELETING OR (UPDATING AND :old.deptno != :new.deptno)
 THEN UPDATE dept
 SET total_sal = total_sal - :old.sal
 WHERE deptno = :old.deptno;
 END IF;
 IF INSERTING OR (UPDATING AND :old.deptno != :new.deptno)
 THEN UPDATE dept
 SET total_sal = total_sal + :new.sal
 WHERE deptno = :new.deptno;
 END IF;
 IF (UPDATING AND :old.deptno = :new.deptno AND
 :old.sal != :new.sal)
 THEN UPDATE dept
 SET total_sal = total_sal - :old.sal + :new.sal
 WHERE deptno = :new.deptno;
 END IF;
 END;

For this example, suppose that one user’s uncommitted transaction includes an

update to the TOTAL_SAL column of a row in the DEPT table. At this point, the

TOTAL_SALARY trigger is fired by a second user’s SQL statement. Because the

uncommitted transaction of the first user contains an update to a pertinent value in

the TOTAL_SAL column (in other words, a row lock is being held), the updates

performed by the TOTAL_SALARY trigger are not executed until the transaction

holding the row lock is committed or rolled back. Therefore, the second user waits

until the commit or rollback point of the first user’s transaction.
20-24 Oracle8i Concepts

Trigger Execution
Storage of PL/SQL Triggers
Oracle stores PL/SQL triggers in their compiled form, just like stored procedures.

When a CREATE TRIGGER statement commits, the compiled PL/SQL code, called

P code (for pseudocode), is stored in the database and the source code of the trigger

is flushed from the shared pool.

For more information about compiling and storing PL/SQL code, see "How Oracle

Stores Procedures and Packages" on page 18-17.

Execution of Triggers
Oracle executes a trigger internally using the same steps used for procedure

execution. The only subtle difference is that a user has the right to fire a trigger if he

or she has the privilege to execute the triggering statement. Other than this, triggers

are validated and executed the same way as stored procedures.

For more information, see "How Oracle Executes Procedures and Packages" on

page 18-18.

Dependency Maintenance for Triggers
Like procedures, triggers are dependent on referenced objects. Oracle automatically

manages the dependencies of a trigger on the schema objects referenced in its

trigger action. The dependency issues for triggers are the same as those for stored

procedures. Triggers are treated like stored procedures; they are inserted into the

data dictionary.

For more information, see Chapter 21, "Oracle Dependency Management".
Triggers 20-25

Trigger Execution
20-26 Oracle8i Concepts

Oracle Dependency Man
21

Oracle Dependency Management

Whoever you are—I have always depended on the kindness of strangers.

Tennessee Williams: A Streetcar Named Desire

The definitions of some objects, including views and procedures, reference other

objects, such as tables. As a result, the objects being defined are dependent on the

objects referenced in their definitions. This chapter discusses the dependencies

among schema objects and how Oracle automatically tracks and manages these

dependencies. It includes:

■ An Introduction to Dependency Issues

■ Resolving Schema Object Dependencies

■ Dependency Management and Nonexistent Schema Objects

■ Shared SQL Dependency Management

■ Local and Remote Dependency Management
agement 21-1

An Introduction to Dependency Issues
An Introduction to Dependency Issues
Some types of schema objects can reference other objects as part of their definition.

For example, a view is defined by a query that references tables or other views; a

procedure’s body can include SQL statements that reference other objects of a

database. An object that references another object as part of its definition is called a

dependent object, while the object being referenced is a referenced object. Figure 21–1

illustrates the different types of dependent and referenced objects.

Figure 21–1 Types of Possible Dependent and Referenced Schema Objects

If you alter the definition of a referenced object, dependent objects may or may not

continue to function without error, depending on the type of alteration. For

example, if you drop a table, no view based on the dropped table can be used.

Oracle automatically records dependencies among objects to alleviate the complex

job of dependency management for the database administrator and users. For

example, if you alter a table on which several stored procedures depend, Oracle

automatically recompiles the dependent procedures the next time the procedures

are referenced (executed or compiled against).

To manage dependencies among schema objects, all of the schema objects in a

database have a status:

VALID The schema object has been compiled and can be

immediately used when referenced.

INVALID The schema object must be compiled before it can

be used.

Dependent Objects

View
Procedure
Function

Package Specification
Package Body

Database Trigger

Referenced Objects

Table
View

Sequence
Synonym
Procedure
Function

Package Specification
21-2 Oracle8i Concepts

An Introduction to Dependency Issues
Oracle automatically tracks specific changes in the database and records the

appropriate status for related objects in the data dictionary.

Status recording is a recursive process; any change in the status of a referenced

object not only changes the status for directly dependent objects, but also for

indirectly dependent objects.

For example, consider a stored procedure that directly references a view. In effect,

the stored procedure indirectly references the base table(s) of that view. Therefore, if

you alter a base table, the view is invalidated, which then invalidates the stored

procedure. Figure 21–2 illustrates this.

■ In the case of procedures, functions, and packages,
this means compiling the schema object.

■ In the case of views, this means that the view must be
reparsed, using the current definition in the data
dictionary.

Only dependent objects can be invalid; tables, sequences,

and synonyms are always valid.

If a view, procedure, function, or package is invalid,

Oracle may have attempted to compile it, but errors

relating to the object occurred. For example, when

compiling a view, one of its base tables might not exist, or

the correct privileges for the base table might not be

present. When compiling a package, there might be a

PL/SQL or SQL syntax error, or the correct privileges for

a referenced object might not be present. Schema objects

with such problems remain invalid.
Oracle Dependency Management 21-3

Resolving Schema Object Dependencies
Figure 21–2 Indirect Dependencies

Resolving Schema Object Dependencies
When a schema object is referenced (directly in a SQL statement or indirectly via a

reference to a dependent object), Oracle checks the status of the object explicitly

specified in the SQL statement and any referenced objects, as necessary. Oracle’s

action depends on the status of the objects that are directly and indirectly referenced

in a SQL statement:

■ If every referenced object is valid, Oracle executes the SQL statement

immediately without any additional work.

■ If any referenced view or procedure (including a function or package) is invalid,

Oracle automatically attempts to compile the object.

– If all invalid referenced objects can be compiled successfully, they are

compiled and Oracle executes the SQL statement.

– If an invalid object cannot be compiled successfully, it remains invalid and

Oracle returns an error and rolls back the transaction containing the SQL

statement.

Table EMP

Table DEPT

View EMP_DEPT

Function
ADD_EMP

Dependent
Object

Referenced
by ADD_EMP
(Dependent

Object)

Referenced
by EMP DEPT

ALTER TABLE emp . . . ;

INVALID

INVALID
21-4 Oracle8i Concepts

Resolving Schema Object Dependencies
Compiling Views and PL/SQL Program Units
A view or PL/SQL program unit can be compiled and made valid if the following

conditions are satisfied:

■ The definition of the view or program unit must be correct; all of the SQL and

PL/SQL statements must be proper constructs.

■ All referenced objects must be present and of the expected structure. For

example, if the defining query of a view includes a column, the column must be

present in the base table.

■ The owner of the view or program unit must have the necessary privileges for

the referenced objects. For example, if a SQL statement in a procedure inserts a

row into a table, the owner of the procedure must have the INSERT privilege

for the referenced table.

Views and Base Tables
A view depends on the base tables (or views) referenced in its defining query. If the

defining query of a view is not explicit about which columns are referenced, for

example, SELECT * FROM table , the defining query is expanded when stored in

the data dictionary to include all columns in the referenced base table at that time.

If a base table (or view) of a view is altered, renamed, or dropped, the view is

invalidated, but its definition remains in the data dictionary along with the

privileges, synonyms, other objects, and other views that reference the invalid view.

An attempt to use an invalid view automatically causes Oracle to recompile the

view dynamically. After replacing the view, the view might be valid or invalid,

depending on the following condition:

■ All base tables referenced by the defining query of a view must exist. If a base

table of a view is renamed or dropped, the view is invalidated and cannot be

used. References to invalid views cause the referencing statement to fail. The

view can be compiled only if the base table is renamed to its original name or

the base table is recreated.

Note: Oracle attempts to recompile an invalid object dynamically

only if it has not been replaced since it was detected as invalid. This

optimization eliminates unnecessary recompilations.
Oracle Dependency Management 21-5

Resolving Schema Object Dependencies
■ If a base table is altered or re-created with the same columns, but the datatype

of one or more columns in the base table is changed, any dependent view can

be recompiled successfully.

■ If a base table of a view is altered or re-created with at least the same set of

columns, the view can be validated. The view cannot be validated if the base

table is re-created with new columns and the view references columns no

longer contained in the re-created table. The latter point is especially relevant in

the case of views defined with a SELECT * FROM table query, because the

defining query is expanded at view creation time and permanently stored in the

data dictionary.

Program Units and Referenced Objects
Oracle automatically invalidates a program unit when the definition of a referenced

object is altered. For example, assume that a standalone procedure includes several

statements that reference a table, a view, another standalone procedure, and a

public package procedure. In that case, the following conditions hold:

■ If the referenced table is altered, the dependent procedure is invalidated.

■ If the base table of the referenced view is altered, the view and the dependent

procedure are invalidated.

■ If the referenced standalone procedure is replaced, the dependent procedure is

invalidated.

■ If the body of the referenced package is replaced, the dependent procedure is not

affected. However, if the specification of the referenced package is replaced, the

dependent procedure is invalidated.

This last case reveals a mechanism for minimizing dependencies among procedures

and referenced objects by using packages.

Session State and Referenced Packages
Each session that references a package construct has its own instance of that

package, including a persistent state of any public and private variables, cursors,

and constants. All of a session’s package instantiations (including state) can be lost

if any of the session’s instantiated packages (specification or body) are subsequently

invalidated and recompiled.

Security Authorizations
Oracle notices when a DML object or system privilege is granted to or revoked from

a user or PUBLIC and automatically invalidates all the owner’s dependent objects.
21-6 Oracle8i Concepts

Resolving Schema Object Dependencies
Oracle invalidates the dependent objects to verify that an owner of a dependent

object continues to have the necessary privileges for all referenced objects.

Internally, Oracle notes that such objects do not have to be "recompiled"; only

security authorizations need to be validated, not the structure of any objects. This

optimization eliminates unnecessary recompilations and prevents the need to

change a dependent object’s timestamp.

Function-Based Index Dependencies
Function-based indexes depend on functions used in the expression that defines the

index. (See "Function-Based Indexes" on page 10-24.) If such a function—a PL/SQL

function or package function—is changed, the index is marked as disabled.

This section discusses requirements for function-based indexes and what happens

when a function is changed in any manner, such as when it is dropped or privileges

to use it are revoked.

Requirements
To create a function-based index:

■ The following initialization parameters must be defined:

■ QUERY_REWRITE_INTEGRITY must be set to TRUSTED

■ QUERY_REWRITE_ENABLED must be set to TRUE

■ COMPATIBLE must set to 8.1.0.0.0 or a greater value

■ The user must be granted CREATE INDEX and QUERY REWRITE, or CREATE

ANY INDEX and GLOBAL QUERY REWRITE.

To use a function-based index:

■ The table must be analyzed after the index is created.

■ The query must be guaranteed not to need any NULL values from the indexed

expression, since NULL values are not stored in indexes.

The following sections describe additional requirements.

Additional Information: For information on forcing the

recompilation of an invalid view or program unit, see the Oracle8i
Application Developer’s Guide - Fundamentals.
Oracle Dependency Management 21-7

Dependency Management and Nonexistent Schema Objects
DETERMINISTIC Functions
Any user-written function used in a function-based index must have been declared

with the DETERMINISTIC keyword to indicate that the function will always return

the same output return value for any given set of input argument values, now and

in the future. See "DETERMINISTIC Functions" on page 23-9 for more information.

Privileges on the Defining Function
The index owner needs the EXECUTE privilege on the function used to define a

function-based index. If the EXECUTE privilege is revoked, Oracle marks the index

DISABLED. The index owner does not need the EXECUTE WITH GRANT OPTION

privilege on this function to grant SELECT privileges on the underlying table.

Resolving Dependencies of Function-Based Indexes
A function-based index depends on any function that it is using. If the function or

the specification of a package containing the function is redefined (or if the index

owner’s EXECUTE privilege is revoked), the index is marked as DISABLED.

■ Queries on a DISABLED index fail if the optimizer chooses to use the index.

■ DML operations on a DISABLED index fail unless the index is also marked

UNUSABLE and the initialization parameter SKIP_UNUSABLE_INDEXES is

set to true.

To re-enable the index after a change to the function, use the ALTER INDEX ...

ENABLE statement.

Dependency Management and Nonexistent Schema Objects
When a dependent object is created, Oracle attempts to resolve all references by first

searching in the current schema. If a referenced object is not found in the current

schema, Oracle attempts to resolve the reference by searching for a private synonym

in the same schema. If a private synonym is not found, Oracle moves on, looking

for a public synonym. If a public synonym is not found, Oracle searches for a

schema name that matches the first portion of the object name. If a matching

schema name is found, Oracle attempts to find the object in that schema. If no

schema is found, an error is returned.

Because of how Oracle resolves references, it is possible for an object to depend on

the nonexistence of other objects. This occurs when the dependent object uses a

reference that would be interpreted differently were another object present. For

example, assume the following:
21-8 Oracle8i Concepts

Dependency Management and Nonexistent Schema Objects
■ At the current point in time, the COMPANY schema contains a table

named EMP.

■ A PUBLIC synonym named EMP is created for COMPANY.EMP and the

SELECT privilege for COMPANY.EMP is granted to the PUBLIC role.

■ The JWARD schema does not contain a table or private synonym named EMP.

■ The user JWARD creates a view in his schema with the following statement:

CREATE VIEW dept_salaries AS
 SELECT deptno, MIN(sal), AVG(sal), MAX(sal) FROM emp
 GROUP BY deptno
 ORDER BY deptno;

When JWARD creates the DEPT_SALARIES view, the reference to EMP is resolved

by first looking for JWARD.EMP as a table, view, or private synonym, none of

which is found, and then as a public synonym named EMP, which is found. As a

result, Oracle notes that JWARD.DEPT_SALARIES depends on the nonexistence of

JWARD.EMP and on the existence of PUBLIC.EMP.

Now assume that JWARD decides to create a new view named EMP in his schema

using the following statement:

CREATE VIEW emp AS
 SELECT empno, ename, mgr, deptno
 FROM company.emp;

Notice that JWARD.EMP does not have the same structure as COMPANY.EMP.

As it attempts to resolve references in object definitions, Oracle internally makes

note of dependencies that the new dependent object has on "nonexistent"

objects—schema objects that, if they existed, would change the interpretation of the

object’s definition. Such dependencies must be noted in case a nonexistent object is

later created. If a nonexistent object is created, all dependent objects must be

invalidated so that dependent objects can be recompiled and verified and all

dependent function-based indexes must be marked unusable.

Therefore, in the example above, as JWARD.EMP is created,

JWARD.DEPT_SALARIES is invalidated because it depends on JWARD.EMP. Then

when JWARD.DEPT_SALARIES is used, Oracle attempts to recompile the view. As

Oracle resolves the reference to EMP, it finds JWARD.EMP (PUBLIC.EMP is no

longer the referenced object). Because JWARD.EMP does not have a SAL column,

Oracle finds errors when replacing the view, leaving it invalid.
Oracle Dependency Management 21-9

Shared SQL Dependency Management
In summary, dependencies on nonexistent objects checked during object resolution

must be managed in case the nonexistent object is later created.

Shared SQL Dependency Management
In addition to managing dependencies among schema objects, Oracle also manages

dependencies of each shared SQL area in the shared pool. If a table, view, synonym,

or sequence is created, altered, or dropped, or a procedure or package specification

is recompiled, all dependent shared SQL areas are invalidated. At a subsequent

execution of the cursor that corresponds to an invalidated shared SQL area, Oracle

reparses the SQL statement to regenerate the shared SQL area.

Local and Remote Dependency Management
Tracking dependencies and completing necessary recompilations are performed

automatically by Oracle. In the simplest case, Oracle must manage dependencies

among the objects in a single database (local dependency management). For

example, a statement in a procedure can reference a table in the same database. In

more complex systems, Oracle must manage dependencies in distributed

environments across a network (remote dependency management). For example, an

Oracle Forms trigger can depend on a schema object in the database. In a

distributed database, a local view’s defining query can reference a remote table.

Managing Local Dependencies
Oracle manages all local dependencies using the database’s internal "depends-on"

table, which keeps track of each schema object’s dependent objects. When a

referenced object is modified, Oracle uses the depends-on table to identify

dependent objects, which are then invalidated. For example, assume a stored

procedure UPDATE_SAL references the table JWARD.EMP. If the definition of the

table is altered in any way, the status of every object that references JWARD.EMP is

changed to INVALID, including the stored procedure UPDATE_SAL. As a result,

the procedure cannot be executed until it has been recompiled and is valid.

Similarly, when a DML privilege is revoked from a user, every dependent object in

the user’s schema is invalidated. However, an object that is invalid because

authorization was revoked can be revalidated by "reauthorization", in which case it

does not require full recompilation.
21-10 Oracle8i Concepts

Local and Remote Dependency Management
Managing Remote Dependencies
Application-to-database and distributed database dependencies must also be

managed. For example, an Oracle Forms application might contain a trigger that

references a table, or a local stored procedure might call a remote procedure in a

distributed database system. The database system must account for dependencies

among such objects. Oracle uses different mechanisms to manage remote

dependencies, depending on the objects involved.

Dependencies Among Local and Remote Database Procedures
Dependencies among stored procedures (including functions, packages, and

triggers) in a distributed database system are managed using timestamp checking or

signature checking.

The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE

determines whether timestamps or signatures govern remote dependencies.

Timestamp Checking In the timestamp checking dependency model, whenever a

procedure is compiled or recompiled its timestamp (the time it is created, altered, or

replaced) is recorded in the data dictionary. Additionally, the compiled version of

the procedure contains information about each remote procedure that it references,

including the remote procedure’s schema, package name, procedure name, and

timestamp.

When a dependent procedure is used, Oracle compares the remote timestamps

recorded at compile time with the current timestamps of the remotely referenced

procedures. Depending on the result of this comparison, two situations can occur:

■ The local and remote procedures execute without compilation if the timestamps

match.

■ The local procedure is invalidated if any timestamps of remotely referenced

procedures do not match, and an error is returned to the calling environment.

Furthermore, all other local procedures that depend on the remote procedure

with the new timestamp are also invalidated. For example, assume several local

procedures call a remote procedure, and the remote procedure is recompiled.

When one of the local procedures is executed and notices the different

timestamp of the remote procedure, every local procedure that depends on the

remote procedure is invalidated.

Additional Information: See Oracle8i Application Developer’s Guide -
Fundamentals for details about managing remote dependencies with

timestamps or signatures.
Oracle Dependency Management 21-11

Local and Remote Dependency Management
Actual timestamp comparison occurs when a statement in the body of a local

procedure executes a remote procedure; only at this moment are the timestamps

compared via the distributed database’s communications link. Therefore, all

statements in a local procedure that precede an invalid procedure call might execute

successfully. Statements subsequent to an invalid procedure call do not execute at

all (compilation is required). However, any DML statements executed before the

invalid procedure call are rolled back.

Signature Checking Oracle provides the additional capability of remote dependencies

using signatures. The signature capability affects only remote dependencies. Local

(same server) dependencies are not affected, as recompilation is always possible in

this environment.

The signature of a procedure contains information about the

■ name of the package, procedure, or function

■ base types of the parameters

■ modes of the parameters (IN, OUT, and IN OUT)

If the signature dependency model is in effect, a dependency on a remote program

unit (package, stored procedure, stored function, or trigger) causes an invalidation

of the dependent unit if the dependent unit contains a call to a procedure in the

parent unit, and the signature of this procedure has been changed in an

incompatible manner.

Dependencies Among Other Remote Schema Objects
Oracle does not manage dependencies among remote schema objects other than

local-procedure-to-remote-procedure dependencies.

For example, assume that a local view is created and defined by a query that

references a remote table. Also assume that a local procedure includes a SQL

statement that references the same remote table. Later, the definition of the table is

altered.

As a result, the local view and procedure are never invalidated, even if the view or

procedure is used after the table is altered, and even if the view or procedure now

returns errors when used (in this case, the view or procedure must be altered

Note: Only the types and modes of parameters are significant. The

name of the parameter does not affect the signature.
21-12 Oracle8i Concepts

Local and Remote Dependency Management
manually so errors are not returned). In such cases, lack of dependency

management is preferable to unnecessary recompilations of dependent objects.

Dependencies of Applications
Code in database applications can reference objects in the connected database. For

example, OCI, Precompiler, and SQL*Module applications can submit anonymous

PL/SQL blocks; triggers in Oracle Forms applications can reference a schema object.

Such applications are dependent on the schema objects they reference. Dependency

management techniques vary, depending on the development environment. Refer

to the appropriate manuals for your application development tools and your

operating system for more information about managing the remote dependencies

within database applications.
Oracle Dependency Management 21-13

Local and Remote Dependency Management
21-14 Oracle8i Concepts

Part VI

 Optimization of SQL Statements

Part VI describes the optimizer, which chooses the most efficient way to execute

each SQL statement.

Part VI contains the following chapters:

■ Chapter 22, "The Optimizer"

■ Chapter 23, "Optimizer Operations"

■ Chapter 24, "Optimization of Joins"

The O
22

The Optimizer

I do the very best I know how—the very best I can; and I mean to keep doing so until
the end.

Abraham Lincoln

This chapter introduces the Oracle optimizer. It includes:

■ What Is Optimization?

■ Cost-Based Optimization

■ Extensible Optimization

■ Rule-Base Optimization

The chapters that follow provide further information about how the Oracle

optimizer works:

■ Chapter 23, "Optimizer Operations"

■ Chapter 24, "Optimization of Joins"

Additional Information: See Oracle8i Tuning for more information

about the optimizer, including how to use materialized views for

query rewrites.
ptimizer 22-1

What Is Optimization?
What Is Optimization?
Optimization is the process of choosing the most efficient way to execute a SQL

statement. This is an important step in the processing of any data manipulation

language (DML) statement: SELECT, INSERT, UPDATE, or DELETE. Many

different ways to execute a SQL statement often exist, for example, by varying the

order in which tables or indexes are accessed. The procedure Oracle uses to execute

a statement can greatly affect how quickly the statement executes.

A part of Oracle called the optimizer calculates the most efficient way to execute a

SQL statement. The optimizer evaluates many factors to select among alternative

access paths. It can use a cost-based or rule-based approach (see "Cost-Based

Optimization" on page 22-7 and "Rule-Base Optimization" on page 22-18).

You can influence the optimizer’s choices by setting the optimizer approach and

goal and by gathering statistics for cost-based optimization. Sometimes the

application designer, who has more information about a particular application’s

data than is available to the optimizer, can choose a more effective way to execute a

SQL statement. The application designer can use hints in SQL statements to specify

how the statement should be executed.

Execution Plans
To execute a DML statement, Oracle may have to perform many steps. Each of these

steps either retrieves rows of data physically from the database or prepares them in

some way for the user issuing the statement. The combination of the steps Oracle

uses to execute a statement is called an execution plan. An execution plan includes an

access method for each table that the statement accesses and an ordering of the tables

(the join order). "Access Methods" on page 23-34 describes the various access

methods, which include indexes, hash clusters, and table scans.

Figure 22–1 shows a graphical representation of the execution plan for the following

SQL statement, which selects the name, job, salary, and department name for all

employees whose salaries do not fall into a recommended salary range:

Note: The optimizer may not make the same decisions from one

version of Oracle to the next. In more recent versions, the optimizer

may make different decisions based on better, more sophisticated

information available to it.

Additional Information: See Oracle8i Tuning for information about

using hints in SQL statements.
22-2 Oracle8i Concepts

What Is Optimization?
SELECT ename, job, sal, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND NOT EXISTS
 (SELECT *
 FROM salgrade
 WHERE emp.sal BETWEEN losal AND hisal);

Figure 22–1 An Execution Plan

TABLE ACCESS
(FULL)

emp

3 4

TABLE ACCESS
(BY ROWID)

dept

5

INDEX
(UNIQUE SCAN)

pk_deptno

6

TABLE ACCESS
(FULL)

salgrade

1

FILTER

2

NESTED LOOPS
The Optimizer 22-3

What Is Optimization?
Steps of Execution Plan
Each step of the execution plan returns a set of rows that either are used by the next

step or, in the last step, are returned to the user or application issuing the SQL

statement. A set of rows returned by a step is called a row source.

Figure 22–1 is a hierarchical diagram showing the flow of row sources from one step

to another. The numbering of the steps reflects the order in which they are

displayed in response to the EXPLAIN PLAN command (described in the next

section). This generally is not the order in which the steps are executed (see

"Execution Order" on page 22-5). Each step of the execution plan either retrieves

rows from the database or accepts rows from one or more row sources as input:

■ Steps indicated by the shaded boxes physically retrieve data from an object in

the database. Such steps are called access paths:

– Steps 3 and 6 read all the rows of the EMP and SALGRADE tables,

respectively.

– Step 5 looks up in the PK_DEPTNO index each DEPTNO value returned by

Step 3. There it finds the rowids of the associated rows in the DEPT table.

– Step 4 retrieves from the DEPT table the rows whose rowids were returned

by Step 5.

■ Steps indicated by the clear boxes operate on row sources:

– Step 2 performs a nested loops operation, accepting row sources from Steps

3 and 4, joining each row from Step 3 source to its corresponding row in

Step 4, and returning the resulting rows to Step 1.

– Step 1 performs a filter operation. It accepts row sources from Steps 2 and 6,

eliminates rows from Step 2 that have a corresponding row in Step 6, and

returns the remaining rows from Step 2 to the user or application issuing

the statement.

Access paths are discussed further in the section "Choosing Access Paths" on

page 23-33. Methods by which Oracle joins row sources are discussed in "Join

Operations" on page 24-2.

The EXPLAIN PLAN Command
You can examine the execution plan chosen by the optimizer for a SQL statement by

using the EXPLAIN PLAN command, which causes the optimizer to choose the

execution plan and then inserts data describing the plan into a database table.
22-4 Oracle8i Concepts

What Is Optimization?
For example, the following output table is such a description for the statement

examined in the previous section:

ID OPERATION OPTIONS OBJECT_NAME
--
0 SELECT STATEMENT
1 FILTER
2 NESTED LOOPS
3 TABLE ACCESS FULL EMP
4 TABLE ACCESS BY ROWID DEPT
5 INDEX UNIQUE SCAN PK_DEPTNO
6 TABLE ACCESS FULL SALGRADE

Each box in Figure 22–1 and each row in the output table corresponds to a single

step in the execution plan. For each row in the listing, the value in the ID column is

the value shown in the corresponding box in Figure 22–1.

You can obtain such a listing by using the EXPLAIN PLAN command and then

querying the output table.

Execution Order
The steps of the execution plan are not performed in the order in which they are

numbered. Rather, Oracle first performs the steps that appear as leaf nodes in the

tree-structured graphical representation of the execution plan (Steps 3, 5, and 6 in

Figure 22–1). The rows returned by each step become the row sources of its parent

step. Then Oracle performs the parent steps.

To execute the statement for Figure 22–1, for example, Oracle performs the steps in

this order:

■ First, Oracle performs Step 3, and returns the resulting rows, one by one, to

Step 2.

■ For each row returned by Step 3, Oracle performs these steps:

– Oracle performs Step 5 and returns the resulting rowid to Step 4.

– Oracle performs Step 4 and returns the resulting row to Step 2.

– Oracle performs Step 2, joining the single row from Step 3 with a single row

from Step 4, and returning a single row to Step 1.

– Oracle performs Step 6 and returns the resulting row, if any, to Step 1.

Additional Information: See Oracle8i Tuning for information on

how to use EXPLAIN PLAN and produce and interpret its output.
The Optimizer 22-5

What Is Optimization?
– Oracle performs Step 1. If a row is not returned from Step 6, Oracle returns

the row from Step 2 to the user issuing the SQL statement.

Note that Oracle performs Steps 5, 4, 2, 6, and 1 once for each row returned by

Step 3. If a parent step requires only a single row from its child step before it can be

executed, Oracle performs the parent step (and possibly the rest of the execution

plan) as soon as a single row has been returned from the child step. If the parent of

that parent step also can be activated by the return of a single row, then it is

executed as well.

Thus the execution can cascade up the tree, possibly to encompass the rest of the

execution plan. Oracle performs the parent step and all cascaded steps once for each

row in turn retrieved by the child step. The parent steps that are triggered for each

row returned by a child step include table accesses, index accesses, nested loops

joins, and filters.

If a parent step requires all rows from its child step before it can be executed,

Oracle cannot perform the parent step until all rows have been returned from the

child step. Such parent steps include sorts, sort-merge joins, and aggregate

functions.

Optimizer Plan Stability
After carefully tuning an application, you might want to ensure that the optimizer

generates the same execution plan whenever the same SQL statements are executed.

Plan stability allows you to maintain the same execution plans for the same SQL

statements, regardless of changes to the database such as re-analyzing tables,

adding or deleting data, modifying a table’s columns, constraints, or indexes,

changing the system configuration, or even upgrading to a new version of the

optimizer.

The CREATE OUTLINE statement creates a stored outline, which contains a set of

attributes that the optimizer uses to create an execution plan. Stored outlines can

also be created automatically by setting the system parameter

CREATE_STORED_OUTLINES to TRUE.

The system parameter USE_STORED_OUTLINES can be set to TRUE, FALSE, or a

category name to indicate whether to make use of existing stored outlines for

queries that are being executed. The OUTLN_PKG package provides procedures

used for managing stored outlines.

Implementing plan stability creates a new schema called OUTLN, which is created

with DBA privileges. The database administrator should change the password for

the OUTLN schema just as for the SYS and SYSTEM schemas.
22-6 Oracle8i Concepts

Cost-Based Optimization
Cost-Based Optimization
Using the cost-based approach, the optimizer determines which execution plan is

most efficient by considering available access paths and factoring in information

based on statistics for the schema objects (tables or indexes) accessed by the SQL

statement. The cost-based approach also considers hints, which are optimization

suggestions placed in a Comment in the statement.

Conceptually, the cost-based approach consists of these steps:

1. The optimizer generates a set of potential execution plans for the SQL statement

based on its available access paths and hints.

2. The optimizer estimates the cost of each execution plan based on statistics in the

data dictionary for the data distribution and storage characteristics of the tables,

indexes, and partitions accessed by the statement.

The cost is an estimated value proportional to the expected resource use needed

to execute the statement with a particular execution plan. The optimizer

calculates the cost of each possible access method and join order based on the

estimated computer resources, including (but not limited to) I/O, CPU time,

and memory, that are required to execute the statement using the plan.

Serial execution plans with greater costs take more time to execute than those

with smaller costs. When using a parallel execution plan, however, resource use

is not directly related to elapsed time.

3. The optimizer compares the costs of the execution plans and chooses the one

with the smallest cost.

Goal of the Cost-Based Approach
By default, the goal of the cost-based approach is the best throughput, or minimal

resource use necessary to process all rows accessed by the statement.

Oracle can also optimize a statement with the goal of best response time, or minimal

resource use necessary to process the first row accessed by a SQL statement. For

information on how the optimizer chooses an optimization approach and goal, see

"Choosing an Optimization Approach and Goal" on page 23-31.

Additional Information: See Oracle8i Tuning for information about

using plan stability, Oracle8i SQL Reference for information about

the CREATE OUTLINE statement, and Oracle8i Supplied Packages
Reference for information about the OUTLN_PKG package.
The Optimizer 22-7

Cost-Based Optimization
For parallel execution of a SQL statement, the optimizer can choose to minimize

elapsed time at the expense of resource consumption. The initialization parameter

OPTIMIZER_PERCENT_PARALLEL specifies how much the optimizer attempts to

parallelize execution.

Statistics for Cost-Based Optimization
The cost-based approach uses statistics to calculate the selectivity of predicates and

estimate the cost of each execution plan. Selectivity is the fraction of rows in a table

that the SQL statement’s predicate chooses. The optimizer uses the selectivity of a

predicate to estimate the cost of a particular access method and to determine the

optimal join order.

Statistics quantify the data distribution and storage characteristics of tables,

columns, indexes, and partitions. The optimizer uses these statistics to estimate how

much I/O, CPU time, and memory are required to execute a SQL statement using a

particular execution plan. The statistics are stored in the data dictionary, and they

can be exported from one database and imported into another (for example, to

transfer production statistics to a test system to simulate the real environment, even

though the test system may only have small samples of data).

You must gather statistics on a regular basis to provide the optimizer with

information about schema objects. New statistics should be gathered after a schema

object’s data or structure are modified in ways that make the previous statistics

inaccurate. For example, after loading a significant number of rows into a table, you

should collect new statistics on the number of rows. After updating data in a table,

you do not need to collect new statistics on the number of rows but you might need

new statistics on the average row length. See "Gathering Statistics" on page 22-11.

Histograms for Cost-Based Optimization
Cost-based optimization uses data value histograms to get accurate estimates of the

distribution of column data. A histogram partitions the values in the column into

bands, so that all column values in a band fall within the same range. Histograms

provide improved selectivity estimates in the presence of data skew, resulting in

optimal execution plans with nonuniform data distributions.

One of the fundamental capabilities of cost-based optimization is determining the

selectivity of predicates that appear in queries. Selectivity estimates are used to

decide when to use an index and the order in which to join tables. Most attribute

domains (a table’s columns) are not uniformly distributed.

Additional Information: See Oracle8i Tuning for information about

using the OPTIMIZER_PERCENT_PARALLEL parameter.
22-8 Oracle8i Concepts

Cost-Based Optimization
Cost-based optimization uses height-balanced histograms on specified attributes to

describe the distributions of nonuniform domains. In a height-balanced histogram,

the column values are divided into bands so that each band contains approximately

the same number of values. The useful information that the histogram provides,

then, is where in the range of values the endpoints fall.

Consider a column C with values between 1 and 100 and a histogram with 10

buckets. If the data in C is uniformly distributed, this histogram would look like

this, where the numbers are the endpoint values:

The number of rows in each bucket is one tenth the total number of rows in the

table. Four-tenths of the rows have values between 60 and 100 in this example of

uniform distribution.

If the data is not uniformly distributed, the histogram might look like this:

In this case, most of the rows have the value 5 for the column. In this example, only

1/10 of the rows have values between 60 and 100.

Height-balanced Histograms Oracle uses height-balanced histograms (as opposed to

width-balanced).

■ Width-balanced histograms divide the data into a fixed number of equal-width

ranges and then count the number of values falling into each range.

■ Height-balanced histograms place approximately the same number of values

into each range so that the endpoints of the range are determined by how many

values are in that range.

For example, suppose that the values in a single column of a 1000-row table range

between 1 and 100, and suppose that you want a 10-bucket histogram (ranges in a

histogram are called buckets). In a width-balanced histogram, the buckets would be

1 10 20 30 40 50 60 70 80 90 100

1 5 5 5 5 10 10 20 35 60 100
The Optimizer 22-9

Cost-Based Optimization
of equal width (1-10, 11-20, 21-30, and so on) and each bucket would count the

number of rows that fall into that bucket’s range. In a height-balanced histogram,

each bucket has the same height (in this case 100 rows) and the endpoints for each

bucket are determined by the density of the distinct values in the column.

The advantage of the height-balanced approach is clear when the data is highly

skewed. Suppose that 800 rows of a 1000-row table have the value 5, and the

remaining 200 rows are evenly distributed between 1 and 100. A width-balanced

histogram would have 820 rows in the bucket labeled 1-10 and approximately 20

rows in each of the other buckets. The height-based histogram would have one

bucket labeled 1-5, seven buckets labeled 5-5, one bucket labeled 5-50, and one

bucket labeled 50-100.

If you want to know how many rows in the table contain the value 5, the

height-balanced histogram shows that approximately 80% of the rows contain this

value. However, the width-balanced histogram does not provide a mechanism for

differentiating between the value 5 and the value 6. You would compute only 8% of

the rows contain the value 5 in a width-balanced histogram. Therefore height-based

histograms are more appropriate for determining the selectivity of column values.

When to Use Histograms Histograms can affect performance and should be used only

when they substantially improve query plans. In general, you should create

histograms on columns that are frequently used in WHERE clauses of queries and

have a highly skewed data distribution. For many applications, it is appropriate to

create histograms for all indexed columns because indexed columns typically are

the columns most often used in WHERE clauses.

Histograms are persistent objects, so there is a maintenance and space cost for using

them. You should compute histograms only for columns that you know have highly

skewed data distribution. For uniformly distributed data, cost-based optimization

can make fairly accurate guesses about the cost of executing a particular statement

without the use of histograms.

Histograms, like all other optimizer statistics, are static. They are useful only when

they reflect the current data distribution of a given column. (The data in the column

can change as long as the distribution remains constant.) If the data distribution of a

column changes frequently, you must recompute its histogram frequently.

Histograms are not useful for columns with the following characteristics:

■ All predicates on the column use bind variables.

■ The column data is uniformly distributed.

■ The column is not used in WHERE clauses of queries.
22-10 Oracle8i Concepts

Cost-Based Optimization
■ The column is unique and is used only with equality predicates.

You generate histograms by using the DBMS_STATS package or the ANALYZE

command (see "Gathering Statistics" on page 22-11). You can generate histograms

for columns of a table or partition. Histogram statistics are not collected in parallel.

You can view histogram information with the following data dictionary views:

■ USER_HISTOGRAMS, ALL_HISTOGRAMS, and DBA_HISTOGRAMS

■ USER_PART_HISTOGRAMS, ALL_PART_HISTOGRAMS, and

DBA_PART_HISTOGRAMS

■ USER_SUBPART_HISTOGRAMS, ALL_SUBPART_HISTOGRAMS, and

DBA_SUBPART_HISTOGRAMS

■ TAB_COLUMNS

Statistics for Partitioned Schema Objects
Partitioned schema objects may contain multiple sets of statistics. They can have

statistics which refer to the entire schema object as a whole (global statistics), they

can have statistics which refer to an individual partition, and they can have

statistics which refer to an individual subpartition of a composite partitioned object.

Unless the query predicate narrows the query to a single partition, the optimizer

will use the global statistics. Since most queries are not likely to be this restrictive, it

is most important to have accurate global statistics. Intuitively, it may seem that

generating global statistics from partition-level statistics should be straightforward;

however, this is only true for some of the statistics. For example, it is very difficult

to figure out the number of distinct values for a column from the number of distinct

values found in each partition because of the possible overlap in values. Therefore,

actually gathering global statistics with the DBMS_STATS package is highly

recommended, rather than calculating them with the ANALYZE command (see

"The ANALYZE Command" on page 22-13).

Gathering Statistics
This section describes the different methods you can use to gather statistics.

Additional Information: See Oracle8i Tuning for more information

about histograms.

Note: Oracle currently does not gather global histogram statistics.
The Optimizer 22-11

Cost-Based Optimization
The DBMS_STATS Package The PL/SQL package DBMS_STATS enables you to

generate and manage statistics for cost-based optimization. You can use this

package to gather, modify, view, and delete statistics. You can also use this package

to store sets of statistics (see "Statistics Tables" on page 22-14).

The DBMS_STATS package can gather statistics on indexes, tables, columns, and

partitions, as well as statistics on all schema objects in a schema or database. It does

not gather cluster statistics—you can use DBMS_STATS to gather statistics on the

individual tables instead of the whole cluster.

The statistics-gathering operations can run either serially or in parallel. Whenever

possible, DBMS_STATS calls a parallel query to gather statistics with the specified

degree of parallelism; otherwise, it calls a serial query or the ANALYZE statement.

Index statistics are not gathered in parallel.

The statistics can be computed exactly or estimated from a random sampling of

rows or blocks (see "Exact and Estimated Statistics" on page 22-14).

For partitioned tables and indexes, DBMS_STATS can gather separate statistics for

each partition as well as global statistics for the entire table or index. Similarly, for

composite partitioning DBMS_STATS can gather separate statistics for

subpartitions, partitions, and the entire table or index. Depending on the SQL

statement being optimized, the optimizer may choose to use either the partition (or

subpartition) statistics or the global statistics.

DBMS_STATS gathers statistics only for cost-based optimization; it does not gather

other statistics. For example, the table statistics gathered by DBMS_STATS include

the number of rows, number of blocks currently containing data, and average row

length but not the number of chained rows, average free space, or number of

unused data blocks.

The COMPUTE STATISTICS Option for Indexes Oracle can gather some statistics

automatically while creating or rebuilding a B*-tree or bitmap index. The

COMPUTE STATISTICS option of CREATE INDEX or ALTER INDEX ... REBUILD

enables this gathering of statistics.

The statistics that Oracle gathers for the COMPUTE STATISTICS option depend on

whether the index is partitioned or nonpartitioned.

■ For a nonpartitioned index, Oracle gathers index, table, and column statistics

while creating or rebuilding the index. In a concatenated-key index, the column

statistics refer only to the leading column of the key.

Additional Information: See Oracle8i Tuning for examples of how

to gather statistics with the DBMS_STATS package.
22-12 Oracle8i Concepts

Cost-Based Optimization
■ For a partitioned index, Oracle does not gather any table or column statistics

while creating the index or rebuilding its partitions.

– While creating a partitioned index, Oracle gathers index statistics for each

partition and for the entire index. If the index uses composite partitioning,

Oracle also gathers statistics for each subpartition.

– While rebuilding a partition or subpartition of an index, Oracle gathers

index statistics only for that partition or subpartition.

To ensure correctness of the statistics Oracle always uses base tables when creating

an index with the COMPUTE STATISTICS option, even if another index is available

that could be used to create the index.

The ANALYZE Command The ANALYZE command can also generate statistics for

cost-based optimization. Using ANALYZE for this purpose is not recommended

because of various restrictions, for example:

■ ANALYZE always runs serially.

■ ANALYZE calculates global statistics for partitioned tables and indexes instead

of gathering them directly. This can lead to inaccuracies for some statistics, such

as the number of distinct values.

– For partitioned tables and indexes, ANALYZE gathers statistics for the

individual partitions and then calculates the global statistics from the

partition statistics.

– For composite partitioning, ANALYZE gathers statistics for the

subpartitions and then calculates the partition statistics and global statistics

from the subpartition statistics.

■ ANALYZE cannot overwrite or delete some of the values of statistics that were

gathered by DBMS_STATS.

ANALYZE can gather additional information that is not used by the optimizer, such

as information about chained rows and the structural integrity of indexes, tables,

and clusters. DBMS_STATS does not gather this information.

Additional Information: See Oracle8i SQL Reference for details

about the COMPUTE STATISTICS option of the CREATE INDEX

and ALTER INDEX commands.

Additional Information: See Oracle8i SQL Reference for detailed

information about the ANALYZE statement.
The Optimizer 22-13

Cost-Based Optimization
Exact and Estimated Statistics The statistics gathered by the DBMS_STATS package or

ANALYZE statement can be exact or estimated. (The COMPUTE STATISTICS

option for creating or rebuilding indexes always gathers exact statistics.)

To compute exact statistics, Oracle must read all of the data in the index, table,

partition, or schema. Some statistics are always computed exactly, such as the

number of data blocks currently containing data in a table or the depth of an index

from its root block to its leaf blocks.

To estimate statistics, Oracle selects a random sample of data. You can specify the

sampling percentage and whether sampling should be based on rows or blocks.

Row sampling reads rows without regard to their physical placement on disk. This

provides the most random data for estimates, but it can result in reading more data

than necessary. For example, in the worst case a row sample might select one row

from each block, requiring a full scan of the table or index.

Block sampling reads a random sample of blocks and uses all of the rows in those

blocks for estimates. This reduces the amount of I/O activity for a given sample

size, but it can reduce the randomness of the sample if rows are not randomly

distributed on disk. Block sampling is not available for index statistics.

Managing Statistics
This section describes statistics tables and lists the views that display information

about statistics stored in the data dictionary.

Statistics Tables The DBMS_STATS package enables you to store statistics in a

statistics table. You can transfer the statistics for a column, table, index, or schema

into a statistics table and subsequently restore those statistics to the data dictionary.

The optimizer does not use statistics that are stored in a statistics table.

Statistics tables enable you to experiment with different sets of statistics. For

example, you can back up a set of statistics before you delete them, modify them, or

generate new statistics. You can then compare the performance of SQL statements

optimized with different sets of statistics, and if the statistics stored in a table give

the best performance, you can restore them to the data dictionary.

A statistics table can keep multiple distinct sets of statistics, or you can create

multiple statistics tables to store distinct sets of statistics separately.

Viewing Statistics You can use the DBMS_STATS package to view the statistics stored

in the data dictionary or in a statistics table.

You can also query these data dictionary views for statistics in the data dictionary:
22-14 Oracle8i Concepts

Cost-Based Optimization
■ USER_TABLES, ALL_TABLES, and DBA_TABLES

■ USER_TAB_COLUMNS, ALL_TAB_COLUMNS, and DBA_TAB_COLUMNS

■ USER_INDEXES, ALL_INDEXES, and DBA_INDEXES

■ USER_CLUSTERS and DBA_CLUSTERS

■ USER_TAB_PARTITIONS, ALL_TAB_PARTITIONS, and

DBA_TAB_PARTITIONS

■ USER_TAB_SUBPARTITIONS, ALL_TAB_SUBPARTITIONS, and

DBA_TAB_SUBPARTITIONS

■ USER_IND_PARTITIONS, ALL_IND_PARTITIONS, and

DBA_IND_PARTITIONS

■ USER_IND_SUBPARTITIONS, ALL_IND_SUBPARTITIONS, and

DBA_IND_SUBPARTITIONS

■ USER_PART_COL_STATISTICS, ALL_PART_COL_STATISTICS, and

DBA_PART_COL_STATISTICS

■ USER_SUBPART_COL_STATISTICS, ALL_SUBPART_COL_STATISTICS, and

DBA_SUBPART_COL_STATISTICS

When to Use the Cost-Based Approach
In general, you should use the cost-based approach for all new applications; the

rule-based approach is provided for applications that were written before

cost-based optimization was available. Cost-based optimization can be used for

both relational data and object types.

The following features can only use cost-based optimization:

■ partitioned tables

■ partition views

■ index-organized tables

■ reverse key indexes

■ bitmap indexes

■ function-based indexes

Additional Information: For information on the statistics in these

views, see Oracle8i Reference.
The Optimizer 22-15

Extensible Optimization
■ SAMPLE clause in a SELECT statement

■ parallel query and parallel DML

■ star transformation

■ star join

■ extensible optimization

Extensible Optimization
Extensible optimization allows the authors of user-defined functions and domain

indexes to control the three main components that cost-based optimization uses to

select an execution plan: statistics, selectivity, and cost evaluation.

Extensible optimization allows you to:

■ associate cost function and default costs with domain indexes, indextypes,

packages, and stand-alone functions

■ associate selectivity function and default selectivity with methods of object

types, package functions, and stand-alone functions

■ associate statistics collection functions with domain indexes and columns

of tables

■ order predicates with functions based on cost

■ select a user-defined access method (domain index) for a table based on

access cost

■ use the ANALYZE command to invoke user-defined statistics collection and

deletion functions

■ use new data dictionary views to include information about the statistics

collection, cost, or selectivity functions associated with columns, domain

indexes, indextypes, or functions

■ add a hint to preserve the order of evaluation for function predicates

Additional Information: See Oracle8i Tuning for more information

on when to use the cost-based approach.

Additional Information: See the Oracle8i Data Cartridge Developer’s
Guide for details about extensible optimization.
22-16 Oracle8i Concepts

Extensible Optimization
User-Defined Statistics
You can define statistics collection functions for domain indexes, individual columns

of a table, and user-defined datatypes.

Whenever a domain index is analyzed to gather statistics, Oracle calls the associated

statistics collection function. Whenever a column of a table is analyzed, Oracle

collects the standard statistics for that column and calls any associated statistics

collection function. If a statistics collection function exists for a datatype, Oracle

calls it for each column that has that datatype in the table being analyzed.

User-Defined Selectivity
The selectivity of a predicate in a SQL statement is used to estimate the cost of a

particular access method; it is also used to determine the optimal join order. The

optimizer cannot compute an accurate selectivity for predicates that contain

user-defined operators, because it does not have any information about these

operators.

You can define selectivity functions for predicates containing user-defined operators,

stand-alone functions, package functions, or type methods. The optimizer calls the

user-defined selectivity function whenever it encounters a predicate that contains

the operator, function, or method in one of the following relations with a constant:

<, <=, =, >=, >, or LIKE.

User-Defined Costs
The optimizer cannot compute an accurate estimate of the cost of a domain index

because it does not know the internal storage structure of the index. Also, the

optimizer may underestimate the cost of a user-defined function that invokes

PL/SQL, uses recursive SQL, accesses a BFILE, or is CPU-intensive.

You can define costs for domain indexes and user-defined stand-alone functions,

package functions, and type methods. These user-defined costs can be in the form

of default costs that the optimizer simply looks up or they can be full-fledged cost

functions that the optimizer calls to compute the cost.
The Optimizer 22-17

Rule-Base Optimization
Rule-Base Optimization
Using the rule-based approach, the optimizer chooses an execution plan based on

the access paths available and the ranks of these access paths (shown in Table 23–1

on page 23-37). You can use rule-based optimization to access both relational data

and object types.

Oracle’s ranking of the access paths is heuristic. If there is more than one way to

execute a SQL statement, the rule-based approach always uses the operation with

the lower rank. Usually, operations of lower rank execute faster than those

associated with constructs of higher rank.

For more information, see "Choosing an Access Path with the Rule-Based

Approach" on page 23-54.

Note: Rule-based optimization is not available for some advanced

features of Oracle8i. For a list of these features, see "When to Use

the Cost-Based Approach" on page 22-15.
22-18 Oracle8i Concepts

Optimizer Op
23

Optimizer Operations

dy/dx = 0; d2y/dx2 >0.

Leibniz

This chapter discusses how the Oracle optimizer chooses how to execute SQL

statements. It includes:

■ Overview of Optimizer Operations

■ Evaluation of Expressions and Conditions

■ Transforming and Optimizing Statements

■ Choosing an Optimization Approach and Goal

■ Choosing Access Paths

Additional Information: See Oracle8i Tuning for more information

about the optimizer.
erations 23-1

Overview of Optimizer Operations
Overview of Optimizer Operations
This section summarizes the operations performed by the Oracle optimizer and

describes the types of SQL statements that can be optimized.

Optimizer Operations
For any SQL statement processed by Oracle, the optimizer does the following:

evaluation of

expressions and

conditions

The optimizer first evaluates expressions and conditions

containing constants as fully as possible. (See "Evaluation of

Expressions and Conditions" on page 23-4.)

statement

transformation

For a complex statement involving, for example, correlated

subqueries, the optimizer may transform the original

statement into an equivalent join statement. (See

"Transforming and Optimizing Statements" on page 23-10.)

view merging For a SQL statement that accesses a view, the optimizer often

merges the query in the statement with that in the view and

then optimizes the result. (See "Optimizing Statements That

Access Views" on page 23-15.)

choice of

optimization

approaches

The optimizer chooses either a cost-based or rule-based

approach to optimization and determines the goal of

optimization. (See "Choosing an Optimization Approach and

Goal" on page 23-31.)

choice of access

paths

For each table accessed by the statement, the optimizer

chooses one or more of the available access paths to obtain the

table’s data. (See "Choosing Access Paths" on page 23-33.)

choice of join

orders

For a join statement that joins more than two tables, the

optimizer chooses which pair of tables is joined first, and then

which table is joined to the result, and so on. (See "Optimizing

Join Statements" on page 24-2.)

choice of join

operations

For any join statement, the optimizer chooses an operation to

use to perform the join. (See "Optimizing Join Statements" on

page 24-2.)
23-2 Oracle8i Concepts

Overview of Optimizer Operations
Types of SQL Statements
Oracle optimizes these different types of SQL statements:

simple statement An INSERT, UPDATE, DELETE, or SELECT statement that

involves only a single table.

simple query Another name for a SELECT statement.

join A query that selects data from more than one table. A join is

characterized by multiple tables in the FROM clause. Oracle

pairs the rows from these tables using the condition specified

in the WHERE clause and returns the resulting rows. This

condition is called the join condition and usually compares

columns of all the joined tables.

equijoin A join condition containing an equality operator.

nonequijoin A join condition containing something other than an equality

operator.

outer join A join condition using the outer join operator (+) with one or

more columns of one of the tables. Oracle returns all rows that

meet the join condition. Oracle also returns all rows from the

table without the outer join operator for which there are no

matching rows in the table with the outer join operator.

Cartesian product A join with no join condition results in a Cartesian product, or

a cross product. A Cartesian product is the set of all possible

combinations of rows drawn one from each table. In other

words, for a join of two tables, each row in one table is

matched in turn with every row in the other. A Cartesian

product for more than two tables is the result of pairing each

row of one table with every row of the Cartesian product of

the remaining tables.

All other kinds of joins are subsets of Cartesian products

effectively created by deriving the Cartesian product and then

excluding rows that fail the join condition.

complex statement An INSERT, UPDATE, DELETE, or SELECT statement that

contains a subquery, which is a form of the SELECT statement

within another statement that produces a set of values for

further processing within the statement. The outer portion of

the complex statement that contains a subquery is called the

parent statement.
Optimizer Operations 23-3

Evaluation of Expressions and Conditions
Evaluation of Expressions and Conditions
The optimizer fully evaluates expressions whenever possible and translates certain

syntactic constructs into equivalent constructs. The reason for this is either that

Oracle can more quickly evaluate the resulting expression than the original

expression, or that the original expression is merely a syntactic equivalent of the

resulting expression. Different SQL constructs can sometimes operate identically

(for example, = ANY (subquery) and IN (subquery)); Oracle maps these to a single

construct.

The following sections discuss how the optimizer evaluates expressions and

conditions that contain:

■ Constants

■ LIKE Operator

■ IN Operator

■ ANY or SOME Operator

■ ALL Operator

■ BETWEEN Operator

■ NOT Operator

■ Transitivity

■ DETERMINISTIC Functions

compound query A query that uses set operators (UNION, UNION ALL,

INTERSECT, or MINUS) to combine two or more simple or

complex statements. Each simple or complex statement in a

compound query is called a component query.

statement

accessing views

Simple, join, complex, or compound statement that accesses

one or more views as well as tables.

distributed

statement

A statement that accesses data on two or more distinct nodes

of a distributed database. A remote statement accesses data on

one remote node of a distributed database. See "Remote and

Distributed SQL Statements" on page 33-11.
23-4 Oracle8i Concepts

Evaluation of Expressions and Conditions
Constants
Computation of constants is performed only once, when the statement is optimized,

rather than each time the statement is executed.

Consider these conditions that test for monthly salaries greater than 2000:

sal > 24000/12

sal > 2000

sal*12 > 24000

If a SQL statement contains the first condition, the optimizer simplifies it into the

second condition.

Note that the optimizer does not simplify expressions across comparison operators:

in the examples above, the optimizer does not simplify the third expression into the

second. For this reason, application developers should write conditions that

compare columns with constants whenever possible, rather than conditions with

expressions involving columns.

LIKE Operator
The optimizer simplifies conditions that use the LIKE comparison operator to

compare an expression with no wildcard characters into an equivalent condition

that uses an equality operator instead. For example, the optimizer simplifies the

first condition below into the second:

ename LIKE ’SMITH’

ename = ’SMITH’

The optimizer can simplify these expressions only when the comparison involves

variable-length datatypes. For example, if ENAME was of type CHAR(10), the

optimizer cannot transform the LIKE operation into an equality operation due to

the equality operator following blank-padded semantics and LIKE not following

blank-padded semantics.

IN Operator
The optimizer expands a condition that uses the IN comparison operator to an

equivalent condition that uses equality comparison operators and OR logical
Optimizer Operations 23-5

Evaluation of Expressions and Conditions
operators. For example, the optimizer expands the first condition below into the

second:

ename IN (’SMITH’, ’KING’, ’JONES’)

ename = ’SMITH’ OR ename = ’KING’ OR ename = ’JONES’

See "Example 2: IN Subquery" on page 23-18 for more information.

ANY or SOME Operator
The optimizer expands a condition that uses the ANY or SOME comparison

operator followed by a parenthesized list of values into an equivalent condition that

uses equality comparison operators and OR logical operators. For example, the

optimizer expands the first condition below into the second:

sal > ANY (:first_sal, :second_sal)

sal > :first_sal OR sal > :second_sal

The optimizer transforms a condition that uses the ANY or SOME operator

followed by a subquery into a condition containing the EXISTS operator and a

correlated subquery. For example, the optimizer transforms the first condition

below into the second:

x > ANY (SELECT sal
 FROM emp
 WHERE job = ’ANALYST’)

EXISTS (SELECT sal
 FROM emp
 WHERE job = ’ANALYST’
 AND x > sal)

ALL Operator
The optimizer expands a condition that uses the ALL comparison operator followed

by a parenthesized list of values into an equivalent condition that uses equality

comparison operators and AND logical operators. For example, the optimizer

expands the first condition below into the second:

sal > ALL (:first_sal, :second_sal)

sal > :first_sal AND sal > :second_sal
23-6 Oracle8i Concepts

Evaluation of Expressions and Conditions
The optimizer transforms a condition that uses the ALL comparison operator

followed by a subquery into an equivalent condition that uses the ANY comparison

operator and a complementary comparison operator. For example, the optimizer

transforms the first condition below into the second:

x > ALL (SELECT sal
 FROM emp
 WHERE deptno = 10)

NOT (x <= ANY (SELECT sal
 FROM emp
 WHERE deptno = 10))

The optimizer then transforms the second query into the following query using the

rule for transforming conditions with the ANY comparison operator followed by a

correlated subquery:

NOT EXISTS (SELECT sal
 FROM emp
 WHERE deptno = 10
 AND x <= sal)

BETWEEN Operator
The optimizer always replaces a condition that uses the BETWEEN comparison

operator with an equivalent condition that uses the >= and <= comparison

operators. For example, the optimizer replaces the first condition below with the

second:

sal BETWEEN 2000 AND 3000

sal >= 2000 AND sal <= 3000

NOT Operator
The optimizer simplifies a condition to eliminate the NOT logical operator. The

simplification involves removing the NOT logical operator and replacing a

comparison operator with its opposite comparison operator. For example, the

optimizer simplifies the first condition below into the second one:

NOT deptno = (SELECT deptno FROM emp WHERE ename = ’TAYLOR’)

deptno <> (SELECT deptno FROM emp WHERE ename = ’TAYLOR’)
Optimizer Operations 23-7

Evaluation of Expressions and Conditions
Often a condition containing the NOT logical operator can be written many

different ways. The optimizer attempts to transform such a condition so that the

subconditions negated by NOTs are as simple as possible, even if the resulting

condition contains more NOTs. For example, the optimizer simplifies the first

condition below into the second and dhen into the third.

NOT (sal < 1000 OR comm IS NULL)

NOT sal < 1000 AND comm IS NOT NULL

sal >= 1000 AND comm IS NOT NULL

Transitivity
If two conditions in the WHERE clause involve a common column, the optimizer

can sometimes infer a third condition using the transitivity principle. The optimizer

can then use the inferred condition to optimize the statement. The inferred

condition could potentially make available an index access path that was not made

available by the original conditions.

Imagine a WHERE clause containing two conditions of these forms:

WHERE column1 comp_oper constant
 AND column1 = column2

In this case, the optimizer infers the condition:

column2 comp_oper constant

where:

Example: Consider this query in which the WHERE clause contains two conditions,

each or which uses the EMP.DEPTNO column:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = 20

Note: Transitivity is used only by the cost-based approach.

comp_oper is any of the comparison operators =, !=, ^=, <, <>, >, <=, or >=.

constant is any constant expression involving operators, SQL functions,

literals, bind variables, and correlation variables.
23-8 Oracle8i Concepts

Evaluation of Expressions and Conditions
 AND emp.deptno = dept.deptno;

Using transitivity, the optimizer infers this condition:

dept.deptno = 20

If an index exists on the DEPT.DEPTNO column, this condition makes available

access paths using that index.

DETERMINISTIC Functions
In some cases the optimizer can use a previously calculated value rather than

executing a user-written function. This is only safe for functions that behave in a

restricted manner. The function must always return the same output return value

for any given set of input argument values.

The function's result must not differ because of differences in the content of package

variables or the database, or session parameters such as the NLS parameters. And if

the function is redefined in the future, its output return value must still be the same

as that calculated with the prior definition for any given set of input argument

values. Finally, there must be no meaningful side-effects such that using a

precalculated value instead of executing the function again would matter to the

correctness of the application.

The creator of a function can promise to the Oracle server that the function behaves

according to these restrictions by using the keyword DETERMINISTIC when

declaring the function with a CREATE FUNCTION statement or in a CREATE

PACKAGE or CREATE TYPE statement. The server does not attempt to verify this

declaration—even a function that obviously manipulates the database or package

variables can be declared DETERMINISTIC. (See "DETERMINISTIC Functions" on

page 21-8.) It is the programmer's responsibility to use this keyword only when

appropriate.

Note: The optimizer only infers conditions that relate columns to

constant expressions, rather than columns to other columns.

Imagine a WHERE clause containing two conditions of these forms:

WHERE column1 comp_oper column3
 AND column1 = column2

In this case, the optimizer does not infer this condition:

column2 comp_oper column3
Optimizer Operations 23-9

Transforming and Optimizing Statements
Calls to a DETERMINISTIC function may be replaced by the use of an already

calculated value when the function is called multiple times within the same query,

or if there is a function-based index or a materialized view defined that includes a

relevant call to the function.

Transforming and Optimizing Statements
SQL is a very flexible query language; there are often many statements you could

formulate to achieve the same goal. Sometimes the optimizer transforms one such

statement into another that achieves the same goal if the second statement can be

executed more efficiently.

This section discusses the following topics:

■ Transforming ORs into Compound Queries

■ Transforming Complex Statements into Join Statements

■ Optimizing Statements That Access Views

■ Optimizing Compound Queries

■ Optimizing Distributed Statements

For additional information about optimizing statements that contain joins,

semi-joins, or anti-joins, see Chapter 24, "Optimization of Joins".

Transforming ORs into Compound Queries
If a query contains a WHERE clause with multiple conditions combined with OR

operators, the optimizer transforms it into an equivalent compound query that uses

the UNION ALL set operator if this makes it execute more efficiently:

■ If each condition individually makes an index access path available, the

optimizer can make the transformation. The optimizer then chooses an

execution plan for the resulting statement that accesses the table multiple times

using the different indexes and then puts the results together.

Additional Information: See the description of the pragma

RESTRICT_REFERENCES in the Oracle8i Application Developer’s
Guide - Fundamentals and the descriptions of CREATE FUNCTION,

CREATE INDEX, and CREATE MATERIALIZED VIEW in the

Oracle8i SQL Reference. Also see "Function-Based Indexes" on

page 10-24 for a description of function-based indexes, and see

Oracle8i Tuning for detailed information about materialized views.
23-10 Oracle8i Concepts

Transforming and Optimizing Statements
■ If any condition requires a full table scan because it does not make an index

available, the optimizer does not transform the statement. The optimizer

chooses a full table scan to execute the statement, and Oracle tests each row in

the table to determine whether it satisfies any of the conditions.

■ For statements that use the cost-based approach, the optimizer may use

statistics to determine whether to make the transformation by estimating and

then comparing the costs of executing the original statement versus the

resulting statement.

■ Cost-based optimization does not use the OR transformation for in lists or ORs

on the same column; instead, it uses the inlist iterator operator.

For information on access paths and how indexes make them available, see

Table 23–1 on page 23-37 and the sections that follow it.

Example: Consider this query with a WHERE clause that contains two conditions

combined with an OR operator:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 OR deptno = 10;

If there are indexes on both the JOB and DEPTNO columns, the optimizer may

transform this query into the equivalent query below:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
UNION ALL
SELECT *
 FROM emp
 WHERE deptno = 10
 AND job <> ’CLERK’;

If you are using the cost-based approach, the optimizer compares the cost of

executing the original query using a full table scan with that of executing the

resulting query when deciding whether to make the transformation.

If you are using the rule-based approach, the optimizer makes this UNION ALL

transformation because each component query of the resulting compound query

can be executed using an index. The rule-based approach assumes that executing

Additional Information: For more information, see Oracle8i Tuning.
Optimizer Operations 23-11

Transforming and Optimizing Statements
the compound query using two index scans is faster than executing the original

query using a full table scan.

The execution plan for the transformed statement might look like the illustration in

Figure 23–1.

Figure 23–1 Execution Plan for a Transformed Query Containing OR

To execute the transformed query, Oracle performs the following steps:

■ Steps 3 and 5 scan the indexes on the JOB and DEPTNO columns using the

conditions of the component queries. These steps obtain rowids of the rows that

satisfy the component queries.

■ Steps 2 and 4 use the rowids from Steps 3 and 5 to locate the rows that satisfy

each component query.

■ Step 1 puts together the row sources returned by Steps 2 and 4.

TABLE ACCESS
(BY ROWID)

emp

2 4

TABLE ACCESS
(BY ROWID)

emp

5

INDEX
(RANGE SCAN)

job_index

3

INDEX
(RANGE SCAN)
deptno_index

1

CONCATENATION
23-12 Oracle8i Concepts

Transforming and Optimizing Statements
If either of the JOB or DEPTNO columns is not indexed, the optimizer does not

even consider the transformation, because the resulting compound query would

require a full table scan to execute one of its component queries. Executing the

compound query with a full table scan in addition to an index scan could not

possibly be faster than executing the original query with a full table scan.

Example: Consider this query and assume that there is an index on the ENAME

column only:

SELECT *
 FROM emp
 WHERE ename = ’SMITH’
 OR sal > comm;

Transforming the query above would result in the compound query below:

SELECT *
 FROM emp
 WHERE ename = ’SMITH’
UNION ALL
SELECT *
 FROM emp
 WHERE sal > comm;

Since the condition in the WHERE clause of the second component query (SAL >

COMM) does not make an index available, the compound query requires a full

table scan. For this reason, the optimizer does not make the transformation and it

chooses a full table scan to execute the original statement.

Transforming Complex Statements into Join Statements
To optimize a complex statement, the optimizer chooses one of these alternatives:

■ Transform the complex statement into an equivalent join statement and then

optimize the join statement.

■ Optimize the complex statement as is.

The optimizer transforms a complex statement into a join statement whenever the

resulting join statement is guaranteed to return exactly the same rows as the

complex statement. This transformation allows Oracle to execute the statement by

taking advantage of join optimization techniques described in "Optimizing Join

Statements" on page 24-2.
Optimizer Operations 23-13

Transforming and Optimizing Statements
Consider this complex statement that selects all rows from the ACCOUNTS table

whose owners appear in the CUSTOMERS table:

SELECT *
 FROM accounts
 WHERE custno IN
 (SELECT custno FROM customers);

If the CUSTNO column of the CUSTOMERS table is a primary key or has a

UNIQUE constraint, the optimizer can transform the complex query into this join

statement that is guaranteed to return the same data:

SELECT accounts.*
 FROM accounts, customers
 WHERE accounts.custno = customers.custno;

The execution plan for this statement might look like Figure 23–2.

Figure 23–2 Execution Plan for a Nested Loops Join

To execute this statement, Oracle performs a nested-loops join operation. For

information on nested loops joins, see "Join Operations" on page 24-2.

If the optimizer cannot transform a complex statement into a join statement, the

optimizer chooses execution plans for the parent statement and the subquery as

TABLE ACCESS
(FULL)

accounts

2 3

INDEX ACCESS
(UNIQUE SCAN)
pk_customers

1

NESTED LOOPS
23-14 Oracle8i Concepts

Transforming and Optimizing Statements
though they were separate statements. Oracle then executes the subquery and uses

the rows it returns to execute the parent query.

Consider this complex statement that returns all rows from the ACCOUNTS table

that have balances greater than the average account balance:

SELECT *
 FROM accounts
 WHERE accounts.balance >
 (SELECT AVG(balance) FROM accounts);

No join statement can perform the function of this statement, so the optimizer does

not transform the statement. Note that complex queries whose subqueries contain

aggregate functions such as AVG cannot be transformed into join statements.

Optimizing Statements That Access Views
To optimize a statement that accesses a view, the optimizer chooses one of these

alternatives:

■ Transform the statement into an equivalent statement that accesses the view’s

base tables, then optimize the resulting statement. The optimizer can use one of

these techniques to transform the statement:

– Merge the view’s query into the referencing query block in the accessing

statement.

– Push the predicate of the referencing query block inside the view (for an

unmergeable view).

■ Issue the view’s query, collecting all the returned rows, and then access this set

of rows with the original statement as though it were a table. (See "Accessing

the View’s Rows with the Original Statement" on page 23-25.)

Merging the View’s Query into the Statement
To merge the view’s query into a referencing query block in the accessing statement,

the optimizer replaces the name of the view with the names of its base tables in the

query block and adds the condition of the view’s query’s WHERE clause to the

accessing query block’s WHERE clause.

This optimization applies to select-project-join views, which are views that contain

only selections, projections, and joins—that is, views that do not contain set

operators, aggregate functions, DISTINCT, GROUP BY, CONNECT BY, and so on

(as described in "Mergeable and Unmergeable Views" on page 23-16).
Optimizer Operations 23-15

Transforming and Optimizing Statements
Example: Consider this view of all employees who work in department 10:

CREATE VIEW emp_10
 AS SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp
 WHERE deptno = 10;

Consider this query that accesses the view. The query selects the IDs greater than

7800 of employees who work in department 10:

SELECT empno
 FROM emp_10
 WHERE empno > 7800;

The optimizer transforms the query into the following query that accesses the

view’s base table:

SELECT empno
 FROM emp
 WHERE deptno = 10
 AND empno > 7800;

If there are indexes on the DEPTNO or EMPNO columns, the resulting WHERE

clause makes them available.

Mergeable and Unmergeable Views The optimizer can merge a view into a referencing

query block when the view has one or more base tables, provided the view does not

contain:

■ set operators (UNION, UNION ALL, INTERSECT, MINUS)

■ a CONNECT BY clause

■ a ROWNUM pseudocolumn

■ aggregate functions (AVG, COUNT, MAX, MIN, SUM) in the select list

When a view contains one of the following structures, it can be merged into a

referencing query block only if complex view merging is enabled (as described below):

■ a GROUP BY clause

■ a DISTINCT operator in the select list

View merging is not possible for a view that has multiple base tables if it is on the

right side of an outer join. If a view on the right side of an outer join has only one

base table, however, the optimizer can use complex view merging even if an
23-16 Oracle8i Concepts

Transforming and Optimizing Statements
expression in the view can return a non-null value for a NULL. See "Views in Outer

Joins" on page 24-11 for more information.

Complex View Merging If a view’s query contains a GROUP BY clause or DISTINCT

operator in the select list, then the optimizer can merge the view’s query into the

accessing statement only if complex view merging is enabled. Complex merging can

also be used to merge an IN subquery into the accessing statement, if the subquery

is uncorrelated (see "Example 2: IN Subquery" on page 23-18).

Complex merging is not cost-based—it must be enabled with the initialization

parameter OPTIMIZER_FEATURES_ENABLE or the MERGE hint, that is, either the

COMPLEX_VIEW_MERGING parameter must be set to TRUE or the accessing

query block must include the MERGE hint. Without this hint or parameter setting,

the optimizer uses another approach (see "Pushing the Predicate into the View" on

page 23-18).

Example 1: View with a GROUP BY Clause Consider the view AVG_SALARY_VIEW,

which contains the average salaries for each department:

CREATE VIEW avg_salary_view AS
 SELECT deptno, AVG(sal) AS avg_sal_dept,
 FROM emp
 GROUP BY deptno;

If complex view merging is enabled then the optimizer can transform this query,

which finds the average salaries of departments in London:

SELECT dept.deptloc, avg_sal_dept
 FROM dept, avg_salary_view
 WHERE dept.deptno = avg_salary_view.deptno
 AND dept.deptloc = ’London’;

into this query:

SELECT dept.deptloc, AVG(sal)
 FROM dept, emp
 WHERE dept.deptno = emp.deptno
 AND dept.deptloc = ’London’
 GROUP BY dept.rowid, dept.deptloc;

Additional Information: See Oracle8i Tuning for details about the

MERGE and NO_MERGE hints.
Optimizer Operations 23-17

Transforming and Optimizing Statements
The transformed query accesses the view’s base table, selecting only the rows of

employees who work in London and grouping them by department.

Example 2: IN Subquery Complex merging can be used for an IN clause with a

noncorrelated subquery, as well as for views. Consider the view

MIN_SALARY_VIEW, which contains the minimum salaries for each department:

SELECT deptno, MIN(sal)
 FROM emp
 GROUP BY deptno;

If complex merging is enabled then the optimizer can transform this query, which

finds all employees who earn the minimum salary for their department in London:

SELECT emp.ename, emp.sal
 FROM emp, dept
 WHERE (emp.deptno, emp.sal) IN min_salary_view
 AND emp.deptno = dept.deptno
 AND dept.deptloc = ’London’;

into this query (where E1 and E2 represent the EMP table as it is referenced in the

accessing query block and the view’s query block, respectively):

SELECT e1.ename, e1.sal
 FROM emp e1, dept, emp e2
 WHERE e1.deptno = dept.deptno
 AND dept.deptloc = ’London’
 AND e1.deptno = e2.deptno
 GROUP BY e1.rowid, dept.rowid, e1.ename, e1.sal
 HAVING e1.sal = MIN(e2.sal);

Pushing the Predicate into the View
The optimizer can transform a query block that accesses an unmergeable view by

pushing the query block’s predicates inside the view’s query.

Example 1: Consider the TWO_EMP_TABLES view, which is the union of two

employee tables. The view is defined with a compound query that uses the UNION

set operator:

CREATE VIEW two_emp_tables
 (empno, ename, job, mgr, hiredate, sal, comm, deptno) AS
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp1
 UNION
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
23-18 Oracle8i Concepts

Transforming and Optimizing Statements
 FROM emp2;

Consider this query that accesses the view. The query selects the IDs and names of

all employees in either table who work in department 20:

SELECT empno, ename
 FROM two_emp_tables
 WHERE deptno = 20;

Because the view is defined as a compound query, the optimizer cannot merge the

view’s query into the accessing query block. Instead, the optimizer can transform

the accessing statement by pushing its predicate, the WHERE clause condition

(DEPTNO = 20), into the view’s compound query.

The resulting statement looks like this:

SELECT empno, ename
 FROM (SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp1
 WHERE deptno = 20
 UNION
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp2
 WHERE deptno = 20);

If there is an index on the DEPTNO column, the resulting WHERE clauses make it

available.

Figure 23–3 shows the execution plan of the resulting statement.
Optimizer Operations 23-19

Transforming and Optimizing Statements
Figure 23–3 Accessing a View Defined with the UNION Set Operator

TABLE ACCESS
(FULL)
emp1

5 6

TABLE ACCESS
(FULL)
emp2

4

UNION-ALL

3

SORT
(UNIQUE)

2

PROJECTION

1

VIEW
two_emp_tables
23-20 Oracle8i Concepts

Transforming and Optimizing Statements
To execute this statement, Oracle performs these steps:

■ Steps 5 and 6 perform full scans of the EMP1 and EMP2 tables.

■ Step 4 performs a UNION-ALL operation returning all rows returned by either

Step 5 or Step 6, including all copies of duplicates.

■ Step 3 sorts the result of Step 4, eliminating duplicate rows.

■ Step 2 extracts the desired columns from the result of Step 3.

■ Step 1 indicates that the view’s query was not merged into the accessing query.

Example 2: Consider the view EMP_GROUP_BY_DEPTNO, which contains the

department number, average salary, minimum salary, and maximum salary of all

departments that have employees:

CREATE VIEW emp_group_by_deptno
 AS SELECT deptno,
 AVG(sal) avg_sal,
 MIN(sal) min_sal,
 MAX(sal) max_sal
 FROM emp
 GROUP BY deptno;

Consider this query, which selects the average, minimum, and maximum salaries of

department 10 from the EMP_GROUP_BY_DEPTNO view:

SELECT *
 FROM emp_group_by_deptno
 WHERE deptno = 10;

The optimizer transforms the statement by pushing its predicate (the WHERE

clause condition) into the view’s query. The resulting statement looks like this:

SELECT deptno,
 AVG(sal) avg_sal,
 MIN(sal) min_sal,
 MAX(sal) max_sal,
 FROM emp
 WHERE deptno = 10
 GROUP BY deptno;

If there is an index on the DEPTNO column, the resulting WHERE clause makes it

available.
Optimizer Operations 23-21

Transforming and Optimizing Statements
Figure 23–4 shows the execution plan for the resulting statement. The execution

plan uses an index on the DEPTNO column.

Figure 23–4 Accessing a View Defined with a GROUP BY Clause

4

INDEX
(RANGE SCAN)

emp_deptno
_index

3

TABLE ACCESS
(BY ROWID)

emp

2

SORT
(GROUP BY)

1

VIEW
emp_group_by

_deptno
23-22 Oracle8i Concepts

Transforming and Optimizing Statements
To execute this statement, Oracle performs these operations:

■ Step 4 performs a range scan on the index EMP_DEPTNO_INDEX (an index on

the DEPTNO column of the EMP table) to retrieve the rowids of all rows in the

EMP table with a DEPTNO value of 10.

■ Step 3 accesses the EMP table using the rowids retrieved by Step 4.

■ Step 2 sorts the rows returned by Step 3 to calculate the average, minimum, and

maximum SAL values.

■ Step 1 indicates that the view’s query was not merged into the accessing query.

Applying an Aggregate Function to the View The optimizer can transform a query that

contains an aggregate function (AVG, COUNT, MAX, MIN, SUM) by applying the

function to the view’s query.

Example: Consider a query that accesses the EMP_GROUP_BY_DEPTNO view

defined in the previous example. This query derives the averages for the average

department salary, the minimum department salary, and the maximum department

salary from the employee table:

SELECT AVG(avg_sal), AVG(min_sal), AVG(max_sal)
 FROM emp_group_by_deptno;

The optimizer transforms this statement by applying the AVG aggregate function to

the select list of the view’s query:

SELECT AVG(AVG(sal)), AVG(MIN(sal)), AVG(MAX(sal))
 FROM emp
 GROUP BY deptno;

Figure 23–5 shows the execution plan of the resulting statement.
Optimizer Operations 23-23

Transforming and Optimizing Statements
Figure 23–5 Applying Aggregate Functions to a View Defined with GROUP BY Clause

To execute this statement, Oracle performs these operations:

■ Step 4 performs a full scan of the EMP table.

■ Step 3 sorts the rows returned by Step 4 into groups based on their DEPTNO

values and calculates the average, minimum, and maximum SAL value of each

group.

4

TABLE ACCESS
(FULL)

emp

3

SORT
(GROUP BY)

2

VIEW
emp_group_by

_deptno

1

AGGREGATE
(GROUP BY)
23-24 Oracle8i Concepts

Transforming and Optimizing Statements
■ Step 2 indicates that the view’s query was not merged into the accessing query.

■ Step 1 calculates the averages of the values returned by Step 2.

Accessing the View’s Rows with the Original Statement
The optimizer cannot transform all statements that access views into equivalent

statements that access base table(s). For example, if a query accesses a ROWNUM

pseudocolumn in a view, the view cannot be merged into the query and the query’s

predicate cannot be pushed into the view.

To execute a statement that cannot be transformed into one that accesses base tables,

Oracle issues the view’s query, collects the resulting set of rows, and then accesses

this set of rows with the original statement as though it were a table.

Example: Consider the EMP_GROUP_BY_DEPTNO view defined in the previous

section:

CREATE VIEW emp_group_by_deptno
 AS SELECT deptno,
 AVG(sal) avg_sal,
 MIN(sal) min_sal,
 MAX(sal) max_sal
 FROM emp
 GROUP BY deptno;

Consider this query, which accesses the view. The query joins the average,

minimum, and maximum salaries from each department represented in this view

and to the name and location of the department in the DEPT table:

SELECT emp_group_by_deptno.deptno, avg_sal, min_sal,
 max_sal, dname, loc
 FROM emp_group_by_deptno, dept
 WHERE emp_group_by_deptno.deptno = dept.deptno;

Since there is no equivalent statement that accesses only base tables, the optimizer

cannot transform this statement. Instead, the optimizer chooses an execution plan

that issues the view’s query and then uses the resulting set of rows as it would the

rows resulting from a table access.

Figure 23–6 shows the execution plan for this statement. For more information on

how Oracle performs a nested loops join operation, see "Join Operations" on

page 24-2.
Optimizer Operations 23-25

Transforming and Optimizing Statements
Figure 23–6 Joining a View Defined with a GROUP BY Clause to a Table

To execute this statement, Oracle performs these operations:

■ Step 4 performs a full scan of the EMP table.

■ Step 3 sorts the results of Step 4 and calculates the average, minimum, and

maximum SAL values selected by the query for the

EMP_GROUP_BY_DEPTNO view.

■ Step 2 used the data from the previous two steps for a view.

VIEW
emp_group_by

_deptno

2 5

TABLE ACCESS
(BY ROWID)

dept

6

INDEX
(UNIQUE SCAN)

pk_dept

4

TABLE ACCESS
(FULL)

emp

3

SORT
(GROUP BY)

1

NESTED LOOPS
23-26 Oracle8i Concepts

Transforming and Optimizing Statements
■ For each row returned by Step 2, Step 6 uses the DEPTNO value to perform a

unique scan of the PK_DEPT index.

■ Step 5 uses each rowid returned by Step 6 to locate the row in the DEPTNO

table with the matching DEPTNO value.

■ Oracle combines each row returned by Step 2 with the matching row returned

by Step 5 and returns the result.

Optimizing Compound Queries
To choose the execution plan for a compound query, the optimizer chooses an

execution plan for each of its component queries and then combines the resulting

row sources with the union, intersection, or minus operation, depending on the set

operator used in the compound query.

Figure 23–7 shows the execution plan for this statement, which uses the UNION

ALL operator to select all occurrences of all parts in either the ORDERS1 table or the

ORDERS2 table:

SELECT part FROM orders1
UNION ALL
SELECT part FROM orders2;

Figure 23–7 Compound Query with UNION ALL Set Operator

TABLE ACCESS
(FULL)
orders1

2 3

TABLE ACCESS
(FULL)
orders2

1

UNION-ALL
Optimizer Operations 23-27

Transforming and Optimizing Statements
To execute this statement, Oracle performs these steps:

■ Steps 2 and 3 perform full table scans on the ORDERS1 and ORDERS2 tables.

■ Step 1 performs a UNION-ALL operation returning all rows that are returned

by either Step 2 or Step 3 including all copies of duplicates.

Figure 23–8 shows the execution plan for the following statement, which uses the

UNION operator to select all parts that appear in either the ORDERS1 or ORDERS2

table:

SELECT part FROM orders1
UNION
SELECT part FROM orders2;

Figure 23–8 Compound Query with UNION Set Operator

TABLE ACCESS
(FULL)
orders1

3 4

TABLE ACCESS
(FULL)
orders2

2

UNION-ALL

1

SORT
(UNIQUE)
23-28 Oracle8i Concepts

Transforming and Optimizing Statements
This execution plan is identical to the one for the UNION-ALL operator shown in

Figure 23–7 on page 23-27, except that in this case Oracle uses the SORT operation

to eliminate the duplicates returned by the UNION-ALL operation.

Figure 23–9 shows the execution plan for this statement, which uses the

INTERSECT operator to select only those parts that appear in both the ORDERS1

and ORDERS2 tables:

SELECT part FROM orders1
INTERSECT
SELECT part FROM orders2;

Figure 23–9 Compound Query with INTERSECT Set Operator

3

TABLE ACCESS
(FULL)
orders1

SORT
(UNIQUE)

2 4

SORT
(UNIQUE)

5

TABLE ACCESS
(FULL)
orders2

1

INTERSECTION
Optimizer Operations 23-29

Transforming and Optimizing Statements
To execute this statement, Oracle performs these steps:

■ Steps 3 and 5 perform full table scans of the ORDERS1 and ORDERS2 tables.

■ Steps 2 and 4 sort the results of Steps 3 and 5, eliminating duplicates in each

row source.

■ Step 1 performs an INTERSECTION operation that returns only rows that are

returned by both Steps 2 and 4.

Optimizing Distributed Statements
The optimizer chooses execution plans for SQL statements that access data on

remote databases in much the same way it chooses executions for statements that

access only local data:

■ If all the tables accessed by a SQL statement are collocated on the same remote

database, Oracle sends the SQL statement to that remote database. The remote

Oracle instance executes the statement and sends only the results back to the

local database.

■ If a SQL statement accesses tables that are located on different databases, Oracle

decomposes the statement into individual fragments, each of which accesses

tables on a single database. Oracle then sends each fragment to the database

that it accesses. The remote Oracle instance for each of these databases executes

its fragment and returns the results to the local database, where the local Oracle

instance may perform any additional processing the statement requires.

When choosing a cost-based execution plan for a distributed statement, the

optimizer considers the available indexes on remote databases just as it does

indexes on the local database. The optimizer also considers statistics on remote

databases for cost-based optimization. Furthermore, the optimizer considers the

location of data when estimating the cost of accessing it. For example, a full scan of

a remote table has a greater estimated cost than a full scan of an identical local table.

For a rule-based execution plan, the optimizer does not consider indexes on

remote tables.
23-30 Oracle8i Concepts

Choosing an Optimization Approach and Goal
Choosing an Optimization Approach and Goal
The optimizer’s behavior when choosing an optimization approach and goal for a

SQL statement is affected by these factors:

■ the OPTIMIZER_MODE initialization parameter

■ statistics in the data dictionary

■ the OPTIMIZER_GOAL parameter of the ALTER SESSION command

■ hints (comments) in the SQL statement

■ the statement being executed in a PL/SQL block

The OPTIMIZER_MODE Initialization Parameter
The OPTIMIZER_MODE initialization parameter establishes the default behavior

for choosing an optimization approach for the instance. It can have these values:

If the optimizer uses the cost-based approach for a SQL statement and some tables

accessed by the statement have no statistics, the optimizer uses internal information

(such as the number of data blocks allocated to these tables) to estimate other

statistics for these tables.

CHOOSE The optimizer chooses between a cost-based approach and a

rule-based approach based on whether statistics are available for

the cost-based approach. If the data dictionary contains statistics

for at least one of the accessed tables, the optimizer uses a

cost-based approach and optimizes with a goal of best

throughput. If the data dictionary contains no statistics for any of

the accessed tables, the optimizer uses a rule-based approach.

This is the default value for the parameter.

ALL_ROWS The optimizer uses a cost-based approach for all SQL statements

in the session regardless of the presence of statistics and

optimizes with a goal of best throughput (minimum resource use

to complete the entire statement).

FIRST_ROWS The optimizer uses a cost-based approach for all SQL statements

in the session regardless of the presence of statistics and

optimizes with a goal of best response time (minimum resource

use to return the first row of the result set).

RULE The optimizer chooses a rule-based approach for all SQL

statements regardless of the presence of statistics.
Optimizer Operations 23-31

Choosing an Optimization Approach and Goal
Statistics in the Data Dictionary
Oracle stores statistics about columns, tables, clusters, indexes, and partitions in the

data dictionary for cost-based optimization. You can collect exact or estimated

statistics about physical storage characteristics and data distribution in these

schema objects by using the DBMS_STATS package, the ANALYZE command, or

the COMPUTE STATISTICS clause of the CREATE or ALTER INDEX command.

To provide the optimizer with up-to-date statistics, you should collect new statistics

after modifying the data or structure of schema objects in ways that could affect

their statistics. See "Statistics for Cost-Based Optimization" on page 22-8 for more

information about statistics.

The OPTIMIZER_GOAL Parameter of the ALTER SESSION Command
The OPTIMIZER_GOAL parameter of the ALTER SESSION command can override

the optimization approach and goal established by the OPTIMIZER_MODE

initialization parameter for an individual session.

The value of this parameter affects the optimization of SQL statements issued by

stored procedures and functions called during the session, but it does not affect the

optimization of recursive SQL statements that Oracle issues during the session. The

optimization approach for recursive SQL statements is affected only by the value of

the OPTIMIZER_MODE initialization parameter.

The OPTIMIZER_GOAL parameter can have these values:

CHOOSE The optimizer chooses between a cost-based approach and a

rule-based approach based on whether statistics are available for

the cost-based approach. If the data dictionary contains statistics

for at least one of the accessed tables, the optimizer uses a

cost-based approach and optimizes with a goal of best

throughput. If the data dictionary contains no statistics for any of

the accessed tables, the optimizer uses a rule-based approach.

ALL_ROWS The optimizer uses a cost-based approach for all SQL statements

in the session regardless of the presence of statistics and

optimizes with a goal of best throughput (minimum resource use

to complete the entire statement).

FIRST_ROWS The optimizer uses a cost-based approach for all SQL statements

in the session regardless of the presence of statistics and

optimizes with a goal of best response time (minimum resource

use to return the first row of the result set).
23-32 Oracle8i Concepts

Choosing Access Paths
The FIRST_ROWS, ALL_ROWS, CHOOSE, and RULE Hints
A FIRST_ROWS, ALL_ROWS, CHOOSE, or RULE hint in an individual SQL

statement can override the effects of both the OPTIMIZER_MODE initialization

parameter and the OPTIMIZER_GOAL parameter of the ALTER SESSION

command.

PL/SQL and the Optimizer Goal
The optimizer goal applies only to queries submitted directly, not queries submitted

from within PL/SQL.

■ The ALTER SESSION OPTIMIZER_GOAL statement does not affect SQL that is

run from within PL/SQL.

■ PL/SQL ignores the initialization parameter OPTIMIZER_MODE =

FIRST_ROWS.

You can use hints to determine the access path for SQL statements submitted from

within PL/SQL.

Choosing Access Paths
One of the most important choices the optimizer makes when formulating an

execution plan is how to retrieve data from the database. For any row in any table

accessed by a SQL statement, there may be many access paths by which that row

can be located and retrieved. The optimizer chooses one of them.

This section discusses:

■ the basic methods by which Oracle can access data

■ each access path and when it is available to the optimizer

■ how the optimizer chooses among available access paths

RULE The optimizer chooses a rule-based approach for all SQL

statements issued to the Oracle instance regardless of the

presence of statistics.

Additional Information: See Oracle8i Tuning for information on

how to use hints.
Optimizer Operations 23-33

Choosing Access Paths
Access Methods
This section describes the basic methods by which Oracle can access data.

Full Table Scans
A full table scan retrieves rows from a table. To perform a full table scan, Oracle

reads all rows in the table, examining each row to determine whether it satisfies the

statement’s WHERE clause. Oracle reads every data block allocated to the table

sequentially, so a full table scan can be performed very efficiently using multiblock

reads. Oracle reads each data block only once.

Sample Table Scans
A sample table scan retrieves a random sample of data from a table. This access

method is used when the statement’s FROM clause includes the SAMPLE option or

the SAMPLE BLOCK option. To perform a sample table scan when sampling by

rows (the SAMPLE option), Oracle reads a specified percentage of rows in the table

and examines each of these rows to determine whether it satisfies the statement’s

WHERE clause. To perform a sample table scan when sampling by blocks (the

SAMPLE BLOCK option), Oracle reads a specified percentage of the table’s blocks

and examines each row in the sampled blocks to determine whether it satisfies the

statement’s WHERE clause.

Oracle does not support sample table scans when the query involves a join or a

remote table. See "Types of SQL Statements" on page 23-3 for information about

joins and distributed statements.

Table Access by Rowid
A table access by rowid also retrieves rows from a table. The rowid of a row

specifies the datafile and data block containing the row and the location of the row

in that block. Locating a row by its rowid is the fastest way for Oracle to find a

single row.

To access a table by rowid, Oracle first obtains the rowids of the selected rows,

either from the statement’s WHERE clause or through an index scan of one or more

of the table’s indexes. Oracle then locates each selected row in the table based on its

rowid.

Cluster Scans
From a table stored in an indexed cluster, a cluster scan retrieves rows that have the

same cluster key value. In an indexed cluster, all rows with the same cluster key
23-34 Oracle8i Concepts

Choosing Access Paths
value are stored in the same data blocks. To perform a cluster scan, Oracle first

obtains the rowid of one of the selected rows by scanning the cluster index. Oracle

then locates the rows based on this rowid.

Hash Scans
Oracle can use a hash scan to locate rows in a hash cluster based on a hash value. In

a hash cluster, all rows with the same hash value are stored in the same data blocks.

To perform a hash scan, Oracle first obtains the hash value by applying a hash

function to a cluster key value specified by the statement. Oracle then scans the data

blocks containing rows with that hash value.

Index Scans
An index scan retrieves data from an index based on the value of one or more

columns of the index. To perform an index scan, Oracle searches the index for the

indexed column values accessed by the statement. If the statement accesses only

columns of the index, Oracle reads the indexed column values directly from the

index, rather than from the table.

The index contains not only the indexed value, but also the rowids of rows in the

table having that value. Therefore, if the statement accesses other columns in

addition to the indexed columns, Oracle can find the rows in the table with a table

access by rowid or a cluster scan.

An index scan can be one of these types:

unique scan A unique scan of an index returns only a single rowid. Oracle

performs a unique scan only in cases in which a single rowid is

required, rather than many rowids. For example, Oracle

performs a unique scan if there is a UNIQUE or a PRIMARY

KEY constraint that guarantees that the statement accesses only

a single row.

range scan A range scan of an index can return zero or more rowids

depending on how many rows the statement accesses.

full scan Full index scan is available if a predicate references one of the

columns in the index. The predicate does not have to be an

index driver. Full scan is also available when there is no

predicate if all of the columns in the table referenced in the

query are included in the index and at least one of the index

columns is not nullable. Full scan can be used to eliminate a

sort operation. It reads the blocks singly.
Optimizer Operations 23-35

Choosing Access Paths
Access Paths
Table 23–1 lists the data access paths. The optimizer can only choose to use a

particular access path for a table if the statement contains a WHERE clause

condition or other construct that makes that access path available.

■ The cost-based approach chooses a path based on resource use (see "Choosing

an Access Path with the Cost-Based Approach" on page 23-50).

fast full scan Fast full index scan is an alternative to a full table scan when

the index contains all the columns that are needed for the query

and at least one column in the index key has the NOT NULL

constraint. Fast full scan accesses the data in the index itself,

without accessing the table. It cannot be used to eliminate a sort

operation. It reads the entire index using multiblock reads

(unlike a full index scan) and can be parallelized.

Fast full scan is available only with cost-based optimization.

You can specify it with the initialization parameter

OPTIMIZER_FEATURES_ENABLE or the INDEX_FFS hint.

index join An index join is a hash join of several indexes that together

contain all the columns from the table that are referenced in the

query. If an index join is used, no table access is needed since all

the relevant column values can be retrieved from the indexes.

An index join cannot be used to eliminate a sort operation.

Index join is available only with cost-based optimization. You

can specify it with the initialization parameter

OPTIMIZER_FEATURES_ENABLE or the INDEX_JOIN hint.

bitmap Bitmap indexes use a bitmap for key values and a mapping

function that converts each bit position to a rowid. Bitmaps can

efficiently merge indexes that correspond to several conditions

in a WHERE clause, using Boolean operations to resolve AND

and OR conditions (see "Bitmap Indexes" on page 10-32).

Bitmap access is available only with cost-based optimization.

Attention: Bitmap indexes are available only if you have

purchased the Oracle8i Enterprise Edition. See Getting to Know
Oracle8i for more information.
23-36 Oracle8i Concepts

Choosing Access Paths
■ The rule-based approach uses the rank of each path to choose a path when more

than one path is available (see "Choosing an Access Path with the Rule-Based

Approach" on page 23-54).

Table 23–1 Access Paths

Rank Access Path

1 Single row by rowid

2 Single row by cluster join

3 Single row by hash cluster key with unique or primary key

4 Single row by unique or primary key

5 Cluster join

6 Hash cluster key

7 Indexed cluster key

8 Composite key

9 Single-column indexes

10 Bounded range search on indexed columns

11 Unbounded range search on indexed columns

12 Sort-merge join

13 MAX or MIN of indexed column

14 ORDER BY on indexed columns

15 Full table scan

Unranked Access Paths

— Sample table scan (not available for rule-based optimization):
see "Sample Table Scan (Unranked Access Path)" on page 23-49

— Fast full index scan (not available for rule-based optimization):
see Oracle8i Tuning

— Index join (not available for rule-based optimization): see "Index
Join (Unranked Access Path)" on page 23-49

— Bitmap index scan (not available for rule-based optimization):
see "Star Transformation" on page 24-16
Optimizer Operations 23-37

Choosing Access Paths
Each of the following sections describes an access path and discusses when it is

available, the method Oracle uses to access data with it, and the output generated

for it by the EXPLAIN PLAN command.

Path 1: Single Row by Rowid
This access path is available only if the statement’s WHERE clause identifies the

selected rows by rowid or with the CURRENT OF CURSOR embedded SQL syntax

supported by the Oracle Precompilers. To execute the statement, Oracle accesses the

table by rowid.

Example: This access path is available in the following statement:

SELECT * FROM emp WHERE ROWID = ’AAAA7bAA5AAAA1UAAA’;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP

Path 2: Single Row by Cluster Join
This access path is available for statements that join tables stored in the same cluster

if both of these conditions are true:

■ The statement’s WHERE clause contains conditions that equate each column of

the cluster key in one table with the corresponding column in the other table.

■ The statement’s WHERE clause also contains a condition that guarantees that

the join returns only one row. Such a condition is likely to be an equality

condition on the column(s) of a unique or primary key.

These conditions must be combined with AND operators. To execute the statement,

Oracle performs a nested loops operation. (For information on the nested loops

operation, see "Join Operations" on page 24-2.)

Example: This access path is available for the following statement in which the EMP

and DEPT tables are clustered on the DEPTNO column and the EMPNO column is

the primary key of the EMP table:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
23-38 Oracle8i Concepts

Choosing Access Paths
 AND emp.empno = 7900;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS BY ROWID EMP
 INDEX UNIQUE SCAN PK_EMP
 TABLE ACCESS CLUSTER DEPT

PK_EMP is the name of an index that enforces the primary key.

Path 3: Single Row by Hash Cluster Key with Unique or Primary Key
This access path is available if both of these conditions are true:

■ The statement’s WHERE clause uses all columns of a hash cluster key in

equality conditions. For composite cluster keys, the equality conditions must be

combined with AND operators.

■ The statement is guaranteed to return only one row because the columns that

make up the hash cluster key also make up a unique or primary key.

To execute the statement, Oracle applies the cluster’s hash function to the hash

cluster key value specified in the statement to obtain a hash value. Oracle then uses

the hash value to perform a hash scan on the table.

Example: This access path is available in the following statement in which the

ORDERS and LINE_ITEMS tables are stored in a hash cluster, and the ORDERNO

column is both the cluster key and the primary key of the ORDERS table:

SELECT *
 FROM orders
 WHERE orderno = 65118968;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS HASH ORDERS
Optimizer Operations 23-39

Choosing Access Paths
Path 4: Single Row by Unique or Primary Key
This access path is available if the statement’s WHERE clause uses all columns of a

unique or primary key in equality conditions. For composite keys, the equality

conditions must be combined with AND operators. To execute the statement, Oracle

performs a unique scan on the index on the unique or primary key to retrieve a

single rowid and then accesses the table by that rowid.

Example: This access path is available in the following statement in which the

EMPNO column is the primary key of the EMP table:

SELECT *
 FROM emp
 WHERE empno = 7900;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX UNIQUE SCAN PK_EMP

PK_EMP is the name of the index that enforces the primary key.

Path 5: Clustered Join
This access path is available for statements that join tables stored in the same cluster

if the statement’s WHERE clause contains conditions that equate each column of the

cluster key in one table with the corresponding column in the other table. For a

composite cluster key, the equality conditions must be combined with AND

operators. To execute the statement, Oracle performs a nested loops operation. (For

information on nested loops operations, see "Join Operations" on page 24-2.)

Example: This access path is available in the following statement in which the EMP

and DEPT tables are clustered on the DEPTNO column:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
23-40 Oracle8i Concepts

Choosing Access Paths
 NESTED LOOPS
 TABLE ACCESS FULL DEPT
 TABLE ACCESS CLUSTER EMP

Path 6: Hash Cluster Key
This access path is available if the statement’s WHERE clause uses all the columns

of a hash cluster key in equality conditions. For a composite cluster key, the equality

conditions must be combined with AND operators. To execute the statement, Oracle

applies the cluster’s hash function to the hash cluster key value specified in the

statement to obtain a hash value. Oracle then uses this hash value to perform a hash

scan on the table.

Example: This access path is available for the following statement in which the

ORDERS and LINE_ITEMS tables are stored in a hash cluster and the ORDERNO

column is the cluster key:

SELECT *
 FROM line_items
 WHERE orderno = 65118968;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS HASH LINE_ITEMS

Path 7: Indexed Cluster Key
This access path is available if the statement’s WHERE clause uses all the columns

of an indexed cluster key in equality conditions. For a composite cluster key, the

equality conditions must be combined with AND operators. To execute the

statement, Oracle performs a unique scan on the cluster index to retrieve the rowid

of one row with the specified cluster key value. Oracle then uses that rowid to

access the table with a cluster scan. Since all rows with the same cluster key value

are stored together, the cluster scan requires only a single rowid to find them all.

Example: This access path is available in the following statement in which the EMP

table is stored in an indexed cluster and the DEPTNO column is the cluster key:

SELECT * FROM emp
 WHERE deptno = 10;

The EXPLAIN PLAN output for this statement might look like this:
Optimizer Operations 23-41

Choosing Access Paths
OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS CLUSTER EMP
 INDEX UNIQUE SCAN PERS_INDEX

PERS_INDEX is the name of the cluster index.

Path 8: Composite Index
This access path is available if the statement’s WHERE clause uses all columns of a

composite index in equality conditions combined with AND operators. To execute

the statement, Oracle performs a range scan on the index to retrieve rowids of the

selected rows and then accesses the table by those rowids.

Example: This access path is available in the following statement in which there is a

composite index on the JOB and DEPTNO columns:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 AND deptno = 30;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN JOB_DEPTNO_INDEX

JOB_DEPTNO_INDEX is the name of the composite index on the JOB and DEPTNO

columns.

Path 9: Single-Column Indexes
This access path is available if the statement’s WHERE clause uses the columns of

one or more single-column indexes in equality conditions. For multiple

single-column indexes, the conditions must be combined with AND operators.

If the WHERE clause uses the column of only one index, Oracle executes the

statement by performing a range scan on the index to retrieve the rowids of the

selected rows and then accessing the table by these rowids.
23-42 Oracle8i Concepts

Choosing Access Paths
Example: This access path is available in the following statement in which there is an

index on the JOB column of the EMP table:

SELECT *
 FROM emp
 WHERE job = ’ANALYST’;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN JOB_INDEX

JOB_INDEX is the index on EMP.JOB.

If the WHERE clauses uses columns of many single-column indexes, Oracle

executes the statement by performing a range scan on each index to retrieve the

rowids of the rows that satisfy each condition. Oracle then merges the sets of rowids

to obtain a set of rowids of rows that satisfy all conditions. Oracle then accesses the

table using these rowids.

Oracle can merge up to five indexes. If the WHERE clause uses columns of more

than five single-column indexes, Oracle merges five of them, accesses the table by

rowid, and then tests the resulting rows to determine whether they satisfy the

remaining conditions before returning them.

Example: This access path is available in the following statement in which there are

indexes on both the JOB and DEPTNO columns of the EMP table:

SELECT *
 FROM emp
 WHERE job = ’ANALYST’
 AND deptno = 20;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 AND-EQUAL
 INDEX RANGE SCAN JOB_INDEX
 INDEX RANGE SCAN DEPTNO_INDEX
Optimizer Operations 23-43

Choosing Access Paths
The AND-EQUAL operation merges the rowids obtained by the scans of the

JOB_INDEX and the DEPTNO_INDEX, resulting in a set of rowids of rows that

satisfy the query.

Path 10: Bounded Range Search on Indexed Columns
This access path is available if the statement’s WHERE clause contains a condition

that uses either the column of a single-column index or one or more columns that

make up a leading portion of a composite index:

column = expr

column >[=] expr AND column <[=] expr

column BETWEEN expr AND expr

column LIKE ’c%’

Each of these conditions specifies a bounded range of indexed values that are

accessed by the statement. The range is said to be bounded because the conditions

specify both its least value and its greatest value. To execute such a statement,

Oracle performs a range scan on the index and then accesses the table by rowid.

This access path is not available if the expression expr references the indexed

column.

Example: This access path is available in this statement in which there is an index on

the SAL column of the EMP table:

SELECT *
 FROM emp
 WHERE sal BETWEEN 2000 AND 3000;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN SAL_INDEX

SAL_INDEX is the name of the index on EMP.SAL.

Example: This access path is also available in the following statement in which there

is an index on the ENAME column of the EMP table:
23-44 Oracle8i Concepts

Choosing Access Paths
SELECT *
 FROM emp
 WHERE ename LIKE ’S%’;

Path 11: Unbounded Range Search on Indexed Columns
This access path is available if the statement’s WHERE clause contains one of these

conditions that use either the column of a single-column index or one or more

columns of a leading portion of a composite index:

WHERE column >[=] expr

WHERE column <[=] expr

Each of these conditions specifies an unbounded range of index values accessed by

the statement. The range is said to be unbounded because the condition specifies

either its least value or its greatest value, but not both. To execute such a statement,

Oracle performs a range scan on the index and then accesses the table by rowid.

Example: This access path is available in the following statement in which there is an

index on the SAL column of the EMP table:

SELECT *
 FROM emp
 WHERE sal > 2000;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN SAL_INDEX

Example: This access path is available in the following statement in which there is a

composite index on the ORDER and LINE columns of the LINE_ITEMS table:

SELECT *
 FROM line_items
 WHERE order > 65118968;

The access path is available because the WHERE clause uses the ORDER column, a

leading portion of the index.
Optimizer Operations 23-45

Choosing Access Paths
Example: This access path is not available in the following statement in which there

is an index on the ORDER and LINE columns:

SELECT *
 FROM line_items
 WHERE line < 4;

The access path is not available because the WHERE clause only uses the LINE

column, which is not a leading portion of the index.

Path 12: Sort-Merge Join
This access path is available for statements that join tables that are not stored

together in a cluster if the statement’s WHERE clause uses columns from each table

in equality conditions. To execute such a statement, Oracle uses a sort-merge

operation. Oracle can also use a nested loops operation to execute a join statement.

(For information on these operations, see "Optimizing Join Statements" on

page 24-2.)

Example: This access path is available for the following statement in which the EMP

and DEPT tables are not stored in the same cluster:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 MERGE JOIN
 SORT JOIN
 TABLE ACCESS FULL EMP
 SORT JOIN
 TABLE ACCESS FULL DEPT

Path 13: MAX or MIN of Indexed Column
This access path is available for a SELECT statement for which all of these

conditions are true:

■ The query uses the MAX or MIN function to select the maximum or minimum

value of either the column of a single-column index or the leading column of a

composite index. The index cannot be a cluster index. The argument to the
23-46 Oracle8i Concepts

Choosing Access Paths
MAX or MIN function can be any expression involving the column, a constant,

or the addition operator (+), the concatenation operation (||), or the CONCAT

function.

■ There are no other expressions in the select list.

■ The statement has no WHERE clause or GROUP BY clause.

To execute the query, Oracle performs a range scan of the index to find the

maximum or minimum indexed value. Since only this value is selected, Oracle need

not access the table after scanning the index.

Example: This access path is available for the following statement in which there is

an index on the SAL column of the EMP table:

SELECT MAX(sal) FROM emp;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 AGGREGATE GROUP BY
 INDEX RANGE SCAN SAL_INDEX

Path 14: ORDER BY on Indexed Column
This access path is available for a SELECT statement for which all of these

conditions are true:

■ The query contains an ORDER BY clause that uses either the column of a

single-column index or a leading portion of a composite index. The index

cannot be a cluster index.

■ There must be a PRIMARY KEY or NOT NULL integrity constraint that

guarantees that at least one of the indexed columns listed in the ORDER BY

clause contains no nulls.

■ The NLS_SORT parameter is set to BINARY.

To execute the query, Oracle performs a range scan of the index to retrieve the

rowids of the selected rows in sorted order. Oracle then accesses the table by these

rowids.

Example: This access path is available for the following statement in which there is a

primary key on the EMPNO column of the EMP table:
Optimizer Operations 23-47

Choosing Access Paths
SELECT *
 FROM emp
 ORDER BY empno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN PK_EMP

PK_EMP is the name of the index that enforces the primary key. The primary key

ensures that the column does not contain nulls.

Path 15: Full Table Scan
This access path is available for any SQL statement, regardless of its WHERE clause

conditions, except when its FROM clause contains SAMPLE or SAMPLE BLOCK.

Note that these conditions make index access paths unavailable:

■ column1 > column2

■ column1 < column2

■ column1 >= column2

■ column1 <= column2

where column1 and column2 are in the same table.

■ column IS NULL

■ column IS NOT NULL

■ column NOT IN

■ column != expr

■ column LIKE ’%pattern’

regardless of whether column is indexed.

■ expr = expr2

where expr is an expression that operates on a column with an operator or function,

regardless of whether the column is indexed.

■ NOT EXISTS subquery
23-48 Oracle8i Concepts

Choosing Access Paths
■ ROWNUM pseudocolumn in a view

■ any condition involving a column that is not indexed

Any SQL statement that contains only these constructs and no others that make

index access paths available must use full table scans.

Example: This statement uses a full table scan to access the EMP table:

SELECT *
 FROM emp;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS FULL EMP

Sample Table Scan (Unranked Access Path)
This access path is available for a SELECT statement that includes the SAMPLE or

SAMPLE BLOCK option in its FROM clause. Sample table scans require cost-based

optimization.

Example: This statement uses a sample table scan to access 1% of the EMP table,

sampling by blocks:

SELECT *
 FROM emp SAMPLE BLOCK (1);

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS SAMPLE EMP

Index Join (Unranked Access Path)
This access path is available for a SELECT statement that accesses data found in two

or more indexed columns of a table. No table access is needed since all the relevant

column values can be retrieved from the indexes. Index joins require cost-based

optimization.
Optimizer Operations 23-49

Choosing Access Paths
Example: This statement uses an index join to access the EMPNO and SAL columns,

both of which are indexed, in the EMP table:

SELECT empno, sal
 FROM emp
 WHERE sal > 2000;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 VIEW index$_join$_001
 HASH JOIN
 INDEX RANGE SCAN EMP_SAL
 INDEX FAST FULL SCAN EMP_EMPNO

Choosing Among Access Paths
This section describes how the optimizer chooses among available access paths

when using the cost-based or rule-based approach.

Choosing an Access Path with the Cost-Based Approach
With the cost-based approach, the optimizer chooses an access path based on these

factors:

■ the available access paths for the statement

■ the estimated cost of executing the statement using each access path or

combination of paths

To choose an access path, the optimizer first determines which access paths are

available by examining the conditions in the statement’s WHERE clause (and its

FROM clause for the SAMPLE or SAMPLE BLOCK option). The optimizer then

generates a set of possible execution plans using available access paths and

estimates the cost of each plan using the statistics for the index, columns, and tables

accessible to the statement. The optimizer then chooses the execution plan with the

lowest estimated cost.

The optimizer’s choice among available access paths can be overridden with hints,

except when the statement’s FROM clause contains SAMPLE or SAMPLE BLOCK.

Additional Information: See Oracle8i Tuning for information about

hints in SQL statements.
23-50 Oracle8i Concepts

Choosing Access Paths
To choose among available access paths, the optimizer considers these factors:

■ Selectivity: The selectivity is the percentage of rows in the table that the query

selects. A query that selects a small percentage of a table’s rows has good

selectivity, while a query that selects a large percentage of rows has poor

selectivity.

The optimizer is more likely to choose an index scan over a full table scan for a

query with good selectivity than for one with poor selectivity. Index scans are

usually more efficient than full table scans for queries that access only a small

percentage of a table’s rows, while full table scans are usually faster for queries

that access a large percentage.

To determine the selectivity of a query, the optimizer considers these sources of

information:

– the operators used in the WHERE clause

– unique and primary key columns used in the WHERE clause

– statistics for the table

The examples below illustrate how the optimizer uses selectivity.

■ DB_FILE_MULTIBLOCK_READ_COUNT: Full table scans use multiblock

reads, so the cost of a full table scan depends on the number of multiblock reads

required to read the entire table, which depends on the number of blocks read

by a single multiblock read, which is specified by the initialization parameter

DB_FILE_MULTIBLOCK_READ_COUNT. For this reason, the optimizer may

be more likely to choose a full table scan when the value of this parameter is

high.

Example: Consider this query, which uses an equality condition in its WHERE clause

to select all employees named Jackson:

SELECT *
 FROM emp
 WHERE ename = ’JACKSON’;

If the ENAME column is a unique or primary key, the optimizer determines that

there is only one employee named Jackson, and the query returns only one row. In

this case, the query is very selective, and the optimizer is most likely to access the

table using a unique scan on the index that enforces the unique or primary key

(access path 4).
Optimizer Operations 23-51

Choosing Access Paths
Example: Consider again the query in the previous example. If the ENAME column

is not a unique or primary key, the optimizer can use these statistics to estimate the

query’s selectivity:

■ USER_TAB_COLUMNS.NUM_DISTINCT is the number of values for each

column in the table.

■ USER_TABLES.NUM_ROWS is the number of rows in each table.

By dividing the number of rows in the EMP table by the number of distinct values

in the ENAME column, the optimizer estimates what percentage of employees have

the same name. By assuming that the ENAME values are uniformly distributed, the

optimizer uses this percentage as the estimated selectivity of the query.

Example: Consider this query, which selects all employees with employee ID

numbers less than 7500:

SELECT *
 FROM emp
 WHERE empno < 7500;

To estimate the selectivity of the query, the optimizer uses the boundary value of

7500 in the WHERE clause condition and the values of the HIGH_VALUE and

LOW_VALUE statistics for the EMPNO column if available. These statistics can be

found in the USER_TAB_COL_STATISTICS view (or the USER_TAB_COLUMNS

view). The optimizer assumes that EMPNO values are evenly distributed in the

range between the lowest value and highest value. The optimizer then determines

what percentage of this range is less than the value 7500 and uses this value as the

estimated selectivity of the query.

Example: Consider this query, which uses a bind variable rather than a literal value

for the boundary value in the WHERE clause condition:

SELECT *
 FROM emp
 WHERE empno < :e1;

The optimizer does not know the value of the bind variable E1. Indeed, the value of

E1 may be different for each execution of the query. For this reason, the optimizer

cannot use the means described in the previous example to determine selectivity of

this query. In this case, the optimizer heuristically guesses a small value for the

selectivity of the column (because it is indexed). The optimizer makes this

assumption whenever a bind variable is used as a boundary value in a condition

with one of the operators <, >, <=, or >=.
23-52 Oracle8i Concepts

Choosing Access Paths
The optimizer’s treatment of bind variables can cause it to choose different

execution plans for SQL statements that differ only in the use of bind variables

rather than constants. In one case in which this difference may be especially

apparent, the optimizer may choose different execution plans for an embedded SQL

statement with a bind variable in an Oracle Precompiler program and the same SQL

statement with a constant in SQL*Plus.

Example: Consider this query, which uses two bind variables as boundary values in

the condition with the BETWEEN operator:

SELECT *
 FROM emp
 WHERE empno BETWEEN :low_e AND :high_e;

The optimizer decomposes the BETWEEN condition into these two conditions:

empno >= :low_e
empno <= :high_e

The optimizer heuristically estimates a small selectiviy for indexed columns in

order to favor the use of the index.

Example: Consider this query, which uses the BETWEEN operator to select all

employees with employee ID numbers between 7500 and 7800:

SELECT *
 FROM emp
 WHERE empno BETWEEN 7500 AND 7800;

To determine the selectivity of this query, the optimizer decomposes the WHERE

clause condition into these two conditions:

empno >= 7500
empno <= 7800

The optimizer estimates the individual selectivity of each condition using the means

described in a previous example. The optimizer then uses these selectivities (S1 and

S2) and the absolute value function (ABS) in this formula to estimate the selectivity

(S) of the BETWEEN condition:

S = ABS(S1 + S2 - 1)
Optimizer Operations 23-53

Choosing Access Paths
Choosing an Access Path with the Rule-Based Approach
With the rule-based approach, the optimizer chooses whether to use an access path

based on these factors:

■ the available access paths for the statement

■ the ranks of these access paths, as shown in Table 23–1 on page 23-37

To choose an access path, the optimizer first examines the conditions in the

statement’s WHERE clause to determine which access paths are available. The

optimizer then chooses the most highly ranked available access path.

Note that the full table scan is the lowest ranked access path on the list. This means

that the rule-based approach always chooses an access path that uses an index if

one is available, even if a full table scan might execute faster.

The order of the conditions in the WHERE clause does not normally affect the

optimizer’s choice among access paths.

Example: Consider this SQL statement, which selects the employee numbers of all

employees in the EMP table with an ENAME value of ’CHUNG’ and with a SAL

value greater than 2000:

SELECT empno
 FROM emp
 WHERE ename = ’CHUNG’
 AND sal > 2000;

Consider also that the EMP table has these integrity constraints and indexes:

■ There is a PRIMARY KEY constraint on the EMPNO column that is enforced by

the index PK_EMPNO.

■ There is an index named ENAME_IND on the ENAME column.

■ There is an index named SAL_IND on the SAL column.

Based on the conditions in the WHERE clause of the SQL statement, the integrity

constraints, and the indexes, these access paths are available:

■ A single-column index access path using the ENAME_IND index is made

available by the condition ENAME = ’CHUNG’. This access path has rank 9.

■ An unbounded range scan using the SAL_IND index is made available by the

condition SAL > 2000. This access path has rank 11.

■ A full table scan is automatically available for all SQL statements. This access

path has rank 15.
23-54 Oracle8i Concepts

Choosing Access Paths
Note that the PK_EMPNO index does not make the single row by primary key

access path available because the indexed column does not appear in a condition in

the WHERE clause.

Using the rule-based approach, the optimizer chooses the access path that uses the

ENAME_IND index to execute this statement. The optimizer chooses this path

because it is the most highly ranked path available.
Optimizer Operations 23-55

Choosing Access Paths
23-56 Oracle8i Concepts

Optimization
24

Optimization of Joins

Will you, won’t you, will you, won’t you, will you join the dance?

Lewis Carroll

This chapter discusses how the Oracle optimizer executes SQL statements that

contain joins, anti-joins, and semi-joins. It also describes how the optimizer can use

bitmap indexes to execute star queries, which join a fact table to multiple dimension

tables. This chapter includes:

■ Optimizing Join Statements

■ Optimizing Anti-Joins and Semi-Joins

■ Optimizing "Star" Queries

Additional Information: See Oracle8i Tuning for more information

about the optimizer.
 of Joins 24-1

Optimizing Join Statements
Optimizing Join Statements
To choose an execution plan for a join statement, the optimizer must make these

interrelated decisions:

Join Operations
The optimizer can use the following operations to join two row sources:

■ Nested Loops Join

■ Sort-Merge Join

■ Cluster Join

■ Hash Join

Nested Loops Join
To perform a nested loops join, Oracle follows these steps:

1. The optimizer chooses one of the tables as the outer table, or the driving table. The

other table is called the inner table.

2. For each row in the outer table, Oracle finds all rows in the inner table that

satisfy the join condition.

3. Oracle combines the data in each pair of rows that satisfy the join condition and

returns the resulting rows.

access paths As for simple statements, the optimizer must choose an access

path to retrieve data from each table in the join statement. (See

"Choosing Access Paths" on page 23-33.)

join operations To join each pair of row sources, Oracle must perform one of

these operations:

■ nested loops

■ sort-merge

■ cluster

■ hash join (not available with rule-based optimization)

join order To execute a statement that joins more than two tables, Oracle

joins two of the tables, and then joins the resulting row source

to the next table. This process is continued until all tables are

joined into the result.
24-2 Oracle8i Concepts

Optimizing Join Statements
Figure 24–1 shows the execution plan for this statement using a nested loops join:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

Figure 24–1 Nested Loops Join

To execute this statement, Oracle performs these steps:

■ Step 2 accesses the outer table (EMP) with a full table scan.

■ For each row returned by Step 2, Step 4 uses the EMP.DEPTNO value to

perform a unique scan on the PK_DEPT index.

TABLE ACCESS
(FULL)

emp

2 3

TABLE ACCESS
(BY ROWID)

dept

4

INDEX
(UNIQUE SCAN)

pk_dept

1

NESTED LOOPS
Optimization of Joins 24-3

Optimizing Join Statements
■ Step 3 uses the rowid from Step 4 to locate the matching row in the inner table

(DEPT).

■ Oracle combines each row returned by Step 2 with the matching row returned

by Step 4 and returns the result.

Sort-Merge Join
Oracle can only perform a sort-merge join for an equijoin. To perform a sort-merge

join, Oracle follows these steps:

1. Oracle sorts each row source to be joined if they have not been sorted already

by a previous operation. The rows are sorted on the values of the columns used

in the join condition.

2. Oracle merges the two sources so that each pair of rows, one from each source,

that contain matching values for the columns used in the join condition are

combined and returned as the resulting row source.

Figure 24–2 shows the execution plan for this statement using a sort-merge join:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;
24-4 Oracle8i Concepts

Optimizing Join Statements
Figure 24–2 Sort-Merge Join

To execute this statement, Oracle performs these steps:

■ Steps 3 and 5 perform full table scans of the EMP and DEPT tables.

■ Steps 2 and 4 sort each row source separately.

■ Step 1 merges the sources from Steps 2 and 4 together, combining each row

from Step 2 with each matching row from Step 4, and returns the resulting row

source.

Cluster Join
Oracle can perform a cluster join only for an equijoin that equates the cluster key

columns of two tables in the same cluster. In a cluster, rows from both tables with

the same cluster key values are stored in the same blocks, so Oracle only accesses

those blocks.

3

TABLE ACCESS
(FULL)

dept

SORT
(JOIN)

2 4

SORT
(JOIN)

5

TABLE ACCESS
(FULL)

emp

1

MERGE JOIN
Optimization of Joins 24-5

Optimizing Join Statements
Figure 24–3 shows the execution plan for this statement in which the EMP and

DEPT tables are stored together in the same cluster:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

Figure 24–3 Cluster Join

To execute this statement, Oracle performs these steps:

■ Step 2 accesses the outer table (DEPT) with a full table scan.

■ For each row returned by Step 2, Step 3 uses the DEPT.DEPTNO value to find

the matching rows in the inner table (EMP) with a cluster scan.

A cluster join is nothing more than a nested loops join involving two tables that are

stored together in a cluster. Since each row from the DEPT table is stored in the

same data blocks as the matching rows in the EMP table, Oracle can access

matching rows most efficiently.

Additional Information: Oracle8i Tuning provides guidelines for

deciding which tables to cluster for best performance.

TABLE ACCESS
(FULL)

dept

2 3

TABLE ACCESS
(CLUSTER)

emp

1

NESTED LOOPS
24-6 Oracle8i Concepts

Optimizing Join Statements
Hash Join
Oracle can only perform a hash join for an equijoin. Hash join is not available with

rule-based optimization. You must enable hash join optimization, using the

initialization parameter HASH_JOIN_ENABLED (which can be set with the ALTER

SESSION command) or the USE_HASH hint.

To perform a hash join, Oracle follows these steps:

1. Oracle performs a full table scan on each of the tables and splits each into as

many partitions as possible based on the available memory.

2. Oracle builds a hash table from one of the partitions (if possible, Oracle will

select a partition that fits into available memory). Oracle then uses the

corresponding partition in the other table to probe the hash table. All partition

pairs that do not fit into memory are placed onto disk.

3. For each pair of partitions (one from each table), Oracle uses the smaller one to

build a hash table and the larger one to probe the hash table.

Figure 24–4 shows the execution plan for this statement using a hash join:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

Figure 24–4 Hash Join

TABLE ACCESS
(FULL)

dept

2 3

TABLE ACCESS
(FULL)

emp

1

HASH JOIN
Optimization of Joins 24-7

Optimizing Join Statements
To execute this statement, Oracle performs these steps:

■ Steps 2 and 3 perform full table scans of the EMP and DEPT tables.

■ Step 1 builds a hash table out of the rows coming from Step 2 and probes it with

each row coming from Step 3.

The initialization parameter HASH_AREA_SIZE controls the amount of memory

used for hash join operations and the initialization parameter

HASH_MULTIBLOCK_IO_COUNT controls the number of blocks a hash join

operation should read and write concurrently.

Choosing Execution Plans for Join Statements
This section describes how the optimizer chooses an execution plan for a join

statement:

■ when using the cost-based approach

■ when using the rule-based approach

Note these considerations that apply to the cost-based and rule-based approaches:

■ The optimizer first determines whether joining two or more of the tables

definitely results in a row source containing at most one row. The optimizer

recognizes such situations based on UNIQUE and PRIMARY KEY constraints

on the tables. If such a situation exists, the optimizer places these tables first in

the join order. The optimizer then optimizes the join of the remaining set of

tables.

■ For join statements with outer join conditions, the table with the outer join

operator must come after the other table in the condition in the join order. The

optimizer does not consider join orders that violate this rule.

Choosing Execution Plans for Joins with the Cost-Based Approach
With the cost-based approach, the optimizer generates a set of execution plans

based on the possible join orders, join operations, and available access paths. The

optimizer then estimates the cost of each plan and chooses the one with the lowest

cost. The optimizer estimates costs in these ways:

■ The cost of a nested loops operation is based on the cost of reading each

selected row of the outer table and each of its matching rows of the inner table

Additional Information: See Oracle8i Tuning for more information

about these initialization parameters and the USE_HASH hint.
24-8 Oracle8i Concepts

Optimizing Join Statements
into memory. The optimizer estimates these costs using the statistics in the data

dictionary.

■ The cost of a sort-merge join is based largely on the cost of reading all the

sources into memory and sorting them.

■ The optimizer also considers other factors when determining the cost of each

operation. For example:

– A smaller sort area size is likely to increase the cost for a sort-merge join

because sorting takes more CPU time and I/O in a smaller sort area. Sort

area size is specified by the initialization parameter SORT_AREA_SIZE.

– A larger multiblock read count is likely to decrease the cost for a sort-merge

join in relation to a nested loops join. If a large number of sequential blocks

can be read from disk in a single I/O, an index on the inner table for the

nested loops join is less likely to improve performance over a full table

scan. The multiblock read count is specified by the initialization parameter

DB_FILE_MULTIBLOCK_READ_COUNT.

– For join statements with outer join conditions, the table with the outer join

operator must come after the other table in the condition in the join order.

The optimizer does not consider join orders that violate this rule.

With the cost-based approach, the optimizer’s choice of join orders can be

overridden with the ORDERED hint. If the ORDERED hint specifies a join order

that violates the rule for outer join, the optimizer ignores the hint and chooses the

order. You can also override the optimizer’s choice of join operations with hints.

Choosing Execution Plans for Joins with the Rule-Based Approach
With the rule-based approach, the optimizer follows these steps to choose an

execution plan for a statement that joins R tables:

1. The optimizer generates a set of R join orders, each with a different table as the

first table. The optimizer generates each potential join order using this

algorithm:

a. To fill each position in the join order, the optimizer chooses the table with

the most highly ranked available access path according to the ranks for

access paths shown in Table 23–1 on page 23-37. The optimizer repeats this

step to fill each subsequent position in the join order.

Additional Information: See Oracle8i Tuning for information on

using hints.
Optimization of Joins 24-9

Optimizing Join Statements
b. For each table in the join order, the optimizer also chooses the operation

with which to join the table to the previous table or row source in the order.

The optimizer does this by "ranking" the sort-merge operation as access

path 12 and applying these rules:

– If the access path for the chosen table is ranked 11 or better, the optimizer

chooses a nested loops operation using the previous table or row source in

the join order as the outer table.

– If the access path for the table is ranked lower than 12, and there is an

equijoin condition between the chosen table and the previous table or row

source in join order, the optimizer chooses a sort-merge operation.

– If the access path for the chosen table is ranked lower than 12, and there is

not an equijoin condition, the optimizer chooses a nested loops operation

with the previous table or row source in the join order as the outer table.

2. The optimizer then chooses among the resulting set of execution plans. The goal

of the optimizer’s choice is to maximize the number of nested loops join

operations in which the inner table is accessed using an index scan. Since a

nested loops join involves accessing the inner table many times, an index on the

inner table can greatly improve the performance of a nested loops join.

Usually, the optimizer does not consider the order in which tables appear in the

FROM clause when choosing an execution plan. The optimizer makes this

choice by applying the following rules in order:

a. The optimizer chooses the execution plan with the fewest nested-loops

operations in which the inner table is accessed with a full table scan.

b. If there is a tie, the optimizer chooses the execution plan with the fewest

sort-merge operations.

c. If there is still a tie, the optimizer chooses the execution plan for which the

first table in the join order has the most highly ranked access path:

– If there is a tie among multiple plans whose first tables are accessed by the

single-column indexes access path, the optimizer chooses the plan whose

first table is accessed with the most merged indexes.

– If there is a tie among multiple plans whose first tables are accessed by

bounded range scans, the optimizer chooses the plan whose first table is

accessed with the greatest number of leading columns of the composite

index.

d. If there is still a tie, the optimizer chooses the execution plan for which the

first table appears later in the query’s FROM clause.
24-10 Oracle8i Concepts

Optimizing Join Statements
Views in Outer Joins
For a view that is on the right side of an outer join, the optimzer can use one of two

methods, depending on how many base tables the view accesses:

■ If the view has only one base table, the optimizer can use view merging.

■ If the view has multiple base tables, the optimizer can push the join predicate
into the view.

Merging a View That Has a Single Base Table
A view that has one base table and is on the right side of an outer join can be

merged into the query block of an accessing statement. (See "Merging the View’s

Query into the Statement" on page 23-15.) View merging is possible even if an

expression in the view can return a non-null value for a NULL.

Example: Consider the view NAME_VIEW, which concatenates first and last names

from the EMP table:

CREATE VIEW name_view
 AS SELECT emp.firstname || emp.lastname AS emp_fullname, emp.deptno
 FROM emp;

and consider this outer join statement, which finds the names of all employees in

London and their departments, as well as any departments that have no employees:

SELECT dept.deptno, name_view.emp_fullname
 FROM emp_fullname, dept
 WHERE dept.deptno = name_view.deptno(+)
 AND dept.deptloc = ’London’;

The optimizer merges the view’s query into the outer join statement. The resulting

statement looks like this:

SELECT dept.deptno, DECODE(emp.rowid, NULL, NULL, emp.firstname || emp.lastname)
 FROM emp, dept
 WHERE dept.deptno = emp.deptno(+)
 AND dept.deptloc = ’London’;

The transformed statement selects only the employees who work in London.

Pushing the Join Predicate into a View That Has Multiple Base Tables
For a view with multiple base tables on the right side of an outer join, the optimizer

can push the join predicate into the view (see "Pushing the Predicate into the View"
Optimization of Joins 24-11

Optimizing Join Statements
on page 23-18) if the initialization parameter OPTIMIZER_FEATURES_ENABLE is

set to TRUE or the accessing query contains the PUSH_JOIN_PRED hint.

Pushing a join predicate is a cost-based transformation that can enable more

efficient access path and join methods, such as transforming hash joins into nested

loop joins, and full table scans to index scans.

Example: Consider the view LONDON_EMP, which selects the employees who

work in London:

CREATE VIEW london_emp
 AS SELECT emp.ename
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND dept.deptloc = ’London’;

and consider this outer join statement, which finds the engineers and accountants

working in London who received bonuses:

SELECT bonus.job, london_emp.ename
 FROM bonus, london_emp
 WHERE bonus.job IN (’engineer’, ’accountant’)
 AND bonus.ename = london_emp.ename(+);

The optimizer pushes the outer join predicate into the view. The resulting statement

(which does not conform to standard SQL syntax) looks like this:

SELECT bonus.job, london_emp.ename
 FROM bonus, (SELECT emp.ename FROM emp, dept
 WHERE bonus.ename = london_emp.ename(+)
 AND emp.deptno = dept.deptno
 AND dept.deptloc = ’London’)
 WHERE bonus.job IN (’engineer’, ’accountant’);

Additional Information: See Oracle8i Tuning for information about

optimizer hints.
24-12 Oracle8i Concepts

Optimizing Anti-Joins and Semi-Joins
Optimizing Anti-Joins and Semi-Joins
An anti-join returns rows from the left side of the predicate for which there is no

corresponding row on the right side of the predicate. That is, it returns rows that fail

to match (NOT IN) the subquery on the right side. For example, an anti-join can

select a list of employees who are not in a particular set of departments:

SELECT * FROM emp
 WHERE deptno NOT IN
 (SELECT deptno FROM dept
 WHERE loc = ’HEADQUARTERS’);

The optimizer uses a nested loops algorithm for NOT IN subqueries by default,

unless the initialization parameter ALWAYS_ANTI_JOIN is set to MERGE or HASH

and various required conditions are met that allow the transformation of the NOT

IN subquery into a sort-merge or hash anti-join. You can place a MERGE_AJ or

HASH_AJ hint in the NOT IN subquery to specify which algorithm the optimizer

should use.

A semi-join returns rows that match an EXISTS subquery, without duplicating rows

from the left side of the predicate when multiple rows on the right side satisfy the

criteria of the subquery. For example:

SELECT * FROM dept
 WHERE EXISTS
 (SELECT * FROM emp
 WHERE dept.ename = emp.ename
 AND emp.bonus > 5000);

In this query, only one row needs to be returned from DEPT even though many

rows in EMP might match the subquery. If there is no index on the BONUS column

in EMP, a semi-join can be used to improve query performance.

The optimizer uses a nested loops algorithm for EXISTS subqueries by default,

unless the initialization parameter ALWAYS_SEMI_JOIN is set to MERGE or HASH

and various required conditions are met. You can place a MERGE_SJ or HASH_SJ

hint in the EXISTS subquery to specify which algorithm the optimizer should use.

Additional Information: See Oracle8i Tuning for information about

optimizer hints.
Optimization of Joins 24-13

Optimizing "Star" Queries
Optimizing "Star" Queries
One type of data warehouse design centers around what is known as a "star"

schema, which is characterized by one or more very large fact tables that contain the

primary information in the data warehouse and a number of much smaller

dimension tables (or "lookup" tables), each of which contains information about the

entries for a particular attribute in the fact table.

A star query is a join between a fact table and a number of lookup tables. Each

lookup table is joined to the fact table using a primary-key to foreign-key join, but

the lookup tables are not joined to each other.

Cost-based optimization recognizes star queries and generates efficient execution

plans for them. (Star queries are not recognized by rule-based optimization.)

A typical fact table contains keys and measures. For example, a simple fact table

might contain the measure Sales, and keys Time, Product, and Market. In this case

there would be corresponding dimension tables for Time, Product, and Market. The

Product dimension table, for example, would typically contain information about

each product number that appears in the fact table.

A star join is a primary-key to foreign-key join of the dimension tables to a fact table.

The fact table normally has a concatenated index on the key columns to facilitate

this type of join.

Star Query Example
This section discusses star queries with reference to the following example:

SELECT SUM(dollars)
 FROM facts, time, product, market
 WHERE market.stat = ’New York’
 AND product.brand = ’MyBrand’
 AND time.year = 1995
 AND time.month = ’March’
 /* Joins*/
 AND time.key = facts.tkey
 AND product.pkey = facts.pkey
 AND market.mkey = facts.mkey;

Additional Information: See Oracle8i Tuning for more information

about dimensions and data warehouses.
24-14 Oracle8i Concepts

Optimizing "Star" Queries
Tuning Star Queries
To execute star queries efficiently, you must use cost-based optimization. Begin by

gathering statistics (using the DBMS_STATS package or the ANALYZE command)

for each of the tables accessed by the query.

Indexing
In the example above, you would construct a concatenated index on the columns

tkey, pkey, and mkey. The order of the columns in the index is critical to

performance. the columns in the index should take advantage of any ordering of the

data. If rows are added to the large table in time order, then tkey should be the first

key in the index. When the data is a static extract from another database, it is

worthwhile to sort the data on the key columns before loading it.

If all queries specify predicates on each of the small tables, a single concatenated

index suffices. If queries that omit leading columns of the concatenated index are

frequent, additional indexes may be useful. In this example, if there are frequent

queries that omit the time table, an index on pkey and mkey can be added.

Hints
Usually, if you analyze the tables the optimizer will choose an efficient star plan.

You can also use hints to improve the plan. The most precise method is to order the

tables in the FROM clause in the order of the keys in the index, with the large table

last. Then use the following hints:

/*+ ORDERED USE_NL(facts) INDEX(facts fact_concat) */

A more general method is to use the STAR hint /*+ STAR */.

Extended Star Schemas
Each of the small tables can be replaced by a join of several smaller tables. For

example, the product table could be normalized into brand and manufacturer

tables. Normalization of all of the small tables can cause performance problems.

One problem is caused by the increased number of permutations that the optimizer

must consider. The other problem is the result of multiple executions of the small

table joins.

You can solve both of these problems by using denormalized views. For example:

CREATE VIEW prodview AS SELECT /*+ NO_MERGE */ *
 FROM brands, mfgrs WHERE brands.mfkey = mfgrs.mfkey;
Optimization of Joins 24-15

Optimizing "Star" Queries
This hint reduces the optimizer’s search space and causes caching of the result of

the view.

Star Transformation
The star transformation is a cost-based query transformation aimed at executing

star queries efficiently. Whereas the star optimization works well for schemas with a

small number of dimensions and dense fact tables, the star transformation may be

considered as an alternative if any of the following holds true:

■ The number of dimensions is large.

■ The fact table is sparse.

■ There are queries where not all dimension tables have constraining predicates.

The star transformation does not rely on computing a Cartesian product of the

dimension tables, which makes it better suited for cases where fact table sparsity

and/or a large number of dimensions would lead to a large Cartesian product with

few rows having actual matches in the fact table. In addition, rather than relying on

concatenated indexes, the star transformation is based on combining bitmap

indexes on individual fact table columns.

The transformation can thus choose to combine indexes corresponding precisely to

the constrained dimensions. There is no need to create many concatenated indexes

where the different column orders match different patterns of constrained

dimensions in different queries.

The star transformation works by generating new subqueries that can be used to

drive a bitmap index access path for the fact table.

Consider a simple case with three dimension tables, "d1", "d2", and "d3", and a fact

table, "fact". The following query:

Attention: Bitmap indexes are available only if you have

purchased the Oracle8i Enterprise Edition. In Oracle8i, bitmap

indexes are not available and star query processing uses B*-tree

indexes. In the Oracle8i Enterprise Edition, the parallel bitmap

index join algorithm is also available for star query processing.

See Getting to Know Oracle8i for more information about the features

available in Oracle8i and Oracle8i Enterprise Edition.
24-16 Oracle8i Concepts

Optimizing "Star" Queries
EXPLAIN PLAN FOR
 SELECT * FROM fact, d1, d2, d3
 WHERE fact.c1 = d1.c1 AND fact.c2 = d2.c1 AND fact.c3 = d3.c1
 AND d1.c2 IN (1, 2, 3, 4)
 AND d2.c2 < 100
 AND d3.c2 = 35

gets transformed by adding three subqueries:

SELECT * FROM fact, d1, d2, d3
 WHERE fact.c1 = d1.c1 AND fact.c2 = d2.c1 AND fact.c3 = d3.c3
 AND d1.c2 IN (1, 2, 3, 4)
 AND d2.c2 < 100
 AND d3.c2 = 35
 AND fact.c1 IN (SELECT d1.c1 FROM d1 WHERE d1.c2 IN (1, 2, 3, 4))
 AND fact.c2 IN (select d2.c1 FROM d2 WHERE d2.c2 < 100)
 AND fact.c3 IN (SELECT d3.c1 FROM d3 WHERE d3.c2 = 35)

In addition, if it is cost effective, one or more of the subqueries may be further

optimized by storing its results in a temporary table. Then the subquery is replaced

with a subquery on the temporary table. For example, if the first subquery above

was selected for this temporary table transformation, a temporary table named

ORA_TEMP_1_123 is created and filled with the results of the subquery:

SELECT d1.c1 from d1 where d1.c2 in (1, 2, 3, 4)

The fully transformed query is now:

SELECT * FROM fact, ORA_TEMP_1_123, d2, d3
 WHERE fact.c1 = ORA_TEMP_1_123.c1 AND fact.c2 = d2.c1 and fact.c3 = d3.c1
 AND ORA_TEMP_1_123.c1 IN (1, 2, 3, 4)
 AND d2.c2 < 100
 AND d3.c2 = 35
 AND fact.c1 IN (SELECT ORA_TEMP_1_123.c1 FROM ORA_TEMP_1_123)
 AND fact.c2 IN (SELECT d2.c1 FROM d2 WHERE d2.c2 < 100)
 AND fact.c3 IN (SELECT d3.c1 FROM d3 WHERE d3.c2 = 35)

Given that there are bitmap indexes on fact.c1, fact.c2, and fact.c3, the newly

generated subqueries can be used to drive a bitmap index access path in the

following way.

For each value of c1 that is retrieved from the first subquery, the bitmap for that

value is retrieved from the index on fact.c1 and these bitmaps are merged. The

result is a bitmap for precisely those rows in fact that match the condition on d1 in

the subquery WHERE clause.
Optimization of Joins 24-17

Optimizing "Star" Queries
Similarly, the values from the second subquery are used together with the bitmap

index on fact.c2 to produce a merged bitmap corresponding to the rows in fact that

match the condition on d2 in the second subquery. The same operations apply to the

third subquery. The three merged bitmaps can then be ANDed, resulting in a

bitmap corresponding to those rows in fact that meet the conditions in all three

subqueries simultaneously.

This bitmap can be used to access fact and retrieve the relevant rows. These are then

joined to d1, d2, and d3 to produce the answer to the query. No Cartesian product is

needed.

Execution Plan
The following execution plan might result from the query above:

SELECT STATEMENT
 TEMP TABLE GENERATION
 TEMP TABLE GENERATION
 HASH JOIN
 HASH JOIN
 HASH JOIN
 TABLE ACCESS FACT BY INDEX ROWID
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP MERGE
 BITMAP KEY ITERATION
 TABLE ACCESS D3 FULL
 BITMAP INDEX FACT_C3 RANGE SCAN
 BITMAP MERGE
 BITMAP KEY ITERATION
 TABLE ACCESS ORA_TEMP_1_123 FULL
 BITMAP INDEX FACT_C1 RANGE SCAN
 BITMAP MERGE
 BITMAP KEY ITERATION
 TABLE ACCESS D2 FULL
 BITMAP INDEX FACT_C2 RANGE SCAN
 TABLE ACCESS ORA_TEMP_1_123 FULL
 TABLE ACCESS D2 FULL
 TABLE ACCESS D3 FULL

In this plan the fact table is accessed through a bitmap access path based on a

bitmap AND of three merged bitmaps. The three bitmaps are generated by the

BITMAP MERGE row source being fed bitmaps from row source trees underneath

it. Each such row source tree consists of a BITMAP KEY ITERATION row source

which fetches values from the subquery row source tree, which in this example is
24-18 Oracle8i Concepts

Optimizing "Star" Queries
just a full table access, and for each such value retrieves the bitmap from the bitmap

index. After the relevant fact table rows have been retrieved using this access path,

they are joined with the dimension tables and temporary tables to produce the

answer to the query. The two rows in the execution plan labelled "TEMP TABLE

GENERATION" contain the SQL commands used to create and populate the

temporary table. These commands are in the OTHER column of the execution plan,

which was not displayed in the example above.

The star transformation is a cost-based transformation in the following sense. The

optimizer generates and saves the best plan it can produce without the

transformation. If the transformation is enabled, the optimizer then tries to apply it

to the query and if applicable, generates the best plan using the transformed query.

Based on a comparison of the cost estimates between the best plans for the two

versions of the query, the optimizer will then decide whether to use the best plan

for the transformed or untransformed version.

If the query requires accessing a large percentage of the rows in the fact table, it may

well be better to use a full table scan and not use the tranformations. However, if

the constraining predicates on the dimension tables are sufficiently selective that

only a small portion of the fact table needs to be retrieved, the plan based on the

transformation will probably be superior.

Note that the optimizer will generate a subquery for a dimension table only if it

decides that it is reasonable to do so based on a number of criteria. There is no

guarantee that subqueries will be generated for all dimension tables. The optimizer

may also decide, based on the properties of the tables and the query, that the

transformation does not merit being applied to a particular query. In this case the

best regular plan will be used.

Using Star Transformation
You can enable star transformation by setting the value of the initialization

parameter STAR_TRANSFORMATION_ENABLED to TRUE. To use star

transformation without temporary tables, set the value of the parameter to

TEMP_DISABLE. Use the STAR_TRANSFORMATION hint to make the optimizer

use the best plan in which the transformation has been used.
Optimization of Joins 24-19

Optimizing "Star" Queries
Restrictions on Star Transformation
Star transformation is not supported for tables with any of the following

characteristics:

■ tables with a table hint that is incompatible with a bitmap access path

■ tables with too few bitmap indexes (there must be a bitmap index on a fact table

column for the optimizer to consider generating a subquery for it)

■ remote tables (however, remote dimension tables are allowed in the subqueries

that are generated)

■ anti-joined tables

■ tables that are already used as a dimension table in a subquery

■ tables that are really unmerged views, which are not view partitions

■ tables that have a good single-table access path

■ tables that are too small for the transformation to be worthwhile.

In addition, temporary tables will not be used by star transformation under the

following conditions:

■ the database is in read only mode

■ the star query is part of a transaction that is in serializable mode.
24-20 Oracle8i Concepts

Part VII

Parallel SQL and Direct-Load INSERT

Part VII describes parallel execution of SQL statements and the direct-load INSERT

feature. It contains the following chapters:

■ Chapter 25, "Direct-Load INSERT"

■ Chapter 26, "Parallel Execution"

Direct-Load
25

Direct-Load INSERT

The translator of Homer should above all be penetrated by a sense of four qualities of his
author: that he is eminently rapid; that he is eminently plain and direct ... both in his syntax
and in his words; that he is eminently plain and direct in the substance of his thought, ...;
and, finally, that he is eminently noble.

Matthew Arnold: On Translating Homer

This chapter describes the Oracle direct-load INSERT feature for serial or parallel

inserts. It also describes the NOLOGGING feature that is available for direct-load

INSERT and some DDL statements. This chapter’s topics include:

■ Introduction to Direct-Load INSERT

■ Varieties of Direct-Load INSERT Statements

– Serial and Parallel INSERT

– Logging Mode

■ Additional Considerations for Direct-Load INSERT

■ Restrictions on Direct-Load INSERT

See Chapter 26, "Parallel Execution" for parallel-specific issues.

Attention: The parallel direct-load INSERT feature described in

this chapter is available only if you have purchased the Oracle8i
Enterprise Edition. See Getting to Know Oracle8i for more

information.

Additional Information: See Oracle8i Tuning for information on

how to tune parallel direct-load INSERT.
 INSERT 25-1

Introduction to Direct-Load INSERT
Introduction to Direct-Load INSERT
Direct-load INSERT enhances performance during insert operations by formatting

and writing data directly into Oracle datafiles, without using the buffer cache. This

functionality is similar to that of the Direct Loader utility (SQL*Loader).

Direct-load INSERT appends the inserted data after existing data in a table; free

space within the existing data is not reused. Data can be inserted into partitioned or

nonpartitioned tables, either in parallel or serially.

Several options of direct-load INSERT exist with respect to parallelism, table

partitioning, and logging. "Varieties of Direct-Load INSERT Statements" on

page 25-3 describes these features. For additional information about the parallelism

and partitioning options of direct-load INSERT, see Chapter 26, "Parallel Execution".

Advantages of Direct-Load INSERT
A major benefit of direct-load INSERT is that you can load data without logging

redo or undo entries, which improves the insert performance significantly. Both

serial and parallel direct-load INSERT have this performance advantage over

conventional path INSERT.

With the conventional path INSERT, in contrast, free space in the object is reused

and referential integrity can be maintained. The conventional path for insertions

cannot be parallelized.

Comparison with CREATE TABLE ... AS SELECT
With direct-load INSERT, you can insert data into existing tables instead of having

to create new tables. Direct-load INSERT updates the indexes of the table, but

CREATE TABLE ... AS SELECT only creates a new table which does not have any

indexes. See "CREATE TABLE ... AS SELECT in Parallel" on page 26-31.

Advantage over Parallel Direct Load (SQL*Loader)
With a parallel INSERT, atomicity of the transaction is ensured. Atomicity cannot be

guaranteed if multiple parallel loads are used. Also, parallel load could leave some

table indexes in an "Unusable" state at the end of the load if errors occurred while

updating the indexes. In comparison, parallel INSERT atomically updates the table

and indexes (that is, it rolls back the statement if errors occur while updating the

index).

Additional Information: See Oracle8i Utilities for information about

parallel load.
25-2 Oracle8i Concepts

Varieties of Direct-Load INSERT Statements
INSERT ... SELECT Statements
Direct-load INSERT (serial or parallel) can only support the INSERT ... SELECT

syntax of an INSERT statement, not the INSERT... values syntax. The parallelism for

INSERT ... SELECT is determined from either parallel hints or parallel table

definition clauses.

Varieties of Direct-Load INSERT Statements
Direct-load INSERT can be performed either:

■ serially or in parallel

■ into nonpartitioned or partitioned tables

■ with or without logging of redo data

Serial and Parallel INSERT
Direct-load INSERT can be done on partitioned or nonpartitioned tables, and it can

be done either serially or in parallel.

■ Serial direct-load INSERT into a nonpartitioned or partitioned table. Data is

inserted beyond the current high water mark (the level at which blocks have

never been formatted to receive data) of the table segment or each partition

segment. When a commit executes, the high water mark is updated to the new

value, making the data visible to others.

■ Parallel direct-load INSERT into a nonpartitioned table. Each parallel

execution server allocates a new temporary segment and inserts data into the

temporary segment. When a commit executes, the parallel execution

coordinator merges the new temporary segments into the primary table

segment. (For information about the parallel execution coordinator and servers,

see "Process Architecture for Parallel Execution" on page 26-5.)

■ Parallel direct-load INSERT into a partitioned table. Each parallel execution

server is assigned one or more partitions, with no more than one process

working on any given partition. The parallel execution server inserts data

beyond the current high water mark of the partition segment(s) assigned to it.

When a commit executes, the high water mark of each partition segment is

updated by the parallel execution coordinator to the new value, making the

data visible to others.

Additional Information: See Oracle8i SQL Reference for information

about the syntax of INSERT ... SELECT statements.
Direct-Load INSERT 25-3

Varieties of Direct-Load INSERT Statements
In all the cases, the bumping of the high water mark or merging of the temporary

segment is delayed until commit is issued, because this action immediately makes

the data visible to other processes (that is, it commits the insert operation).

Specifying Serial or Parallel Direct-Load INSERT
The APPEND hint is required for using serial direct-load INSERT. Parallel

direct-load INSERT requires either a PARALLEL hint in the statement or a

PARALLEL clause in the table definition; the APPEND hint is optional. Parallel

direct-load INSERT also requires parallel DML to be enabled with the ALTER

SESSION ENABLE/FORCE PARALLEL DML statement.

Table 25–1 summarizes these requirements and compares direct-load INSERT with

conventional INSERT.

Examples of Serial and Parallel Direct-Load INSERT
You can specify serial direct-load INSERT with the APPEND hint, for example:

INSERT /*+ APPEND */ INTO emp
 SELECT * FROM t_emp;
COMMIT;

You can specify parallel direct-load INSERT by setting the PARALLEL attribute of

the table into which rows are inserted, for example:

ALTER TABLE emp PARALLEL (10);
ALTER SESSION ENABLE PARALLEL DML;
INSERT INTO emp
 SELECT * FROM t_emp;
COMMIT;

Table 25–1 Summary of Serial and Parallel INSERT ... SELECT Statements

Insert Type Serial Parallel

Direct-load INSERT Yes: requires

■ APPEND hint in
SQL statement

Yes: requires

■ ALTER SESSION
ENABLE/FORCE
PARALLEL DML

■ table PARALLEL attribute or
statement PARALLEL hint
(an APPEND hint is optional)

Conventional INSERT Yes (default) No
25-4 Oracle8i Concepts

Varieties of Direct-Load INSERT Statements
You can also specify parallelism for the SELECT operation by setting the

PARALLEL attribute of the table from which rows are selected:

ALTER TABLE emp PARALLEL (10);
ALTER TABLE t_emp PARALLEL (10);
ALTER SESSION ENABLE PARALLEL DML;
INSERT INTO emp
 SELECT * FROM t_emp;
COMMIT;

The PARALLEL hint for an INSERT or SELECT operation takes precedence over a

table’s PARALLEL attribute. For example, the degree of parallelism in the following

INSERT ... SELECT statement is 12 regardless of whether the PARALLEL attributes

are set for the EMP and T_EMP tables:

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ PARALLEL(emp,12) */ INTO emp
 SELECT /*+ PARALLEL(t_emp,12) */ * FROM t_emp;
COMMIT;

For more information on parallel INSERT statements, see "Rules for Parallelizing

INSERT ... SELECT" on page 26-23.

Logging Mode
Direct-load INSERT operations can be done with or without logging of redo

information. You can specify no-logging mode for the table, partition, or index into

which data will be inserted by using an ALTER TABLE, ALTER INDEX, or ALTER

TABLESPACE command.

■ Direct-load INSERT with logging. This mode does full redo logging for

instance and media recovery. Logging is the default mode.

■ Direct-load INSERT with no-logging. In this mode, data is inserted without

redo or undo logging. (Some minimal logging is still done for marking new

extents invalid, and dictionary changes are always fully logged.) When applied

during media recovery, the extent invalidation records mark a range of blocks as

logically corrupt, since the redo data is not logged.

The no-logging mode improves performance because it generates much less log

data. The user is responsible for backing up the data after a no-logging insert

operation in order to be able to perform media recovery.

There is no interaction between no-logging mode and discrete transactions, which

always generate redo information. (See "Discrete Transaction Management" on
Direct-Load INSERT 25-5

Varieties of Direct-Load INSERT Statements
page 17-8.) Discrete transactions can be issued against tables that use the no-logging

attribute.

Table 25–2 compares the LOGGING and NOLOGGING modes for direct-load and

conventional INSERT.

Examples of No-Logging Mode
You can specify no-logging mode for direct-load INSERT by setting the

NOLOGGING attribute of the table into which rows are inserted, for example:

ALTER TABLE emp NOLOGGING;
ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ PARALLEL(emp,12) */ INTO emp
 SELECT /*+ PARALLEL(t_emp,12) */ * FROM t_emp;
COMMIT;

You can also set the NOLOGGING attribute for a partition, tablespace, or index; for

example:

ALTER TABLE emp MODIFY PARTITION emp_lmnop NOLOGGING;

ALTER TABLESPACE personnel NOLOGGING;

ALTER INDEX emp_ix NOLOGGING;

ALTER INDEX emp_ix MODIFY PARTITION eix_lmnop NOLOGGING;

Note: Logging/no-logging mode is not a permanent attribute of

the table, partition, or index. After the database object inserted into

has been populated with data and backed up, you can set its status

to logging mode so that subsequent changes will be logged.

Table 25–2 Summary of LOGGING and NOLOGGING Options

Insert Type LOGGING NOLOGGING

Direct-load
INSERT

Yes: recoverability requires

■ ARCHIVELOG database mode

Yes: requires

■ NOLOGGING attribute for
tablespace, table, partition,
or index

Conventional
INSERT

Yes (default): recoverability requires

■ ARCHIVELOG database mode

No
25-6 Oracle8i Concepts

Varieties of Direct-Load INSERT Statements
SQL Statements That Can Use No-Logging Mode
Although you can set the NOLOGGING attribute for a table, partition, index, or

tablespace, no-logging mode does not apply to every operation performed on the

schema object for which you set the NOLOGGING attribute. Only the following

operations can make use of no-logging mode:

■ direct load (SQL*Loader)

■ direct-load INSERT

■ CREATE TABLE ... AS SELECT

■ CREATE INDEX

■ ALTER TABLE ... MOVE PARTITION

■ ALTER TABLE ... SPLIT PARTITION

■ ALTER INDEX ... SPLIT PARTITION

■ ALTER INDEX ... REBUILD

■ ALTER INDEX ... REBUILD PARTITION

■ INSERT, UPDATE, and DELETE on LOBs in NOCACHE NOLOGGING mode

stored out of line

All of these SQL statements can be parallelized (see Chapter 26, "Parallel

Execution"). They can execute in logging or no-logging mode for both serial and

parallel execution.

Other SQL statements are unaffected by the NOLOGGING attribute of the schema

object. For example, the following SQL statements are unaffected by NOLOGGING

mode: UPDATE and DELETE (except on some LOBs, as noted above), conventional

path INSERT, and various DDL statements not listed above.

Default Logging Mode
If the LOGGING or NOLOGGING clause is not specified, the logging attribute of

the table, partition, or index defaults to the logging attribute of the tablespace in

which it resides.

For LOBs, if the LOGGING or NOLOGGING clause is omitted, then:

■ if CACHE is specified, LOGGING is used (because LOBs cannot have CACHE

NOLOGGING)

■ otherwise, the default is obtained from the tablespace in which the LOB value

resides.
Direct-Load INSERT 25-7

Additional Considerations for Direct-Load INSERT
Additional Considerations for Direct-Load INSERT
This section describes index maintenance, space allocation, and data locks for

direct-load INSERT.

Index Maintenance
For direct-load INSERT on nonpartitioned tables or partitioned tables that have

local or global indexes, index maintenance is done at the end of the INSERT

operation. This index maintenance is performed by the parallel execution servers

for parallel direct-load INSERT or by the single process for serial direct-load

INSERT on partitioned or nonpartitioned tables.

If your direct-load INSERT modifies most of the data in a table, you can avoid the

performance impact of index maintenance by dropping the index before the

INSERT and then rebuilding it afterwards.

Space Considerations
Direct-load INSERT requires more space than conventional path INSERT, because

direct-load INSERT ignores existing space in the free lists of the segment. For

parallel direct-load INSERT into nonpartitioned tables, free blocks above the high

water mark of the table segment are also ignored. Additional space requirements

must be considered before using direct-load INSERT.

Parallel direct-load INSERT into a nonpartitioned table creates temporary

segments—one segment for each degree of parallelism. For example, if you use

parallel INSERT into a nonpartitioned table with the degree of parallelism set to

four, then four temporary segments are created.

Each parallel execution server first inserts its data into a temporary segment, and

finally the data in all of the temporary segments is appended to the table. (This is

the same mechanism as CREATE TABLE ... AS SELECT.)

For parallel INSERT into a partitioned table, no temporary segments are created.

Each parallel execution server simply inserts its data into a partition above the high

water mark.

When you are doing a parallel INSERT for a nonpartitioned table that is not locally

managed and is not in automatic mode, modifying the values of the following
25-8 Oracle8i Concepts

Additional Considerations for Direct-Load INSERT
parameters allows you to provide sufficient storage for temporary segments

without wasting space on segments that are larger than you need:

■ NEXT (the size, in bytes, of the object’s next extent to be allocated to the object)

■ PCTINCREASE (the percentage by which the third and subsequent extents

grow over the preceding extent)

■ MINIMUM EXTENT (controls free space fragmentation in the tablespace by

ensuring that every used and/or free extent size in a tablespace is at least as

large as, and is a multiple of, the value you specify)

Choose values for these parameters such that:

■ The size of each extent is not too small (no less than 1 MB). This affects the total

number of extents in the object.

■ The size of each extent is not so large that the parallel INSERT results in wasting

space on segments that are larger than necessary.

You can change the values of the NEXT and PCTINCREASE parameters with the

STORAGE option of the ALTER TABLE statement. You can change the value of the

MINIMUM EXTENT parameter with the ALTER TABLESPACE statement. After

performing the parallel DML statement, you can change the values of the NEXT,

PCTINCREASE, and MINIMUM EXTENT parameters back to settings appropriate

for non-parallel operations.

Storage Calculations
In the following discussion:

■ The total volume of data for the object is V.

■ The degree of parallelism is DOP.

■ The percentage of unused space is P.

Calculating NEXT The average volume of data per parallel execution server is

V/DOP. You want the value of the NEXT storage parameter to be in the following

range:

1 MB < value of NEXT < V/DOP

If you set the value of NEXT close to the average volume of data per server, this will

result in fewer extents but can result in a significant amount of unused space in the

object. The largest amount of unused space occurs when each parallel execution

server has a whole unused extent, resulting in the amount of unused space equal to
Direct-Load INSERT 25-9

Additional Considerations for Direct-Load INSERT
DOP * NEXT. This means that average unused space is (DOP * NEXT)/2. Use the

formula (P * V)/100 to determine the amount of unused space you can tolerate.

Then, determine an appropriate value for NEXT using the following formula:

NEXT = (2 * P * V)/(100 * DOP)

The value for P should be large enough that extents are at least 1 MB and preferably

20 MB or more if the object is large enough. The value for P should also be large

enough to allow reasonably large extents such that the total number of extents stays

under 1000, especially with non-locally managed tablespaces.

Calculating PCTINCREASE The PCTINCREASE storage parameter can produce very

large temporary segments, unless it is set to 0. To avoid running out of space while

doing parallel DML, make sure that PCTINCREASE is set to 0.

Calculating MINIMUM EXTENT If all objects in the database use similar extent sizes,

then it is preferable to set the value of the tablespace option MINIMUM EXTENT

close to the value of NEXT. If there are objects that will be able to use small extents,

then choosing a smaller value for MINIMUM EXTENT will results in less unused

space.

Examples of Storage Calculations
Example 25–1 shows a calculation that yields appropriate storage parameter values

and Example 25–2 shows a calculation that yields inappropriate storage parameter

values.

Example 25–1 Appropriate Storage Parameter Values for Direct-Load INSERT

V = 500 gigabytes (5 * 1011 bytes)

DOP = 100

P = 5 %

NEXT = (2 * 5 * 5 * 1011)/(100 * 100) = 5 * 107 = 500 MB

■ The size of each extent is 500 MB.

■ The total number of extents is 1,000.

■ The average amount of unused space is 5 % of the total amount of space

allocated.
25-10 Oracle8i Concepts

Restrictions on Direct-Load INSERT
Example 25–2 Inappropriate Storage Parameter Values for Direct-Load INSERT

V = 50 megabytes (5 * 107 bytes)

DOP = 10

P = 5 %

NEXT = (2 * 5 * 5 * 107)/(100 * 10) = 5 * 105 = 0.5 MB

In this case:

■ The size of each extent is 0.5 MB.

■ The total number of extents is 100.

■ The average amount of unused space is 5 % of the total amount of space

allocated.

Extents with the size 0.5 MB are too small so a higher value of P would be more

appropriate.

Locking Considerations
In direct-load INSERT, exclusive locks are obtained on the table (or on all the

partitions of a partitioned table) precluding any concurrent insert, update, or delete

on the table. Concurrent queries, however, are supported and will see only the data

in the table before the INSERT began. These locks also prevent any concurrent index

creation or rebuild operations. This must be taken into account before using

direct-load INSERT because it affects table concurrency. For more information, see

"Lock and Enqueue Resources for Parallel DML" on page 26-42.

Restrictions on Direct-Load INSERT
The restrictions on direct-load INSERT are the same as those imposed on

direct-path parallel loading with SQL*Loader, because they use the same

underlying mechanism. In addition, the general parallel DML restrictions also

apply to direct-load INSERT.

Additional Information: Refer to the parallel execution chapter in

Oracle8i Tuning for more discussion of space management.
Direct-Load INSERT 25-11

Restrictions on Direct-Load INSERT
Serial and parallel direct-load INSERT have the following restrictions:

■ A transaction can contain multiple direct-load INSERT statements (or both

direct-load INSERT statements and parallel UPDATE or DELETE statements),

but after one of these statements modifies a table, no other SQL statement in the

transaction can access the same table.

– Queries that access the same table are allowed before the direct-load

INSERT statement, but not after.

– Any serial or parallel statements attempting to access a table that has

already been modified by a direct-load INSERT (or parallel DML) within

the same transaction are rejected with an error message.

■ If the initialization parameter ROW_LOCKING = INTENT, then inserts cannot

be performed by the direct-load path.

■ Direct-load INSERT does not support referential integrity.

■ Triggers are not supported for direct-load INSERT operations.

■ Replication functionality is not supported for direct-load INSERT.

■ Direct-load INSERT cannot occur on tables with object columns or LOB

columns, or on index-organized tables.

■ A transaction involved in a direct-load INSERT operation cannot be or become

a distributed transaction.

■ Clustered tables are not supported.

Violations of the restrictions will cause the statement to execute serially, using the

conventional insert path, without warnings or error messages. An exception is the

restriction on statements accessing the same table more than once in a transaction,

which can cause error messages.

For example, if triggers or referential integrity are present on the table, then the

APPEND hint will be ignored when you try to use direct-load INSERT (serial or

parallel), as well as the PARALLEL hint or clause, if any.

For more information about the general restrictions on parallel DML (including

parallel INSERT), see "Restrictions on Parallel DML" on page 26-43.
25-12 Oracle8i Concepts

Parallel E
26

Parallel Execution

Civilization advances by extending the number of important operations which we can
perform without thinking about them.

Alfred North Whitehead: An Introduction to Mathematics

This chapter describes the parallel execution of SQL statements. The topics in this

chapter include:

■ Overview of Parallel Execution

■ Process Architecture for Parallel Execution

■ Setting the Degree of Parallelism

■ Parallel Query

■ Parallel DDL

■ Parallel DML

■ Parallel Execution of Functions

■ Affinity

■ Other Types of Parallelism

Attention: The parallel execution features described in this chapter

are available only if you have purchased the Oracle8i Enterprise

Edition. See Getting to Know Oracle8i for information about Oracle8i
Enterprise Edition. Also, parallel execution is not the same as the

Oracle Parallel Server. You do not need the Parallel Server Option to

perform parallel execution of SQL statements; however, some

aspects of parallel execution apply only to the Oracle Parallel Server.
xecution 26-1

Overview of Parallel Execution
Overview of Parallel Execution
When Oracle is not parallelizing the execution of SQL statements, each SQL

statement is executed sequentially by a single process. With parallel execution,

however, multiple processes work together simultaneously to execute a single SQL

statement. By dividing the work necessary to execute a statement among multiple

processes, Oracle can execute the statement more quickly than if only a single

process executed it.

Parallel execution can dramatically improve performance for data-intensive

operations associated with decision support applications or very large database

environments. Symmetric multiprocessing (SMP), clustered systems, and massively

parallel systems (MPP) gain the largest performance benefits from parallel

execution because statement processing can be split up among many CPUs on a

single Oracle system.

Parallel execution helps systems scale in performance by making optimal use of

hardware resources. If your system’s CPUs and disk controllers are already heavily

loaded, you need to alleviate the system’s load or increase these hardware resources

before using parallel execution to improve performance.

Operations That Can Be Parallelized
The Oracle server can use parallel execution for any of these operations:

■ table scan

■ nested loop join

■ sort merge join

■ hash join

■ "not in"

■ group by

■ select distinct

■ union and union all

■ aggregation

■ PL/SQL functions called from SQL

Additional Information: See Oracle8i Tuning for specific

information on tuning your parameter files and database to take

full advantage of parallel execution.
26-2 Oracle8i Concepts

Overview of Parallel Execution
■ order by

■ create table as select

■ create index

■ rebuild index

■ rebuild index partition

■ move partition

■ split partition

■ update

■ delete

■ insert ... select

■ enable constraint (the table scan is parallelized)

■ star transformation

■ cube

■ rollup

How Oracle Parallelizes Operations
A SELECT statement consists of a query only. A DML or DDL statement usually

consists of a query portion and a DML or DDL portion, each of which can be

parallelized.

Oracle primarily parallelizes SQL statements in the following ways:

1. Parallelize by block ranges for scan operations (SELECTs and subqueries in

DML and DDL statements).

2. Parallelize by partitions for DDL and DML operations on partitioned tables

and indexes.

3. Parallelize by parallel execution servers for inserts into nonpartitioned tables

only.

Note: Although generally data manipulation language (DML)

includes queries, in this chapter "DML" refers only to inserts,

updates, and deletes.
Parallel Execution 26-3

Overview of Parallel Execution
Parallelizing by Block Range
Oracle parallelizes a query dynamically at execution time. Dynamic parallelism
divides the table or index into ranges of database blocks (rowid range) and executes

the operation in parallel on different ranges. If the distribution or location of data

changes, Oracle automatically adapts to optimize the parallelization for each

execution of the query portion of a SQL statement.

Parallel scans by block range break the table or index into pieces delimited by high

and low rowid values. The table or index can be nonpartitioned or partitioned.

For partitioned tables and indexes, no rowid range can span a partition although

one partition can contain multiple rowid ranges. Oracle sends the partition

numbers with the rowid ranges to avoid partition map lookup. Compile and

run-time predicates on partitioning columns restrict the rowid ranges to relevant

partitions, eliminating unnecessary partition scans (partition pruning).

This means that a parallel query which accesses a partitioned table by a table scan

performs the same or less overall work as the same query on a nonpartitioned table.

The query on the partitioned table executes with equivalent parallelism, although

the total number of disks accessed might be reduced by the partition pruning.

Oracle can parallelize the following operations on tables and indexes by block range

(rowid range):

■ queries using table scans (including queries in DML and DDL statements)

■ move partition

■ split partition

■ rebuild index partition

■ create index (nonpartitioned index)

■ create table ... as select (nonpartitioned table)

Parallelizing by Partition
Partitions are a logical static division of tables and indexes which can be used to

break some long-running operations into smaller operations executed in parallel on

individual partitions. The granule of parallelism is a partition; there is no

parallelism within a partition except for:

■ queries, which can be parallelized by block range as described above

■ composite partitioning, in which the granule of parallelism is a subpartition

(see "Composite Partitioning" on page 11-17)
26-4 Oracle8i Concepts

Process Architecture for Parallel Execution
Operations on partitioned tables and indexes are performed in parallel by assigning

different parallel execution servers to different partitions of the table or index.

Compile and run-time predicates restrict the partitions when the operation

references partitioning columns (partition pruning). The operation executes serially

when compile or run-time predicates restrict the operation to a single partition.

The parallel operation may use fewer parallel execution servers than the number of

accessed partitions (because of resource limits, hints, or table attributes), but each

partition is accessed by a single parallel execution server. A parallel execution

server, however, can access multiple partitions.

Operations on partitioned tables and indexes are performed in parallel only when

more than one partition is accessed.

Oracle can parallelize the following operations on partitioned tables and indexes

by partition:

■ create index

■ create table ... as select

■ update

■ delete

■ insert ... select

■ alter index ... rebuild

■ queries using a range scan on a partitioned index

Parallelizing by Parallel Execution Servers
For nonpartitioned tables only, Oracle parallelizes insert operations by dividing

the work among parallel execution servers. Since new rows do not have rowids, the

rows are distributed among the parallel execution servers to insert them into the

free space.

Process Architecture for Parallel Execution
When parallel execution is not being used, a single server process performs all

necessary processing for the sequential execution of a SQL statement. For example,

to perform a full table scan (such as SELECT * FROM EMP), one process performs

the entire operation, as illustrated in Figure 26–1.
Parallel Execution 26-5

Process Architecture for Parallel Execution
Figure 26–1 Serial Full Table Scan

Parallel execution performs these operations in parallel using multiple parallel
processes. One process, known as the parallel execution coordinator, dispatches the

execution of a statement to several parallel execution servers and coordinates the

results from all of the server processes to send the results back to the user.

When an operation is divided into pieces for parallel execution in a massively

parallel processing (MPP) configuration, Oracle assigns a particular piece of the

operation to a parallel execution server by taking into account the affinity of the

process for the piece of the table or index to be used for the operation. The physical

layout of partitioned tables and indexes impacts on the affinity used to assign work

for parallel execution servers. See "Affinity" on page 26-48 for more information.

Figure 26–2 illustrates several parallel execution servers simultaneously performing

a partial scan of the EMP table, which is divided by block range dynamically

(dynamic partitioning). The parallel execution servers send results back to the parallel

execution coordinator, which assembles the pieces into the desired full table scan.

Note: The phrase "parallel execution server" does not mean a

process of an Oracle Parallel Server, but instead means a process

that performs an operation in parallel with other processes. (In an

Oracle Parallel Server, the parallel execution servers may be spread

across multiple instances.) Parallel execution servers are also

sometimes called "slave processes".

SELECT *
 FROM EMP;

EMP Table

Serial Process
26-6 Oracle8i Concepts

Process Architecture for Parallel Execution
Figure 26–2 Parallel Full Table Scan

The parallel execution coordinator breaks down execution functions into parallel

pieces and then integrates the partial results produced by the parallel execution

servers. The number of parallel execution servers assigned to a single operation is

the degree of parallelism (DOP) for an operation. Multiple operations within the same

SQL statement all have the same degree of parallelism (see "How Oracle

Determines the Degree of Parallelism for Operations" on page 26-16).

The Parallel Execution Server Pool
When an instance starts up, Oracle creates a pool of parallel execution servers

which are available for any parallel operation. The initialization parameter

PARALLEL_MIN_SERVERS specifies the number of parallel execution servers that

Oracle creates at instance startup.

When executing a parallel operation, the parallel execution coordinator obtains

parallel execution servers from the pool and assigns them to the operation. If

necessary, Oracle can create additional parallel execution servers for the operation.

These parallel execution servers remain with the operation throughout job

execution, then become available for other operations. After the statement has been

processed completely, the parallel execution servers return to the pool.

Note: The parallel execution coordinator and the parallel

execution servers can only service one statement at a time. A

parallel execution coordinator cannot coordinate, for example, a

parallel query and a parallel DML statement at the same time.

SELECT *
 FROM EMP;

EMP Table

Parallel Execution
Coordinator

Parallel Execution
Server
Parallel Execution 26-7

Process Architecture for Parallel Execution
When a user issues a SQL statement, the optimizer decides whether to execute the

operations in parallel and determines the degree of parallelism for each operation.

You can specify the number of parallel execution servers required for an operation

in various ways (see "Setting the Degree of Parallelism" on page 26-15).

If the optimizer targets the statement for parallel processing, the following sequence

of events takes place:

■ The SQL statement’s foreground process becomes a parallel execution

coordinator.

■ The parallel execution coordinator obtains as many parallel execution servers as

needed (determined by the degree of parallelism) from the server pool or

creates new parallel execution servers as needed.

■ Oracle executes the statement as a sequence of operations. Each operation is

performed in parallel, if possible.

■ When statement processing is completed, the coordinator returns any resulting

data to the user process that issued the statement and returns the parallel

execution servers to the server pool.

The parallel execution coordinator calls upon the parallel execution servers during

the execution of the SQL statement (not during the parsing of the statement).

Therefore, when parallel execution is used with the multi-threaded server, the

server process that processes the EXECUTE call of a user’s statement becomes the

parallel execution coordinator for the statement.

Variations in the Number of Parallel Execution Servers
If the number of parallel operations processed concurrently by an instance changes

significantly, Oracle automatically changes the number of parallel execution servers

in the pool.

If the number of parallel operations increases, Oracle creates additional parallel

execution servers to handle incoming requests. However, Oracle never creates more

parallel execution servers for an instance than what is specified by the initialization

parameter PARALLEL_MAX_SERVERS.

If the number of parallel operations decreases, Oracle terminates any parallel

execution servers that have been idle for a threshold period of time. Oracle does not

reduce the size of the pool below the value of PARALLEL_MIN_SERVERS no

matter how long the parallel execution servers have been idle.
26-8 Oracle8i Concepts

Process Architecture for Parallel Execution
Processing Without Enough Parallel Execution Servers
Oracle can process a parallel operation with fewer than the requested number of

processes; see "Minimum Number of Parallel Execution Servers" on page 26-18 for

information about specifying a minimum with the initialization parameter

PARALLEL_MIN_PERCENT.

If all parallel execution servers in the pool are occupied and the maximum number

of parallel execution servers has been started, the parallel execution coordinator

switches to serial processing.

How Parallel Execution Servers Communicate
To execute a query in parallel, Oracle generally creates a producer queue server and

a consumer server. The producer queue server retrieves rows from tables and the

consumer server performs operations (for example, join, sort, DML, DDL, and so

on) on these rows. Each server in the producer execution process set has a

connection to each server in the consumer set. This means that the number of

virtual connections between parallel execution servers increases as the square of the

degree of parallelism.

Each communication channel has at least 1, and sometimes up to 4 memory buffers.

Multiple memory buffers facilitate asynchronous communication among the

parallel execution servers.

A single-instance environment uses at most 3 buffers per communication channel.

An OPS environment uses at most 4 buffers per channel. Figure 26–3 illustrates

message buffers and how producer parallel execution servers connect to consumer

parallel execution servers.

Additional Information: See Oracle8i Tuning for information about

monitoring an instance’s pool of parallel execution servers and

determining the appropriate values of the initialization parameters.
Parallel Execution 26-9

Process Architecture for Parallel Execution
Figure 26–3 Parallel Execution Server Connections and Buffers

When a connection is between two processes on the same instance, the servers

communicate by passing the buffers back and forth. When the connection is

between processes in different instances, the messages are sent using external

high-speed network protocols. In Figure 26–3, the DOP is equal to the number of

parallel execution servers, which in this case is "n". Figure 26–3 does not show the

parallel execution coordinator: each parallel execution server actually has an

additional connection to the parallel execution coordinator.

Parallelizing SQL Statements
Each SQL statement undergoes an optimization and parallelization process when it

is parsed. Therefore, when the data changes, if a more optimal execution plan or

parallelization plan becomes available, Oracle can automatically adapt to the new

situation. (Optimization is discussed in Chapter 22, "The Optimizer".)

After the optimizer determines the execution plan of a statement, the parallel

execution coordinator determines the parallelization method for each operation in

the execution plan (for example, parallelize a full table scan by block range or

parallelize an index range scan by partition). The coordinator must decide whether

an operation can be performed in parallel and, if so, how many parallel execution

servers to enlist (that is, the degree of parallelism).

connections

message
buffer

DOP = 1 DOP = 2

. . .

. . .

DOP = n

Parallel
execution
server set 1

Parallel
execution
server set 2
26-10 Oracle8i Concepts

Process Architecture for Parallel Execution
See "Setting the Degree of Parallelism" on page 26-15 and "Parallelization Rules for

SQL Statements" on page 26-20 for more information.

Dividing Work Among Parallel Execution Servers
The parallel execution coordinator examines the redistribution requirements of each

operation. An operation’s redistribution requirement is the way in which the rows

operated on by the operation must be divided, or redistributed, among the parallel

execution servers.

After determining the redistribution requirement for each operation in the

execution plan, the optimizer determines the order in which the operations in the

execution plan must be performed. With this information, the optimizer determines

the data flow of the statement.

Figure 26–4 illustrates the data flow of the following query:

SELECT dname, MAX(sal), AVG(sal)
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 GROUP BY dname;
Parallel Execution 26-11

Process Architecture for Parallel Execution
Figure 26–4 Data Flow Diagram for a Join of the EMP and DEPT Tables

Parallel
Execution

Coordinator

FULL SCAN
emp

FULL SCAN
dept

GROUP
BY

SORT

MERGE
JOIN
26-12 Oracle8i Concepts

Process Architecture for Parallel Execution
Parallelism Between Operations
Operations that require the output of other operations are known as parent
operations. In Figure 26–4 the GROUP BY SORT operation is the parent of the

MERGE JOIN operation because GROUP BY SORT requires the MERGE JOIN

output.

Parent operations can begin consuming rows as soon as the child operations have

produced rows. In the previous example, while the parallel execution servers are

producing rows in the FULL SCAN DEPT operation, another set of parallel

execution servers can begin to perform the MERGE JOIN operation to consume the

rows.

Each of the two operations performed concurrently is given its own set of parallel

execution servers. Therefore, both query operations and the data flow tree itself

have parallelism. The parallelism of an individual operation is called intra-operation
parallelism and the parallelism between operations in a data flow tree is called

inter-operation parallelism.

Due to the producer/consumer nature of the Oracle server’s operations, only two

operations in a given tree need to be performed simultaneously to minimize

execution time.

To illustrate intra-operation parallelism and inter-operator parallelism, consider the

following statement:

SELECT * FROM emp ORDER BY ename;

The execution plan consists of a full scan of the EMP table followed by a sorting of

the retrieved rows based on the value of the ENAME column. For the sake of this

example, assume the ENAME column is not indexed. Also assume that the degree

of parallelism for the query is set to four, which means that four parallel execution

servers can be active for any given operation.

Figure 26–5 illustrates the parallel execution of our example query.
Parallel Execution 26-13

Process Architecture for Parallel Execution
Figure 26–5 Inter-Operation Parallelism and Dynamic Partitioning

As you can see from Figure 26–5, there are actually eight parallel execution servers

involved in the query even though the degree of parallelism is four. This is because

a parent and child operator can be performed at the same time (inter-operation

parallelism).

Also note that all of the parallel execution servers involved in the scan operation

send rows to the appropriate parallel execution server performing the sort

operation. If a row scanned by a parallel execution server contains a value for the

ENAME column between A and G, that row gets sent to the first ORDER BY

parallel execution server. When the scan operation is complete, the sorting

processes can return the sorted results to the coordinator, which in turn returns the

complete query results to the user.

SELECT *
 FROM emp
 ORDER BY ename;

EMP Table

Parallel
Execution

Coordinator

T - Z

H - M

N - S

A - G

User
Process

Parallel execution
servers for
ORDER BY
operation

Parallel execution
servers for full
table scan
operation

Intra-
Operation
parallelism

Inter-
Operation
parallelism

Intra-
Operation
parallelism
26-14 Oracle8i Concepts

Setting the Degree of Parallelism
Setting the Degree of Parallelism
The parallel execution coordinator may enlist two or more of the instance’s parallel

execution servers to process a SQL statement. The number of parallel execution

servers associated with a single operation is known as the degree of parallelism
(DOP).

The degree of parallelism is specified at the statement level (with hints or the

PARALLEL clause), at the table or index level (in the table’s or index’s definition),

or by default based on the number of CPUs.

The following example shows a statement that sets the degree of parallelism to 4 on

a table:

ALTER TABLE emp PARALLEL 4;

This next example sets the degree of parallelism on an index:

ALTER INDEX iemp PARALLEL;

This last example sets a hint to 4 on a query:

SELECT /*+ PARALLEL(emp,4) */ COUNT(*) FROM emp ;

Note that the degree of parallelism applies directly only to intra-operation

parallelism. If inter-operation parallelism is possible, the total number of parallel

execution servers for a statement can be twice the specified degree of parallelism.

No more than two operations can be performed simultaneously.

Parallel execution is designed to effectively use multiple CPUs and disks to answer

queries quickly. When multiple users use parallel execution at the same time, it is

easy to quickly exhaust available CPU, memory, and disk resources. Oracle

Note: When a set of parallel execution servers completes its

operation, it moves on to operations higher in the data flow. For

example, in the previous diagram, if there was another ORDER BY

operation after the ORDER BY, the parallel execution servers

performing the table scan perform the second ORDER BY operation

after completing the table scan.

Additional Information: See Oracle8i Reference and Oracle8i Tuning
for information about the syntax of these statements.
Parallel Execution 26-15

Setting the Degree of Parallelism
provides several ways to deal with resource utilization in conjunction with parallel

execution, including:

■ The adaptive multi-user algorithm, which reduces the degree of parallelism as

the load on the system increases. You can turn this option on with the

PARALLEL_ADAPTIVE_MULTI_USER parameter of the ALTER SYSTEM

statement or in your initialization file.

■ User resource limits and profiles, which allow you to set limits on the amount

of various system resources available to each user as part of a user’s security

domain. Refer to "User Resource Limits and Profiles" on page 29-15 for details.

■ The Database Resource Manager, which allows you to allocate resources to

different groups of users. Refer to Chapter 9, "Database Resource Management",

for details.

How Oracle Determines the Degree of Parallelism for Operations
The parallel execution coordinator determines the degree of parallelism by

considering several specifications. The coordinator:

1. Checks for hints or a PARALLEL clause specified in the SQL statement itself.

2. Looks at the table’s or index’s definition.

3. Checks for the default degree of parallelism (see "Default Degree of Parallelism"

on page 26-17).

Once a degree of parallelism is found in one of these specifications, it becomes the

degree of parallelism for the operation. For specific details of the degree of

parallelism, see "Parallelization Rules for SQL Statements" on page 26-20.

Hints, PARALLEL clauses, table or index definitions, and default values only

determine the number of parallel execution servers that the coordinator requests for

a given operation. The actual number of parallel execution servers uses depends

upon how many processes are available in the parallel execution server pool (see

"The Parallel Execution Server Pool" on page 26-7) and whether inter-operation

parallelism is possible (see "Parallelism Between Operations" on page 26-13).

Hints
You can specify hints in a SQL statement to set the degree of parallelism for a table

or index and the caching behavior of the operation.

Additional Information: Refer to the Oracle8i SQL Reference for the

syntax of the ALTER SYSTEM SQL statement.
26-16 Oracle8i Concepts

Setting the Degree of Parallelism
■ The PARALLEL hint is used only for operations on tables. You can use it to

parallelize queries and DML statements (INSERT, UPDATE, and DELETE).

■ The PARALLEL_INDEX hint parallelizes an index range scan of a partitioned

index. (In an index operation, the PARALLEL hint is not valid and is ignored.)

Table and Index Definitions
You can specify the degree of parallelism within a table or index definition. Use one

of the following SQL statements to set the degree of parallelism for a table or index:

CREATE TABLE, ALTER TABLE, CREATE INDEX, or ALTER INDEX.

Default Degree of Parallelism
The default degree of parallelism is used when you ask to parallelize an operation

but you do not specify a degree of parallelism in a hint or within the definition of a

table or index. The default degree of parallelism is appropriate for most

applications.

The default degree of parallelism for a SQL statement is determined by the

following factors.

1. The number of CPUs for all Oracle Parallel Server instances in the system, and

the value of the parameter PARALLEL_THREADS_PER_CPU.

2. For parallelizing by partition, the number of partitions that will be accessed,

based upon partition pruning (if approximate).

3. For parallel DML operations with global index maintenance, the minimum

number of transaction free lists among all the global indexes to be updated. The

minimum number of transaction free lists for a partitioned global index is the

minimum number across all index partitions. This is a requirement in order to

prevent self-deadlock.

Additional Information: Refer to Oracle8i Tuning for a general

discussion on using hints in SQL statements and the specific syntax

for the PARALLEL, NOPARALLEL, PARALLEL_INDEX, CACHE,

and NOCACHE hints.

Additional Information: Refer to the Oracle8i SQL Reference for the

complete syntax of SQL statements.

Additional Information: See Oracle8i Tuning for information about

adjusting the degree of parallelism.
Parallel Execution 26-17

Setting the Degree of Parallelism
The above factors determine the default number of parallel execution servers to

use, however, the actual number of processes used is limited by their availability

on the requested instances during run time. The initialization parameter

PARALLEL_MAX_SERVERS sets an upper limit on the total number of parallel

execution servers that an instance can have.

If a minimum fraction of the desired parallel execution servers is not available

(specified by the initialization parameter PARALLEL_MIN_PERCENT), a user error

is produced. The user can then retry the query with less parallelism.

Adaptive Multi-User Algorithm
When the adaptive multi-user algorithm is enabled, the parallel execution

coordinator varies the degree of parallelism according to the system load. The load

is determined by looking at the number of allocated threads, as calculated by the

Database Resource Manager. If the number of threads currently allocated is larger

than the optimal number of threads, given the number of available CPUs, the

algorithm reduces the degree of parallelism. This reduction improves throughput

by avoiding overallocation of resources.

Minimum Number of Parallel Execution Servers
Oracle can perform an operation in parallel as long as at least two parallel execution

servers are available. If too few parallel execution servers are available, your SQL

statement may execute slower than expected. You can specify that a minimum

percentage of requested parallel execution servers must be available in order for the

operation to execute. This ensures that your SQL statement executes with a

minimum acceptable parallel performance. If the minimum percentage of requested

parallel execution servers are not available, the SQL statement does not execute and

returns an error.

The initialization parameter PARALLEL_MIN_PERCENT specifies the desired

minimum percentage of requested parallel execution servers. This parameter affects

DML and DDL operations as well as queries.

For example, if you specify 50 for this parameter, then at least 50% of the parallel

execution servers requested for any parallel operation must be available in order for

the operation to succeed. If 20 parallel execution servers are requested, then at least

10 must be available or an error is returned to the user. If

Note: Oracle obtains the information about CPUs from the

operating system.
26-18 Oracle8i Concepts

Setting the Degree of Parallelism
PARALLEL_MIN_PERCENT is set to null, then all parallel operations will proceed

as long as at least two parallel execution servers are available for processing.

Limiting the Number of Available Instances
In an Oracle Parallel Server, instance groups can be used to limit the number of

instances that participate in a parallel operation. You can create any number of

instance groups, each consisting of one or more instances. You can then specify

which instance group is to be used for any or all parallel operations. Parallel

execution servers will only be used on instances which are members of the specified

instance group.

Balancing the Work Load
To optimize performance, all parallel execution servers should have equal work

loads. For SQL statements parallelized by block range or by parallel execution

servers, the work load is dynamically divided among the parallel execution servers.

This minimizes workload skewing, which occurs when some parallel execution

servers perform significantly more work than the other processes.

For SQL statements parallelized by partitions, if the work load is evenly distributed

among the partitions then you can optimize performance by matching the number

of parallel execution servers to the number of partitions, or by choosing a degree of

parallelism such that the number of partitions is a multiple of the number of

processes.

For example, if a table has ten partitions and a parallel operation divides the work

evenly among them, you can use ten parallel execution servers (degree of

parallelism = 10) to do the work in approximately one-tenth the time that one

process would take, or you can use five processes to do the work in one-fifth the

time, or two processes to do the work in one-half the time.

If, however, you use nine processes to work on ten partitions, the first process to

finish its work on one partition then begins work on the tenth partition; and as the

other processes finish their work they become idle. This does not give good

performance when the work is evenly divided among partitions. When the work is

unevenly divided, the performance varies depending on whether the partition that

is left for last has more or less work than the other partitions.

Similarly, if you use four processes to work on ten partitions and the work is evenly

divided, then each process works on a second partition after finishing its first

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information about instance groups.
Parallel Execution 26-19

Setting the Degree of Parallelism
partition, but only two of the processes work on a third partition while the other

two remain idle.

In general, you cannot assume that the time taken to perform a parallel operation

on N partitions with P parallel execution servers will be N/P, because of the

possibility that some processes might have to wait while others finish working on

the last partition(s). By choosing an appropriate degree of parallelism, however, you

can minimize the workload skewing and optimize performance.

For information about balancing the work load with disk affinity, see "Affinity and

Parallel DML" on page 26-49.

Parallelization Rules for SQL Statements
A SQL statement can be parallelized if it includes a parallel hint or if the table or

index being operated on has been declared PARALLEL with a CREATE or ALTER

statement. In addition, a data definition language (DDL) statement can be

parallelized by using the PARALLEL clause. However, not all of these methods

apply to all types of SQL statements.

Parallelization has two components: the decision to parallelize and the degree of

parallelism. These components are determined differently for queries, DDL

operations, and DML operations.

To determine the degree of parallelism, Oracle looks at the reference objects.

■ Parallel query looks at each table and index, in the portion of the query being

parallelized, to determine which is the reference table. The basic rule is to pick

the table or index with the largest degree of parallelism.

■ For parallel DML (insert, update, and delete), the reference object that

determines the degree of parallelism is the table being modified by an insert,

update, or delete operation. Parallel DML also adds some limits to the degree of

parallelism to prevent deadlock. If the parallel DML statement includes a

subquery, the subquery’s degree of parallelism is the same as the DML

operation.

■ For parallel DDL, the reference object that determines the degree of parallelism

is the table, index, or partition being created, rebuilt, split, or moved. If the

parallel DDL statement includes a subquery, the subquery’s degree of

parallelism is the same as the DDL operation.
26-20 Oracle8i Concepts

Setting the Degree of Parallelism
Rules for Parallelizing Queries

Decision to Parallelize A SELECT statement can be parallelized only if the following

conditions are satisfied:

1. The query includes a "parallel" hint specification (PARALLEL or

PARALLEL_INDEX) or the schema objects referred to in the query have a

PARALLEL declaration associated with them.

2. At least one of the tables specified in the query requires one of the following:

■ a full table scan

■ an index range scan spanning multiple partitions

Degree of Parallelism The degree of parallelism for a query is determined by the

following rules:

1. The query uses the maximum degree of parallelism taken from all of the table

declarations involved in the query and all of the potential indexes that are

candidates to satisfy the query (the reference objects). That is, the table or index

that has the greatest degree of parallelism determines the query’s degree of

parallelism (maximum query directive).

2. If a table has both a "parallel" hint specification in the query and a parallel

declaration in its table specification, the hint specification takes precedence over

parallel declaration specification.

Rules for Parallelizing UPDATE and DELETE
Update and delete operations are parallelized by partition (or subpartition—see

"Composite Partitioning" on page 11-17). Updates and deletes can only be

parallelized on partitioned tables; update/delete parallelism is not possible within

a partition, nor on a nonpartitioned table.

You have two ways to specify parallel directives for UPDATE and DELETE

operations (assuming that PARALLEL DML mode is enabled):

1. Parallel clause specified in the definition of the table being updated or deleted

(the reference object).

2. Update or delete parallel hint specified at the statement.

Parallel hints are placed immediately after the UPDATE or DELETE keywords in

UPDATE and DELETE statements. The hint also applies to the underlying scan of

the table being changed.
Parallel Execution 26-21

Setting the Degree of Parallelism
Parallel clauses in CREATE TABLE and ALTER TABLE commands specify table

parallelism. If a parallel clause exists in a table definition, it determines the

parallelism of DML statements as well as queries. If the DML statement contains

explicit parallel hints for a table, however, then those hints override the effect of

parallel clauses for that table.

You can use the ALTER SESSION FORCE PARALLEL DML statement to override

parallel clauses for subsequent update and delete statements in a session. Parallel

hints in update and delete statements override the ALTER SESSION FORCE

PARALLEL DML statement.

Decision to Parallelize The following rule determines whether the update/delete

operation should be parallelized in an update/delete statement:

■ The UPDATE or DELETE operation will be parallelized if and only if at least one

of the following is true:

– The table being updated/deleted has a PARALLEL specification.

– The PARALLEL hint is specified in the DML statement.

– An ALTER SESSION FORCE PARALLEL DML statement was issued

previously during the session.

If the statement contains subqueries or updatable views, they may have their own

separate parallel hints or clauses, but these parallel directives do not affect the

decision to parallelize the update or delete.

Although the parallel hint or clause on the tables is used by both query and

update/delete portions to determine parallelism, the decision to parallelize the

update/delete portion is made independently of the query portion, and vice versa.

Degree of Parallelism The degree of parallelism is determined by the same rules as for

the queries. Note that in the case of update and delete operations, only one table

(the only reference object) is involved which is the target table to be modified.

The precedence rule to determine the degree of parallelism for the update/delete

operation is that the update or delete parallel hint specification takes precedence

over the parallel declaration specification of the target table:

Update/Delete hint > Parallel declaration specification of target table

The maximum degree of parallelism you can achieve is equal to the number of

partitions (or subpartitions in the case of composite subpartitions) in the table.

A parallel execution server can update into or delete from multiple partitions, but

each partition can only be updated or deleted by one parallel execution server.
26-22 Oracle8i Concepts

Setting the Degree of Parallelism
If the degree of parallelism is less than the number of partitions, then the first

process to finish work on one partition continues working on another partition, and

so on until the work is finished on all partitions. If the degree of parallelism is

greater than the number of partitions involved in the operation, then the excess

parallel execution servers would have no work to do.

Example 1: UPDATE tbl_1 SET c1=c1+1 WHERE c1>100;

If TBL_1 is a partitioned table and its table definition has a parallel clause, then the

update operation will be parallelized even if the scan on the table is serial (such as

an index scan), assuming that the table has more than one partition with C1 greater

than 100.

Example 2: UPDATE /*+ PARALLEL(tbl_2,4) */ tbl_2 SET c1=c1+1;

Both the scan and update operations on TBL_2 will be parallelized with degree 4.

Rules for Parallelizing INSERT ... SELECT
An INSERT ... SELECT statement parallelizes its INSERT and SELECT operations

independently, except for the degree of parallelism.

You can specify a "parallel" hint after the INSERT keyword in an INSERT ... SELECT

statement. Since the tables being queried are usually not the same as the table being

inserted into, the hint allows you to specify parallel directives specifically for the

insert operation.

You have four ways to specify parallel directives for an INSERT... SELECT

statement (assuming that PARALLEL DML mode is enabled):

1. SELECT parallel hint(s) specified at the statement.

2. Parallel clause(s) specified in the definition of tables being selected.

3. INSERT parallel hint specified at the statement.

4. Parallel clause specified in the definition of tables being inserted into.

You can use the ALTER SESSION FORCE PARALLEL DML statement to override

parallel clauses for subsequent insert operations in a session. Parallel hints in insert

operations override the ALTER SESSION FORCE PARALLEL DML statement.

Decision to Parallelize The following rule determines whether the insert operation

should be parallelized in an INSERT... SELECT statement:
Parallel Execution 26-23

Setting the Degree of Parallelism
■ The INSERT operation will be parallelized if and only if at least one of the

following is true:

– The PARALLEL hint is specified after the INSERT in the DML statement.

– The table being inserted into (the reference object) has a PARALLEL

declaration specification.

– An ALTER SESSION FORCE PARALLEL DML statement was issued

previously during the session.

Hence the decision to parallelize the insert operation is made independently of the

select operation, and vice versa.

Degree of Parallelism Once the decision to parallelize the select and/or insert

operation is made, one parallel directive is picked for deciding degree of parallelism

of the whole statement using the following precedence rule:

Insert Hint directive > Parallel declaration specification of the inserting table >

Maximum Query directive

where Maximum Query directive means that among multiple tables and indexes, the

table or index that has the maximum degree of parallelism determines the

parallelism for the query operation.

The chosen parallel directive is applied to both the select and insert operations.

Example: In the following example, the degree of parallelism used will be 2, which is

the degree specified in the Insert hint:

INSERT /*+ PARALLEL(tbl_ins,2) */ INTO tbl_ins
 SELECT /*+ PARALLEL(tbl_sel,4) */ * FROM tbl_sel;

Rules for Parallelizing DDL Statements

Decision to Parallelize DDL operations can be parallelized if a PARALLEL clause

(declaration) is specified in the syntax. In the case of CREATE INDEX and ALTER

INDEX ... REBUILD or ALTER INDEX ... REBUILD PARTITION, the parallel

declaration is stored in the data dictionary.

You can use the ALTER SESSION FORCE PARALLEL DDL statement to override

the parallel clauses of subsequent DDL statements in a session.
26-24 Oracle8i Concepts

Setting the Degree of Parallelism
Degree of Parallelism The degree of parallelism is determined by the specification in

the PARALLEL clause, unless it is overridden by an ALTER SESSION FORCE

PARALLEL DDL statement. A rebuild of a partitioned index is never parallelized.

Rules for Parallelizing Create Index, Rebuild Index, Merge/Split Partition

Parallel CREATE INDEX or ALTER INDEX ... REBUILD The CREATE INDEX and ALTER

INDEX ... REBUILD statements can be parallelized only by a PARALLEL clause or

an ALTER SESSION FORCE PARALLEL DDL statement.

ALTER INDEX ... REBUILD can be parallelized only for a nonpartitioned index, but

ALTER INDEX ... REBUILD PARTITION can be parallelized by a PARALLEL clause

or an ALTER SESSION FORCE PARALLEL DDL statement.

The scan operation for ALTER INDEX ... REBUILD (nonpartitioned), ALTER

INDEX ... REBUILD PARTITION, and CREATE INDEX has the same parallelism as

the REBUILD or CREATE operation and uses the same degree of parallelism. If the

degree of parallelism is not specified for REBUILD or CREATE, the default is the

number of CPUs.

Parallel MOVE PARTITION or SPLIT PARTITION The ALTER INDEX ... MOVE

PARTITION and ALTER INDEX ... SPLIT PARTITION statements can be

parallelized only by a PARALLEL clause or an ALTER SESSION FORCE

PARALLEL DDL statement. Their scan operations have the same parallelism as the

corresponding MOVE or SPLIT operations. If the degree of parallelism is not

specified, the default is the number of CPUs.

Rules for Parallelizing Create Table as Select
The CREATE TABLE ... AS SELECT statement contains two parts: a CREATE part

(DDL) and a SELECT part (query). Oracle can parallelize both parts of the

statement. The CREATE part follows the same rules as other DDL operations.

Decision to Parallelize (Query Part) The query part of a CREATE TABLE ... AS SELECT

statement can be parallelized only if the following conditions are satisfied:

1. The query includes a "parallel" hint specification (PARALLEL or

PARALLEL_INDEX) or the CREATE part of the statement has a PARALLEL

clause specification or the schema objects referred to in the query have a

PARALLEL declaration associated with them.

2. At least one of the tables specified in the query requires one of the following:

■ a full table scan
Parallel Execution 26-25

Setting the Degree of Parallelism
■ an index range scan spanning multiple partitions

Degree of Parallelism (Query Part) The degree of parallelism for the query part of a

CREATE TABLE ... AS SELECT statement is determined by one of these rules:

1. The query part uses the values specified in the PARALLEL clause of the

CREATE part.

2. If the PARALLEL clause is not specified, the default degree of parallelism is the

number of CPUs.

3. If the CREATE is serial, then the degree of parallelism is determined by the

query as described in "Rules for Parallelizing Queries" on page 26-21.

Note that any values specified in a hint for parallelism will be ignored.

Decision to Parallelize (Create Part) The CREATE operation of CREATE TABLE ... AS

SELECT can be parallelized only by a PARALLEL clause or an ALTER SESSION

FORCE PARALLEL DDL statement.

When the CREATE operation of CREATE TABLE ... AS SELECT is parallelized,

Oracle also parallelizes the scan operation if possible. The scan operation cannot be

parallelized if, for example:

■ the SELECT clause has a NOPARALLEL hint

■ the operation scans an index of a nonpartitioned table

When the CREATE operation is not parallelized, the SELECT can be parallelized if

it has a PARALLEL hint or if the selected table (or partitioned index) has a parallel

declaration.

Degree of Parallelism (Create Part) The degree of parallelism for the CREATE

operation, and for the SELECT operation if it is parallelized, is specified by the

PARALLEL clause of the CREATE statement, unless it is overridden by an ALTER

SESSION FORCE PARALLEL DDL statement. If the PARALLEL clause does not

specify the degree of parallelism, the default is the number of CPUs.

Summary of Parallelization Rules
Table 26–1 shows how various types of SQL statements can be parallelized, and

indicates which methods of specifying parallelism take precedence.

■ The priority (1) specification overrides priority (2) and priority (3).

■ The priority (2) specification overrides priority (3).
26-26 Oracle8i Concepts

Setting the Degree of Parallelism
Additional Information: For details about parallel clauses and

hints in SQL statements, see Oracle8i SQL Reference.

Table 26–1 Parallelization Rules

Parallel Operation

Parallelized by Clause, Hint, or Underlying Table/Index Declaration
(priority order: 1, 2, 3)

Parallel Hint Parallel Clause ALTER SESSION
Parallel
Declaration

Parallel query table scan
(partitioned or nonpartitioned
table)

(1) PARALLEL (2) of table

Parallel query index range scan
(partitioned index)

(1) PARALLEL_
INDEX

(2) of index

Parallel UPDATE/DELETE
(partitioned table only)

(1) PARALLEL (2) FORCE
PARALLEL DML

(3) of table being
updated or deleted
from

Insert operation of parallel
INSERT... SELECT (partitioned or
nonpartitioned table)

(1) PARALLEL
of insert

(2) FORCE
PARALLEL DML

(3) of table being
inserted into

Select operation of INSERT ...
SELECT when INSERT is parallel

takes degree from INSERT statement

Select operation of INSERT ...
SELECT when INSERT is serial

(1) PARALLEL (2) of table being
selected from

Create operation of parallel
CREATE TABLE ... AS SELECT
(partitioned or nonpartitioned
table)

(Note: Hint in
select clause
does not affect
the create
operation.)

(2) (1) FORCE
PARALLEL DDL

Select operation of CREATE
TABLE ... AS SELECT when
CREATE is parallel

takes degree from CREATE statement

Select operation of CREATE
TABLE ... AS SELECT when
CREATE is serial

(1) PARALLEL
or PARALLEL_
INDEX

(2) of querying
tables or
partitioned indexes

Parallel CREATE INDEX
(partitioned or nonpartitioned
index)

(2) (1) FORCE
PARALLEL DDL
Parallel Execution 26-27

Parallel Query
Parallel Query
You can parallelize queries and subqueries in SELECT statements, as well as the

query portions of DDL statements and DML statements (INSERT, UPDATE, and

DELETE). Previous sections in this chapter describe how queries are parallelized:

■ "Operations That Can Be Parallelized" on page 26-2 lists the query operations

that Oracle can parallelize.

■ "How Oracle Parallelizes Operations" on page 26-3 describes dynamic

parallelism by rowid range.

■ "Process Architecture for Parallel Execution" on page 26-5 describes the

processes that perform parallel queries.

■ "Parallelizing SQL Statements" on page 26-10 explains how the processes

perform parallel queries.

■ "Rules for Parallelizing Queries" on page 26-21 explains the conditions for

parallelizing a query and the factors that determine the degree of parallelism.

However, you cannot parallelize the query portion of a DDL or DML statement if it

references a remote object. When you issue a parallel DML or DDL statement in

which the query portion references a remote object, the operation is executed

serially without notification. See "Distributed Transaction Restrictions" on

page 26-46 for examples.

Parallel REBUILD INDEX
(nonpartitioned index)

(2) (1) FORCE
PARALLEL DDL

REBUILD INDEX (partitioned
index)—never parallelized

— —

Parallel REBUILD INDEX
partition

(2) (1) FORCE
PARALLEL DDL

Parallel MOVE/SPLIT partition (2) (1) FORCE
PARALLEL DDL

Table 26–1 Parallelization Rules (Cont.)

Parallel Operation

Parallelized by Clause, Hint, or Underlying Table/Index Declaration
(priority order: 1, 2, 3)

Parallel Hint Parallel Clause ALTER SESSION
Parallel
Declaration
26-28 Oracle8i Concepts

Parallel Query
Parallel Queries on Index-Organized Tables
The following parallel scan methods are supported on index-organized tables:

■ parallel fast full scan of a nonpartitioned index-organized table

■ parallel fast full scan of a partitioned index-organized table

■ parallel index range scan of a partitioned index-organized table

These scan methods can be used for index-organized tables with overflow areas and

index-organized tables that contain LOBs.

Nonpartitioned Index-Organized Tables
Parallel query on a nonpartitioned index-organized table uses parallel fast full scan.

The degree of parallelism is determined, in decreasing order of priority, by: the

PARALLEL hint (if present), the parallel degree associated with the table (if

specified in the CREATE TABLE or ALTER TABLE command).

The allocation of work is done by dividing the index segment into a sufficiently

large number of block ranges and then assigning block ranges to parallel execution

servers in a demand-driven manner. The overflow blocks corresponding to any row

are accessed in a demand-driven manner only by the process which owns that row.

Partitioned Index-Organized Tables
Both index range scan and fast full scan can be performed in parallel. For parallel

fast full scan, parallelization is exactly the same as for nonpartitioned

index-organized tables. For parallel index range scan on partitioned

index-organized tables, the degree of parallelism is the minimum of the degree

picked up from the above priority list (like in parallel fast full scan) and the number

of partitions in the index-organized table. Depending on the degree of parallelism,

each parallel execution server gets one or more partitions (assigned in a

demand-driven manner), each of which contains the primary key index segment

and the associated overflow segment, if any.

Parallel Queries on Object Types
Parallel queries can be performed on object type tables and tables containing object

type columns. Parallel query for object types supports all of the features that are

available for sequential queries on object types, including:

■ methods on object types

■ attribute access of object types
Parallel Execution 26-29

Parallel DDL
■ constructors to create object type instances

■ object views

■ PL/SQL and OCI queries for object types

There are no limitations on the size of the object types for parallel queries.

The following restrictions apply to using parallel query for object types.

1. A MAP function is needed to parallelize queries involving joins and sorts

(through ORDER BY, GROUP BY, or set operations). In the absence of a MAP

function the query will automatically be executed serially.

2. Parallel queries on nested tables are not supported. Even in the presence of a

parallel attribute for the table or parallel hints, the query will execute serially.

3. Parallel DML and parallel DDL are not supported with object types. DML and

DDL statements are always performed serially.

In all cases where the query cannot execute in parallel because of any of the above

restrictions, the whole query executes serially without giving an error message.

Parallel DDL
This section includes the following topics on parallelism for data definition

language (DDL) statements:

■ DDL Statements That Can Be Parallelized

■ CREATE TABLE ... AS SELECT in Parallel

■ Recoverability and Parallel DDL

■ Space Management for Parallel DDL

DDL Statements That Can Be Parallelized
You can parallelize DDL statements for tables and indexes that are nonpartitioned

or partitioned. Table 26–1 on page 26-27 summarizes the operations that can be

parallelized in DDL statements.

The parallel DDL statements for nonpartitioned tables and indexes are:

■ CREATE INDEX

■ CREATE TABLE ... AS SELECT

■ ALTER INDEX ... REBUILD
26-30 Oracle8i Concepts

Parallel DDL
The parallel DDL statements for partitioned tables and indexes are:

■ CREATE INDEX

■ CREATE TABLE ... AS SELECT

■ ALTER TABLE ... MOVE PARTITION

■ ALTER TABLE ... SPLIT PARTITION

■ ALTER TABLE ... COALESCE PARTITION

■ ALTER INDEX ... REBUILD PARTITION

■ ALTER INDEX ... SPLIT PARTITION—only if the (global) index partition being

split is Usable

All of these DDL operations can be performed in no-logging mode (see "Logging

Mode" on page 25-5) for either parallel or serial execution.

CREATE TABLE for an index-organized table can be parallelized either with or

without an AS SELECT clause.

Different parallelism is used for different operations (see Table 26–1 on page 26-27).

Parallel create (partitioned) table as select and parallel create (partitioned) index

execute with a degree of parallelism equal to the number of partitions.

Partition parallel analyze table is made less necessary by the ANALYZE {TABLE,

INDEX} PARTITION commands, since parallel analyze of an entire partitioned table

can be constructed with multiple user sessions.

Parallel DDL cannot occur on tables with object columns or LOB columns.

CREATE TABLE ... AS SELECT in Parallel
Decision support applications, for performance reasons, often require large

amounts of data to be summarized or "rolled up" into smaller tables for use with ad

hoc, decision support queries. Rollup occurs regularly (such as nightly or weekly)

during a short period of system inactivity.

Parallel execution allows you to parallelize the query and create operations of

creating a table as a subquery from another table or set of tables.

Figure 26–6 illustrates creating a table from a subquery in parallel.

Additional Information: See Oracle8i SQL Reference for information

about the syntax and use of parallel DDL statements.
Parallel Execution 26-31

Parallel DDL
Figure 26–6 Creating a Summary Table in Parallel

Recoverability and Parallel DDL
When summary table data is derived from other tables’ data, the recoverability

from media failure for the smaller summary table may not be important and can be

turned off during creation of the summary table.

If you disable logging during parallel table creation (or any other parallel DDL

operation), you should take a backup of the tablespace containing the table once the

table is created to avoid loss of the table due to media failure.

Use the NOLOGGING clause of CREATE/ALTER TABLE/INDEX statements to

disable undo and redo log generation. See "Logging Mode" on page 25-5 for more

information.

Note: Clustered tables cannot be created and populated in

parallel.

CREATE TABLE summary
 (C1, AVGC2, SUMC3)
PARALLEL (5)
AS
SELECT
C1, AVG(C2), SUM(C3)
FROM DAILY_SALES
GROUP BY (C1);

DAILY_SALES
Table

SUMMARY
Table

Parallel Execution
Coordinator

Parallel Execution
Servers

Parallel Execution
Servers
26-32 Oracle8i Concepts

Parallel DDL
Space Management for Parallel DDL
Creating a table or index in parallel has space management implications that affect

both the storage space required during the parallel operation and the free space

available after the table or index has been created.

Storage Space for CREATE TABLE ... AS SELECT and CREATE INDEX
When creating a table or index in parallel, each parallel execution server uses the

values in the STORAGE clause of the CREATE statement to create temporary

segments to store the rows. Therefore, a table created with an INITIAL of 5M and a

PARALLEL DEGREE of 12 consumes at least 60 megabytes (MB) of storage during

table creation, because each process starts with an extent of 5 MB. When the parallel

execution coordinator combines the segments, some of the segments may be

trimmed, and the resulting table may be smaller than the requested 60 MB.

Free Space and Parallel DDL
When you create indexes and tables in parallel, each parallel execution server

allocates a new extent and fills the extent with the table or index’s data. Thus, if you

create an index with a degree of parallelism of 3, there will be at least three extents

for that index initially. (This discussion also applies to rebuilding indexes in parallel

and moving, splitting, or rebuilding partitions in parallel.)

Serial operations require the schema object to have at least one extent. Parallel

creations require that tables or indexes have at least as many extents as there are

parallel execution servers creating the schema object.

When you create a table or index in parallel, it is possible to create "pockets" of free

space—either external or internal fragmentation. This occurs when the temporary

segments used by the parallel execution servers are larger than what is needed to

store the rows.

■ If the unused space in each temporary segment is larger than the value of the

MINIMUM EXTENT parameter set at the tablespace level, Oracle trims the

unused space when merging rows from all of the temporary segments into the

table or index. The unused space is returned to the system free space and can be

Additional Information: See the Oracle8i Administrator’s Guide for

information about recoverability of tables created in parallel.

Additional Information: See the Oracle8i SQL Reference for a

discussion of the syntax of the CREATE TABLE command.
Parallel Execution 26-33

Parallel DDL
allocated for new extents, but it cannot be coalesced into a larger segment

because it is not contiguous space (external fragmentation).

■ If the unused space in each temporary segment is smaller than the value of the

MINIMUM EXTENT parameter, unused space cannot be trimmed when the

rows in the temporary segments are merged into the table or index. This

unused space is not returned to the system free space; it becomes part of the

table or index (internal fragmentation) and is available only for subsequent

inserts or for updates that require additional space.

For example, if you specify a degree of parallelism of three for a CREATE TABLE ...

AS SELECT statement but there is only one datafile in the tablespace, the internal

fragmentation illustrated in Figure 26–7 can arise. The "pockets" of free space within

internal table extents of a datafile cannot be coalesced with other free space and

allocated as extents. For more information about coalescing free space, see

Chapter 3, "Tablespaces and Datafiles".

Additional Information: See Oracle8i Tuning for more information

about creating tables and indexes in parallel.
26-34 Oracle8i Concepts

Parallel DML
Figure 26–7 Unusable Free Space (Internal Fragmentation)

Parallel DML
Parallel DML (parallel insert, update, and delete) uses parallel execution

mechanisms to speed up or scale up large DML operations against large database

tables and indexes.

Note: Although generally data manipulation language (DML)

includes queries, in this chapter the term "DML" refers only to

inserts, updates, and deletes.

DATA1.ORA

CREATE TABLE emp
 AS SELECT ...

USERS Tablespace

EXTENT 1

Free space
for INSERTs

Free space
for INSERTs

Free space

EXTENT 2

EXTENT 3

for INSERTs

Parallel
Execution

Server

Parallel
Execution

Server

Parallel
Execution

Server
Parallel Execution 26-35

Parallel DML
This section discusses the following parallel DML topics:

■ Advantages of Parallel DML over Manual Parallelism

■ When to Use Parallel DML

■ Enabling Parallel DML

■ Transaction Model for Parallel DML

■ Recovery for Parallel DML

■ Space Considerations for Parallel DML

■ Lock and Enqueue Resources for Parallel DML

■ Restrictions on Parallel DML

See Chapter 25, "Direct-Load INSERT" for a detailed description of parallel insert

statements.

Advantages of Parallel DML over Manual Parallelism
You can parallelize DML operations manually by issuing multiple DML commands

simultaneously against different sets of data. For example, you can parallelize

manually by:

■ issuing multiple INSERT statements to multiple instances of an Oracle Parallel

Server to make use of free space from multiple free list blocks

■ issuing multiple UPDATE and DELETE statements with different key value

ranges or rowid ranges.

However, manual parallelism has the following disadvantages:

■ Difficult to use: you have to open multiple sessions (possibly on different

instances) and issue multiple statements.

■ Lack of transactional properties: the DML statements are issued at different

times, thus the changes are done with inconsistent snapshots of the database. To

get atomicity, the commit or rollback of the various statements must be

coordinated manually (maybe across instances).

■ Work division complexity: you may have to query the table in order to find out

the rowid or key value ranges to correctly divide the work.

■ Lack of affinity and resource information: you need to know affinity

information to issue the right DML statement at the right instance when
26-36 Oracle8i Concepts

Parallel DML
running an Oracle Parallel Server. You also have to find out about current

resource usage to balance work load across instances.

Parallel DML removes these disadvantages by performing inserts, updates, and

deletes in parallel automatically.

When to Use Parallel DML
Parallel DML operations are mainly used to speed up large DML operations against

large database objects. Parallel DML is useful in a decision support system (DSS)

environment where the performance and scalability of accessing large objects are

important. Parallel DML complements parallel query in providing you with both

querying and updating capabilities for your DSS databases.

The overhead of setting up parallelism makes parallel DML operations infeasible

for short OLTP transactions. However, parallel DML operations can speed up batch

jobs running in an OLTP database.

Refresh Tables of a Data Warehouse System
In a data warehouse system, large tables need to be refreshed (updated) periodically

with new or modified data from the production system. You can do this efficiently

by using parallel DML combined with updatable join views.

The data that needs to be refreshed is generally loaded into a temporary table before

starting the refresh process. This table contains either new rows or rows that have

been updated since the last refresh of the data warehouse. You can use an updatable

join view with parallel UPDATE to refresh the updated rows, and you can use an

anti-hash join with parallel INSERT to refresh the new rows.

Intermediate Summary Tables
In a DSS environment, many applications require complex computations that

involve constructing and manipulating many large intermediate summary tables.

These summary tables are often temporary and frequently do not need to be logged.

Parallel DML can speed up the operations against these large intermediate tables.

One benefit is that you can put incremental results in the intermediate tables and

perform parallel UPDATEs.

In addition, the summary tables may contain cumulative or comparison

information which has to persist beyond application sessions; thus, temporary

Additional Information: For details, see Oracle8i Tuning.
Parallel Execution 26-37

Parallel DML
tables are not feasible. Parallel DML operations can speed up the changes to these

large summary tables.

Scoring Tables
Many DSS applications score customers periodically based on a set of criteria. The

scores are usually stored in large DSS tables. The score information is then used in

making a decision, for example, inclusion in a mailing list.

This scoring activity queries and updates a large number of rows in the large table.

Parallel DML can speed up the operations against these large tables.

Historical Tables
Historical tables describe the business transactions of an enterprise over a recent

time interval. Periodically, the DBA deletes the set of oldest rows and inserts a set of

new rows into the table. Parallel INSERT... SELECT and parallel DELETE operations

can speed up this rollover task.

Although you can also use parallel direct loader (SQL*Loader) to insert bulk data

from an external source, parallel INSERT... SELECT will be faster in inserting data

that already exists in another table in the database.

Dropping a partition can also be used to delete old rows, but to do this, the table

has to be partitioned by date and with the appropriate time interval.

Batch Jobs
Batch jobs executed in an OLTP database during off hours have a fixed time

window in which the jobs must complete. A good way to ensure timely job

completion is to parallelize their operations. As the work load increases, more

machine resources can be added; the scaleup property of parallel operations ensures

that the time constraint can be met.

Enabling Parallel DML
A DML statement can be parallelized only if you have explicitly enabled parallel

DML in the session via the ENABLE PARALLEL DML option of the ALTER

SESSION statement. This mode is required because parallel DML and serial DML

have different locking, transaction, and disk space requirements. (See "Space

Considerations for Parallel DML" on page 26-41 and "Lock and Enqueue Resources

for Parallel DML" on page 26-42.)
26-38 Oracle8i Concepts

Parallel DML
The default mode of a session is DISABLE PARALLEL DML. When PARALLEL

DML is disabled, no DML will be executed in parallel even if the PARALLEL hint or

PARALLEL clause is used.

When PARALLEL DML is enabled in a session, all DML statements in this session

will be considered for parallel execution. However, even if the PARALLEL DML is

enabled, the DML operation may still execute serially if there are no parallel hints or

parallel clauses or if restrictions on parallel operations are violated (see "Restrictions

on Parallel DML" on page 26-43).

The session’s PARALLEL DML mode does not influence the parallelism of SELECT

statements, DDL statements, and the query portions of DML statements. Thus, if

this mode is not set, the DML operation is not parallelized but scans or join

operations within the DML statement may still be parallelized.

Transactions with PARALLEL DML Enabled
A session that is enabled for PARALLEL DML may put transactions in the session

in a special mode: If any DML statement in a transaction modifies a table in parallel,

no subsequent serial or parallel query or DML statement can access the same table

again in that transaction. This means that the results of parallel modifications

cannot be seen during the transaction.

Serial or parallel statements that attempt to access a table which has already been

modified in parallel within the same transaction are rejected with an error message.

If a PL/SQL procedure or block is executed in a PARALLEL DML enabled session,

then this rule applies to statements in the procedure or block.

Transaction Model for Parallel DML
To execute a DML operation in parallel, the parallel execution coordinator acquires

or spawns parallel execution servers and each parallel execution server executes a

portion of the work under its own parallel process transaction.

■ Each parallel execution server creates a different parallel process transaction.

■ To reduce contention on the rollback segments, only a few parallel process

transactions should reside in the same rollback segment (see the next section).

The coordinator also has its own coordinator transaction, which can have its own

rollback segment.
Parallel Execution 26-39

Parallel DML
Rollback Segments
Oracle assigns transactions to rollback segments that have the fewest active

transactions. To speed up both forward and undo operations, you should create and

bring online enough rollback segments so that at most two parallel process

transactions are assigned to one rollback segment.

Create the rollback segments in tablespaces that have enough space for them to

extend when necessary and set the MAXEXTENTS storage parameters for the

rollback segments to UNLIMITED. Also, set the OPTIMAL value for the rollback

segments so that after the parallel DML transactions commit, the rollback segments

will be shrunk to the OPTIMAL size.

Two-Phase Commit
A parallel DML operation is executed by more than one independent parallel

process transaction. In order to ensure user-level transactional atomicity, the

coordinator uses a two-phase commit protocol to commit the changes performed by

the parallel process transactions.

This two-phase commit protocol is a simplified version which makes use of shared

disk architecture to speed up transaction status lookups, especially during

transactional recovery. It does not require the Oracle XA library. In-doubt

transactions never become visible to users.

Recovery for Parallel DML
The time required to roll back a parallel DML operation is roughly equal to the time

it took to perform the forward operation.

Oracle supports parallel rollback after transaction and process failures, and after

instance and system failures. Oracle can parallelize both the rolling forward stage

and the rolling back stage of transaction recovery.

Transaction Recovery for User-Issued Rollback
A user-issued rollback in a transaction failure due to statement error is performed in

parallel by the parallel execution coordinator and the parallel execution servers. The

rollback takes approximately the same amount of time as the forward transaction.

Additional Information: See the Oracle8i Backup and Recovery Guide
for details about parallel rollback.
26-40 Oracle8i Concepts

Parallel DML
Process Recovery
Recovery from the failure of a parallel DML coordinator or parallel execution server

is performed by the PMON process.

■ If a single parallel execution server fails, PMON rolls back that process’s work

and all other parallel execution servers roll back their own work.

■ If multiple parallel execution servers fail, PMON rolls back all of their work

serially.

■ If the parallel execution coordinator fails, PMON recovers the coordinator and

all parallel execution servers roll back their own work in parallel.

System Recovery
Recovery from a system failure needs a new startup. Recovery is performed by the

SMON process and any recovery server processes spawned by SMON. Parallel

DML statements may be recovered in parallel using parallel rollback. If the

initialization parameter COMPATIBLE is set to 8.1.3 or greater, Fast-Start
On-Demand Rollback enables dead transactions to be recovered, on demand, one

block at a time (see "Fast-Start On-Demand Rollback" on page 32-14).

Instance Recovery (Oracle Parallel Server)
Recovery from an instance failure in an Oracle Parallel Server is performed by the

recovery processes (that is, the SMON processes and any recovery server processes

they spawn) of other live instances. Each recovery process of the live instances can

recover the parallel execution coordinator and/or parallel execution server

transactions of the failed instance independently.

Space Considerations for Parallel DML
Parallel UPDATE uses the space in the existing object, as opposed to direct-load

INSERT which gets new segments for the data.

Space usage characteristics may be different in parallel than they would be if the

statement executed sequentially, because multiple concurrent child transactions

modify the object.

See "Space Considerations" on page 25-8 for information about space for direct-load

INSERT.
Parallel Execution 26-41

Parallel DML
Lock and Enqueue Resources for Parallel DML
A parallel DML operation’s lock and enqueue resource requirements are very

different from the serial DML requirements. Parallel DML holds many more locks,

so you should increase the value of the ENQUEUE_RESOURCES and DML_LOCKS

parameters.

The processes for a parallel UPDATE, DELETE, or INSERT statement acquire the

following locks:

■ The parallel execution coordinator acquires:

– 1 table lock SX

– 1 partition lock X per partition/subpartition

For parallel INSERT into a partitioned table, the coordinator acquires partition

locks for all partitions. For parallel UPDATE or DELETE, the coordinator

acquires partition locks for all partitions, unless the WHERE clause limits the

partitions involved.

■ Each parallel execution server acquires:

– 1 table lock SX

– 1 partition lock NULL per partition/subpartition

– 1 partition-wait lock X per partition/subpartition

A parallel execution server can work on one or more partitions, but a partition can

only be worked on by one parallel execution server.

For example, for a table with 600 partitions running with parallel degree 100, a

parallel DML statement needs the following locks (assuming all partitions are

involved in the statement):

■ The coordinator acquires 1 table lock SX and 600 partition locks X.

■ Total parallel execution servers acquire 100 table locks SX, 600 partition locks

NULL, and 600 partition-wait locks X.

A special type of parallel UPDATE exists called row-migrating parallel UPDATE.

This parallel update method is only used when a table is defined with the row

movement clause enabled and it allows rows to be moved to different partitions or

subpartitions.

Table 26–2 summarizes the types of locks acquired by coordinator and parallel

execution servers for different types of parallel DML statements.
26-42 Oracle8i Concepts

Parallel DML
Restrictions on Parallel DML
The following restrictions apply to parallel DML (including direct-load INSERT):

■ Update and delete operations are not parallelized on nonpartitioned tables.

■ A transaction can contain multiple parallel DML statements that modify

different tables, but after a parallel DML statement modifies a table, no

subsequent serial or parallel statement (DML or query) can access the same table

again in that transaction.

Table 26–2 Locks Acquired by Parallel DML Statements

Type of statement
Parallel execution
coordinator acquires:

Each parallel execution
server acquires:

Parallel UPDATE or DELETE
into partitioned table; WHERE
clause pruned to a subset of
partitions/subpartitions

1 table lock SX

1 partition lock X per
pruned (sub)partition

1 table lock SX

1 partition lock NULL per
pruned (sub)partition owned
by the parallel execution server

1 partition-wait lock S per
pruned (sub)partition owned
by the parallel execution server

Parallel row-migrating
UPDATE into partitioned table;
WHERE clause pruned to a
subset of (sub)partitions

1 table lock SX 1 table lock SX

1 partition X lock per
pruned (sub)partition

1 partition lock NULL per
pruned (sub)partition owned
by the parallel execution server

1 partition-wait lock S per
pruned partition owned by the
parallel execution server

1 partition lock SX for all
other (sub)partitions

1 partition lock SX for all other
(sub)partitions

Parallel UPDATE, DELETE, or
INSERT into partitioned table

1 table lock SX

Partition locks X for all
(sub)partitions

1 table lock SX

1 partition lock NULL per
(sub)partition owned by the
parallel execution server

1 partition-wait lock S per
(sub)partition owned by the
parallel execution server

Parallel INSERT into
nonpartitioned table

1 table lock X None
Parallel Execution 26-43

Parallel DML
– This restriction also exists after a serial direct-load INSERT statement: no

subsequent SQL statement (DML or query) can access the modified table

during that transaction.

– Queries that access the same table are allowed before a parallel DML or

direct-load INSERT statement, but not after.

– Any serial or parallel statements attempting to access a table that has

already been modified by a parallel UPDATE, parallel DELETE, or

direct-load INSERT during the same transaction are rejected with an error

message.

■ If initialization parameter ROW_LOCKING = INTENT, then inserts, updates,

and deletes are not parallelized (regardless of the serializable mode).

■ Triggers are not supported for parallel DML operations.

■ Replication functionality is not supported for parallel DML.

■ Parallel DML cannot occur in the presence of certain constraints: self-referential

integrity, delete cascade, and deferred integrity. In addition, for direct-load

INSERT there is no support for any referential integrity.

■ Parallel DML cannot occur on tables with object columns or LOB columns, or

on index-organized tables.

■ A transaction involved in a parallel DML operation cannot be or become a

distributed transaction.

■ Clustered tables are not supported.

Violations will cause the statement to execute serially without warnings or error

messages (except for the restriction on statements accessing the same table in a

transaction, which can cause error messages). For example, an update will be

serialized if it is on a nonpartitioned table.

The following sections give further details about restrictions.

Partitioning Key Restriction
You can only update the partitioning key of a partitioned table to a new value if the

update would not cause the row to move to a new partition unless the table is

defined with the row movement clause enabled.

Function Restrictions
The function restrictions for parallel DML are the same as those for parallel DDL

and parallel query. See "Parallel Execution of Functions" on page 26-46.
26-44 Oracle8i Concepts

Parallel DML
Data Integrity Restrictions
This section describes the interactions of integrity constraints and parallel DML

statements.

NOT NULL and CHECK These types of integrity constraints are allowed. They are not a

problem for parallel DML because they are enforced on the column and row level,

respectively.

UNIQUE and PRIMARY KEY These types of integrity constraints are allowed.

FOREIGN KEY (Referential Integrity) There are restrictions for referential integrity

whenever a DML operation on one table could cause a recursive DML operation on

another table or, in order to perform the integrity check, it would be necessary to

see simultaneously all changes made to the object being modified.

Table 26–3 lists all of the operations that are possible on tables that are involved in

referential integrity constraints.

Delete Cascade Delete on tables having a foreign key with delete cascade is not
parallelized because parallel execution servers will try to delete rows from multiple

partitions (parent and child tables).

Self-Referential Integrity DML on tables with self-referential integrity constraints is
not parallelized if the referenced keys (primary keys) are involved. For DML on all

other columns, parallelism is possible.

Deferrable Integrity Constraints If there are any deferrable constraints on the table

being operated on, the DML operation will not be parallelized.

Table 26–3 Referential Integrity Restrictions

DML Statement Issued on Parent Issued on Child Self-Referential

INSERT (Not applicable) Not parallelized Not parallelized

UPDATE No Action Supported Supported Not parallelized

DELETE No Action Supported Supported Not parallelized

DELETE Cascade Not parallelized (Not applicable) Not parallelized
Parallel Execution 26-45

Parallel Execution of Functions
Trigger Restrictions
A DML operation will not be parallelized if any triggers are enabled on the affected

tables that may get fired as a result of the statement. This implies that DML

statements on tables that are being replicated will not be parallelized.

Relevant triggers must be disabled in order to parallelize DML on the table. Note

that enabling/disabling triggers invalidates dependent shared cursors.

Distributed Transaction Restrictions
A DML operation cannot be parallelized if it is in a distributed transaction or if the

DML or the query operation is against a remote object.

Example 1: DML statement which queries a remote object:

INSERT /* APPEND PARALLEL (t3,2) */ INTO t3 SELECT * FROM t4@dblink;

The query operation is executed serially without notification because it references a

remote object.

Example 2: DML operation on a remote object:

DELETE /*+ PARALLEL (t1, 2) */ FROM t1@dblink;

The DELETE operation is not parallelized because it references a remote object.

Example 3: In a distributed transaction:

SELECT * FROM t1@dblink;
DELETE /*+ PARALLEL (t2,2) */ FROM t2;
COMMIT;

The DELETE operation is not parallelized because it occurs in a distributed

transaction (which is started by the SELECT statement).

Parallel Execution of Functions
The execution of user-written functions written in PL/SQL, in Java, or as external

procedures in C, can be parallelized. Any PL/SQL package variables or Java static

attributes used by the function are entirely private to each individual parallel

execution process, however, and are newly initialized at the start of each parallel

execution process rather than being copied from the original session. Because of

this, not all functions will generate correct results if executed in parallel.
26-46 Oracle8i Concepts

Parallel Execution of Functions
To allow a user-written function to be executed in parallel, use the

PARALLEL_ENABLE keyword when you declare the function in either the

CREATE FUNCTION or CREATE PACKAGE statement.

Functions in Parallel Queries
In a SELECT statement or a subquery in a DML or DDL statement, a user-written

function may be executed in parallel if it has been declared with the

PARALLEL_ENABLE keyword, if it is declared in a package or type and has a

PRAGMA RESTRICT_REFERENCES that indicates all of WNDS, RNPS, and

WNPS, or if it is declared with CREATE FUNCTION and the system can analyze

the body of the PL/SQL code and determine that the code neither writes to the

database nor reads nor modifies package variables.

Other parts of a query or subquery can sometimes execute in parallel even if a given

function execution must remain serial.

Functions in Parallel DML and DDL Statements
In a parallel DML or DDL statement, as in a parallel query, a user-written function

may be executed in parallel if it has been declared with the PARALLEL_ENABLE

keyword, if it is declared in a package or type and has a PRAGMA

RESTRICT_REFERENCES that indicates all of RNDS, WNDS, RNPS, and WNPS, or

if it is declared with CREATE FUNCTION and the system can analyze the body of

the PL/SQL code and determine that the code neither reads nor writes to the

database nor reads nor modifies package variables.

For a parallel DML statement, any function call that cannot be executed in parallel

causes the entire DML statement to be executed serially.

For an INSERT ... SELECT or CREATE TABLE ... AS SELECT statement, function

calls in the query portion are parallelized according to the parallel query rules in the

prior paragraph; the query may be parallelized even if the remainder of the

statement must execute serially, or vice versa.

Additional Information: See the description of the pragma

RESTRICT_REFERENCES in the Oracle8i Application Developer’s
Guide - Fundamentals and the description of CREATE FUNCTION in

the Oracle8i SQL Reference.
Parallel Execution 26-47

Affinity
Affinity

In a shared-disk cluster or massively parallel processing (MPP) configuration, an

instance of the Oracle Parallel Server is said to have affinity for a device if the device

is directly accessed from the processor(s) on which the instance is running.

Similarly, an instance has affinity for a file if it has affinity for the device(s) that the

file is stored on.

Determination of affinity may involve arbitrary determinations for files that are

striped across multiple devices. Somewhat arbitrarily, an instance is said to have

affinity for a tablespace (or a partition of a table or index within a tablespace) if the

instance has affinity for the first file in the tablespace.

Oracle considers affinity when allocating work to parallel execution servers. The

use of affinity for parallel execution of SQL statements is transparent to users.

Affinity and Parallel Queries
Affinity in parallel queries increases the speed of scanning data from disk by doing

the scans on a processor that is "near" the data. This can provide a substantial

performance increase for machines that do not naturally support shared disks.

The most common use of affinity is for a table or index partition to be stored in one

file on one device. This configuration provides the highest availability by limiting

the damage done by a device failure and makes best use of partition-parallel index

scans.

DSS customers might prefer to stripe table partitions over multiple devices

(probably a subset of the total number of devices). This allows some queries to

prune the total amount of data being accessed using partitioning criteria and still

obtain parallelism through rowid-range parallel table (partition) scans. If the

devices are configured as a RAID, availability can still be very good. Even when

used for DSS, indexes should probably be partitioned on individual devices.

Other configurations (for example, multiple partitions in one file striped over

multiple devices) will yield correct query results, but you may need to use hints or

explicitly set object attributes to select the correct degree of parallelism.

Attention: The features described in this section are available only

if you have purchased Oracle8i Enterprise Edition with the Parallel

Server Option. See Getting to Know Oracle8i for information about

the features and options available with Oracle8i Enterprise Edition.
26-48 Oracle8i Concepts

Affinity
Affinity and Parallel DML
For parallel DML (inserts, updates, and deletes), affinity enhancements improve

cache performance by routing the DML operation to the node that has affinity for

the partition.

Affinity determines how to distribute the work among the set of instances and/or

parallel execution servers to perform the DML operation in parallel. Affinity can

improve performance of queries in several ways:

1. For certain MPP architectures, Oracle uses device-to-node affinity information

to determine on which nodes to spawn parallel execution servers (parallel
process allocation) and which work granules (rowid ranges or partitions) to send

to particular nodes (work assignment). Better performance is achieved by having

nodes mainly access local devices, giving a better buffer cache hit ratio for every

node and reducing the network overhead and I/O latency.

2. For SMP shared disk clusters, Oracle uses a round-robin mechanism to assign

devices to nodes. Similar to item 1, this device-to-node affinity is used in

determining parallel process allocation and work assignment.

3. For SMP, cluster, and MPP architectures, process-to-device affinity is used to

achieve device isolation. This reduces the chances of having multiple parallel

execution servers accessing the same device simultaneously. This

process-to-device affinity information is also used in implementing stealing

between processes.

For partitioned tables and indexes, partition-to-node affinity information

determines process allocation and work assignment. For shared-nothing MPP

systems, the Oracle Parallel Server tries to assign partitions to instances taking the

disk affinity of the partitions into account. For shared-disk MPP and cluster

systems, partitions are assigned to instances in a round-robin manner.

Affinity is only available for parallel DML when running in an Oracle Parallel

Server configuration. Affinity information which persists across statements will

improve buffer cache hit ratios and reduce block pings between instances.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information about the Oracle Parallel

Server.
Parallel Execution 26-49

Other Types of Parallelism
Other Types of Parallelism
In addition to parallel SQL execution, Oracle can use parallelism for the following

types of operations:

■ parallel recovery

■ parallel propagation (replication)

■ parallel load (the SQL*Loader utility)

Like parallel SQL, parallel recovery and parallel propagation are executed by a

parallel execution coordinator and multiple parallel execution servers. Parallel load,

however, uses a different mechanism.

The behavior of the parallel execution coordinator and parallel execution servers

may differ, depending on what kind of operation they perform (SQL, recovery, or

propagation). For example, if all parallel execution servers in the pool are occupied

and the maximum number of parallel execution servers has been started:

■ in the parallel SQL role, the parallel execution coordinator switches to serial

processing

■ in the parallel propagation role, the parallel execution coordinator returns

an error.

For a given session, the parallel execution coordinator coordinates only one kind of

operation. A parallel execution coordinator cannot coordinate, for example, parallel

SQL and parallel propagation or parallel recovery at the same time.

See "Performing Recovery in Parallel" on page 32-10 for general information about

parallel recovery.

Additional Information: See Oracle8i Utilities for information about

parallel load and general information about SQL*Loader. Also see

Oracle8i Tuning for advice about using parallel load.

Additional Information: See Oracle8i Backup and Recovery Guide for

detailed information about parallel recovery, and see Oracle8i
Replication for information about parallel propagation.
26-50 Oracle8i Concepts

Part VIII

 Data Protection

Part VIII describes how Oracle protects the data in a database and explains what the

database administrator can do to provide additional protection for data.

Part VIII contains the following chapters:

■ Chapter 27, "Data Concurrency and Consistency"

■ Chapter 28, "Data Integrity"

■ Chapter 29, "Controlling Database Access"

■ Chapter 30, "Privileges, Roles, and Security Policies"

■ Chapter 31, "Auditing"

■ Chapter 32, "Database Recovery"

Data Concurrency and Con
27

Data Concurrency and Consistency

A foolish consistency is the hobgoblin of little minds, adored by little statesmen and
philosophers and divines.

Ralph Waldo Emerson

This chapter explains how Oracle maintains consistent data in a multiuser database

environment. The chapter includes:

■ Data Concurrency and Consistency in a Multiuser Environment

■ How Oracle Manages Data Concurrency and Consistency

■ How Oracle Locks Data
sistency 27-1

Data Concurrency and Consistency in a Multiuser Environment
Data Concurrency and Consistency in a Multiuser Environment
In a single-user database, the user can modify data in the database without concern

for other users modifying the same data at the same time. However, in a multiuser

database, the statements within multiple simultaneous transactions can update the

same data. Transactions executing at the same time need to produce meaningful

and consistent results. Therefore, control of data concurrency and data consistency

is vital in a multiuser database.

■ Data concurrency means that many users can access data at the same time.

■ Data consistency means that each user sees a consistent view of the data,

including visible changes made by the user’s own transactions and transactions

of other users.

Data integrity, which enforces business rules associated with a database, is discussed

in Chapter 28, "Data Integrity".

To describe consistent transaction behavior when transactions execute at the same

time, database researchers have defined a transaction isolation model called

serializability. The serializable mode of transaction behavior tries to ensure that

transactions execute in such a way that they appear to be executed one at a time, or

serially, rather than concurrently.

While this degree of isolation between transactions is generally desirable, running

many applications in this mode can seriously compromise application throughput.

Complete isolation of concurrently running transactions could mean that one

transaction cannot perform an insert into a table being queried by another

transaction. In short, real-world considerations usually require a compromise

between perfect transaction isolation and performance.

Oracle offers two isolation levels, providing application developers with

operational modes that preserve consistency and provide high performance.

Preventable Phenomena and Transaction Isolation Levels
The ANSI/ISO SQL standard (SQL92) defines four levels of transaction isolation

with differing degrees of impact on transaction processing throughput. These

isolation levels are defined in terms of three phenomena that must be prevented

between concurrently executing transactions.

The three preventable phenomena are:

dirty read A transaction reads data that has been written by another

transaction that has not been committed yet.
27-2 Oracle8i Concepts

Data Concurrency and Consistency in a Multiuser Environment
SQL92 defines four levels of isolation in terms of the phenomena a transaction

running at a particular isolation level is permitted to experience.

Oracle offers the read committed and serializable isolation levels, as well as a

read-only mode that is not part of SQL92. Read committed is the default and was

the only automatic isolation level provided before Oracle Release 7.3. The read

committed and serializable isolation levels are discussed more fully in "How Oracle

Manages Data Concurrency and Consistency" on page 27-4.

Locking Mechanisms
In general, multiuser databases use some form of data locking to solve the problems

associated with data concurrency, consistency, and integrity. Locks are mechanisms

that prevent destructive interaction between transactions accessing the same

resource.

Resources include two general types of objects:

■ user objects, such as tables and rows (structures and data)

■ system objects not visible to users, such as shared data structures in the

memory and data dictionary rows

The various types of locks—data locks, DDL locks, and internal locks—are

discussed in "How Oracle Locks Data" on page 27-15.

nonrepeatable

(fuzzy) read

A transaction rereads data it has previously read and finds

that another committed transaction has modified or deleted

the data.

phantom read A transaction re-executes a query returning a set of rows

that satisfies a search condition and finds that another

committed transaction has inserted additional rows that

satisfy the condition.

Isolation Level Dirty Read NonRepeatable Read Phantom Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible
Data Concurrency and Consistency 27-3

How Oracle Manages Data Concurrency and Consistency
How Oracle Manages Data Concurrency and Consistency
Oracle maintains data consistency in a multiuser environment by using a

multiversion consistency model and various types of locks and transactions.

Multiversion Concurrency Control
Oracle automatically provides read consistency to a query so that all the data that

the query sees comes from a single point in time (statement-level read consistency).
Oracle can also provide read consistency to all of the queries in a transaction

(transaction-level read consistency).

Oracle uses the information maintained in its rollback segments to provide these

consistent views. The rollback segments contain the old values of data that have

been changed by uncommitted or recently committed transactions. Figure 27–1

shows how Oracle provides statement-level read consistency using data in rollback

segments.

Figure 27–1 Transactions and Read Consistency

SELECT . . .
(SCN 10023)

10021

10021

10024

10008

10024

10011

10021

10008

10021

Data Blocks

Scan Path

Rollback Segment
27-4 Oracle8i Concepts

How Oracle Manages Data Concurrency and Consistency
As a query enters the execution stage, the current system change number (SCN) is

determined; in Figure 27–1, this system change number is 10023. As data blocks are

read on behalf of the query, only blocks written with the observed SCN are used.

Blocks with changed data (more recent SCNs) are reconstructed from data in the

rollback segments, and the reconstructed data is returned for the query. Therefore,

each query returns all committed data with respect to the SCN recorded at the time

that query execution began. Changes of other transactions that occur during a

query’s execution are not observed, guaranteeing that consistent data is returned

for each query.

The "Snapshot Too Old" Message
In rare situations, Oracle cannot return a consistent set of results (often called a

snapshot) for a long-running query. This occurs because not enough information

remains in the rollback segments to reconstruct the older data. Usually, this error is

produced when a lot of update activity causes the rollback segment to wrap around

and overwrite changes needed to reconstruct data that the long-running query

requires. In this event, error 1555 will result:

ORA-1555: snapshot too old (rollback segment too small)

You can avoid this error by creating more or larger rollback segments. Alternatively,

long-running queries can be issued when there are few concurrent transactions, or

you can obtain a shared lock on the table you are querying, thus prohibiting any

other exclusive locks during the transaction.

Statement-Level Read Consistency
Oracle always enforces statement-level read consistency. This guarantees that all the

data returned by a single query comes from a single point in time—the time that the

query began. Therefore, a query never sees dirty data nor any of the changes made

by transactions that commit during query execution. As query execution proceeds,

only data committed before the query began is visible to the query. The query does

not see changes committed after statement execution begins.

A consistent result set is provided for every query, guaranteeing data consistency,

with no action on the user’s part. The SQL statements SELECT, INSERT with a

subquery, UPDATE, and DELETE all query data, either explicitly or implicitly, and

all return consistent data. Each of these statements uses a query to determine which

data it will affect (SELECT, INSERT, UPDATE, or DELETE, respectively).

A SELECT statement is an explicit query and may have nested queries or a join

operation. An INSERT statement can use nested queries. UPDATE and DELETE
Data Concurrency and Consistency 27-5

How Oracle Manages Data Concurrency and Consistency
statements can use WHERE clauses or subqueries to affect only some rows in a table

rather than all rows.

Queries used in INSERT, UPDATE, and DELETE statements are guaranteed a

consistent set of results. However, they do not see the changes made by the DML

statement itself. In other words, the query in these operations sees data as it existed

before the operation began to make changes.

Transaction-Level Read Consistency
Oracle also offers the option of enforcing transaction-level read consistency. When a

transaction executes in serializable mode (see below), all data accesses reflect the

state of the database as of the time the transaction began. This means that the data

seen by all queries within the same transaction is consistent with respect to a single

point in time, except that queries made by a serializable transaction do see changes

made by the transaction itself. Transaction-level read consistency produces

repeatable reads and does not expose a query to phantoms.

Read Consistency in the Oracle Parallel Server
Oracle Parallel Server uses a parallel cache management technique called Cache
Fusion to ensure data consistency among multiple instances that access a single

database. When an inter-instance request for a consistent-read block creates a

reader/writer cache coherency conflict, Cache Fusion uses the Block Server Process

(BSP) to copy blocks directly from the holding instance’s memory cache to the

requesting instance’s memory cache. The instance holding the block rolls back

uncommitted transactions and sends the block directly to the requestor without

writing the block to disk. The state of the block is consistent as of the time at which

the request was submitted at the requester node.

Oracle Isolation Levels
Oracle provides three transaction isolation levels:

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for details about Cache Fusion and the Block Server

Process process.

read committed This is the default transaction isolation level. Each query

executed by a transaction sees only data that was committed

before the query (not the transaction) began. An Oracle query

will never read dirty (uncommitted) data.
27-6 Oracle8i Concepts

How Oracle Manages Data Concurrency and Consistency
Setting the Isolation Level
Application designers, application developers, and database administrators can

choose appropriate isolation levels for different transactions, depending on the

application and workload. You can set the isolation level of a transaction by using

one of these commands at the beginning of a transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION ISOLATION LEVEL READ ONLY;

To save the networking and processing cost of beginning each transaction with a

SET TRANSACTION command, you can use the ALTER SESSION command to set

the transaction isolation level for all subsequent transactions:

ALTER SESSION SET ISOLATION_LEVEL SERIALIZABLE;

ALTER SESSION SET ISOLATION_LEVEL READ COMMITTED;

Because Oracle does not prevent other transactions from

modifying the data read by a query, that data may be changed

by other transactions between two executions of the query.

Thus, a transaction that executes a given query twice may

experience both nonrepeatable read and phantoms.

serializable

transactions

Serializable transactions see only those changes that were

committed at the time the transaction began, plus those

changes made by the transaction itself through INSERT,

UPDATE, and DELETE statements. Serializable transactions

do not experience nonrepeatable reads or phantoms.

read-only Read-only transactions see only those changes that were

committed at the time the transaction began and do not allow

INSERT, UPDATE, and DELETE statements.

Additional Information: See Oracle8i SQL Reference for detailed

information on any of these SQL commands.
Data Concurrency and Consistency 27-7

How Oracle Manages Data Concurrency and Consistency
Read Committed Isolation
The default isolation level for Oracle is read committed. This degree of isolation is

appropriate for environments where few transactions are likely to conflict. Oracle

causes each query to execute with respect to its own snapshot time, thereby

permitting nonrepeatable reads and phantoms for multiple executions of a query,

but providing higher potential throughput. Read committed isolation is the

appropriate level of isolation for environments where few transactions are likely to

conflict.

Serializable Isolation
Serializable isolation is suitable for environments

■ with large databases and short transactions that update only a few rows

■ where the chance that two concurrent transactions will modify the same rows is

relatively low, and

■ where relatively long-running transactions are primarily read-only.

Serializable isolation permits concurrent transactions to make only those database

changes they could have made if the transactions had been scheduled to execute

one after another. Specifically, Oracle permits a serializable transaction to modify a

data row only if it can determine that prior changes to the row were made by

transactions that had committed when the serializable transaction began.

To make this determination efficiently, Oracle uses control information stored in the

data block that indicates which rows in the block contain committed and

uncommitted changes. In a sense, the block contains a recent history of transactions

that affected each row in the block. The amount of history that is retained is

controlled by the INITRANS parameter of CREATE TABLE and ALTER TABLE.

Under some circumstances, Oracle may have insufficient history information to

determine whether a row has been updated by a "too recent" transaction. This can

occur when many transactions concurrently modify the same data block, or do so in

a very short period. You can avoid this situation by setting higher values of

INITRANS for tables that will experience many transactions updating the same

blocks. Doing so will enable Oracle to allocate sufficient storage in each block to

record the history of recent transactions that accessed the block.

Oracle generates an error when a serializable transaction tries to update or delete

data modified by a transaction that commits after the serializable transaction began:

ORA-08177: Cannot serialize access for this transaction
27-8 Oracle8i Concepts

How Oracle Manages Data Concurrency and Consistency
When a serializable transaction fails with the "Cannot serialize access" error, the

application can take any of several actions:

■ commit the work executed to that point

■ execute additional (but different) statements (perhaps after rolling back to a

savepoint established earlier in the transaction)

■ roll back the entire transaction

Figure 27–2 shows an example of an application that rolls back and retries the

transaction after it fails with the "Cannot serialize access" error:

Figure 27–2 Serializable Transaction Failure

Comparing Read Committed and Serializable Isolation
Oracle gives the application developer a choice of two transaction isolation levels

with different characteristics. Both the read committed and serializable isolation

levels provide a high degree of consistency and concurrency. Both levels provide

the contention-reducing benefits of Oracle’s "read consistency" multiversion

concurrency control model and exclusive row-level locking implementation and are

designed for real-world application deployment.

LOOP and retry
THEN ROLLBACK;

SET TRANSACTION ISOLATION

SELECT...

SELECT...

UPDATE...

Repeated query sees the same
data, even if it was changed by
another concurrent user

LEVEL SERIALIZABLE

Fails if attempting to update a
row changed and committed by
another transaction since this
transaction began

”Can’t Serialize Access”IF
Data Concurrency and Consistency 27-9

How Oracle Manages Data Concurrency and Consistency
Transaction Set Consistency
A useful way to view the read committed and serializable isolation levels in Oracle

is to consider the following scenario: Assume you have a collection of database

tables (or any set of data), a particular sequence of reads of rows in those tables, and

the set of transactions committed at any particular time. An operation (a query or

a transaction) is transaction set consistent if all its reads return data written by the

same set of committed transactions. An operation is not transaction set consistent if

some reads reflect the changes of one set of transactions and other reads reflect

changes made by other transactions. An operation that is not transaction set

consistent in effect sees the database in a state that reflects no single set of

committed transactions.

Oracle provides transactions executing in read committed mode with transaction

set consistency on a per-statement basis. Serializable mode provides transaction set

consistency on a per-transaction basis.

Table 27–1 summarizes key differences between read committed and serializable

transactions in Oracle.

Table 27–1 Read Committed and Serializable Transactions

Read Committed Serializable

Dirty write Not possible Not possible

Dirty read Not possible Not possible

Nonrepeatable read Possible Not possible

Phantoms Possible Not possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction

Transaction set consistency Statement level Transaction level

Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different-row writers block writers No No

Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes
27-10 Oracle8i Concepts

How Oracle Manages Data Concurrency and Consistency
Row-Level Locking
Both read committed and serializable transactions use row-level locking, and both

will wait if they try to change a row updated by an uncommitted concurrent

transaction. The second transaction that tries to update a given row waits for the

other transaction to commit or roll back and release its lock. If that other transaction

rolls back, the waiting transaction (regardless of its isolation mode) can proceed to

change the previously locked row, as if the other transaction had not existed.

However, if the other (blocking) transaction commits and releases its locks, a read

committed transaction proceeds with its intended update. A serializable

transaction, however, fails with the error "Cannot serialize access", because the

other transaction has committed a change that was made since the serializable

transaction began.

Referential Integrity
Because Oracle does not use read locks in either read-consistent or serializable

transactions, data read by one transaction can be overwritten by another.

Transactions that perform database consistency checks at the application level

should not assume that the data they read will remain unchanged during the

execution of the transaction (even though such changes are not visible to the

transaction). Database inconsistencies can result unless such application-level

consistency checks are coded with this in mind, even when using serializable

transactions.

Oracle Parallel Server
You can use both read committed and serializable transaction isolation levels in an

Oracle Parallel Server (several Oracle instances running against a single database).

Subject to "cannot serialize access" No Yes

Error after blocking transaction aborts No No

Error after blocking transaction commits No Yes

Additional Information: See Oracle8i Application Developer’s Guide -
Fundamentals for more information about referential integrity and

serializable transactions.

Table 27–1 Read Committed and Serializable Transactions

Read Committed Serializable
Data Concurrency and Consistency 27-11

How Oracle Manages Data Concurrency and Consistency
Distributed Transactions
In a distributed database environment, a given transaction updates data in multiple

physical databases (protected by two-phase commit to ensure all nodes or none

commit). In such an environment, all servers (whether Oracle or non-Oracle) that

participate in a serializable transaction are required to support serializable isolation

mode.

If a serializable transaction tries to update data in a database managed by a server

that does not support serializable transactions, the transaction receives an error. The

transaction can roll back and retry only when the remote server does support

serializable transactions.

In contrast, read committed transactions can perform distributed transactions with

servers that do not support serializable transactions.

Choosing an Isolation Level
Application designers and developers should choose an isolation level based on

application performance and consistency needs as well as application coding

requirements.

For environments with many concurrent users rapidly submitting transactions,

designers must assess transaction performance requirements in terms of the

expected transaction arrival rate and response time demands. Frequently, for

high-performance environments, the choice of isolation levels involves a trade-off

between consistency and concurrency (transaction throughput).

Application logic that checks database consistency must take into account the fact

that reads do not block writes in either mode.

Both Oracle isolation modes provide high levels of consistency and concurrency

(and performance) through the combination of row-level locking and Oracle’s

multiversion concurrency control system. Readers and writers don’t block one

another in Oracle; therefore, while queries still see consistent data, both read

committed and serializable isolation provide a high level of concurrency for high

performance, without the need for reading uncommitted ("dirty") data.

Choosing Read Committed Isolation
For many applications, read committed is the most appropriate isolation level. This

is the isolation level used by applications running on Oracle releases previous to

Release 7.3.
27-12 Oracle8i Concepts

How Oracle Manages Data Concurrency and Consistency
Read committed isolation can provide considerably more concurrency with a

somewhat increased risk of inconsistent results (due to phantoms and

non-repeatable reads) for some transactions.

Many high-performance environments with high transaction arrival rates require

more throughput and faster response times than can be achieved with serializable

isolation. Other environments that supports fe users with a very low transaction

arrival rate also face very low risk of incorrect results due to phantoms and

nonrepeatable reads. Read committed isolation is suitable for both of these

environments.

Oracle read committed isolation provides transaction set consistency for every

query (that is, every query sees data in a consistent state). Therefore, read

committed isolation will suffice for many applications that might require a higher

degree of isolation if run on other database management systems that do not use

multiversion concurrency control.

Read committed isolation mode does not require application logic to trap the

"Cannot serialize access" error and loop back to restart a transaction. In most

applications, few transactions have a functional need to reissue the same query

twice, so for many applications protection against phantoms and non-repeatable

reads is not important. Therefore many developers choose read committed to avoid

the need to write such error checking and retry code in each transaction.

Choosing Serializable Isolation
Oracle’s serializable isolation is suitable for environments where there is relatively

low chance that two concurrent transactions will modify the same rows and the

relatively long-running transactions are primarily read-only. It is most suitable for

environments with large databases and short transactions that update only a few

rows.

Serializable isolation mode provides somewhat more consistency by protecting

against phantoms and nonrepeatable reads and may be important where a

read/write transaction executes a query more than once.

Unlike other implementations of serializable isolation, which lock blocks for read

as well as write, Oracle provides nonblocking queries and the fine granularity of

row-level locking, both of which reduce write/write contention. For applications

that experience mostly read/write contention, Oracle serializable isolation can

provide significantly more throughput than other systems. Therefore, some

applications might be suitable for serializable isolation on Oracle but not on

other systems.
Data Concurrency and Consistency 27-13

How Oracle Manages Data Concurrency and Consistency
All queries in an Oracle serializable transaction see the database as of a single point

in time, so this isolation level is suitable where multiple consistent queries must be

issued in a read-write transaction. A report-writing application that generates

summary data and stores it in the database might use serializable mode because it

provides the consistency that a READ ONLY transaction provides, but also allows

INSERT, UPDATE, and DELETE.

Coding serializable transactions requires extra work by the application developer

(to check for the "Cannot serialize access" error and to roll back and retry the

transaction). Similar extra coding is needed in other database management systems

to manage deadlocks. For adherence to corporate standards or for applications that

are run on multiple database management systems, it may be necessary to design

transactions for serializable mode. Transactions that check for serializability failures

and retry can be used with Oracle read committed mode (which does not generate

serializability errors).

Serializable mode is probably not the best choice in an environment with relatively

long transactions that must update the same rows accessed by a high volume of

short update transactions. Because a longer running transaction is unlikely to be the

first to modify a given row, it will repeatedly need to roll back, wasting work. (Note

that a conventional read-locking "pessimistic" implementation of serializable mode

would not be suitable for this environment either, because long-running

transactions—even read transactions—would block the progress of short update

transactions and vice versa.)

Application developers should take into account the cost of rolling back and

retrying transactions when using serializable mode. As with read-locking systems,

where deadlocks occur frequently, use of serializable mode requires rolling back the

work done by aborted transactions and retrying them. In a high contention

environment, this activity can use significant resources.

In most environments, a transaction that restarts after receiving the "Cannot

serialize access" error is unlikely to encounter a second conflict with another

transaction. For this reason it can help to execute those statements most likely to

contend with other transactions as early as possible in a serializable transaction.

However, there is no guarantee that the transaction will complete successfully, so

the application should be coded to limit the number of retries.

Note: Transactions containing DML statements with subqueries

should use serializable isolation to guarantee consistent read.
27-14 Oracle8i Concepts

How Oracle Locks Data
Although Oracle serializable mode is compatible with SQL92 and offers many

benefits compared with read-locking implementations, it does not provide

semantics identical to such systems. Application designers must take into account

the fact that reads in Oracle do not block writes as they do in other systems.

Transactions that check for database consistency at the application level may require

coding techniques such as the use of SELECT FOR UPDATE. This issue should be

considered when applications using serializable mode are ported to Oracle from

other environments.

How Oracle Locks Data
Locks are mechanisms that prevent destructive interaction between transactions

accessing the same resource—either user objects (such as tables and rows) or system

objects not visible to users (such as shared data structures in memory and data

dictionary rows).

In all cases, Oracle automatically obtains necessary locks when executing SQL

statements, so users need not be concerned with such details. Oracle automatically

uses the lowest applicable level of restrictiveness to provide the highest degree of

data concurrency yet also provide fail-safe data integrity. Oracle also allows the user

to lock data manually.

For a complete description of the internal locks used by Oracle, see "Types of Locks"

on page 27-19.

Transactions and Data Concurrency
Oracle provides data concurrency and integrity between transactions using its

locking mechanisms. Because the locking mechanisms of Oracle are tied closely to

transaction control, application designers need only define transactions properly,

and Oracle automatically manages locking.

Keep in mind that Oracle locking is fully automatic and requires no user action.

Implicit locking occurs for all SQL statements so that database users never need to

lock any resource explicitly. Oracle’s default locking mechanisms lock data at the

lowest level of restrictiveness to guarantee data integrity while allowing the highest

degree of data concurrency.

Later sections also describe situations where you might wish to acquire locks

manually or to alter the default locking behavior of Oracle and explain how you can

do so—see "Explicit (Manual) Data Locking" on page 27-31.
Data Concurrency and Consistency 27-15

How Oracle Locks Data
Locking Modes
Oracle uses two modes of locking in a multiuser database:

Lock Duration
All locks acquired by statements within a transaction are held for the duration of

the transaction, preventing destructive interference (including dirty reads, lost

updates, and destructive DDL operations) from concurrent transactions. The

changes made by the SQL statements of one transaction become visible only to

other transactions that start after the first transaction is committed.

Oracle releases all locks acquired by the statements within a transaction when you

either commit or roll back the transaction. Oracle also releases locks acquired after a

savepoint when rolling back to the savepoint. However, only transactions not

waiting for the previously locked resources can acquire locks on the now available

resources. Waiting transactions will continue to wait until after the original

transaction commits or rolls back completely.

Data Lock Conversion Versus Lock Escalation
A transaction holds exclusive row locks for all rows inserted, updated, or deleted

within the transaction. Because row locks are acquired at the highest degree of

restrictiveness, no lock conversion is required or performed.

Oracle automatically converts a table lock of lower restrictiveness to one of higher

restrictiveness as appropriate. For example, assume that a transaction uses a

SELECT statement with the FOR UPDATE clause to lock rows of a table. As a result,

it acquires the exclusive row locks and a row share table lock for the table. If the

transaction later updates one or more of the locked rows, the row share table lock is

automatically converted to a row exclusive table lock. For more information about

table locks, see "Table Locks (TM)" on page 27-21.

exclusive lock mode Prevents the associates resource from being shared. This

lock mode is obtained to modify data. The first transaction

to lock a resource exclusively is the only transaction that

can alter the resource until the exclusive lock is released.

share lock mode Allows the associated resource to be shared, depending on

the operations involved. Multiple users reading data can

share the data, holding share locks to prevent concurrent

access by a writer (who needs an exclusive lock). Several

transactions can acquire share locks on the same resource.
27-16 Oracle8i Concepts

How Oracle Locks Data
Lock escalation occurs when numerous locks are held at one level of granularity (for

example, rows) and a database raises the locks to a higher level of granularity (for

example, table). For example, if a single user locks many rows in a table, some

database will automatically escalate the user’s row locks to a single table. The

number of locks is reduced, but the restrictiveness of what is being locked is

increased.

Oracle never escalates locks. Lock escalation greatly increases the likelihood of

deadlocks (described below). Imagine the situation where the system is trying to

escalate locks on behalf of transaction T1 but cannot because of the locks held by

transaction T2. A deadlock is created if transaction T2 also requires lock escalation

of the same data before it can proceed.

Deadlocks
A deadlock can occur when two or more users are waiting for data locked by each

other. Deadlocks prevent some transactions from continuing to work. Figure 27–3

illustrates two transactions in a deadlock.

In Figure 27–3, no problem exists at time point A, as each transaction has a row lock

on the row it attempts to update. Each transaction proceeds (without being

terminated). However, each tries next to update the row currently held by the other

transaction. Therefore, a deadlock results at time point B, because neither

transaction can obtain the resource it needs to proceed or terminate. It is a deadlock

because no matter how long each transaction waits, the conflicting locks are held.
Data Concurrency and Consistency 27-17

How Oracle Locks Data
Figure 27–3 Two Transactions in a Deadlock

Deadlock Detection
Oracle automatically detects deadlock situations and resolves them by rolling back

one of the statements involved in the deadlock, thereby releasing one set of the

conflicting row locks. A corresponding message also is returned to the transaction

that undergoes statement-level rollback. The statement rolled back is the one

belonging to the transaction that detects the deadlock. Usually, the signalled

transaction should be rolled back explicitly, but it can retry the rolled-back

statement after waiting.

Deadlocks most often occur when transactions explicitly override the default

locking of Oracle. Because Oracle itself does no lock escalation and does not use

read locks for queries, but does use row-level locking (rather than page-level

Note: In distributed transactions, local deadlocks are detected

by analyzing a "waits for" graph, and global deadlocks are detected

by a time-out. Once detected, nondistributed and distributed

deadlocks are handled by the database and application in the

same way.

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 1000;

UPDATE emp
 SET sal = sal*1.1
 WHERE empno = 2000;

ORA–00060:
 deadlock detected while
 waiting for resource

UPDATE emp

 WHERE empno = 2000;

UPDATE emp
 SET mgr = 1342
 WHERE empno = 1000;

 SET mgr = 1342

A

B

C

Transaction 1 (T1) Time Transaction 2 (T2)
27-18 Oracle8i Concepts

How Oracle Locks Data
locking), deadlocks occur infrequently in Oracle. See "Explicit (Manual) Data

Locking" on page 27-31 for more information about manually acquiring locks and

for an example of a deadlock situation.

Avoiding Deadlocks
Multitable deadlocks can usually be avoided if transactions accessing the same

tables lock those tables in the same order, either through implicit or explicit locks.

For example, all application developers might follow the rule that when both a

master and detail table are updated, the master table is locked first and then the

detail table. If such rules are properly designed and then followed in all

applications, deadlocks are very unlikely to occur.

When you know you will require a sequence of locks for one transaction, you

should consider acquiring the most exclusive (least compatible) lock first.

Types of Locks
Oracle automatically uses different types of locks to control concurrent access to

data and to prevent destructive interaction between users. Oracle automatically

locks a resource on behalf of a transaction to prevent other transactions from doing

something also requiring exclusive access to the same resource. The lock is released

automatically when some event occurs so that the transaction no longer requires the

resource.

Throughout its operation, Oracle automatically acquires different types of locks at

different levels of restrictiveness depending on the resource being locked and the

operation being performed.

Oracle locks fall into one of the following general categories:

DML locks (data locks) DML locks protect data. For example, table locks lock

entire tables, row locks lock selected rows.

DDL locks (dictionary

locks)

DDL locks protect the structure of schema objects—for

example, the definitions of tables and views.

internal locks and

latches

Internal locks and latches protect internal database

structures such as datafiles. Internal locks and latches

are entirely automatic.
Data Concurrency and Consistency 27-19

How Oracle Locks Data
This chapter discusses DML locks, DDL locks, and internal locks, respectively.

DML (Data) Locks
The purpose of a DML (data) lock is to guarantee the integrity of data being

accessed concurrently by multiple users. DML locks prevent destructive

interference of simultaneous conflicting DML and/or DDL operations. For example,

Oracle DML locks guarantee that a specific row in a table can be updated by only

one transaction at a time and that a table cannot be dropped if an uncommitted

transaction contains an insert into the table.

DML operations can acquire data locks at two different levels: for specific rows and

for entire tables. The following sections explain row and table locks.

Row Locks (TX)
The only DML locks Oracle acquires automatically are row-level locks. There is no

limit to the number of row locks held by a statement or transaction, and Oracle does

not escalate locks from the row level to a coarser granularity. Row locking provides

distributed locks Distributed locks ensure that the data and other

resources distributed among the various instances of an

Oracle Parallel Server remain consistent. Distributed

locks are held by instances rather than transactions.

They communicate the current status of a resource

among the instances of an Oracle Parallel Server.

parallel cache

management (PCM)

locks

Parallel cache management locks are distributed locks

that cover one or more data blocks (table or index

blocks) in the buffer cache. PCM locks do not lock any

rows on behalf of transactions.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information about distributed locks and

PCM locks.

Note: The acronym in parentheses after each type of lock or lock

mode in the following sections is the abbreviation used in the Locks

Monitor of Oracle Enterprise Manager. Oracle Enterprise Manager

might display TM for any table lock, rather than indicate the mode

of table lock (such as RS or SRX).
27-20 Oracle8i Concepts

How Oracle Locks Data
the finest grain locking possible and so provides the best possible concurrency and

throughput.

The combination of multiversion concurrency control and row-level locking means

that users contend for data only when accessing the same rows, specifically:

■ Readers of data do not wait for writers of the same data rows.

■ Writers of data do not wait for readers of the same data rows (unless SELECT...

FOR UPDATE is used, which specifically requests a lock for the reader).

■ Writers only wait for other writers if they attempt to update the same rows at

the same time.

A transaction acquires an exclusive DML lock for each individual row modified by

one of the following statements: INSERT, UPDATE, DELETE, and SELECT with the

FOR UPDATE clause.

A modified row is always locked exclusively so that other users cannot modify the

row until the transaction holding the lock is committed or rolled back. (However, if

the transaction dies due to instance failure, block-level recovery makes a row

available before the entire transaction is recovered. See "Database Instance Failure"

on page 32-4.) Row locks are always acquired automatically by Oracle as a result of

the statements listed above.

If a transaction obtains a row lock for a row, the transaction also acquires a table

lock for the corresponding table. The table lock prevents conflicting DDL operations

that would override data changes in a current transaction. The following section

explains table locks, and "DDL Locks (Dictionary Locks)" on page 27-28 explains the

locks necessary for DDL operations.

Table Locks (TM)
A transaction acquires a table lock when a table is modified in the following DML

statements: INSERT, UPDATE, DELETE, SELECT with the FOR UPDATE clause,

and LOCK TABLE. These DML operations require table locks for two purposes: to

reserve DML access to the table on behalf of a transaction and to prevent DDL

operations that would conflict with the transaction. Any table lock prevents the

acquisition of an exclusive DDL lock on the same table and thereby prevents DDL

Note: Readers of data may have to wait for writers of the same

data blocks in some very special cases of pending distributed

transactions.
Data Concurrency and Consistency 27-21

How Oracle Locks Data
operations that require such locks. For example, a table cannot be altered or

dropped if an uncommitted transaction holds a table lock for it. (For more

information about exclusive DDL locks, see "Exclusive DDL Locks" on page 27-28.)

A table lock can be held in any of several modes: row share (RS), row exclusive

(RX), share (S), share row exclusive (SRX), and exclusive (X). The restrictiveness of a

table lock’s mode determines the modes in which other table locks on the same

table can be obtained and held.

Table 27–2 shows the table lock modes that statements acquire and operations that

those locks permit and prohibit.

Table 27–2 Summary of Table Locks

SQL Statement
Mode of
Table Lock

 Lock Modes Permitted?

RS RX S SRX X

SELECT...FROM table... none Y Y Y Y Y

INSERT INTO table ... RX Y Y N N N

UPDATE table ... RX Y* Y* N N N

DELETE FROM table ... RX Y* Y* N N N

SELECT ... FROM table
FOR UPDATE OF ...

RS Y* Y* Y* Y* N

LOCK TABLE table IN
ROW SHARE MODE

RS Y Y Y Y N

LOCK TABLE table IN
ROW EXCLUSIVE MODE

RX Y Y N N N

LOCK TABLE table IN
SHARE MODE

S Y N Y N N

LOCK TABLE table IN
SHARE ROW EXCLUSIVE
MODE

SRX Y N N N N

LOCK TABLE table IN
EXCLUSIVE MODE

X N N N N N

RS: row share

RX: row exclusive

S: share

SRX: share row exclusive

X: exclusive

*Yes, if no conflicting row locks are
held by another transaction;
otherwise, waits occur.
27-22 Oracle8i Concepts

How Oracle Locks Data
The following sections explain each mode of table lock, from least restrictive to

most restrictive. Each section describes the mode of table lock, the actions that cause

the transaction to acquire a table lock in that mode, and which actions are permitted

and prohibited in other transactions by a lock in that mode. For more information

about manual locking, see "Explicit (Manual) Data Locking" on page 27-31.

Row Share Table Locks (RS) A row share table lock (also sometimes called a subshare
table lock, SS) indicates that the transaction holding the lock on the table has locked

rows in the table and intends to update them. A row share table lock is

automatically acquired for a table when one of the following SQL statements is

executed:

SELECT . . . FROM table . . . FOR UPDATE OF . . . ;

LOCK TABLE table IN ROW SHARE MODE;

A row share table lock is the least restrictive mode of table lock, offering the highest

degree of concurrency for a table.

Permitted Operations: A row share table lock held by a transaction allows other

transactions to query, insert, update, delete, or lock rows concurrently in the same

table. Therefore, other transactions can obtain simultaneous row share, row

exclusive, share, and share row exclusive table locks for the same table.

Prohibited Operations: A row share table lock held by a transaction prevents other

transactions from exclusive write access to the same table using only the following

statement:

LOCK TABLE table IN EXCLUSIVE MODE;

Row Exclusive Table Locks (RX) A row exclusive table lock (also called a subexclusive
table lock, SX) generally indicates that the transaction holding the lock has made one

or more updates to rows in the table. A row exclusive table lock is acquired

automatically for a table modified by the following types of statements:

INSERT INTO table . . . ;

UPDATE table . . . ;

DELETE FROM table . . . ;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

A row exclusive table lock is slightly more restrictive than a row share table lock.
Data Concurrency and Consistency 27-23

How Oracle Locks Data
Permitted Operations: A row exclusive table lock held by a transaction allows other

transactions to query, insert, update, delete, or lock rows concurrently in the same

table. Therefore, row exclusive table locks allow multiple transactions to obtain

simultaneous row exclusive and row share table locks for the same table.

Prohibited Operations: A row exclusive table lock held by a transaction prevents other

transactions from manually locking the table for exclusive reading or writing.

Therefore, other transactions cannot concurrently lock the table using the following

statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Share Table Locks (S) A share table lock is acquired automatically for the table
specified in the following statement:

LOCK TABLE table IN SHARE MODE;

Permitted Operations: A share table lock held by a transaction allows other

transactions only to query the table, to lock specific rows with SELECT . . . FOR

UPDATE, or to execute LOCK TABLE . . . IN SHARE MODE statements

successfully; no updates are allowed by other transactions. Multiple transactions

can hold share table locks for the same table concurrently. In this case, no

transaction can update the table (even if a transaction holds row locks as the result

of a SELECT statement with the FOR UPDATE clause). Therefore, a transaction that

has a share table lock can update the table only if no other transactions also have a

share table lock on the same table.

Prohibited Operations: A share table lock held by a transaction prevents other

transactions from modifying the same table and from executing the following

statements:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;
27-24 Oracle8i Concepts

How Oracle Locks Data
Share Row Exclusive Table Locks (SRX) A share row exclusive table lock (also

sometimes called a share-subexclusive table lock, SSX) is more restrictive than a share

table lock. A share row exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

Permitted Operations: Only one transaction at a time can acquire a share row

exclusive table lock on a given table. A share row exclusive table lock held by a

transaction allows other transactions to query or lock specific rows using SELECT

with the FOR UPDATE clause, but not to update the table.

Prohibited Operations: A share row exclusive table lock held by a transaction

prevents other transactions from obtaining row exclusive table locks and modifying

the same table. A share row exclusive table lock also prohibits other transactions

from obtaining share, share row exclusive, and exclusive table locks, which prevents

other transactions from executing the following statements:

LOCK TABLE table IN SHARE MODE;

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Exclusive Table Locks (X) An exclusive table lock is the most restrictive mode of table

lock, allowing the transaction that holds the lock exclusive write access to the table.

An exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN EXCLUSIVE MODE;

Permitted Operations: Only one transaction can obtain an exclusive table lock for a

table. An exclusive table lock permits other transactions only to query the table.

Prohibited Operations: An exclusive table lock held by a transaction prohibits other

transactions from performing any type of DML statement or placing any type of

lock on the table.

DML Locks Automatically Acquired for DML Statements
The previous sections explained the different types of data locks, the modes in

which they can be held, when they can be obtained, when they are obtained, and

what they prohibit. The following sections summarize how Oracle automatically

locks data on behalf of different DML operations.
Data Concurrency and Consistency 27-25

How Oracle Locks Data
Table 27–3 summarizes the information in the following sections.

Default Locking for Queries Queries are the SQL statements least likely to interfere

with other SQL statements because they only read data. INSERT, UPDATE, and

DELETE statements can have implicit queries as part of the statement. Queries

include the following kinds of statements:

SELECT

INSERT . . . SELECT . . . ;

UPDATE . . . ;

DELETE . . . ;

They do not include the following statement:

SELECT . . . FOR UPDATE OF . . . ;

Table 27–3 Locks Obtained By DML Statements

DML Statement Row Locks? Mode of Table Lock

SELECT ... FROM table

INSERT INTO table ... X RX

UPDATE table ... X RX

DELETE FROM table ... X RX

SELECT ... FROM table ...
FOR UPDATE OF ...

X RS

LOCK TABLE table IN ...

 ROW SHARE MODE RS

 ROW EXCLUSIVE MODE RX

 SHARE MODE S

 SHARE EXCLUSIVE MODE SRX

 EXCLUSIVE MODE X

X: exclusive

RX: row exclusive

RS: row share

S: share

SRX: share row exclusive
27-26 Oracle8i Concepts

How Oracle Locks Data
The following characteristics are true of all queries that do not use the FOR

UPDATE clause:

■ A query acquires no data locks. Therefore, other transactions can query and

update a table being queried, including the specific rows being queried.

Because queries lacking FOR UPDATE clauses do not acquire any data locks to

block other operations, such queries are often referred to in Oracle as

nonblocking queries.

■ A query does not have to wait for any data locks to be released; it can always

proceed. (Queries may have to wait for data locks in some very specific cases of

pending distributed transactions.)

Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE The locking

characteristics of INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE

statements are as follows:

■ The transaction that contains a DML statement acquires exclusive row locks on

the rows modified by the statement. Other transactions cannot update or delete

the locked rows until the locking transaction either commits or rolls back.

■ The transaction that contains a DML statement does not need to acquire row

locks on any rows selected by a subquery or an implicit query, such as a query

in a WHERE clause. A subquery or implicit query in a DML statement is

guaranteed to be consistent as of the start of the query and does not see the

effects of the DML statement it is part of.

■ A query in a transaction can see the changes made by previous DML statements

in the same transaction, but cannot see the changes of other transactions begun

after its own transaction.

■ In addition to the necessary exclusive row locks, a transaction that contains a

DML statement acquires at least a row exclusive table lock on the table that

contains the affected rows. If the containing transaction already holds a share,

share row exclusive, or exclusive table lock for that table, the row exclusive

table lock is not acquired. If the containing transaction already holds a row

share table lock, Oracle automatically converts this lock to a row exclusive

table lock.
Data Concurrency and Consistency 27-27

How Oracle Locks Data
DDL Locks (Dictionary Locks)
A DDL lock protects the definition of a schema object (for example, a table) while

that object is acted upon or referred to by an ongoing DDL operation. (Recall that a

DDL statement implicitly commits its transaction.) For example, assume that a user

creates a procedure. On behalf of the user’s single-statement transaction, Oracle

automatically acquires DDL locks for all schema objects referenced in the procedure

definition. The DDL locks prevent objects referenced in the procedure from being

altered or dropped before the procedure compilation is complete.

Oracle acquires a dictionary lock automatically on behalf of any DDL transaction

requiring it. Users cannot explicitly request DDL locks. Only individual schema

objects that are modified or referenced are locked during DDL operations; the

whole data dictionary is never locked.

DDL locks fall into three categories: exclusive DDL locks, share DDL locks, and

breakable parse locks.

Exclusive DDL Locks
Most DDL operations (except for those listed in the next section, "Share DDL

Locks") require exclusive DDL locks for a resource to prevent destructive

interference with other DDL operations that might modify or reference the same

schema object. For example, a DROP TABLE operation is not allowed to drop a

table while an ALTER TABLE operation is adding a column to it, and vice versa.

During the acquisition of an exclusive DDL lock, if another DDL lock is already

held on the schema object by another operation, the acquisition waits until the older

DDL lock is released and then proceeds.

DDL operations also acquire DML locks (data locks) on the schema object to be

modified.

Share DDL Locks
Some DDL operations require share DDL locks for a resource to prevent destructive

interference with conflicting DDL operations, but allow data concurrency for

similar DDL operations. For example, when a CREATE PROCEDURE statement is

executed, the containing transaction acquires share DDL locks for all referenced

tables. Other transactions can concurrently create procedures that reference the

same tables and therefore acquire concurrent share DDL locks on the same tables,

but no transaction can acquire an exclusive DDL lock on any referenced table. No

transaction can alter or drop a referenced table. As a result, a transaction that holds

a share DDL lock is guaranteed that the definition of the referenced schema object

will remain constant for the duration of the transaction.
27-28 Oracle8i Concepts

How Oracle Locks Data
A share DDL lock is acquired on a schema object for DDL statements that include

the following commands: AUDIT, NOAUDIT, COMMENT, CREATE [OR

REPLACE] VIEW/ PROCEDURE/PACKAGE/PACKAGE BODY/FUNCTION/

TRIGGER, CREATE SYNONYM, and CREATE TABLE (when the CLUSTER

parameter is not included).

Breakable Parse Locks
A SQL statement (or PL/SQL program unit) in the shared pool holds a parse lock

for each schema object it references. Parse locks are acquired so that the associated

shared SQL area can be invalidated if a referenced object is altered or dropped. See

Chapter 21, "Oracle Dependency Management", for more information about

dependency management. A parse lock does not disallow any DDL operation and

can be broken to allow conflicting DDL operations, hence the name "breakable

parse lock".

A parse lock is acquired during the parse phase of SQL statement execution and

held as long as the shared SQL area for that statement remains in the shared pool.

Duration of DDL Locks
The duration of a DDL lock depends on its type. Exclusive and share DDL locks last

for the duration of DDL statement execution and automatic commit. A parse lock

persists as long as the associated SQL statement remains in the shared pool.

DDL Locks and Clusters
A DDL operation on a cluster acquires exclusive DDL locks on the cluster and on all

tables and snapshots in the cluster. A DDL operation on a table or snapshot in a

cluster acquires a share lock on the cluster, in addition to a share or exclusive DDL

lock on the table or snapshot. The share DDL lock on the cluster prevents another

operation from dropping the cluster while the first operation proceeds.

Latches and Internal Locks
Latches and internal locks protect internal database and memory structures. Both

are inaccessible to users, because users have no need to control over their

occurrence or duration. The following information will help you interpret the

Oracle Enterprise Manager or SQL*Plus LOCKS and LATCHES monitors.
Data Concurrency and Consistency 27-29

How Oracle Locks Data
Latches
Latches are simple, low-level serialization mechanisms to protect shared data

structures in the system global area (SGA). For example, latches protect the list of

users currently accessing the database and protect the data structures describing the

blocks in the buffer cache. A server or background process acquires a latch for a

very short time while manipulating or looking at one of these structures. The

implementation of latches is operating system dependent, particularly in regard to

whether and how long a process will wait for a latch.

Internal Locks
Internal locks are higher-level, more complex mechanisms than latches and serve a

variety of purposes.

Dictionary Cache Locks These locks are of very short duration and are held on entries

in dictionary caches while the entries are being modified or used. They guarantee

that statements being parsed do not see inconsistent object definitions.

Dictionary cache locks can be shared or exclusive. Shared locks are released when

the parse is complete. Exclusive locks are released when the DDL operation is

complete.

File and Log Management Locks These locks protect various files. For example, one

lock protects the control file so that only one process at a time can change it.

Another lock coordinates the use and archiving of the redo log files. Datafiles are

locked to ensure that multiple instances mount a database in shared mode or that

one instance mounts it in exclusive mode. Because file and log locks indicate the

status of files, these locks are necessarily held for a long time.

File and log locks are of particular importance if you are using the Oracle Parallel

Server.

Tablespace and Rollback Segment Locks These locks protect tablespaces and rollback

segments. For example, all instances accessing a database must agree on whether a

tablespace is online or offline. Rollback segments are locked so that only one

instance can write to a segment.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information about locks.
27-30 Oracle8i Concepts

How Oracle Locks Data
Explicit (Manual) Data Locking
Oracle always performs locking automatically to ensure data concurrency, data

integrity, and statement-level read consistency. However, you can override the

Oracle default locking mechanisms. Overriding the default locking is useful in

situations such as these:

■ Applications require transaction-level read consistency or "repeatable reads". In

other words, queries in them must produce consistent data for the duration of

the transaction, not reflecting changes by other transactions. You can achieve

transaction-level read consistency by using explicit locking, read-only

transactions, serializable transactions, or by overriding default locking.

■ Applications require that a transaction have exclusive access to a resource so

that the transaction does not have to wait for other transactions to complete.

Oracle’s automatic locking can be overridden at two levels:

transaction Transactions that include the following SQL statements

override Oracle’s default locking:

■ the SET TRANSACTION ISOLATION LEVEL command

■ the LOCK TABLE command (which locks either a table or,

when used with views, the underlying base tables)

■ the SELECT... FOR UPDATE command

Locks acquired by these statements are released after the

transaction commits or rolls back.

session A session can set the required transaction isolation level with

the ALTER SESSION command.

Note: If Oracle’s default locking is overridden at any level, the

database administrator or application developer should ensure that

the overriding locking procedures operate correctly. The locking

procedures must satisfy the following criteria: data integrity is

guaranteed, data concurrency is acceptable, and deadlocks are not

possible or are appropriately handled.

Additional Information: See the Oracle8i SQL Reference for detailed

descriptions of the SQL statements LOCK TABLE and SELECT ...

FOR UPDATE.
Data Concurrency and Consistency 27-31

How Oracle Locks Data
Examples of Concurrency under Explicit Locking
The following illustration shows how Oracle maintains data concurrency, integrity,

and consistency when LOCK TABLE and SELECT with the FOR UPDATE clause

statements are used.

Note: For brevity, the message text for ORA-00054 ("resource busy

and acquire with NOWAIT specified") is not included. User-entered

text is in bold.

Transaction 1
Time
Point Transaction 2

LOCK TABLE scott.dept
 IN ROW SHARE MODE;
Statement processed

 1

 2 DROP TABLE scott.dept;
DROP TABLE scott.dept
 *
ORA-00054
(exclusive DDL lock not possible
because of T1’s table lock)

 3 LOCK TABLE scott.dept
 IN EXCLUSIVE MODE NOWAIT;
ORA-00054

 4 SELECT LOC
 FROM scott.dept
 WHERE deptno = 20
 FOR UPDATE OF loc;
LOC
- - - - - - -
DALLAS
1 row selected

UPDATE scott.dept
 SET loc = ’NEW YORK’
 WHERE deptno = 20;
(waits because T2 has locked same
rows)

 5
27-32 Oracle8i Concepts

How Oracle Locks Data
 6 ROLLBACK;
(releases row locks)

1 row processed.
ROLLBACK;

 7

LOCK TABLE scott.dept
 IN ROW EXCLUSIVE MODE;
Statement processed.

 8

 9 LOCK TABLE scott.dept
 IN EXCLUSIVE MODE
 NOWAIT;
ORA-00054

10 LOCK TABLE scott.dept
 IN SHARE ROW EXCLUSIVE
 MODE NOWAIT;
ORA-00054

11 LOCK TABLE scott.dept
 IN SHARE ROW EXCLUSIVE
 MODE NOWAIT;
ORA-00054

12 UPDATE scott.dept
 SET loc = ’NEW YORK’
 WHERE deptno = 20;
1 row processed.

13 ROLLBACK;

SELECT loc
 FROM scott.dept
 WHERE deptno = 20
 FOR UPDATE OF loc;
LOC
- - - - - -
DALLAS
1 row selected.

14

15 UPDATE scott.dept
 SET loc = ’NEW YORK’
 WHERE deptno = 20;
(waits because T1 has locked same
rows)

Transaction 1
Time
Point Transaction 2
Data Concurrency and Consistency 27-33

How Oracle Locks Data
ROLLBACK; 16

17 1 row processed.
(conflicting locks were released)
ROLLBACK;

LOCK TABLE scott.dept
 IN SHARE MODE
Statement processed

18

19 LOCK TABLE scott.dept
 IN EXCLUSIVE MODE NOWAIT;
ORA-00054

20 LOCK TABLE scott.dept
 IN SHARE ROW EXCLUSIVE
 MODE NOWAIT;
ORA-00054

21 LOCK TABLE scott.dept
 IN SHARE MODE;
Statement processed.

22 SELECT loc
 FROM scott.dept
 WHERE deptno = 20;
LOC
- - - - - -
DALLAS
1 row selected.

23 SELECT loc
 FROM scott.dept
 WHERE deptno = 20
 FOR UPDATE OF loc;
LOC
- - - - - -
DALLAS
1 row selected.

24 UPDATE scott.dept
 SET loc = ’NEW YORK’
 WHERE deptno = 20;
(waits because T1 holds
conflicting table lock)

Transaction 1
Time
Point Transaction 2
27-34 Oracle8i Concepts

How Oracle Locks Data
ROLLBACK; 25

26 1 row processed.
(conflicting table lock released)
ROLLBACK;

LOCK TABLE scott.dept
 IN SHARE ROW
 EXCLUSIVE MODE;
Statement processed.

27

28 LOCK TABLE scott.dept
 IN EXCLUSIVE MODE
 NOWAIT;
ORA-00054

29 LOCK TABLE scott.dept
 IN SHARE ROW
 EXCLUSIVE MODE
 NOWAIT;
ORA-00054

30 LOCK TABLE scott.dept
 IN SHARE MODE NOWAIT;
ORA-00054

31 LOCK TABLE scott.dept
 IN ROW EXCLUSIVE
 MODE NOWAIT;
ORA-00054

32 LOCK TABLE scott.dept
 IN SHARE MODE NOWAIT;
ORA-00054

33 SELECT loc
 FROM scott.dept
 WHERE deptno = 20;
LOC
- - - - - -
DALLAS
1 row selected.

Transaction 1
Time
Point Transaction 2
Data Concurrency and Consistency 27-35

How Oracle Locks Data
34 SELECT loc
 FROM scott.dept
 WHERE deptno = 20
 FOR UPDATE OF loc;
LOC
- - - - - -
DALLAS
1 row selected.

35 UPDATE scott.dept
 SET loc = ’NEW YORK’
 WHERE deptno = 20;
(waits because T1 holds
conflicting table lock)

UPDATE scott.dept
 SET loc = ’NEW YORK’
 WHERE deptno = 20;
(waits because T2 has locked same
rows)

36
(deadlock)

Cancel operation
ROLLBACK;

37

38 1 row processed.

LOCK TABLE scott.dept
 IN EXCLUSIVE MODE;

39

40 LOCK TABLE scott.dept
 IN EXCLUSIVE MODE;
ORA-00054

41 LOCK TABLE scott.dept
 IN ROW EXCLUSIVE MODE
 NOWAIT;
ORA-00054

42 LOCK TABLE scott.dept
 IN SHARE MODE;
ORA-00054

43 LOCK TABLE scott.dept
 IN ROW EXCLUSIVE
 MODE NOWAIT;
ORA-00054

Transaction 1
Time
Point Transaction 2
27-36 Oracle8i Concepts

How Oracle Locks Data
44 LOCK TABLE scott.dept
 IN ROW SHARE MODE
 NOWAIT;
ORA-00054

45 SELECT loc
 FROM scott.dept
 WHERE deptno = 20;
LOC
- - - - - -
DALLAS
1 row selected.

46 SELECT loc
 FROM scott.dept
 WHERE deptno = 20
 FOR UPDATE OF loc;
(waits because T1 has conflicting
table lock)

UPDATE scott.dept
 SET deptno = 30
 WHERE deptno = 20;
1 row processed.

47

COMMIT; 48

49 0 rows selected.
(T1 released conflicting lock)

SET TRANSACTION READ ONLY; 50

SELECT loc
 FROM scott.dept
 WHERE deptno = 10;
LOC
- - - - - -
BOSTON

51

52 UPDATE scott.dept
 SET loc = ’NEW YORK’
 WHERE deptno = 10;
1 row processed.

Transaction 1
Time
Point Transaction 2
Data Concurrency and Consistency 27-37

How Oracle Locks Data
SELECT loc
 FROM scott.dept
 WHERE deptno = 10;
LOC
- - - - - -
BOSTON
(T1 does not see uncommitted
data)

53

54 COMMIT;

SELECT loc
 FROM scott.dept
 WHERE deptno = 10;
LOC
- - - - - -
(same results seen even after T2
commits)

55

COMMIT; 56

SELECT loc
 FROM scott.dept
 WHERE deptno = 10;
LOC
- - - - - -
NEW YORK
(committed data is seen)

57

Transaction 1
Time
Point Transaction 2
27-38 Oracle8i Concepts

How Oracle Locks Data
Oracle Lock Management Services
With Oracle Lock Management services, an application developer can include

statements in PL/SQL blocks that

■ request a lock of a specific type

■ give the lock a unique name recognizable in another procedure in the same or

in another instance

■ change the lock type

■ release the lock

Because a reserved user lock is the same as an Oracle lock, it has all the Oracle lock

functionality including deadlock detection. User locks never conflict with Oracle

locks, because they are identified with the prefix "UL".

The Oracle Lock Management services are available through procedures in the

DBMS_LOCK package.

Additional Information: See the Oracle8i Application Developer’s
Guide - Fundamentals for more information about Oracle Lock

Management services.
Data Concurrency and Consistency 27-39

How Oracle Locks Data
27-40 Oracle8i Concepts

Data
28

Data Integrity

Does one’s integrity ever lie in what he is not able to do?

Flannery O’Connor: Wise Blood

This chapter explains how to use integrity constraints to enforce the business rules

associated with your database and prevent the entry of invalid information into

tables. The chapter includes:

■ Definition of Data Integrity

■ An Introduction to Integrity Constraints

■ Types of Integrity Constraints

■ The Mechanisms of Constraint Checking

■ Deferred Constraint Checking

■ Constraint States
 Integrity 28-1

Definition of Data Integrity
Definition of Data Integrity
It is important that data adhere to a predefined set of rules, as determined by the

database administrator or application developer. As an example of data integrity,

consider the tables EMP and DEPT and the business rules for the information in

each of the tables, as illustrated in Figure 28–1.

Figure 28–1 Examples of Data Integrity

Note that some columns in each table have specific rules that constrain the data

contained within them.

Table DEPT

EMPNO ENAME SAL COMM DEPTNO

Table EMP

DEPTNO DNAME LOC

Each row must have a value
for the ENAME column

Each value in the DNAME
column must be unique

Each value in the
DEPTNO column
must match a value in
the DEPTNO column
of the DEPT table

Each row must have a value
for the EMPNO column, and
the value must be unique

Each value in the SAL column
must be less than 10,000

... Other Columns ...

20
30

RESEARCH
SALES

DALLAS
CHICAGO

6666
7329
7499
7521

MULDER
SMITH
ALLEN
WARD

5500.00
9000.00
7500.00
5000.00

100.00
200.00
400.00

20
20
30
30

7566 JONES 2975.00 30
28-2 Oracle8i Concepts

Definition of Data Integrity
Types of Data Integrity
This section describes the rules that can be applied to table columns to enforce

different types of data integrity.

Nulls
A null is a rule defined on a single column that allows or disallows inserts or

updates of rows containing a null (the absence of a value) in that column.

Unique Column Values
A unique value defined on a column (or set of columns) allows the insert or update

of a row only if it contains a unique value in that column (or set of columns).

Primary Key Values
A primary key value defined on a key (a column or set of columns) specifies that

each row in the table can be uniquely identified by the values in the key.

Referential Integrity
A rule defined on a key (a column or set of columns) in one table that guarantees

that the values in that key match the values in a key in a related table (the

referenced value).

Referential integrity also includes the rules that dictate what types of data

manipulation are allowed on referenced values and how these actions affect

dependent values. The rules associated with referential integrity are:

Restrict Disallows the update or deletion of referenced data.

Set to Null When referenced data is updated or deleted, all associated

dependent data is set to NULL.

Set to Default When referenced data is updated or deleted, all associated

dependent data is set to a default value.

Cascade When referenced data is updated, all associated dependent

data is correspondingly updated; when a referenced row is

deleted, all associated dependent rows are deleted.

No Action Disallows the update or deletion of referenced data. This

differs from RESTRICT in that it is checked at the end of the

statement, or at the end of the transaction if the constraint is

deferred. (Oracle uses No Action as its default action.)
Data Integrity 28-3

Definition of Data Integrity
Complex Integrity Checking
Complex integrity checking is a user-defined rule for a column (or set of columns)

that allows or disallows inserts, updates, or deletes of a row based on the value it

contains for the column (or set of columns).

How Oracle Enforces Data Integrity
Oracle enables you to define and enforce each type of data integrity rule defined in

the previous section. Most of these rules are easily defined using integrity

constraints or database triggers.

Integrity Constraints
An integrity constraint is a declarative method of defining a rule for a column of a

table. Oracle supports the following integrity constraints:

■ NOT NULL constraints for the rules associated with nulls in a column

■ UNIQUE key constraints for the rule associated with unique column values

■ PRIMARY KEY constraints for the rule associated with primary identification

values

■ FOREIGN KEY constraints for the rules associated with referential integrity.

Oracle currently supports the use of FOREIGN KEY integrity constraints to

define the referential integrity actions, including

– update and delete No Action

– delete CASCADE

– delete SET NULL

■ CHECK constraints for complex integrity rules

Database Triggers
Oracle also allows you to enforce integrity rules with a nondeclarative approach

using database triggers (stored database procedures automatically invoked on

Note: You cannot enforce referential integrity using declarative

integrity constraints if child and parent tables are on different

nodes of a distributed database. However, you can enforce

referential integrity in a distributed database using database

triggers (see next section).
28-4 Oracle8i Concepts

An Introduction to Integrity Constraints
insert, update, or delete operations). For more information and examples of

database triggers used to enforce data integrity, see Chapter 20, "Triggers".

An Introduction to Integrity Constraints
Oracle uses integrity constraints to prevent invalid data entry into the base tables of

the database. You can define integrity constraints to enforce the business rules you

want to associate with the information in a database. If any of the results of a DML

statement execution violate an integrity constraint, Oracle rolls back the statement

and returns an error.

For example, assume that you define an integrity constraint for the SAL column of

the EMP table. This integrity constraint enforces the rule that no row in this table

can contain a numeric value greater than 10,000 in this column. If an INSERT or

UPDATE statement attempts to violate this integrity constraint, Oracle rolls back

the statement and returns an information error message.

The integrity constraints implemented in Oracle fully comply with ANSI

X3.135-1989 and ISO 9075-1989 standards.

Advantages of Integrity Constraints
This section describes some of the advantages that integrity constraints have over

other alternatives, which include:

■ enforcing business rules in the code of a database application

■ using stored procedures to completely control access to data

■ enforcing business rules with triggered stored database procedures (see

Chapter 20, "Triggers")

Declarative Ease
You define integrity constraints using SQL commands. When you define or alter a

table, no additional programming is required. The SQL statements are easy to write,

eliminate programming errors, and Oracle controls their functionality. For these

reasons, declarative integrity constraints are preferable to application code and

database triggers. The declarative approach is also better than using stored

Note: Operations on views (and synonyms for tables) are subject

to the integrity constraints defined on the underlying base tables.
Data Integrity 28-5

An Introduction to Integrity Constraints
procedures, because the stored procedure solution to data integrity controls data

access, but integrity constraints do not eliminate the flexibility of ad hoc data access.

Centralized Rules
Integrity constraints are defined for tables (not an application) and are stored in the

data dictionary. Any data entered by any application must adhere to the same

integrity constraints associated with the table. By moving business rules from

application code to centralized integrity constraints, the tables of a database are

guaranteed to contain valid data, no matter which database application

manipulates the information. Stored procedures cannot provide the same advantage

of centralized rules stored with a table. Database triggers can provide this benefit,

but the complexity of implementation is far greater than the declarative approach

used for integrity constraints.

Maximum Application Development Productivity
If a business rule enforced by an integrity constraint changes, the administrator

need only change that integrity constraint and all applications automatically adhere

to the modified constraint. In contrast, if the business rule were enforced by the

code of each database application, developers would have to modify all application

source code and recompile, debug, and test the modified applications.

Immediate User Feedback
Oracle stores specific information about each integrity constraint in the data

dictionary. You can design database applications to use this information to provide

immediate user feedback about integrity constraint violations, even before Oracle

executes and checks the SQL statement. For example, a SQL*Forms application can

use integrity constraint definitions stored in the data dictionary to check for

violations as values are entered into the fields of a form, even before the application

issues a statement.

Superior Performance
The semantics of integrity constraint declarations are clearly defined, and

performance optimizations are implemented for each specific declarative rule. The

Oracle query optimizer can use declarations to learn more about data to improve

overall query performance. (Also, taking integrity rules out of application code and

database triggers guarantees that checks are only made when necessary.)
28-6 Oracle8i Concepts

Types of Integrity Constraints
Flexibility for Data Loads and Identification of Integrity Violations
You can disable integrity constraints temporarily so that large amounts of data can

be loaded without the overhead of constraint checking. When the data load is

complete, you can easily enable the integrity constraints, and you can automatically

report any new rows that violate integrity constraints to a separate exceptions table.

The Performance Cost of Integrity Constraints
The advantages of enforcing data integrity rules do not come without some loss in

performance. In general, the "cost" of including an integrity constraint is, at most,

the same as executing a SQL statement that evaluates the constraint.

Types of Integrity Constraints
You can use the following integrity constraints to impose restrictions on the input of

column values:

■ NOT NULL Integrity Constraints

■ UNIQUE Key Integrity Constraints

■ PRIMARY KEY Integrity Constraints

■ FOREIGN KEY (Referential) Integrity Constraints

■ CHECK Integrity Constraints

NOT NULL Integrity Constraints
By default, all columns in a table allow nulls (the absence of a value). A NOT NULL

constraint requires a column of a table contain no null values. For example, you can

define a NOT NULL constraint to require that a value be input in the ENAME

column for every row of the EMP table.

Figure 28–2 illustrates a NOT NULL integrity constraint.
Data Integrity 28-7

Types of Integrity Constraints
Figure 28–2 NOT NULL Integrity Constraints

UNIQUE Key Integrity Constraints
A UNIQUE key integrity constraint requires that every value in a column or set of

columns (key) be unique—that is, no two rows of a table have duplicate values in a

specified column or set of columns.

For example, in Figure 28–3 a UNIQUE key constraint is defined on the DNAME

column of the DEPT table to disallow rows with duplicate department names.

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

NOT NULL CONSTRAINT

Absence of NOT
(no row may contain a null
value for this column)

NULL Constraint
(any row can contain
null for this column)

Table EMP

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP_SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30
28-8 Oracle8i Concepts

Types of Integrity Constraints
Figure 28–3 A UNIQUE Key Constraint

Unique Keys
The column (or set of columns) included in the definition of the UNIQUE key

constraint is called the unique key. The term "unique key" is often incorrectly used as

a synonym for the terms "UNIQUE key constraint" or "UNIQUE index"; however,

note that the term "key" refers only to the column or set of columns used in the

definition of the integrity constraint.

If the UNIQUE key consists of more than one column, that group of columns is said

to be a composite unique key. For example, in Figure 28–4 the CUSTOMER table has a

UNIQUE key constraint defined on the composite unique key: the AREA and

PHONE columns.

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

UNIQUE Key Constraint
(no row may duplicate a value
in the constraint's column)

This row violates the UNIQUE key constraint,
because "SALES" is already present in another
row; therefore, it is not allowed in the table.

This row is allowed because a null value is
entered for the DNAME column; however, if a
NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

20
30
40

RESEARCH
SALES
MARKETING

DALLAS
NEW YORK
BOSTON

50

60

SALES NEW YORK

BOSTON
Data Integrity 28-9

Types of Integrity Constraints
Figure 28–4 A Composite UNIQUE Key Constraint

This UNIQUE key constraint allows you to enter an area code and telephone

number any number of times, but the combination of a given area code and given

telephone number cannot be duplicated in the table. This eliminates unintentional

duplication of a telephone number.

UNIQUE Key Constraints and Indexes
Oracle enforces unique integrity constraints with indexes. (In Figure 28–4, Oracle

enforces the UNIQUE key constraint by implicitly creating a unique index on the

composite unique key.) Therefore, composite UNIQUE key constraints have the

same limitations imposed on composite indexes: up to 32 columns can constitute a

composite unique key, and the total size (in bytes) of a key value cannot exceed

approximately half the associated database’s block size. If a usable index exists

when a unique key constraint is created, the constraint will use that index rather

than implicitly creating a new one.

INSERT
INTO

CUSTNO CUSTNAME AREA PHONE

Table CUSTOMER

Composite UNIQUE
Key Constraint
(no row may duplicate
a set of values
in the key)

This row violates the UNIQUE key
constraint, because "415/506-7000"
is already present in another row;
therefore, it is not allowed in the table.

This row is allowed because a null
value is entered for the AREA
column; however, if a NOT NULL
constraint is also defined on the
AREA column, then this row is
not allowed.

230
245
257

OFFICE SUPPLIES
ORACLE CORP
INTERNAL SYSTEMS

303
415
303

506–7000
506–7000
341–8100

268

270

AEA CONSTRUCTION

WW MANUFACTURING

415 506–7000

506–7000

... Other Columns ...
28-10 Oracle8i Concepts

Types of Integrity Constraints
Combining UNIQUE Key and NOT NULL Integrity Constraints
In Figure 28–3 and Figure 28–4, UNIQUE key constraints allow the input of nulls

unless you also define NOT NULL constraints for the same columns. In fact, any

number of rows can include nulls for columns without NOT NULL constraints

because nulls are not considered equal to anything. A null in a column (or in all

columns of a composite UNIQUE key) always satisfies a UNIQUE key constraint.

Columns with both unique keys and NOT NULL integrity constraints are common.

This combination forces the user to enter values in the unique key and also

eliminates the possibility that any new row’s data will ever conflict with an existing

row’s data.

PRIMARY KEY Integrity Constraints
Each table in the database can have at most one PRIMARY KEY constraint. The

values in the group of one or more columns subject to this constraint constitute the

unique identifier of the row. In effect, each row is named by its primary key values.

The Oracle implementation of the PRIMARY KEY integrity constraint guarantees

that both of the following are true:

■ No two rows of a table have duplicate values in the specified column or set of

columns.

■ The primary key columns do not allow nulls (that is, a value must exist for the

primary key columns in each row).

Primary Keys
The column (or set of columns) included in the definition of a table’s PRIMARY

KEY integrity constraint is called the primary key. Although it is not required, every

table should have a primary key so that

■ each row in the table can be uniquely identified

■ no duplicate rows exist in the table

Figure 28–5 illustrates a PRIMARY KEY constraint in the DEPT table and examples

of rows that violate the constraint.

Note: Because of the search mechanism for UNIQUE constraints

on more than one column, you cannot have identical values in the

non-null columns of a partially null composite UNIQUE key

constraint.
Data Integrity 28-11

Types of Integrity Constraints
Figure 28–5 A Primary Key Constraint

PRIMARY KEY Constraints and Indexes
Oracle enforces all PRIMARY KEY constraints using indexes. In Figure 28–5, the

primary key constraint created for the DEPTNO column is enforced by

■ the implicit creation of a unique index on that column

■ the implicit creation of a NOT NULL constraint for that column

Oracle enforces primary key constraints using indexes, and composite primary key

constraints are limited to 32 columns, which is the same limitation imposed on

composite indexes. The name of the index is the same as the name of the constraint.

Also, you can specify the storage options for the index by including the ENABLE

clause in the CREATE TABLE or ALTER TABLE statement used to create the

constraint. If a usable index exists when a primary key constraint is created, the

primary key constraint will use that index rather than implicitly creating a new one.

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

PRIMARY KEY
(no row may duplicate a value in the
key and no null values are allowed)

This row is not allowed because "20" duplicates
an existing value in the primary key.

This row is not allowed because it contains
a null value for the primary key.

20
30

RESEARCH
SALES

DALLAS
CHICAGO

20 MARKETING

FINANCE

DALLAS

NEW YORK
28-12 Oracle8i Concepts

Types of Integrity Constraints
FOREIGN KEY (Referential) Integrity Constraints
Different tables in a relational database can be related by common columns, and the

rules that govern the relationship of the columns must be maintained. Referential

integrity rules guarantee that these relationships are preserved.

Several terms are associated with referential integrity constraints:

A referential integrity constraint requires that for each row of a table, the value in

the foreign key matches a value in a parent key.

Figure 28–6 shows a foreign key defined on the DEPTNO column of the EMP table.

It guarantees that every value in this column must match a value in the primary key

of the DEPT table (also the DEPTNO column). Therefore, no erroneous department

numbers can exist in the DEPTNO column of the EMP table.

Foreign keys can consist of multiple columns. However, a composite foreign key

must reference a composite primary or unique key with the same number of

columns and the same datatypes. Because composite primary and unique keys are

limited to 32 columns, a composite foreign key is also limited to 32 columns.

foreign key The column or set of columns included in the definition of the

referential integrity constraint that reference a referenced key

(see the following).

referenced key The unique key or primary key of the same or different table

that is referenced by a foreign key.

dependent or

child table

The table that includes the foreign key. Therefore, it is the table

that is dependent on the values present in the referenced

unique or primary key.

referenced or

parent table

The table that is referenced by the child table’s foreign key. It is

this table’s referenced key that determines whether specific

inserts or updates are allowed in the child table.
Data Integrity 28-13

Types of Integrity Constraints
Figure 28–6 Referential Integrity Constraints

7571

7571

FORD

FORD

MANAGER

MANAGER

7499

7499

23–FEB–90

23–FEB–90

5,000.00

5,000.00

200.00

200.00

40

INSERT
INTO

Table DEPT
DEPTNO DNAME LOC

Parent Key
Primary key of
referenced table

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Referenced or

Dependent or Child Table

Parent Table

Foreign Key
(values in dependent
table must match a
value in unique key
or primary key or
referenced table)

This row violates the referential
constraint because "40" is not
present in the referenced table's
primary key; therefore, the row
is not allowed in the table.

This row is allowed in the table
because a null value is entered
in the DEPTNO column;
however, if a not null constraint
is also defined for this column,
this row is not allowed.

20
30

RESEARCH
SALES

DALLAS
CHICAGO

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
300.00
500.00

100.00
200.00
400.00

20
30
30
20
28-14 Oracle8i Concepts

Types of Integrity Constraints
Self-Referential Integrity Constraints
Another type of referential integrity constraint, shown in Figure 28–7, is called a

self-referential integrity constraint. This type of foreign key references a parent key

in the same table.

In the example in Figure 28–7, the referential integrity constraint ensures that every

value in the MGR column of the EMP table corresponds to a value that currently

exists in the EMPNO column of the same table, but not necessarily in the same row

(that is, every manager must also be an employee). This integrity constraint

eliminates the possibility of erroneous employee numbers in the MGR column.

Figure 28–7 Single Table Referential Constraints

Nulls and Foreign Keys
The relational model permits the value of foreign keys either to match the

referenced primary or unique key value, or be null. Several interpretations of this

basic rule of the relational model are possible when composite (multicolumn)

foreign keys are involved.

INSERT
INTO

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Dependent or
Child TableReferenced or

Parent Table

This row violates the referential
constraint, because "7331" is
not present in the referenced
table's primary key; therefore,
it is not allowed in the table.

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7329
7499
7521

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30

Primary Key
of referenced table

Foreign Key
(values in dependent table must match a value in
unique key or primary key of referenced table)

7571 FORD MANAGER 7331 23–FEB–90 5,000.00 200.00 30
Data Integrity 28-15

Types of Integrity Constraints
The ANSI/ISO SQL92 (entry-level) standard permits a composite foreign key to

contain any value in its non-null columns if any other column is null, even if those

non-null values are not found in the referenced key. By using other constraints (for

example, NOT NULL and CHECK constraints), you can alter the treatment of

partially null foreign keys from this default treatment.

A composite foreign key can be all null, all non-null, or partially null. The following

terms define three alternative matching rules for composite foreign keys:

Actions Defined by Referential Integrity Constraints
Referential integrity constraints can specify particular actions to be performed on

the dependent rows in a child table if a referenced parent key value is modified. The

referential actions supported by the FOREIGN KEY integrity constraints of Oracle

are UPDATE and DELETE No Action, and DELETE CASCADE.

Update and Delete No Action The No Action (default) option specifies that referenced

key values cannot be updated or deleted if the resulting data would violate a

referential integrity constraint. For example, if a primary key value is referenced by

a value in the foreign key, the referenced primary key value cannot be deleted

because of the dependent data.

match full Partially null foreign keys are not permitted. Either all

components of the foreign key must be null, or the combination

of values contained in the foreign key must appear as the

primary or unique key value of a single row of the referenced

table.

match partial Partially null composite foreign keys are permitted. Either all

components of the foreign key must be null, or the combination

of non-null values contained in the foreign key must appear in

the corresponding portion of the primary or unique key value

of a single row in the referenced table.

match none Partially null composite foreign keys are permitted. If any

column of a composite foreign key is null, then the non-null

portions of the key do not have to match any corresponding

portion of a parent key.

Note: Other referential actions not supported by FOREIGN KEY

integrity constraints of Oracle can be enforced using database

triggers. See Chapter 20, "Triggers" for more information.
28-16 Oracle8i Concepts

Types of Integrity Constraints
Delete Cascade The delete cascade action specifies that when rows containing

referenced key values are deleted, all rows in child tables with dependent foreign

key values are also deleted—the delete "cascades". For example, if a row in a parent

table is deleted, and this row’s primary key value is referenced by one or more

foreign key values in a child table, the rows in the child table that reference the

primary key value are also deleted from the child table.

Delete Set Null The on delete set null action specifies that when rows containing

referenced key values are deleted, all rows in child tables with dependent foreign

key values have those values set to null—the delete "sets null". For example, if

EMPNO references MGR in the TMP table, then deleting a manager will cause the

rows for all employees working for that manager to have their MGR value set to

null.

DML Restrictions with Respect to Referential Actions Table 28–1 outlines the DML

statements allowed by the different referential actions on the primary/unique key

values in the parent table, and the foreign key values in the child table.

CHECK Integrity Constraints
A CHECK integrity constraint on a column or set of columns requires that a

specified condition be true or unknown for every row of the table. If a DML

statement results in the condition of the CHECK constraint evaluating to false, the

statement is rolled back.

Table 28–1 DML Statements Allowed by Update and Delete No Action

DML Statement Issued Against Parent Table Issued Against Child Table

INSERT Always OK if the parent key value is
unique.

OK only if the foreign key
value exists in the parent key
or is partially or all null.

UPDATE No Action Allowed if the statement does not
leave any rows in the child table
without a referenced parent key
value.

Allowed if the new foreign
key value still references a
referenced key value.

DELETE No Action Allowed if no rows in the child table
reference the parent key value.

Always OK.

DELETE Cascade Always OK. Always OK.

DELETE Set Null Always OK. Always OK.
Data Integrity 28-17

The Mechanisms of Constraint Checking
The Check Condition
CHECK constraints enable you to enforce very specific or sophisticated integrity

rules by specifying a check condition. The condition of a CHECK constraint has

some limitations:

■ it must be a Boolean expression evaluated using the values in the row being

inserted or updated, and

■ it cannot contain subqueries, sequences, the SQL functions SYSDATE, UID,

USER, or USERENV, or the pseudocolumns LEVEL or ROWNUM.

In evaluating CHECK constraints that contain string literals or SQL functions with

NLS parameters as arguments (such as TO_CHAR, TO_DATE, and TO_NUMBER),

Oracle uses the database’s NLS settings by default. You can override the defaults by

specifying NLS parameters explicitly in such functions within the CHECK

constraint definition.

Multiple CHECK Constraints
A single column can have multiple CHECK constraints that reference the column in

its definition. There is no limit to the number of CHECK constraints that you can

define on a column.

The Mechanisms of Constraint Checking
To know what types of actions are permitted when constraints are present, it is

useful to understand when Oracle actually performs the checking of constraints. To

illustrate this, an example or two is helpful. Assume the following:

■ The EMP table has been defined as in Figure 28–7 on page 28-15.

■ The self-referential constraint makes the entries in the MGR column dependent

on the values of the EMPNO column. For simplicity, the rest of this discussion

addresses only the EMPNO and MGR columns of the EMP table.

Consider the insertion of the first row into the EMP table. No rows currently exist,

so how can a row be entered if the value in the MGR column cannot reference any

existing value in the EMPNO column? Three possibilities for doing this are:

■ A null can be entered for the MGR column of the first row, assuming that the

MGR column does not have a NOT NULL constraint defined on it. Because

nulls are allowed in foreign keys, this row is inserted successfully into the table.

Additional Information: See the Oracle8i National Language Support
Guide for more information on NLS features.
28-18 Oracle8i Concepts

The Mechanisms of Constraint Checking
■ The same value can be entered in both the EMPNO and MGR columns. This

case reveals that Oracle performs its constraint checking after the statement has

been completely executed. To allow a row to be entered with the same values in

the parent key and the foreign key, Oracle must first execute the statement (that

is, insert the new row) and then check to see if any row in the table has an

EMPNO that corresponds to the new row’s MGR.

■ A multiple row INSERT statement, such as an INSERT statement with nested

SELECT statement, can insert rows that reference one another. For example, the

first row might have EMPNO as 200 and MGR as 300, while the second row

might have EMPNO as 300 and MGR as 200.

This case also shows that constraint checking is deferred until the complete

execution of the statement; all rows are inserted first, then all rows are checked

for constraint violations. (You can also defer the checking of constraints until

the end of the transaction; see "Deferred Constraint Checking" on page 28-20.)

Consider the same self-referential integrity constraint in the following scenario:

■ The company has been sold. Because of this sale, all employee numbers must be

updated to be the current value plus 5000 to coordinate with the new

company’s employee numbers. Because manager numbers are really employee

numbers, these values must also increase by 5000.

The table currently exists as illustrated in Figure 28–8.

Figure 28–8 The EMP Table Before Updates

UPDATE emp
 SET empno = empno + 5000,
 mgr = mgr + 5000;

Even though a constraint is defined to verify that each MGR value matches an

EMPNO value, this statement is legal because Oracle effectively performs its

constraint checking after the statement completes. Figure 28–9 shows that Oracle

performs the actions of the entire SQL statement before any constraints are checked.

EMPNO MGR

210
211
212

210
211
Data Integrity 28-19

Deferred Constraint Checking
Figure 28–9 Constraint Checking

The examples in this section illustrated the constraint checking mechanism during

INSERT and UPDATE statements. The same mechanism is used for all types of

DML statements, including UPDATE, INSERT, and DELETE statements.

The examples also used self-referential integrity constraints to illustrate the

checking mechanism. The same mechanism is used for all types of constraints,

including NOT NULL, UNIQUE key, PRIMARY KEY, all types of FOREIGN KEY,

and CHECK constraints.

Default Column Values and Integrity Constraint Checking
Default values are included as part of an INSERT statement before the statement is

parsed. Therefore, default column values are subject to all integrity constraint

checking.

Deferred Constraint Checking
You can defer checking constraints for validity until the end of the transaction.

■ A constraint is deferred if the system checks that it is satisfied only on commit. If

a deferred constraint is violated, then commit causes the transaction to roll

back.

■ If a constraint is immediate (not deferred), then it is checked at the end of each

statement. If it is violated, the statement is rolled back immediately.

If a constraint causes an action (for example, delete cascade), that action is always

taken as part of the statement that caused it, whether the constraint is deferred or

immediate.

Update to
second row

Update to
second row

Update to
third row

Constraints
checked

EMPNO MGR EMPNO MGR EMPNO MGR

5210
211
212

210
211

5210
5211
5212

5210
52115210

211

5210
5211
212
28-20 Oracle8i Concepts

Deferred Constraint Checking
Constraint Attributes
You can define constraints as either deferrable or not deferrable, and either initially
deferred or initially immediate. These attributes can be different for each constraint.

You specify them with keywords in the CONSTRAINT clause:

■ DEFERRABLE or NOT DEFERRABLE

■ INITIALLY DEFERRED or INITIALLY IMMEDIATE

Constraints can be added, dropped, enabled, disabled, or validated (see "Constraint

States" on page 28-22). You can also modify a constraint’s attributes (see "Modifying

Constraint States" on page 28-23).

SET CONSTRAINTS Mode
The SET CONSTRAINTS statement makes constraints either DEFERRED or

IMMEDIATE for a particular transaction (following the ANSI SQL92 standards in

both syntax and semantics). You can use this statement to set the mode for a list of

constraint names or for ALL constraints.

The SET CONSTRAINTS mode lasts for the duration of the transaction or until

another SET CONSTRAINTS statement resets the mode.

SET CONSTRAINTS ... IMMEDIATE causes the specified constraints to be checked

immediately on execution of each constrained statement. Oracle first checks any

constraints that were deferred earlier in the transaction and then continues

immediately checking constraints of any further statements in that transaction (as

long as all the checked constraints are consistent and no other SET CONSTRAINTS

statement is issued). If any constraint fails the check, an error is signalled; at that

point, a COMMIT would cause the whole transaction to roll back.

The ALTER SESSION statement also has options to SET CONSTRAINTS

IMMEDIATE or DEFERRED. These options imply setting ALL deferrable

constraints (that is, you cannot specify a list of constraint names). They are

equivalent to making a SET CONSTRAINTS statement at the start of each

transaction in the current session.

Making constraints immediate at the end of a transaction is a way of checking

whether COMMIT can succeed. You can avoid unexpected rollbacks by setting

constraints to IMMEDIATE as the last statement in a transaction. If any constraint

fails the check, you can then correct the error before committing the transaction.

Additional Information: See Oracle8i SQL Reference for information

about these constraint attributes and their default values.
Data Integrity 28-21

Constraint States
The SET CONSTRAINTS statement is disallowed inside of triggers.

SET CONSTRAINTS can be a distributed statement. Existing database links that

have transactions in process are told when a SET CONSTRAINTS ALL statement

occurs, and new links learn that it occurred as soon as they start a transaction.

Unique Constraints and Indexes
A user will see inconsistent constraints, including duplicates in unique indexes,

when that user’s transaction produces these inconsistencies.

You can place deferred unique and foreign key constraints on snapshots, allowing

fast and complete refresh to complete successfully.

Deferrable unique constraints always use nonunique indexes. When you remove a

deferrable constraint, its index remains. (This is convenient because the storage

information remains available after you disable a constraint.) Not-deferrable unique

constraints and primary keys also use a nonunique index if the nonunique index is

placed on the key columns before the constraint is enforced.

Constraint States
You can enable or disable integrity constraints at the table level using the CREATE

TABLE or ALTER TABLE statement. You can also set constraints to VALIDATE or

NOVALIDATE, in any combination with ENABLE or DISABLE, where:

■ ENABLE ensures that all incoming data conforms to the constraint.

■ DISABLE allows incoming data, regardless of whether it conforms to the

constraint.

■ VALIDATE ensures that existing data conforms to the constraint.

■ NOVALIDATE means that some existing data may not conform to the

constraint.

In addition:

■ ENABLE VALIDATE is the same as ENABLE. The constraint is checked and is

guaranteed to hold for all rows.

■ ENABLE NOVALIDATE means that the constraint is checked, but it does not

have to be true for all rows. This allows existing rows to violate the constraint,

while ensuring that all new or modified rows are valid.
28-22 Oracle8i Concepts

Constraint States
In an ALTER TABLE statement, ENABLE NOVALIDATE resumes constraint

checking on disabled constraints without first validating all data in the table.

■ DISABLE NOVALIDATE is the same as DISABLE. The constraint is not checked

and is not necessarily true.

■ DISABLE VALIDATE disables the constraint, drops the index on the constraint,

and disallows any modification of the constrained columns.

For a UNIQUE constraint, the DISABLE VALIDATE state enables you to load

data efficiently from a nonpartitioned table into a partitioned table using the

EXCHANGE PARTITION option of the ALTER TABLE command.

Transitions between these states are governed by the following rules:

■ ENABLE implies VALIDATE, unless NOVALIDATE is specified.

■ DISABLE implies NOVALIDATE, unless VALIDATE is specified.

■ VALIDATE and NOVALIDATE do not have any default implications for the

ENABLE and DISABLE states.

■ When a unique or primary key moves from the DISABLE state to the ENABLE

state, if there is no existing index, a unique index is automatically created.

Similarly, when a unique or primary key moves from ENABLE to DISABLE and

it is enabled with a unique index, the unique index is dropped.

■ When any constraint is moved from the NOVALIDATE state to the VALIDATE

state, all data must be checked. (This can be very slow.) However, moving from

VALIDATE to NOVALIDATE simply forgets that the data was ever checked.

■ Moving a single constraint from the ENABLE NOVALIDATE state to the

ENABLE VALIDATE state does not block reads, writes, or other DDL

statements. It can be done in parallel.

Modifying Constraint States
You can use the MODIFY CONSTRAINT option of the ALTER TABLE command to

change the following constraint states:

■ DEFERRABLE or NOT DEFERRABLE

■ INITIALLY DEFERRED or INITIALLY IMMEDIATE

Additional Information: See Oracle8i Administrator’s Guide for

more information about how to use the ENABLE, DISABLE,

VALIDATE, and NOVALIDATE CONSTRAINT options.
Data Integrity 28-23

Constraint States
■ RELY or NORELY

■ USING INDEX . . .

■ ENABLE or DISABLE

■ VALIDATE or NOVALIDATE

■ EXCEPTIONS INTO . . .

Additional Information: See Oracle8i SQL Reference for information

about these constraint states.
28-24 Oracle8i Concepts

Controlling Database
29

Controlling Database Access

Allow me to congratulate you, sir. You have the most totally closed mind that I’ve
ever encountered!

Jon Pertwee (as the Doctor): Frontier in Space

This chapter explains how to control access to an Oracle database. It includes:

■ Database Security

■ Schemas, Database Users, and Security Domains

■ User Authentication

■ User Tablespace Settings and Quotas

■ The User Group PUBLIC

■ User Resource Limits and Profiles

■ Licensing
 Access 29-1

Database Security
Database Security
Database security entails allowing or disallowing user actions on the database and

the objects within it. Oracle uses schemas and security domains to control access to

data and to restrict the use of various database resources.

Oracle provides comprehensive discretionary access control. Discretionary access
control regulates all user access to named objects through privileges. A privilege is

permission to access a named object in a prescribed manner; for example,

permission to query a table. Privileges are granted to users at the discretion of other

users—hence the term "discretionary access control". For more information about

privileges, see Chapter 30, "Privileges, Roles, and Security Policies".

Schemas, Database Users, and Security Domains
A user (sometimes called a username) is a name defined in the database that can

connect to and access objects. A schema is a named collection of objects, such as

tables, views, clusters, procedures, and packages, associated with a particular user.

Schemas and users help database administrators manage database security.

To access a database, a user must run a database application (such as an Oracle

Forms form, SQL*Plus, or a precompiler program) and connect using a username

defined in the database.

When a database user is created, a corresponding schema of the same name is

created for the user. By default, once a user connects to a database, the user has

access to all objects contained in the corresponding schema. A user is associated

only with the schema of the same name; therefore, the terms user and schema are

often used interchangeably.

The access rights of a user are controlled by the different settings of the user’s

security domain. When creating a new database user or altering an existing one, the

security administrator must make several decisions concerning a user’s security

domain. These include

■ whether user authentication information is maintained by the database, the

operating system, or a network authentication service

■ settings for the user’s default and temporary tablespaces

■ a list of tablespaces accessible to the user, if any, and the associated quotas for

each listed tablespace

■ the user’s resource limit profile; that is, limits on the amount of system

resources available to the user
29-2 Oracle8i Concepts

User Authentication
■ the privileges, roles, and security policies that provide the user with

appropriate access to schema objects needed to perform database operations

This chapter describes the first four security domain options listed above; the last

one is discussed in Chapter 30, "Privileges, Roles, and Security Policies".

User Authentication
To prevent unauthorized use of a database username, Oracle provides user

validation via several different methods for normal database users:

■ authentication by the operating system

■ authentication by a network service

■ authentication by the associated Oracle database

■ authentication by the Oracle database of a middle-tier application that performs

transactions on behalf of the user

For simplicity, one method is usually used to authenticate all users of a database.

However, Oracle allows use of all methods within the same database instance.

Oracle also encrypts passwords during transmission to ensure the security of

network authentication.

Oracle requires special authentication procedures for database administrators,

because they perform special database operations.

Note: The information in this chapter applies to all user-defined

database users. It does not apply to the special database users SYS

and SYSTEM. Settings for these users’ security domains should

never be altered.

Additional Information: See the Oracle8i Administrator’s Guide for

more information about the special users SYS and SYSTEM, and for

information about security administrators.
Controlling Database Access 29-3

User Authentication
Authentication by the Operating System
Some operating systems permit Oracle to use information maintained by the

operating system to authenticate users. The benefits of authentication by the

operating system are:

■ Users can connect to Oracle more conveniently (without specifying a username

or password). For example, a user can invoke SQL*Plus and skip the username

and password prompts by entering

SQLPLUS /

■ Control over user authorization is centralized in the operating system; Oracle

need not store or manage user passwords. However, Oracle still maintains

usernames in the database.

■ Username entries in the database and operating system audit trails correspond.

If the operating system is used to authenticate database users, some special

considerations arise with respect to distributed database environments and

database links; see Chapter 33, "Distributed Databases", for information on this

topic.

Authentication by the Network
Oracle supports several methods of authentication by the network, as described in

the following sections.

Third Party-Based Authentication Technologies
If network authentication services are available to you (such as DCE, Kerberos, or

SESAME), Oracle can accept authentication from the network service. To use a

network authentication service with Oracle, you need Oracle8i Enterprise Edition

with the Oracle Advanced Security option.

Additional Information: See your Oracle operating system-specific

documentation for more information about authenticating via your

operating system.

Additional Information: If you use a network authentication

service, some special considerations arise for network roles and

database links. See Oracle8i Distributed Database Systems for more

information about network authentication. Also see the Oracle
Advanced Security Administrator’s Guide for information about the

Oracle Advanced Security option.
29-4 Oracle8i Concepts

User Authentication
Public Key Infrastructure-Based Authentication

Authentication systems based on public key cryptography systems issue digital

certificates to user clients, which use them to authenticate directly to servers in the

enterprise without direct involvement of an authentication server. Oracle provides a

public key infrastructure (PKI) for using public keys and certificates. It consists of

the following components:

■ Authentication and secure session key management using Secure Sockets Layer

(SSL).

■ Oracle Call Interface (OCI) and PL/SQL functions to sign user-specified data

using a private key and certificate, and verify the signature on data using a

certificate and trustpoint.

■ Oracle wallets which are data structures that contain a user private key, a user

certificate, and a set of trust points (the list of root certificates the user trusts).

■ Oracle Wallet Manager which protects user keys and manages X.509v3

certificates on Oracle clients and servers.

■ X.509v3 certificates which you obtain from a certificate authority (outside of

Oracle). The certificates are loaded into Oracle wallets to enable authentication.

■ Directory-enabled Oracle Security Manager which provides centralized privilege

management to make administration easier and increase your level of security.

Directory-enabled Oracle Security Manager allows you to store and retrieve

roles from Oracle Internet Directory or any directory compliant with the

Lightweight Directory Access Protocol (LDAP).

■ Oracle Internet Directory which is an LDAP v3-compliant directory built on the

Oracle8i database. It allows you to manage the user and system configuration

environment, including security attributes and privileges, for users

authenticated using X.509 certificates. Oracle Internet Directory enforces

attribute-level access control, allowing the directory to restrict read, write, or

update privileges on specific attributes to specific named users (for example, an

enterprise security administrator). It also supports protection and

authentication of directory queries and responses through SSL encryption.

Oracle’s public key infrastructure is illustrated in Figure 29–1.

Note: The functionality described in this section is in beta testing

for this release.
Controlling Database Access 29-5

User Authentication
Figure 29–1 Oracle Public Key Infrastructure

Remote Authentication
Oracle supports remote authentication of users through Remote Dial-In User

Service (RADIUS), a standard lightweight protocol used for user authentication,

authorization, and accounting. To use remote authentication of users through

RADIUS with Oracle, you need Oracle8i Enterprise Edition with the Advanced

Security option.

Note: To use public key infrastructure-based authentication with

Oracle, you need Oracle8i Enterprise Edition with the Oracle

Advanced Security option.

Directory-enabled Oracle
Security Manager

Manages enterprise
users and

enterprise roles

Wallet

Oracle Wallet
Manager

Creates keys and
manages credential

preferences

Certificate
Authority

Creates certificates
 and wallets for

 users, databases,
DBAs, LDAP
(planned for

a future release)

Wallet

Oracle
Internet

Directory

Wallet

Stores users, roles,
databases, wallets,

certificates,
configuration
information,

ACLs

Oracle8i
Server

Wallet

Oracle8i
Server

Wallet

Net8, IIOP
over SSL

LDAP on SSL

LDAP on SSL
29-6 Oracle8i Concepts

User Authentication
Authentication by the Oracle Database
Oracle can authenticate users attempting to connect to a database by using

information stored in that database.

When Oracle uses database authentication, you create each user with an associated

password. A user provides the correct password when establishing a connection to

prevent unauthorized use of the database. Oracle stores a user’s password in the

data dictionary in an encrypted format. A user can change his or her password at

any time.

Password Encryption While Connecting
To protect password confidentiality, Oracle allows you to encrypt passwords during

network (client/server and server/server) connections. If you enable this

functionality on the client and server machines, Oracle encrypts passwords using a

modified DES (Data Encryption Standards) algorithm before sending them across

the network. It is strongly recommended that you enable password encryption for

connections to protect your passwords from network intrusion.

Account Locking
Oracle can lock a user’s account if the user fails to login to the system within a

specified number of attempts. Depending on how the account is configured, it can

be unlocked automatically after a specified time interval or it must be unlocked by

the database administrator.

The CREATE PROFILE statement configures the number of failed logins a user can

attempt and the amount of time the account remains locked before automatic

unlock. See "Profiles" on page 29-18 for information about profiles.

The database administrator can also lock accounts manually. When this occurs, the

account cannot be unlocked automatically but must be unlocked explicitly by the

database administrator.

Additional Information: See the Oracle Advanced Security
Administrator’s Guide for information about the Advanced Security

option.

Additional Information: See Oracle8i Distributed Database Systems
for more information about encrypting passwords in network

systems.
Controlling Database Access 29-7

User Authentication
Password Lifetime and Expiration
Password lifetime and expiration options allow the database administrator to

specify a lifetime for passwords, after which time they expire and must be changed

before a login to the account can be completed. On first attempt to login to the

database account after the password expires, the user’s account enters the grace

period, and a warning message is issued to the user every time the user tries to

login until the grace period is over.

The user is expected to change the password within the grace period. If the

password is not changed within the grace period, the account is locked and no

further logins to that account are allowed without assistance by the database

administrator.

The database administrator can also set the password state to expired. When this

happens, the user’s account status is changed to expired, and the user or the

database administrator must change the password before the user can log into the

database.

Password History
The password history option checks each newly specified password to ensure that a

password is not reused for the specified amount of time or for the specified number

of password changes. The database administrator can configure the rules for

password reuse with CREATE PROFILE statements.

Password Complexity Verification
Complexity verification checks that each password is complex enough to provide

reasonable protection against intruders who try to break into the system by

guessing passwords.

The Oracle default password complexity verification routine requires that each

password:

■ be a minimum of four characters in length

■ not equal the userid

■ include at least one alphabet character, one numeric character, and one

punctuation mark

■ not match any word on an internal list of simple words like welcome, account,

database, user, and so on.

■ differ from the previous password by at least three characters.
29-8 Oracle8i Concepts

User Authentication
Multi-Tier Authentication and Authorization
In a multi-tier environment, Oracle controls the security of middle-tier applications

by limiting their privileges, preserving client identities through all tiers, and

auditing actions taken on behalf of clients.

Clients, Application Servers, and Database Servers
In a multi-tier architecture environment, an application server provides data for

clients and serves as an interface between clients and one or more database servers.

This architecture allows you to use an application server to validate the credentials

of a client, such as a web browser. In addition, the database server can audit

operations performed by the application server and operations performed by the

application server on behalf of the client. For example, an operation performed by

the application server on behalf of the client might be a request for information to

be displayed on the client whereas an operation performed by the application

server might be a request for a connection to the database server.

Authentication in a multi-tier environment is based on trust regions, including the

following:

■ The client provides proof of authentication to the application server, typically

using a password or an X.509 certificate.

■ The application server verifies the client authentication and then authenticates

itself to the database server.

■ The database server checks the application server authentication, verifies that

the client exists, and verifies that the application server has the privilege to

connect for this client.

Application servers may also enable roles for the client on whose behalf it is

connecting. The application server can obtain these roles from a directory, which

thus serves as an authorization repository. The application server can only request

that these roles be enabled. The database verifies that:

■ The client has these roles (either by checking its internal role repository or by

verifying the role grant in a directory).

■ The application server has the privilege to connect on behalf of the user, using

these roles for the user.

Figure 29–2 shows an example of multi-tier authentication.
Controlling Database Access 29-9

User Authentication
Figure 29–2 Multi-Tier Authentication

SSL to login Proxies user identity

User

Wallet

Application
Server

Wallet

Oracle
Internet

Directory Wallet

Oracle 8i
Server

Wallet

Gets roles from
LDAP and logs in user

User signs on to
desktop and downloads

wallet from LDAP

Get roles
from LDAP
and log in

user
29-10 Oracle8i Concepts

User Authentication
Security Issues for Middle-Tier Applications
There are a number of security issues for middle-tier applications:

Identity Issues in a Multi-Tier Environment
Multi-tier authentication maintains the identify of the client through all tiers of the

connection. This is necessary because if the identity of the originating client is lost, it

is not possible to maintain useful audit records. In addition, it is not possible to

distinguish operations performed by the application server on behalf of the client

from those done by the application server for itself.

Restricted Privileges in a Multi-Tier Environment
Privileges in a multi-tier environment are limited to what is necessary to perform

the requested operation.

Client Privileges Client privileges are as limited as possible in a multi-tier

environment. Operations are performed on behalf of the client by the application

server.

Application Server Privileges Application server privileges in a multi-tier environment

are limited so that the application server cannot perform unwanted or unneeded

operations while performing a client operation.

accountability Clients must be held accountable for transactions they initiate.

For example, when legal responsibilities are attached to a

transaction (such as when a client uses a web browser to

access an electronic banking application), the client is

responsible for the transactions, not the application server or

database server.

differentiation The database server must be able to distinguish between a

web server transaction, a web server transaction on behalf of a

browser client, and a client accessing the database directly.

least privilege Middle-tier applications must be able to bind the privileges of

the application server to the client on whose behalf the

application server is performing the transaction, rather than

giving the application server all privileges to execute any

transaction for any client.
Controlling Database Access 29-11

User Authentication
Authentication of Database Administrators
Database administrators perform special operations (such as shutting down or

starting up a database) that should not be performed by normal database users.

Oracle provides a more secure authentication scheme for database administrator

usernames.

You can choose between operating system authentication or password files to

authenticate database administrators.

Figure 29–3 illustrates the choices you have for database administrator

authentication schemes, depending on whether you administer your database

locally (on the same machine on which the database resides) or if you administer

many different database machines from a single remote client.

Figure 29–3 Database Administrator Authentication Methods

On most operating systems, OS authentication for database administrators involves

placing the OS username of the database administrator in a special group (on UNIX

systems, this is the dba group) or giving that OS username a special process right.

Additional Information: See your Oracle operating system-specific

documentation for information about OS authentication of

database administrators.

Use a password file

Remote Database
Administration

Local Database
Administration

Yes Yes

No No

Use OS
authentication

Do you
want to use OS
authentication?

Do you
have a secure

connection?
29-12 Oracle8i Concepts

User Tablespace Settings and Quotas
The database uses password files to keep track of database usernames who have

been granted the SYSDBA and SYSOPER privileges. These privileges allow

database administrators to perform the following actions:

User Tablespace Settings and Quotas
As part of every user’s security domain, the database administrator can set several

options regarding tablespace usage:

■ the user’s default tablespace

■ the user’s temporary tablespace

■ space usage quotas on tablespaces of the database for the user

Default Tablespace
When a user creates a schema object without specifying a tablespace to contain the

object, Oracle places the object in the user’s default tablespace. You set a user’s

default tablespace when the user is created; you can change it after the user has

been created.

Temporary Tablespace
When a user executes a SQL statement that requires the creation of a temporary

segment, Oracle allocates that segment in the user’s temporary tablespace.

SYSOPER Permits you to perform STARTUP, SHUTDOWN, ALTER

DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP,

ARCHIVE LOG, and RECOVER, and includes the

RESTRICTED SESSION privilege.

SYSDBA Contains all system privileges with ADMIN OPTION, and the

SYSOPER system privilege; permits CREATE DATABASE and

time-based recovery.

Additional Information: See the Oracle8i Administrator’s Guide.
Controlling Database Access 29-13

The User Group PUBLIC
Tablespace Access and Quotas
You can assign to each user a tablespace quota for any tablespace of the database.

Doing so can accomplish two things:

■ You allow the user to use the specified tablespace to create schema objects,

provided that the user has the appropriate privileges.

■ You can limit the amount of space allocated for storage of a user’s schema

objects in the specified tablespace.

By default, each user has no quota on any tablespace in the database. Therefore, if

the user has the privilege to create some type of schema object, he or she must also

have been either assigned a tablespace quota in which to create the object or been

given the privilege to create that object in the schema of another user who was

assigned a sufficient tablespace quota.

You can assign two types of tablespace quotas to a user: a quota for a specific

amount of disk space in the tablespace (specified in bytes, kilobytes, or megabytes),

or a quota for an unlimited amount of disk space in the tablespace. You should

assign specific quotas to prevent a user’s objects from consuming too much space in

a tablespace.

Tablespace quotas and temporary segments have no effect on each other:

■ Temporary segments do not consume any quota that a user might possess. The

schema objects that Oracle automatically creates in temporary segments are

owned by SYS and therefore are not subject to quotas.

■ Temporary segments can be created in a tablespace for which a user has no

quota.

You can assign a tablespace quota to a user when you create that user, and you can

change that quota or add a different quota later.

Revoke a user’s tablespace access by altering the user’s current quota to zero. With

a quota of zero, the user’s objects in the revoked tablespace remain, but the objects

cannot be allocated any new space.

The User Group PUBLIC
Each database contains a user group called PUBLIC. The PUBLIC user group

provides public access to specific schema objects (tables, views, and so on) and

provides all users with specific system privileges. Every user automatically belongs

to the PUBLIC user group.
29-14 Oracle8i Concepts

User Resource Limits and Profiles
As members of PUBLIC, users may see (select from) all data dictionary tables

prefixed with USER and ALL. Additionally, a user can grant a privilege or a role to

PUBLIC. All users can use the privileges granted to PUBLIC.

You can grant (or revoke) any system privilege, object privilege, or role to PUBLIC.

See Chapter 30, "Privileges, Roles, and Security Policies" for more information on

privileges and roles. However, to maintain tight security over access rights, grant

only privileges and roles of interest to all users to PUBLIC.

Granting and revoking some system and object privileges to and from PUBLIC can

cause every view, procedure, function, package, and trigger in the database to be

recompiled.

PUBLIC has the following restrictions:

■ You cannot assign tablespace quotas to PUBLIC, although you can assign the

UNLIMITED TABLESPACE system privilege to PUBLIC.

■ You can create database links and synonyms as PUBLIC (using CREATE

PUBLIC DATABASE LINK/SYNONYM), but no other schema object can be

owned by PUBLIC. For example, the following statement is not legal:

CREATE TABLE public.emp . . . ;

User Resource Limits and Profiles
You can set limits on the amount of various system resources available to each user

as part of a user’s security domain. By doing so, you can prevent the uncontrolled

consumption of valuable system resources such as CPU time.

This resource limit feature is very useful in large, multiuser systems, where system

resources are very expensive. Excessive consumption of these resources by one or

more users can detrimentally affect the other users of the database. In single-user or

small-scale multiuser database systems, the system resource feature is not as

important, because users’ consumption of system resources is less likely to have

detrimental impact.

Note: Rollback segments can be created with the keyword

PUBLIC, but these are not owned by the PUBLIC user group. All

rollback segments are owned by SYS. See Chapter 4, "Data Blocks,

Extents, and Segments", for information about rollback segments.
Controlling Database Access 29-15

User Resource Limits and Profiles
You manage a user’s resource limits and password management preferences with

his or her profile—a named set of resource limits that you can assign to that user.

Each Oracle database can have an unlimited number of profiles. Oracle allows the

security administrator to enable or disable the enforcement of profile resource limits

universally.

If you set resource limits, a slight degradation in performance occurs when users

create sessions. This is because Oracle loads all resource limit data for the user when

a user connects to a database.

Types of System Resources and Limits
Oracle can limit the use of several types of system resources, including CPU time

and logical reads. In general, you can control each of these resources at the session

level, the call level, or both:

Additional Information: See the Oracle8i Administrator’s Guide for

information about security administrators.

session level Each time a user connects to a database, a session is created.

Each session consumes CPU time and memory on the computer

that executes Oracle. You can set several resource limits at the

session level.

If a user exceeds a session-level resource limit, Oracle

terminates (rolls back) the current statement and returns a

message indicating the session limit has been reached. At

this point, all previous statements in the current transaction

are intact, and the only operations the user can perform are

COMMIT, ROLLBACK, or disconnect (in this case, the

current transaction is committed); all other operations

produce an error. Even after the transaction is committed or

rolled back, the user can accomplish no more work during

the current session.

call level Each time a SQL statement is executed, several steps are

taken to process the statement. During this processing,

several calls are made to the database as part of the different

execution phases. To prevent any one call from using the

system excessively, Oracle allows you to set several resource

limits at the call level.
29-16 Oracle8i Concepts

User Resource Limits and Profiles
CPU Time
When SQL statements and other types of calls are made to Oracle, an amount of

CPU time is necessary to process the call. Average calls require a small amount of

CPU time. However, a SQL statement involving a large amount of data or a

runaway query can potentially consume a large amount of CPU time, reducing

CPU time available for other processing.

To prevent uncontrolled use of CPU time, you can limit the CPU time per call and

the total amount of CPU time used for Oracle calls during a session. The limits are

set and measured in CPU one-hundredth seconds (0.01 seconds) used by a call or a

session.

Logical Reads
Input/output (I/O) is one of the most expensive operations in a database system.

SQL statements that are I/O intensive can monopolize memory and disk use and

cause other database operations to compete for these resources.

To prevent single sources of excessive I/O, Oracle let you limit the logical data

block reads per call and per session. Logical data block reads include data block

reads from both memory and disk. The limits are set and measured in number of

block reads performed by a call or during a session.

Other Resources
Oracle also provides for the limitation of several other resources at the session level:

■ You can limit the number of concurrent sessions per user. Each user can create

only up to a predefined number of concurrent sessions.

■ You can limit the idle time for a session. If the time between Oracle calls for a

session reaches the idle time limit, the current transaction is rolled back, the

session is aborted, and the resources of the session are returned to the system.

The next call receives an error that indicates the user is no longer connected to

the instance. This limit is set as a number of elapsed minutes.

If a user exceeds a call-level resource limit, Oracle halts the

processing of the statement, rolls back the statement, and

returns an error. However, all previous statements of the

current transaction remain intact, and the user’s session

remains connected.
Controlling Database Access 29-17

User Resource Limits and Profiles
■ You can limit the elapsed connect time per session. If a session’s duration

exceeds the elapsed time limit, the current transaction is rolled back, the session

is dropped, and the resources of the session are returned to the system. This

limit is set as a number of elapsed minutes.

■ You can limit the amount of private SGA space (used for private SQL areas) for

a session. This limit is only important in systems that use the multi-threaded

server configuration; otherwise, private SQL areas are located in the PGA. This

limit is set as a number of bytes of memory in an instance’s SGA. Use the

characters "K" or "M" to specify kilobytes or megabytes.

Profiles
A profile is a named set of specified resource limits that can be assigned to a valid

username of an Oracle database. Profiles provide for easy management of resource

limits.

When to Use Profiles
You need to create and manage user profiles only if resource limits are a

requirement of your database security policy. To use profiles, first categorize the

related types of users in a database. Just as roles are used to manage the privileges

of related users, profiles are used to manage the resource limits of related users.

Note: Shortly after a session is aborted because it has exceeded an

idle time limit, the process monitor (PMON) background process

cleans up after the aborted session. Until PMON completes this

process, the aborted session is still counted in any session/user

resource limit.

Note: Oracle does not constantly monitor the elapsed idle time or

elapsed connection time. Doing so would reduce system

performance. Instead, it checks every few minutes. Therefore, a

session can exceed this limit slightly (for example, by five minutes)

before Oracle enforces the limit and aborts the session.

Additional Information: Instructions on enabling and disabling

resource limits are included in the Oracle8i Administrator’s Guide.
29-18 Oracle8i Concepts

Licensing
Determine how many profiles are needed to encompass all types of users in a

database and then determine appropriate resource limits for each profile.

Determining Values for Resource Limits of a Profile
Before creating profiles and setting the resource limits associated with them, you

should determine appropriate values for each resource limit. You can base these

values on the type of operations a typical user performs. For example, if one class of

user does not normally perform a high number of logical data block reads, then the

LOGICAL_READS_PER_SESSION and LOGICAL_READS_PER_CALL limits

should be set conservatively.

Usually, the best way to determine the appropriate resource limit values for a given

user profile is to gather historical information about each type of resource usage.

For example, the database or security administrator can use the AUDIT SESSION

option to gather information about the limits CONNECT_TIME,

LOGICAL_READS_PER_SESSION, and LOGICAL_READS_PER_CALL.

See Chapter 31, "Auditing", for more information.

You can gather statistics for other limits using the Monitor feature of Oracle

Enterprise Manager (or SQL*Plus), specifically the Statistics monitor.

Licensing
Oracle is usually licensed for use by a maximum number of named users or by a

maximum number of concurrently connected users. The database administrator

(DBA) is responsible for ensuring that the site complies with its license agreement.

Oracle’s licensing facility helps the DBA monitor system use by tracking and

limiting the number of sessions concurrently connected to an instance or the

number of users created in a database.

If the DBA discovers that more than the licensed number of sessions need to

connect, or more than the licensed number of users need to be created, he or she can

upgrade the Oracle license to raise the appropriate limit. (To upgrade an Oracle

license, you must contact your Oracle representative.)

Note: When Oracle is embedded in an Oracle application (such as

Oracle Office), run on some older operating systems, or purchased

for use in some countries, it is not licensed for either a set number

of sessions or a set group of users. In such cases only, the Oracle

licensing mechanisms do not apply and should remain disabled.
Controlling Database Access 29-19

Licensing
The following sections explain the two major types of licensing available for Oracle.

Concurrent Usage Licensing
In concurrent usage licensing, the license specifies a number of concurrent users, which

are sessions that can be connected concurrently to the database on the specified

computer at any time. This number includes all batch processes and online users. If

a single user has multiple concurrent sessions, each session counts separately in the

total number of sessions. If multiplexing software (such as a TP monitor) is used to

reduce the number of sessions directly connected to the database, the number of

concurrent users is the number of distinct inputs to the multiplexing front end.

The concurrent usage licensing mechanism allows a DBA to:

■ Set a limit on the number of concurrent sessions that can connect to an instance

by setting the LICENSE_MAX_SESSIONS parameter. Once this limit is reached,

only users who have the RESTRICTED SESSION system privilege can connect

to the instance; this allows DBA to kill unneeded sessions, allowing other

sessions to connect.

■ Set a warning limit on the number of concurrent sessions that can connect to an

instance by setting the LICENSE_SESSIONS_WARNING parameter. Once the

warning limit is reached, Oracle allows additional sessions to connect (up to the

maximum limit described above), but sends a warning message to any user

who connects with RESTRICTED SESSION privilege and records a warning

message in the database’s ALERT file.

The DBA can set these limits in the database’s parameter file so that they take effect

when the instance starts and can change them while the instance is running (using

the ALTER SYSTEM command). The latter is useful for databases that cannot be

taken offline.

The session licensing mechanism allows a DBA to check the current number of

connected sessions and the maximum number of concurrent sessions since the

instance started. The V$LICENSE view shows the current settings for the license

limits, the current number of sessions, and the highest number of concurrent

sessions since the instance started (the session "high water mark"). The DBA can use

this information to evaluate the system’s licensing needs and plan for system

upgrades.

Additional Information: See the Oracle8i Administrator’s Guide for

more information about licensing.
29-20 Oracle8i Concepts

Licensing
For instances running with the Oracle Parallel Server, each instance can have its

own concurrent usage limit and warning limit. The sum of the instances’ limits

must not exceed the site’s concurrent usage license.

The concurrent usage limits apply to all user sessions, including sessions created for

incoming database links. They do not apply to sessions created by Oracle or to

recursive sessions. Sessions that connect through external multiplexing software are

not counted separately by the Oracle licensing mechanism, although each

contributes individually to the Oracle license total. The DBA is responsible for

taking these sessions into account.

Named User Licensing
In named user licensing, the license specifies a number of named users, where a

named user is an individual who is authorized to use Oracle on the specified

computer. No limit is set on the number of sessions each user can have concurrently,

or on the number of concurrent sessions for the database.

Named user licensing allows a DBA to set a limit on the number of users that are

defined in a database, including users connected via database links. Once this limit

is reached, no one can create a new user. This mechanism assumes that each person

accessing the database has a unique user name in the database and that no two (or

more) people share a user name.

The DBA can set this limit in the database’s parameter file so that it takes effect

when the instance starts and can change it while the instance is running (using the

ALTER SYSTEM command). The latter is useful for databases that cannot be taken

offline.

If multiple instances connect to the same database in an Oracle Parallel Server, all

instances connected to the same database should have the same named user limit.

Additional Information: See Oracle8i Parallel Server Concepts and
Administration for more information on the Oracle Parallel Server.
Controlling Database Access 29-21

Licensing
29-22 Oracle8i Concepts

Privileges, Roles, and Security
30

Privileges, Roles, and Security Policies

My right and my privilege to stand here before you has been won—won in my lifetime—by
the blood and the sweat of the innocent.

Jesse Jackson: Speech at the Democratic National Convention, 1988

This chapter explains how you can control users’ ability to execute system

operations and to access schema objects by using privileges, roles, and security

policies. The chapter includes:

■ Privileges

– System Privileges

– Schema Object Privileges

– Table Security Topics

– View Security Topics

– Procedure Security Topics

– Type Security Topics

■ Roles

■ Fine-Grained Access Control

■ Application Context
 Policies 30-1

Privileges
Privileges
A privilege is a right to execute a particular type of SQL statement or to access

another user’s object. Some examples of privileges include the right to

■ connect to the database (create a session)

■ create a table

■ select rows from another user’s table

■ execute another user’s stored procedure

You grant privileges to users so these users can accomplish tasks required for their

job. You should grant a privilege only to a user who absolutely requires the

privilege to accomplish necessary work. Excessive granting of unnecessary

privileges can compromise security. A user can receive a privilege in two different

ways:

■ You can grant privileges to users explicitly. For example, you can explicitly

grant the privilege to insert records into the EMP table to the user SCOTT.

■ You can also grant privileges to a role (a named group of privileges), and then

grant the role to one or more users. For example, you can grant the privileges to

select, insert, update, and delete records from the EMP table to the role named

CLERK, which in turn you can grant to the users SCOTT and BRIAN.

Because roles allow for easier and better management of privileges, you should

normally grant privileges to roles and not to specific users.

There are two distinct categories of privileges:

■ system privileges

■ schema object privileges

System Privileges
A system privilege is the right to perform a particular action, or to perform an

action on any schema objects of a particular type. For example, the privileges to

create tablespaces and to delete the rows of any table in a database are system

privileges. There are over 60 distinct system privileges.

Additional Information: Complete listings of all system and

schema object privileges, as well as instructions for privilege

management, appear in the Oracle8i Administrator’s Guide.
30-2 Oracle8i Concepts

Privileges
Granting and Revoking System Privileges
You can grant or revoke system privileges to users and roles. If you grant system

privileges to roles, you can use the roles to manage system privileges (for example,

roles permit privileges to be made selectively available).

System privileges are granted to or revoked from users and roles using either of the

following:

■ the Grant System Privileges/Roles dialog box and Revoke System

Privileges/Roles dialog box of Oracle Enterprise Manager

■ the SQL commands GRANT and REVOKE

Who Can Grant or Revoke System Privileges?
Only users who have been granted a specific system privilege with the ADMIN

OPTION or users with the GRANT ANY PRIVILEGE system privilege (typically

database or security administrators) can grant or revoke system privileges to other

users.

Schema Object Privileges
A schema object privilege ("object privilege") is a privilege or right to perform a

particular action on a specific table, view, sequence, procedure, function, or package.

Different object privileges are available for different types of schema objects. For

example, the privilege to delete rows from the table DEPT is an object privilege.

Some schema objects (such as clusters, indexes, triggers, and database links) do not

have associated object privileges; their use is controlled with system privileges. For

example, to alter a cluster, a user must own the cluster or have the ALTER ANY

CLUSTER system privilege.

A schema object and its synonym are equivalent with respect to privileges; that is,

the object privileges granted for a table, view, sequence, procedure, function, or

package apply whether referencing the base object by name or using a synonym.

Note: Usually, you should grant system privileges only to

administrative personnel and application developers, because end

users normally do not require the associated capabilities.
Privileges, Roles, and Security Policies 30-3

Privileges
For example, assume there is a table JWARD.EMP with a synonym named

JWARD.EMPLOYEE and the user JWARD issues the following statement:

GRANT SELECT ON emp TO swilliams;

The user SWILLIAMS can query JWARD.EMP by referencing the table by name or

using the synonym JWARD.EMPLOYEE:

SELECT * FROM jward.emp;
SELECT * FROM jward.employee;

If you grant object privileges on a table, view, sequence, procedure, function, or

package to a synonym for the object, the effect is the same as if no synonym were

used. For example, if JWARD wanted to grant the SELECT privilege for the EMP

table to SWILLIAMS, JWARD could issue either of the following statements:

GRANT SELECT ON emp TO swilliams;
GRANT SELECT ON employee TO swilliams;

If a synonym is dropped, all grants for the underlying schema object remain in

effect, even if the privileges were granted by specifying the dropped synonym.

Granting and Revoking Schema Object Privileges
Schema object privileges can be granted to and revoked from users and roles. If you

grant object privileges to roles, you can make the privileges selectively available.

Object privileges for users and roles can be granted or revoked using the SQL

commands GRANT and REVOKE, respectively, or the Add Privilege to Role/User

dialog box and Revoke Privilege from Role/User dialog box of Oracle Enterprise

Manger.

Who Can Grant Schema Object Privileges?
A user automatically has all object privileges for schema objects contained in his or

her schema. A user can grant any object privilege on any schema object he or she

owns to any other user or role. If the grant includes the GRANT OPTION (of the

GRANT command), the grantee can further grant the object privilege to other users;

otherwise, the grantee can use the privilege but cannot grant it to other users.
30-4 Oracle8i Concepts

Privileges
Table Security Topics
Schema object privileges for tables allow table security at the level of DML and

DDL operations.

Data Manipulation Language (DML) Operations
The DELETE, INSERT, SELECT, and UPDATE privileges allow the DELETE,

INSERT, SELECT, and UPDATE DML operations, respectively, on a table or view.

You should grant these privileges only to users and roles that need to query or

manipulate a table’s data.

You can restrict INSERT and UPDATE privileges for a table to specific columns of

the table. With selective INSERT, a privileged user can insert a row with values for

the selected columns; all other columns receive NULL or the column’s default

value. With selective UPDATE, a user can update only specific column values of a

row. Selective INSERT and UPDATE privileges are used to restrict a user’s access to

sensitive data.

For example, if you do not want data entry users to alter the SAL column of the

employee table, selective INSERT and/or UPDATE privileges can be granted that

exclude the SAL column. (Alternatively, a view that excludes the SAL column could

satisfy this need for additional security.)

Data Definition Language (DDL) Operations
The ALTER, INDEX, and REFERENCES privileges allow DDL operations to be

performed on a table. Because these privileges allow other users to alter or create

dependencies on a table, you should grant privileges conservatively. A user

attempting to perform a DDL operation on a table may need additional system or

object privileges (for example, to create a trigger on a table, the user requires both

the ALTER TABLE object privilege for the table and the CREATE TRIGGER system

privilege).

As with the INSERT and UPDATE privileges, the REFERENCES privilege can be

granted on specific columns of a table. The REFERENCES privilege enables the

grantee to use the table on which the grant is made as a parent key to any foreign

keys that the grantee wishes to create in his or her own tables. This action is

controlled with a special privilege because the presence of foreign keys restricts the

data manipulation and table alterations that can be done to the parent key.

Additional Information: See the Oracle8i SQL Reference for more

information on these DML operations.
Privileges, Roles, and Security Policies 30-5

Privileges
A column-specific REFERENCES privilege restricts the grantee to using the named

columns (which, of course, must include at least one primary or unique key of the

parent table). See Chapter 28, "Data Integrity" for more information about primary

keys, unique keys, and integrity constraints.

View Security Topics
Schema object privileges for views allow various DML operations, which actually

affect the base tables from which the view is derived. DML object privileges for

tables can be applied similarly to views.

Privileges Required to Create Views
To create a view, you must meet the following requirements:

■ You must have been granted the CREATE VIEW (to create a view in your

schema) or CREATE ANY VIEW (to create a view in another user’s schema)

system privilege, either explicitly or through a role.

■ You must have been explicitly granted the SELECT, INSERT, UPDATE, or

DELETE object privileges on all base objects underlying the view or the

SELECT ANY TABLE, INSERT ANY TABLE, UPDATE ANY TABLE, or

DELETE ANY TABLE system privileges. You may not have obtained these

privileges through roles.

■ Additionally, in order to grant other users access to your view, you must have

received object privilege(s) to the base objects with the GRANT OPTION option

or appropriate system privileges with the ADMIN OPTION option. If you have

not, grantees cannot access your view.

Increasing Table Security with Views
To use a view, you require appropriate privileges only for the view itself. You do not

require privileges on base object(s) underlying the view.

Views add two more levels of security for tables, column-level security and

value-based security:

■ A view can provide access to selected columns of base table(s). For example,

you can define a view on the EMP table to show only the EMPNO, ENAME,

and MGR columns:

CREATE VIEW emp_mgr AS
 SELECT ename, empno, mgr FROM emp;
30-6 Oracle8i Concepts

Privileges
■ A view can provide value-based security for the information in a table. A

WHERE clause in the definition of a view displays only selected rows of base

tables. Consider the following two examples:

CREATE VIEW lowsal AS
 SELECT * FROM emp
 WHERE sal < 10000;

The LOWSAL view allows access to all rows of the EMP table that have a salary

value less than 10000. Notice that all columns of the EMP table are accessible in

the LOWSAL view.

CREATE VIEW own_salary AS
 SELECT ename, sal
 FROM emp
 WHERE ename = USER;

In the OWN_SALARY view, only the rows with an ENAME that matches the

current user of the view are accessible. The OWN_SALARY view uses the USER

pseudocolumn, whose values always refer to the current user. This view

combines both column-level security and value-based security.

Procedure Security Topics
The only schema object privilege for procedures (including standalone procedures and

functions, as well as packages) is EXECUTE. You should grant this privilege only to

users who need to execute a procedure or compile another procedure that calls it.

Procedure Execution and Security Domains
A user with the EXECUTE object privilege for a specific procedure can execute the

procedure or compile a program unit that references the procedure. No runtime

privilege check is made when the procedure is called. A user with the EXECUTE

ANY PROCEDURE system privilege can execute any procedure in the database.

A user can be granted privileges through roles to execute procedures. See "PL/SQL

Blocks and Roles" on page 30-20 for more information about roles.

Additional privileges on referenced objects are required for invoker-rights

procedures, but not for definer-rights procedures (see "Definer Rights and Invoker

Rights" on page 18-9).

Definer Rights A user of a definer-rights procedure requires only the privilege to

execute the procedure and no privileges on the underlying objects that the
Privileges, Roles, and Security Policies 30-7

Privileges
procedure accesses, because a definer-rights procedure operates under the security

domain of the user who owns the procedure, regardless of who is executing it. The

procedure’s owner must have all the necessary object privileges for referenced

objects. Fewer privileges have to be granted to users of a definer-rights procedure,

resulting in tighter control of database access.

You can use definer-rights procedures to add a level of database security. By writing

a definer-rights procedure and granting only EXECUTE privilege to a user, the user

can be forced to access the referenced objects only through the procedure (that is,

the user cannot submit ad hoc SQL statements to the database).

The current privileges of the owner of a definer-rights stored procedure are always

checked before the procedure is executed. If a necessary privilege on a referenced

object has been revoked from the owner of a definer-rights procedure, the

procedure cannot be executed by the owner or any other user.

Invoker Rights An invoker-rights procedure executes with all of the invoker’s

privileges, including enabled roles. A user of an invoker-rights procedure needs

privileges on the underlying objects that the procedure accesses for which names

are resolved in the invoker’s schema.

■ For external references that are resolved in the invoker’s schema (such as names

in DML or dynamic SQL statements), the invoker needs privileges to access the

underlying objects.

■ For all other objects (such as functions and procedures), the owner’s privileges

are checked at compile time, and no runtime check is made.

See "Resolution of External References" on page 18-10.

Program references embedded in DML statements or dynamic SQL statements are

effectively recompiled at runtime and therefore are checked at runtime with the

invoker’s privileges.

Many packages provided by Oracle, such as most of the DBMS_* packages, run

with invoker rights—they do not run as the owner (SYS) but rather as the current

Note: Trigger execution follows the same patterns as

definer-rights procedures. The user executes a SQL statement,

which that user is privileged to execute. As a result of the SQL

statement, a trigger is fired. The statements within the triggered

action temporarily execute under the security domain of the user

that owns the trigger.
30-8 Oracle8i Concepts

Privileges
user. However, some exceptions exist such as the DBMS_RLS package (see

"Fine-Grained Access Control" on page 30-22).

You can create a software bundle that consists of multiple program units, some with

definer rights and others with invoker rights, and restrict the program entry points

(controlled step-in). A user who has the privilege to execute an entry-point procedure

can also execute internal program units indirectly, but cannot directly call the

internal programs.

System Privileges Needed to Create or Alter a Procedure
To create a procedure, a user must have the CREATE PROCEDURE or CREATE

ANY PROCEDURE system privilege. To alter a procedure, that is, to manually

recompile a procedure, a user must own the procedure or have the ALTER ANY

PROCEDURE system privilege.

The user who owns the procedure also must have privileges for schema objects

referenced in the procedure body. To create a procedure, you must have been

explicitly granted the necessary privileges (system or object) on all objects

referenced by the procedure; you cannot have obtained the required privileges

through roles. This includes the EXECUTE privilege for any procedures that are

called inside the procedure being created.

Triggers also require that privileges to referenced objects be granted explicitly to the

trigger owner. Anonymous PL/SQL blocks can use any privilege, whether the

privilege is granted explicitly or via a role.

Packages and Package Objects
A user with the EXECUTE object privilege for a package can execute any (public)

procedure or function in the package and access or modify the value of any (public)

package variable. Specific EXECUTE privileges cannot be granted for a package’s

constructs. Therefore, you may find it useful to consider two alternatives for

establishing security when developing procedures, functions, and packages for a

database application. These alternatives are described in the following examples.

Example 1 This example shows four procedures created in the bodies of two

packages.

CREATE PACKAGE BODY hire_fire AS
 PROCEDURE hire(...) IS

Additional Information: See Oracle8i Supplied Packages Reference for

detailed documentation of the Oracle supplied packages.
Privileges, Roles, and Security Policies 30-9

Privileges
 BEGIN
 INSERT INTO emp . . .
 END hire;
 PROCEDURE fire(...) IS
 BEGIN
 DELETE FROM emp . . .
 END fire;
END hire_fire;

CREATE PACKAGE BODY raise_bonus AS
 PROCEDURE give_raise(...) IS
 BEGIN
 UPDATE EMP SET sal = . . .
 END give_raise;
 PROCEDURE give_bonus(...) IS
 BEGIN
 UPDATE EMP SET bonus = . . .
 END give_bonus;
END raise_bonus;

Access to execute the procedures is given by granting the EXECUTE privilege for

the package, using the following statements:

GRANT EXECUTE ON hire_fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Granting EXECUTE privilege granted for a package provides uniform access to all

package objects.

Example 2 This example shows four procedure definitions within the body of a

single package. Two additional standalone procedures and a package are created

specifically to provide access to the procedures defined in the main package.

CREATE PACKAGE BODY employee_changes AS
 PROCEDURE change_salary(...) IS BEGIN ... END;
 PROCEDURE change_bonus(...) IS BEGIN ... END;
 PROCEDURE insert_employee(...) IS BEGIN ... END;
 PROCEDURE delete_employee(...) IS BEGIN ... END;
END employee_changes;

CREATE PROCEDURE hire
 BEGIN
 employee_changes.insert_employee(...)
 END hire;
30-10 Oracle8i Concepts

Privileges
CREATE PROCEDURE fire
 BEGIN
 employee_changes.delete_employee(...)
 END fire;

PACKAGE raise_bonus IS
 PROCEDURE give_raise(...) AS
 BEGIN
 employee_changes.change_salary(...)
 END give_raise;

 PROCEDURE give_bonus(...)
 BEGIN
 employee_changes.change_bonus(...)
 END give_bonus;

Using this method, the procedures that actually do the work (the procedures in the

EMPLOYEE_CHANGES package) are defined in a single package and can share

declared global variables, cursors, on so on. By declaring top-level procedures HIRE

and FIRE, and an additional package RAISE_BONUS, you can grant selective

EXECUTE privileges on procedures in the main package:

GRANT EXECUTE ON hire, fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Type Security Topics
This section describes privileges for types, methods, and objects.

System Privileges
Oracle8 defines the following system privileges for named types (object types,

VARRAYs, and nested tables):

Privilege Allows you to...

CREATE TYPE Create named types in your own schemas.

CREATE ANY TYPE Create a named type in any schema.

ALTER ANY TYPE Alter a named type in any schema.

DROP ANY TYPE Drop a named type in any schema.

EXECUTE ANY TYPE Use and reference a named type in any schema.
Privileges, Roles, and Security Policies 30-11

Privileges
The CONNECT and RESOURCE roles include the CREATE TYPE system privilege.

The DBA role includes all of the above privileges.

Object Privileges
The only object privilege that applies to named types is EXECUTE. If the EXECUTE

privilege exists on a named type, a user can use the named type to:

■ Define a table.

■ Define a column in a relational table.

■ Declare a variable or parameter of the named type.

The EXECUTE privilege permits a user to invoke the type's methods, including the

type constructor. This is similar to EXECUTE privilege on a stored PL/SQL

procedure.

Method Execution Model
Method execution is the same as any other stored PL/SQL procedure. Refer to

"Procedure Security Topics" on page 30-7 for details.

Privileges Required to Create Types and Tables Using Types
To create a type, you must meet the following requirements:

■ You must have the CREATE TYPE system privilege to create a type in your

schema or the CREATE ANY TYPE system privilege to create a type in another

user's schema. These privileges can be acquired explicitly or via a role.

■ The owner of the type must have been explicitly granted the EXECUTE object

privileges to access all other types referenced within the definition of the type,

or have been granted the EXECUTE ANY TYPE system privilege; the owner

cannot have obtained the required privileges through roles.

■ If the type owner intends to grant access to the type to other users, the owner

must have received the EXECUTE privileges to the referenced types with the

GRANT OPTION or the EXECUTE ANY TYPE system privilege with the

ADMIN OPTION; if not, the type owner has insufficient privileges to grant

access on the type to other users.

To create a table using types, you must meet the requirements for creating a table

described in "Table Security Topics" on page 30-5 and these additional requirements:

■ The owner of the table must have been explicitly granted the EXECUTE object

privileges to access all types referenced by the table, or have been granted the
30-12 Oracle8i Concepts

Privileges
EXECUTE ANY TYPE system privilege; the owner cannot have obtained the

required privileges through roles.

■ If the table owner intends to grant access to the table to other users, the owner

must have received the EXECUTE privileges to the referenced types with the

GRANT OPTION or the EXECUTE ANY TYPE system privilege with the

ADMIN OPTION; if not, the table owner has insufficient privileges to grant

access on the type to other users.

Example
Assume that three users exist with the CONNECT and RESOURCE roles:

■ USER1

■ USER2

■ USER3

USER1 performs the following DDL in his schema:

CREATE TYPE type1 AS OBJECT (
 attr1 NUMBER);

CREATE TYPE type2 AS OBJECT (
 attr2 NUMBER);

GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

USER2 performs the following DDL in his schema:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (
 attr3 user1.type2);
CREATE TABLE tab2 (
 col1 user1.type2);

The following statements will succeed because USER2 has EXECUTE privilege on

USER1's TYPE2 with the GRANT OPTION:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT on tab2 TO user3;

However, the following grant will fail because USER2 does not have EXECUTE

privilege on USER1's TYPE1 with the GRANT OPTION:

GRANT SELECT ON tab1 TO user3;
Privileges, Roles, and Security Policies 30-13

Privileges
USER3 can successfully perform the following statements:

CREATE TYPE type4 AS OBJECT (
 attr4 user2.type3);
CREATE TABLE tab3 OF type4;

Privileges on Type Access and Object Access
Existing column-level and table-level privileges for DML commands apply to both

column objects and row objects.

The SELECT privilege on an object table lets the user access an object and its

attributes from the table. The UPDATE privilege on an object table lets the user

modify the attributes of the objects that make up its rows. The INSERT privilege on

an object table lets the user create new objects in the table. The DELETE privilege on

an object table lets the user delete rows, that is, objects.

Similar table privileges and column privileges apply to column objects. Retrieving

instances does not in itself reveal type information. However, clients must access

named type information in order to interpret the type instance images. When a

client requests such type information, Oracle checks for EXECUTE privilege on the

type.

Consider the following schema:

CREATE TYPE emp_type (
 eno NUMBER, ename CHAR(31), eaddr addr_t);
CREATE TABLE emp OF emp_t;

and the following two queries:

SELECT VALUE(emp) FROM emp;
SELECT eno, ename FROM emp;

For either query, Oracle checks the user's SELECT privilege for the EMP table. For

the first query, the user needs to obtain the EMP_TYPE type information to interpret

the data. When the query accesses the EMP_TYPE type, Oracle checks the user's

EXECUTE privilege.

Execution of the second query, however, does not involve named types, so Oracle

does not check type privileges.

Additionally, using the schema from the previous section, USER3 may perform the

following queries:

SELECT tab1.col1.attr2 from user2.tab1 tab1;
30-14 Oracle8i Concepts

Privileges
SELECT attr4.attr3.attr2 FROM tab3;

Note that in both SELECT statements, USER3 does not have explicit privileges on

the underlying types, but the statement succeeds because the type and table owners

have the necessary privileges with the GRANT OPTION.

Oracle checks privileges on the following events, and returns an error if the client

does not have the privilege for the action:

■ Pinning an object in the object cache using its REF value causes Oracle to check

SELECT privilege on the containing object table.

■ Modifying an existing object or flushing an object from the object cache causes

Oracle to check UPDATE privilege on the destination object table.

■ Flushing a new object causes Oracle to check INSERT privilege on the

destination object table.

■ Deleting an object causes Oracle to check DELETE privilege on the destination

table.

■ Pinning an object of named type causes Oracle to check EXECUTE privilege on

the object.

Modifying an object's attributes in a client 3GL application causes Oracle to update

the entire object. Hence, the user needs UPDATE privilege on the object table.

UPDATE privilege on only certain columns of the object table is not sufficient, even

if the application only modifies attributes corresponding to those columns.

Therefore, Oracle does not support column level privileges for object tables.

Type Dependencies
As with stored objects such as procedures and tables, types being referenced by

other objects are called dependencies. There are some special issues for types

depended upon by tables. Since a table contains data which relies on the type

definition for access, any change to the type will cause all stored data to become

inaccessible. Changes which can cause this effect are when necessary privileges

required by the type are revoked or if the type or dependent types are dropped. If

either of these actions occur, then table because invalid and cannot be accessed.

A table which is invalid because of missing privileges, may automatically become

valid and accessible if the required privileges are re-granted. A table which is

invalid because a dependent type has been dropped can never be accessed again,

and the only permissible action is to drop the table.
Privileges, Roles, and Security Policies 30-15

Roles
Because of the severe effects which revoking a privilege on a type or dropping a

type can cause, the SQL commands REVOKE and DROP TYPE by default

implement a restrict semantics. This means that the named type in either command

has table or type dependents, then an error is received and the command aborts.

However, if the FORCE option for either command is used, the command will

always succeed and if there are depended upon tables, they will be invalidated.

Roles
Oracle provides for easy and controlled privilege management through roles. Roles
are named groups of related privileges that you grant to users or other roles. Roles

are designed to ease the administration of end-user system and schema object

privileges. However, roles are not meant to be used for application developers,

because the privileges to access schema objects within stored programmatic

constructs need to be granted directly. See "Data Definition Language Statements

and Roles" on page 30-20 for more information about restrictions for procedures.

These properties of roles allow for easier privilege management within a database:

Additional Information: See Oracle8i Reference for details about

using REVOKE, DROP TYPE, and FORCE options.

reduced privilege

administration

Rather than granting the same set of privileges explicitly to

several users, you can grant the privileges for a group of

related users to a role, and then only the role needs to be

granted to each member of the group.

dynamic privilege

management

If the privileges of a group must change, only the privileges

of the role need to be modified. The security domains of all

users granted the group’s role automatically reflect the

changes made to the role.

selective availability

of privileges

You can selectively enable or disable the roles granted to a

user. This allows specific control of a user’s privileges in any

given situation.

application

awareness

The data dictionary records which roles exist, so you can

design applications to query the dictionary and

automatically enable (or disable) selective roles when a user

attempts to execute the application by way of a given

username.
30-16 Oracle8i Concepts

Roles
Common Uses for Roles
In general, you create a role to serve one of two purposes:

■ to manage the privileges for a database application

■ to manage the privileges for a user group.

Figure 30–1 and the sections that follow describe the two uses of roles.

Figure 30–1 Common Uses for Roles

application-specific

security

You can protect role use with a password. Applications can

be created specifically to enable a role when supplied the

correct password. Users cannot enable the role if they do not

know the password.

Additional Information: Instructions for enabling roles from an

application are included in the Oracle8i Application Developer’s Guide
- Fundamentals.

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users
Privileges, Roles, and Security Policies 30-17

Roles
Application Roles
You grant an application role all privileges necessary to run a given database

application. Then, you grant the application role to other roles or to specific users.

An application can have several different roles, with each role assigned a different

set of privileges that allow for more or less data access while using the application.

User Roles
You create a user role for a group of database users with common privilege

requirements. You manage user privileges by granting application roles and

privileges to the user role and then granting the user role to appropriate users.

The Mechanisms of Roles
Database roles have the following functionality:

■ A role can be granted system or schema object privileges.

■ A role can be granted to other roles. However, a role cannot be granted to itself

and cannot be granted circularly (for example, role A cannot be granted to role

B if role B has previously been granted to role A).

■ Any role can be granted to any database user.

■ Each role granted to a user is, at a given time, either enabled or disabled. A

user’s security domain includes the privileges of all roles currently enabled for

the user and excludes the privileges of any roles currently disabled for the user.

Oracle allows database applications and users to enable and disable roles to

provide selective availability of privileges.

■ An indirectly granted role (a role granted to a role) can be explicitly enabled or

disabled for a user. However, by enabling a role that contains other roles, you

implicitly enable all indirectly granted roles of the directly granted role.

Granting and Revoking Roles
You grant or revoke roles from users or other roles using the following options:

■ the Grant System Privileges/Roles dialog box and Revoke System

Privileges/Roles dialog box of Oracle Enterprise Manager

■ the SQL commands GRANT and REVOKE
30-18 Oracle8i Concepts

Roles
Privileges are granted to and revoked from roles using the same options. Roles can

also be granted to and revoked from users using the operating system that executes

Oracle, or through network services.

Who Can Grant or Revoke Roles?
Any user with the GRANT ANY ROLE system privilege can grant or revoke any
role (except a global role) to or from other users or roles of the database. You should

grant this system privilege conservatively because it is very powerful.

Any user granted a role with the ADMIN OPTION can grant or revoke that role to

or from other users or roles of the database. This option allows administrative

powers for roles on a selective basis.

Naming Roles
Within a database, each role name must be unique, and no username and role name

can be the same. Unlike schema objects, roles are not "contained" in any schema.

Therefore, a user who creates a role can be dropped with no effect on the role.

Security Domains of Roles and Users
Each role and user has its own unique security domain. A role’s security domain

includes the privileges granted to the role plus those privileges granted to any roles

that are granted to the role.

A user’s security domain includes privileges on all schema objects in the

corresponding schema, the privileges granted to the user, and the privileges of roles

granted to the user that are currently enabled. (A role can be simultaneously enabled

for one user and disabled for another.) A user’s security domain also includes the

privileges and roles granted to the user group PUBLIC.

Additional Information: Detailed instructions on role management

are included in the Oracle8i Administrator’s Guide.

Additional Information: See Oracle8i Distributed Database Systems
for information about global roles.
Privileges, Roles, and Security Policies 30-19

Roles
PL/SQL Blocks and Roles
The use of roles in a PL/SQL block depends on whether it is an anonymous block

or a named block (stored procedure, function, or trigger), and whether it executes

with definer rights or invoker rights.

Named Blocks with Definer Rights
All roles are disabled in any named PL/SQL block (stored procedure, function, or

trigger) that executes with definer rights. Roles are not used for privilege checking

and you cannot set roles within a definer-rights procedure.

The SESSION_ROLES view shows all roles that are currently enabled. If a named

PL/SQL block that executes with definer rights queries SESSION_ROLES, the query

does not return any rows.

Invoker Rights and Anonymous Blocks
Named PL/SQL blocks that execute with invoker rights and anonymous PL/SQL

blocks are executed based on privileges granted through enabled roles. Current

roles are used for privilege checking within an invoker-rights PL/SQL block, and

you can use dynamic SQL to set a role in the session.

See "Definer Rights and Invoker Rights" on page 18-9 for an explanation of invoker

and definer rights, and see "Dynamic SQL in PL/SQL" on page 16-19 for

information about dynamic SQL.

Data Definition Language Statements and Roles
A user requires one or more privileges to successfully execute a data definition

language (DDL) statement, depending on the statement. For example, to create a

table, the user must have the CREATE TABLE or CREATE ANY TABLE system

privilege. To create a view of another user’s table, the creator requires the CREATE

VIEW or CREATE ANY VIEW system privilege and either the SELECT object

privilege for the table or the SELECT ANY TABLE system privilege.

Oracle avoids the dependencies on privileges received by way of roles by restricting

the use of specific privileges in certain DDL statements. The following rules outline

these privilege restrictions concerning DDL statements:

■ All system privileges and schema object privileges that permit a user to perform

a DDL operation are usable when received through a role.
30-20 Oracle8i Concepts

Roles
Examples:

– System Privileges: the CREATE TABLE, CREATE VIEW and CREATE

PROCEDURE privileges.

– Schema Object Privileges: the ALTER and INDEX privileges for a table.

Exception: The REFERENCES object privilege for a table cannot be used to

define a table’s foreign key if the privilege is received through a role.

■ All system privileges and object privileges that allow a user to perform a DML

operation that is required to issue a DDL statement are not usable when

received through a role.

Example:

– A user who receives the SELECT ANY TABLE system privilege or the

SELECT object privilege for a table through a role can use neither privilege

to create a view on another user’s table.

The following example further clarifies the permitted and restricted uses of

privileges received through roles:

Example: Assume that a user

■ is granted a role that has the CREATE VIEW system privilege

■ is granted a role that has the SELECT object privilege for the EMP table, but the

user is indirectly granted the SELECT object privilege for the EMP table

■ is directly granted the SELECT object privilege for the DEPT table

Given these directly and indirectly granted privileges:

■ The user can issue SELECT statements on both the EMP and DEPT tables.

■ Although the user has both the CREATE VIEW and SELECT privilege for the

EMP table (both through a role), the user cannot create a usable view on the

EMP table, because the SELECT object privilege for the EMP table was granted

through a role. Any views created will produce errors when accessed.

■ The user can create a view on the DEPT table, because the user has the

CREATE VIEW privilege (through a role) and the SELECT privilege for the

DEPT table (directly).
Privileges, Roles, and Security Policies 30-21

Fine-Grained Access Control
Predefined Roles
The roles CONNECT, RESOURCE, DBA, EXP_FULL_DATABASE, and

IMP_FULL_DATABASE are defined automatically for Oracle databases. These roles

are provided for backward compatibility to earlier versions of Oracle and can be

modified in the same manner as any other role in an Oracle database.

The Operating System and Roles
In some environments, you can administer database security using the operating

system. The operating system can be used to manage the granting (and revoking) of

database roles and to manage their password authentication. This capability is not

available on all operating systems.

Roles in a Distributed Environment
When you use roles in a distributed database environment, you must ensure that all

needed roles are set as the default roles for a distributed (remote) session. You

cannot enable roles when connecting to a remote database from within a local

database session. For example, you cannot execute a remote procedure that

attempts to enable a role at the remote site.

Fine-Grained Access Control
Fine-grained access control allows you to implement security policies with

functions and then associate those security policies with tables or views. The

database server automatically enforces those security policies, no matter how the

data is accessed (for example, by ad hoc queries).

You can:

■ Use different policies for SELECT, INSERT, UPDATE, and DELETE.

■ Use security policies only where you need them (for example, on salary

information).

Additional Information: See your operating system-specific

Oracle documentation for details on managing roles through the

operating system.

Additional Information: For more information about distributed

database environments, see Oracle8i Distributed Database Systems.
30-22 Oracle8i Concepts

Fine-Grained Access Control
■ Use more than one policy for each table, including building on top of base

policies in packaged applications.

The PL/SQL package DBMS_RLS allows you to administer your security policies.

Using this package, you can add, drop, enable, disable, and refresh the policies you

create. See "Packages" on page 18-11 for more information about using PL/SQL

packages.

Dynamic Predicates
The function or package that implements the security policy you create returns a

predicate (a WHERE condition). This predicate controls access as set out by the

policy. Rewritten queries are fully optimized and shareable.

Security Policy Example
Consider the following security policy example.

In a human resources application called HR, EMPLOYEES is a view for the

ALL_EMPLOYEES table and both objects are under the APPS schema. Following

are the commands to create the table and the view:

CREATE TABLE all_employees
(employee_id NUMBER(15),
 emp_name VARCHAR2(30),
 mgr_id NUMBER(15),
 user_name VARCHAR2(8),);

CREATE VIEW employees AS SELECT * FROM all_employees;

You want to create a security policy function that limits access to the EMPLOYEES

view, based on the user’s role in the company. The predicates for the policy can be

generated by the SECURE_PERSON function in the HR_ACCESS package. The

package is under the schema APPS and contains functions to support all security

policies related to the HR application. Also all the application contexts are under the

APPS_SEC namespace. Following is the command to create the application context

for this example:

CREATE CONTEXT hr_role USING apps_sec.hr_role

Additional Information: For information about package

implementation, see Oracle8i Supplied Packages Reference.
Privileges, Roles, and Security Policies 30-23

Application Context
Following are the commands to create the security policy function:

CREATE PACKAGE BODY hr_access IS
FUNCTION secure_person(obj_schema VARCHAR2, obj_name VARCHAR2)

 RETURN VARCHAR2 IS
d_predicate VARCHAR2(2000);

BEGIN
IF SYS_CONTEXT ('apps_sec', 'hr_role') = 'EMP' THEN

d_predicate = 'emp_name = sys_context(''userenv'', ''user'')';
IF SYS_CONTEXT ('apps_sec', 'hr_role') = 'MGR' THEN

d_predicate = 'mgr_id = sys_context(''userenv'', ''uid''))';
ELSE

 d_predicate = '1=2'; -- deny access to other users,
 -- may use something like 'keycol=null'

RETURN d_predicate;
END secure_person;

END hr_access;

The next step is to associate a policy (here we call it PER_PEOPLE_SEC) for the

EMPLOYEES view to the HR_ACCESS.SECURE_PERSON function that generates

the dynamic predicates:

DBMS_RLS.ADD_POLICY('apps', 'employees', 'per_people_sec', 'apps'
 'hr_access.secure_person', 'select, update, delete');

Now any SELECT, UPDATE, and DELETE statement with the EMPLOYEES view

involved will pick up one of the three predicates based on the value of the

application context HR_ROLE.

Note that the same security policy function that secured the ALL_EMPLOYEES

table can also be used to generate the dynamic predicates to secure the ADDRESSES

table because they have the same policy to limit access to data.

Application Context
Application context facilitates the implementation of fine-grained access control. It

allows you to implement security policies with functions and then associate those

security policies with applications. Each application can have its own

application-specific context. Users are not allowed to arbitrarily change their

context (for example, through SQL*Plus).

Additional Information: For details about establishing security

policies, see Oracle8i Application Developer’s Guide - Fundamentals.
30-24 Oracle8i Concepts

Application Context
Application contexts permit flexible, parameter-based access control, based on

attributes of interest to an application. For example, context attributes for a human

resources application could include "position", "organizational unit", and "country"

while attributes for an order-entry control might be "customer number" and "sales

region".

You can:

■ Base predicates on context values.

■ Use context values within predicates, as bind variables.

■ Set user attributes.

■ Access user attributes.

To define an application context:

1. Create a PL/SQL package with functions that validate and set the context for

your application. You may wish to use an event trigger on login to set the initial

context for logged-in users.

2. Use CREATE CONTEXT to specify a unique context name and associate it with

the PL/SQL package you created.

3. One of the following:

■ Reference the application context in a policy function implementing

fine-grained access control.

■ Create an event trigger on login to set the initial context for a user. For

example, you could query a user’s employee number and set this as an

"employee number" context value.

4. Reference the application context.

Additional Information: For information about creating a PL/SQL

package, see the PL/SQL User’s Guide and Reference and the Oracle8i
Supplied Packages Reference.
Privileges, Roles, and Security Policies 30-25

Application Context
30-26 Oracle8i Concepts

31

Auditing

You can observe a lot by watching.

Yogi Berra

This chapter discusses the auditing feature of Oracle. It includes:

■ Introduction to Auditing

■ Statement Auditing

■ Privilege Auditing

■ Schema Object Auditing

■ Focusing Statement, Privilege, and Schema Object Auditing
Auditing 31-1

Introduction to Auditing
Introduction to Auditing
Auditing is the monitoring and recording of selected user database actions. Auditing

is normally used to

■ investigate suspicious activity. For example, if an unauthorized user is deleting

data from tables, the security administrator might decide to audit all

connections to the database and all successful and unsuccessful deletions of

rows from all tables in the database.

■ monitor and gather data about specific database activities. For example, the

database administrator can gather statistics about which tables are being

updated, how many logical I/Os are performed, or how many concurrent users

connect at peak times.

Auditing Features
This section outlines the features of the Oracle auditing mechanism.

Types of Auditing
Oracle supports three general types of auditing:

statement auditing The selective auditing of SQL statements with respect to only

the type of statement, not the specific schema objects on

which it operates. Statement auditing options are typically

broad, auditing the use of several types of related actions per

option. For example, AUDIT TABLE tracks several DDL

statements regardless of the table on which they are issued.

You can set statement auditing to audit selected users or every

user in the database.

privilege auditing The selective auditing of the use of powerful system

privileges to perform corresponding actions, such as AUDIT

CREATE TABLE. Privilege auditing is more focused than

statement auditing because it audits only the use of the target

privilege. You can set privilege auditing to audit a selected

user or every user in the database.

schema object

auditing

The selective auditing of specific statements on a particular

schema object, such as AUDIT SELECT ON EMP. Schema

object auditing is very focused, auditing only a specific

statement on a specific schema object. Schema object auditing

always applies to all users of the database.
31-2 Oracle8i Concepts

Introduction to Auditing
Focus of Auditing
Oracle allows audit options to be focused or broad. You can

■ audit successful statement executions, unsuccessful statement executions, or

both

■ audit statement executions once per user session or once every time the

statement is executed

■ audit activities of all users or of a specific user

Audit Records and the Audit Trail
Audit records include information such as the operation that was audited, the user

performing the operation, and the date and time of the operation. Audit records can

be stored in either a data dictionary table, called the database audit trail, or an

operating system audit trail.

The database audit trail is a single table named AUD$ in the SYS schema of each

Oracle database’s data dictionary. Several predefined views are provided to help

you use the information in this table.

The audit trail records can contain different types of information, depending on the

events audited and the auditing options set. The following information is always

included in each audit trail record, provided that the information is meaningful to

the particular audit action:

■ the user name

■ the session identifier

■ the terminal identifier

■ the name of the schema object accessed

■ the operation performed or attempted

■ the completion code of the operation

■ the date and time stamp

■ the system privileges used

The operating system audit trail is encoded and not readable, but it is decoded in

data dictionary files and error messages as follows:

Additional Information: Instructions for creating and using these

views are found in the Oracle8i Administrator’s Guide.
Auditing 31-3

Introduction to Auditing
Auditing Mechanisms
This section explains the mechanisms used by the Oracle auditing features.

When Are Audit Records Generated?
The recording of audit information can be enabled or disabled. This functionality

allows any authorized database user to set audit options at any time but reserves

control of recording audit information for the security administrator.

When auditing is enabled in the database, an audit record is generated during the

execute phase of statement execution.

SQL statements inside PL/SQL program units are individually audited, as

necessary, when the program unit is executed.

The generation and insertion of an audit trail record is independent of a user’s

transaction; therefore, if a user’s transaction is rolled back, the audit trail record

remains committed.

action code This describes the operation performed or attempted. The

AUDIT_ACTIONS data dictionary table contains a list of

these codes and their descriptions.

privileges used This describes any system privileges used to perform the

operation. The SYSTEM_PRIVILEGE_MAP table lists all of

these codes and their descriptions.

completion code This describes the result of the attempted operation.

Successful operations return a value of zero; unsuccessful

operations return the Oracle error code describing why the

operation was unsuccessful. These codes are listed in Oracle8i
Error Messages.

Additional Information: Instructions on enabling and disabling

auditing are found in the Oracle8i Administrator’s Guide.

Note: If you are not familiar with the different phases of SQL

statement processing and shared SQL, see Chapter 16, "SQL and

PL/SQL", for background information concerning the following

discussion.
31-4 Oracle8i Concepts

Introduction to Auditing
Events Always Audited to the Operating System Audit Trail
Regardless of whether database auditing is enabled, Oracle always records some

database-related actions into the operating system audit trail:

On operating systems that do not make an audit trail accessible to Oracle, these

audit trail records are placed in an Oracle audit trail file in the same directory as

background process trace files.

Note: Audit records are never generated by sessions established

by the user SYS or connections with administrator privileges.

Connections by these users bypass certain internal features of

Oracle to allow specific administrative operations to occur (for

example, database startup, shutdown, recovery, and so on).

instance startup An audit record is generated that details the OS user

starting the instance, the user’s terminal identifier, the

date and time stamp, and whether database auditing

was enabled or disabled. This information is recorded

into the OS audit trail because the database audit trail is

not available until after startup has successfully

completed. Recording the state of database auditing at

startup further prevents an administrator from

restarting a database with database auditing disabled so

that they are able to perform unaudited actions.

instance shutdown An audit record is generated that details the OS user

shutting down the instance, the user’s terminal

identifier, the date and time stamp.

connections to the

database with

administrator privileges

An audit record is generated that details the OS user

connecting to Oracle with administrator privileges. This

provides accountability of users connected with

administrator privileges.

Additional Information: See your operating-system-specific

Oracle documentation for more information about the operating

system audit trail.
Auditing 31-5

Introduction to Auditing
When Do Audit Options Take Effect?
Statement and privilege audit options in effect at the time a database user connects

to the database remain in effect for the duration of the session. A session does not

see the effects of statement or privilege audit options being set or changed. The

modified statement or privilege audit options take effect only when the current

session is ended and a new session is created. In contrast, changes to schema object

audit options become effective for current sessions immediately.

Auditing in a Distributed Database
Auditing is site autonomous; an instance audits only the statements issued by

directly connected users. A local Oracle node cannot audit actions that take place in

a remote database. Because remote connections are established through the user

account of a database link, the remote Oracle node audits the statements issued

through the database link’s connection. See Chapter 33, "Distributed Databases", for

more information about distributed databases and database links.

Auditing to the OS Audit Trail
Oracle allows audit trail records to be directed to an operating system audit trail if

the operating system makes such an audit trail available to Oracle. On some other

operating systems, these audit records are written to a file outside the database,

with a format similar to other Oracle trace files.

Oracle allows certain actions that are always audited to continue, even when the

operating system audit trail (or the operating system file containing audit records)

is unable to record the audit record. The usual cause of this is that the operating

system audit trail or the file system is full and unable to accept new records.

System administrators configuring OS auditing should ensure that the audit trail or

the file system does not fill completely. Most operating systems provide

administrators with sufficient information and warning to ensure this does not

occur. Note, however, that configuring auditing to use the database audit trail

removes this vulnerability, because the Oracle server prevents audited events from

occurring if the audit trail is unable to accept the database audit record for the

statement.

Additional Information: See your platform-specific Oracle

documentation to see if this feature has been implemented on your

operating system.
31-6 Oracle8i Concepts

Privilege Auditing
Statement Auditing
Statement auditing is the selective auditing of related groups of statements that fall

into two categories:

■ DDL statements, regarding a particular type of database structure or schema

object, but not a specifically named structure or schema object (for example,

AUDIT TABLE audits all CREATE and DROP TABLE statements)

■ DML statements, regarding a particular type of database structure or schema

object, but not a specifically named structure or schema object (for example,

AUDIT SELECT TABLE audits all SELECT . . . FROM

TABLE/VIEW/SNAPSHOT statements, regardless of the table, view, or

snapshot)

Statement auditing can be broad or focused, auditing the activities of all database

users or the activities of only a select list of database users.

Privilege Auditing
Privilege auditing is the selective auditing of the statements allowed using a system

privilege. For example, auditing of the SELECT ANY TABLE system privilege

audits users’ statements that are executed using the SELECT ANY TABLE system

privilege. You can audit the use of any system privilege.

In all cases of privilege auditing, owner privileges and schema object privileges are

checked before system privileges. If the owner and schema object privileges suffice

to permit the action, the action is not audited.

If similar statement and privilege audit options are both set, only a single audit

record is generated. For example, if the statement option TABLE and the system

privilege CREATE TABLE are both audited, only a single audit record is generated

each time a table is created.

Privilege auditing is more focused than statement auditing because each option

audits only specific types of statements, not a related list of statements. For

example, the statement auditing option TABLE audits CREATE TABLE, ALTER

TABLE, and DROP TABLE statements, while the privilege auditing option CREATE

TABLE audits only CREATE TABLE statements, since only the CREATE TABLE

statement requires the CREATE TABLE privilege.

Like statement auditing, privilege auditing can audit the activities of all database

users or the activities of only a select list of database users.
Auditing 31-7

Schema Object Auditing
Schema Object Auditing
Schema bject auditing is the selective auditing of specific DML statements

(including queries) and GRANT and REVOKE statements for specific schema

objects. Schema object auditing audits the operations permitted by schema object

privileges, such as SELECT or DELETE statements on a given table, as well as the

GRANT and REVOKE statements that control those privileges.

You can audit statements that reference tables, views, sequences, standalone stored

procedures and functions, and packages (procedures in packages cannot be audited

individually).

Statements that reference clusters, database links, indexes, or synonyms are not

audited directly. However, you can audit access to these schema objects indirectly

by auditing the operations that affect the base table.

Schema object audit options are always set for all users of the database; these

options cannot be set for a specific list of users. You can set default schema object

audit options for all auditable schema objects.

Schema Object Audit Options for Views and Procedures
Views and procedures (including stored functions, packages, and triggers) reference

underlying schema objects in their definition. Therefore, auditing with respect to

views and procedures has several unique characteristics. Multiple audit records can

be generated as the result of using a view or a procedure: The use of the view or

procedure is subject to enabled audit options; and the SQL statements issued as a

result of using the view or procedure are subject to the enabled audit options of the

base schema objects (including default audit options).

Consider the following series of SQL statements:

AUDIT SELECT ON emp;

CREATE VIEW emp_dept AS
 SELECT empno, ename, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

AUDIT SELECT ON emp_dept;

SELECT * FROM emp_dept;

Additional Information: See "AUDIT (Schema Objects)" in Oracle8i
SQL Reference.
31-8 Oracle8i Concepts

Focusing Statement, Privilege, and Schema Object Auditing
As a result of the query on EMP_DEPT, two audit records are generated: one for the

query on the EMP_DEPT view and one for the query on the base table EMP

(indirectly through the EMP_DEPT view). The query on the base table DEPT does

not generate an audit record because the SELECT audit option for this table is not

enabled. All audit records pertain to the user that queried the EMP_DEPT view.

The audit options for a view or procedure are determined when the view or

procedure is first used and placed in the shared pool. These audit options remain

set until the view or procedure is flushed from, and subsequently replaced in, the

shared pool. Auditing a schema object invalidates that schema object in the cache

and causes it to be reloaded. Any changes to the audit options of base schema

objects are not observed by views and procedures in the shared pool.

Continuing with the above example, if auditing of SELECT statements is turned off

for the EMP table, use of the EMP_DEPT view would no longer generate an audit

record for the EMP table.

Focusing Statement, Privilege, and Schema Object Auditing
Oracle allows you to focus statement, privilege, and schema object auditing in three

areas:

■ successful and unsuccessful executions of the audited SQL statement

■ BY SESSION and BY ACCESS auditing

■ for specific users or for all users in the database (statement and privilege

auditing only)

Auditing Successful and Unsuccessful Statement Executions
For statement, privilege, and schema object auditing, Oracle allows the selective

auditing of successful executions of statements, unsuccessful attempts to execute

statements, or both. Therefore, you can monitor actions even if the audited

statements do not complete successfully.

You can audit an unsuccessful statement execution only if a valid SQL statement is

issued but fails because of lack of proper authorization or because it references a

nonexistent schema object. Statements that failed to execute because they simply

were not valid cannot be audited. For example, an enabled privilege auditing

option set to audit unsuccessful statement executions audits statements that use the

target system privilege but have failed for other reasons (such as when CREATE
Auditing 31-9

Focusing Statement, Privilege, and Schema Object Auditing
TABLE is set but a CREATE TABLE statement fails due to lack of quota for the

specified tablespace).

Using either form of the AUDIT command, you can include

■ the WHENEVER SUCCESSFUL option, to audit only successful executions of

the audited statement

■ the WHENEVER NOT SUCCESSFUL option, to audit only unsuccessful

executions of the audited statement

■ neither of the previous options, to audit both successful and unsuccessful

executions of the audited statement

Auditing BY SESSION versus BY ACCESS
Most auditing options can be set to indicate how audit records should be generated

if the audited statement is issued multiple times in a single user session. This

section describes the distinction between the BY SESSION and BY ACCESS options

of the AUDIT command.

BY SESSION
For any type of audit (schema object, statement, or privilege), BY SESSION inserts

only one audit record in the audit trail, per user and schema object, during the

session that includes an audited action.

A session is the time between when a user connects to and disconnects from an

Oracle database.

Example 1 Assume the following:

■ The SELECT TABLE statement auditing option is set BY SESSION.

■ JWARD connects to the database and issues five SELECT statements against the

table named DEPT and then disconnects from the database.

■ SWILLIAMS connects to the database and issues three SELECT statements

against the table EMP and then disconnects from the database.

In this case, the audit trail will contain two audit records for the eight SELECT

statements (one for each session that issued a SELECT statement).
31-10 Oracle8i Concepts

Focusing Statement, Privilege, and Schema Object Auditing
Example 2 Alternatively, assume the following:

■ The SELECT TABLE statement auditing option is set BY SESSION.

■ JWARD connects to the database and issues five SELECT statements against the

table named DEPT, and three SELECT statements against the table EMP, and

then disconnects from the database.

In this case, the audit trail will contain two records (one for each schema object

against which the user issued a SELECT statement in a session).

BY ACCESS
Setting audit BY ACCESS inserts one audit record into the audit trail for each

execution of an auditable operation within a cursor. Events that cause cursors to be

reused include the following:

■ an application, such as Oracle Forms, holding a cursor open for reuse

■ subsequent execution of a cursor using new bind variables

■ statements executed within PL/SQL loops where the PL/SQL engine optimizes

the statements to reuse a single cursor

Note that auditing is NOT affected by whether a cursor is shared; each user creates

her or his own audit trail records on first execution of the cursor.

Example Assume that

■ The SELECT TABLE statement auditing option is set BY ACCESS.

■ JWARD connects to the database and issues five SELECT statements against the

table named DEPT and then disconnects from the database.

■ SWILLIAMS connects to the database and issues three SELECT statements

against the table DEPT and then disconnects from the database.

The single audit trail contains eight records for the eight SELECT statements.

Note: If you use the BY SESSION option when directing audit

records to the operating system audit trail, Oracle generates and

stores an audit record each time an access is made. Therefore, in

this auditing configuration, BY SESSION is equivalent to BY

ACCESS.
Auditing 31-11

Focusing Statement, Privilege, and Schema Object Auditing
Defaults and Excluded Operations
The AUDIT command allows you to specify either BY SESSION or BY ACCESS.

However, several audit options can be set only BY ACCESS, including

■ all statement audit options that audit DDL statements

■ all privilege audit options that audit DDL statements

For all other audit options, BY SESSION is used by default.

Auditing By User
Statement and privilege audit options can audit statements issued by any user or

statements issued by a specific list of users. By focusing on specific users, you can

minimize the number of audit records generated.

Example To audit statements by the users SCOTT and BLAKE that query or update

a table or view, issue the following statements:

AUDIT SELECT TABLE, UPDATE TABLE
 BY scott, blake;

Additional Information: See Oracle8i SQL Reference for more

information about auditing by user.
31-12 Oracle8i Concepts

Database R
32

Database Recovery

These unhappy times call for the building of plans...

Franklin Delano Roosevelt

This chapter introduces the structures that are used during database recovery and

describes the Recovery Manager utility, which simplifies backup and recovery

operations. The topics in this chapter include:

■ An Introduction to Database Recovery

■ Structures Used for Database Recovery

■ Rolling Forward and Rolling Back

■ Improving Recovery Performance

■ Recovery Manager

■ Database Archiving Modes

■ Control Files

■ Database Backups

■ Survivability

Additional Information: The procedures necessary to create and

maintain the backup and recovery structures are discussed in the

Oracle8i Backup and Recovery Guide.
ecovery 32-1

An Introduction to Database Recovery
An Introduction to Database Recovery
A major responsibility of the database administrator is to prepare for the possibility

of hardware, software, network, process, or system failure. If such a failure affects

the operation of a database system, you must usually recover the database and

return to normal operation as quickly as possible. Recovery should protect the

database and associated users from unnecessary problems and avoid or reduce the

possibility of having to duplicate work manually.

Recovery processes vary depending on the type of failure that occurred, the

structures affected, and the type of recovery that you perform. If no files are lost or

damaged, recovery may amount to no more than restarting an instance. If data has

been lost, recovery requires additional steps.

Errors and Failures
Several problems can halt the normal operation of an Oracle database or affect

database I/O to disk. The following sections describe the most common types. For

some of these problems, recovery is automatic and requires little or no action on the

part of the database user or database administrator.

User Error
A database administrator can do little to prevent user errors (for example,

accidentally dropping a table). Usually, user error can be reduced by increased

training on database and application principles. Furthermore, by planning an

effective recovery scheme ahead of time, the administrator can ease the work

necessary to recover from many types of user errors.

Statement Failure
Statement failure occurs when there is a logical failure in the handling of a

statement in an Oracle program. For example, assume all extents of a table (in other

words, the number of extents specified in the MAXEXTENTS parameter of the

CREATE TABLE statement) are allocated, and are completely filled with data; the

Note: The Recovery Manager is a utility that simplifies backup

and recovery operations. See "Recovery Manager" on page 32-15.

Additional Information: See the Oracle8i Backup and Recovery Guide
for detailed information on Recovery Manager and a description of

how to recover from loss of data.
32-2 Oracle8i Concepts

An Introduction to Database Recovery
table is absolutely full. A valid INSERT statement cannot insert a row because there

is no space available. Therefore, if issued, the statement fails.

If a statement failure occurs, the Oracle software or operating system returns an

error code or message. A statement failure usually requires no action or recovery

steps; Oracle automatically corrects for statement failure by rolling back the effects

(if any) of the statement and returning control to the application. The user can

simply re-execute the statement after correcting the problem indicated by the error

message.

Process Failure
A process failure is a failure in a user, server, or background process of a database

instance (for example, an abnormal disconnect or process termination). When a

process failure occurs, the failed subordinate process cannot continue work,

although the other processes of the database instance can continue.

The Oracle background process PMON detects aborted Oracle processes. If the

aborted process is a user or server process, PMON resolves the failure by rolling

back the current transaction of the aborted process and releasing any resources that

this process was using. Recovery of the failed user or server process is automatic. If

the aborted process is a background process, the instance usually cannot continue to

function correctly. Therefore, you must shut down and restart the instance.

Network Failure
When your system uses networks (for example, local area networks, phone lines,

and so on) to connect client workstations to database servers, or to connect several

database servers to form a distributed database system, network failures (such as

aborted phone connections or network communication software failures) can

interrupt the normal operation of a database system. For example:

■ A network failure might interrupt normal execution of a client application and

cause a process failure to occur. In this case, the Oracle background process

PMON detects and resolves the aborted server process for the disconnected

user process, as described in the previous section.

■ A network failure might interrupt the two-phase commit of a distributed

transaction. Once the network problem is corrected, the Oracle background

process RECO of each involved database server automatically resolves any

distributed transactions not yet resolved at all nodes of the distributed database

system. Distributed database systems are discussed in Chapter 33, "Distributed

Databases".
Database Recovery 32-3

An Introduction to Database Recovery
Database Instance Failure
Database instance failure occurs when a problem arises that prevents an Oracle

database instance (SGA and background processes) from continuing to work. An

instance failure can result from a hardware problem, such as a power outage, or a

software problem, such as an operating system crash. Instance failure also results

when you issue a SHUTDOWN ABORT or STARTUP FORCE command.

Recovery from Instance Failure Crash or instance recovery recovers a database to its

transaction-consistent state just before instance failure. Crash recovery recovers a

database in a single-instance configuration and instance recovery recovers a database

in an Oracle Parallel Server configuration.

Recovery from instance failure is automatic. For example, when using the Oracle

Parallel Server, another instance performs instance recovery for the failed instance.

In single-instance configurations, Oracle performs crash recovery for a database

when the database is restarted (mounted and opened to a new instance). The

transition from a mounted state to an open state automatically triggers crash

recovery, if necessary.

Crash or instance recovery consists of the following steps:

1. Rolling forward to recover data that has not been recorded in the datafiles, yet

has been recorded in the online redo log, including the contents of rollback

segments. This is called cache recovery.

2. Opening the database. Instead of waiting for all transactions to be rolled back

before making the database available, Oracle allows the database to be opened

as soon as cache recovery is complete. Any data that is not locked by

unrecovered transactions is immediately available.

3. Marking all transactions system-wide that were active at the time of failure as

DEAD and marking the rollback segments containing these transactions as

PARTLY AVAILABLE.

4. Rolling back dead transactions as part of SMON recovery. This is called

transaction recovery.

5. Resolving any pending distributed transactions undergoing a two-phase

commit at the time of the instance failure.

6. As new transactions encounter rows locked by dead transactions, they can

automatically roll back the dead transaction to release the locks. If you are using

Fast-Start Recovery, just the data block is immediately rolled back, as opposed

to the entire transaction.
32-4 Oracle8i Concepts

An Introduction to Database Recovery
Media (Disk) Failure
An error can arise when trying to write or read a file that is required to operate an

Oracle database. This occurrence is called media failure because there is a physical

problem reading or writing to files on the storage medium.

A common example of media failure is a disk head crash, which causes the loss of

all files on a disk drive. All files associated with a database are vulnerable to a disk

crash, including datafiles, online redo log files, and control files.

The appropriate recovery from a media failure depends on the files affected.

How Media Failures Affect Database Operation Media failures can affect one or all types

of files necessary for the operation of an Oracle database, including datafiles, online

redo log files, and control files.

Database operation after a media failure of online redo log files or control files

depends on whether the online redo log or control file is multiplexed, as

recommended. A multiplexed online redo log or control file simply means that a

second copy of the file is maintained. If a media failure damages a single disk, and

you have a multiplexed online redo log, the database can usually continue to

operate without significant interruption. Damage to a non-multiplexed online redo

log causes database operation to halt and may cause permanent loss of data.

Damage to any control file, whether it is multiplexed or non-multiplexed, halts

database operation once Oracle attempts to read or write the damaged control file

(which happens frequently, for example at every checkpoint and log switch).

Media failures that affect datafiles can be divided into two categories: read errors

and write errors. In a read error, Oracle discovers it cannot read a datafile and an

operating system error is returned to the application, along with an Oracle error

indicating that the file cannot be found, cannot be opened, or cannot be read.

Oracle continues to run, but the error is returned each time an unsuccessful read

occurs. At the next checkpoint, a write error will occur when Oracle attempts to

write the file header as part of the standard checkpoint process.

Additional Information: See the Oracle8i Parallel Server Setup and
Configuration Guide for a discussion of instance recovery.

See Oracle8i Tuning for a discussion of instance recovery tuning.

Additional Information: See the Oracle8i Backup and Recovery Guide
for a discussion of recovery methods.
Database Recovery 32-5

Structures Used for Database Recovery
If Oracle discovers that it cannot write to a datafile and Oracle is archiving the filled

online redo log files, Oracle returns an error in the DBWn trace file and takes the

datafile offline automatically. Only the datafile that cannot be written to is taken

offline; the tablespace containing that file remains online.

If the datafile that cannot be written to is in the SYSTEM tablespace, the file is not

taken offline. Instead, an error is returned and Oracle shuts down the instance. The

reason for this exception is that all files in the SYSTEM tablespace must be online in

order for Oracle to operate properly. For the same reason, the datafiles of a

tablespace containing active rollback segments must remain online.

If Oracle discovers that it cannot write to a datafile, and Oracle is not archiving the

filled online redo log files, the DBWn background process fails and the current

instance fails. If the problem is temporary (for example, the disk controller was

powered off), crash or instance recovery usually can be performed using the online

redo log files, in which case the instance can be restarted. However, if a datafile is

permanently damaged and archiving is not used, the entire database must be

restored using the most recent cold backup.

Recovery of Read-Only Tablespaces Recovery is not needed on read-only datafiles

during crash or instance recovery. Recovery during startup verifies that each online

read-only file does not need any media recovery. That is, the file was not restored

from a backup taken before it was made read-only. If you restore a read-only

tablespace from a backup taken before the tablespace was made read-only, you

cannot access the tablespace until you complete media recovery.

Structures Used for Database Recovery
Several structures of an Oracle database safeguard data against possible failures.

This section introduces each of these structures and its role in database recovery.

Database Backups
A database backup consists of backups of the physical files (all datafiles and a

control file) that constitute an Oracle database. To begin media recovery after a

media failure, Oracle uses file backups to restore damaged datafiles or control files.

Replacing a current, possibly damaged, copy of a datafile, tablespace, or database

with a backup copy is called restoring that portion of the database.
32-6 Oracle8i Concepts

Structures Used for Database Recovery
Oracle offers several options in performing database backups, including:

■ Recovery Manager

■ operating system utilities

■ Export utility

■ Enterprise Backup Utility

The Redo Log
The redo log, present for every Oracle database, records all changes made in an

Oracle database. The redo log of a database consists of at least two redo log files

that are separate from the datafiles (which actually store a database’s data). As part

of database recovery from an instance or media failure, Oracle applies the

appropriate changes in the database’s redo log to the datafiles, which updates

database data to the instant that the failure occurred.

A database’s redo log can consist of two parts: the online redo log and the archived

redo log.

The Online Redo Log
Every Oracle database has an associated online redo log. The Oracle background

process LGWR uses the online redo log to immediately record all changes made

through the associated instance. The online redo log consists of two or more

pre-allocated files that are reused in a circular fashion to record ongoing database

changes.

The Archived (Offline) Redo Log
Optionally, you can configure an Oracle database to archive files of the online redo

log once they fill. The online redo log files that are archived are uniquely identified

and make up the archived redo log. By archiving filled online redo log files, older

redo log information is preserved for operations such as media recovery, while the

pre-allocated online redo log files continue to be reused to store the most current

database changes.

Datafiles that were restored from backup, or were not closed by a clean database

shutdown, may not be completely up to date. These datafiles must be updated by

applying the changes in the archived and/or online redo logs. This process is called

recovery.

Additional Information: See Oracle8i Backup and Recovery Guide.
Database Recovery 32-7

Rolling Forward and Rolling Back
See "Database Archiving Modes" on page 32-18 for more information.

Rollback Segments
Rollback segments are used for a number of functions in the operation of an Oracle

database. In general, the rollback segments of a database store the old values of data

changed by ongoing transactions (that is, uncommitted transactions).

Among other things, the information in a rollback segment is used during database

recovery to "undo" any "uncommitted" changes applied from the redo log to the

datafiles. Therefore, if database recovery is necessary, the data is in a consistent state

after the rollback segments are used to remove all uncommitted data from the

datafiles.

Control Files
In general, the control file(s) of a database store the status of the physical structure

of the database. Certain status information in the control file (for example, the

current online redo log file, the names of the datafiles, and so on) guides Oracle

during instance or media recovery.

See "Control Files" on page 32-21 for more information.

Rolling Forward and Rolling Back
Database buffers in the buffer cache in the SGA are written to disk only when

necessary, using a least-recently-used algorithm. Because of the way that the DBWn
process uses this algorithm to write database buffers to datafiles, datafiles might

contain some data blocks modified by uncommitted transactions and some data

blocks missing changes from committed transactions.

Two potential problems can result if an instance failure occurs:

■ Data blocks modified by a transaction might not be written to the datafiles at

commit time and might only appear in the redo log. Therefore, the redo log

contains changes that must be reapplied to the database during recovery.

■ After the roll forward phase, the datafiles may contain changes that had not

been committed at the time of the failure. These uncommitted changes must be

rolled back to ensure transactional consistency. These changes were either saved

to the datafiles before the failure, or introduced during the roll forward phase.
32-8 Oracle8i Concepts

Rolling Forward and Rolling Back
To solve this dilemma, two separate steps are generally used by Oracle for a

successful recovery of a system failure: rolling forward with the redo log (cache

recovery) and rolling back with the rollback segments (transaction recovery).

The Redo Log and Rolling Forward
The redo log is a set of operating system files that record all changes made to any

database buffer, including data, index, and rollback segments, whether the changes are
committed or uncommitted. Each redo entry is a group of change vectors describing a

single atomic change to the database. The redo log protects changes made to

database buffers in memory that have not been written to the datafiles.

The first step of recovery from an instance or disk failure is to roll forward, or

reapply all of the changes recorded in the redo log to the datafiles. Because rollback

data is also recorded in the redo log, rolling forward also regenerates the

corresponding rollback segments. This is called cache recovery.

Rolling forward proceeds through as many redo log files as necessary to bring the

database forward in time. Rolling forward usually includes online redo log files and

may include archived redo log files.

After roll forward, the data blocks contain all committed changes. They may also

contain uncommitted changes that were either saved to the datafiles before the

failure, or were recorded in the redo log and introduced during roll forward.

Rollback Segments and Rolling Back
Rollback segments record database actions that should be undone during certain

database operations. In database recovery, rollback segments undo the effects of

uncommitted transactions previously applied by the rolling forward phase.

After the roll forward, any changes that were not committed must be undone. After

redo log files have reapplied all changes made to the database, then the

corresponding rollback segments are used. Rollback segments are used to identify

and undo transactions that were never committed, yet were either saved to the

datafiles before the failure, or were applied to the database during the roll forward.

This process is called rolling back or transaction recovery.

Figure 32–1 illustrates rolling forward and rolling back, the two steps necessary to

recover from any type of system failure.
Database Recovery 32-9

Improving Recovery Performance
Figure 32–1 Basic Recovery Steps: Rolling Forward and Rolling Back

Oracle can roll back multiple transactions simultaneously as needed. All

transactions system-wide that were active at the time of failure are marked as

DEAD. Instead of waiting for SMON to roll back dead transactions, new

transactions can recover blocking transactions themselves to get the row locks they

need.

Improving Recovery Performance
When a database failure occurs, rapid recovery is very important in most situations.

Oracle provides a number of methods to make recovery as quick as possible,

including:

■ Parallel Recovery

■ Fast-Start Recovery

■ Transparent Application Failover

Performing Recovery in Parallel
Recovery reapplies the changes generated by several concurrent processes, and

therefore instance or media recovery can take longer than the time it took to initially

generate the changes to a database. With serial recovery, a single process applies the

Database with
committed and
uncommitted
transactions

Redo Logs
applied

Rollback Segments
applied

Backup of
Database
that needs
recovery

Database with
just committed
transactions

Committed

Uncommitted

Database

Redo
Log

Redo
Log

DatabaseDatabase
32-10 Oracle8i Concepts

Improving Recovery Performance
changes in the redo log files sequentially. Using parallel recovery, several processes

simultaneously apply changes from redo log files.

Parallel recovery can be performed using three methods:

■ Parallel recovery can be performed manually by spawning several Oracle

Enterprise Manager sessions and issuing the RECOVER DATAFILE command

on a different set of datafiles in each session. However, this method causes each

Oracle Enterprise Manager session to read the entire redo log file.

■ You can use the Recovery Manager’s RESTORE and RECOVER commands to

automatically parallelize all stages of recovery. Oracle uses one process to read

the log files sequentially and dispatch redo information to several recovery

processes, which apply the changes from the log files to the datafiles. The

recovery processes are started automatically by Oracle, so there is no need to

use more than one session to perform recovery. There are also some

initialization parameters to set for automatic parallel recovery. Refer to the

Oracle8i Parallel Server Setup and Configuration Guide for details.

■ You can use the SQL*Plus RECOVER command to perform parallel recovery.

Refer to the SQL*Plus User’s Guide and Reference for details.

■ You can use the SQL command ALTER DATABASE RECOVER to perform

parallel recovery but this is not recommended.

Situations That Benefit from Parallel Recovery
In general, parallel recovery is most effective at reducing recovery time when

several datafiles on several different disks are being recovered concurrently. Crash

recovery (recovery after instance failure) and media recovery of many datafiles on

many different disk drives are good candidates for parallel recovery.

The performance improvement from parallel recovery is also dependent upon

whether the operating system supports asynchronous I/O. If asynchronous I/O is

not supported, parallel recovery can dramatically reduce recovery time. If

asynchronous I/O is supported, the recovery time may only be slightly reduced by

using parallel recovery.

Attention: Oracle8i provides limited parallelism with Recovery

Manager; the Oracle8i Enterprise Edition allows unlimited

parallelism. See Getting to Know Oracle8i for more information

about the features available in Oracle8i and Oracle8i Enterprise

Edition.
Database Recovery 32-11

Improving Recovery Performance
Recovery Processes
In a typical parallel recovery situation, one process is responsible for reading and

dispatching redo entries from the redo log files. This is the dedicated server process

that begins the recovery session. The server process reading the redo log files enlists

two or more recovery processes to apply the changes from the redo entries to the

datafiles.

Figure 32–2 illustrates a typical parallel recovery session.

Figure 32–2 Typical Parallel Recovery Session

Additional Information: See your operating system

documentation to determine whether the system supports

asynchronous I/O.

Dedicated
Server

Process

Redo
File 1

Redo
File 2

Datafile
3

Datafile
4

Datafile
1

Datafile
2

Recovery
Process

Recovery
Process
32-12 Oracle8i Concepts

Improving Recovery Performance
In most situations, one recovery session and one or two recovery processes per disk

drive containing datafiles needing recovery is sufficient. Recovery is a

disk-intensive activity as opposed to a CPU-intensive activity, and therefore the

number of recovery processes needed is dependent entirely upon how many disk

drives are involved in recovery. In general, a minimum of eight recovery processes

is needed before parallel recovery can show improvement over a serial recovery.

Fast-Start Recovery
Fast-Start Recovery is an architecture that reduces the time required for rolling

forward and makes the recovery bounded and predictable. It also eliminates

rollback time from recovery for transactions aborted due to system faults. Fast-Start

Recovery includes:

■ Fast-Start Checkpointing

■ Fast-Start On-Demand Rollback

■ Fast-Start Parallel Rollback

Fast-Start Checkpointing
Fast-Start Checkpointing records the position in the redo thread (log) from which

crash or instance recovery would need to begin. This position is determined by the

oldest dirty buffer in the buffer cache. Each DBWn process continually writes

buffers to disk to advance the checkpoint position, with minimal or no overhead

during normal processing. Fast-Start Checkpointing improves the performance of

crash and instance recovery, but not media recovery.

You can influence recovery performance for situations where there are stringent

limitations on the duration of crash or instance recovery. The time required for crash

or instance recovery is roughly proportional to the number of data blocks that need

to be read or written during the roll forward phase. You can specify a limit, or

bound, on the number of data blocks that will need to be processed during roll

forward. The Oracle server automatically adjusts the checkpoint write rate to meet

the specified roll-forward bound while issuing the minimum number of writes.

You can set the dynamic initialization parameter FAST_START_IO_TARGET to limit

the number of blocks that need to be read for crash or instance recovery. Smaller

values of this parameter impose higher overhead during normal processing because

more buffers have to be written. On the other hand, the smaller the value of this

parameter, the better the recovery performance, since fewer blocks need to be

recovered. The dynamic initialization parameters LOG_CHECKPOINT_INTERVAL

and LOG_CHECKPOINT_TIMEOUT also influence Fast-Start Checkpointing.
Database Recovery 32-13

Improving Recovery Performance
Fast-Start On-Demand Rollback
When a dead transaction holds a row lock on a row that another transaction needs,

Fast-Start On-Demand Rollback immediately recovers only the data block under

consideration, leaving the rest of the dead transaction to be recovered in the

background. This improves the availability of the database for users accessing data

that is locked by large dead transactions. If Fast-Start Rollback is not enabled, the

user would have to wait until the entire dead transaction was recovered before

obtaining the row lock.

Fast-Start Parallel Rollback
Fast-Start Parallel Rollback allows a set of transactions to be recovered in parallel

using a group of server processes. This technique is used when SMON determines

that the amount of work it takes to perform recovery in parallel is less than the time

it takes to recovery serially.

Masking Failures with Transparent Application Failover
Rapid recovery minimizes the time data is unavailable to users, but it does not

address the disruption caused when user sessions fail. Users need to re-establish

connections to the database, and work in progress may be lost. Oracle8i Transparent

Application Failover (TAF) can mask many failures from users, preserving the state

of their applications and resuming queries that had been in progress at the time of

the failure. Developers can further extend these capabilities by building

applications that leverage TAF and make all failures, including those affecting

transactions, transparent to users.

Additional Information: See Oracle8i Tuning for information about

how to set the value of FAST_START_IO_TARGET, and see Oracle8i
Backup and Recovery Guide for a detailed description of checkpoints.

Additional Information: See the Oracle8i Tuning for more

information about Transparent Application Failover.
32-14 Oracle8i Concepts

Recovery Manager
Recovery Manager
Recovery Manager is a utility that manages the processes of creating backups of all

database files (datafiles, control files, and archived redo log files) and restoring or

recovering files from backups.

Recovery Catalog
Recovery Manager maintains a repository called the recovery catalog, which contains

information about backup files and archived log files. Recovery Manager uses the

recovery catalog to automate both restore operations and media recovery.

The recovery catalog contains:

■ information about backups of datafiles and archive logs

■ information about datafile copies

■ information about archived redo logs and copies of them

■ information about the physical schema of the target database

■ named sequences of commands called stored scripts.

The recovery catalog is maintained solely by Recovery Manager. The database

server of the backed-up database never accesses the recovery catalog directly.

Recovery Manager propagates information about backup datafile sets, archived

redo logs, backup control files, and datafile copies into the recovery catalog for

long-term retention.

When doing a restore, Recovery Manager extracts the appropriate information from

the recovery catalog and passes it to the database server. The server performs

various integrity checks on the input files specified for a restore. Incorrect behavior

by Recovery Manager cannot corrupt the database.

The Recovery Catalog Database
The recovery catalog is stored in an Oracle database. It is the database

administrator’s responsibility to make such a database available to Recovery

Manager. Taking backups of the recovery catalog is also the database

administrator’s responsibility. Since the recovery catalog is stored in an Oracle

database, you can use Recovery Manager to back it up.

Additional Information: See the Oracle8i Backup and Recovery Guide
for a full description of Recovery Manager.
Database Recovery 32-15

Recovery Manager
If the recovery catalog is destroyed and no backups are available, then it can be

partially reconstructed from the current control file or control file backups.

Operation Without a Recovery Catalog
Use of a recovery catalog is not required, but is recommended. Since most

information in the recovery catalog is also available from the control file, Recovery

Manager supports an operational mode where it uses only the control file. This

operational mode is appropriate for small databases where installation and

administration of another database to serve as the recovery catalog would be

burdensome.

Some Recovery Manager features are only available when a recovery catalog is

used.

Parallelization
Recovery Manager can parallelize its operations, establishing multiple logon

sessions and conducting multiple operations in parallel by using non-blocking UPI.

Concurrent operations must operate on disjoint sets of datafiles.

Parallelization of the backup, copy, and restore commands is handled internally by

the Recovery Manager. You only need to specify:

■ a list of one or more sequential I/O devices

■ the objects to be backed up, copied, or restored.

Recovery Manager executes commands serially, that is, it completes the previous

command before starting the next command. Parallelism is exploited only within

the context of a single command. Thus, if 10 datafile copies are desired, it is better to

issue a single copy command that specifies all 10 copies rather than 10 separate

copy commands.

Additional Information: See the Oracle8i Backup and Recovery Guide
for information about creating the recovery catalog, and about

which Recovery Manager features require use of a recovery catalog.

Attention: The Oracle8i Enterprise Edition allows unlimited

parallelism. Oracle8i can only allocate one Recovery Manager

channel at a time, thus limiting the parallelism to one stream. See

Getting to Know Oracle8i for more information about the features

available with Oracle8i and Oracle8i Enterprise Edition.
32-16 Oracle8i Concepts

Recovery Manager
Report Generation
The report and list commands provide information about backups and image

copies. The output from these commands is written to the message log file.

The report command produces reports that can answer questions such as:

■ what files need a backup?

■ what files haven’t had a backup in a while?

■ what backup files can be deleted?

You can use the report need backup and report unrecoverable commands on a

regular basis to ensure that the necessary backups are available to perform recovery,

and that the recovery can be performed within a reasonable length of time. The

report deletable command lists backup sets and datafile copies that can be deleted

either because they are redundant or because they could never be used by a recover
command.

A datafile is considered unrecoverable if an unlogged operation has been performed

against a schema object residing in the datafile.

(A datafile that does not have a backup is not considered unrecoverable. Such

datafiles can be recovered through the use of the create datafile command,

provided that logs starting from when the file was created still exist.)

The list command queries the recovery catalog and produces a listing of its

contents. You can use it to find out what backups or copies are available:

■ backups or copies of a specified list of datafiles

■ backups or copies of any datafile that is a member of a specified list of

tablespaces

■ backups or copies of any archive logs with a specified name and/or within a

specified range

■ incarnations of a specified database.
Database Recovery 32-17

Database Archiving Modes
Database Archiving Modes
A database can operate in two distinct modes: NOARCHIVELOG mode (media

recovery disabled) or ARCHIVELOG mode (media recovery enabled).

NOARCHIVELOG Mode (Media Recovery Disabled)
If a database is used in NOARCHIVELOG mode, the archiving of the online redo

log is disabled. Information in the database’s control file indicates that filled groups

are not required to be archived. Therefore, as soon as a filled group becomes

inactive, the group is available for reuse by the LGWR process.

NOARCHIVELOG mode protects a database only from instance failure, not from

disk (media) failure. Only the most recent changes made to the database, stored

in the groups of the online redo log, are available for crash recovery or instance

recovery. This is sufficient to satisfy the needs of crash recovery and instance

recovery, because Oracle will not overwrite an online redo log that might be needed

until its changes have been safely recorded in the datafiles. However, it will not be

possible to do media recovery.

ARCHIVELOG Mode (Media Recovery Enabled)
If an Oracle database is operated in ARCHIVELOG mode, the archiving of the

online redo log is enabled. Information in a database control file indicates that a

group of filled online redo log files cannot be reused by LGWR until the group has

been archived.

Figure 32–3 illustrates how the database’s online redo log files are used in

ARCHIVELOG mode and how the archived redo log is generated by the process

archiving the filled groups (for example, ARC0 in this illustration).

ARCHIVELOG mode permits complete recovery from disk failure as well as

instance failure, because all changes made to the database are permanently saved in

an archived redo log.
32-18 Oracle8i Concepts

Database Archiving Modes
Figure 32–3 Online Redo Log File Use in ARCHIVELOG Mode

Automatic Archiving and the ARC n (Archiver) Background Processes
An instance can be configured to have an additional background process, the

archiver (ARC0), automatically archive groups of online redo log files once they

become inactive. Automatic archiving frees the database administrator from having

to keep track of, and archive, filled groups manually. For this convenience alone,

automatic archiving is the choice of most database systems that run in

ARCHIVELOG mode. For heavy workloads, such as bulk loading of data, multiple

archiver processes (up to ARC9) can be configured by setting the initialization

parameter LOG_ARCHIVE_MAX_PROCESSES.

If you request automatic archiving at instance startup by setting the

LOG_ARCHIVE_START initialization parameter, Oracle starts the number of

LGWR

ARC0 ARC0 ARC0

LGWR LGWR

0001

0002

0001

0002

0003

TIME

LGWR

Archived
Redo Log
Files

Online
Redo Log
Files

Log
0004

Log
0003

Log
0002

0001 0002

0001

0003

0002

0001

Log
0001
Database Recovery 32-19

Database Archiving Modes
ARCn processes specified by LOG_ARCHIVE_MAX_PROCESSES during instance

startup. Otherwise, the ARCn processes are not started when the instance starts up.

However, the database administrator can interactively start or stop automatic

archiving at any time. If automatic archiving was not specified to start at instance

startup, and the administrator subsequently starts automatic archiving, Oracle

creates the ARCn background process(es). ARCn then remains for the duration of

the instance, even if automatic archiving is temporarily turned off and turned on

again, although the number of ARCn processes can be changed dynamically by

setting LOG_ARCHIVE_MAX_PROCESSES with the ALTER SYSTEM command.

ARCn always archives groups in order, beginning with the lowest sequence

number. ARCn automatically archives filled groups as they become inactive. A

record of every automatic archival is written in the ARCn trace file by the ARCn
process. Each entry shows the time the archive started and stopped.

If ARCn encounters an error when attempting to archive a log group (for example,

due to an invalid or filled destination), ARCn continues trying to archive the group.

An error is also written in the ARCn trace file and the ALERT file. If the problem is

not resolved, eventually all online redo log groups become full, yet not archived,

and the system halts because no group is available to LGWR. Therefore, if problems

are detected, you should either resolve the problem so that ARCn can continue

archiving (such as by changing the archive destination) or manually archive groups

until the problem is resolved.

Manual Archiving
If a database is operating in ARCHIVELOG mode, the database administrator can

manually archive the filled groups of inactive online redo log files, as necessary,

whether or not automatic archiving is enabled or disabled. If automatic archiving is

disabled, the database administrator is responsible for manually archiving all filled

groups.

For most systems, automatic archiving is chosen because the administrator does not

have to watch for a group to become inactive and available for archiving.

Furthermore, if automatic archiving is disabled and manual archiving is not

performed fast enough, database operation can be suspended temporarily

whenever LGWR is forced to wait for an inactive group to become available for

reuse.

The manual archiving option is provided so that the database administrator can:

■ archive a group when automatic archiving has been stopped because of a

problem (for example, the offline storage device specified as the archived redo

log destination has experienced a failure or become full)
32-20 Oracle8i Concepts

Control Files
■ archive a group in a non-standard fashion (for example, archive one group to

one offline storage device, the next group to a different offline storage device,

and so on)

■ re-archive a group if the original archived version is lost or damaged.

When a group is archived manually, the user process issuing the statement to

archive a group actually performs the process of archiving the group. Even if the

ARCn background process is present for the associated instance, it is the user

process that archives the group of online redo log files.

Control Files
The control file of a database is a small binary file necessary for the database to start

and operate successfully. A control file is updated continuously by Oracle during

database use, so it must be available for writing whenever the database is open. If

for some reason the control file is not accessible, the database will not function

properly.

Each control file is associated with only one Oracle database.

Control File Contents
A control file contains information about the associated database that is required for

the database to be accessed by an instance, both at startup and during normal

operation. A control file’s information can be modified only by Oracle; no database

administrator or end-user can edit a database’s control file.

Among other things, a control file contains information such as

■ the database name

■ the timestamp of database creation

■ the names and locations of associated datafiles and online redo log files

■ tablespace information

■ datafile offline ranges

■ the log history

■ archived log information

■ backup set and backup piece information

■ backup datafile and redo log information
Database Recovery 32-21

Control Files
■ datafile copy information

■ the current log sequence number

■ checkpoint information.

The database name and timestamp originate at database creation. The database’s

name is taken from either the name specified by the initialization parameter

DB_NAME or the name used in the CREATE DATABASE statement.

Each time that a datafile or an online redo log file is added to, renamed in, or

dropped from the database, the control file is updated to reflect this physical

structure change. These changes are recorded so that

■ Oracle can identify the datafiles and online redo log files to open during

database startup.

■ Oracle can identify files that are required or available in case database recovery

is necessary.

Therefore, if you make a change to your database’s physical structure, you should

immediately make a backup of your control file.

Control files also record information about checkpoints. Every three seconds, the

checkpoint process (CKPT) records information in the control file about the

checkpoint position in the online redo log. This information is used during database

recovery to tell Oracle that all redo entries recorded before this point in the online

redo log group are not necessary for database recovery; they were already written

to the datafiles.

Multiplexed Control Files
As with online redo log files, Oracle allows multiple, identical control files to be

open concurrently and written for the same database.

By storing multiple control files for a single database on different disks, you can

safeguard against a single point of failure with respect to control files. If a single

disk that contained a control file crashes, the current instance fails when Oracle

attempts to access the damaged control file. However, other copies of the current

control file are available on different disks, so an instance can be restarted easily

without the need for database recovery.

Additional Information: See Oracle8i Backup and Recovery Guide for

information about backing up a database’s control file.
32-22 Oracle8i Concepts

Database Backups
The permanent loss of all copies of a database’s control file is a serious problem to

safeguard against. If all control files of a database are permanently lost during

operation (several disks fail), the instance is aborted and media recovery is

required. Even so, media recovery is not straightforward if an older backup of a

control file must be used because a current copy is not available. Therefore, it is

strongly recommended that multiplexed control files be used with each database,

with each copy stored on a different physical disk.

Database Backups
You can use Oracle mirrored logs, Oracle mirrored control files, and archive logs to

recover from media failure, but some or all of the data may not be available while

recovery is proceeding. To achieve a higher level of recovery, Oracle recommends

that you use operating system or hardware data redundancy for at least the

datafiles and the control files. This will make sure that any one media failure will be

recoverable while the system is fully available.

No matter what backup and recovery scheme you devise for an Oracle database,

backups of the database’s datafiles and control files are absolutely necessary as part

of the strategy to safeguard against potential media failures that can damage these

files. The following sections provide a conceptual overview of the different types of

backups that can be made and their usefulness in different recovery schemes.

Whole Database Backups
A whole database backup is an operating system backup of all datafiles and the control

file that constitute an Oracle database. You can take a whole database backup when

the database is shut down or while the database is open. You should not normally

take a whole backup after an instance failure or other unusual circumstances.

Consistent Whole Backups vs. Inconsistent Whole Backups
Following a clean shutdown, all of the files that constitute a database are closed and

consistent with respect to the current point in time. Thus, a whole backup taken

after a shutdown can be used to recover to the point in time of that backup. A

whole backup taken while the database is open is not consistent to a given point in

time and must be recovered (with the online and archived redo log files) before the

database can become available.

Additional Information: The Oracle8i Backup and Recovery Guide
provides more details, along with guidelines for performing

database backups.
Database Recovery 32-23

Database Backups
Backups and Archiving Mode
The datafiles obtained from a whole backup are useful in any type of media

recovery scheme:

■ If a database is operating in NOARCHIVELOG mode and a disk failure

damages some or all of the files that constitute the database, the most recent

consistent whole backup can be used to restore (not recover) the database.

Because an archived redo log is not available to bring the database up to the

current point in time, all database work performed since the backup must be

repeated. Under special circumstances, a disk failure in NOARCHIVELOG

mode can be fully recovered, but you should not rely on this.

■ If a database is operating in ARCHIVELOG mode and a disk failure damages

some or all of the files that constitute the database, the datafiles collected by the

most recent whole backup can be used as part of database recovery.

After restoring the necessary datafiles from the whole backup, database

recovery can continue by applying archived and current online redo log files to

bring the restored datafiles up to the current point in time.

In summary, if a database is operated in NOARCHIVELOG mode, a consistent

whole database backup is the only method to partially protect the database against

a disk failure; if a database is operating in ARCHIVELOG mode, either a consistent

or an inconsistent whole database backup can be used to restore damaged files as

part of database recovery from a disk failure.

Partial Database Backups
A partial database backup is any backup short of a whole backup, taken while the

database is open or shut down. The following are all examples of partial database

backups:

■ a backup of all datafiles for an individual tablespace

■ a backup of a single datafile

■ a backup of a control file

Partial backups are only useful for a database operating in ARCHIVELOG mode.

Because an archived redo log is present, the datafiles restored from a partial backup

can be made consistent with the rest of the database during recovery procedures.
32-24 Oracle8i Concepts

Database Backups
Datafile Backups
A partial backup includes only some of the datafiles of a database. Individual or

collections of specific datafiles can be backed up independently of the other

datafiles, online redo log files, and control files of a database. You can back up a

datafile while it is offline or online.

Choosing whether to take online or offline datafile backups depends only on the

availability requirements of the data—online datafile backups are the only choice if

the data being backed up must always be available.

Control File Backups
Another form of a partial backup is a control file backup. Because a control file

keeps track of the associated database’s physical file structure, a backup of a

database’s control file should be made every time a structural change is made to the

database.

Multiplexed control files safeguard against the loss of a single control file. However,

if a disk failure damages the datafiles and incomplete recovery is desired, or a

point-in-time recovery is desired, a backup of the control file that corresponds to the

intended database structure should be used, not necessarily the current control file.

Therefore, the use of multiplexed control files is not a substitute for control file

backups taken every time the structure of a database is altered.

If you use Recovery Manager to restore the control file prior to incomplete or

point-in-time recovery, Recovery Manager automatically restores the most suitable

backup control file.

The Export and Import Utilities
Export and Import are utilities used to move Oracle data in and out of Oracle

databases. Export is a utility that writes data from an Oracle database to operating

system files in an Oracle database format. Export files store information about

schema objects created for a database. Import is a utility that reads Export files and

restores the corresponding information into an existing database. Although Export

and Import are designed for moving Oracle data, they can be used also as a

supplemental method of protecting data in an Oracle database.

Note: The Recovery Manager automatically backs up the control

file in any backup that includes datafile 1, which contains the data

dictionary.
Database Recovery 32-25

Survivability
Read-Only Tablespaces and Backup
You can create backups of a read-only tablespace while the database is open.

Immediately after making a tablespace read-only, you should back up the

tablespace. As long as the tablespace remains read-only, there is no need to perform

any further backups of it.

After you change a read-only tablespace to a read-write tablespace, you need to

resume your normal backups of the tablespace, just as you do when you bring an

offline read-write tablespace back online.

Bringing the datafiles of a read-only tablespace online does not make these files

writeable, nor does it cause the file header to be updated. Thus it is not necessary to

perform a backup of these files, as is necessary when you bring a writeable datafile

back online.

Survivability
In the event of a power failure, hardware failure, or any other system-interrupting

disaster, Oracle offers the automated standby database feature. The standby database is

intended for sites where survivability and disaster recovery are of paramount

importance. (Another option is to use database replication. This feature is described

in Chapter 34, "Database Replication".)

Planning for Disaster Recovery
The only way to ensure rapid recovery from a system failure or other disaster is to

plan carefully. You must have a set plan with detailed procedures. Whether you are

implementing a standby database or you have a single database system, you must

have a plan for what to do in the event of a catastrophic failure.

Automated Standby Database
Oracle provides a reliable and supported mechanism for implementing a standby

database system to facilitate quick disaster recovery. This mechanism is called

Automated Standby Database. Up to four standby systems can be maintained in a

constant state of media recovery through the automatic shipping and application of

log files archived at the primary site. In the event of a primary system failure, one of

the standby systems can be activated, providing immediate system availability.

Oracle provides commands and internal verifications for operations involved in the

Additional Information: See Oracle8i Utilities.
32-26 Oracle8i Concepts

Survivability
creation and maintenance of the standby systems, improving the reliability of the

disaster recovery scheme.

A standby database uses the archived log information from the primary database,

so it is ready to perform recovery and go online at any time. When the primary

database archives its redo logs, the logs must be transferred to the remote site and

applied to the standby database. The standby database is therefore always one or

two logs behind the primary database in time and transaction history.

Automated Standby Database protects your data from extended outages such as

power failures, or from physical disasters such as fire, floods, or earthquakes.

Because the standby database is designed for disaster recovery, it ideally resides in a

separate physical location from the primary database.

You can open the standby database read only. This allows you to use the database

for reporting. When you open a standby database read only, redo logs are placed in

a queue and are not applied. As soon as the database is returned to standby mode,

the queued logs and newly arriving logs are applied.

Additional Information: See the Oracle8i Backup and Recovery Guide
for information about creating and maintaining standby databases.
Database Recovery 32-27

Survivability
32-28 Oracle8i Concepts

Part IX

 Distributed Databases and Replication

Part IX explains distributed database architecture and data replication across

networks.

Part IX contains the following chapters:

■ Chapter 33, "Distributed Databases"

■ Chapter 34, "Database Replication"

Distributed Da
33

Distributed Databases

Good sense is of all things in the world the most equally distributed, for everybody thinks he
is so well supplied with it, that even the most difficult to please in all other matters never
desire more of it than they already possess.

René Descartes: Le Discours de la Methode

This chapter describes the basic concepts and terminology of Oracle’s distributed

database architecture. The chapter includes:

■ Oracle’s Distributed Database Architecture

■ Heterogeneous Distributed Databases

■ Developing Distributed Database Applications

■ Administering an Oracle Distributed Database System

■ National Language Support
tabases 33-1

Oracle’s Distributed Database Architecture
Oracle’s Distributed Database Architecture
A distributed database is a set of databases stored on multiple computers that

typically appears to applications as a single database. Consequently, an application

can simultaneously access and modify the data in several databases in a network.

Each Oracle database in the system is controlled by its local Oracle server but

cooperates to maintain the consistency of the global distributed database.

Figure 33–1 illustrates a representative Oracle distributed database system.

Clients and Servers
A database server is the Oracle software managing a database, and a client is an

application that requests information from a server. Each computer in a system is a

node. A node in a distributed database system act as a client, a server, or both,

depending on the situation. For example, in Figure 33–1, the computer that

manages the HQ database is acting as a database server when a statement is issued

against its local data (for example, the second statement in each transaction issues a

query against the local DEPT table), and is acting as a client when it issues a

statement against remote data (for example, the first statement in each transaction is

issued against the remote table EMP in the SALES database).

Direct and Indirect Connections
A client can connect directly or indirectly to a database server. In Figure 33–1, when

the client application issues the first and third statements for each transaction, the

client is connected directly to the intermediate HQ database and indirectly to the

SALES database that contains the remote data.
33-2 Oracle8i Concepts

Oracle’s Distributed Database Architecture
Figure 33–1 An Oracle Distributed Database System

TRANSACTION

Network

Application

Database
Server

Database
Server

DEPT Table EMP Table

TRANSACTION

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...
 FROM EMP@SALES...;

COMMIT;

.

.

.

HQ
Database

Sales
Database

CONNECT TO...
IDENTIFY BY ...

Database Link

Net8Net8
Distributed Databases 33-3

Oracle’s Distributed Database Architecture
The Network
To link the individual databases of a distributed database system, a network is

necessary. The following sections explain more about network issues in an Oracle

distributed database system.

Net8
All Oracle databases in a distributed database system use Oracle’s networking

software, Net8, to facilitate inter-database communication across a network. Just as

Net8 connects clients and servers that operate on different computers of a network,

it also allows database servers to communicate across networks to support remote

and distributed transactions in a distributed database.

Net8 makes transparent the connectivity that is necessary to transmit SQL requests

and receive data for applications that use the system. Net8 takes SQL statements

from a client and packages them for transmission to an Oracle server over a

supported industry-standard communication protocol or programmatic interfaces.

Net8 also takes replies from a server and packages them for transmission back to

the appropriate client. Net8 performs all processing independent of an underlying

network operating system.

Oracle Names
Optionally, an Oracle network can use Oracle Names to provide the system with a

global directory service. When an Oracle network supports a distributed database

system, you can use Oracle Names servers as a central repositories of information

about each database in the system to ease the configuration of distributed database

access.

Databases and Database Links
Each database in a distributed database is distinct from all other databases in the

system and has its own global database name. Oracle forms a database’s global

database name by prefixing the database’s network domain with the individual

database’s name. For example, Figure 33–2 illustrates a representative hierarchical

arrangement of databases throughout a network.

Additional Information: See the Net8 Administrator’s Guide for

more information about Net8 and its features.
33-4 Oracle8i Concepts

Oracle’s Distributed Database Architecture
Figure 33–2 Network Directories and Global Database Names

While several database’s can have the same individual name, each database must

have a unique global database name. For example, the network domains

US.AMERICAS.ACME_AUTO.COM and UK.EUROPE.ACME_AUTO.COM each

contain a SALES database.

SALES.US.AMERICAS.ACME_AUTO.COM
SALES.UK.EUROPE.ACME_AUTO.COM

Other Non–Commercial
Companies Organizations

COM ORGEDU

HUMAN_RESOURCES.EMP

DIVISION1 DIVISION2 DIVISION3

ACME_TOOLS

ASIA AMERICAS EUROPE

ACME_AUTO

JAPAN US MEXICO UK GERMANY

HUMAN_RESOURCES.EMP

Educational
Institutions

SalesSalesSalesSalesHQSales

MFTGSalesFinanceHQ
Distributed Databases 33-5

Oracle’s Distributed Database Architecture
Database Links
To facilitate application requests in a distributed database system, Oracle uses

database links. A database link defines a one-way communication path from an

Oracle database to another database.

Database links are essentially transparent to the users of an Oracle distributed

database system, because the name of a database link is the same as the global name

of the database to which the link points.

For example, the following SQL statement creates a database link in the local

database that describes a path to the remote

SALES.US.AMERICAS.ACME_AUTO.COM database.

CREATE DATABASE LINK sales.us.americas.acme_auto.com ... ;

After creating a database link, applications connected to the local database can

access data in the remote SALES.US.AMERICAS.ACME_AUTO.COM database. The

next section explains how applications can reference remote schema objects in a

distributed database and includes examples of how SQL statements use database

links.

Schema Object Name Resolution
To resolve application references to schema objects (a process called name resolution)

Oracle forms object names using a hierarchical approach. For example, within a

single database, Oracle guarantees that each schema has a unique name, and that

within a schema, each object has a unique name. As a result, a schema object’s name

is always unique within the database. Furthermore, Oracle can easily resolve

application references to an object’s local name.

In a distributed database, a schema object such as a table is accessible to all

applications in the system. Oracle simply extends the hierarchical naming model

with global database names to effectively create global object names and resolve

references to the schema objects in a distributed database system. For example, a

query can reference a remote table by specifying its fully qualified name, including

the database in which it resides.

SELECT * FROM scott.emp@sales.us.americas.acme_auto.com;

Additional Information: Oracle supports several different types of

database links. For more information, see Oracle8i Distributed
Database Systems.
33-6 Oracle8i Concepts

Oracle’s Distributed Database Architecture
To complete the request, the local database server implicitly uses a database link

that connects to the remote SALES database.

Connecting Between Oracle Server Versions
An Oracle distributed database system can incorporate Oracle databases of different

versions. All supported releases of Oracle can participate in a distributed database

system. However, the applications that work with the distributed database must

understand the functionality that is available at each node in the system.

For example, a distributed database application cannot expect an Oracle7 database

to understand the object SQL extensions that are available with Oracle8i.

Distributed Databases and Distributed Processing
The terms distributed database and distributed processing are closely related, but have

very distinct meanings.

Oracle distributed database systems employ a distributed processing architecture to

function. For example, an Oracle server acts as a client when it requests data that

another Oracle server manages.

Distributed Databases and Database Replication
The terms “distributed database” and “database replication” are also closely

related, yet different. In a pure distributed database, the system manages a single

copy of all data and supporting database objects. Distributed database applications

typically use distributed transactions to access both local and remote data and

modify the global database in real-time.

Distributed Database A distributed database is a set of databases stored
on multiple computers that appears to applications
as a single database.

Distributed Processing Distributed processing occurs when an application
system distributes its tasks among different
computers in a network. For example, a database
application typically distributes front-end
presentation tasks to client PCs or NCs and allows
a back-end database server to manage shared
access to a database. Consequently, a distributed
database application processing system is more
commonly referred to as a “client-server” database
application system.
Distributed Databases 33-7

Heterogeneous Distributed Databases
Replication is the process of copying and maintaining database objects in multiple

databases that make up a distributed database system. While replication relies on

distributed database technology to function, database replication can offer

applications benefits that are not possible within a pure distributed database

environment.

Most commonly, replication is useful to improve the performance and protect the

availability of applications because alternate data access options exist. For example,

an application might normally access a local database rather than a remote server to

minimize network traffic and achieve maximum performance. Furthermore, the

application can continue to function if the local server experiences a failure, but

other servers with replicated data remain accessible.

Heterogeneous Distributed Databases
In an Oracle heterogeneous distributed database system at least one of the database

systems is a non-Oracle system. To the application, the heterogeneous distributed

database system appears as a single, local, Oracle database; the local Oracle server

will be able to hide the distribution and heterogeneity of the data. The Oracle server

accesses the non-Oracle system using Oracle8i Heterogeneous Services and a

non-Oracle system-specific Heterogeneous Services Agent.

Heterogeneous Services
Heterogeneous Services is an integrated component within the Oracle8i server and

the enabling technology for Oracle's next generation of Open Gateway products.

Heterogeneous Services provides the common architecture and administration

mechanisms for future Oracle gateway products and other heterogeneous access

facilities, while providing upwardly compatible functionality for users of earlier

Oracle Open Gateway releases.

Note: This chapter discusses pure distributed databases. See

Chapter 34, "Database Replication" for a discussion of replication.

Additional Information: See Oracle8i Replication for more

information about Oracle’s replication features.
33-8 Oracle8i Concepts

Heterogeneous Distributed Databases
Heterogeneous Services Agents
For each non-Oracle system that you want to access, Heterogeneous Services

requires an agent to access that particular non-Oracle system. The Heterogeneous

Services agent communicates with the non-Oracle system, and with the

Heterogeneous Services component in the Oracle server. On behalf of the Oracle

server, the agent executes SQL, procedure, and transactional requests at the

non-Oracle system.

A version 8 Gateway is the Oracle product name for a Heterogeneous Services

agent that accesses a non-Oracle system procedurally or using SQL. However,

Heterogeneous Services agents will also become available as products other than

Oracle Transparent Gateways or Oracle Procedural Gateways. Throughout this

guide we will use the more generic term Heterogeneous Services agents. If you

purchased an Oracle Open Gateway version 8, you can substitute "Oracle Gateway

version 8" for Heterogeneous Services Agent.

See your "Oracle Open Gateway Installation and User's Guide version 8.0" for detailed

information on installation and configuration of version 8 gateways.

Features
The features of the Heterogeneous Services include:

■ Distributed Transactions. A transaction can span both Oracle and non-Oracle

systems, while still guaranteeing, through Oracle’s two phase commit

mechanism, that changes are either all committed or all rolled back.

■ Transparent SQL access. Integrate data from non-Oracle systems into the Oracle

environment as if the data is stored in one single, local database. SQL

statements issued by the application are transparently transformed into SQL

statement understood by the non-Oracle system.

■ Procedural Access. Procedural systems, like messaging and queuing systems, are

accessed from an Oracle8i server using PL/SQL remote procedure calls.

■ Data Dictionary translations. To make the non-Oracle system appear as another

Oracle server, SQL statements containing references to Oracle's data dictionary

tables are transformed into SQL statements containing references to a

non-Oracle system's data dictionary tables.

■ Pass-through SQL. Optionally, application programmers can directly access a

non-Oracle system from an Oracle application using the non-Oracle system's

SQL dialect.
Distributed Databases 33-9

Developing Distributed Database Applications
■ Accessing stored procedures. Stored procedures in SQL-based non-Oracle systems

are accessed as if they were PL/SQL remote procedures.

■ National Language Support. Heterogeneous Services supports multi-byte

character sets, and translate character sets between a non-Oracle system and the

Oracle8i server.

■ Multi-Threaded Agents. Multi-threaded agents take advantage of your operating

system’s threading capabilities. Multi-threaded agents reduce the number of

required processes by taking advantage of multi-threaded server capabilities.

■ Agent Self-Registration. Agent self-registration automates the process of

updating Heterogeneous Services configuration data on remote hosts, ensuring

correct operation over heterogeneous database links.

■ Management Interface. Provides a graphic representation of active

Heterogeneous Services agents and of which user sessions are accessing those

agents.

Developing Distributed Database Applications
When you build applications on top of a distributed database system, there are

several issues to consider. The following sections explain how applications access

data in a distributed database.

Distributed Query Optimization
Distributed query optimization is a default Oracle8i feature that reduces the amount of

data transfer required between sites when you retrieve data from remote tables

referenced in distributed SQL statements.

Distributed query optimization uses Oracle’s cost-based optimizer to find or

generate SQL expressions that extract only the necessary data from remote tables,

process that data at a remote site, and send the results back to the local site for final

processing. This reduces the amount of required data transfer, when compared to

transferring all the table data to the local site for processing.

Note: Not all features listed above are necessarily supported by

your Heterogeneous Services agent or Oracle Gateway. Please see

your Heterogeneous Services agent or Oracle Open Gateway

documentation for the supported features.
33-10 Oracle8i Concepts

Developing Distributed Database Applications
Using cost-based optimizer hints, such as DRIVING_SITE, NO_MERGE, and

INDEX hints, you can further control where Oracle processes the data and how it

accesses the data.

Remote and Distributed SQL Statements
A remote query is a query that selects information from one or more remote tables, all

of which reside at the same remote node. For example:

SELECT * FROM scott.dept@sales.us.americas.acme_auto.com;

A remote update is an update that modifies data in one or more tables, all of which

are located at the same remote node.

For example:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = ’NEW YORK’
 WHERE deptno = 10;

A distributed query retrieves information from two or more nodes. For example:

SELECT ename, dname
 FROM scott.emp e, scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;

A distributed update modifies data on two or more nodes. A distributed update is

possible using a PL/SQL subprogram unit, such as a procedure or trigger, that

includes two or more remote updates that access data on different nodes. For

example:

Note: A remote update may include a subquery that retrieves

data from one or more remote nodes, but because the update

happens at only a single remote node, the statement is classified as

a remote update.
Distributed Databases 33-11

Developing Distributed Database Applications
BEGIN
 UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
 UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
END;

Statements in the program are sent to the remote nodes, and the execution of it

succeeds or fails as a unit.

Remote Procedure Calls (RPCs)
Developers can code PL/SQL packages and procedures to support applications that

work with a distributed database. Applications can make local procedure calls to

perform work at the local database and remote procedure calls (RPCs) to perform

work at a remote database. When a program calls a remote procedure, the local

server passes all procedure parameters to the remote server in the call. For example:

BEGIN
 emp_mgmt.del_emp@sales.us.americas.acme_auto.com(1257);
END;

When developing packages and procedures for distributed database systems,

developers must code with an understanding of what program units should do at

remote locations, and how to return the results to a calling application.

Remote and Distributed Transactions
A remote transaction is a transaction that contains one or more remote statements, all

of which reference the same remote node. For example:

UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
UPDATE scott.emp@sales.us.americas.acme_auto.com
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

A distributed transaction is a transaction that includes one or more statements that,

individually or as a group, update data on two or more distinct nodes of a

distributed database. For example:
33-12 Oracle8i Concepts

Developing Distributed Database Applications
UPDATE scott.dept@sales.us.americas.acme_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

Two-Phase Commit Mechanism
A DBMS must guarantee that all statements in a transaction, distributed or

non-distributed, either commit or rollback as a unit, so that if the transaction is

designed properly, the data in the logical database is always consistent. The effects

of an ongoing transaction should be invisible to all other transactions at all nodes;

this should be true for transactions that include any type of operation, including

queries, updates, or remote procedure calls.

The general mechanisms of transaction control in a non-distributed database are

discussed in the Oracle8i Concepts. In a distributed database, Oracle must coordinate

transaction control with the same characteristics over a network and maintain data

consistency, even if a network or system failure occurs.

Oracle’s two-phase commit mechanism guarantees that all database servers

participating in a distributed transaction either all commit or all roll back the

statements in the transaction. A two-phase commit mechanism also protects

implicit DML operations performed by integrity constraints, remote procedure

calls, and triggers.

Note: If all statements of a transaction reference only a single

remote node, the transaction is remote, not distributed.

Additional Information: For more information about Oracle’s

two-phase commit mechanism, see Oracle8i Distributed Database
Systems.
Distributed Databases 33-13

Developing Distributed Database Applications
Transparency in a Distributed Database System
With minimal effort, you can make the functionality of an Oracle distributed

database system transparent to users that work with the system. The goal of

transparency is to make a distributed database system appear as though it is a

single Oracle database. Consequently, the system does not burden developers and

users of the system with complexities that would otherwise make distributed

database application development challenging and detract from user productivity.

The following sections explain more about transparency in a distributed database

system.

Location Transparency
An Oracle distributed database system has features that allow application

developers and administrators to hide the physical location of database objects from

applications and users. Location transparency exists when a user can universally refer

to a database object such as a table, regardless of the node to which an application

connects. Location transparency has several benefits, including:

■ Access to remote data is simple, because database users do not need to know

the physical location of database objects.

■ Administrators can move database objects with no impact on end-users or

existing database applications.

Most typically, administrators and developers use synonyms to establish location

transparency for the tables and supporting objects in an application schema. For

example, the following statements create synonyms in a database for tables in

another, remote database.

CREATE PUBLIC SYNONYM emp
 FOR scott.emp@sales.us.americas.acme_auto.com
CREATE PUBLIC SYNONYM dept
 FOR scott.dept@sales.us.americas.acme_auto.com

Now, rather than access the remote tables with a query such as:

SELECT ename, dname
 FROM scott.emp@sales.us.americas.acme_auto.com e,
 scott.dept@sales.us.americas.acme_auto.com d
 WHERE e.deptno = d.deptno;

an application can issue a much simpler query that does not have to account for the

location of the remote tables:
33-14 Oracle8i Concepts

Developing Distributed Database Applications
SELECT ename, dname
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

In addition to synonyms, developers can also use views and stored procedures to

establish location transparency for applications that work in a distributed database

system.

Statement and Transaction Transparency
Oracle’s distributed database architecture also provides query, update, and

transaction transparency. For example, standard SQL commands such as SELECT,

INSERT, UPDATE, and DELETE work just as they do in a non-distributed database

environment. Additionally, applications control transactions using the standard

SQL commands COMMIT, SAVEPOINT, and ROLLBACK—there is no requirement

for complex programming or other special operations to provide distributed

transaction control.

■ The statements in a single transaction can reference any number of local or

remote tables.

■ Oracle guarantees that all nodes involved in a distributed transaction take the

same action: they either all commit or all roll back the transaction.

■ If a network or system failure occurs during the commit of a distributed

transaction, the transaction is automatically and transparently resolved

globally; that is, when the network or system is restored, the nodes either all

commit or all roll back the transaction.

Internal Operations Each committed transaction has an associated system change
number (SCN) to uniquely identify the changes made by the statements within that

transaction. In a distributed database, the SCNs of communicating nodes are

coordinated when:

■ A connection is established using the path described by one or more database

links.

■ A distributed SQL statement is executed.

■ A distributed transaction is committed.

Among other benefits, the coordination of SCNs among the nodes of a distributed

database system allows global distributed read-consistency at both the statement

and transaction level. If necessary, global distributed time-based recovery can also

be completed.
Distributed Databases 33-15

Administering an Oracle Distributed Database System
Replication Transparency
Oracle also provide many features to transparently replicate data among the nodes

of the system. For more information about Oracle’s replication features, see Oracle8i
Replication.

Administering an Oracle Distributed Database System
Just as there are unique issues to consider when developing applications for an

Oracle distributed database system, there are special issues to understand for

distributed database administration. The following sections explain the some

special topics for managing databases in an Oracle distributed database system.

Site Autonomy
Site autonomy means that each server participating in a distributed database is

administered independently from all other databases, as though each database

operates as a non-distributed database.

Although several databases can work together, each database is a distinct, separate

repository of data that you manage individually. Some of the benefits of site

autonomy in an Oracle distributed database include:

■ Nodes of the system can mirror the logical organization of companies or

cooperating organizations that need to maintain an “arms length” relationship.

■ Local database administrators control corresponding local data. Therefore, each

database administrator’s domain of responsibility is smaller and more

manageable.

■ Independent failures are less likely to disrupt other nodes of the distributed

database. The global Oracle database is partially available as long as one

database and the network are available; no single database failure need halt all

global operations or be a performance bottleneck.

■ Administrators can recovery from isolated system failures independent of other

nodes in the system.

■ A data dictionary exists for each local database—a global catalog is not

necessary to access local data.

■ Nodes can upgrade software independently.

Although Oracle allows you to manage each database in a distributed database

system independently, that is not to say that you should ignore the global

requirements of the system.
33-16 Oracle8i Concepts

Administering an Oracle Distributed Database System
For example, additional user accounts might be necessary in each database are

necessary to support the links that you create to facilitate server-to-server

connections. The following sections explain more about these particular topics and

demonstrate the need for a global perspective of the entire distributed database

environment when managing individual nodes in the system.

Distributed Database Security
Oracle supports all of the security features that are available with a non-distributed

database environment for distributed database systems, including:

■ password or external service authentication for users and roles

■ login packet encryption for client-to-server and server-to-server connections

The following sections explain some additional topics to consider when configuring

an Oracle distributed database system.

Supporting User Accounts and Roles
In a distributed database system, you must carefully plan the user accounts and

roles that are necessary to support applications using the system.

■ The user accounts necessary to establish server-to-server connections must be

available in all databases of the distributed database system.

■ The roles necessary to make available application privileges to distributed

database application users must be present in all databases of the distributed

database system.

As you create the database links for the nodes in a distributed database system,

determine what user accounts and roles each site needs to support server-to-server

connections that use the links.

Global Users and Roles
In a distributed environment, users typically require access to many network

services. When it’s necessary to configure separate authentications for each user to

access each network service, security administration can become unwieldy,

especially for large systems.

Additional Information: See Oracle8i Distributed Database Systems
for more information about the user accounts that must be available

to support different types of database links in the system.
Distributed Databases 33-17

Administering an Oracle Distributed Database System
The use of a global authentication service is a common technique for simplifying

security management for distributed environments.

In an Oracle client/server or distributed database environment, you have two

options to support global authentication for users and roles:

■ Oracle Security Manager is a product that supports centralized authentication

and distributed authentication in an Oracle network.

■ When global database user and role authentication must work within the

framework of a non-Oracle authentication service (for example, DCE), an

Oracle distributed database environment can use Oracle’s Advanced Security

option. The Oracle Advanced Security option is an optional product that

bundles a number of features that you can use to enhance Net8 and the security

of an Oracle distributed database system. See Oracle Advanced Security
Administrator’s Guide for more information.

Data Encryption
The Oracle Advanced Security option also enables Net8 and related products to use

network data encryption and checksumming so that data cannot be read or altered.

It protects data from unauthorized viewing by using the RSA Data Security RC4 or

the Data Encryption Standard (DES) encryption algorithm.

To ensure that data has not been modified, deleted, or replayed during

transmission, the security services of the Oracle Advanced Security option can

generate a cryptographically secure message digest and include it with each packet

sent across the network.

Note: The global user functionality that was available in Oracle8

is being modified, and is currently available to beta customers only.

It will be part of Oracle8i in a later release.

Additional Information: See the Oracle Advanced Security
Administrator’s Guide for more information about these and other

features of the Oracle Advanced Security option. Also see Getting to
Know Oracle8i for information about the features and options that

are available with Oracle8i Enterprise Edition.
33-18 Oracle8i Concepts

Administering an Oracle Distributed Database System
Tools for Administering Oracle Distributed Databases
The database administrator has several choices for tools to use when managing an

Oracle distributed database system, as described in the following sections:

■ Enterprise Manager

■ Third-Party Administration Tools

■ SNMP Support

Enterprise Manager
Enterprise Manager is Oracle’s database administration tool. The graphical

component of Enterprise Manager (Enterprise Manager/GUI) allows you to

perform database administration tasks with the convenience of a graphical user

interface (GUI).

The line mode component of Enterprise Manager provides a line-mode interface.

Enterprise Manager provides administrative functionality via an easy-to-use

interface. You can use Enterprise Manager to:

■ Perform traditional administrative tasks, such as database startup, shutdown,

backup, and recovery. Rather than manually entering the SQL commands to

perform these tasks, you can use Enterprise Manager’s graphical interface to

execute the commands quickly and conveniently by pointing and clicking with

the mouse.

■ Concurrently perform multiple tasks. Because you can open multiple windows

simultaneously in Enterprise Manager, you can perform multiple

administrative and non-administrative tasks concurrently.

■ Administer multiple databases. You can use Enterprise Manager to administer a

single database or to simultaneously administer multiple databases.

■ Centralize database administration tasks. You can administer both local and

remote databases running on any Oracle platform in any location worldwide. In

addition, these Oracle platforms can be connected by any network protocol(s)

supported by Net8.

■ Dynamically execute SQL, PL/SQL, and Enterprise Manager commands. You

can use Enterprise Manager to enter, edit, and execute statements. Enterprise

Manager also maintains a history of statements executed.
Distributed Databases 33-19

National Language Support
Thus, you can re-execute statements without retyping them, a particularly

useful feature if you need to execute lengthy statements repeatedly in a

distributed database system.

■ Perform administrative tasks using Enterprise Manager’s line-mode interface

when a graphical user interface is unavailable or undesirable.

Third-Party Administration Tools
Currently more than 60 companies produce more than 150 products that help

manage Oracle databases and networks, providing a truly open environment.

SNMP Support
Besides its network administration capabilities, Oracle Simple Network Management
Protocol (SNMP) support allows an Oracle server to be located and queried by any

SNMP-based network management system. SNMP is the accepted standard

underlying many popular network management systems such as:

■ HP’s OpenView

■ Digital’s POLYCENTER Manager on NetView

■ IBM’s NetView/6000

■ Novell’s NetWare Management System

■ SunSoft’s SunNet Manager

National Language Support
Oracle supports client/server environments where clients and servers use different

character sets. The character set used by a client is defined by the value of the

NLS_LANG parameter for the client session. The character set used by a server is its

database character set. Data conversion is done automatically between these

character sets if they are different.

Additional Information: See the Oracle SNMP Support Reference
Guide.

Additional Information: See the Oracle8i National Language Support
Guide for more information about National Language Support

features.
33-20 Oracle8i Concepts

Database Re
34

Database Replication

Lady, you are the cruel’st she alive, If you will lead these graces to the grave And leave the
world no copy.

Shakespeare: Twelfth-Night

This chapter explains the basic concepts and terminology for the Oracle replication

features.

■ What Is Replication?

■ Replication Objects, Groups, and Sites

■ Multimaster Replication

■ Snapshot Replication

■ Multimaster and Snapshot Hybrid Configurations

■ Administering a Replicated Environment

■ Replication Conflicts

■ Specialized Replication Options

Additional Information: Oracle8i Replication contains detailed

information about database replication.
plication 34-1

What Is Replication?
What Is Replication?
Replication is the process of copying and maintaining database objects in multiple

databases that make up a distributed database system. Changes applied at one site

are captured and stored locally before being forwarded and applied at each of the

remote locations. Replication provides user with fast, local access to shared data,

and protects availability of applications because alternate data access options exist.

Even if one site becomes unavailable, users can continue to query or even update

the remaining locations.

Replication Objects, Groups, and Sites
The following sections explain the basic components of a replication system,

including replication sites, replication groups, and replication objects.

Replication Objects
A replication object is a database object existing on multiple servers in a distributed

database system. Oracle's replication facility enables you to replicate tables and

supporting objects such as views, database triggers, packages, indexes, and

synonyms. SCOTT.EMP and SCOTT.BONUS illustrated in Figure 34–1 are examples

of replication objects.

Replication Groups
In a replication environment, Oracle manages replication objects using replication
groups. By organizing related database objects within a replication group, it is easier

to administer many objects together. Typically, you create and use a replication

group to organize the schema objects necessary to support a particular database

application. That is not to say that replication groups and schemas must correspond

with one another. Objects in a replication group can originate from several database

schemas and a schema can contain objects that are members of different replication

groups. The restriction is that a replication object can be a member of only one

group.
34-2 Oracle8i Concepts

Replication Objects, Groups, and Sites
In a multimaster replication environment, the replication groups are called master
groups. Corresponding master groups at different sites must contain the same set of

replication objects (see "Replication Objects" on page 34-2). Figure 34–1 illustrates

that master group "SCOTT_MG" contains an exact replica of the replicated objects at

each master site.

Note: Read-only snapshots are not required to belong to a

snapshot group, nor are they required to be based on a master table

that is part of a master group.

This chapter uses the term snapshot instead of materialized view to

refer to materialized views that are used for basic or advanced

replication. The term "snapshot" is obsolete and will be replaced by

"materialized view" in future releases of the documentation. In SQL

statements, the keywords SNAPSHOT and MATERIALIZED VIEW

are interchangeable.

See "Materialized Views" on page 10-17 for more information about

materialized views.
Database Replication 34-3

Replication Objects, Groups, and Sites
Figure 34–1 Master Group SCOTT_MG contains same replication objects at all sites.

At a snapshot site, organization is maintained using a snapshot group. A snapshot
group maintains a partial or complete copy of the objects at the target master group.

Figure 34–2 illustrates that snapshot group "Group A" at the snapshot site maintains

only a partial replica of master group "Group A" at the master site, while the

"Group B" snapshot and master groups maintain a complete replica.

Additionally, Figure 34–2 illustrates that each site may contain multiple replication

groups.

ORC2.WORLD

SCOTT MG
SCOTT.EMP
SCOTT.DEPT
SCOTT.BONUS
SCOTT.SALGRADE

ORC1.WORLD

SCOTT MG
SCOTT.EMP
SCOTT.DEPT
SCOTT.BONUS
SCOTT.SALGRADE

ORC3.WORLD

SCOTT MG
SCOTT.EMP
SCOTT.DEPT
SCOTT.BONUS
SCOTT.SALGRADE
34-4 Oracle8i Concepts

Replication Objects, Groups, and Sites
Figure 34–2 Snapshot Groups Correspond with Master Groups

Replication Sites
A replication group can exist at multiple replication sites. Replication environments

support two basic types of sites: master sites and snapshot sites.

■ A master site maintains a complete copy of all objects in a replication group. All

master sites in a multimaster replication environment communicate directly

with one another to propagate data and schema changes in the replication

group. A replication group at a master site is more specifically referred to as a

master group. Additionally, every master group has one and only one master
definition site (for example, ORC1.WORLD in Figure 34–3 might be the master

definition site). A replication group's master definition site is a master site

serving as the control point for managing the replication group and objects in

the group.

■ A snapshot site supports read-only and updateable snapshots of the table data at

an associated master site. A snapshot site's table snapshots can contain all or a

subset of the table data within a replication group. However, these must be

simple snapshots with a one-to-one correspondence to tables at the master site.

For example, a snapshot site may contain snapshots for only selected tables in a

replication group. And a particular snapshot might be just a selected portion of

a certain replicated table. A replication group at a snapshot site is more

Master Site

SCOTT.EMP
SCOTT.DEPT
SCOTT.SALGRADE
SCOTT.BONUS

Group A

MIKE.CUSTOMER
MIKE.DEPARTMENT
MIKE.EMPLOYEE
MIKE.ITEM

Group B

Snapshot Site

SCOTT.EMP
SCOTT.DEPT

Group A

MIKE.CUSTOMER
MIKE.DEPARTMENT
MIKE.EMPLOYEE
MIKE.ITEM

Group B
Database Replication 34-5

Multimaster Replication
specifically referred to as a snapshot group. A snapshot group can also contain

other replication objects.

Figure 34–3 Three Master Sites and One Snapshot Site

Multimaster Replication
Oracle’s multimaster replication allows multiple sites, acting as equal peers, to

manage groups of replicated database objects. Applications can update any

replicated table at any site in a multimaster configuration. Figure 34–4 illustrates a

multimaster replication system.

Oracle database servers operating as master sites in a multimaster environment

automatically work to converge the data of all table replicas, and ensure global

transaction consistency and data integrity.

Uses for Multimaster Replication
Multimaster replication is useful for many types of application systems with special

requirements. The following scenarios describe some of the uses for multimaster

replication:

Failover Site
Multimaster replication can be useful to protect the availability of a mission critical

database. For example, a multimaster replication environment can replicate all of

Master
Site

Snapshot
Site

Master
Site

Master
Site

ORC1.WORLD ORC2.WORLD

SNAP1.WORLD ORC3.WORLD
34-6 Oracle8i Concepts

Multimaster Replication
the data in your database to establish a failover site should the primary site become

unavailable due to system or network outages. In contrast with Oracle's standby

database feature, such a failover site can also serve as a fully functional database to

support application access when the primary site is concurrently operational.

Figure 34–4 Multimaster Replication System

Distributing Application Loads
Multimaster replication is useful for transaction processing applications that require

multiple points of access to database information for the purposes of distributing a

heavy application load, ensuring continuous availability, or providing more

localized data access.

Applications that have application load distribution requirements commonly

include customer service oriented applications. (Application load distribution can

also be achieved by using updateable snapshots. See "Snapshot Replication" on

page 34-8 for more information.)

Master
Site

Master
Site

Master
Site

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group

TableTableTable
TableTable

Replication
Group
Database Replication 34-7

Snapshot Replication
Figure 34–5 Multimaster Replication Supporting Multiple Points of Update Access

Snapshot Replication
A snapshot contains a complete or partial replica of a target master table from a

single point in time. A snapshot may be read-only or updateable.

Read-Only Snapshots
In a basic configuration, snapshots may provide read-only access to the table data

that originates from a primary or "master" site. Applications can query data from

local data replicas to avoid network access regardless of network availability.

However, applications throughout the system must access data at the primary site

when updates are necessary. Figure 34–6 illustrates basic, read-only replication.

The following is a list of benefits of read-only snapshots:

■ Master tables do not need to belong to a master group.

■ Can support complex snapshots (snapshot may be based on one or more tables

and may contain aggregates, joins, set operations, or a CONNECT BY clause).

CS_DL

CS_SF CS_NY
34-8 Oracle8i Concepts

Snapshot Replication
■ Provide local access to provide improved response times and availability.

■ Offload queries from master site.

Figure 34–6 Read-Only Snapshot Replication

Updateable Snapshots
In a more advanced configuration, you can create an updateable snapshot that allows

users to insert, update, and delete rows of the target master table. An updateable

snapshot may also contain only a subset of the target master table’s data set.

Figure 34–7 illustrates a replication environment using updateable snapshots.

Updateable snapshots are based on tables at a master site that has been setup to

support multimaster replication. In fact, updateable snapshots must be part of a

snapshot group that is based on a master group at a master site.

Replicate table data

Network

Database

Table Replica
(read-only)

Master
Database

Master Table
(updatable)

Client Applications

Remote Update

Local
Query
Database Replication 34-9

Snapshot Replication
Figure 34–7 Updateable Snapshot Replication

Updateable snapshots have the following properties:

■ Updateable snapshots are always based on a single table and can be

incrementally (or "fast") refreshed.

■ Oracle propagates the changes made through an updateable snapshot to the

snapshot’s remote master table. If necessary, the updates then cascade to all

other master sites.

■ Oracle refreshes an updateable snapshot as part of a refresh group identical to

read-only snapshots. (A refresh group is an organizational mechanisms that

maintains transactional consistency.)

Updateable snapshots have the following benefits:

■ Allowing users to query and update a local replicated data set even when

disconnected from the master site.

■ Increased data security achieved by replicating only a selected subset of the

target master table’s data set.

■ Smaller footprint than multimaster replication.

Replication

Master
Site

Snapshot
Site

Snapshot
Site

TableTableTable
TableTable

Replication
Group

Table

Subset of Replication Group

Table
TableTable

Full Copy of Replication Group
34-10 Oracle8i Concepts

Snapshot Replication
Uses of Snapshot Replication
Snapshot replication is useful for several types of applications. The following

sections describe some of the typical uses for snapshot replication.

Information Off-Loading
Read-only snapshot replication is useful as a way to replicate entire databases or

off-load information. For example, when the performance of high-volume

transaction processing systems is critical, it can be advantageous to maintain a

duplicate database to isolate the demanding queries of decision support

applications.

Figure 34–8 Information Off-Loading

Information Distribution
Read-only snapshot replication is useful for information distribution. For example,

consider the operations of a large consumer department store chain. In this case, it

is critical to ensure that product price information is always available and relatively

current and consistent at retail outlets. To achieve these goals, each retail store can

have its own copy of product price data that it refreshes nightly from a primary

price table.

OLTP
Database

DSS
Database
Database Replication 34-11

Snapshot Replication
Figure 34–9 Information Distribution

Information Transport
Read-only and updateable snapshot replication can be useful as an information

transport mechanism. For example, read-only snapshot replication can periodically

move data from a production transaction processing database to a data warehouse.

Disconnected Environments
Updateable snapshot replication is useful for the deployment of transaction

processing applications that operate using disconnected components. For example,

consider the typical sales force automation system for a life insurance company.

Each salesperson must visit customers regularly with a laptop computer and record

orders in a personal database while disconnected from the corporate computer

network and centralized database system. Upon returning to the office, each

salesperson must forward all orders to a centralized, corporate database.

To help deploy a snapshot environment to, for example, a sales force, deployment
templates allow the database administrator to pre-create a snapshot environment at

the master site for an easy, custom, and secure distribution and installation of a

snapshot environment. Deployment templates allow the DBA to create a snapshot

environment once and deploy as often as necessary to the target snapshot sites.

HQ
Database

Retail
Outlet

Database

Retail
Outlet

Database

Retail
Outlet

Database

Prices

Prices PricesPrices
34-12 Oracle8i Concepts

Multimaster and Snapshot Hybrid Configurations
Multimaster and Snapshot Hybrid Configurations
Multimaster replication and snapshots can be combined in hybrid or "mixed"

configurations to meet different application requirements. Mixed configurations can

have any number of master sites and multiple snapshot sites for each master.

For example, as shown in Figure 34–10, n-way (or multimaster) replication between

two masters can support full-table replication between the databases that support

two geographic regions. Snapshots can be defined on the masters to replicate full

tables or table subsets to sites within each region.

Figure 34–10 Hybrid Configuration

Key differences between snapshots and replicated masters include the following:

■ Replicated masters must contain data for the full table being replicated,

whereas snapshots can replicate subsets of master table data.

■ Multimaster replication allows you to replicate changes for each transaction as

the changes occur. Snapshot refreshes are set oriented, propagating changes

from multiple transactions in a more efficient, batch-oriented operation, but at

less frequent intervals.

N-Way

Snapshot
Site Replication

Group

Snapshot
Site Replication

Group

Snapshot
Site

Master
Site Replication

Group

Master
Site Replication

Group

Replication
Group
Database Replication 34-13

Administering a Replicated Environment
■ If conflicts occur from changes made to multiple copies of the same data, master

sites detect and resolve the conflicts.

Administering a Replicated Environment
There are several tools that are available to help you administer and monitor your

replication environment. Oracle’s Replication Manager provides a powerful GUI

interface to help you manage your environment, while the Replication Management

API provides you with the familiar application programming interface (API) to

build customized scripts for replication administration. Additionally, the replication

catalog keeps you informed about your replicated environment.

Replication Catalog
Every master and snapshot site in a replication environment has a replication catalog.

A site's replication catalog is a distinct set of data dictionary tables and views that

maintain administrative information about replication objects and replication

groups at the site. Every server participating in a replication environment can

automate the replication of objects in replication groups using the information in its

replication catalog.

Replication Management API and Administration Requests
To configure and manage a replication environment, each participating server uses

Oracle’s replication application programming interface (API). A server’s replication
management API is a set of PL/SQL packages encapsulating procedures and

functions administrators can use to configure Oracle’s replication features. Oracle

Replication Manager also uses the procedures and functions of each site’s

replication management API to perform work.

An administration request is a call to a procedure or function in Oracle's replication

management API. For example, when you use Replication Manager to create a new

master group, Replication Manager completes the task by making a call to the

DBMS_REPCAT.CREATE_MASTER_REPGROUP procedure. Some administration

requests generate additional replication management API calls to complete the

request.

Oracle Replication Manager
Replication environments supporting both a multimaster and snapshot replication

environment can be challenging to configure and manage. To help administer these
34-14 Oracle8i Concepts

Specialized Replication Options
replication environments, Oracle provides a sophisticated management tool, Oracle
Replication Manager. Other sections in this book include information and examples

for using Replication Manager.

Replication Conflicts
Asynchronous multimaster and updateable snapshot replication environments

must address the possibility of replication conflicts that may occur when, for

example, two transactions originating from different sites update the same row at

nearly the same time.

When data conflicts do occur, you need a mechanism to ensure that the conflict will

be resolved in accordance with your business rules and that the data converges

correctly at all sites.

In addition to logging any conflicts that may occur in your replicated environment,

Oracle replication offers a variety of conflict resolution methods that will allow you

to define a conflict resolution system for your database that will resolve conflicts in

accordance with your business rules. If you have a unique situation that Oracle’s

pre-built conflict resolution methods cannot resolve, you have the option of

building and using your own conflict routines.

Specialized Replication Options
Some applications have special requirements of a replication system. The following

sections explain the Oracle unique replication options, including:

■ Procedural Replication

■ Synchronous (Real-Time) Data Propagation

Procedural Replication
Batch processing applications can change large amounts of data within a single

transaction. In such cases, typical row-level replication could load a network with a

large quantity of data changes. To avoid such problems, a batch processing

application operating in a replication environment can use Oracle's procedural

Additional Information: Oracle8i Replication discusses how to

design your database to avoid data conflicts and how to build

conflict resolution routines that resolve such conflicts when they

occur. It also describes how to build conflict resolution routines

using the Replication Management API.
Database Replication 34-15

Specialized Replication Options
replication to replicate simple stored procedure calls to converge data replicas.

Procedural replication replicates only the call to a stored procedure that an

application uses to update a table. Procedural replication does not replicate data

modifications.

To use procedural replication, you must replicate the packages that modify data in

the system to all sites. After replicating a package, you must generate a wrapper for

this package at each site. When an application calls a packaged procedure at the

local site to modify data, the wrapper ensures that the call is ultimately made to the

same packaged procedure at all other sites in the replicated environment.

Procedural replication can occur asynchronously or synchronously.

Conflict Detection and Procedural Replication When a replication system replicates data

using procedural replication, the procedures that replicate data are responsible for

ensuring the integrity of the replicated data. That is, you must design such

procedures either to avoid or to detect replication conflicts and resolve them

appropriately. Consequently, procedural replication is most typically used when

databases are available only for the processing of large batch operations. In such

situations, replication conflicts are unlikely because numerous transactions are not

contending for the same data.

Synchronous (Real-Time) Data Propagation
Asynchronous data propagation is the normal configuration for replication

environments. However, Oracle also supports synchronous data propagation for

applications with special requirements. Synchronous data propagation occurs when an

application updates a local replica of a table, and within the same transaction, also

updates all other replicas of the same table. Consequently, synchronous data

replication is also called real-time data replication. Use synchronous replication only

when applications require that replicated sites remain continuously synchronized.

You can create a replicated environment with some sites propagating changes

synchronously while others use asynchronous propagation (deferred transactions).

Replication Conflicts and Synchronous Data Replication When a shared ownership

system replicates all changes synchronously (real-time replication), replication

Note: A replication system using real-time propagation of

replication data is highly dependent on system and network

availability because it can function only when all system sites are

concurrently available.
34-16 Oracle8i Concepts

Specialized Replication Options
conflicts cannot occur. With real-time replication, applications use distributed

transactions to update all replicas of a table at the same time. As is the case in

nondistributed database environments, Oracle automatically locks rows on behalf

of each distributed transaction to prevent all types of destructive interference

among transactions. Real-time replication systems can prevent replication conflicts.
Database Replication 34-17

Specialized Replication Options
34-18 Oracle8i Concepts

Part X

Appendix

Part X contains the following appendix:

■ Appendix A, "Operating System-Specific Information"

Operating System-Specific Inform
A

Operating System-Specific Information

This manual occasionally refers to other Oracle manuals that contain detailed

information for using Oracle on a specific operating system. These Oracle manuals

are often called installation and configuration guides, although the exact name may

vary on different operating systems. Throughout this manual, references to these

manuals are marked with the icon shown in the left margin.

This appendix lists all the references in this manual to operating system-specific

Oracle manuals, and lists the operating system (OS) dependent initialization

parameters. If you are using Oracle on multiple operating systems, this appendix

can help you ensure that your applications are portable across these operating

systems.
ation A-1

Operating-system-specific topics in this manual are listed alphabetically below.

■ Administrator privileges, prerequisites: "Connecting with Administrator

Privileges" on page 5-3

■ Auditing: "Events Always Audited to the Operating System Audit Trail" on

page 31-5 and "Auditing to the OS Audit Trail" on page 31-6

■ Authenticating users: "Authentication by the Operating System" on page 29-4

■ Authenticating DBAs: "Connecting with Administrator Privileges" on page 5-3

and "Authentication of Database Administrators" on page 29-12

■ Background processes, ARCn: "Archiver Processes (ARCn)" on page 8-12

■ Background processes, creating: "Background Processes" on page 8-5

■ Background processes, DBWn processes: "Database Writer (DBWn)" on page 8-8

■ Client/server communication: "Dedicated Server Configuration" on page 8-22

■ Communication software: "Operating System Communications Software" on

page 8-26

■ Configuring Oracle: "Types of Processes" on page 8-2

■ Data blocks, size of: "Data Blocks" on page 4-3

■ Datafiles, size of file header: "Datafiles" on page 3-16

■ Dedicated server, requesting for administrative operations: "Restricted

Operations of the Multi-Threaded Server" on page 8-20

■ Indexes, overhead of index blocks: "Format of Index Blocks" on page 10-26

■ Net8, choosing and installing network drivers: "The Program Interface Drivers"

on page 8-26

■ Net8, drivers included in Net8 software: "How Net8 Works" on page 6-5

■ Parallel recovery and asynchronous I/O: "Situations That Benefit from Parallel

Recovery" on page 32-11

■ Program global areas (PGAs): "Size of a PGA" on page 7-15

■ Role management by the operating system: "The Operating System and Roles"

on page 30-22

■ Rollback segments, number of transactions per: "Transactions and Rollback

Segments" on page 4-20

■ Software code areas, shared or unshared: "Software Code Areas" on page 7-17
A-2 Oracle8i Concepts

Index

A
aborting an instance, 5-10, 32-4

access control, 30-2

discretionary, 1-39

fine-grained access control, 30-22

password encryption, 29-7

privileges, 30-2

roles, 30-16

access methods, 23-34

cluster scans, 23-34

execution plans, 22-2

hash scans, 23-35

index scans, 23-35

table scans, 23-34

access paths

cluster join, 23-40

composite index, 23-42

defined, 22-4

hash cluster key, 23-41

indexed cluster key, 23-41

list of, 23-36

optimization, 23-33

single row by cluster join, 23-38

single row by hash cluster key (with unique

key), 23-39

single row by rowid, 23-38

single row by unique or primary key, 23-40

ADMIN OPTION

roles, 30-19

system privileges, 30-3

with EXECUTE ANY TYPE, 14-14

administrator privileges, 5-3

connections audited, 31-5

OUTLN schema, 22-6

statement execution not audited, 31-5

ADT, See object type

Advanced Queuing (Oracle AQ), 19-1

exception handling, 19-11

exporting queue tables, 19-12

message queuing, 19-2

publish/subscribe support, 19-10

event publication, 20-18

queue monitor process, 1-20, 8-13, 19-6

interval statistics, 19-11

window of execution, 19-7

queue tables, 19-4

recipients, 19-5

rule-based subscriptions, 19-5, 19-6

subscription lists, 19-5

remote databases, 19-9

advanced replication

hybrid configurations, 34-13

multimaster configuration, 34-6

procedural replication, 34-15

synchronous propagation, 34-16

uses for, 34-6, 34-12

Advanced Security option, 33-18

affinity

parallel DML, 26-49

partitions, 26-48

AFTER triggers, 20-9

defined, 20-9

when fired, 20-21

agents for queuing, 19-4

ALERT files, 8-14

ARCn processes, 8-12

redo log, 8-9
Index-1

aliases

qualifying column names, 14-8, 14-9

qualifying subqueries (inline views), 10-16

ALL, 23-6

ALL_ views, 2-6

ALL_ROWS hint, 23-33

ALL_UPDATABLE_COLUMNS view, 10-15

ALTER ANY TYPE privilege, 14-13

See also privileges

ALTER command, 16-4

auditing partitions, 11-63

ALTER DATABASE command

standby database, 5-7

ALTER INDEX command

no-logging mode for SPLIT PARTITION, 11-58,

25-7

partition attributes, 11-37

REBUILD PARTITION, 11-60

ALTER SESSION

FORCE PARALLEL DDL, 26-24, 26-27

create or rebuild index, 26-25, 26-27

create table as select, 26-26, 26-27

move or split partition, 26-25, 26-28

FORCE PARALLEL DML

insert, 26-23, 26-24, 26-27

update and delete, 26-22, 26-27

ALTER SESSION command, 16-5

dynamic parameters, 5-5

ENABLE PARALLEL DML, 26-38

HASH_JOIN_ENABLED, 24-7

OPTIMIZER_GOAL, 23-32

SET CONSTRAINTS DEFERRED, 28-21

transaction isolation level, 27-7, 27-31

ALTER SYSTEM command, 16-5

dynamic parameters, 5-5

LOG_ARCHIVE_MAX_PROCESSES, 8-12,

32-20

SWITCH LOGFILE option, 8-12

ALTER TABLE command

add or coalesce hash partition, 11-17

auditing, 31-7

CACHE clause, 7-4

DEALLOCATE UNUSED, 4-14

disable or enable constraints, 28-22

DROP COLUMN, 10-6

EXCHANGE PARTITION, 11-11

MERGE PARTITIONS, 11-16

MODIFY CONSTRAINT, 28-23

no-logging mode for SPLIT PARTITION, 11-58,

25-7

partition attributes, 11-27

triggers and, 20-6

UNUSED column, 10-6

validate or novalidate constraints, 28-22

ALTER TABLESPACE command

READ ONLY, 3-10

READ WRITE, 3-11

TEMPORARY or PERMANENT, 3-13

ALTER USER command

temporary segments and, 4-18

ALWAYS_ANTI_JOIN parameter, 24-13

ALWAYS_SEMI_JOIN parameter, 24-13

ANALYZE command, 16-4

creating histograms, 22-11

estimated statistics, 22-14

partition statistics, 11-14

shared pool and, 7-11

anonymous PL/SQL blocks, 16-15, 18-9

applications, 16-17

calling a stored procedure, 16-19

contrasted with stored procedures, 18-9

dynamic SQL, 16-19

performance, 18-9

ANSI SQL standard

datatypes of, 12-22

Oracle certification, 1-3

ANSI/ISO SQL standard, 1-3

composite foreign keys, 28-16

data concurrency, 27-2

isolation levels, 27-10

anti-joins, 24-13

ANY, 23-6

application context, 30-24

applications

application vs. database triggers, 20-3

can find constraint violations, 28-6

data dictionary references, 2-4

data warehousing, 10-32

star queries, 24-14

database access through, 8-2
Index-2

decision support systems (DSS), 10-33

parallel SQL, 26-2, 26-31

dependencies of, 21-11

direct-load INSERT, 26-38

discrete transactions, 17-8

enhancing security with, 1-42, 28-5

index-organized tables, 10-40

information retrieval (IR), 10-40

network communication and, 6-5

object dependencies and, 21-13

online analytical processing (OLAP), 10-42

online transaction processing (OLTP)

reverse key indexes, 10-31

parallel DML, 26-37

processes, 8-4

program interface and, 8-25

roles and, 30-18

security

application context, 30-24

sharing code, 7-17

spatial applications, 10-42

transaction termination and, 17-5

AQ

exporting queue tables, 19-12

message queuing, 19-2

publish/subscribe support, 19-10

event publication, 20-18

queue monitor process, 1-20, 8-13, 19-6

interval statistics, 19-11

window of execution, 19-7

queue tables, 19-4

recipients, 19-5

rule-based subscriptions, 19-5, 19-6

subscription lists, 19-5

remote databases, 19-9

AQ_ADMINISTRATOR role, 19-7

AQ_TM_PROCESS parameter, 19-6, 19-7

architecture

client/server, 1-33

MPP, 26-49

of Oracle, 1-14

SMP, 26-49

archived redo log, 1-48

automatic archiving, 32-19

enabling, 32-18

manual archiving, 32-20

ARCHIVELOG mode

archiver process (ARCn) and, 1-19, 8-12, 32-18

defined, 32-18

overview, 1-48

partial database backups, 1-50, 32-24

whole database backups, 32-24

archiver process (ARCn)

automatic archiving, 32-19

described, 1-19, 8-12

example, 32-18

multiple processes, 1-19, 8-12

not used for manual archiving, 32-21

trace file, 32-20

ARCn background process, 1-19, 8-12

See also archiver process

array processing, 16-13

arrays

size of VARRAYs, 13-11

variable (VARRAYs), 13-11

asynchronous I/O

parallel recovery and, 32-11

asynchronous processing, 19-2

atomic nulls, 14-3

attributes

leaf-level, 14-18

leaf-level scalar, 14-18

attributes of object types, 13-2, 13-4

AUDIT command, 16-4

locks, 27-29

audit trail

deleting data in dictionary, 2-5

auditing, 1-44, 31-1

audit options, 31-3

audit records, 31-3

audit trails, 31-3

database, 31-3

operating system, 31-5, 31-6

by access, 31-11

mandated for, 31-12

by session, 31-10

prohibited with, 31-12

connect with administrator privileges, 31-5

data dictionary used for, 2-5

database and OS usernames, 29-4
Index-3

DDL statements, 31-7

described, 1-44, 31-2

distributed databases and, 31-6

DML statements, 31-7

partitioned tables and indexes, 11-63

privilege use, 31-2, 31-7

range of focus, 31-3, 31-9

schema object, 31-2, 31-8

security and, 31-6

startup and shutdown, 31-5

statement, 31-2, 31-7

successful executions, 31-9

transaction independence, 31-4

types of, 31-2

unsuccessful executions, 31-9

user, 31-12

when options take effect, 31-6

authentication

database administrators, 29-12

described, 29-3

multi-tier, 29-9

network, 29-4

operating system, 29-4

Oracle, 29-7

public key infrastructure, 29-5

remote, 29-6

Automated Standby Database, 32-26

B
B*-tree indexes, 10-27

bitmap indexes vs., 10-32, 10-33

index-organized tables, 10-36

back-ends, 6-2

background processes, 1-18, 8-5

described, 8-5

diagrammed, 8-6

overview of, 1-18

trace files for, 8-14

See also processes

backups

control files, 32-25

datafiles, 32-25

for read-only tablespaces, 32-26

overview of, 1-45, 32-23

parallel, 32-16

partial, 1-50, 32-24

Recovery Manager, 1-51, 32-15

types of, 1-49

using Export to supplement, 32-25

whole database backup, 1-50, 32-23

base tables, 1-24

data dictionary, 2-2

See also views

basic replication

uses of, 34-11

BEFORE triggers, 20-9

defined, 20-9

when fired, 20-21

BETWEEN, 23-7

BFILE datatype, 12-14

binary data

BFILEs, 12-14

BLOBs, 12-13

RAW and LONG RAW, 12-14

bind variables

optimization, 23-52

user-defined types, 13-14

bitmap indexes, 10-32

cardinality, 10-33

nulls and, 10-8, 10-35

parallel query and DML, 10-33

partitioned tables, 11-14

scans of, 23-36

star transformation, 24-16

bitmap tablespace management, 3-8

temporary tablespaces, 3-13

BLOBs, 12-13

block

anonymous, 16-15, 18-9

block-level recovery, 32-14

database, 4-3

See also data blocks

block sampling, 22-14

block server process (BSP), 27-6

blocking transactions, 27-11

block-level recovery, 27-21, 32-14

BOOLEAN datatype, 12-2

branch blocks, 10-28

BSP background process, 27-6
Index-4

buffer cache, 7-3, 8-8

extended buffer cache (32-bit), 7-14

multiple buffer pools, 7-5

buffer pools, 7-5

BUFFER_POOL_KEEP parameter, 7-5

BUFFER_POOL_RECYCLE parameter, 7-5

buffers

database buffer cache, 1-16, 7-3, 8-8

Fast-Start Checkpointing, 32-13

incremental checkpoint, 8-8

redo log buffer, 1-16, 7-6

BUILD_PART_INDEX procedure, 11-30

business rules

enforcing in application code, 28-5

enforcing using stored procedures, 28-5

enforcing with constraints, 1-58, 28-1

advantages of, 28-5

enforcing with triggers, 1-59

C
CACHE clause, 7-4

Cache Fusion

read consistency, 27-6

caches

buffer cache, 7-3

multiple buffer pools, 7-5

cache hit, 7-4

cache miss, 7-4

data dictionary, 2-4, 7-10

location of, 7-6

database buffer, 1-16

library cache, 7-6, 7-7, 7-10

object cache, 13-14, 14-16

object views, 15-4

private SQL area, 7-8

shared SQL area, 7-6, 7-8

writing of buffers, 8-8

calls

Oracle call interface, 8-25

remote procedure, 33-12

cannot serialize access, 27-11

capture avoidance rule, 14-8

cardinality, 10-33

Cartesian products, 23-3

CASCADE actions

DELETE statements and, 28-17

catalog, replication, 34-14

century, 12-12

certificate authority, 29-5

chaining of rows, 4-10, 10-5

CHAR datatype, 12-5

blank-padded comparison semantics, 12-5

character sets

CLOB and NCLOB datatypes, 12-13

column lengths, 12-6

for various languages, 5-5

NCHAR and NVARCHAR2, 12-6

CHARTOROWID function, 12-23

CHECK constraints, 28-17

checking mechanism, 28-20

defined, 28-17

multiple constraints on a column, 28-18

partially null foreign keys, 28-16

partition views, 11-11

subqueries prohibited in, 28-18

checkpoint process (CKPT), 1-19, 8-11

checkpoints

checkpoint process (CKPT), 1-19, 8-11

control files and, 32-22

DBWn process, 8-8, 8-11

Fast-Start Checkpointing, 32-13

incremental, 8-8

statistics on, 8-11

CHOOSE hint, 23-33

CKPT background process, 1-19, 8-11

client/server architectures, 6-2

clients, 1-33

diagrammed, 6-2

direct and indirect connections, 33-2

distributed databases and, 33-2

distributed processing in, 6-2

overview of, 1-33, 6-2

program interface, 8-25

CLOB datatype, 12-13

clone databases

mounting, 5-7

cluster joins, 24-5

cluster keys, 1-27, 10-48

clustered computer systems
Index-5

Oracle Parallel Server, 5-3

clusters

cannot be partitioned, 11-2

choosing data to cluster, 10-48

defined, 1-27

dictionary locks and, 27-29

hash, 10-50

allocation of space for, 10-55

collision resolution, 10-53

contrasted with index, 10-51

root blocks, 10-55

scans of, 23-35, 23-39, 23-41

single-table, 10-57

storage of, 10-51

index, 10-50

contrasted with hash, 10-51

scans of, 23-41

indexes on, 10-21

cannot be partitioned, 11-2

joins and, 10-48, 23-38, 23-40, 24-5

keys, 1-27, 10-48, 10-49

affect indexing of nulls, 10-8

overview of, 10-46

performance considerations of, 10-48

rowids and, 10-7

scans of, 7-4, 23-34, 23-38

hash, 23-39, 23-41

joins, 23-40

setting parameters of, 10-49

storage format of, 10-49

storage parameters of, 10-4

coalescing extents, 4-15

coalescing free space

extents, 4-13

SMON process, 1-19, 8-11

within data blocks, 4-9

collections, 13-10

index-organized tables, 10-38

key compression, 10-30

nested tables, 13-12

variable arrays (VARRAYs), 13-11

columns

cardinality, 10-33

column names

qualifying in queries, 14-8, 14-9

column objects, 13-8

indexes, 14-6

default values for, 10-8

defined, 1-23

described, 10-3

dropping, 10-6

integrity constraints, 10-4, 10-8, 28-4, 28-7

maximum in concatenated indexes, 10-23

maximum in view or table, 10-12

nested tables, 10-9

order of, 10-7

prohibiting nulls in, 28-7

pseudocolumns

ROWID, 12-15

ROWNUM, 23-16, 23-25, 23-49

USER, 30-7

selectivity, 22-8

histograms, 22-8, 22-10

unused, 10-6

COMMENT command, 16-4

COMMIT command, 16-5

ending a transaction, 17-2, 17-4

fast commit, 8-10

implied by DDL, 17-2, 17-4

two-phase commit and, 17-7, 33-13

two-phase commit in parallel DML, 26-40

committing transactions

defined, 17-2

fast commit, 8-10

group commits, 8-10

implementation, 8-10

overview, 1-54

parallel DML, 26-40

communication protocols, 6-5

comparison methods, 13-6

compatibility, 1-3

compatibility levels

transportable tablespaces, 3-14

COMPATIBLE parameter

read-only tablespaces, 3-11

compilation of object types, 14-17

compiled PL/SQL, 18-17

advantages of, 18-8

procedures, 18-9

pseudocode, 18-18, 20-25
Index-6

recompiling, 18-19

shared pool, 16-16

triggers, 20-25

compiled triggers, 20-25

complex view merging, 23-17

composite indexes, 10-22

compression of free space in data blocks, 4-9

compression, index key, 10-29

concatenated indexes, 10-22

concurrency

defined, 1-30

described, 27-2

direct-load INSERT, 25-11

enforced with locks, 1-32

limits on

per database, 29-20

per user, 29-17

partition maintenance, 11-50

restrictions on, 1-43, 25-11

transactions and, 27-15

configuration of a database

parameter file, 5-4

process structure, 8-2

conflicts

procedural replication, 34-16

CONNECT BY clause

optimizing view queries, 23-16

CONNECT INTERNAL, 5-3

CONNECT role, 30-22

user-defined types, 14-13, 14-14

connectibility, 1-2

connections

defined, 8-4

embedded SQL, 16-6

listener process and, 6-6, 8-14

restricting, 5-6

sessions contrasted with, 8-4

usernames, 29-2

with administrator privileges, 5-3

audit records, 31-5

consistency of data, 1-55

multiversion consistency model, 1-31

See also read consistency

constants

comparisons and, 23-5

evaluation of expressions, 23-5

in stored procedures, 16-17

when computed, 23-5

constraints, 1-58

alternatives to, 28-5

applications can find violations, 28-6

CHECK, 28-17

default values and, 28-20

defined, 10-4

disabling temporarily, 28-7

effect on performance, 28-6

ENABLE or DISABLE, 28-22

enforced with indexes, 10-23

PRIMARY KEY, 28-12

UNIQUE, 28-10

FOREIGN KEY, 1-59, 28-13

mechanisms of enforcement, 28-18

modifying, 28-23

NOT NULL, 28-7, 28-11

object tables, 14-5

overview, 1-58

parallel create table, 26-25

PRIMARY KEY, 1-59, 28-11

prohibited in views, 10-12

referential

effect of updates, 28-16

self-referencing, 28-15

triggers cannot violate, 20-21

triggers contrasted with, 20-5

types listed, 1-58, 28-1

UNIQUE key, 1-59, 28-8

partially null, 28-11

VALIDATE or NOVALIDATE, 28-22

what happens when violated, 28-5

when evaluated, 10-8

constructor methods, 1-57, 13-6, 14-18

literal invocation of, 14-4

contention

for data

deadlocks, 8-19, 27-17

lock escalation does not occur, 27-17

for rollback segments, 4-21

control files, 1-13, 32-21

backing up, 32-25

changes recorded, 32-22
Index-7

checkpoints and, 32-22

contents, 32-21

how specified, 5-4

multiplexed, 1-49, 32-22

overview, 1-13, 32-21

physical database structure, 1-5

recovery and, 1-49

used in mounting database, 5-6

converting data

ANSI datatypes, 12-22

program interface, 8-25

SQL/DS and DB2 datatypes, 12-22

correlation names

inline views, 10-16

cost based optimization, 33-10

cost-based optimization, 22-7

extensible optimization, 22-16

histograms, 22-8

query rewrite, 10-17

selectivity of predicates, 22-8

histograms, 22-8, 22-10

user-defined, 22-17

star queries, 24-14

statistics, 22-8, 23-32

user-defined, 22-17

user-defined costs, 22-17

CPU time limit, 29-17

crash recovery, 32-4, 32-13

instance failure, 1-46, 5-10, 32-4

opening a database, 5-8

read-only tablespaces, 32-6

required after aborting instance, 5-10

SMON process, 1-19, 8-11

CREATE ANY TYPE privilege, 14-13

See also privileges

CREATE CLUSTER command

HASHKEYS clause, 10-53, 10-57

SINGLE TABLE HASHKEYS, 10-57

storage parameters, 4-17

CREATE command, 16-4

CREATE FUNCTION command, 18-17

CREATE INDEX command

no-logging mode, 11-58, 25-7

object types, 14-6

partition attributes, 11-37

rules of parallelism, 26-25

storage parameters, 4-17

temporary segments and, 4-18

CREATE OUTLINE statement, 22-6

CREATE PACKAGE BODY command, 18-12,

18-17

CREATE PACKAGE command

examples, 18-12, 20-10

locks, 27-29

package name, 18-17

CREATE PROCEDURE command

example, 18-6

locks, 27-29

procedure name, 18-17

CREATE SYNONYM command

locks, 27-29

CREATE TABLE AS SELECT

rules of parallelism

index-organized tables, 26-31

CREATE TABLE command

AS SELECT

decision support systems, 26-31

direct-load INSERT vs., 25-2

no-logging mode, 11-58, 25-7

rules of parallelism, 26-25

space fragmentation, 26-33

temporary storage space, 26-33

auditing, 31-7, 31-10

CACHE clause, 7-4

enable or disable constraints, 28-22

examples

column objects, 13-5, 14-8

nested tables, 13-12

object tables, 13-8, 13-12, 14-5, 14-8

locks, 27-29

parallelism, 26-31

index-organized tables, 26-31

partition attributes, 11-27

storage parameters, 4-17

triggers and, 20-6

CREATE TABLESPACE command

TEMPORARY clause, 3-13

CREATE TEMPORARY TABLE command, 10-10

CREATE TEMPORARY TABLESPACE

command, 3-13
Index-8

CREATE TRIGGER command

compiled and stored, 20-25

examples, 20-11, 20-14, 20-24

object tables, 14-7

locks, 27-29

CREATE TYPE command

incomplete types, 14-16

nested tables, 13-4, 13-12, 14-4

object types, 13-4, 14-3, 14-4, 14-8

object views, 15-3

VARRAYs, 13-11

CREATE TYPE privilege, 14-13

See also privileges

CREATE USER command

temporary segments and, 4-18

CREATE VIEW command

examples, 20-14

object views, 15-3

locks, 27-29

CREATE_STORED_OUTLINES session

parameter, 22-6

cross joins, 23-3

current user, 18-10

cursors

creating, 16-11

defined, 16-6

embedded SQL, 16-5

maximum number of, 16-7

object dependencies and, 21-10

opening, 7-9, 16-7

overview of, 1-17

private SQL areas and, 7-9, 16-6

recursive, 16-7

recursive SQL and, 16-7

stored procedures and, 16-18

D
dangling REFs, 13-9, 13-10

data

access to, 1-51

control of, 29-2

fine-grained access control, 30-22

message queues, 19-7

security domains, 29-2

concurrent access to, 27-2

consistency of

defined, 1-55

examples of lock behavior, 27-32

locks, 27-3

manual locking, 27-31

read consistency, 1-31

repeatable reads, 27-6

transaction level, 27-6

underlying principles, 27-15

distributed manipulation of, 1-35

how stored in tables, 10-4

integrity of, 1-30, 10-4, 28-2

CHECK constraints, 28-17

enforcing, 28-4, 28-5

overview, 1-57

parallel DML restrictions, 26-45

referential, 28-3

two-phase commit, 1-35

types, 28-3

locks on, 27-20

replicating, 1-36

data blocks, 1-10, 4-2

allocating for extents, 4-13

block-level recovery, 32-14

cached in memory, 8-8

clustered, 10-49

coalescing extents, 4-13

coalescing free space in blocks, 4-9

controlling free space in, 4-5

format, 4-3

free lists and, 4-9

hash keys and, 10-55

how rows stored in, 10-5

overview, 4-2

read-only transactions and, 27-32

row directory, 10-5

shared in clusters, 10-46

shown in rowids, 12-17, 12-18

space available for inserted rows, 4-9

stored in the buffer cache, 7-3

writing to disk, 8-8

data conversion

ANSI datatypes, 12-22

program interface, 8-25
Index-9

SQL/DS and DB2 datatypes, 12-22

Data Definition Language (DDL)

auditing, 31-7

commit implied by, 17-4

defined, 1-52

described, 16-4

embedding in PL/SQL, 16-19

locks, 27-28

parallel DDL, 26-3

parsing with DBMS_SQL, 16-19

processing statements, 16-14

roles and privileges, 30-20

data dictionary

access to, 2-2

adding objects to, 2-4

ALL prefixed views, 2-6

audit trail (SYS.AUD$), 2-5

backups, 32-25

cache, 7-10

location of, 7-6

content of, 2-2, 7-10

procedures, 18-18

datafile 1, 3-6, 32-25

DBA prefixed views, 2-6

defined, 1-30, 2-2

dependencies tracked by, 21-3

dictionary-managed tablespaces, 3-7

DUAL table, 2-7

dynamic performance tables, 2-7

locks, 27-28

owner of, 2-3

prefixes to views of, 2-5

public synonyms for, 2-4

row cache and, 7-10

statistics in, 22-14, 23-32

partition statistics, 11-14

structure of, 2-2

SYSTEM tablespace, 2-2, 2-5, 3-6

updates of, 2-5

USER prefixed views, 2-6

uses of, 2-3

table and column definitions, 16-11

validity of procedures, 18-18

views used in optimization, 22-14

data locks

conversion, 27-16

duration of, 27-15

escalation, 27-16

Data Manipulation Language (DML)

auditing, 31-7

defined, 1-52

described, 16-3

distributed transactions, 33-11

locks acquired by, 27-25

parallel DML, 26-3, 26-35

partition locks, 11-45

privileges controlling, 30-5

processing statements, 16-10

serializable isolation for subqueries, 27-14

transaction model for parallel DML, 26-39

triggers and, 20-3, 20-23

data models, 1-22

data object number

extended rowid, 12-17

data segments, 1-11, 4-16, 10-4

data warehousing

basic replication for, 34-12

bitmap indexes, 10-32

dimension schema objects, 1-29, 10-18

dimensions, 24-14

hierarchies, 1-29, 10-18

materialized views, 10-17

refreshing table data, 26-37

star queries, 24-14

summaries, 10-17

Database, 5-3

database administrators (DBAs)

authentication, 29-12

data dictionary views, 2-6

DBA role, 14-13, 30-22

password files, 29-13

responsible for backup and recovery, 32-2

database buffers

after committing transactions, 17-6

buffer cache, 7-3, 8-8

clean, 8-8

committing transactions, 8-10

defined, 1-16, 7-3

dirty, 7-3, 8-8
Index-10

free, 7-3

multiple buffer pools, 7-5

pinned, 7-3

size of cache, 7-5

writing of, 8-8

database links, 1-29

defined, 1-29

overview of, 33-6

partition-extended table names, 11-65

database management system (DBMS), 1-2

object-relational DBMS, 13-2

Oracle server, 1-4

principles, 1-22

database structures

control files, 1-13, 32-21

data blocks, 1-10, 4-2, 4-3

data dictionary, 1-30, 2-1

datafiles, 1-11, 3-1, 3-16

extents, 1-10, 4-2, 4-11

logical, 1-5, 1-9

memory, 1-14, 7-1

physical, 1-5

processes, 1-14, 1-17, 8-1

redo log files, 1-12, 32-7

revealing with rowids, 12-18

schema objects, 1-10, 10-2

segments, 1-10, 4-2, 4-16

tablespaces, 1-9, 3-1, 3-6

database triggers, 1-59, 20-1

See also triggers

database writer process (DBWn), 8-8

checkpoints, 8-8

defined, 8-8

least recently used algorithm (LRU), 8-8

media failure, 32-6

multiple DBWn processes, 8-8

overview of, 1-18

trace file, 32-6

when active, 8-8

write-ahead, 8-9

writing to disk at checkpoints, 8-11

databases

access control

overview, 1-51

password encryption, 29-7

security domains, 29-2

backing up, 1-50, 32-23

clone database, 5-7

closing, 5-10

aborting the instance, 5-10, 32-4

configuring, 5-4

contain schemas, 29-2

defined, 1-8, 1-9

dismounting, 5-10

distributed, 1-35, 33-1

changing global database name, 7-11

nodes of, 1-35

overview of, 1-33, 1-34, 33-1

site autonomy of, 33-16

statement optimization on, 23-30

table replication, 1-36

two-phase commit, 1-35

global database names, 33-4

limitations on usage, 29-15

managing

Enterprise Manager, 33-19

modes of archiving, 32-18

mounting, 5-6

name stored in control file, 32-21

open and closed, 5-2

opening, 5-7

acquiring rollback segments, 4-26

opening read-only, 5-9

recovery of, 1-45, 32-2

scalability, 6-4, 26-2, 26-37

shutting down, 5-9

size of

how determined, 3-4

standby, 5-7, 32-26

starting up, 5-2

forced, 5-10

structures

control files, 1-13, 32-21

data blocks, 1-10, 4-2, 4-3

data dictionary, 1-30, 2-1

datafiles, 1-11, 3-1, 3-16

extents, 1-10, 4-2, 4-11

logical, 1-5, 1-9, 4-1

memory, 1-14, 7-1

physical, 1-5, 1-11
Index-11

processes, 1-14, 1-17, 8-1

redo log files, 1-12, 32-7

revealing with rowids, 12-18

schema objects, 1-10, 10-2

segments, 1-10, 4-2, 4-16

tablespaces, 1-9, 3-1, 3-6

datafile 1, 3-16

backup, 32-25

data dictionary, 3-6, 32-25

SYSTEM tablespace, 3-6, 3-16

datafiles

backing up, 32-25

contents of, 3-16

datafile 1, 3-6, 3-16

backup, 32-25

SYSTEM tablespace, 3-6, 3-16

in online or offline tablespaces, 3-17

named in control files, 32-21

overview of, 1-9, 1-12, 3-16

parallel recovery, 32-11

physical database structure, 1-5

read-only, 3-10

recovery, 32-6

read-only tablespaces and, 3-12

relationship to tablespaces, 3-2

shown in rowids, 12-17, 12-18

taking offline, 3-17

temporary, 3-17

unrecoverable, 32-17

datatypes, 12-2, 12-3

ANSI, 12-22

array types, 13-11

BOOLEAN, 12-2

CHAR, 12-5

character, 12-5, 12-13

collections, 13-10

conversions of

by program interface, 8-25

non-Oracle types, 12-22

Oracle to another Oracle type, 12-23

DATE, 12-10

DB2, 12-22

how they relate to tables, 10-3

in PL/SQL, 12-2

list of available, 12-2

LOB datatypes, 12-12

BFILE, 12-14

BLOB, 12-13

CLOB and NCLOB, 12-13

default logging mode, 25-7

LONG, 12-7

storage of, 10-7

multimedia, 13-3

NCHAR and NVARCHAR2, 12-6

nested tables, 10-9, 13-12

NUMBER, 12-8

object types, 1-22, 13-4

of columns, 1-23

RAW and LONG RAW, 12-14

ROWID, 12-15, 12-16

SQL/DS, 12-22

summary, 12-3

user-defined, 13-1, 13-3

statistics, 22-17

VARCHAR, 12-6

VARCHAR2, 12-5

DATE datatype, 12-10

arithmetic with, 12-11

changing default format of, 12-10

Julian dates, 12-11

midnight, 12-11

partition pruning, 11-22

partitioning, 11-14, 11-21

DB_BLOCK_BUFFERS parameter

buffer cache and, 7-5

system global area size and, 7-13

DB_BLOCK_LRU_LATCHES parameter, 8-8

DB_BLOCK_SIZE parameter

buffer cache and, 7-5

system global area size and, 7-13

DB_FILE_MULTIBLOCK_READ_COUNT

parameter, 23-51

cost-based optimization, 24-9

DB_FILES parameter, 7-15

DB_NAME parameter, 32-22

DB_WRITER_PROCESSES parameter, 1-18, 8-8

DBA role, 30-22

user-defined types, 14-13

DBA_ views, 2-6

DBA_QUEUE_SCHEDULES view, 19-10
Index-12

DBA_SYNONYMS.SQL script

using, 2-7

DBA_UPDATABLE_COLUMNS view, 10-15

DBMS, 1-2

general requirements, 1-51

object-relational DBMS, 13-2

DBMS_AQ package, 19-4

DBMS_AQADM package, 19-4, 19-7

DBMS_JOB package, 8-13

Oracle supplied packages, 18-16

DBMS_LOCK package, 27-39

Oracle supplied packages, 18-16

DBMS_PCLXUTIL package, 11-30

DBMS_RLS package

security policies, 30-23

uses definer rights, 30-8

DBMS_SQL package, 16-19

Oracle supplied packages, 18-16

parsing DDL statements, 16-19

DBMS_STATS package, 22-12

creating histograms, 22-11

estimated statistics, 22-14

partition statistics, 11-14

DBWn background process, 8-8

See also database writer process

DDL, 1-52, 16-4

See also Data Definition Language

dead transactions, 32-4

block-level recovery, 32-14

deadlocks

artificial, 8-19

avoiding, 27-19

defined, 27-17

detection of, 27-18

distributed transactions and, 27-18

deallocating extents, 4-14

decision support application

basic replication for, 34-11

decision support systems (DSS), 11-6

bitmap indexes, 10-33

disk striping, 26-48

materialized views, 10-17

parallel DML, 26-37

parallel SQL, 26-2, 26-31, 26-37

partitions, 11-6

performance, 11-9, 26-37

scoring tables, 26-38

dedicated servers, 8-22

defined, 1-18

examples of use, 8-24

multi-threaded servers vs., 8-16

default values, 10-8

constraints effect on, 10-8, 28-20

user-defined types, 14-4

deferred constraints

deferrable or nondeferrable, 28-21

initially deferred or immediate, 28-21

define phase of query processing, 16-12

definer rights, 18-9

name resolution, 18-19

procedure security, 30-7

degree of parallelism, 26-20, 26-23

between query operations, 26-13

parallel SQL, 26-7, 26-16

delete cascade constraint, 28-17

DELETE command, 16-4

foreign key references and, 28-16

freeing space in data blocks, 4-9

no-logging mode, 25-7

LOBs, 25-7

parallel DELETE, 26-21

triggers and, 20-2, 20-6

delete no action constraint, 28-16

DELETE privilege for object tables, 14-15, 14-16

denormalized tables, 1-29, 10-19

denormalized views

star schemas, 24-15

dependencies, 21-1

between schema objects, 21-2

function-based indexes, 10-26, 21-7

local, 21-10

managing, 21-1

non-existent referenced objects and, 21-8

object type definitions, 14-16, 14-17

on non-existence of other objects, 21-8

Oracle Forms triggers and, 21-13

privileges and, 21-6

remote objects and, 21-10

shared pool and, 21-10
Index-13

dereferencing, 13-10

implicit, 13-10

describe phase of query processing, 16-12

DETERMINISTIC functions, 23-9

function-based indexes, 21-8

deterministic functions, 23-9

dictionary

See data dictionary

dictionary cache locks, 27-30

dictionary-managed tablespaces, 3-7

different-row writers block writers, 27-10

Digital’s POLYCENTER Manager on Net

View, 33-20

dimensions, 1-29, 10-18

attributes, 1-29, 10-19

hierarchies, 1-29, 10-18

join key, 1-29, 10-19

normalized or denormalized tables, 1-29, 10-19

star joins, 24-14

star queries, 24-14

direct-load INSERT, 25-2

logging mode, 25-5

parallel INSERT, 25-3

parallel load vs. parallel INSERT, 25-2

restrictions, 25-11, 26-43

serial INSERT, 25-3

space management, 25-8

Directory-enabled Oracle Security Manager, 29-5

dirty buffer, 7-3

Fast-Start Checkpointing, 32-13

incremental checkpoint, 8-8

dirty read, 27-2, 27-10

dirty write, 27-10

DISABLE constraints, 28-22

DISABLED indexes, 21-8

disaster recovery, 32-26

disconnected environments

as in advanced replication, 34-12

discrete transaction management

summary, 17-8

discretionary access control, 1-39, 29-2

disk affinity

parallel DML, 26-49

partitions, 26-48

disk failures, 1-46, 32-5

disk space

controlling allocation for tables, 10-4

datafiles used to allocate, 3-16

disk striping

affinity, 26-48

partitions, 11-9

dispatcher processes (Dnnn)

defined, 1-20

described, 8-14

limiting SGA space per session, 29-18

listener process and, 8-14

network protocols and, 8-14

prevent startup and shutdown, 8-20

response queue and, 8-17

user processes connect via Net8, 8-14, 8-16

DISTINCT operator

optimizing views, 23-17

distributed databases, 33-1

auditing and, 31-6

client/server architectures and, 6-2

database links, 33-6

deadlocks and, 27-18

dependent schema objects and, 21-10

diagrammed, 33-2

different Oracle versions, 33-7

distributed queries, 33-11

distributed updates, 33-11

global object names, 33-6

heterogeneous, 33-8

job queue processes (SNPn), 1-20, 8-13

management tools, 33-19

message propagation, 19-9

nodes of, 33-2

overview of, 1-34, 33-2

recoverer process (RECO) and, 8-12

remote dependencies, 21-11

remote queries and updates, 33-11

server can also be client in, 6-2

site autonomy of, 33-16

statement optimization on, 23-30

table replication, 1-36

transparency of, 33-14

two-phase commit, 1-35, 33-13

distributed processing environment

client/server architecture in, 1-33, 6-2
Index-14

data manipulation statements, 16-10

described, 1-33, 6-2

distributed databases vs., 33-7

materialized views (snapshots), 10-17

distributed query optimization, 33-10

distributed transactions

defined, 33-12

distributed statements, 23-4

optimizing, 23-30

parallel DDL restrictions, 26-28

parallel DML restrictions, 26-28, 26-46

routing statements to nodes, 16-11

sample table scan not supported, 23-34

two-phase commit and, 1-35, 17-7

DISTRIBUTED_TRANSACTIONS parameter, 8-12

distributing application loads

as in advanced replication, 34-7

DML, 1-52, 16-3

See also Data Manipulation Language

DML subpartition locks, 11-46

Dnnn background processes, 8-14

See also dispatcher processes

domain index, 10-43

domain indexes

extensible optimization, 22-16

user-defined statistics, 22-17

drivers, 8-26

DROP ANY TYPE privilege, 14-13

See also privileges

DROP COLUMN clause, 10-6

DROP command, 16-4

DROP TABLE command

auditing, 31-7

triggers and, 20-6

DROP TYPE command

dependencies and, 14-17

FORCE option, 14-17

DSS database

disk striping, 26-48

parallel DML, 26-37

partitioning indexes, 11-37

partitions, 11-6

performance, 11-9

scoring tables, 26-38

DUAL table, 2-7

dump files

Export and Import, 14-20

dynamic partitioning, 26-6

dynamic performance tables (V$ tables), 2-7

dynamic predicates

in security policies, 30-23

dynamic SQL

DBMS_SQL package, 16-19

embedded, 16-19

name resolution, 18-20

E
embedded SQL statements, 1-53, 16-5

dynamic SQL in PL/SQL, 16-19

ENABLE constraints, 28-22

Enterprise Manager, 33-19

ALERT file, 8-15

checkpoint statistics, 8-11

distributed databases, 33-19

executing a package, 18-6

executing a procedure, 18-4

granting roles, 30-18

granting system privileges, 30-3

lock and latch monitors, 27-29

parallel recovery, 32-11

PL/SQL, 16-17, 16-19

schema object privileges, 30-4

showing size of SGA, 7-13

shutdown, 5-9, 5-10

SQL statements, 16-2

startup, 5-5

statistics monitor, 29-19

equijoins

cluster joins, 24-5

defined, 23-3

hash joins, 24-7

sort-merge, 24-4

equipartitioning, 11-24

examples, 11-25, 11-30, 11-32

LOB columns, 11-38

local indexes, 11-29

on one dimension, 11-24

overflow of index-organized tables, 11-42, 11-44

range partitioning, 11-24
Index-15

errors

in embedded SQL, 16-6

tracked in trace files, 8-14

exceptions

during trigger execution, 20-23

raising, 16-18

stored procedures and, 16-18

EXCHANGE PARTITION, 11-11

exclusive locks

row locks (TX), 27-20

RX locks, 27-23

table locks (TM), 27-21

exclusive mode, 4-27

EXECUTE ANY TYPE privilege, 14-13, 14-14

See also privileges

EXECUTE privilege

user-defined types, 14-14

verifying user access, 18-18

See also privileges

EXECUTE user-defined type, 14-13

execution plan

accessing views, 23-19, 23-22, 23-23

complex statements, 23-14

compound queries, 23-27, 23-28, 23-29

joining views, 23-25

joins, 24-2, 24-8

OR operators, 23-12

star transformation, 24-18

execution plans

examples, 23-14

execution sequence of, 22-5

EXPLAIN PLAN, 16-4

location of, 7-8

overview of, 22-2

parsing SQL, 16-11

partitions and partition views, 11-11, 11-14

plan stability, 22-6

viewing, 22-4

EXP_FULL_DATABASE role, 30-22

EXPLAIN PLAN command, 16-4

access paths, 23-38, 23-39, 23-40, 23-41, 23-42,

23-43, 23-44, 23-45, 23-46, 23-47, 23-48, 23-49,

23-50

partition pruning, 11-22

star query, 24-17

star transformation, 24-18

explicit locking, 27-31

Export utility, 1-5

copying statistics, 22-8

partition maintenance operations, 11-48

use in backups, 32-25

user-defined types, 14-20

extended rowid format, 12-17

extensible optimization, 22-16

user-defined costs, 22-17

user-defined selectivity, 22-17

user-defined statistics, 22-17

extents

allocating, 4-12

allocating data blocks for, 4-13

allocation to rollback segments

after segment creation, 4-24

at segment creation, 4-22

allocation, how performed, 4-13

as collections of data blocks, 4-11

coalescing, 4-15

deallocation

from rollback segments, 4-25

when performed, 4-14

defined, 4-2

dictionary managed, 3-7

dropping rollback segments and, 4-25

in rollback segments

changing current, 4-22

incremental, 4-11

locally managed, 3-8

managing, 4-12

materialized views, 4-15

overview of, 4-11

parallel DDL, 26-33

parallel INSERT

storage parameters, 25-8

external procedures, 16-20, 18-11

external reference, 18-10

name resolution, 18-19

F
fact tables

star joins, 24-14
Index-16

star queries, 24-14

failover sites

as in advanced replication, 34-6

failures, 32-2

archiving redo log files, 32-20

database buffers and, 32-8

described, 1-45, 32-2

instance, 1-46, 32-4

recovery from, 5-8, 5-10, 32-4

internal errors

tracked in trace files, 8-14

media, 1-46, 32-5

network, 32-3

safeguards provided, 32-6

statement and process, 1-45, 8-11, 32-2

survivability, 32-26

user error, 1-45, 32-2

See also recovery

fast commit, 8-10

fast full index scans, 23-36

fast refresh, 10-18

FAST_START_IO_TARGET parameter, 32-13

Fast-Start Checkpointing, 32-13

Fast-Start On-Demand Rollback, 32-10

Fast-Start Parallel Rollback, 32-14

Fast-Start Recovery, 32-13

fetching rows in a query, 16-14

embedded SQL, 16-6

file management locks, 27-30

files

ALERT and trace files, 8-9, 8-14

Export and Import dump file, 14-20

initialization parameter, 5-4, 5-5

LISTENER.ORA, 6-6

operating system, 1-5

Oracle database, 1-9, 1-11, 32-6

password, 29-13

administrator privileges, 5-3

See also control files, datafiles, redo log files

fine-grained access control, 30-22

FIPS standard, 16-6

FIRST_ROWS hint, 23-33

fixed views, 2-7

flagging of nonstandard features, 16-6

FORCE option

object type dependencies, 14-17

FORCE PARALLEL DDL option, 26-24, 26-27

create or rebuild index, 26-25, 26-27

create table as select, 26-26, 26-27

move or split partition, 26-25, 26-28

FORCE PARALLEL DML option

insert, 26-23, 26-24, 26-27

update and delete, 26-22, 26-27

FOREIGN KEY constraints

changes in parent key values, 28-16

constraint checking, 28-20

deleting parent table rows and, 28-17

maximum number of columns in, 28-13

nulls and, 28-15

updating parent key tables, 28-16

foreign keys, 1-58

defined, 1-59

partially null, 28-16

privilege to use parent key, 30-5

fragmentation

parallel DDL, 26-33

free lists, 4-9

free space

coalescing extents, 4-13

SMON process, 1-19, 8-11

coalescing within data blocks, 4-9

free lists, 4-9

parameters for data blocks, 4-5

section of data blocks, 4-5

front-ends, 6-2

full index scans, 23-35

full table scans, 23-34, 23-48

LRU algorithm and, 7-4

multiblock reads, 23-51

parallel execution, 26-5, 26-6

rule-based optimizer, 23-54

selectivity and, 23-51

function-based indexes, 10-24

dependencies, 10-26, 21-7

DISABLED, 21-8

privileges, 10-26, 21-8

UNUSABLE, 21-8

functions

function-based indexes, 10-24
Index-17

hash functions, 10-54

Java

parallel execution, 26-46

PL/SQL, 18-2, 18-6

contrasted with procedures, 1-56, 18-2

DETERMINISTIC, 21-8, 23-9

deterministic, 23-9

parallel execution, 26-46

privileges for, 30-7

roles, 30-20

See also procedures

SQL, 16-2

COUNT, 10-35

default column values, 10-8

in CHECK constraints, 28-18

in views, 10-14

NVL, 10-8

optimizing view queries, 23-23

user-defined

extensible optimization, 22-16

fuzzy reads, 27-3

G
gateways, 33-8

global database names

shared pool and, 7-11

global indexes

partitioning, 11-32

managing partitions, 11-33, 11-60

summary of index types, 11-34

global schema object names, 1-29, 33-6

global user, 18-21, 33-18

current user links, 18-21

GRANT ANY PRIVILEGE system privilege, 30-3

GRANT command, 16-4

locks, 27-29

GRANT option for EXECUTE privilege, 14-14

granting

execute user-defined type, 14-14

privileges and roles, 30-3

GROUP BY clause

optimizing views, 23-17

temporary tablespaces, 3-12

group commits, 8-10

groups, instance, 26-19

guesses in logical rowids, 12-20

staleness, 12-21

statistics for, 12-21

H
handles for SQL statements, 1-17, 7-9

hash clusters, 1-29, 10-50

allocation of space for, 10-55

collision resolution, 10-53

contrasted with index, 10-51

overview of, 1-29

root blocks, 10-55

scans of, 23-35, 23-39, 23-41

single-table hash clusters, 10-57

storage of, 10-51

hash join, 24-7

HASH_AREA_SIZE parameter, 24-8

HASH_MULTIBLOCK_IO_COUNT

parameter, 24-8

index join, 23-36, 23-49

HASH_AJ hint, 24-13

HASH_AREA_SIZE parameter, 24-8

HASH_JOIN_ENABLED parameter, 24-7

HASH_MULTIBLOCK_IO_COUNT

parameter, 24-8

HASH_SJ hint, 24-13

HASHKEYS parameter, 10-53, 10-57

headers

of data blocks, 4-4

of row pieces, 10-5

heterogeneous distributed databases, 33-8

Heterogeneous Services, 33-8

agents, 33-9

HEXTORAW function, 12-23

HI_SHARED_MEMORY_ADDRESS

parameter, 7-13

hierarchies, 1-29, 10-18

join key, 1-29, 10-19

levels, 1-29, 10-18

high water mark

direct-load INSERT, 25-3

HIGH_VALUE statistics, 23-52
Index-18

hints

cannot override sample access path, 23-50

extensible optimization, 22-16

INDEX, 24-15

INDEX_FFS, 23-36

INDEX_JOIN, 23-36

MERGE, 23-17

MERGE_AJ and HASH_AJ, 24-13

MERGE_SJ and HASH_SJ, 24-13

ORDERED, 24-9, 24-15

overriding optimizer choice, 23-50

overriding OPTIMIZER_MODE and

OPTIMIZER_GOAL, 23-33

PARALLEL, 26-17

PARALLEL_INDEX, 26-17

PUSH_JOIN_PRED, 24-12

STAR, 24-15

USE_HASH, 24-7

histograms, 22-8

historical database

maintenance operations, 11-48

partitions, 11-6

HP’s OpenView, 33-20

hybrid configurations

advanced replication, 34-13

I
IBM’s NetView/6000, 33-20

ILMS, 16-20

immediate constraints, 28-20

IMP_FULL_DATABASE role, 30-22

implicit dereferencing, 13-10

Import utility, 1-6

copying statistics, 22-8

partition maintenance operations, 11-48

use in recovery, 32-25

user-defined types, 14-20

in basic replication, 34-12

IN operator, 23-5

merging views, 23-18

IN subquery, 23-17

incomplete object types, 14-17

incremental checkpoint, 8-8

incremental refresh, 10-18

index joins, 23-36, 23-49

index segments, 1-11, 4-17

INDEX_FFS hint, 23-36

INDEX_JOIN hint, 23-36

indexes, 1-26, 10-21

auditing partitions, 11-63

B*-tree structure of, 10-27

bitmap indexes, 10-32, 10-36

nulls and, 10-8

parallel query and DML, 10-33

branch blocks, 10-28

building

using an existing index, 10-22

cardinality, 10-33

cluster, 10-50

cannot be partitioned, 11-2

contrasted with table, 10-50

dropping, 10-50

scans of, 23-41

composite, 10-22

scans of, 23-42

concatenated, 10-22

described, 1-26, 10-21

domain, 10-42

domain indexes

extensible optimization, 22-16

user-defined statistics, 22-17

enforcing integrity constraints, 28-10, 28-12

extensible, 10-42

fast full scans of, 23-36

function-based, 10-24

dependencies, 10-26, 21-7, 21-9

DETERMINISTIC functions, 21-8

DISABLED, 21-8

optimization with, 10-25

privileges, 10-26, 21-8

global partitioned indexes, 11-32

managing partitions, 11-33, 11-60

index joins, 23-36, 23-49

index unusable (IU), 11-61

index-organized tables, 10-36

logical rowids, 10-39, 12-20

secondary indexes, 10-39

internal structure of, 10-27

key compression, 10-29
Index-19

indexes (continued),
keys and, 10-23

primary key constraints, 28-12

unique key constraints, 28-10

leaf blocks, 10-28

local indexes, 11-29, 11-59

building partitions in parallel, 11-30

location of, 10-26

LONG RAW datatypes prohibit, 12-15

managing partitions, 11-59

no-logging mode, 25-7

nonunique, 10-22

nulls and, 10-8, 10-24, 10-35

on attribute of object column, 14-6

on complex data types, 10-42

on REFs, 14-6

optimization and, 23-10

overview of, 1-26, 10-21

parallel DDL storage, 26-33

parallel index scans, 26-5

partition pruning, 11-4

partitioned tables, 10-36

partitioning guidelines, 11-36

partitions, 11-2, 11-29

performance and, 10-22

privileges for partitions, 11-62

range scans, 23-35

rebuild partition, 11-60

rebuilt after direct-load INSERT, 25-8

reverse key indexes, 10-31

rowids and, 10-28

scans of, 23-35

bounded range, 23-44

cluster key, 23-41

composite, 23-42

MAX or MIN, 23-46

ORDER BY, 23-47

restrictions, 23-48

single-column, 23-42

unbounded range, 23-45

statement conversion and, 23-10

storage format of, 10-26

unique, 10-22

unique scans, 23-35

user-defined types, 14-6

when used with views, 10-14

index-organized tables, 10-36

applications, 10-40

benefits, 10-38

key compression in, 10-30, 10-38

logical rowids, 10-39, 12-20

parallel CREATE, 26-31

parallel queries, 26-29

partition of, 11-42

partitioned secondary indexes on, 11-45

queue tables, 19-12

rebuild of, 10-39

row overflow area, 10-38

secondary indexes on, 10-39

indextype, 10-43

in-doubt transactions, 4-24, 5-8

information

distribution

in basic replication, 34-11

off-loading

in basic replication, 34-11

transport, 34-12

information distribution

basic replication for, 34-11

information retrieval (IR) applications

index-organized tables, 10-40

initialization parameters

ALWAYS_ANTI_JOIN, 24-13

ALWAYS_SEMI_JOIN, 24-13

AQ_TM_PROCESS, 19-6, 19-7

BUFFER_POOL_KEEP, 7-5

BUFFER_POOL_RECYCLE, 7-5

COMPATIBLE, 3-11

DB_BLOCK_BUFFERS, 7-5, 7-13

DB_BLOCK_LRU_LATCHES, 8-8

DB_BLOCK_SIZE, 7-5, 7-13

DB_FILE_MULTIBLOCK_READ_COUNT, 23-5

1, 24-9

DB_FILES, 7-15

DB_NAME, 32-22

DB_WRITER_PROCESSES, 1-18, 8-8

DISTRIBUTED_TRANSACTIONS, 8-12

FAST_START_IO_TARGET, 32-13

HASH_AREA_SIZE, 24-8

HASH_JOIN_ENABLED, 24-7
Index-20

HASH_MULTIBLOCK_IO_COUNT, 24-8

HI_SHARED_MEMORY_ADDRESS, 7-13

JOB_QUEUE_PROCESSES, 19-10

LICENSE_MAX_SESSIONS, 29-20

LICENSE_SESSIONS_WARNING, 29-20

LOCK_SGA, 7-13, 7-17

LOG_ARCHIVE_MAX_PROCESSES, 1-19, 8-12,

32-19

LOG_ARCHIVE_START, 32-19

LOG_BUFFER, 7-6, 7-13

LOG_CHECKPOINT_INTERVAL, 32-13

LOG_CHECKPOINT_TIMEOUT, 32-13

MTS_MAX_SERVERS, 8-19, 8-20

MTS_SERVERS, 8-19

NLS_LANGUAGE, 11-20

NLS_NUMERIC_CHARACTERS, 12-9

NLS_SORT, 11-20

OPEN_CURSORS, 7-9, 16-7

OPEN_LINKS, 7-15

OPTIMIZER_FEATURES_ENABLE, 23-17,

23-36, 24-12

OPTIMIZER_MODE, 23-31

OPTIMIZER_PERCENT_PARALLEL, 22-8

PARALLEL_MAX_SERVERS, 26-8

PARALLEL_MIN_PERCENT, 26-18

PARALLEL_MIN_SERVERS, 26-7, 26-8

PARALLEL_SERVER, 5-6

REMOTE_DEPENDENCIES_MODE, 21-11

ROLLBACK_SEGMENTS, 4-27

SERVICE_NAMES, 6-6

SHARED_MEMORY_ADDRESS, 7-13

SHARED_POOL_SIZE, 7-6, 7-13

SKIP_UNUSABLE_INDEXES, 21-8

SORT_AREA_RETAINED_SIZE, 7-16

SORT_AREA_SIZE, 4-18, 7-16, 24-9

SQL_TRACE, 8-15

STAR_TRANSFORMATION_ENABLED, 24-19

TRANSACTIONS, 4-27

TRANSACTIONS_PER_ROLLBACK_SEGMENT,

4-27

USE_INDIRECT_DATA_BUFFERS, 7-14

initially deferred constraints, 28-21

initially immediate constraints, 28-21

INIT.ORA files, 5-4, 5-5

inline views, 10-16

example, 10-16

inner capture, 14-8

INSERT command, 16-3

direct-load INSERT, 25-2

no-logging mode, 11-58, 25-5, 25-7

free lists and, 4-9

parallelizing INSERT ... SELECT, 26-23

storage for parallel INSERT, 25-8

triggers and, 20-2, 20-6

BEFORE triggers, 20-9

INSERT privilege for object tables, 14-15, 14-16

instance groups for parallel operations, 26-19

instance recovery, 32-4

instance failure, 1-46, 32-4

read-only tablespaces, 32-6

SMON process, 1-19, 8-11, 26-41

See also crash recovery

instances, 1-6

aborting, 5-10, 32-4

acquire rollback segments, 4-26

associating with databases, 5-2, 5-6

defined, 1-16

described, 5-2

diagrammed, 8-6

failure in, 1-46, 32-4

instance groups, 26-19

memory structures of, 7-2

multiple-process, 8-2

overview of, 1-6

process structure, 8-2

recovery of, 5-10, 32-4

Fast-Start Checkpointing, 32-13

opening a database, 5-8

SMON process, 8-11

restricted mode, 5-6

service names, 6-6

sharing databases, 1-8

shutting down, 5-9, 5-10

audit record, 31-5

starting, 5-5

audit record, 31-5

system identifiers (SIDs), 6-6

virtual memory, 7-17

INSTEAD OF triggers, 20-12

nested tables, 15-5
Index-21

object views, 15-5

integrity constraints, 28-2

default column values and, 10-8

See also constraints

integrity rules, 1-22

parallel DML restrictions, 26-45

Inter-Language Method Services (ILMS), 16-20

INTERNAL connection, 5-3

statement execution not audited, 31-5

internal errors tracked in trace files, 8-14

inter-operator parallelism, 26-13

INTERSECT operator

compound queries, 23-4

example, 23-29

optimizing view queries, 23-16

intra-operator parallelism, 26-13

INVALID status, 21-2

invoker rights, 18-9

name resolution, 18-19

procedure security, 30-8

supplied packages, 30-8

IS NULL predicate, 10-8

ISO SQL standard, 1-3, 12-22

composite foreign keys, 28-16

isolation levels

choosing, 27-12

read committed, 27-8

setting, 27-7, 27-31

J
Java

triggers, 20-1, 20-7

job queue processes (SNPn), 1-20, 8-13

message propagation, 19-10

JOB_QUEUE_PROCESSES parameter, 19-10

jobs, 8-2

join views, 10-15

joins

anti-joins, 24-13

Cartesian products, 23-3

cluster, 10-48, 23-38, 24-5

searches on, 23-40

convert to subqueries, 23-13

cross, 23-3

defined, 23-3

encapsulated in views, 1-24, 10-13

equijoins, 23-3

execution plans and, 24-2

hash joins, 24-7

index joins, 23-36, 23-49

join order

execution plans, 22-2

selectivity of predicates, 22-8, 22-17

nested loops, 24-2

cost-based optimization, 24-8

nonequijoins, 23-3

optimization of, 24-9

outer, 23-3

non-null values for nulls, 24-11

partition-wise, 11-5

sample table scan not supported, 23-34

select-project-join views, 23-15

semi-joins, 24-13

sort-merge, 24-4

cost-based optimization, 24-9

example, 23-46

star joins, 24-14

star queries, 24-14

views, 1-25, 10-15

K
key compression, 10-29

keys

cluster, 1-27, 10-48

defined, 28-9

foreign, 28-13

hash, 10-53, 10-57

in constraints, 1-58

indexes and, 10-23

compression, 10-29

PRIMARY KEY constraints, 28-12

reverse key, 10-31

UNIQUE constraints, 28-10

key values, 1-59

maximum storage for values, 10-23

parent, 28-13, 28-15

primary, 28-11

referenced, 1-59, 28-13
Index-22

reverse key indexes, 10-31

searches, 23-39

unique, 28-8

composite, 28-9, 28-11

L
large pool, 7-12

overview of, 1-16

latches

described, 27-30

LRU, 8-8

LCK0 background process, 1-20, 8-13

leaf blocks, 10-28

leaf-level attributes, 14-18

leaf-level scalar attributes, 14-18

least recently used (LRU) algorithm

database buffers and, 7-3

dictionary cache, 2-4

full table scans and, 7-4

latches, 8-8

shared SQL pool, 7-8, 7-10

LGWR background process, 8-9

See also log writer process

library cache, 7-6, 7-7, 7-10

LICENSE_MAX_SESSIONS parameter, 29-20

LICENSE_SESSIONS_WARNING

parameter, 29-20

licensing

concurrent usage, 29-20

named user, 29-21

viewing current limits, 29-20

LIKE, 23-5

links, 33-6

listener processes, 6-6, 8-14

service names, 6-6

LISTENER.ORA file, 6-6

literal invocation

constructor methods, 14-4

LOB datatypes, 12-12

BFILE, 12-14

BLOBs, 12-13

CLOBs and NCLOBs, 12-13

default logging mode, 25-7

NOLOGGING mode, 25-7

restrictions

parallel DDL, 26-31

parallel DML, 26-44

local databases, 1-35

local indexes, 11-29, 11-34

bitmap indexes

on partitioned tables, 10-36

parallel query and DML, 10-33

building partitions in parallel, 11-30

equipartitioning, 11-29

managing partitions, 11-59

locally-managed tablespaces, 3-8

temporary tablespaces, 3-13

location transparency, 1-35

lock process (LCK0), 1-20, 8-13

LOCK TABLE command, 16-4

LOCK_SGA parameter, 7-13, 7-17

locks, 1-32, 27-3

after committing transactions, 17-6

automatic, 1-32, 27-15, 27-19

conversion, 27-16

data, 27-20

duration of, 27-15

deadlocks, 27-17, 27-18

avoiding, 27-19

dictionary, 27-28

clusters and, 27-29

duration of, 27-29

dictionary cache, 27-30

DML acquired, 27-27

diagrammed, 27-25

DML partition locks, 11-45

escalation does not occur, 27-17

exclusive table locks (X), 27-25

file management locks, 27-30

how Oracle uses, 27-15

internal, 27-29

latches and, 27-30

log management locks, 27-30

manual, 1-33, 27-31

examples of behavior, 27-32

object level locking, 13-15

Oracle Lock Management Services, 27-39

overview of, 1-32, 27-3

parallel cache management (PCM), 27-20
Index-23

parallel DML, 26-42

parse, 16-11, 27-29

rollback segment, 27-30

row (TX), 27-20

block-level recovery, 32-14

row exclusive locks (RX), 27-23

row share table locks (RS), 27-23

share row exclusive locks (SRX), 27-25

share table locks (S), 27-24

share-subexclusive locks (SSX), 27-25

subexclusive table locks (SX), 27-23

subshare table locks (SS), 27-23

table (TM), 27-21

table lock modes, 27-22

tablespace, 27-30

types of, 27-19

log entries, 1-12, 32-9

See also redo log files, 1-12

log management locks, 27-30

log sequence numbers, 1-48

log switch

ALTER SYSTEM SWITCH LOGFILE, 8-12

archiver process, 1-19, 8-12

log writer process (LGWR), 1-19, 8-9

archiving modes, 32-18

group commits, 8-10

manual archiving and, 32-20

redo log buffers and, 7-6

starting new ARCn processes, 8-12

system change numbers, 17-6

write-ahead, 8-9

LOG_ARCHIVE_MAX_PROCESSES

parameter, 1-19, 8-12

automatic archiving, 32-19

LOG_ARCHIVE_START parameter, 32-19

LOG_BUFFER parameter, 7-6

system global area size and, 7-13

LOG_CHECKPOINT_INTERVAL

parameter, 32-13

LOG_CHECKPOINT_TIMEOUT parameter, 32-13

logging mode

direct-load INSERT, 25-5

NOARCHIVELOG mode and, 25-5

parallel DDL, 26-31, 26-32

partitions, 11-58

SQL operations affected by, 25-7

logical blocks, 4-2

logical database structures, 1-5, 1-9

tablespaces, 3-6

logical reads limit, 29-17

logical rowids, 12-20

index on index-organized table, 10-39

physical guesses, 10-39, 12-20

staleness of guesses, 12-21

statistics for guesses, 12-21

LONG datatype

automatically the last column, 10-7

defined, 12-7

partitioning restriction, 11-14

storage of, 10-7

LONG RAW datatype, 12-14

indexing prohibited on, 12-15

partitioning restriction, 11-14

similarity to LONG datatype, 12-15

lookup tables

star queries, 24-14

LOW_VALUE statistics, 23-52

LRU, 7-3, 7-4, 8-8

dictionary cache, 2-4

latches, 8-8

shared SQL pool, 7-8, 7-10

M
manual locking, 1-33, 27-31

map methods, 1-57, 13-7

massively parallel processing (MPP)

affinity, 26-6, 26-48, 26-49

multiple Oracle instances, 5-3

parallel SQL execution, 26-2

master definition sites, 34-5

master groups, 34-5

master sites, 34-5

matching foreign keys

full, partial, or none, 28-16

materialized view logs, 10-18

materialized views, 10-17

deallocating extents, 4-15

materialized view logs, 10-18

overview, 1-25
Index-24

partitioned, 10-18, 11-2

refreshing, 10-18

same as snapshots, 1-25, 34-3

MAXEXTENTS UNLIMITED storage

parameter, 26-40

MAXVALUE

partitioned tables and indexes, 11-20

media failure, 1-46, 32-5

memory

allocation for SQL statements, 7-11

content of, 7-2

cursors (statement handles), 1-17

extended buffer cache (32-bit), 7-14

overview of structures in, 1-14

processes use of, 8-2

shared SQL areas, 7-8

software code areas, 7-17

sort areas, 7-16

stored procedures, 18-8, 18-17

structures in, 7-2

system global area (SGA)

allocation in, 7-2

initialization parameters, 7-12, 7-13

locking into physical memory, 7-13, 7-17

SGA size, 7-12

starting address, 7-13

virtual, 7-17

See also system global area

MERGE hint, 23-17

MERGE_AJ hint, 24-13

MERGE_SJ hint, 24-13

merging complex views, 23-17

merging partitions, 11-16

merging views into statements, 23-15

message queuing, 19-2

exporting queue tables, 19-12

messages, 19-4

publish/subscribe support, 19-10

event publication, 20-18

queue monitor process, 1-20, 8-13, 19-6

interval statistics, 19-11

window of execution, 19-7

queue tables, 19-4

recipients, 19-5

rule-based subscriptions, 19-5, 19-6

subscription lists, 19-5

remote databases, 19-9

methods

comparison methods, 13-6

constructor methods, 13-6

literal invocation, 14-4

privileges on, 30-11

methods of collections

constructor methods, 1-57

methods of object types, 1-57, 13-4

constructor methods, 1-57, 14-18

execution privilege for, 14-13

map methods, 1-57, 13-7

order methods, 1-57, 13-7

PL/SQL, 13-14

purchase order example, 13-2, 13-5

selfish style of invocation, 13-6

use of empty parentheses with, 14-9

MINIMUM EXTENT

parallel DML, 25-9, 25-10

MINIMUM EXTENT parameter, 26-33

MINUS operator

compound queries, 23-4

optimizing view queries, 23-16

mobile computing environment

materialized views, 10-17

modes

archive log, 32-18

table lock, 27-22

two-task, 8-3

MODIFY CONSTRAINT option, 28-23

monitoring user actions, 1-44, 31-2

MOVE PARTITION command

no-logging mode, 11-58, 25-7

rules of parallelism, 26-25

MPP

See massively parallel processing

MTS_MAX_SERVERS parameter, 8-19

artificial deadlocks and, 8-20

MTS_SERVERS parameter, 8-19

multiblock writes, 8-8

multimaster replication, 34-6

multimedia datatypes, 13-3

multiple-process systems (multiuser systems), 8-2
Index-25

multiplexing

control files, 1-49, 32-22

recovery and, 32-5

redo log files, 1-48

multi-threaded server, 8-16

artificial deadlocks in, 8-19

dedicated server contrasted with, 8-16

described, 8-3, 8-16

dispatcher processes, 1-20, 8-14

example of use, 8-20

limiting private SQL areas, 29-18

Net8 or SQL*Net V2 requirement, 8-14, 8-16

parallel SQL execution, 26-8

private SQL areas, 7-9

sort areas, 7-16

processes needed for, 8-16

restricted operations in, 8-20

server processes, 1-18, 8-14, 8-19

session information, 7-14

session memory in the large pool, 7-12

shared server processes, 8-14, 8-19

multiuser environments, 1-2, 8-2

multiverison consistency model, 1-31

multiversion concurrency control, 27-5

mutating errors and triggers, 20-22

N
name resolution for procedures, 18-19

name resolution in distributed databases, 33-6

named user licensing, 29-21

National Language Support (NLS)

character sets for, 12-6

CHECK constraints and, 28-18

clients and servers may diverge, 33-20

DATE datatype and partitions, 11-14, 11-21

NCHAR and NVARCHAR2 datatypes, 12-6

NCLOB datatype, 12-13

parameters, 5-5

views and, 10-14

NCHAR datatype, 12-6

NCLOB datatype, 12-13

nested loops joins, 24-2

cost-based optimization, 24-8

nested tables, 10-9, 13-12

indexes, 14-6

index-organized tables, 10-38

key compression, 10-30

INSTEAD OF triggers, 15-5

restrictions, 26-30

updating in views, 15-5

Net8, 1-7, 1-37, 6-5, 33-4

Advanced Security option, 33-18

applications and, 6-5

client/server systems use of, 6-5

multi-threaded server requirement, 8-14, 8-16

overview of, 6-5

network listener process, 6-6

connection requests, 8-14, 8-16

dedicated server example, 8-24

multi-threaded server example, 8-20

service names, 6-6

networks

client/server architecture use of, 6-2

communication protocols, 6-5, 8-26

dispatcher processes and, 8-14, 8-16

distributed databases, 33-4

distributed databases use of’, 33-2

drivers, 8-26

failures of, 32-3

listener processes of, 6-6, 8-14

Net8, 6-5, 33-4

network authentication service, 29-4

Oracle Names, 33-4

two-task mode and, 8-23

using Oracle on, 1-7, 1-37

NEXT storage parameter

parallel direct-load INSERT, 25-9

calculating value, 25-9

NLS

See National Language Support

NLS_DATE_FORMAT parameter, 12-10

NLS_LANG environment variable, 11-20

NLS_LANGUAGE parameter, 11-20

NLS_NUMERIC_CHARACTERS parameter, 12-9

NLS_SORT parameter

no effect on partitioning keys, 11-20

ORDER BY access path, 23-47

NOARCHIVELOG mode, 32-18

database backups for recovery, 32-24
Index-26

defined, 32-18

LOGGING mode and, 25-5

overview, 1-48

NOAUDIT command, 16-4

locks, 27-29

nodes

disk affinity in a Parallel Server, 26-48

of distributed databases, 1-35

NOLOGGING mode

direct-load INSERT, 25-5

parallel DDL, 26-31, 26-32

partitions, 11-58

SQL operations affected by, 25-7

nonequijoins

defined, 23-3

non-persistent queues, 19-10

nonprefixed indexes, 11-31, 11-35

global partitioned indexes, 11-33

nonrepeatable reads, 27-3, 27-10

nonunique indexes, 10-22

NOREVERSE option for indexes, 10-31

normalized tables, 1-29, 10-19

star schemas, 24-15

NOT, 23-7

NOT IN subquery, 24-13

NOT NULL constraints

constraint checking, 28-20

defined, 28-7

implied by PRIMARY KEY, 28-12

UNIQUE keys and, 28-11

NOVALIDATE constraints, 28-22

Novell’s NetWare Management System, 33-20

nulls

as default values, 10-8

atomic, 14-3

column order and, 10-7

converting to values, 10-8

optimization, 24-11

defined, 10-7

foreign keys and, 28-15, 28-16

how stored, 10-7

indexes and, 10-8, 10-24, 10-35

inequality in UNIQUE key, 28-11

non-null values for, 10-8, 24-11

object types, 14-3

partitioned tables and indexes, 11-21

prohibited in primary keys, 28-11

prohibiting, 28-7

UNIQUE key constraints and, 28-11

unknown in comparisons, 10-8

NUM_DISTINCT column

USER_TAB_COLUMNS view, 23-52

NUM_ROWS column

USER_TABLES view, 23-52

NUMBER datatype, 12-8

internal format of, 12-9

rounding, 12-9

NVARCHAR2 datatype, 12-6

NVL function, 10-8

O
object cache

object views, 15-4

OCI, 13-14

privileges, 14-16

Pro*C, 13-14

object identifiers, 15-3

for object types, 14-18

for object views, 15-3, 15-4

WITH OBJECT OID clause, 15-3, 15-4

object privileges, 30-3

See also schema object privileges

object tables, 13-3, 13-7

constraints, 14-5

indexes, 14-6

row objects, 13-8

triggers, 14-6

virtual object tables, 15-2

object types, 1-22, 13-2, 13-4

attributes of, 13-2, 13-4

column objects, 13-8

indexes, 14-6

comparison methods for, 13-6

constructor methods for, 1-57, 13-6, 14-18

incomplete, 14-17

locking in cache, 13-15

message queuing, 19-6

methods of, 1-57, 13-4

method calls, 14-9
Index-27

PL/SQL, 13-14

purchase order example, 13-2, 13-5

mutually dependent, 14-16

object views, 10-16

Oracle type translator, 13-15

parallel query, 26-29

restrictions, 26-30

purchase order example, 13-2, 13-4

restrictions

parallel DDL, 26-31

parallel DML, 26-44

row objects, 13-8

use of table aliases, 14-8

object views, 10-16, 15-1

advantages of, 15-2

defining, 15-3

modifiability, 20-12

nested tables, 15-5

object identifiers for, 15-3, 15-4

updating, 15-5

use of INSTEAD OF triggers with, 15-5

object-relational DBMS (ORDBMS), 1-22, 13-2

objects

privileges on, 30-11

objects in a database schema, 1-5

See also schema objects

OCI, 8-25

anonymous blocks, 16-17

bind variables, 16-13

object cache, 13-14

OCIObjectFlush, 15-4

OCIObjectPin, 15-4

stored procedures, 16-18

ODCIIndex, 10-43

offline backups

whole database backup, 32-23

offline redo log files, 1-48, 32-7

OIDs, 14-18, 15-3, 15-4

collections

key compression, 10-30, 10-38

WITH OBJECT OID clause, 15-3, 15-4

OLTP database, 11-5

batch jobs, 26-38

parallel DML, 26-37

partitioning indexes, 11-36

partitions, 11-6

online analytical processing (OLAP)

index-organized tables, 10-42

online redo log, 1-47, 32-7

archiving, 32-18, 32-19

checkpoints, 32-22

media failure, 32-5

multiplexed, 32-5

recorded in control file, 32-21

online transaction processing (OLTP), 11-5

reverse key indexes, 10-31

OPEN_CURSORS parameter, 16-7

managing private SQL areas, 7-9

OPEN_LINKS parameter, 7-15

operating systems

authentication by, 29-4

block size, 4-3

communications software, 8-26

privileges for administrator, 5-3

roles and, 30-22

operations in a relational database, 1-22

OPTIMAL storage parameter, 4-25

optimization, 22-2

choosing the approach, 23-31

conversion of expressions and predicates, 23-4

cost-based, 22-7, 24-8

choosing an access path, 23-50

examples of, 23-51

histograms, 22-8

remote databases and, 23-30

star queries, 24-14

user-defined costs, 22-17

described, 22-2

DISTINCT, 23-17

distributed SQL statements, 23-30

execution plan for partitions, 11-11, 11-14

extensible optimizer, 22-16

function-based indexes, 10-25

GROUP BY views, 23-17

hints, 23-33, 23-36

index build, 10-22

manual, 23-33

merging complex views, 23-17

merging views into statements, 23-15

non-null values for nulls, 24-11
Index-28

operations performed, 23-2

parallel SQL, 26-10

partition pruning, 11-4

indexes, 11-36

partition pruning (elimination), 11-4

partitioned indexes, 11-35

partition-wise joins, 11-5

plan stability, 22-6

PL/SQL, 23-33

query rewrite, 10-17

in security policies, 30-23

rule-based, 22-18, 24-9

choosing an access path, 23-54

examples of, 23-54

selectivity of predicates, 22-8

histograms, 22-8, 22-10

user-defined, 22-17

selectivity of queries and, 23-51

select-project-join views, 23-15

semi-joins, 24-13

statistics, 22-8, 23-32

user-defined, 22-17

transitivity and, 23-8

types of SQL statements, 23-3

without merging, 23-25

OPTIMIZER_FEATURES_ENABLE

parameter, 23-17, 23-36, 24-12

OPTIMIZER_GOAL option, 23-32

OPTIMIZER_MODE, 23-31

hints affecting, 23-33

OPTIMIZER_PERCENT_PARALLEL

parameter, 22-8

Oracle

adherence to standards, 1-3

integrity constraints, 28-5

architecture, 1-8, 1-14

client/server architecture of, 6-2

compatibility, 1-3

compatibility levels, 3-14

configurations of, 8-2

multiple-process Oracle, 8-2

connectibility, 1-2

different Oracle versions, 33-7

data access, 1-51

examples of operations, 1-21

dedicated server, 8-24

multi-threaded server, 8-20

features, 1-2

instances, 1-6, 1-16, 5-2

licensing of, 29-19

Oracle server, 1-4

Parallel Server option, 1-8

See also Parallel Server

portability, 1-3

processes of, 1-17, 8-5

scalability of, 6-4

SQL processing, 16-8

using on networks, 1-2, 1-37

Oracle AQ, 19-1

exporting queue tables, 19-12

message queuing, 19-2

publish/subscribe support, 19-10

event publication, 20-18

queue monitor process, 1-20, 8-13, 19-6

interval statistics, 19-11

window of execution, 19-7

queue tables, 19-4

recipients, 19-5

rule-based subscriptions, 19-5, 19-6

subscription lists, 19-5

remote databases, 19-9

Oracle blocks, 1-10, 4-2

See also data blocks

Oracle Call Interface (OCI), 8-25

anonymous blocks, 16-17

bind variables, 16-13

object cache, 13-14

OCIObjectFlush, 15-4

OCIObjectPin, 15-4

stored procedures, 16-18

Oracle Certificate Authority, 29-5

Oracle code, 8-2, 8-25

Oracle Data Cartridge Interface, 10-43

Oracle Enterprise Manager

See Enterprise Manager

Oracle Forms

object dependencies and, 21-13

PL/SQL, 16-16

Oracle Names

global directory service, 33-4
Index-29

Oracle Open Gateways, 33-8

Oracle Parallel Server, 1-8

See also Parallel Server

Oracle precompilers

anonymous blocks, 16-17

bind variables, 16-13

cursors, 16-11

embedded SQL, 16-5

FIPS flagger, 16-6

stored procedures, 16-18

Oracle program interface (OPI), 8-25

Oracle Replication Manager, 34-15

Oracle Security Manager, 29-5, 33-18

Oracle server, 1-4

See also Oracle

Oracle type translator (OTT), 13-15

Oracle Wallet Manager, 29-5

Oracle wallets, 29-5

Oracle XA

session memory in the large pool, 7-12

Oracle Internet Directory, 29-5

ORDBMS, 1-22, 13-2

order methods, 1-57, 13-7

ORDERED hint, 24-9

OTT, 13-15

outer joins

defined, 23-3

non-null values for nulls, 24-11

OUTLN schema

DBA privileges, 22-6

P
P code, 18-18

packages, 18-4, 18-11

advantages of, 18-15

as program units, 1-56

auditing, 31-8

dynamic SQL, 16-19

examples of, 18-12, 30-9, 30-10

executing, 16-16, 18-18

for locking, 27-39

OUTLN_PKG, 22-6

overview of, 1-26

private, 18-15

privileges

divided by construct, 30-9

executing, 30-7, 30-9

public, 18-15

queuing, 19-4

session state and, 21-6

shared SQL areas and, 7-10

storing, 18-17

supplied packages, 18-16

invoker or definer rights, 30-8

validity of, 18-18

pages, 4-2

parallel backup operations, 32-16

PARALLEL clause

parallelization rules, 26-20

parallel DDL, 26-30

extent allocation, 26-33

functions, 26-46

parallelism types, 26-3

parallelization rules, 26-20

partitioned tables and indexes, 26-31

building local indexes, 11-30

restrictions

LOBs, 26-31

object types, 26-30, 26-31

parallel DELETE, 26-21

parallel DML, 26-35

applications, 26-37

bitmap indexes, 10-33

degree of parallelism, 26-20, 26-23

enabling PARALLEL DML, 26-38

functions, 26-46

lock and enqueue resources, 26-42

parallelism types, 26-3

parallelization rules, 26-20

recovery, 26-40

restrictions, 26-43

object types, 26-30, 26-44

remote transactions, 26-46

rollback segments, 26-40

transaction model, 26-39

parallel execution, 26-2

coordinator, 25-3, 26-6

full table scans, 26-5

inter-operator parallelism, 26-13
Index-30

intra-operator parallelism, 26-13

partitioned tables and indexes, 26-4

server, 25-3, 26-6

index maintenance, 25-8

NEXT extent size, 25-9

temporary segments, 25-8

See also parallel SQL

parallel execution coordinator, 26-6

direct-load INSERT, 25-3

parallel execution servers, 26-6

direct-load INSERT, 25-3

index maintenance, 25-8

NEXT extent size, 25-9

temporary segments, 25-8

PARALLEL hint, 26-17

parallelization rules, 26-20

UPDATE and DELETE, 26-21

parallel query, 26-28

bitmap indexes, 10-33

functions, 26-46

index-organized tables, 26-29

object types, 26-29

restrictions, 26-30

parallelization rules, 26-20

parallel recovery, 32-10, 32-16

Parallel Server, 1-8

concurrency limits and, 29-21

databases and instances, 5-3

disk affinity, 26-48

distributed locks, 27-20

DML locks and performance, 11-47

exclusive mode

rollback segments and, 4-27

file and log management locks, 27-30

instance groups, 26-19

isolation levels, 27-11

lock processes, 1-20, 8-13

mounting a database using, 5-6

named user licensing and, 29-21

parallel SQL, 26-1

PCM locks, 27-20

read consistency, 27-6

reverse key indexes, 10-31

shared mode

rollback segments and, 4-27

system change numbers, 8-10

system monitor process and, 8-11, 26-41

temporary tablespaces, 3-12

PARALLEL SERVER parameter, 5-6

parallel SQL, 26-2

allocating rows to parallel execution

servers, 26-11

coordinator process, 26-6

direct-load INSERT, 25-3

degree of parallelism, 26-16

instance groups, 26-19

multi-threaded server, 26-8

number of parallel execution servers, 26-7

operations in execution plan, 26-10

optimizer, 26-10

Parallel Server and, 26-1

parallelization rules, 26-20

server processes, 26-6

direct-load INSERT, 25-3, 25-8

NEXT extent size, 25-9

summary or rollup tables, 26-31

See also parallel execution

parallel UPDATE, 26-21

PARALLEL_INDEX hint, 26-17

PARALLEL_MAX_SERVERS parameter, 26-8

PARALLEL_MIN_PERCENT parameter, 26-18

PARALLEL_MIN_SERVERS parameter, 26-7, 26-8

parameter files, 5-4

example of, 5-4

used at startup, 5-5

parameters

initialization, 5-4

locking behavior, 27-19

See also initialization parameters

National Language Support, 5-5

storage, 4-5, 4-11

parentheses, use of in method calls, 14-9

parse trees, 18-17

construction of, 16-7

in shared SQL area, 7-8

stored in database, 18-18

parsing, 16-11

DBMS_SQL package, 16-19

embedded SQL, 16-6

parse calls, 16-8
Index-31

parse locks, 16-11, 27-29

performed, 16-8

SQL statements, 16-11, 16-19

partial backups, 32-24

partition elimination, 11-4

PARTITION option, 11-63

partition views, 11-11

PARTITION_VIEW_ENABLED parameter, 11-12

partitioning

LOBs

DML locks, 11-46

maintenance operations, 11-57

tables with LOB columns, 11-38

partitioning columns, 11-15

partitioning keys, 11-15, 11-19

multi-column keys, 11-22

partitions, 11-2, 11-13

advantages of, 11-5, 11-7

affinity, 26-48

basic partitioning model, 11-13

bitmap indexes, 10-36

concurrent maintenance operations, 11-50

DATE datatype, 11-14, 11-21

DML partition locks, 11-45

dynamic partitioning, 26-6

equipartitioning, 11-24

examples, 11-25, 11-30, 11-32

LOB columns, 11-38

local indexes, 11-29

on one dimension, 11-24

overflow of index-organized tables, 11-42,

11-44

range partitioning, 11-24

EXCHANGE PARTITION, 11-11

execution plan, 11-11, 11-14

global indexes, 11-32, 11-60

hash partitioning, 11-16

local indexes, 11-29, 11-59

building in parallel, 11-30

LONG and LONG RAW restriction, 11-14

maintenance operations, 11-48

materialized views, 10-18, 11-2

merging, 11-16

no-logging mode, 25-7

nonprefixed indexes, 11-31, 11-35

OLTP databases, 11-6

parallel DDL, 26-31

parallel queries, 26-4

partition bounds, 11-20

partition elimination, 11-4

partition names, 11-18

partition pruning, 11-4

DATE datatype, 11-22

disk striping and, 26-48

indexes, 11-36

parallelizing by block range, 26-4

partition transparency, 11-10

partition-extended table names, 11-63

partitioning indexes, 11-29, 11-36

partitioning keys, 11-15, 11-19

partitioning tables, 11-27

partition-wise joins, 11-5

physical attributes, 11-27, 11-37

prefixed indexes, 11-30

range partitioning, 11-15

disk striping and, 26-48

rebuild partition, 11-60

referencing a partition, 11-19

restrictions

bitmap indexes, 11-14

datatypes, 11-14, 11-21

partition-extended table names, 11-64

rules of parallelism, 26-25, 26-27

segments, 4-17

statistics, 11-14, 22-11

VLDB, 11-5

partition-wise joins, 11-5

passwords

account locking, 29-7

administrator privileges, 5-3

complexity verification, 29-8

connecting with, 8-4

connecting without, 29-4

database user authentication, 29-7

encryption, 29-7

expiration, 29-8

password files, 29-13

password reuse, 29-8

used in roles, 1-42
Index-32

PCTFREE storage parameter

how it works, 4-6

PCTUSED and, 4-8

PCTINCREASE storage parameter

parallel DML, 25-9, 25-10

PCTUSED storage parameter

how it works, 4-6

PCTFREE and, 4-8

performance

clusters and, 10-48

constraint effects on, 28-6

DSS database, 11-9, 26-37

dynamic performance tables (V$), 2-7

group commits, 8-10

index build, 10-22

I/O, 11-9

Oracle Parallel Server and DML locks, 11-47

packages, 18-16

parallel recovery and, 32-11

partitions, 11-9

prefixed and nonprefixed indexes, 11-35

recovery, 32-13

resource limits and, 29-16

SGA size and, 7-12

sort operations, 3-12

structures that improve, 1-26, 1-27

viewing execution plans, 22-4

persistent areas, 7-8

persistent queuing, 19-2

PGA, 1-17, 7-14

multi-threaded server, 8-19

phantom reads, 27-3, 27-10

physical database structures, 1-5, 1-11

control files, 1-13, 32-21

datafiles, 1-12, 3-16

redo log files, 1-12, 32-7

physical guesses in logical rowids, 12-20

staleness, 12-21

statistics for, 12-21

PKI, 29-5

plan

accessing views, 23-19, 23-22, 23-23

complex statements, 23-14

compound queries, 23-27, 23-28, 23-29

joining views, 23-25

joins, 24-2, 24-8

OR operators, 23-12

SQL execution, 16-4, 16-11

star transformation, 24-18

plan stability for optimization, 22-6

PL/SQL, 16-15

anonymous blocks, 16-15, 18-9

auditing of statements within, 31-4

bind variables

user-defined types, 13-14

database triggers, 1-59, 20-1

datatypes, 12-2

deterministic functions, 23-9

dynamic SQL, 16-19

exception handling, 16-18

executing, 16-15, 18-18, 18-19

external procedures, 16-20, 18-11

language constructs, 16-17

object views, 15-4

optimizer goal, 23-33

overview of, 1-55, 16-15

packages, 18-4, 18-11

parse locks, 27-29

parsing DDL statements, 16-19

partition-extended table names, 11-65

PL/SQL engine, 16-15, 18-2

compiler, 18-17

executing a procedure, 18-19

products containing, 16-16

program units, 1-25, 7-10, 16-15, 18-2

compiled, 16-16, 18-9, 18-17

shared SQL areas and, 7-10

roles in procedures, 30-20

stored procedures, 1-25, 16-15, 18-2, 18-6

user locks, 27-39

user-defined datatypes, 13-13

PMON background process, 8-11

See also process monitor process

point-in-time recovery

clone database, 5-7

portability, 1-3

precompilers

anonymous blocks, 16-17

bind variables, 16-13

cursors, 16-11
Index-33

embedded SQL, 16-5

FIPS flagger, 16-6

stored procedures, 16-18

predicates

dynamic

in security policies, 30-23

optimizing view queries, 23-15

partition pruning, 11-4

indexes, 11-36

pushing into a view, 23-18, 23-23

examples, 23-19, 23-21

selectivity, 22-8

histograms, 22-8, 22-10

user-defined, 22-17

prefixed indexes, 11-30, 11-34

prefixes of data dictionary views, 2-5

PRIMARY KEY constraints, 28-11

constraint checking, 28-20

described, 28-11

indexes used to enforce, 28-12

name of, 28-12

maximum number of columns, 28-12

NOT NULL constraints implied by, 28-12

primary keys, 1-59, 28-11

advantages of, 28-11

defined, 28-3

optimization, 23-14

searches, 23-40

private rollback segments, 4-26

private SQL areas

cursors and, 7-9

described, 7-8

how managed, 7-9

persistent areas, 7-8

runtime areas, 7-8

privileges

administrator, 5-3

connections audited, 31-5

OUTLN schema, 22-6

statement execution not audited, 31-5

auditing use of, 1-44, 31-7

checked when parsing, 16-11

function-based indexes, 10-26, 21-8

granting, 1-41, 30-3, 30-4

examples of, 30-9, 30-10

grouping into roles, 1-41

overview of, 1-41, 30-2

partitioned tables and indexes, 11-62

procedures, 30-7

creating and altering, 30-9

executing, 18-18, 30-7

in packages, 30-9

RESTRICTED SESSION, 29-20

revoked

object dependencies and, 21-6

revoking, 30-3, 30-4

roles, 30-16

restrictions on, 30-20

schema object, 30-3

DML and DDL operations, 30-5

granting and revoking, 30-4

overview of, 1-41

packages, 30-9

procedures, 30-7

system, 30-2

granting and revoking, 30-3

overview of, 1-41

user-defined types, 14-13

to start up or shut down a database, 5-3

trigger privileges, 30-8

user-defined types

acquired by role, 14-13

ALTER ANY TYPE, 14-13

checked when pinning, 14-16

column level for object tables, 14-16

CREATE ANY TYPE, 14-13

CREATE TYPE, 14-13

DELETE, 14-15, 14-16

DROP ANY TYPE, 14-13

EXECUTE, 14-13, 14-14

EXECUTE ANY TYPE, 14-13, 14-14

EXECUTE ANY TYPE with ADMIN

OPTION, 14-14

EXECUTE with GRANT option, 14-14

INSERT, 14-15, 14-16

SELECT, 14-15, 14-16

system privileges, 14-13

UPDATE, 14-15, 14-16

using, 14-13, 14-17
Index-34

views, 30-6

creating, 30-6

using, 30-6

Pro*C/C++

processing SQL statements, 16-10

user-defined datatypes, 13-14

procedural replication, 34-15

detecting conflicts, 34-16

wrapper, 34-16

procedure calls

remote, 33-12

procedures, 16-15, 18-1, 18-6, 21-8

advantages of, 18-7

auditing, 31-8

contrasted with anonymous blocks, 18-9

contrasted with functions, 1-56, 18-2

current user, 18-10

cursors and, 16-18

definer rights, 18-9, 30-7

roles disabled, 30-20

dependency tracking in, 21-6

deterministic functions, 23-9

examples of, 18-6, 30-9, 30-10

executing, 16-16, 18-18

external procedures, 16-20, 18-11

external reference in, 18-10, 18-19

INVALID status, 21-2, 21-6

invoker rights, 18-9, 30-8

roles used, 30-20

supplied packages, 30-8

prerequisites for compilation of, 21-5

privileges

create or alter, 30-9

executing, 30-7

executing in packages, 30-9

remote procedure calls, 33-12

security enhanced by, 18-7, 30-8

shared SQL areas and, 7-10

stored procedures, 16-15, 16-18, 18-2

storing, 18-17

supplied packages, 18-16

invoker or definer rights, 30-8

triggers, 20-2

validity of, 18-18

process global area (PGA), 7-14

See also program global area

process monitor process (PMON)

cleans up timed-out sessions, 29-18

described, 1-19, 8-11

network failure, 32-3

parallel DML process recovery, 26-41

process failure, 32-3

processes, 8-2

archiver (ARCn), 1-19, 8-12, 32-19

background, 1-18, 8-5

diagrammed, 8-6

block server (BSP), 27-6

checkpoint (CKPT), 1-19, 8-11

checkpoints and, 8-8

database writer (DBWn), 1-18, 8-8

dedicated server, 8-19

dispatcher (Dnnn), 1-20, 8-14

distributed transaction resolution, 8-12

during recovery, 32-12

failure in, 32-3

job queue (SNPn), 1-20, 8-13

message propagation, 19-10

listener, 6-6, 8-14

shared servers and, 8-16

lock (LCK0), 1-20, 8-13

log writer (LGWR), 1-19, 8-9

multiple-process Oracle, 8-2

multi-threaded server, 8-16

artificial deadlocks and, 8-19

client requests and, 8-17

Oracle, 1-17, 8-5

overview of, 1-17

parallel execution coordinator, 26-6

direct-load INSERT, 25-3

parallel execution servers, 26-6

direct-load INSERT, 25-3, 25-8

NEXT extent size, 25-9

process monitor (PMON), 1-19, 8-11

queue monitor (QMNn), 1-20, 8-13, 19-6

recoverer (RECO), 1-20, 8-12

and in-doubt transactions, 1-36

server, 1-18, 1-34, 8-5

dedicated, 8-22

shared, 8-14, 8-19

shadow, 8-22
Index-35

structure, 8-2

system monitor (SMON), 1-19, 8-11

trace files for, 8-14

user, 1-17, 8-4

allocate PGAs, 7-14

manual archiving by, 32-21

recovery from failure of, 8-11

sharing server processes, 8-14

processing

DDL statements, 16-14

distributed, 1-33

DML statements, 16-10

overview, 16-8

parallel SQL, 26-2

queries, 16-12

profiles

overview of, 1-43

password management, 29-7

when to use, 29-18

program global area (PGA), 1-17, 7-14

allocation of, 7-14

contents of, 7-14

multi-threaded servers, 8-19

nonshared and writable, 7-14

size of, 7-15

program interface, 8-25

Oracle side (OPI), 8-25

overview of, 1-20

structure of, 8-25

two-task mode in, 8-23

user side (UPI), 8-25

program units, 1-25, 16-15, 18-2

prerequisites for compilation of, 21-5

shared pool and, 7-10

propagation scheduling capabilities, 19-10

pruning partitions, 11-4, 26-4, 26-48

DATE datatype, 11-22

EXPLAIN PLAN, 11-22

index partitions, 11-4

indexes, 11-36

pseudocode, 18-18

triggers, 20-25

pseudocolumns

CHECK constraints prohibit

LEVEL and ROWNUM, 28-18

modifying views, 20-13

ROWID, 12-15

ROWNUM

cannot use indexes, 23-49

optimizing view queries, 23-16, 23-25

USER, 30-7

public key infrastructure, 29-5

public rollback segments, 4-26

PUBLIC user group, 29-14, 30-19

validity of procedures, 18-19

publication

DDL statements, 20-20

DML statements, 20-20

logon/logoff events, 20-19

system events

server errors, 20-19

startup/shutdown, 20-19

using triggers, 20-18

publish/subscribe support, 19-10

asynchronous notification, 19-11

event publication, 20-18

listen capability, 19-11

message propagation, 19-9

rule-based subscriber, 19-6

triggers, 20-18

purchase order example

object types, 13-2, 13-4

PUSH_JOIN_PRED hint, 24-12

Q
QMNn background process, 1-20, 8-13, 19-6

interval statistics, 19-11

window of execution, 19-7

queries

ad hoc, 26-31

composite indexes, 10-22

compound

defined, 23-4

optimization of, 23-27

ORs converted to, 23-10

default locking of, 27-26

define phase, 16-12

defined, 23-3

describe phase, 16-12
Index-36

distributed or remote, 33-11

fetching rows, 16-12

in DML, 16-3

index scans parallelized by partition, 26-5

inline views, 10-16

location transparency and, 33-15

merged with view queries, 10-14

optimizing IN subquery, 23-17

optimizing view queries, 23-15

parallel processing, 26-2

phases of, 27-5

processing, 16-12

read consistency of, 1-32, 27-5

SAMPLE clause

cost-based optimization, 22-16

selectivity of, 23-51

star queries, 24-14

stored as views, 1-24, 10-11

table scans parallelized by rowid, 26-4

temporary segments and, 4-18, 16-12

triggers use of, 20-23

query rewrite, 10-17

dynamic predicates in security policies, 30-23

queue monitor process (QMNn), 1-20, 8-13, 19-6

interval statistics, 19-11

window of execution, 19-7

queuing, 19-2

exception handling, 19-11

exporting queue tables, 19-12

instance affinity, 19-10

publish/subscribe support, 19-10

event publication, 20-18

queue level access control, 19-9

queue monitor process, 1-20, 8-13, 19-6

interval statistics, 19-11

window of execution, 19-7

queue tables, 19-4, 19-12

recipients, 19-5

rule-based subscriptions, 19-5, 19-6

subscription lists, 19-5

remote databases, 19-9

quotas

revoking tablespace access and, 29-14

setting to zero, 29-14

SYS user not subject to, 29-14

tablespace, 1-43, 29-13

temporary segments ignore, 29-14

R
RADIUS, 29-6

range partitioning, 11-15

and primary key columns, 11-42

equipartitioning, 11-24

key comparison, 11-20, 11-22

partition bounds, 11-20

RAW datatype, 12-14

RAWTOHEX function, 12-23

RDBMS, 1-22

object-relational DBMS, 1-22, 13-2

See also Oracle

read committed isolation, 27-6, 27-8

read consistency, 27-2, 27-4

Cache Fusion, 27-6

defined, 1-31

dirty read, 27-2, 27-10

multiversion consistency model, 1-31, 27-4

nonrepeatable read, 27-3, 27-10

Oracle Parallel Server, 27-6

phantom read, 27-3, 27-10

queries, 16-12, 27-4

rollback segments and, 4-20

snapshot too old message, 27-5

statement level, 27-5

subqueries in DML, 27-14

transactions, 1-31, 27-4, 27-6

triggers and, 20-21, 20-23

READ ONLY option

ALTER TABLESPACE, 3-10

read snapshot time, 27-10

read uncommitted, 27-3

READ WRITE option

ALTER TABLESPACE, 3-11

readers block writers, 27-10

read-only databases

opening, 5-9

read-only replication

uses of, 34-11

read-only snapshot, 34-8

read-only tablespaces
Index-37

backing up, 32-26

described, 3-10

restrictions on, 3-12

transition read-only mode, 3-11

read-only transactions, 1-32

reads

data block

limits on, 29-17

dirty, 27-2

repeatable, 27-6

real-time

data replication, 34-16

replication, 34-16

REBUILD INDEX command

no-logging mode, 11-58, 25-7

rules of parallelism, 26-25

REBUILD INDEX PARTITION command, 11-60

no-logging mode, 25-7

rules of parallelism, 26-25

recipients, 19-5

subscription lists, 19-5

recoverer process (RECO), 1-20, 8-12

in-doubt transactions, 1-36, 5-8, 17-8

recovery

basic steps, 1-50, 32-9

block-level recovery, 27-21, 32-14

crash recovery, 1-46, 32-4, 32-13

instance failure, 5-10

opening a database, 5-8

read-only tablespaces, 32-6

required after aborting instance, 5-10

SMON process, 1-19, 8-11

database buffers and, 32-8

dead transactions, 32-4

diagrammed, 32-13

disaster recovery, 32-26

distributed processing in, 8-12

instance recovery, 32-4

Fast-Start Checkpointing, 32-13

instance failure, 1-46, 32-4

parallel DML, 26-41

read-only tablespaces, 32-6

SMON process, 1-19, 8-11, 26-41

media recovery

dispatcher processes, 8-20

enabled or disabled, 32-18

of distributed transactions, 5-8

overview of, 1-45, 32-8

parallel DML, 26-40

parallel recovery, 32-10

parallel restore, 32-16

point-in-time

clone database, 5-7

process recovery, 8-11, 32-3

recommendations for, 32-13

Recovery Manager, 1-51, 32-15

rolling back transactions, 32-9

rolling forward, 32-9

standby database, 32-26

statement failure, 32-3

structures used in, 1-47, 32-6

whole database backups, 32-24

Recovery Manager, 1-51, 32-15

generating reports, 32-17

operating without a catalog, 32-16

parallel operations, 32-16

parallel recovery, 32-11

recovery catalog, 32-15

recursive SQL

cursors and, 16-7

redo entries, 1-12, 32-9

redo log, 1-12, 32-9

archiving modes, 32-18

rolling forward, 32-8, 32-9

instance failure, 32-4

redo log buffers, 1-16, 7-6

circularity, 8-9

committing a transaction, 8-10

log writer process and, 7-6

size of, 7-6

writing, 8-9

redo log entries

committed data, 32-8, 32-9

uncommitted data, 32-9

redo log files, 1-12, 32-7

archived, 1-48, 32-18

automatically, 32-19

errors in archiving, 32-20

manually, 32-20

archiver process (ARCn), 1-19, 8-12
Index-38

buffer management, 8-9

files named in control file, 32-21

log sequence numbers, 1-48

recorded in control file, 32-22

log switch

ALTER SYSTEM SWITCH LOGFILE, 8-12

archiver process, 1-19, 8-12

log writer process, 8-9

mode of, 1-48

multiplexed, 1-48

purpose of, 1-12

online or offline, 1-47, 1-48, 32-7

overview of, 1-12, 1-47

parallel recovery, 32-10

physical database structure, 1-5

recovery and, 32-7

redo entries, 1-12, 32-9

rolling forward and, 32-9

when temporary segments in, 4-19

written before transaction commit, 8-10

redo records, 1-12

referenced

keys, 1-59, 28-13

objects

dependencies, 21-2

external reference, 18-10, 18-19

partitions, 11-19

REFERENCES privilege

when granted through a role, 30-21

referential integrity, 27-11, 28-13

cascade rule, 28-3

examples of, 28-18

partially null foreign keys, 28-16

PRIMARY KEY constraints, 28-11

restrict rule, 28-3

self-referential constraints, 28-15, 28-18

set to default rule, 28-3

set to null rule, 28-3

refresh

incremental, 10-18

job queue processes (SNPn), 1-20, 8-13

materialized views, 10-18

REFs

constructing from object identifiers, 14-18, 14-19

dangling, 13-9, 13-10

dereferencing of, 13-10

for rows of object views, 15-3

implicit dereferencing of, 13-10

indexes on, 14-6

mutually dependent types, 14-16

pinning, 14-16, 15-4

scoped, 13-9, 14-19

size of, 14-19

use of table aliases, 14-8

REFTOHEX function, 12-23

relational DBMS (RDBMS)

object-relational DBMS, 13-2

principles, 1-22

SQL and, 16-2

See also Oracle

relations, 1-23

remote databases, 1-35

database links, 33-6

remote dependencies, 21-11

remote procedure calls, 33-12

remote procedure calls (RPCs), 33-12

remote transactions, 33-12

parallel DML and DDL restrictions, 26-28

REMOTE_DEPENDENCIES_MODE

parameter, 21-11

RENAME command, 16-4

repeatable reads, 27-3

replication

advanced, uses for, 34-6

catalog, 34-14

conflicts

procedural replication, 34-16

definition, 34-2

distributed databases vs., 33-7

group, 34-2

materialized views (snapshots), 10-17

objects, 34-2

procedural, 34-15

real-time, 34-16

restrictions

direct-load INSERT, 25-12

parallel DML, 26-44

sites, 34-5

uses of read-only, 34-11

replication management API, 34-14
Index-39

administration requests, 34-14

Replication Manager, 34-15

reserved words, 16-3

resource limits

call level, 29-16

connect time per session, 29-18

CPU time limit, 29-17

determining values for, 29-19

idle time per session, 29-17

logical reads limit, 29-17

overview of, 1-43

private SGA space per session, 29-18

session level, 29-16

sessions per user, 29-17

RESOURCE role, 30-22

user-defined types, 14-13, 14-14

response queues, 8-17

response time, 22-7

cost-based approach, 23-31

restricted mode

starting instances in, 5-6

restricted rowid format, 12-18

RESTRICTED SESSION privilege, 29-20

restrictions

direct-load INSERT, 25-11, 26-43

nested tables, 26-30

parallel DDL, 26-31

remote transactions, 26-28

parallel DML, 26-43

remote transactions, 26-28, 26-46

parallel execution of functions, 26-46

partition views, 11-12

partitions

bitmap indexes, 11-14

datatypes, 11-14, 11-21

partition-extended table names, 11-64

reverse key indexes, 10-31

REVERSE option for indexes, 10-31

REVOKE command, 16-4

FORCE option, 14-17

locks, 27-29

object types and dependencies, 14-17

rewrite

predicates in security policies, 30-23

using materialized views, 10-17

roles, 1-41, 30-16

application, 30-18

CONNECT role, 14-13, 14-14, 30-22

DBA role, 14-13, 30-22

DDL statements and, 30-20

definer-rights procedures disable, 30-20

dependency management in, 30-20

distributed database applications, 33-17

enabled or disabled, 30-18

EXP_FULL_DATABASE role, 30-22

functionality, 30-2

global authentication service, 33-17

granting, 30-3, 30-18

IMP_FULL_DATABASE role, 30-22

in applications, 1-42

invoker-rights procedures use, 30-20

managing via operating system, 30-22

naming, 30-19

overview of, 1-41

predefined, 30-22

queue administrator, 19-7

RESOURCE role, 14-13, 14-14, 30-22

restrictions on privileges of, 30-20

revoking, 30-18

schemas do not contain, 30-19

security domains of, 30-19

setting in PL/SQL blocks, 30-20

use of passwords with, 1-42

user, 30-18

users capable of granting, 30-19

uses of, 30-17

rollback, 4-20, 17-6

defined, 1-53

described, 17-6

during recovery, 1-51, 32-9

ending a transaction, 17-2, 17-4, 17-6

statement-level, 17-4

to a savepoint, 17-6

ROLLBACK command, 16-5

rollback entries, 4-20

rollback segments, 1-11, 4-19

access to, 4-20

acquired during startup, 5-8

allocation of extents for, 4-22

new extents, 4-24
Index-40

clashes when acquiring, 4-27

committing transactions and, 4-21

contention for, 4-21

deallocating extents from, 4-25

deferred, 4-30

defined, 1-11

dropping, 4-25

restrictions on, 4-30

how transactions write to, 4-22

in-doubt distributed transactions, 4-24

invalid, 4-28

locks on, 27-30

MAXEXTENTS UNLIMITED, 26-40

moving to the next extent of, 4-22

number of transactions per, 4-21

offline, 4-28, 4-30

offline tablespaces and, 4-30

online, 4-28, 4-30

OPTIMAL, 26-40

overview of, 4-19, 32-8

parallel DML, 26-40

parallel recovery, 32-10

partly available, 4-28, 32-4

private, 4-26

public, 4-26

read consistency and, 1-31, 4-20, 27-4

recovery needed for, 4-28

states of, 4-28

SYSTEM rollback segment, 4-26

transactions and, 4-20

use of in recovery, 1-49, 32-9

when acquired, 4-26

when used, 4-20

written circularly, 4-21

rolling back during recovery, 32-9

rolling back transactions, 1-54, 17-2, 17-6, 32-4

rolling forward during recovery, 1-50, 32-9

root blocks, 10-55

row cache, 7-10

row data (section of data block), 4-5

row directories, 4-4

row locking, 27-11, 27-20

block-level recovery, 27-21, 32-14

serializable transactions and, 27-8

row objects, 13-8

row pieces, 10-5

headers, 10-5

how identified, 10-7

row sampling, 22-14

row sources, 22-4

row triggers, 20-8

when fired, 20-21

See also triggers

ROWID datatype, 12-15, 12-16

extended rowid format, 12-17

restricted rowid format, 12-18

rowids, 10-7

accessing, 12-15

changes in, 12-16

in non-Oracle databases, 12-22

internal use of, 12-16, 12-19

logical, 12-15

logical rowids, 12-20

index on index-organized table, 10-39

physical guesses, 10-39, 12-20

staleness of guesses, 12-21

statistics for guesses, 12-21

of clustered rows, 10-7

physical, 12-15

row migration, 4-10

sorting indexes by, 10-28

table access by, 23-34

universal, 12-15

ROWIDTOCHAR function, 12-23

row-level locking, 27-10, 27-20

ROWNUM pseudocolumn

cannot use indexes, 23-49

optimizing view queries, 23-16, 23-25

rows, 1-23, 10-3

addresses of, 10-7

chaining across blocks, 4-10, 10-5

clustered, 10-6

rowids of, 10-7

defined, 1-23

described, 10-3

fetched, 16-12

format of in data blocks, 4-4

headers, 10-5

locking, 27-11, 27-20

locks on, 11-45, 27-20, 27-23
Index-41

logical rowids, 12-20

index-organized tables, 10-39

migrating to new block, 4-10

pieces of, 10-5

row objects, 13-8

row overflow in index-organized tables, 10-38

row sources, 22-4

rowids used to locate, 23-34, 23-38

row-level security, 30-22

shown in rowids, 12-17, 12-18

size of, 10-5

storage format of, 10-5

triggers on, 20-8

when rowid changes, 12-16

RPC, 33-12

RULE hint

OPTIMIZER_MODE and, 23-33

rule-based optimization, 22-18

rule-based subscriptions, 19-5, 19-6

runtime areas, 7-8

S
same-row writers block writers, 27-10

SAMPLE BLOCK option, 23-34

access path, 23-49

hints cannot override, 23-50

SAMPLE clause

cost-based optimization, 22-16

SAMPLE option, 23-34

access path, 23-49

hints cannot override, 23-50

sample table scans, 23-34, 23-49

hints cannot override, 23-50

SAVEPOINT command, 16-5

savepoints, 1-55, 17-7

described, 17-7

implicit, 17-4

overview of, 1-55

rolling back to, 17-6

scalability

batch jobs, 26-38

client/server architecture, 6-4

parallel DML, 26-37

parallel SQL execution, 26-2

scans, 23-34

cluster, 23-38, 23-39, 23-40, 23-41

indexed, 23-41

fast full index scan, 23-36

full table, 23-34, 23-48

LRU algorithm, 7-4

multiblock reads, 23-51

parallel query, 26-5

rule-based optimizer, 23-54

hash cluster, 23-39, 23-41

index, 23-35

bitmap, 23-36

bounded range, 23-44

cluster key, 23-41

composite, 23-42

MAX or MIN, 23-46

ORDER BY, 23-47

restrictions, 23-48

selectivity and, 23-51

single-column, 23-42

unbounded range, 23-45

index joins, 23-36, 23-49

range, 23-35, 23-42

bounded, 23-44

MAX or MIN, 23-46

ORDER BY, 23-47

unbounded, 23-45

sample table, 23-34, 23-49

hints cannot override, 23-50

table scan and CACHE clause, 7-4

unique, 23-35, 23-40, 23-41

schema names

in distributed databases, 33-6

qualifying column names, 14-9

unique within a database, 33-6

schema object privileges, 30-3

DML and DDL operations, 30-5

granting and revoking, 30-4

overview of, 1-41

views, 30-6

schema objects, 10-1

auditing, 1-44, 31-8

creating

tablespace quota required, 29-14

default tablespace for, 29-13
Index-42

defined, 1-5

dependencies of, 21-2

and distributed databases, 21-12

and views, 10-15

on non-existence of other objects, 21-8

triggers manage, 20-21

dependent on lost privileges, 21-6

dimensions, 10-18

distributed database naming conventions

for, 33-6

domain index, 10-43

global names, 33-6

in a revoked tablespace, 29-14

indextype, 10-43

information in data dictionary, 2-2

INVALID status, 21-2

materialized views, 10-17

names in distributed databases, 33-6

overview of, 1-10, 1-23, 10-2

privileges on, 30-3

relationship to datafiles, 3-16, 10-2

trigger dependencies on, 20-25

user-defined operator, 10-44

user-defined types, 13-3

schemas, 29-2

associated with users, 1-38, 10-2

contents of, 10-2

contrasted with tablespaces, 10-2

defined, 29-2

objects in, 10-2

OUTLN, 22-6

star schemas, 24-14, 24-15

normalized tables, 24-15

user-defined datatypes, 13-14

SCN, 17-5

See also system change numbers

scoped REFs, 13-9, 14-19

security, 1-41, 29-2

administrator privileges, 5-3

application enforcement of, 1-42

auditing, 31-2, 31-6

auditing user actions, 1-44

data, 1-38

definer rights, 18-9, 18-19

deleting audit data, 2-5

described, 1-38

discretionary access control, 1-39, 29-2

distributed databases, 33-17

domains, 1-40, 29-2

dynamic predicates, 30-23

enforcement mechanisms, 1-39

fine-grained access control, 30-22

invoker rights, 18-9, 18-19

message queues, 19-7

passwords, 29-7

policies

implementing, 30-24

procedures enhance, 30-8

program interface enforcement of, 8-25

security policies, 30-22

system, 1-38, 2-3

views and, 10-13

views enhance, 30-6

security domains, 1-40, 29-2

enabled roles and, 30-18

tablespace quotas, 29-13

segments, 1-11, 4-16

data, 4-16

deallocating extents from, 4-14

defined, 4-3

header block, 4-11

index, 4-17

overview of, 1-11, 4-16

rollback, 4-19

table

high water mark, 25-3

temporary, 1-11, 4-17, 10-10

allocating, 4-17

cleaned up by SMON, 8-11

dropping, 4-16

ignore quotas, 29-14

operations that require, 4-18

parallel INSERT, 25-8

tablespace containing, 4-16, 4-18

SELECT command, 16-3

composite indexes, 10-22

SAMPLE clause

cost-based optimization, 22-16

SAMPLE option, 23-34

access path, 23-49, 23-50
Index-43

subqueries, 16-12

See also queries

SELECT privilege for object tables, 14-15, 14-16

selectivity of predicates, 22-8

histograms, 22-8, 22-10

user-defined selectivity, 22-17

selectivity of queries, 23-51

select-project-join views, 23-15

selfish style of method invocation, 13-6

semi-joins, 24-13

sequences, 1-25, 10-19

auditing, 31-8

CHECK constraints prohibit, 28-18

independence from tables, 10-20

length of numbers, 10-19

number generation, 10-19

Server Manager

PL/SQL, 16-17, 16-19

SQL statements, 16-2

server processes, 1-18, 8-5

listener process and, 6-6

servers, 1-33

client/server architecture, 6-2

dedicated, 1-18, 8-22

multi-threaded contrasted with, 8-16

dedicated server architecture, 8-3

defined, 1-34

multi-threaded, 1-18

architecture, 8-3, 8-16

dedicated contrasted with, 8-16

processes of, 8-14, 8-16, 8-19

processes of, 1-18

shared, 1-18

service names, 6-6

SERVICE_NAMES parameter, 6-6

Services

Heterogeneous, 33-8

session control statements, 1-53, 16-5

SESSION_ROLES view

queried from PL/SQL block, 30-20

sessions

auditing by, 31-10

connections contrasted with, 8-4

current user, 18-10

defined, 8-4, 31-10

enabling PARALLEL DML, 26-38

limit on concurrent, 1-43

by license, 29-20

limits per user, 29-17

memory allocation in the large pool, 7-12

package state and, 21-6

resource limits and, 29-16

stack space in PGA, 7-14

time limits on, 29-17

transaction isolation level, 27-31

when auditing options take effect, 31-6

where information is stored, 7-14

SET CONSTRAINTS command

DEFERRABLE or IMMEDIATE, 28-21

SET ROLE command, 16-5

SET TRANSACTION command, 16-5

ISOLATION LEVEL, 27-7, 27-31

READ ONLY, 4-21

SET UNUSED option for columns, 10-6

SGA

See system global area

shadow processes, 8-22

share locks

share table locks (S), 27-24

shared global area (SGA), 7-2

See also system global area

shared mode

rollback segments, 4-27

shared pool, 7-6

allocation of, 7-10

ANALYZE command and, 7-11

dependency management and, 7-11

described, 7-6

flushing, 7-11

object dependencies and, 21-10

overview of, 1-16

procedures and packages, 18-17

row cache and, 7-10

size of, 7-6

shared server processes (Snnn), 8-14, 8-19

described, 8-19

shared servers, 1-18

cannot connect with administrator

privileges, 5-3
Index-44

shared SQL areas, 7-8, 16-7

ANALYZE command and, 7-11

dependency management and, 7-11

described, 7-8

loading SQL into, 16-11

overview of, 1-16, 16-7

parse locks and, 27-29

procedures, packages, triggers and, 7-10

size of, 7-8

SHARED_MEMORY_ADDRESS parameter, 7-13

SHARED_POOL_SIZE parameter, 7-6

system global area size and, 7-13

shutdown, 5-9, 5-10

abnormal, 5-6, 5-10

audit record, 31-5

deallocation of the SGA, 7-2

prohibited by dispatcher processes, 8-20

steps, 5-9

SHUTDOWN ABORT command, 5-10

crash recovery required, 32-4

SIDs in LISTENER.ORA file, 6-6

signature checking, 21-11

Simple Network Management Protocol (SNMP)

database management, 33-20

Simple Network Management Protocol (SNMP)

support

database management, 33-20

SINGLE TABLE HASHKEYS, 10-57

single-table hash clusters, 10-57

site autonomy, 1-35, 33-16

skewing parallel DML workload, 26-19

SKIP_UNUSABLE_INDEXES parameter, 21-8

SMON background process, 8-11

See also system monitor process

SMP architecture

disk affinity, 26-49

snapshot

read-only, 34-8

refresh, 8-13

same as materialized view, 1-25, 34-3

updateable, 34-9

snapshot refresh

job queue processes (SNPn), 1-20, 8-13

snapshot too old message, 27-5

snapshots

group, 34-6

site, 34-5

SNMP support

database management, 33-20

Snnn background processes, 8-14

SNPn background processes, 1-20, 8-13

message propagation, 19-10

software code areas, 7-17

shared by programs and utilities, 7-17

SOME, 23-6

sort areas, 7-16

sort operations, 3-12

sort segments, 3-12

SORT_AREA_RETAINED_SIZE parameter, 7-16

SORT_AREA_SIZE parameter, 4-18, 7-16

cost-based optimization and, 24-9

sort-merge joins, 24-4

access path, 23-46

cost-based optimization, 24-9

example, 23-46

space management

compression of free space in blocks, 4-9

data blocks, 4-5

direct-load INSERT, 25-8

extents, 4-11

MINIMUM EXTENT parameter, 26-33

parallel DDL, 26-33

PCTFREE, 4-6

PCTUSED, 4-6

row chaining, 4-10

segments, 4-16

spatial applications

index-organized tables, 10-42

SPLIT PARTITION command

no-logging mode, 11-58, 25-7

rules of parallelism, 26-25

SQL, 16-2

cursors used in, 16-6

Data Definition Language (DDL), 16-4

Data Manipulation Language (DML), 16-3

dynamic SQL, 16-19

embedded, 1-53, 16-5

user-defined datatypes, 13-14

extension
Index-45

partition or subpartition name, 11-63

functions, 16-2

column default values, 10-8

COUNT, 10-35

in CHECK constraints, 28-18

NVL, 10-8

optimizing view queries, 23-23

memory allocation for, 7-11

overview of, 1-52, 16-2

parallel execution, 26-2

parsing of, 16-7

PL/SQL and, 1-55, 16-15

recursive, 16-6

cursors and, 16-7

reserved words, 16-3

session control statements, 16-5

shared SQL, 16-7

statement-level rollback, 17-4

system control statements, 16-5

transaction control statements, 16-5

transactions and, 1-53, 17-2, 17-5

types of statements in, 1-52, 16-3

optimizing, 23-3

user-defined datatypes, 13-13, 14-8

embedded SQL, 13-14

OCI, 13-15

SQL areas

private, 7-8

persistent, 7-8

runtime, 7-8

shared, 1-16, 7-8, 16-7

SQL statements, 1-52, 16-3, 16-8

array processing, 16-13

auditing, 31-7, 31-9

overview, 1-44

when records generated, 31-4

complex, 23-3, 23-13

optimizing, 23-13

converting

examples of, 23-10

creating cursors, 16-11

dictionary cache locks and, 27-30

distributed

defined, 23-4, 33-11

optimization of, 23-30

routing to nodes, 16-11

embedded, 16-5

execution, 16-8, 16-13

execution plans of, 22-2

failure in, 32-2

handles, 1-17

number of triggers fired by single, 20-21

optimization

complex statements, 23-13

types of statements, 23-3

overview, 1-52

parallel execution, 26-2

parallelizing, 26-2, 26-10

parse locks, 27-29

parsing, 16-11

privileges required for, 30-3

recursive

OPTIMIZER_GOAL does not affect, 23-32

referencing dependent objects, 21-4

remote

defined, 23-4, 33-11

resource limits and, 29-16

simple, 23-3

successful execution, 17-3

transactions, 16-14

triggers on, 20-2, 20-8

triggering events, 20-6

types of, 1-52, 16-3, 23-3

SQL*Loader, 1-6

direct load

NOLOGGING mode, 11-58, 25-7

parallel direct load, 25-2

similar to direct-load INSERT, 25-2

partition operations, 11-48, 11-50

SQL*Menu

PL/SQL, 16-16

SQL*Module

FIPS flagger, 16-6

stored procedures, 16-18

SQL*Net

See Net8

SQL*Plus

ALERT file, 8-15

anonymous blocks, 16-17

connecting with, 29-4
Index-46

executing a package, 18-6

executing a procedure, 18-4

lock and latch monitors, 27-29

parallel recovery, 32-11

session variables, 16-17

showing size of SGA, 7-13

SQL statements, 16-2

statistics monitor, 29-19

stored procedures, 16-18

SQL_TRACE parameter, 8-15

SQL92, 27-2

stack space, 7-14

standards, 1-3

ANSI/ISO, 1-3, 28-5, 28-16

isolation levels, 27-2, 27-10

FIPS, 16-6

integrity constraints, 28-5, 28-16

Oracle adherence, 1-3

standby database

mounting, 5-7

survivability, 32-26

STAR hint, 24-15

star joins, 24-14

star query, 24-14

denormalized views, 24-15

extended star schemas, 24-15

hints, 24-15

indexes, 24-15

star transformation, 24-16

tuning, 24-15

star schemas

denormalized views, 24-15

star transformation, 24-16

example, 24-16

restrictions, 24-20

STAR_TRANSFORMATION hint, 24-19

STAR_TRANSFORMATION_ENABLED

parameter, 24-19

startup, 5-2, 5-5

allocation of the SGA, 7-2

starting address, 7-13

audit record, 31-5

forcing, 5-6

prohibited by dispatcher processes, 8-20

recovery during, 32-4

restricted mode, 5-6

steps, 5-5

STARTUP FORCE command

crash recovery required, 32-4

statement triggers, 20-8

described, 20-8

when fired, 20-21

See also triggers

statement-level read consistency, 27-5

statements

See SQL statements

statistics

checkpoint, 8-11

estimated, 22-14

block sampling, 22-14

row sampling, 22-14

exporting and importing, 22-8

extensible optimization, 22-16

from ANALYZE, 22-13

from B*-tree or bitmap index, 22-12

generating and managing with

DBMS_STATS, 22-12

HIGH_VALUE and LOW_VALUE, 23-52

optimizer goal, 23-32

optimizer mode, 23-31

optimizer use of, 22-7, 22-8, 23-32

partitioned tables and indexes, 11-14

partitions and subpartitions, 22-11

queuing, 19-11

selectivity of predicates, 22-8

histograms, 22-8, 22-10

user-defined, 22-17

user-defined statistics, 22-17

storage

clusters, 10-49

datafiles, 3-16

fragmentation in parallel DDL, 26-33

hash clusters, 10-51

index partitions, 11-37

indexes, 10-26

logical structures, 3-6, 10-2

nested tables, 14-19

nulls, 10-7

object tables, 14-18

parallel INSERT, 25-8
Index-47

REFs, 14-19

restricting for users, 29-14

revoking tablespaces and, 29-14

table partitions, 11-27

tablespace quotas and, 29-14

triggers, 20-2, 20-25

user quotas on, 1-42

view definitions, 10-14

STORAGE clause

parallel execution, 26-33

using, 4-11

storage parameters

MAXEXTENTS UNLIMITED, 26-40

NEXT, 25-8

calculating, 25-9

OPTIMAL (in rollback segments), 4-25, 26-40

parallel direct-load INSERT, 25-8

PCTINCREASE, 25-8, 25-10

setting, 4-11

stored functions, 1-26, 18-2, 18-6

stored procedures, 1-26, 16-15, 18-2, 18-6

calling, 16-18

contrasted with anonymous blocks, 18-9

triggers contrasted with, 20-2

variables and constants, 16-17

See also procedures

Structured Query Language (SQL), 1-52, 16-2

See also SQL

structures

data blocks

shown in rowids, 12-18

data dictionary, 1-30, 2-1

datafiles

shown in rowids, 12-18

locking, 27-28

logical, 1-5, 1-9, 4-1

data blocks, 1-10, 4-2, 4-3

extents, 1-10, 4-2, 4-11

schema objects, 1-10, 10-2

segments, 1-10, 4-2, 4-16

tablespaces, 1-9, 3-1, 3-6

memory, 1-14, 7-1

physical, 1-5, 1-11

control files, 1-13, 32-21

datafiles, 1-11, 3-1, 3-16

redo log files, 1-12, 32-7

processes, 1-14, 1-17, 8-1

subpartition locks

DML, 11-46

SUBPARTITION option, 11-63

subpartitions

statistics, 22-11

subqueries, 16-12

CHECK constraints prohibit, 28-18

converting to joins, 23-13

in DDL statements, 26-31

in DML statements

serializable isolation, 27-14

in remote updates, 33-11

inline views, 10-16

NOT IN, 24-13

optimizing IN subquery, 23-17

query processing, 16-12

See also queries

subscriptions

rule-based, 19-5, 19-6

summaries, 10-17

SunSoft’s SunNet Manager, 33-20

supplied packages, 18-16

invoker or definer rights, 30-8

survivability, 32-26

synchronous data propagation, 34-16

synonyms, 21-8

constraints indirectly affect, 28-5

described, 10-20

for data dictionary views, 2-4

inherit privileges from object, 30-3

overview of, 1-26

partition-extended table names, 11-65

private, 10-20

public, 10-20

uses of, 10-20

SYS username

data dictionary tables owned by, 2-3

security domain of, 29-3

statement execution not audited, 31-5

temporary schema objects owned by, 29-14

V$ views, 2-7

SYS.AUD$ view

purging, 2-5
Index-48

SYSDBA privilege, 5-3

SYSOPER privilege, 5-3

system change numbers (SCN)

committed transactions, 17-5

defined, 17-5

read consistency and, 27-5

redo logs, 8-10

when determined, 27-5

system control statements, 1-53, 16-5

system global area (SGA), 7-2

allocating, 5-5

contents of, 7-3

data dictionary cache, 2-4, 7-10

database buffer cache, 7-3

diagram, 5-2

fixed, 7-3

large pool, 7-12

limiting private SQL areas, 29-18

overview of, 1-16, 7-2

redo log buffer, 7-6, 17-5

rollback segments and, 17-5

shared and writable, 7-3

shared pool, 7-6

size of, 7-12

variable parameters, 5-4

when allocated, 7-2

system monitor process (SMON), 8-11

defined, 1-19, 8-11

instance recovery, 32-4

parallel DML instance recovery, 26-41

parallel DML system recovery, 26-41

Parallel Server and, 8-11, 26-41

rolling back transactions, 32-10

temporary segment cleanup, 8-11

system privileges, 30-2

ADMIN OPTION, 14-14, 30-3

described, 30-2

granting and revoking, 30-3

user-defined types, 14-13

See also privileges

SYSTEM rollback segment, 4-26

SYSTEM tablespace, 3-6

data dictionary stored in, 2-2, 2-5, 3-6

datafile 1, 3-16

media failure, 32-6

online requirement of, 3-9

procedures stored in, 3-6, 18-18

SYSTEM username

security domain of, 29-3

T
table directories, 4-4

tables

affect dependent views, 21-5

auditing, 11-63, 31-8

base, 1-24

data dictionary use of, 2-2

relationship to views, 10-12

clustered, 10-46

contain integrity constraints, 1-58

contained in tablespaces, 10-5

controlling space allocation for, 10-4, 25-8

dimensions

star queries, 24-14

DUAL, 2-7

dynamic partitioning, 26-6

enable or disable constraints, 28-22

fact tables

star queries, 24-14

full table scan and buffer cache, 7-4

hash, 10-55

historical, 26-38

how data is stored in, 10-4

indexes and, 10-21

index-organized

key compression in, 10-30, 10-38

index-organized tables, 10-36

logical rowids, 10-39, 12-20

integrity constraints, 28-2, 28-5

locks on, 11-45, 27-21, 27-23, 27-25

lookup tables, 24-14

maximum number of columns in, 10-12

nested tables, 10-9, 13-12

indexes, 14-6

no-logging mode, 25-7

normalization

star schemas, 24-15

normalized or denormalized, 1-29, 10-19

object tables, 13-3, 13-7
Index-49

constraints, 14-5

indexes, 14-6

triggers, 14-6

virtual, 15-2

overview of, 1-23, 10-3

parallel creation, 26-31

parallel DDL storage, 26-33

parallel table scans, 26-4

PARTITION option, 11-63

partition-extended table names, 11-63

partitions, 11-2, 11-27

presented in views, 10-11

privileges for partitions, 11-62

privileges on, 30-5

queue tables, 19-4, 19-12

refreshing in data warehouse, 26-37

replicating, 1-36

single-table hash clusters, 10-57

specifying tablespaces for, 10-5

STORAGE clause with parallel execution, 26-33

SUBPARTITION option, 11-63

summary or rollup, 26-31

table aliases, 14-8, 14-9

table names

qualifying column names, 14-8, 14-9

temporary, 10-10

segments in, 4-18

triggers used in, 20-2

validate or novalidate constraints, 28-22

virtual or viewed, 1-24

with LOB columns

partitioning, 11-38

tablespace point-in-time recovery

clone database, 5-7

tablespaces, 3-6

contrasted with schemas, 10-2

default for object creation, 1-42, 29-13

described, 3-6

dictionary-managed, 3-7

how specified for tables, 10-5

locally-managed, 3-8

temporary tablespaces, 3-13

locks on, 27-30

MINIMUM EXTENT

parallel DML, 25-10

moving or copying to another database, 3-14

no-logging mode, 25-7

offline, 1-10, 3-9, 3-17

and index data, 3-10

cannot be read-only, 3-11

remain offline on remount, 3-9

online, 1-10, 3-9, 3-17

overview of, 1-9, 3-6

quotas on, 1-42, 1-43, 29-13, 29-14

limited and unlimited, 29-14

no default, 29-14

read-only, 3-10

dropping objects from, 3-12

transition mode, 3-11

relationship to datafiles, 3-2

revoking access from users, 29-14

size of, 3-4

space allocation, 3-7

temporary, 1-43, 3-12

default for user, 29-13

transition read only mode, 3-11

transportable, 3-13

used for temporary segments, 4-16, 4-18

See also SYSTEM tablespace

TAF, 32-14

tasks, 8-2

tempfiles, 3-17

temporary segments, 4-16, 4-18, 10-10

allocating, 4-18

allocation for queries, 4-18

deallocating extents from, 4-16

dropping, 4-16

ignore quotas, 29-14

operations that require, 4-18

parallel DDL, 26-33

parallel INSERT, 25-8

tablespace containing, 4-16, 4-18

when not in redo log, 4-19

temporary tables, 10-10

temporary tablespaces, 3-12

threads

multi-threaded server, 8-14, 8-16

three-valued logic (true, false, unknown)

produced by nulls, 10-8
Index-50

throughput, 22-7

cost-based approach, 23-31

timestamp checking, 21-11

TO_CHAR function

data conversion, 12-23

Julian dates, 12-11

NLS default in CHECK constraints, 28-18

NLS default in views, 10-14

TO_DATE function, 12-10

data conversion, 12-23

Julian dates, 12-11

NLS default in CHECK constraints, 28-18

NLS default in views, 10-14

partitions, 11-14, 11-21

TO_NUMBER function, 12-9

data conversion, 12-23

Julian dates, 12-11

NLS default in CHECK constraints, 28-18

NLS default in views, 10-14

trace files, 8-14

ARCn trace file, 32-20

DBWn trace file, 32-6

LGWR trace file, 8-9

transaction control statements, 1-53, 16-5

in autonomous PL/SQL blocks, 17-10

transaction set consistency, 27-10

transaction tables, 4-20

reset at recovery, 8-11

transactions, 1-53, 17-1

advanced queuing, 19-3

assigning system change numbers, 17-5

assigning to rollback segments, 4-21

asynchronous processing, 19-2

autonomous, 17-9

within a PL/SQL block, 17-9

block-level recovery, 27-21, 32-14

committing, 1-54, 8-10, 17-3, 17-5

group commits, 8-10

use of rollback segments, 4-21

concurrency and, 27-15

controlling transactions, 16-14

dead, 32-4

deadlocks and, 17-4, 27-17

defining and controlling, 16-14

described, 17-2

discrete transactions, 16-14, 17-8

distributed, 1-32

deadlocks and, 27-18

parallel DDL restrictions, 26-28

parallel DML restrictions, 26-28, 26-46

resolving automatically, 8-12

two-phase commit, 1-35, 17-7, 33-13

distribution among rollback segments of, 4-21

end of, 17-4

consistent data, 16-14

in-doubt

limit rollback segment access, 4-30

resolving automatically, 1-36, 5-8, 17-8

resolving manually, 1-36

rollback segments and, 4-24

use partly available segments, 4-30

manual locking of, 27-31

overview of, 1-53

read consistency of, 1-31, 27-6

read-only, 1-32, 27-6

not assigned to rollback segments, 4-20

recovery, 32-4

redo log files written before commit, 8-10

rollback segments and, 4-20

rolling back, 1-54, 17-6

and offline tablespaces, 4-30

partially, 17-6

use of rollback segments, 4-20

savepoints in, 1-55, 17-7

serializable, 27-7

space used in data blocks for, 4-5

start of, 17-4

statement level rollback and, 17-4

system change numbers, 8-10

terminating the application and, 17-5

transaction control statements, 16-5

triggers and, 20-23

two-phase commit in parallel DML, 26-40

writing to rollback segments, 4-22

TRANSACTIONS parameter, 4-27

TRANSACTIONS_PER_ROLLBACK_SEGMENT

parameter, 4-27

transition read only tablespaces, 3-11

Transparent Application Failover, 32-14

transportable tablespaces, 3-13
Index-51

triggers, 1-59, 20-1, 21-8

action, 20-7

timing of, 20-9

AFTER triggers, 20-9

as program units, 1-56

auditing, 31-8

BEFORE triggers, 20-9

cascading, 20-4

constraints apply to, 20-21

constraints contrasted with, 20-5

data access and, 20-23

dependency management of, 20-25, 21-6

enabled triggers, 20-21

enabled or disabled, 20-21

enforcing data integrity with, 28-4

events, 20-6

examples of, 20-10, 20-13, 20-23

firing (executing), 20-2, 20-25

privileges required, 20-25

steps involved, 20-21

timing of, 20-21

INSTEAD OF triggers, 20-12

object views and, 15-5

INVALID status, 21-2, 21-6

Java, 20-7

maintain data integrity, 1-59

Oracle Forms triggers vs., 20-3

overview of, 1-59, 20-2

parts of, 20-5

privileges for executing, 30-8

roles, 30-20

procedures contrasted with, 20-2

prohibited in views, 10-12

publish/subscribe support, 20-18

restrictions, 20-7, 26-46

direct-load INSERT, 25-12

parallel DML, 26-44

row, 20-8

schema object dependencies, 20-21, 20-25

sequence for firing multiple, 20-21

shared SQL areas and, 7-10

statement, 20-8

storage of, 20-25

types of, 20-8

UNKNOWN does not fire, 20-7

user-defined types, 14-6

uses of, 20-3

TRUNCATE command, 16-4

two-phase commit

described, 1-35, 33-13

manual override of, 1-36

parallel DML, 26-40

transaction management, 17-7

triggers, 20-21

two-task mode, 8-3

listener process and, 8-14

network communication and, 8-23

program interface in, 8-23

types

privileges on, 30-11

See datatypes, object types

U
undo, 1-11

See also rollback

UNION ALL operator

examples, 23-11, 23-13, 23-27

optimizing view queries, 23-16

transforming OR into, 23-10

UNION ALL views, 11-11

UNION operator

compound queries, 23-4

examples, 23-18, 23-28

optimizing view queries, 23-16

unique indexes, 10-22

UNIQUE key constraints, 28-8

composite keys, 28-9, 28-11

constraint checking, 28-20

indexes used to enforce, 28-10

maximum number of columns, 28-10

NOT NULL constraints and, 28-11

nulls and, 28-11

size limit of, 28-10

unique keys, 1-58, 1-59, 28-9

composite, 28-9, 28-11

optimization, 23-14

searches, 23-40

UNLIMITED extents, 26-40

UNUSABLE indexes
Index-52

function-based, 21-8

UNUSED column, 10-6

UPDATE command, 16-4

foreign key references and, 28-16

freeing space in data blocks, 4-9

no-logging mode, 25-7

LOBs, 25-7

parallel UPDATE, 26-21

triggers and, 20-2, 20-6

BEFORE triggers, 20-9

update no action constraint, 28-16

UPDATE privilege for object tables, 14-15, 14-16

updateable snapshot, 34-9

updates

distributed, 33-11

location transparency and, 33-15

object views, 15-5

updatability of object views, 15-5

updatability of views, 10-15, 20-12, 20-13

updatable join views, 10-15

update intensive environments, 27-8

UROWID datatype, 12-15

USE_INDIRECT_DATA_BUFFERS

parameter, 7-14

USE_STORED_OUTLINES session parameter, 22-6

user locks, 27-39

user processes

allocate PGAs, 7-14

connections and, 8-4

dedicated server processes and, 8-22

manual archiving by, 32-21

sessions and, 8-4

shared server processes and, 8-19

user program interface (UPI), 8-25

USER pseudocolumn, 30-7

USER_ views, 2-6

USER_TAB_COL_STATISTICS view, 23-52

USER_TAB_COLUMNS view, 23-52

USER_TABLES view, 23-52

USER_UPDATABLE_COLUMNS view, 10-15

user-defined costs, 22-17

user-defined datatypes, 13-1, 13-3, 14-1

collections, 13-10

nested tables, 13-12

variable arrays (VARRAYs), 13-11

Export and Import, 14-20

incomplete types, 14-16

object types, 13-2, 13-4

use of table aliases, 14-8

object-relational model, 1-22

privileges, 14-13

storage, 14-18

user-defined operator, 10-44

users, 29-2

access rights, 29-2

associated with schemas, 10-2

auditing, 31-12

authentication of, 29-3

coordinating concurrent actions of, 1-30

current user, 18-10

dedicated servers and, 8-22

default tablespaces of, 29-13

distributed databases, 33-17

licensing by number of, 29-21

licensing of, 29-19

listed in data dictionary, 2-2

multiuser environments, 1-2, 8-2

password encryption, 29-7

privileges of, 1-41

processes of, 1-17, 8-4

profiles of, 1-43, 29-18

PUBLIC user group, 29-14, 30-19

resource limits of, 29-16

restrictions on resource use of, 1-42

roles and, 30-16

for types of users, 30-18

schemas of, 1-38, 29-2

security domains of, 1-40, 29-2, 30-19

tablespace quotas of, 1-43, 29-13

tablespaces of, 1-42

temporary tablespaces of, 1-43, 4-18, 29-13

usernames, 1-40, 29-2

sessions and connections, 8-4

V
V_$ and V$ views, 2-7

V$LICENSE, 29-20

VALIDATE constraints, 28-22

VALUES LESS THAN clause, 11-20
Index-53

DATE datatype, 11-21

examples, 11-16, 11-18

MAXVALUE, 11-21, 11-23

multicolumn keys, 11-23

VARCHAR datatype, 12-6

VARCHAR2 datatype, 12-5

non-padded comparison semantics, 12-6

similarity to RAW datatype, 12-15

variables

bind variables

optimization, 23-52

user-defined types, 13-14

embedded SQL, 16-6

in stored procedures, 16-17

object variables, 15-4

VARRAYs, 13-11

index-organized tables, 10-38

key compression, 10-30

very large database (VLDB), 11-5

parallel SQL, 26-2

partitions, 11-5

views, 1-24, 10-11

altering base tables and, 21-5

auditing, 31-8

base tables, 1-24

complex view merging, 23-17

constraints and triggers prohibited in, 10-12

constraints indirectly affect, 28-5

containing expressions, 20-13

data dictionary

updatable columns, 10-15

user-accessible views, 2-3

definition expanded, 21-5

denormalized

star schemas, 24-15

dependency status of, 21-5

fixed views, 2-7

histograms, 22-11

how stored, 10-12

indexes and, 10-14

inherently modifiable, 20-13

inline views, 10-16

INSTEAD OF triggers, 20-12

INVALID status, 21-2

materialized views, 1-25, 10-17

same as snapshots, 1-25, 34-3

maximum number of columns in, 10-12

modifiable, 20-13

modifying, 20-12

NLS parameters in, 10-14

non-null values for nulls, 24-11

object views, 10-16, 15-1

updatability, 15-5

optimization, 23-15

overview of, 1-24, 10-11

partition statistics, 11-14

partition views, 11-11

prerequisites for compilation of, 21-5

privileges for, 30-6

pseudocolumns, 20-13

schema object dependencies, 10-15, 21-4, 21-8

security applications of, 30-6

select-project-join views, 23-15

SQL functions in, 10-14

statistics, 22-14

updatability, 10-15, 15-5, 20-13

uses of, 10-13

virtual memory, 7-17

virtual tables, 1-24

VLDB

parallel SQL, 26-2

partitions, 11-5

W
waits for blocking transaction, 27-10

Wallet Manager, 29-5

wallets, 29-5

warehouse

materialized views, 10-17

refreshing table data, 26-37

See also data warehousing

whole database backups, 1-50, 32-23

WITH OBJECT OID clause, 15-3, 15-4

workload skewing, 26-19

wrapper

procedural replication, 34-16

write-ahead, 8-9

writers block readers, 27-10
Index-54

X
X.509 certificates, 29-5

XA

session memory in the large pool, 7-12

Y
year 2000, 12-12
Index-55

Index-56

	PDF Directory
	Contents
	Send Us Your Comments
	Preface
	Audience
	How This Manual Is Organized
	How to Use This Manual
	Conventions Used in This Manual
	Your Comments Are Welcome

	Part I� What Is Oracle?
	1 Introduction to the Oracle Server
	Databases and Information Management
	The Oracle Server
	Structured Query Language (SQL)
	Database Structure
	Data Utilities
	An Oracle Instance
	Communications Software and Net8
	The Oracle Parallel Server: Multiple Instance Systems

	Oracle Databases
	Open and Closed Databases

	Database Structure and Space Management
	Logical Database Structures
	Tablespaces
	Schemas and Schema Objects
	Data Blocks, Extents, and Segments

	Physical Database Structures
	Datafiles
	Redo Log Files
	Control Files

	Memory Structure and Processes
	Memory Structures
	System Global Area (SGA)
	Program Global Area (PGA)

	Process Architecture
	User (Client) Processes
	Oracle Process Architecture
	Server Processes
	Background Processes

	The Program Interface
	An Example of How Oracle Works

	The Object-Relational Model for Database Management
	The Relational Model
	The Object-Relational Model
	Schemas and Schema Objects
	Tables
	Views
	Materialized Views
	Sequences
	Program Units
	Synonyms
	Indexes
	Clusters and Hash Clusters
	Dimensions
	Database Links

	The Data Dictionary

	Data Concurrency and Consistency
	Concurrency
	Read Consistency
	Read Consistency, Rollback Segments, and Transactions
	Read-Only Transactions

	Locking Mechanisms
	Automatic Locking
	Manual Locking

	Distributed Processing and Distributed Databases
	Client/Server Architecture: Distributed Processing
	The Client
	The Server

	Multi-Tier Architecture: Application Servers
	Distributed Databases
	Location Transparency
	Site Autonomy
	Distributed Data Manipulation
	Two-Phase Commit

	Table Replication
	Oracle and Net8

	Startup and Shutdown Operations
	Database Security
	Security Mechanisms
	Database Users and Schemas

	Privileges
	Roles
	Storage Settings and Quotas
	Profiles and Resource Limits
	Auditing

	Database Backup and Recovery
	Why Is Recovery Important?
	Types of Failures
	Structures Used for Recovery
	The Redo Log
	Control Files
	Rollback Segments
	Database Backups

	Basic Recovery Steps
	Rolling Forward
	Rolling Back

	The Recovery Manager

	Data Access
	SQL—The Structured Query Language
	SQL Statements

	Transactions
	Committing and Rolling Back Transactions
	Savepoints
	Data Consistency Using Transactions

	PL/SQL
	Procedures and Functions
	Packages
	Database Triggers
	Methods

	Data Integrity
	Integrity Constraints
	Keys
	Database Triggers

	Part II� Database Structures
	2 The Data Dictionary
	An Introduction to the Data Dictionary
	The Structure of the Data Dictionary
	SYS, the Owner of the Data Dictionary
	How the Data Dictionary Is Used
	How Oracle Uses the Data Dictionary
	Public Synonyms for Data Dictionary Views
	Caching of the Data Dictionary for Fast Access
	Other Programs and the Data Dictionary
	Adding New Data Dictionary Items
	Deleting Data Dictionary Items

	How Users and DBAs Can Use the Data Dictionary
	Views with the Prefix USER
	Views with the Prefix ALL
	Views with the Prefix DBA
	The DUAL Table

	The Dynamic Performance Tables

	3 Tablespaces and Datafiles
	Databases, Tablespaces, and Datafiles
	Allocating More Space for a Database

	Tablespaces
	The SYSTEM Tablespace
	The Data Dictionary
	PL/SQL Program Units

	Using Multiple Tablespaces
	Space Management in Tablespaces
	Dictionary-Managed Tablespaces
	Locally-Managed Tablespaces

	Online and Offline Tablespaces
	When a Tablespace Goes Offline
	Using Tablespaces for Special Procedures

	Read-Only Tablespaces
	Temporary Tablespaces
	Sort Segments
	Creating and Altering Temporary Tablespaces

	Transporting Tablespaces between Databases
	Moving or Copying a Tablespace to Another Database
	Benefits of Transporting Tablespaces

	Datafiles
	Datafile Contents
	Size of Datafiles
	Offline Datafiles
	Temporary Datafiles

	4 Data Blocks, Extents, and Segments
	The Relationships Among Data Blocks, Extents, and Segments
	Data Blocks
	Data Block Format
	Header (Common and Variable)
	Table Directory
	Row Directory
	Overhead
	Row Data
	Free Space

	An Introduction to PCTFREE, PCTUSED, and Row Chaining
	The PCTFREE Parameter
	The PCTUSED Parameter
	How PCTFREE and PCTUSED Work Together
	Availability and Compression of Free Space in a Data Block
	Row Chaining and Migrating

	Extents
	When Extents Are Allocated
	Determining the Number and Size of Extents
	Extents Managed Locally
	Extents Managed by the Data Dictionary

	How Extents Are Allocated
	Allocating Extents in Locally-Managed Tablespaces
	Allocating Extents in Dictionary-Managed Tablespaces

	When Extents Are Deallocated
	Extents in Nonclustered Tables
	Extents in Clustered Tables
	Extents in Materialized Views and Their Logs
	Extents in Indexes
	Extents in Rollback Segments
	Extents in Temporary Segments

	Segments
	Data Segments
	Index Segments
	Temporary Segments
	Operations Requiring Temporary Segments
	Segments in Temporary Tables and Their Indexes
	How Temporary Segments Are Allocated

	Rollback Segments
	Contents of a Rollback Segment
	Logging Rollback Entries
	When Rollback Information Is Required
	Transactions and Rollback Segments
	How Extents Are Used and Allocated for Rollback Segments
	How Extents Are Deallocated from a Rollback Segment
	The Rollback Segment SYSTEM
	Oracle Instances and Types of Rollback Segments
	Rollback Segment States
	Deferred Rollback Segments

	Part III� The Oracle Instance
	5 Database and Instance Startup and�Shutdown
	Overview of an Oracle Instance
	The Instance and the Database
	Connecting with Administrator Privileges
	Parameter Files
	An Example of a Parameter File
	Changing Parameter Values
	NLS Parameters

	Instance and Database Startup
	Starting an Instance
	Restricted Mode of Instance Startup
	Forcing an Instance to Startup in Abnormal Situations

	Mounting a Database
	Mounting a Database with the Oracle Parallel Server
	Mounting a Standby Database
	Mounting a Clone Database

	Opening a Database
	Crash Recovery
	Rollback Segment Acquisition
	Resolution of In-Doubt Distributed Transaction
	Opening a Database in Read-Only Mode

	Database and Instance Shutdown
	Closing a Database
	Closing the Database by Aborting the Instance

	Dismounting a Database
	Shutting Down an Instance
	Abnormal Instance Shutdown

	6 Distributed Processing
	Oracle Client/Server Architecture
	Distributed Processing
	Net8
	How Net8 Works
	The Network Listener

	Multi-Tier Architecture
	Clients
	Application Servers
	Database Servers

	7 Memory Architecture
	Introduction to Oracle Memory Structures
	System Global Area (SGA)
	The Database Buffer Cache
	Organization of the Database Buffer Cache
	The LRU Algorithm and Full Table Scans
	Size of the Database Buffer Cache
	Multiple Buffer Pools

	The Redo Log Buffer
	The Shared Pool
	Library Cache
	Shared SQL Areas and Private SQL Areas
	PL/SQL Program Units and the Shared Pool
	Dictionary Cache
	Allocation and Reuse of Memory in the Shared Pool

	The Large Pool
	Size of the SGA
	Controlling the SGA’s Use of Memory
	Physical Memory
	SGA Starting Address
	Extended Buffer Cache Mechanism

	Program Global Areas (PGA)
	Contents of a PGA
	Stack Space
	Session Information

	Size of a PGA

	Sort Areas
	Virtual Memory
	Software Code Areas

	8 Process Architecture
	Introduction to Processes
	Multiple-Process Oracle Systems
	Types of Processes

	User Processes
	Connections and Sessions

	Oracle Processes
	Server Processes
	Background Processes
	Database Writer (DBWn)
	Log Writer Process (LGWR)
	Checkpoint Process (CKPT)
	System Monitor (SMON)
	Process Monitor (PMON)
	Recoverer Process (RECO)
	Archiver Processes (ARCn)
	Lock Process (LCK0)
	Job Queue Processes (SNPn)
	Queue Monitor Processes (QMNn)
	Dispatcher Processes (Dnnn)
	Shared Server Processes (Snnn)

	Trace Files and the ALERT File

	Multi-Threaded Server Configuration
	Dispatcher Request and Response Queues
	Shared Server Processes
	Artificial Deadlocks
	Restricted Operations of the Multi-Threaded Server
	An Example of Oracle Using the Multi-Threaded Server

	Dedicated Server Configuration
	An Example of Oracle Using Dedicated Server Processes

	The Program Interface
	Program Interface Structure
	The Program Interface Drivers
	Operating System Communications Software

	9 Database Resource Management
	Introduction to the Database Resource Manager
	Resource Consumer Groups and Resource Plans
	What Are Resource Consumer Groups?
	What Are Resource Plans?

	Resource Allocation Methods
	CPU Resource Allocation Method: Emphasis
	Maximum Degree of Parallelism Resource Allocation Method: Absolute

	Resource Plan Directives
	Examples
	Using Resource Consumer Groups and Resource Plans
	Using Subplans
	Using Multi-Level Resource Plans
	Using the Parallel Degree Limit Resource Directive
	Summary

	Using the Database Resource Manager

	Part IV� The Object-Relational DBMS
	10 Schema Objects
	Overview of Schema Objects
	Tables
	How Table Data Is Stored
	Row Format and Size
	Dropped or Unused Columns
	Rowids of Row Pieces
	Column Order

	Nulls
	Default Values for Columns
	Default Value Insertion and Integrity Constraint Checking

	Nested Tables
	Temporary Tables
	Segment Allocation
	Parent and Child Transactions

	Views
	Storage for Views
	How Views Are Used
	The Mechanics of Views
	NLS Parameters
	Using Indexes

	Dependencies and Views
	Updatable Join Views
	Object Views
	Inline Views

	Materialized Views
	Refreshing Materialized Views
	Materialized View Logs

	Dimensions
	The Sequence Generator
	Synonyms
	Indexes
	Unique and Nonunique Indexes
	Composite Indexes
	Indexes and Keys
	Indexes and Nulls
	Function-Based Indexes
	Uses of Function-Based Indexes
	Optimization with Function-Based Indexes
	Dependencies of Function-Based Indexes

	How Indexes Are Stored
	Format of Index Blocks
	The Internal Structure of Indexes
	Advantages of B*-Tree Structure

	Key Compression
	Prefix and Suffix Entries
	Performance and Storage Considerations
	Uses of Key Compression

	Reverse Key Indexes
	Bitmap Indexes
	Benefits for Data Warehousing Applications
	Cardinality
	Bitmap Index Example
	Bitmap Indexes and Nulls
	Bitmap Indexes on Partitioned Tables

	Index-Organized Tables
	Benefits of Index-Organized Tables
	Collection Datatypes and Key Compression

	Index-Organized Tables with Row Overflow Area
	Secondary Indexes on Index-Organized Tables
	Additional Features of Index-Organized Tables
	Rebuilding an Index-Organized Table
	Creating an Index-Organized Table in Parallel
	Partitioning Index-Organized Tables and Their Secondary Indexes

	Applications of Interest for Index-Organized Tables
	Information Retrieval Applications
	Spatial Applications
	OLAP Applications

	Application Domain Indexes
	Indextypes
	Index Definition Routines
	Index Maintenance Routines
	Index Scan Routines

	Domain Indexes
	Storage of Domain Indexes
	Metadata for Domain Indexes

	User-Defined Operators

	Clusters
	Performance Considerations
	Format of Clustered Data Blocks
	The Cluster Key
	The Cluster Index

	Hash Clusters
	How Data Is Stored in a Hash Cluster
	Hash Key Values
	Hash Functions
	Using Oracle’s Internal Hash Function
	Specifying the Cluster Key as the Hash Function
	Specifying a User-Defined Hash Function

	Allocation of Space for a Hash Cluster
	Single Table Hash Clusters

	11 Partitioned Tables and Indexes
	Introduction to Partitioning
	What Is Partitioning?
	Partitioning Methods
	Example of a Partitioned Table
	Partition Pruning
	Partition-Wise Joins

	Advantages of Partitioning
	Very Large Databases (VLDBs)
	Reducing Downtime for Scheduled Maintenance
	Reducing Downtime Due to Data Failures
	DSS Performance
	I/O Performance
	Disk Striping: Performance versus Availability
	Partition Transparency

	Manual Partitioning with Partition Views
	Disadvantages of Partition Views
	Guidelines for Partition Views

	Basic Partitioning Model
	Range Partitioning
	Hash Partitioning
	Composite Partitioning
	Partition and Subpartition Names
	Referencing a Partition or Subpartition

	Partitioning and Subpartitioning Columns and Keys
	Partition Bounds for Range Partitioning
	Comparing Partitioning Keys with Partition Bounds
	MAXVALUE
	Nulls
	DATE Datatypes
	Multicolumn Partitioning Keys
	Implicit Constraints Imposed by Partition Bounds

	Equipartitioning
	Range Equipartitioning
	Example of Equipartitioning

	Rules for Partitioning Tables and Indexes
	Table Partitioning
	Physical Attributes of Table Partitions

	Index Partitioning
	Local Partitioned Indexes
	Global Partitioned Indexes
	Summary of Partitioned Index Types
	Importance of Nonprefixed Indexes
	Performance Implications of Prefixed and Nonprefixed Indexes
	Guidelines for Partitioning Indexes
	Physical Attributes of Index Partitions

	Partitioning of Tables with LOB Columns
	Tablespace and Storage Attributes of LOB Data Partitions
	Tablespace and Storage Attributes of LOB Index Partitions
	Views and Partitioned LOBs
	BFILEs in Partitioned Tables

	Partitioning Index-Organized Tables and Their Secondary Indexes
	Range Partitioning and Primary Key Columns
	Index-Organized Tables without Row Overflow
	Index-Organized Tables with Row Overflow
	Partitioned Secondary Indexes on Index-Organized Tables

	DML Partition Locks and Subpartition Locks
	DML Partition Locks
	DML Subpartition Locks
	Performance Considerations for Oracle Parallel Server

	Maintenance Operations
	Partition Maintenance Operations
	Concurrency Model for Maintenance Operations
	Partition Maintenance Operations on Tables with LOB Columns
	Queries and Partition Maintenance Operations
	Cursor Invalidation
	LOGGING and NOLOGGING Operations

	Managing Indexes
	Local Indexes
	Global Partitioned Indexes
	Rebuild Index Partition
	INDEX UNUSABLE Attribute

	Privileges for Partitioned Tables and Indexes
	Auditing for Partitioned Tables and Indexes

	Partition-Extended and Subpartition-Extended Table Names
	PARTITION and SUBPARTITION Specifications
	Viewing Partitions or Subpartitions as Tables
	Using Partition- and Subpartition-Extended Table Names
	Restrictions on Partition- and Subpartition-Extended Table Names
	Examples of Using the PARTITION Specification
	Examples of Using the SUBPARTITION Specification

	12 Built-In Datatypes
	Overview of Oracle Datatypes
	Character Datatypes
	CHAR Datatype
	VARCHAR2 and VARCHAR Datatypes
	VARCHAR Datatype

	Column Lengths for Character Datatypes and NLS Character Sets
	NCHAR and NVARCHAR2 Datatypes
	LOB Character Datatypes
	LONG Datatype

	NUMBER Datatype
	Internal Numeric Format

	DATE Datatype
	Using Julian Dates
	Date Arithmetic
	Centuries and the Year 2000

	LOB Datatypes
	BLOB Datatype
	CLOB and NCLOB Datatypes
	BFILE Datatype

	RAW and LONG RAW Datatypes
	ROWID and UROWID Datatypes
	The ROWID Pseudocolumn
	Physical Rowids
	Extended Rowids
	Restricted Rowids
	Examples of Using Rowids
	How Rowids Are Used

	Logical Rowids
	Comparison of Logical Rowids with Physical Rowids
	Guesses in Logical Rowids

	Rowids in Non-Oracle Databases

	ANSI, DB2, and SQL/DS Datatypes
	Data Conversion

	13 User-Defined Datatypes
	Introduction
	Complex Data Models
	An Example

	Multimedia Datatypes

	User-Defined Datatypes
	Object Types
	Purchase Order Example
	Methods
	Object Tables
	Object Identifiers
	Object Views
	REFs

	Collection Types
	VARRAYs
	Nested Tables

	Application Interfaces
	SQL
	PL/SQL
	Pro*C/C++
	OCI
	OTT
	JPublisher
	JDBC
	SQLJ

	14 Using User-Defined Datatypes
	Introduction
	Object Types and References
	Properties of Object Attributes
	Nulls
	Defaults
	Constraints
	Indexes
	Triggers

	Object References
	Name Resolution
	Table Aliases
	Method Calls without Arguments

	Collections
	Querying Collections
	Collection Unnesting
	Nested Table Locators
	DML on Collections

	Privileges on User-Defined Types and Their Methods
	System Privileges
	Schema Object Privileges
	Using Types in New Types or Tables
	Example
	Privileges on Type Access and Object Access

	Dependencies and Incomplete Types
	Completing Incomplete Types
	Type Dependencies of Tables

	Storage of User-Defined Types
	Leaf-Level Attributes
	Row Objects
	Column Objects
	REFs
	Nested Tables
	VARRAYs

	Utilities
	Import/Export of User-Defined Types
	Loading User-defined Types

	15 Object Views
	Introduction
	Advantages of Object Views

	Defining Object Views
	Using Object Views
	Updating Object Views
	Updating Nested Table Columns in Views

	Part V� Data Access
	16 SQL and PL/SQL
	Structured Query Language (SQL)
	SQL Statements
	Data Manipulation Language (DML) Statements
	Data Definition Language (DDL) Statements
	Transaction Control Statements
	Session Control Statements
	System Control Statements
	Embedded SQL Statements

	Identifying Nonstandard SQL
	Recursive SQL
	Cursors
	Shared SQL
	Parsing

	SQL Processing
	Overview of SQL Statement Execution
	DML Statement Processing
	Stage 1: Create a Cursor
	Stage 2: Parse the Statement
	Query Processing
	Stage 3: Describe Results of a Query
	Stage 4: Define Output of a Query
	Stage 5: Bind Any Variables
	Stage 6: Parallelize the Statement
	Stage 7: Execute the Statement
	Stage 8: Fetch Rows of a Query
	Stage 9: Close the Cursor

	DDL Statement Processing
	Controlling Transactions

	PL/SQL
	How PL/SQL Executes
	Language Constructs for PL/SQL
	Variables and Constants
	Cursors
	Exceptions

	Stored Procedures
	Dynamic SQL in PL/SQL

	External Procedures

	17 Transaction Management
	Introduction to Transactions
	Statement Execution and Transaction Control
	Statement-Level Rollback

	Oracle and Transaction Management
	Committing Transactions
	Rolling Back Transactions
	Savepoints
	The Two-Phase Commit Mechanism

	Discrete Transaction Management
	Autonomous Transactions
	Autonomous PL/SQL Blocks
	Transaction Control Statements in Autonomous Blocks

	18 Procedures and Packages
	An Introduction to Stored Procedures and Packages
	Stored Procedures and Functions
	Packages

	Procedures and Functions
	Procedure Guidelines
	Benefits of Procedures
	Security
	Performance
	Memory Allocation
	Productivity
	Integrity

	Anonymous PL/SQL Blocks versus Stored Procedures
	Standalone Procedures
	Definer Rights and Invoker Rights
	The Current User
	Resolution of External References

	Dependency Tracking for Stored Procedures
	External Procedures

	Packages
	Benefits of Packages
	Encapsulation
	Public and Private Data and Procedures
	Performance Improvement

	Dependency Tracking for Packages
	Oracle Supplied Packages

	How Oracle Stores Procedures and Packages
	Compiling Procedures and Packages
	Storing the Compiled Code in Memory
	Storing Procedures or Packages in Database

	How Oracle Executes Procedures and Packages
	Verifying User Access
	Verifying Procedure Validity
	Executing a Procedure

	19 Advanced Queuing
	Introduction to Message Queuing
	Oracle Advanced Queuing
	Queuing Entities
	Messages
	Queues
	Queue Tables
	Agents
	Recipient
	Recipient and Subscription Lists
	Rule
	Rule Based Subscriber
	Queue Monitor

	Features of Advanced Queuing
	Structured Payload
	Integrated Database Level Operational Support
	SQL Access
	Windows of Execution
	Multiple Consumers per Message
	Navigation
	Priority and Ordering of Messages
	Modes of Dequeue
	Waiting for the Arrival of Messages
	Retries with Delays
	Exception Queues
	Visibility
	Message Grouping
	Retention
	Message History
	Tracking
	Queue Level Access Control
	Propagating Messages to Other Databases
	Propagation Statistics
	Non-Persistent Queues
	Publish/Subscribe Support
	Support for Oracle Parallel Server Environments
	Queuing Statistics
	Asynchronous Notification
	Listen Capability (Wait for Messages on Multiple Queues)
	Correlation Identifier
	Import/Export

	20 Triggers
	An Introduction to Triggers
	How Triggers Are Used
	Some Cautionary Notes about Triggers
	Triggers versus Declarative Integrity Constraints

	Parts of a Trigger
	Triggering Event or Statement
	Trigger Restriction
	Trigger Action

	Types of Triggers
	Row Triggers and Statement Triggers
	Row Triggers
	Statement Triggers

	BEFORE and AFTER Triggers
	BEFORE Triggers
	AFTER Triggers

	Trigger Type Combinations
	Sample Package and Trigger for SAL Table

	INSTEAD-OF Triggers
	Modifying Views
	Views That Are Not Modifiable
	Example of an INSTEAD OF Trigger
	Usage Notes
	INSTEAD-OF Triggers on Nested Tables

	Triggers on System Events and User Events
	Event Publication
	Event Attributes
	System Events
	User Events

	Trigger Execution
	The Execution Model for Triggers and Integrity Constraint Checking
	Data Access for Triggers
	Storage of PL/SQL Triggers
	Execution of Triggers
	Dependency Maintenance for Triggers

	21 Oracle Dependency Management
	An Introduction to Dependency Issues
	Resolving Schema Object Dependencies
	Compiling Views and PL/SQL Program Units
	Views and Base Tables
	Program Units and Referenced Objects
	Session State and Referenced Packages
	Security Authorizations

	Function-Based Index Dependencies
	Requirements
	DETERMINISTIC Functions
	Privileges on the Defining Function
	Resolving Dependencies of Function-Based Indexes

	Dependency Management and Nonexistent Schema Objects
	Shared SQL Dependency Management
	Local and Remote Dependency Management
	Managing Local Dependencies
	Managing Remote Dependencies
	Dependencies Among Local and Remote Database Procedures
	Dependencies Among Other Remote Schema Objects
	Dependencies of Applications

	Part VI� Optimization of SQL Statements
	22 The Optimizer
	What Is Optimization?
	Execution Plans
	Steps of Execution Plan
	The EXPLAIN PLAN Command

	Execution Order
	Optimizer Plan Stability

	Cost-Based Optimization
	Goal of the Cost-Based Approach
	Statistics for Cost-Based Optimization
	Histograms for Cost-Based Optimization
	Statistics for Partitioned Schema Objects
	Gathering Statistics
	Managing Statistics

	When to Use the Cost-Based Approach

	Extensible Optimization
	User-Defined Statistics
	User-Defined Selectivity
	User-Defined Costs

	Rule-Base Optimization

	23 Optimizer Operations
	Overview of Optimizer Operations
	Optimizer Operations
	Types of SQL Statements

	Evaluation of Expressions and Conditions
	Constants
	LIKE Operator
	IN Operator
	ANY or SOME Operator
	ALL Operator
	BETWEEN Operator
	NOT Operator
	Transitivity
	DETERMINISTIC Functions

	Transforming and Optimizing Statements
	Transforming ORs into Compound Queries
	Transforming Complex Statements into Join Statements
	Optimizing Statements That Access Views
	Merging the View’s Query into the Statement
	Pushing the Predicate into the View
	Accessing the View’s Rows with the Original Statement

	Optimizing Compound Queries
	Optimizing Distributed Statements

	Choosing an Optimization Approach and Goal
	The OPTIMIZER_MODE Initialization Parameter
	Statistics in the Data Dictionary
	The OPTIMIZER_GOAL Parameter of the ALTER SESSION Command
	The FIRST_ROWS, ALL_ROWS, CHOOSE, and RULE Hints
	PL/SQL and the Optimizer Goal

	Choosing Access Paths
	Access Methods
	Full Table Scans
	Sample Table Scans
	Table Access by Rowid
	Cluster Scans
	Hash Scans
	Index Scans

	Access Paths
	Path 1: Single Row by Rowid
	Path 2: Single Row by Cluster Join
	Path 3: Single Row by Hash Cluster Key with Unique or Primary Key
	Path 4: Single Row by Unique or Primary Key
	Path 5: Clustered Join
	Path 6: Hash Cluster Key
	Path 7: Indexed Cluster Key
	Path 8: Composite Index
	Path 9: Single-Column Indexes
	Path 10: Bounded Range Search on Indexed Columns
	Path 11: Unbounded Range Search on Indexed Columns
	Path 12: Sort-Merge Join
	Path 13: MAX or MIN of Indexed Column
	Path 14: ORDER BY on Indexed Column
	Path 15: Full Table Scan
	Sample Table Scan (Unranked Access Path)
	Index Join (Unranked Access Path)

	Choosing Among Access Paths
	Choosing an Access Path with the Cost-Based Approach
	Choosing an Access Path with the Rule-Based Approach

	24 Optimization of Joins
	Optimizing Join Statements
	Join Operations
	Nested Loops Join
	Sort-Merge Join
	Cluster Join
	Hash Join

	Choosing Execution Plans for Join Statements
	Choosing Execution Plans for Joins with the Cost-Based Approach
	Choosing Execution Plans for Joins with the Rule-Based Approach

	Views in Outer Joins
	Merging a View That Has a Single Base Table
	Pushing the Join Predicate into a View That Has Multiple Base Tables

	Optimizing Anti-Joins and Semi-Joins
	Optimizing "Star" Queries
	Star Query Example
	Tuning Star Queries
	Indexing
	Hints
	Extended Star Schemas

	Star Transformation
	Execution Plan
	Using Star Transformation
	Restrictions on Star Transformation

	Part VII� Parallel SQL and Direct-Load INSERT
	25 Direct-Load INSERT
	Introduction to Direct-Load INSERT
	Advantages of Direct-Load INSERT
	Comparison with CREATE TABLE ... AS SELECT
	Advantage over Parallel Direct Load (SQL*Loader)

	INSERT ... SELECT Statements

	Varieties of Direct-Load INSERT Statements
	Serial and Parallel INSERT
	Specifying Serial or Parallel Direct-Load INSERT
	Examples of Serial and Parallel Direct-Load INSERT

	Logging Mode
	Examples of No-Logging Mode
	SQL Statements That Can Use No-Logging Mode
	Default Logging Mode

	Additional Considerations for Direct-Load INSERT
	Index Maintenance
	Space Considerations
	Storage Calculations
	Examples of Storage Calculations

	Locking Considerations

	Restrictions on Direct-Load INSERT

	26 Parallel Execution
	Overview of Parallel Execution
	Operations That Can Be Parallelized
	How Oracle Parallelizes Operations
	Parallelizing by Block Range
	Parallelizing by Partition
	Parallelizing by Parallel Execution Servers

	Process Architecture for Parallel Execution
	The Parallel Execution Server Pool
	Variations in the Number of Parallel Execution Servers
	Processing Without Enough Parallel Execution Servers

	How Parallel Execution Servers Communicate
	Parallelizing SQL Statements
	Dividing Work Among Parallel Execution Servers
	Parallelism Between Operations

	Setting the Degree of Parallelism
	How Oracle Determines the Degree of Parallelism for Operations
	Hints
	Table and Index Definitions
	Default Degree of Parallelism
	Adaptive Multi-User Algorithm
	Minimum Number of Parallel Execution Servers
	Limiting the Number of Available Instances

	Balancing the Work Load
	Parallelization Rules for SQL Statements
	Rules for Parallelizing Queries
	Rules for Parallelizing UPDATE and DELETE
	Rules for Parallelizing INSERT ... SELECT
	Rules for Parallelizing DDL Statements
	Rules for Parallelizing Create Index, Rebuild Index, Merge/Split Partition
	Rules for Parallelizing Create Table as Select
	Summary of Parallelization Rules

	Parallel Query
	Parallel Queries on Index-Organized Tables
	Nonpartitioned Index-Organized Tables
	Partitioned Index-Organized Tables

	Parallel Queries on Object Types

	Parallel DDL
	DDL Statements That Can Be Parallelized
	CREATE TABLE ... AS SELECT in Parallel
	Recoverability and Parallel DDL
	Space Management for Parallel DDL
	Storage Space for CREATE TABLE ... AS SELECT and CREATE INDEX
	Free Space and Parallel DDL

	Parallel DML
	Advantages of Parallel DML over Manual Parallelism
	When to Use Parallel DML
	Refresh Tables of a Data Warehouse System
	Intermediate Summary Tables
	Scoring Tables
	Historical Tables
	Batch Jobs

	Enabling Parallel DML
	Transactions with PARALLEL DML Enabled

	Transaction Model for Parallel DML
	Rollback Segments
	Two-Phase Commit

	Recovery for Parallel DML
	Transaction Recovery for User-Issued Rollback
	Process Recovery
	System Recovery
	Instance Recovery (Oracle Parallel Server)

	Space Considerations for Parallel DML
	Lock and Enqueue Resources for Parallel DML
	Restrictions on Parallel DML
	Partitioning Key Restriction
	Function Restrictions
	Data Integrity Restrictions
	Trigger Restrictions
	Distributed Transaction Restrictions

	Parallel Execution of Functions
	Functions in Parallel Queries
	Functions in Parallel DML and DDL Statements

	Affinity
	Affinity and Parallel Queries
	Affinity and Parallel DML

	Other Types of Parallelism

	Part VIII� Data Protection
	27 Data Concurrency and Consistency
	Data Concurrency and Consistency in a Multiuser Environment
	Preventable Phenomena and Transaction Isolation Levels
	Locking Mechanisms

	How Oracle Manages Data Concurrency and Consistency
	Multiversion Concurrency Control
	The "Snapshot Too Old" Message

	Statement-Level Read Consistency
	Transaction-Level Read Consistency
	Read Consistency in the Oracle Parallel Server
	Oracle Isolation Levels
	Setting the Isolation Level
	Read Committed Isolation
	Serializable Isolation

	Comparing Read Committed and Serializable Isolation
	Transaction Set Consistency
	Row-Level Locking
	Referential Integrity
	Oracle Parallel Server
	Distributed Transactions

	Choosing an Isolation Level
	Choosing Read Committed Isolation
	Choosing Serializable Isolation

	How Oracle Locks Data
	Transactions and Data Concurrency
	Locking Modes
	Lock Duration
	Data Lock Conversion Versus Lock Escalation

	Deadlocks
	Deadlock Detection
	Avoiding Deadlocks

	Types of Locks
	DML (Data) Locks
	Row Locks (TX)
	Table Locks (TM)
	DML Locks Automatically Acquired for DML Statements

	DDL Locks (Dictionary Locks)
	Exclusive DDL Locks
	Share DDL Locks
	Breakable Parse Locks
	Duration of DDL Locks
	DDL Locks and Clusters

	Latches and Internal Locks
	Latches
	Internal Locks

	Explicit (Manual) Data Locking
	Examples of Concurrency under Explicit Locking

	Oracle Lock Management Services

	28 Data Integrity
	Definition of Data Integrity
	Types of Data Integrity
	Nulls
	Unique Column Values
	Primary Key Values
	Referential Integrity
	Complex Integrity Checking

	How Oracle Enforces Data Integrity
	Integrity Constraints
	Database Triggers

	An Introduction to Integrity Constraints
	Advantages of Integrity Constraints
	Declarative Ease
	Centralized Rules
	Maximum Application Development Productivity
	Immediate User Feedback
	Superior Performance
	Flexibility for Data Loads and Identification of Integrity Violations

	The Performance Cost of Integrity Constraints

	Types of Integrity Constraints
	NOT NULL Integrity Constraints
	UNIQUE Key Integrity Constraints
	Unique Keys
	UNIQUE Key Constraints and Indexes
	Combining UNIQUE Key and NOT NULL Integrity Constraints

	PRIMARY KEY Integrity Constraints
	Primary Keys
	PRIMARY KEY Constraints and Indexes

	FOREIGN KEY (Referential) Integrity Constraints
	Self-Referential Integrity Constraints
	Nulls and Foreign Keys
	Actions Defined by Referential Integrity Constraints

	CHECK Integrity Constraints
	The Check Condition
	Multiple CHECK Constraints

	The Mechanisms of Constraint Checking
	Default Column Values and Integrity Constraint Checking

	Deferred Constraint Checking
	Constraint Attributes
	SET CONSTRAINTS Mode
	Unique Constraints and Indexes

	Constraint States
	Modifying Constraint States

	29 Controlling Database Access
	Database Security
	Schemas, Database Users, and Security Domains
	User Authentication
	Authentication by the Operating System
	Authentication by the Network
	Third Party-Based Authentication Technologies
	Public Key Infrastructure-Based Authentication
	Remote Authentication

	Authentication by the Oracle Database
	Password Encryption While Connecting
	Account Locking
	Password Lifetime and Expiration
	Password History
	Password Complexity Verification

	Multi-Tier Authentication and Authorization
	Clients, Application Servers, and Database Servers
	Security Issues for Middle-Tier Applications
	Identity Issues in a Multi-Tier Environment
	Restricted Privileges in a Multi-Tier Environment

	Authentication of Database Administrators

	User Tablespace Settings and Quotas
	Default Tablespace
	Temporary Tablespace
	Tablespace Access and Quotas

	The User Group PUBLIC
	User Resource Limits and Profiles
	Types of System Resources and Limits
	CPU Time
	Logical Reads
	Other Resources

	Profiles
	When to Use Profiles
	Determining Values for Resource Limits of a Profile

	Licensing
	Concurrent Usage Licensing
	Named User Licensing

	30 Privileges, Roles, and Security Policies
	Privileges
	System Privileges
	Granting and Revoking System Privileges
	Who Can Grant or Revoke System Privileges?

	Schema Object Privileges
	Granting and Revoking Schema Object Privileges
	Who Can Grant Schema Object Privileges?

	Table Security Topics
	Data Manipulation Language (DML) Operations
	Data Definition Language (DDL) Operations

	View Security Topics
	Privileges Required to Create Views
	Increasing Table Security with Views

	Procedure Security Topics
	Procedure Execution and Security Domains
	System Privileges Needed to Create or Alter a Procedure
	Packages and Package Objects

	Type Security Topics
	System Privileges
	Object Privileges
	Method Execution Model
	Privileges Required to Create Types and Tables Using Types
	Privileges on Type Access and Object Access
	Type Dependencies

	Roles
	Common Uses for Roles
	Application Roles
	User Roles

	The Mechanisms of Roles
	Granting and Revoking Roles
	Who Can Grant or Revoke Roles?
	Naming Roles
	Security Domains of Roles and Users
	PL/SQL Blocks and Roles
	Named Blocks with Definer Rights
	Invoker Rights and Anonymous Blocks

	Data Definition Language Statements and Roles
	Predefined Roles
	The Operating System and Roles
	Roles in a Distributed Environment

	Fine-Grained Access Control
	Dynamic Predicates
	Security Policy Example

	Application Context

	31 Auditing
	Introduction to Auditing
	Auditing Features
	Types of Auditing
	Focus of Auditing
	Audit Records and the Audit Trail

	Auditing Mechanisms
	When Are Audit Records Generated?
	Events Always Audited to the Operating System Audit Trail
	When Do Audit Options Take Effect?
	Auditing in a Distributed Database
	Auditing to the OS Audit Trail

	Statement Auditing
	Privilege Auditing
	Schema Object Auditing
	Schema Object Audit Options for Views and Procedures

	Focusing Statement, Privilege, and Schema Object Auditing
	Auditing Successful and Unsuccessful Statement Executions
	Auditing BY SESSION versus BY ACCESS
	BY SESSION
	BY ACCESS
	Defaults and Excluded Operations

	Auditing By User

	32 Database Recovery
	An Introduction to Database Recovery
	Errors and Failures
	User Error
	Statement Failure
	Process Failure
	Network Failure
	Database Instance Failure
	Media (Disk) Failure

	Structures Used for Database Recovery
	Database Backups
	The Redo Log
	The Online Redo Log
	The Archived (Offline) Redo Log

	Rollback Segments
	Control Files

	Rolling Forward and Rolling Back
	The Redo Log and Rolling Forward
	Rollback Segments and Rolling Back

	Improving Recovery Performance
	Performing Recovery in Parallel
	Situations That Benefit from Parallel Recovery
	Recovery Processes

	Fast-Start Recovery
	Fast-Start Checkpointing
	Fast-Start On-Demand Rollback
	Fast-Start Parallel Rollback

	Masking Failures with Transparent Application Failover

	Recovery Manager
	Recovery Catalog
	The Recovery Catalog Database
	Operation Without a Recovery Catalog

	Parallelization
	Report Generation

	Database Archiving Modes
	NOARCHIVELOG Mode (Media Recovery Disabled)
	ARCHIVELOG Mode (Media Recovery Enabled)
	Automatic Archiving and the ARCn (Archiver) Background Processes
	Manual Archiving

	Control Files
	Control File Contents
	Multiplexed Control Files

	Database Backups
	Whole Database Backups
	Consistent Whole Backups vs. Inconsistent Whole Backups
	Backups and Archiving Mode

	Partial Database Backups
	Datafile Backups
	Control File Backups

	The Export and Import Utilities
	Read-Only Tablespaces and Backup

	Survivability
	Planning for Disaster Recovery
	Automated Standby Database

	Part IX� Distributed Databases and Replication
	33 Distributed Databases
	Oracle’s Distributed Database Architecture
	Clients and Servers
	Direct and Indirect Connections

	The Network
	Net8
	Oracle Names

	Databases and Database Links
	Database Links
	Schema Object Name Resolution
	Connecting Between Oracle Server Versions
	Distributed Databases and Distributed Processing
	Distributed Databases and Database Replication

	Heterogeneous Distributed Databases
	Heterogeneous Services
	Heterogeneous Services Agents
	Features

	Developing Distributed Database Applications
	Distributed Query Optimization
	Remote and Distributed SQL Statements
	Remote Procedure Calls (RPCs)
	Remote and Distributed Transactions
	Two-Phase Commit Mechanism

	Transparency in a Distributed Database System
	Location Transparency
	Statement and Transaction Transparency
	Replication Transparency

	Administering an Oracle Distributed Database System
	Site Autonomy
	Distributed Database Security
	Supporting User Accounts and Roles
	Global Users and Roles
	Data Encryption

	Tools for Administering Oracle Distributed Databases
	Enterprise Manager
	Third-Party Administration Tools
	SNMP Support

	National Language Support

	34 Database Replication
	What Is Replication?
	Replication Objects, Groups, and Sites
	Replication Objects
	Replication Groups
	Replication Sites

	Multimaster Replication
	Uses for Multimaster Replication
	Failover Site
	Distributing Application Loads

	Snapshot Replication
	Read-Only Snapshots
	Updateable Snapshots
	Uses of Snapshot Replication
	Information Off-Loading
	Information Distribution
	Information Transport
	Disconnected Environments

	Multimaster and Snapshot Hybrid Configurations
	Administering a Replicated Environment
	Replication Catalog
	Replication Management API and Administration Requests
	Oracle Replication Manager

	Replication Conflicts
	Specialized Replication Options
	Procedural Replication
	Synchronous (Real-Time) Data Propagation

	Part X� Appendix
	A Operating System-Specific Information

	Index

