
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Programmer’s Guide to the Oracle � Precompilers

Release 1.8

Programmer’s Guide to
the Oracle� Precompilers
Release 1.8
February 1996
Part No. A42525–1

Programmer’s Guide to the Oracle� Precompilers, Release 1.8

Part No. A42525–1
Copyright � Oracle Corporation 1989, 1996
All rights reserved. Printed in the U.S.A.

Primary Author: Tom Portfolio
Contributing Author: Jack Godwin
Contributors: Stephen Arnold, Sanford Dreskin, Pierre Dufour, Steve Faris,
Radhakrishna Hari, Nancy Ikeda, Ken Jacobs, Maura Joglekar, Phil Locke,
Valarie Moore, Lee Osborne, Jacqui Pons, Tim Smith, Gael Turk, Scott Urman,
Peter Vasterd

This software was not developed for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It is the
customer’s responsibility to take all appropriate measures to ensure the safe
use of such applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions on
use and disclosure and is also protected by copyright law. Reverse engineering
of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of
the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS
252.227–7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with “Restricted Rights”,
as defined in FAR 52.227–14, Rights in Data – General, including Alternate III
(June 1987).

The information in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing.
Oracle Corporation does not warrant that this document is error–free.

Oracle, Pro*COBOL, SQL*Net, and SQL*Plus are registered trademarks of
Oracle Corporation.
Oracle7, PL/SQL, Pro*C, Pro*C/C++, and Trusted Oracle7 are trademarks of
Oracle Corporation.
VMS is a registered trademark of Digital Equipment Corporation. CMS is a
registered trademark of International Business Machines Corporation. All other
products or company names are used for identification purposes only, and may
be trademarks of their respective owners.

T

 iPreface

Preface

his manual is a comprehensive user’s guide and on–the–job
reference to the Oracle Pro*COBOL and Pro*FORTRAN Precompilers.
It shows you step–by–step how to develop applications that use the
powerful database language SQL to access and manipulate Oracle data.
It explores a full range of topics—from underlying concepts to
advanced programming techniques—and uses clear, hands–on
examples to teach you all you need to know.

 ii Programmer’s Guide to the Oracle Precompilers

What This Guide Has to Offer

This guide shows you how the Oracle Precompilers and embedded
SQL can benefit your entire applications development process. It gives
you the know–how to design and develop applications that harness the
power of Oracle. And, as quickly as possible, it helps you become
proficient in writing embedded SQL programs.

An important feature of this guide is its emphasis on getting the most
out of the Oracle Precompilers and embedded SQL. To help you master
these tools, this guide shows you all the “tricks of the trade” including
ways to improve program performance. It also includes many program
examples to better your understanding and demonstrate the usefulness
of embedded SQL.

Note: You will not find installation instructions or
system–specific information in this guide. For information
about migrating your applications from Oracle Version 6 to
Oracle7, see Appendix E.

Who Should Read This Guide?

Anyone developing new applications or converting existing
applications to run in the Oracle7 environment will benefit from
reading this guide. Written especially for programmers, this
comprehensive treatment of the Oracle Precompilers will also be of
value to systems analysts, project managers, and others interested in
embedded SQL applications.

To use this guide effectively, you need a working knowledge of the
following subjects:

• applications programming in a high–level language

• the SQL database language

• Oracle7 concepts and terminology

 iiiPreface

What’s New in Release 1.8?

Release 1.8 of the Oracle Precompilers introduces a new command–line
option, UNSAFE_NULL. With UNSAFE_NULL=YES, you can disable
ORA–01405 messages when precompiling applications that fetch data
into host variables that do not have associated indicator variables.

For more information, see Appendix A.

How This Guide Is Organized

This guide contains eleven chapters and five appendices. Chapters 1
and 2 give you your bearings, then Chapters 3, 4, 5, and 6 lead you
through the essentials of embedded SQL programming. After reading
these chapters, you will be able to write and run useful embedded SQL
applications. Chapters 7, 8, 9, 10, and 11 cover advanced topics. A brief
summary of what you will find in each chapter and appendix follows.

Chapter 1: Getting Acquainted
This chapter introduces you to the Oracle Precompilers. You look at
their role in developing application programs that manipulate Oracle
data and find out what they allow your applications to do.

Chapter 2: Learning the Basics
This chapter explains how embedded SQL programs do their work.
You examine the special environment in which they operate, the impact
of this environment on the design of your applications, the key
concepts of embedded SQL programming, and the steps you take in
developing an application.

Chapter 3: Meeting Program Requirements
This chapter shows you how to meet embedded SQL program
requirements. You learn the embedded SQL commands that declare
variables, declare communications areas, and connect to an Oracle
database. You also learn about the Oracle datatypes, National
Language Support (NLS), data conversion, and how to take advantage
of datatype equivalencing. In addition, this chapter shows you how to
embed Oracle Call Interface (OCI) calls in your program and how to
develop X/Open applications.

Chapter 4: Using Embedded SQL
This chapter teaches you the essentials of embedded SQL
programming. You learn how to use host variables, indicator variables,
cursors, cursor variables, and the fundamental SQL commands that
insert, update, select, and delete Oracle data.

 iv Programmer’s Guide to the Oracle Precompilers

Chapter 5: Using Embedded PL/SQL
This chapter shows you how to improve performance by embedding
PL/SQL transaction processing blocks in your program. You learn how
to use PL/SQL with host variables, indicator variables, cursors, stored
subprograms, host arrays, and dynamic SQL.

Chapter 6: Running the Oracle Precompilers
This chapter details the requirements for running an Oracle
Precompiler. You learn what happens during precompilation, how to
issue the precompiler command, how to specify the many useful
precompiler options, how to do conditional and separate
precompilations, and how to embed OCI calls in your host program.

Chapter 7: Defining and Controlling Transactions
This chapter describes transaction processing. You learn the basic
techniques that safeguard the consistency of your database.

Chapter 8: Handling Runtime Errors
This chapter provides an in–depth discussion of error reporting and
recovery. You learn how to detect and handle errors using the status
variable SQLSTATE, the SQLCA structure, and the WHENEVER
statement. You also learn how to diagnose problems using the ORACA.

Chapter 9: Using Host Arrays
This chapter looks at using arrays to improve program performance.
You learn how to manipulate Oracle data using arrays, how to operate
on all the elements of an array with a single SQL statement, and how to
limit the number of array elements processed.

Chapter 10: Using Dynamic SQL
This chapter shows you how to take advantage of dynamic SQL. You
are taught four methods—from simple to complex—for writing flexible
programs that, among other things, let users build SQL statements
interactively at run time.

Chapter 11: Writing User Exits
This chapter focuses on writing user exits for your SQL*Forms or
Oracle Forms applications. First, you learn the commands that allow a
Forms application to interface with user exits. Then, you learn how to
write and link a Forms user exit.

Appendix A: New Features
This appendix highlights the improvements and new features
introduced with Release 1.8 of the Oracle Precompilers.

Appendix B: Oracle Reserved Words, Keywords, and Namespaces
This appendix lists words that have a special meaning to Oracle and
namespaces that are reserved for Oracle libraries.

 vPreface

Appendix C: Performance Tuning
This appendix gives you some simple, easy–to–apply methods for
improving the performance of your applications.

Appendix D: Syntactic and Semantic Checking
This appendix shows you how to use the SQLCHECK option to control
the type and extent of syntactic and semantic checking done on
embedded SQL statements and PL/SQL blocks.

Appendix E: Migrating to Oracle7
Oracle7 conforms fully to the new ANSI/ISO SQL standard. As a
result, Oracle7 and Oracle Version 6 behave differently in a few areas.
By pointing out those areas, this appendix helps you migrate your
application programs to Oracle7.

Appendix F: Embedded SQL Commands and Directives
This appendix contains descriptions of precompiler directives,
embedded SQL commands, and Oracle embedded SQL extensions.
These commands are prefaced in your source code with the keywords,
EXEC SQL.

 vi Programmer’s Guide to the Oracle Precompilers

Conventions Used in This Guide

Important terms being defined for the first time are italicized. In
discussions, UPPER CASE is used for database objects and SQL
keywords, and italicized lower case is used for the names of variables,
constants, and parameters.

With a few exceptions, program examples are written in pseudocode to
avoid language–specific issues. Oriented to professional programmers,
the pseudocode is somewhat formal. In the following example, a mail
order for books is processed:

–– process book order

IF prepaid OR (credit_rating > 2) THEN

 set order_total = 0; –– initialize order_total

 FOR EACH book

 IF catalog_number is valid THEN

 EXEC SQL SELECT QTY INTO :quantity_on_hand

 FROM STOCK

 WHERE CATNO = :catalog_number;

 IF quantity_on_hand > 0 THEN

 set line_price = catalog_price;

 set line_total = line_price * quantity;

 add line_total to order_total;

 subtract quantity from quantity_on_hand;

 create order_line;

 ELSE

 create back_order;

 ENDIF;

 ELSE

 display ’Invalid catalog number’;

 ENDIF;

 ENDFOR;

 create customer_order;

ELSE

 display ’Credit rating too low’;

ENDIF;

This example has the following important features:

• Indenting reveals structure.

• Keywords (in upper case) make constructs and logic clear.

• Statements end with a semicolon (;).

• ANSI/ISO–style comments are used; they begin with two
consecutive hyphens and extend to the end of a line.

• Parentheses help avoid ambiguity.

Notation

Syntax Description

ANSI/ISO

 viiPreface

The following notation is used in this guide:

Angle brackets enclose the name of a syntactic element.

A dot separates an object name from a component name
and so qualifies a reference.

Two dots separate the lowest and highest values in a range.

An ellipsis shows that statements or clauses irrelevant to
the discussion were left out.

This character is used in text to represent blank spaces
when referring to the content of a database column.

Embedded SQL syntax is described using a variant of Backus–Naur
Form (BNF), which includes the following symbols:

Brackets enclose optional items.

Braces enclose items only one of which is required.

A vertical bar separates alternatives within brackets or
braces.

An ellipsis shows that the preceding parameter can be
repeated.

Standards Compliance

The Pro*COBOL and Pro*FORTRAN Precompilers, Release 1.8, comply
fully with the ANSI/ISO SQL standards. Compliance with these
standards was certified by the National Institute of Standards and
Technology (NIST). To flag extensions to ANSI/ISO SQL, a FIPS
Flagger is provided.

ANSI standard X3.135–1992 (known informally as SQL92) provides
three levels of compliance:

• Full SQL

• Intermediate SQL (a subset of Full SQL)

• Entry SQL (a subset of Intermediate SQL)

ANSI standard X3.168–1992 specifies the syntax and semantics for
embedding SQL statements in application programs written in
standard programming languages such as COBOL–74, COBOL–85, and
FORTRAN77.

< >

.

. .

. . .

#

[]

{ }

|

. . .

MIA/SPIRIT

 viii Programmer’s Guide to the Oracle Precompilers

A conforming SQL implementation must support at least Entry SQL.
The Oracle Pro*COBOL and Pro*FORTRAN Precompilers do conform
to Entry SQL92.

NIST standard FIPS PUB 127–1, which applies to RDBMS software
acquired for federal use, also adopts the ANSI standards. In addition, it
specifies minimum sizing parameters for database constructs and
requires a “FIPS Flagger” to identify ANSI extensions.

For copies of the ANSI standards, write to

American National Standards Institute
 1430 Broadway
 New York, NY 10018
 USA

The Pro*COBOL Precompiler provides National Language Support
(NLS) of multi–byte character data by complying with the Multivendor
Integration Architecture (MIA) specification, Version 1.3, and the
Service Providers Integrated Requirements for Information Technology
(SPIRIT) specification, Issue 2.

Your Comments Are Welcome

The Oracle Corporation technical staff values your comments. As we
write and revise, your opinions are the most important feedback we
receive. Please use the Reader’s Comment Form at the back of this
guide to tell us what you like and dislike about this Oracle publication.
If you prefer, you can fax us at (415) 506–7200 or write to us at the
following address:

Languages Documentation Manager
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065

Fax: (415) 506–7200

 ixContents

Contents

Chapter 1 Getting Acquainted 1 – 1.
What Is an Oracle Precompiler? 1 – 2.

Language Alternatives 1 – 3.
Why Use an Oracle Precompiler? 1 – 3.
Why Use SQL? 1 – 4.
Why Use PL/SQL? 1 – 4.
What Do the Oracle Precompilers Offer? 1 – 5.
Do the Oracle Precompilers Meet Industry Standards? 1 – 6.

Requirements 1 – 7.
Compliance 1 – 8.
Certification 1 – 8.

Chapter 2 Learning the Basics 2 – 1.
Key Concepts of Embedded SQL Programming 2 – 2.

Embedded SQL Statements 2 – 2.
Embedded SQL Syntax 2 – 5.
Static versus Dynamic SQL Statements 2 – 5.
Embedded PL/SQL Blocks 2 – 5.
Host and Indicator Variables 2 – 6.
Oracle Datatypes 2 – 6.
Arrays 2 – 7.
Datatype Equivalencing 2 – 7.
Private SQL Areas, Cursors, and Active Sets 2 – 7.
Transactions 2 – 7.
Errors and Warnings 2 – 8.

 x Programmer’s Guide to the Oracle Precompilers

Steps in Developing an Embedded SQL Application 2 – 9.
A Program Example 2 – 10.
Sample Tables 2 – 12.

Sample Data 2 – 12.

Chapter 3 Meeting Program Requirements 3 – 1.
The Declare Section 3 – 2.
INCLUDE Statements 3 – 3.
The SQLCA 3 – 4.
Oracle Datatypes 3 – 5.

Internal Datatypes 3 – 5.
External Datatypes 3 – 11.

Datatype Conversion 3 – 19.
DATE Values 3 – 21.
RAW and LONG RAW Values 3 – 21.

Declaring and Referencing Host Variables 3 – 22.
Some Examples 3 – 22.
VARCHAR Variables 3 – 23.
Host Variable Guidelines 3 – 23.

Declaring and Referencing Indicator Variables 3 – 24.
INDICATOR Keyword 3 – 24.
An Example 3 – 24.
Indicator Variable Guidelines 3 – 25.

Datatype Equivalencing 3 – 25.
Why Equivalence Datatypes? 3 – 25.
Host Variable Equivalencing 3 – 26.
Using the CHARF Datatype Specifier 3 – 29.
Guidelines 3 – 29.

National Language Support 3 – 30.
Multi–Byte NLS Character Sets 3 – 32.

Character Strings in Embedded SQL 3 – 32.
Dynamic SQL 3 – 32.
Embedded DDL 3 – 32.
Multi–Byte NLS Host Variables 3 – 32.
Restrictions 3 – 33.
Blank Padding 3 – 33.
Indicator Variables 3 – 33.

Connecting to Oracle 3 – 34.
Connecting Using SQL*Net Version 2 3 – 35.
Automatic Logons 3 – 35.

 xiContents

Concurrent Logons 3 – 36.
Some Preliminaries 3 – 37.
Default Databases and Connections 3 – 37.
Explicit Logons 3 – 38.
Implicit Logons 3 – 43.

Embedding OCI (Oracle Call Interface) Calls 3 – 44.
Setting Up the LDA 3 – 45.
Remote and Multiple Connections 3 – 45.

Developing X/Open Applications 3 – 46.
Oracle–Specific Issues 3 – 47.

Chapter 4 Using Embedded SQL 4 – 1.
Using Host Variables 4 – 2.

Output versus Input Host Variables 4 – 2.
Using Indicator Variables 4 – 4.

Input Variables 4 – 4.
Output Variables 4 – 4.
Inserting Nulls 4 – 4.
Handling Returned Nulls 4 – 5.
Fetching Nulls 4 – 5.
Testing for Nulls 4 – 6.
Fetching Truncated Values 4 – 6.

The Basic SQL Statements 4 – 7.
Selecting Rows 4 – 8.
Inserting Rows 4 – 9.
Using Subqueries 4 – 9.
Updating Rows 4 – 9.
Deleting Rows 4 – 10.
Using the WHERE Clause 4 – 10.

Cursors 4 – 11.
Declaring a Cursor 4 – 12.
Opening a Cursor 4 – 13.
Fetching from a Cursor 4 – 13.
Closing a Cursor 4 – 14.
Using the CURRENT OF Clause 4 – 15.
Restrictions 4 – 15.
A Typical Sequence of Statements 4 – 16.
A Complete Example 4 – 16.

 xii Programmer’s Guide to the Oracle Precompilers

Cursor Variables 4 – 19.
Declaring a Cursor Variable 4 – 19.
Allocating a Cursor Variable 4 – 19.
Opening a Cursor Variable 4 – 19.
Fetching from a Cursor Variable 4 – 21.
Closing a Cursor Variable 4 – 21.

Chapter 5 Using Embedded PL/SQL 5 – 1.
Advantages of PL/SQL 5 – 2.

Better Performance 5 – 2.
Integration with Oracle 5 – 2.
Cursor FOR Loops 5 – 3.
Subprograms 5 – 3.
Packages 5 – 4.
PL/SQL Tables 5 – 5.
User–defined Records 5 – 5.

Embedding PL/SQL Blocks 5 – 6.
Using Host Variables 5 – 7.

An Example 5 – 7.
A More Complex Example 5 – 9.
VARCHAR Pseudotype 5 – 11.

Using Indicator Variables 5 – 12.
Handling Nulls 5 – 13.
Handling Truncated Values 5 – 13.

Using Host Arrays 5 – 14.
ARRAYLEN Statement 5 – 16.

Using Cursors 5 – 17.
An Alternative 5 – 18.

Stored Subprograms 5 – 18.
Creating Stored Subprograms 5 – 19.
Calling a Stored Subprogram 5 – 21.
Getting Information about Stored Subprograms 5 – 24.

Using Dynamic PL/SQL 5 – 24.
Restriction 5 – 24.

 xiiiContents

Chapter 6 Running the Oracle Precompilers 6 – 1.
The Precompiler Command 6 – 2.
What Occurs during Precompilation? 6 – 3.
Precompiler Options 6 – 4.

Default Values 6 – 5.
Case Sensitivity 6 – 6.
Configuration Files 6 – 6.

Entering Options 6 – 7.
On the Command Line 6 – 7.
Inline 6 – 7.
From a Configuration File 6 – 9.

Scope of Options 6 – 10.
Quick Reference 6 – 10.
Using the Precompiler Options 6 – 12.

ASACC 6 – 12.
ASSUME_SQLCODE 6 – 12.
AUTO_CONNECT 6 – 13.
COMMON_NAME 6 – 14.
CONFIG 6 – 15.
DBMS 6 – 16.
DEFINE 6 – 19.
ERRORS 6 – 19.
FIPS 6 – 19.
FORMAT 6 – 21.
HOLD_CURSOR 6 – 22.
HOST 6 – 23.
INAME 6 – 23.
INCLUDE 6 – 24.
IRECLEN 6 – 24.
LITDELIM 6 – 25.
LNAME 6 – 25.
LRECLEN 6 – 26.
LTYPE 6 – 26.
MAXLITERAL 6 – 27.
MAXOPENCURSORS 6 – 28.
MODE 6 – 29.
MULTISUBPROG 6 – 30.
NLS_LOCAL 6 – 31.
ONAME 6 – 31.
ORACA 6 – 32.
ORECLEN 6 – 32.
PAGELEN 6 – 32.
RELEASE_CURSOR 6 – 33.

 xiv Programmer’s Guide to the Oracle Precompilers

SELECT_ERROR 6 – 34.
SQLCHECK 6 – 35.
UNSAFE_NULL 6 – 37.
USERID 6 – 37.
VARCHAR 6 – 38.
XREF 6 – 38.

Conditional Precompilations 6 – 39.
An Example 6 – 39.
Defining Symbols 6 – 40.

Separate Precompilations 6 – 41.
Guidelines 6 – 41.
Restrictions 6 – 41.

Compiling and Linking 6 – 42.
System–Dependent 6 – 42.
Multi–Byte NLS Compatibility 6 – 42.

Chapter 7 Defining and Controlling Transactions 7 – 1.
Some Terms You Should Know 7 – 2.
How Transactions Guard Your Database 7 – 3.
How to Begin and End Transactions 7 – 4.
Using the COMMIT Statement 7 – 5.
Using the ROLLBACK Statement 7 – 6.

Statement–Level Rollbacks 7 – 7.
Using the SAVEPOINT Statement 7 – 8.
Using the RELEASE Option 7 – 10.
Using the SET TRANSACTION Statement 7 – 11.
Overriding Default Locking 7 – 12.

Using the FOR UPDATE OF Clause 7 – 12.
Using the LOCK TABLE Statement 7 – 13.

Fetching Across Commits 7 – 14.
Handling Distributed Transactions 7 – 15.
Guidelines 7 – 16.

Designing Applications 7 – 16.
Obtaining Locks 7 – 16.
Using PL/SQL 7 – 16.

 xvContents

Chapter 8 Error Handling and Diagnostics 8 – 1.
The Need for Error Handling 8 – 2.
Error Handling Alternatives 8 – 2.

SQLCODE and SQLSTATE 8 – 3.
SQLCA 8 – 3.
ORACA 8 – 3.

Using Status Variables when MODE={ANSI|ANSI14} 8 – 4.
Some Historical Information 8 – 4.
Declaring Status Variables 8 – 5.
Status Variable Combinations 8 – 6.
Status Variable Values 8 – 11.

Using the SQL Communications Area 8 – 19.
Declaring the SQLCA 8 – 20.
What’s in the SQLCA? 8 – 20.
Key Components of Error Reporting 8 – 21.
SQLCA Structure 8 – 23.
PL/SQL Considerations 8 – 26.
Getting the Full Text of Error Messages 8 – 26.
Using the WHENEVER Statement 8 – 27.
Getting the Text of SQL Statements 8 – 33.

Using the Oracle Communications Area 8 – 36.
Declaring the ORACA 8 – 36.
Enabling the ORACA 8 – 36.
What’s in the ORACA? 8 – 37.
Choosing Runtime Options 8 – 37.
ORACA Structure 8 – 38.
An Example 8 – 41.

Chapter 9 Using Host Arrays 9 – 1.
What Is a Host Array? 9 – 2.
Why Use Arrays? 9 – 2.
Declaring Host Arrays 9 – 2.

Dimensioning Arrays 9 – 2.
Restrictions 9 – 3.

Using Arrays in SQL Statements 9 – 3.
Selecting into Arrays 9 – 3.

Batch Fetches 9 – 4.
Number of Rows Fetched 9 – 5.
Restrictions 9 – 5.
Fetching Nulls 9 – 6.
Fetching Truncated Values 9 – 6.

 xvi Programmer’s Guide to the Oracle Precompilers

Inserting with Arrays 9 – 7.
Restrictions 9 – 7.

Updating with Arrays 9 – 8.
Restrictions 9 – 8.

Deleting with Arrays 9 – 9.
Restrictions 9 – 9.

Using Indicator Arrays 9 – 9.
Using the FOR Clause 9 – 10.

Restrictions 9 – 11.
Using the WHERE Clause 9 – 12.
Mimicking the CURRENT OF Clause 9 – 13.
Using SQLERRD(3) 9 – 14.

Chapter 10 Using Dynamic SQL 10 – 1.
What Is Dynamic SQL? 10 – 2.
Advantages and Disadvantages of Dynamic SQL 10 – 2.
When to Use Dynamic SQL 10 – 3.
Requirements for Dynamic SQL Statements 10 – 3.
How Dynamic SQL Statements Are Processed 10 – 4.
Methods for Using Dynamic SQL 10 – 4.

Method 1 10 – 5.
Method 2 10 – 5.
Method 3 10 – 5.
Method 4 10 – 5.
Guidelines 10 – 6.

Using Method 1 10 – 8.
The EXECUTE IMMEDIATE Statement 10 – 8.
An Example 10 – 9.

Using Method 2 10 – 9.
The USING Clause 10 – 11.
An Example 10 – 11.

Using Method 3 10 – 12.
PREPARE 10 – 12.
DECLARE 10 – 13.
OPEN 10 – 13.
FETCH 10 – 13.
CLOSE 10 – 14.
An Example 10 – 14.

 xviiContents

Using Method 4 10 – 15.
Need for the SQLDA 10 – 15.
The DESCRIBE Statement 10 – 16.
What Is a SQLDA? 10 – 16.
Implementing Method 4 10 – 17.

Using the DECLARE STATEMENT Statement 10 – 18.
Using Host Arrays 10 – 18.
Using PL/SQL 10 – 19.

With Method 1 10 – 19.
With Method 2 10 – 19.
With Method 3 10 – 19.
With Method 4 10 – 20.
Caution 10 – 20.

Chapter 11 Writing User Exits 11 – 1.
What Is a User Exit? 11 – 2.
Why Write a User Exit? 11 – 3.
Developing a User Exit 11 – 3.
Writing a User Exit 11 – 4.

Requirements for Variables 11 – 4.
The IAF GET Statement 11 – 5.
The IAF PUT Statement 11 – 6.

Calling a User Exit 11 – 7.
Passing Parameters to a User Exit 11 – 7.
Returning Values to a Form 11 – 8.

The IAP Constants 11 – 8.
Using the SQLIEM Function 11 – 8.
Using WHENEVER 11 – 9.

An Example 11 – 9.
Precompiling and Compiling a User Exit 11 – 10.
Using the GENXTB Utility 11 – 10.
Linking a User Exit into SQL*Forms 11 – 11.
Guidelines for SQL*Forms User Exits 11 – 11.

Naming the Exit 11 – 11.
Connecting to Oracle 11 – 11.
Issuing I/O Calls 11 – 11.
Using Host Variables 11 – 11.
Updating Tables 11 – 12.
Issuing Commands 11 – 12.

 xviii Programmer’s Guide to the Oracle Precompilers

EXEC TOOLS Statements 11 – 12.
EXEC TOOLS SET 11 – 13.
EXEC TOOLS GET 11 – 13.
EXEC TOOLS SET CONTEXT 11 – 14.
EXEC TOOLS GET CONTEXT 11 – 14.
EXEC TOOLS MESSAGE 11 – 15.

Appendix A New Features A – 1.

Appendix B Oracle Reserved Words, Keywords, and Namespaces B – 1.

Appendix C Performance Tuning C – 1.

Appendix D Syntactic and Semantic Checking D – 1.

Appendix E Migrating to Oracle7 E – 1.

Appendix F Embedded SQL Commands and Directives F – 1.

Index

C H A P T E R

1
T

1 – 1Getting Acquainted

Getting Acquainted

his chapter introduces you to the Oracle Precompilers. You look at
their role in developing application programs that manipulate Oracle
data and find out what they allow your applications to do. The
following questions are answered:

• What is an Oracle Precompiler?

• Why use an Oracle Precompiler?

• Why use SQL?

• Why use PL/SQL?

• What do the Oracle Precompilers offer?

• Do the Oracle Precompilers meet industry standards?

1 – 2 Programmer’s Guide to the Oracle Precompilers

What Is an Oracle Precompiler?

An Oracle Precompiler is a programming tool that allows you to embed
SQL statements in a high–level host program. As Figure 1 – 1 shows,
the precompiler accepts the host program as input, translates the
embedded SQL statements into standard Oracle runtime library calls,
and generates a source program that you can compile, link, and execute
in the usual way.

To resolve calls

With embedded SQL statements

With all SQL statements replaced by library callsSource
Program

Oracle
Precompiler

Editor

Host
Program

Compiler

Object
Program

Linker

Exectable
Program

Oracle
Runtime
Library
(SQLLIB)

Figure 1 – 1 Embedded SQL Program Development

Language Alternatives

☞

1 – 3Getting Acquainted

Four Oracle Precompilers are available (not on all systems); they
support the following high–level languages:

• C/C++

• COBOL

• FORTRAN

• Ada

Meant for different application areas and reflecting different design
philosophies, these languages offer a broad range of programming
solutions.

Attention: This guide is supplemented by companion books
devoted to COBOL and FORTRAN. Refer to the Programmer’s
Guide to the Pro*Ada Precompiler and Programmer’s Guide to the
Oracle Pro*C/C++ Precompiler, respectively, for complete
descriptions of the Pro*Ada and Pro*C/C++ Precompilers.

Pro*Pascal and Pro*PL/I are in “maintenence mode,” which means that
Version 1 of these products will not be enhanced with any additional
features beyond those included with Release 1.6. However, Oracle will
continue to issue patch releases — release numbers 1.6.x — as bugs are
reported and corrected.

Why Use an Oracle Precompiler?

The Oracle Precompilers let you pack the power and flexibility of SQL
into your application programs. You can use SQL in popular high–level
languages such as COBOL and FORTRAN. A convenient, easy to use
interface lets your application access Oracle directly.

Unlike many application development tools, the Oracle Precompilers
let you create highly customized applications. For example, you can
create user interfaces that incorporate the latest windowing and mouse
technology. You can also create applications that run in the background
without the need for user interaction.

Furthermore, with the Oracle Precompilers you can fine–tune your
applications. They allow close monitoring of resource usage, SQL
statement execution, and various runtime indicators. With this
information, you can adjust program parameters for maximum
performance.

1 – 4 Programmer’s Guide to the Oracle Precompilers

Why Use SQL?

If you want to access and manipulate Oracle data, you need SQL.
Whether you use SQL interactively or embedded in an application
program depends on the job at hand. If the job requires the procedural
processing power of COBOL or FORTRAN, or must be done on a
regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible,
powerful, and easy to learn. Being non–procedural, it lets you specify
what you want done without specifying how to do it. A few
English–like statements make it easy to manipulate Oracle data one
row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application
program. For example, you can

• CREATE, ALTER, and DROP database tables dynamically

• SELECT, INSERT, UPDATE, and DELETE rows of data

• COMMIT or ROLLBACK transactions

Before embedding SQL statements in an application program, you
can test them interactively using SQL*Plus or Server Manager. Usually,
only minor changes are required to switch from interactive to
embedded SQL.

Why Use PL/SQL?

An extension to SQL, PL/SQL is a transaction processing language that
supports procedural constructs, variable declarations, and robust error
handling. Within the same PL/SQL block, you can use SQL and all the
PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance.
Unlike SQL, PL/SQL allows you to group SQL statements logically and
send them to Oracle in a block rather than one by one. This reduces
network traffic and processing overhead.

For more information about PL/SQL including how to embed it in an
application program, see Chapter 5, “Using Embedded PL/SQL.”

1 – 5Getting Acquainted

What Do the Oracle Precompilers Offer?

As Figure 1 – 2 shows, the Oracle Precompilers offer many features and
benefits that help you to develop effective, reliable applications.

Runtime
Diagnostics

Event
Handling

Language
Alternatives

ANSI/ISO SQL
Conformance

Highly
Customized
Applications

Dynamic
SQL

Support for
PL/SQL

Automatic
Datatype
Conversion

Runtime
OptionsUser Exits

Syntax and

Checking
Datatype
Equivalencing

Array
Operations

Concurrent
Connects

Conditional
Precompilation

Separate
Precompilation

Oracle
Precompilers

Semantics

Figure 1 – 2 Features and Benefits

For example, the Oracle Precompilers allow you to

• program your application in any of six high–level languages

• conform to the ANSI/ISO embedded SQL standard

• take advantage of dynamic SQL, an advanced programming
technique that lets your program accept or build any valid SQL
statement at run time

• design and develop highly customized applications

• convert automatically between Oracle internal datatypes and
high–level language datatypes

• improve performance by embedding PL/SQL transaction
processing blocks in your application program

1 – 6 Programmer’s Guide to the Oracle Precompilers

• specify useful precompiler options and change their values
during precompilation

• use datatype equivalencing to control the way Oracle interprets
input data and formats output data

• precompile several program modules separately, then link them
into one executable program

• check the syntax and semantics of embedded SQL data
manipulation statements and PL/SQL blocks

• access Oracle databases on multiple nodes concurrently using
SQL*Net

• use arrays as input and output program variables

• precompile sections of code conditionally so that your host
program can run in different environments

• interface with tools such as Oracle Forms and Oracle Reports via
user exits written in a high–level language

• handle errors and warnings with the ANSI–approved status
variables SQLSTATE and SQLCODE, and/or the SQL
Communications Area (SQLCA) and WHENEVER statement

• use an enhanced set of diagnostics provided by the Oracle
Communications Area (ORACA)

To sum it up, the Oracle Precompilers are full–featured tools that
support a professional approach to embedded SQL programming.

Do the Oracle Precompilers Meet Industry Standards?

SQL has become the standard language for relational database
management systems. This section describes how the Oracle
Precompilers conform to the latest SQL standards established by the
following organizations:

• American National Standards Institute (ANSI)

• International Standards Organization (ISO)

• U.S. National Institute of Standards and Technology (NIST)

Requirements

1 – 7Getting Acquainted

Those organizations have adopted SQL as defined in the following
publications:

• ANSI Document ANSI X3.135–1992,
Database Language SQL

• International Standard ISO/IEC 9075:1992,
Database Language SQL

• ANSI Document ANSI X3.168–1992,
Database Language Embedded SQL

• NIST Federal Information Processing Standard FIPS PUB 127–2,
Database Language SQL

ANSI X3.135–1992 (known informally as SQL92) specifies a
“conforming SQL language” and, to allow implementation in stages,
defines three language levels:

• Full SQL

• Intermediate SQL (a subset of Full SQL)

• Entry SQL (a subset of Intermediate SQL)

A conforming SQL implementation must support at least Entry SQL.

ANSI X3.168–1992 specifies the syntax and semantics for embedding
SQL statements in application programs written in a standard
programming language such as COBOL, FORTRAN, Pascal, or PL/I.

ISO/IEC 9075–1992 fully adopts the ANSI standards.

FIPS PUB 127–2, which applies to RDBMS software acquired for federal
use, also adopts the ANSI standards. In addition, it specifies minimum
sizing parameters for database constructs and requires a “FIPS
Flagger” to identify ANSI extensions.

For copies of the ANSI standards, write to

American National Standards Institute
1430 Broadway
New York, NY 10018, USA

For a copy of the ISO standard, write to the national standards office of
any ISO participant. For a copy of the NIST standard, write to

National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161, USA

Compliance

FIPS Flagger

FIPS Option

Certification

1 – 8 Programmer’s Guide to the Oracle Precompilers

Under Oracle7, the Oracle Precompilers comply 100% with the ANSI,
ISO, and NIST standards. As required, they support Entry SQL and
provide a FIPS Flagger.

According to FIPS PUB 127–1, “an implementation that provides
additional facilities not specified by this standard shall also provide an
option to flag nonconforming SQL language or conforming SQL
language that may be processed in a nonconforming manner.” To meet
this requirement, the Oracle Precompilers provide the FIPS Flagger,
which flags ANSI extensions. An extension is any SQL element that
violates ANSI format or syntax rules, except privilege enforcement
rules. For a list of Oracle extensions to standard SQL, see the Oracle7
Server SQL Reference.

You can use the FIPS Flagger to identify

• nonconforming SQL elements that might have to be modified if
you move the application to a conforming environment

• conforming SQL elements that might behave differently in
another processing environment

Thus, the FIPS Flagger helps you develop portable applications.

An option named FIPS governs the FIPS Flagger. To enable the FIPS
Flagger, you specify FIPS=YES inline or on the command line. For more
information about the command–line option FIPS, see page 6 – 19.

NIST tested the Oracle Precompilers for ANSI Entry SQL compliance
using the SQL Test Suite, which consists of nearly 300 test programs.
Specifically, the programs tested for conformance to the COBOL and
FORTRAN embedded SQL standards. As a result, the Oracle
Precompilers were certified 100% ANSI–compliant.

For more information about the tests, write to

National Computer Systems Laboratory
Attn: Software Standards Testing Program
National Institute of Standards and Technology
Gaithersburg, MD 20899, USA

C H A P T E R

2
T

2 – 1Learning the Basics

Learning the Basics

his chapter explains how embedded SQL programs do their work.
You examine the special environment in which they operate and the
impact of this environment on the design of your applications.

After covering the key concepts of embedded SQL programming and
the steps you take in developing an application, this chapter uses a
simple program to illustrate the main points.

Embedded SQL
Statements

2 – 2 Programmer’s Guide to the Oracle Precompilers

Key Concepts of Embedded SQL Programming

This section lays the conceptual foundation on which later chapters
build. It discusses the following subjects:

• embedded SQL statements

• executable versus declarative SQL statements

• static versus dynamic SQL statements

• embedded PL/SQL blocks

• host and indicator variables

• Oracle datatypes

• arrays

• datatype equivalencing

• private SQL areas, cursors, and active sets

• transactions

• errors and warnings

The term embedded SQL refers to SQL statements placed within an
application program. Because the application program houses the SQL
statements, it is called a host program, and the language in which it is
written is called the host language. For example, with the Pro*COBOL
Precompiler you can embed SQL statements in a COBOL host program.

Figure 2 – 1 shows all the SQL statements your application program
can execute.

Data Definition
ALTER
ANALYZE
AUDIT
COMMENT
CREATE
DROP
GRANT
NOAUDIT
RENAME
REVOKE
TRUNCATE

Data Manipulation
DELETE
EXPLAIN PLAN
INSERT
LOCK TABLE
SELECT
UPDATE

Session Control
ALTER SESSION
SET ROLE

System Control
ALTER SYSTEM

Transaction Control
COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION

Application Program

Figure 2 – 1 SQL Allowed in a Program

Executable versus
Declarative Statements

2 – 3Learning the Basics

For example, to manipulate and query Oracle data, you use the
INSERT, UPDATE, DELETE, and SELECT statements. INSERT adds
rows of data to database tables, UPDATE modifies rows, DELETE
removes unwanted rows, and SELECT retrieves rows that meet your
search criteria.

The Oracle Precompilers support all the Oracle7 SQL statements. For
example, the powerful SET ROLE statement lets you dynamically
manage database privileges. A role is a named group of related system
and/or object privileges granted to users or other roles. Role
definitions are stored in the Oracle data dictionary. Your applications
can use the SET ROLE statement to enable and disable roles as needed.

Only SQL statements—not SQL*Plus statements—are valid in an
application program. (SQL*Plus has additional statements for setting
environment parameters, editing, and report formatting.)

Embedded SQL includes all the interactive SQL statements plus others
that allow you to transfer data between Oracle and a host program.
There are two types of embedded SQL statements: executable and
declarative.

Executable statements result in calls to the runtime library SQLLIB. You
use them to connect to Oracle, to define, query, and manipulate Oracle
data, to control access to Oracle data, and to process transactions. They
can be placed wherever any other host–language executable statements
can be placed.

Declarative statements, on the other hand, do not result in calls to
SQLLIB and do not operate on Oracle data. You use them to declare
Oracle objects, communications areas, and SQL variables. They can be
placed wherever host–language declarations can be placed.

Table 2 – 1 groups the various embedded SQL statements.

2 – 4 Programmer’s Guide to the Oracle Precompilers

Declarative SQL

STATEMENT PURPOSE

ARRAYLEN* To use host arrays with PL/SQL

BEGIN DECLARE SECTION*
END DECLARE SECTION*

To declare host variables

DECLARE* To name Oracle objects

INCLUDE* To copy in files

TYPE* To equivalence datatypes

VAR* To equivalence variables

WHENEVER* To handle runtime errors

Executable SQL

STATEMENT PURPOSE

ALLOCATE* To define and control Oracle data
ALTER
ANALYZE
AUDIT
COMMENT
CONNECT*
CREATE
DROP
GRANT
NOAUDIT
RENAME
REVOKE
TRUNCATE

CLOSE*

DELETE To query and manipulate Oracle data
EXPLAIN PLAN

q y

FETCH*
INSERT
LOCK TABLE
OPEN*
SELECT
UPDATE

COMMIT To process transactions
ROLLBACK
SAVEPOINT
SET TRANSACTION

DESCRIBE* To use dynamic SQL
EXECUTE*

y

PREPARE*

ALTER SESSION To control sessions
SET ROLE

*Has no interactive counterpart

Table 2 – 1 Embedded SQL Statements

Embedded SQL Syntax

Static versus Dynamic
SQL Statements

Embedded PL/SQL
Blocks

2 – 5Learning the Basics

In your application program, you can freely intermix SQL statements
with host–language statements and use host–language variables in SQL
statements. The only special requirement for building SQL statements
into your host program is that you begin them with the keywords
EXEC SQL and end them with the SQL statement terminator for your
host language. The precompiler translates all executable EXEC SQL
statements into calls to the runtime library SQLLIB.

Most embedded SQL statements differ from their interactive
counterparts only through the adding of a new clause or the use of
program variables. Compare the following interactive and embedded
ROLLBACK statements:

ROLLBACK WORK; –– interactive

EXEC SQL ROLLBACK WORK; –– embedded

For a summary of embedded SQL syntax, see the Oracle7 Server SQL
Reference.

Most application programs are designed to process static SQL
statements and fixed transactions. In this case, you know the makeup
of each SQL statement and transaction before run time. That is, you
know which SQL commands will be issued, which database tables
might be changed, which columns will be updated, and so on.

However, some applications are required to accept and process any
valid SQL statement at run time. So, you might not know until then all
the SQL commands, database tables, and columns involved.

Dynamic SQL is an advanced programming technique that lets your
program accept or build SQL statements at run time and take explicit
control over datatype conversion.

The Oracle Precompilers treat a PL/SQL block like a single embedded
SQL statement. So, you can place a PL/SQL block anywhere in an
application program that you can place a SQL statement. To embed
PL/SQL in your host program, you simply declare the variables to be
shared with PL/SQL and bracket the PL/SQL block with the keywords
EXEC SQL EXECUTE and END–EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data
flexibly and safely because PL/SQL supports all SQL data
manipulation and transaction processing commands. For more
information about PL/SQL, see Chapter 5, “Using Embedded
PL/SQL.”

Host and Indicator
Variables

Oracle Datatypes

2 – 6 Programmer’s Guide to the Oracle Precompilers

A host variable is a scalar or array variable declared in the host language
and shared with Oracle, meaning that both your program and Oracle
can reference its value. Host variables are the key to communication
between Oracle and your program.

Your program uses input host variables to pass data to Oracle. Oracle
uses output host variables to pass data and status information to your
program. The program assigns values to input host variables; Oracle
assigns values to output host variables.

Host variables can be used anywhere an expression can be used. But, in
SQL statements, host variables must be prefixed with a colon (:) to set
them apart from Oracle objects.

You can associate any host variable with an optional indicator variable.
An indicator variable is an integer variable that “indicates” the value or
condition of its host variable. You use indicator variables to assign nulls
to input host variables and to detect nulls or truncated values in output
host variables. A null is a missing, unknown, or inapplicable value.

In SQL statements, an indicator variable must be prefixed with a colon
and appended to its associated host variable (unless, to improve
readability, you precede the indicator variable with the optional
keyword INDICATOR).

Typically, a host program inputs data to Oracle, and Oracle outputs
data to the program. Oracle stores input data in database tables and
stores output data in program host variables. To store a data item,
Oracle must know its datatype, which specifies a storage format and
valid range of values.

Oracle recognizes two kinds of datatypes: internal and external. Internal
datatypes specify how Oracle stores data in database columns. Oracle
also uses internal datatypes to represent database pseudocolumns,
which return specific data items but are not actual columns in a table.

External datatypes specify how data is stored in host variables. When
your host program inputs data to Oracle, if necessary, Oracle converts
between the external datatype of the input host variable and the
internal datatype of the database column. When Oracle outputs data to
your host program, if necessary, Oracle converts between the internal
datatype of the database column and the external datatype of the
output host variable.

Arrays

Datatype
Equivalencing

Private SQL Areas,
Cursors, and Active
Sets

Transactions

2 – 7Learning the Basics

The Oracle Precompilers let you define array host variables (called host
arrays) and operate on them with a single SQL statement. Using the
array SELECT, FETCH, DELETE, INSERT, and UPDATE statements,
you can query and manipulate large volumes of data with ease.

The Oracle Precompilers add flexibility to your applications by letting
you equivalence datatypes. That means you can customize the way
Oracle interprets input data and formats output data.

On a variable–by–variable basis, you can equivalence supported host
language datatypes to Oracle external datatypes. For more information,
see “Datatype Equivalencing” on page 3 – 25.

To process a SQL statement, Oracle opens a work area called a private
SQL area. The private SQL area stores information needed to execute
the SQL statement. An identifier called a cursor lets you name a SQL
statement, access the information in its private SQL area, and, to some
extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and
explicit. Oracle implicitly declares a cursor for all data definition and
data manipulation statements, including SELECT statements (queries)
that return only one row. However, for queries that return more than
one row, to process beyond the first row, you must explicitly declare a
cursor (or use host arrays).

The set of rows retrieved is called the active set; its size depends on how
many rows meet the query search condition. You use an explicit cursor
to identify the row currently being processed, which is called the
current row.

Imagine the set of rows being returned to a terminal screen. A screen
cursor can point to the first row to be processed, then the next row, and
so on. In the same way, an explicit cursor “points” to the current row in
the active set, allowing your program to process the rows one at a time.

A transaction is a series of logically related SQL statements (two
UPDATEs that credit one bank account and debit another, for example)
that Oracle treats as a unit, so that all changes brought about by the
statements are made permanent or undone at the same time. The
current transaction consists of all data manipulation statements
executed since the last data definition, COMMIT, or ROLLBACK
statement was executed.

Errors and Warnings

SQLCODE/SQLSTATE
Status Variables

SQLCA and WHENEVER
Statement

ORACA

2 – 8 Programmer’s Guide to the Oracle Precompilers

To help ensure the consistency of your database, the Oracle
Precompilers let you define transactions using the COMMIT,
ROLLBACK, and SAVEPOINT statements. COMMIT makes permanent
any changes made during the current transaction. ROLLBACK ends
the current transaction and undoes any changes made since the
transaction began. SAVEPOINT marks the current point in a
transaction; used with ROLLBACK, it undoes part of a transaction.

When you execute an embedded SQL statement, it either succeeds or
fails, and might result in an error or warning. You need a way to handle
these results. The Oracle Precompilers provide four error handling
mechanisms:

• SQLCODE status variable

• SQLSTATE status variable

• SQL Communications Area (SQLCA) and WHENEVER
statement

• Oracle Communications Area (ORACA)

After executing a SQL statement, the Oracle Server returns a status
code to a variable named SQLCODE or SQLSTATE. The status code
indicates whether the SQL statement executed successfully or caused
an error or warning condition.

The SQLCA is a data structure that defines program variables used by
Oracle to pass runtime status information to the program. With the
SQLCA, you can take different actions based on feedback from Oracle
about work just attempted. For example, you can check to see if a
DELETE statement succeeded and if so, how many rows were deleted.

With the WHENEVER statement, you can specify actions to be taken
automatically when Oracle detects an error or warning condition.
These actions include continuing with the next statement, calling a
subroutine, branching to a labeled statement, or stopping.

When more information is needed about runtime errors than the
SQLCA provides, you can use the ORACA. The ORACA is a data
structure that handles Oracle communication. It contains cursor
statistics, information about the current SQL statement, option settings,
and system statistics.

2 – 9Learning the Basics

Steps in Developing an Embedded SQL Application

Figure 2 – 2 walks you through the embedded SQL application
development process.

Steps Results

Design

Code

Precompile

Errors?

Compile

Errors?

Link

Execute

Errors?

Stop

no

yes

yes

yes

yes

no

no

Specs

Host
Program

Source
Program

Object
Program

Linked
Program

Figure 2 – 2 Application Development Process

As you can see, precompiling results in a source file that can be
compiled normally. Although precompiling adds a step to the
traditional development process, that step is well worth taking because
it lets you write very flexible applications.

2 – 10 Programmer’s Guide to the Oracle Precompilers

A Program Example

A good way to get acquainted with embedded SQL is to look at a
program example. (Many program examples are written in a
pseudocode, which is described on page vi in the Preface.)

Handling errors with the WHENEVER statement, the following
program connects to Oracle, prompts the user for an employee number,
queries the database for the employee’s name, salary, and commission,
then displays the information and exits.

–– declare host and indicator variables

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(20);

 password CHARACTER(20);

 emp_number INTEGER;

 emp_name CHARACTER(10);

 salary REAL;

 commission REAL;

 ind_comm SMALLINT; –– indicator variable

EXEC SQL END DECLARE SECTION;

–– copy in the SQL Communications Area

EXEC SQL INCLUDE SQLCA;

display ’Username? ’;

read username;

display ’Password? ’;

read password;

–– handle processing errors

EXEC SQL WHENEVER SQLERROR DO sql_error;

–– log on to Oracle

EXEC SQL CONNECT :username IDENTIFIED BY :password;

display ’Connected to Oracle’;

display ’Employee number? ’;

read emp_number;

–– query database for employee’s name, salary, and commission

–– and assign values to host variables

EXEC SQL SELECT ENAME, SAL, COMM

 INTO :emp_name, :salary, :commission:ind_comm

 FROM EMP

 WHERE EMPNO = :emp_number;

2 – 11Learning the Basics

display ’Employee Salary Commission’;

display ’–––––––– –––––– ––––––––––’;

–– display employee’s name, salary, and commission (if not null)

IF ind_comm = –1 THEN –– commission is null

 display emp_name, salary, ’Not applicable’;

ELSE

 display emp_name, salary, commission;

ENDIF;

–– release resources and log off the database

EXEC SQL COMMIT WORK RELEASE;

display ’Have a good day’;

exit program;

ROUTINE sql_error

BEGIN

 –– avoid an infinite loop if the rollback results in an error

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 –– release resources and log off the database

 EXEC SQL ROLLBACK WORK RELEASE;

 display ’Processing error’;

 exit program with an error;

END sql_error;

Sample Data

2 – 12 Programmer’s Guide to the Oracle Precompilers

Sample Tables

Most programming examples in this guide use two sample database
tables: DEPT and EMP. Their definitions follow:

CREATE TABLE DEPT

 (DEPTNO NUMBER(2),

 DNAME VARCHAR2(14),

 LOC VARCHAR2(13))

CREATE TABLE EMP

 (EMPNO NUMBER(4) primary key,

 ENAME VARCHAR2(10),

 JOB VARCHAR2(9),

 MGR NUMBER(4),

 HIREDATE DATE,

 SAL NUMBER(7,2),

 COMM NUMBER(7,2),

 DEPTNO NUMBER(2))

Respectively, the DEPT and EMP tables contain the following rows
of data:

DEPTNO DNAME LOC

––––––– –––––––––– –––––––––

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

––––– ––––––– ––––––––– –––––– ––––––––– –––––– –––––– –––––––

 7369 SMITH CLERK 7902 17–DEC–80 800 20

 7499 ALLEN SALESMAN 7698 20–FEB–81 1600 300 30

 7521 WARD SALESMAN 7698 22–FEB–81 1250 500 30

 7566 JONES MANAGER 7839 02–APR–81 2975 20

 7654 MARTIN SALESMAN 7698 28–SEP–81 1250 1400 30

 7698 BLAKE MANAGER 7839 01–MAY–81 2850 30

 7782 CLARK MANAGER 7839 09–JUN–81 2450 10

 7788 SCOTT ANALYST 7566 19–APR–87 3000 20

 7839 KING PRESIDENT 17–NOV–81 5000 10

 7844 TURNER SALESMAN 7698 08–SEP–81 1500 30

 7876 ADAMS CLERK 7788 23–MAY–87 1100 20

 7900 JAMES CLERK 7698 03–DEC–81 950 30

 7902 FORD ANALYST 7566 03–DEC–81 3000 20

 7934 MILLER CLERK 7782 23–JAN–82 1300 10

C H A P T E R

3
P

3 – 1Meeting Program Requirements

Meeting Program
Requirements

assing data between Oracle and your application program requires
host variables, datatype conversions, event handling, and access to
Oracle. This chapter shows you how to meet these requirements. You
learn the embedded SQL commands that declare variables, declare
communication areas, and connect to an Oracle database. You also
learn about the Oracle datatypes, National Language Support (NLS),
data conversion, and how to take advantage of datatype equivalencing.
The final two sections show you how to embed OCI calls in your
program and how to develop X/Open applications.

An Example

3 – 2 Programmer’s Guide to the Oracle Precompilers

The Declare Section

You must declare all program variables to be used in SQL statements
(that is, all host variables) in the Declare Section. If you use an
undeclared host variable in a SQL statement, the precompiler issues an
error message. For a complete listing of error messages see Oracle7
Server Messages.

The Declare Section begins with the statement

EXEC SQL BEGIN DECLARE SECTION;

and ends with the statement

EXEC SQL END DECLARE SECTION;

Note: In COBOL, the statement terminator is END–EXEC. In
FORTRAN, it is a carriage return.

Between these two statements only the following items are allowed:

• host–variable and indicator–variable declarations

• EXEC SQL DECLARE statements

• EXEC SQL INCLUDE statements

• EXEC SQL VAR statements

• EXEC ORACLE statements

• host–language comments

Multiple Declare Sections are allowed per precompiled unit.
Furthermore, a host program can contain several independently
precompiled units.

In the following example, you declare four host variables for use later
in your program. (Remember, many program examples are written in a
pseudocode, which is described on page vi in the Preface.)

EXEC SQL BEGIN DECLARE SECTION;

 emp_number INTEGER;

 emp_name CHARACTER(10);

 salary REAL;

 commission REAL;

EXEC SQL END DECLARE SECTION;

For more information about declaring host variables, see “Declaring
and Referencing Host Variables” on page 3 – 22.

3 – 3Meeting Program Requirements

INCLUDE Statements

The INCLUDE statement lets you copy files into your host program. It
is similar to the COBOL COPY command. An example follows:

–– copy in the SQLCA file

EXEC SQL INCLUDE SQLCA;

When you precompile your program, each EXEC SQL INCLUDE
statement is replaced by a copy of the file named in the statement.

You can INCLUDE any file. If a file contains embedded SQL, you must
INCLUDE it because only INCLUDEd files are precompiled. If you do
not specify a file extension, the precompiler assumes the default
extension for source files, which is language–dependent (see your
host–language supplement to this Guide).

You can set a directory path for INCLUDEd files by specifying the
precompiler option

INCLUDE=<path>

where path defaults to the current directory. (In this context, a directory
is an index of file locations.)

The precompiler searches first in the current directory, then in the
directory specified by INCLUDE, and finally in a directory for
standard INCLUDE files. So, you need not specify a directory path for
standard files such as the SQLCA and ORACA. You must still use
INCLUDE to specify a directory path for nonstandard files unless they
are stored in the current directory.

If your operating system is case–sensitive (like UNIX for example), be
sure to specify the same upper/lower case filename under which the
file is stored. The syntax for specifying a directory path is
system–specific. Check your system–specific Oracle manuals.

3 – 4 Programmer’s Guide to the Oracle Precompilers

The SQLCA

The SQLCA is a data structure that provides for diagnostic checking
and event handling. At run time, the SQLCA holds status information
passed to your program by Oracle. After executing a SQL statement,
Oracle sets SQLCA variables to indicate the outcome, as illustrated in
Figure 3 – 1.

Host Program

Error Codes

Diagnostic Test

Number of Rows

Warning Flag Settings

SQLCA

SQL

Oracle7 Server

Figure 3 – 1 Updating the SQLCA

Thus, you can check to see if an INSERT, UPDATE, or DELETE
statement succeeded and if so, how many rows were affected. Or, if the
statement failed, you can get more information about what happened.

When MODE={ANSI13|ORACLE}, you must declare the SQLCA by
hardcoding it or by copying it into your program with the INCLUDE
statement. The section “Using the SQL Communications Area” on
page 8 – 19 shows you how to declare and use the SQLCA.

Internal Datatypes

3 – 5Meeting Program Requirements

Oracle Datatypes

Oracle recognizes two kinds of datatypes: internal and external. Internal
datatypes specify how Oracle stores data in database columns. Oracle
also uses internal datatypes to represent database pseudocolumns. An
external datatype specifies how data is stored in a host variable.

At precompile time, each host variable in the Declare Section is
associated with an external datatype code. At run time, the datatype
code of every host variable used in a SQL statement is passed to
Oracle. Oracle uses the codes to convert between internal and
external datatypes.

Note: You can override default datatype conversions by using
dynamic SQL Method 4 or datatype equivalencing. For
information about dynamic SQL Method 4, see “Using
Method 4” on page 10 – 15. For information about datatype
equivalencing, see “Datatype Equivalencing” on page 3 – 25.

Table 3 – 1 shows the internal datatypes that Oracle uses for database
columns and pseudocolumns.

Name Code Description

CHAR 96 � 255–byte, fixed–length string

DATE 12 7–byte, fixed–length date/time value

LONG 8 � 2147483647–byte, variable–length string

LONG RAW 24 � 2147483647–byte, variable–length binary data

MLSLABEL 105 � 5–byte, variable–length binary label

NUMBER 2 fixed or floating point number

RAW 23 � 255–byte, variable–length binary data

ROWID 11 fixed–length binary value

VARCHAR2 1 � 2000–byte, variable–length string

Table 3 – 1 Internal Datatypes

These internal datatypes can be quite different from host–language
datatypes. For example, the NUMBER datatype was designed for
portability, precision (no rounding error), and correct collating. No host
language has an equivalent datatype.

Brief descriptions of the internal datatypes follow. For more
information, see the Oracle7 Server SQL Reference.

CHAR

DATE

LONG

LONG RAW

3 – 6 Programmer’s Guide to the Oracle Precompilers

You use the CHAR datatype to store fixed–length character data. How
the data is represented internally depends on the database character
set. The CHAR datatype takes an optional parameter that lets you
specify a maximum width up to 255 bytes. The syntax follows:

CHAR[(maximum_width)]

You cannot use a constant or variable to specify the maximum width;
you must use an integer literal. If you do not specify the maximum
width, it defaults to 1. Remember, you specify the maximum width of a
CHAR(n) column in bytes, not characters. So, if a CHAR(n) column
stores multi–byte (2–byte) characters, its maximum width is less than
n/2 characters.

You use the DATE datatype to store dates and times in 7–byte,
fixed–length fields. The date portion defaults to the first day of the
current month; the time portion defaults to midnight.

Internally, DATEs are stored in a binary format. When converting a
DATE column value to a character string in your program, Oracle uses
the default format mask for your session. If you need other date/time
information such as the date in Julian days, use the TO_CHAR function
with a format mask. Always convert DATE column values to and from
character strings using (external) character datatypes such as
VARCHAR2 or STRING.

You use the LONG datatype to store variable–length character strings.
LONG columns can store text, arrays of characters, or even short
documents. The LONG datatype is like the VARCHAR2 datatype,
except the maximum width of a LONG column is 2147483647 bytes or
two gigabytes.

You can use LONG columns in UPDATE, INSERT, and (most) SELECT
statements, but not in expressions, function calls, or SQL clauses such
as WHERE, GROUP BY, and CONNECT BY. Only one LONG column
is allowed per database table and that column cannot be indexed.

You use the LONG RAW datatype to store variable–length binary data
or byte strings. The maximum width of a LONG RAW column is
2147483647 bytes or two gigabytes.

LONG RAW data is like LONG data, except that Oracle assumes
nothing about the meaning of LONG RAW data and does no character
set conversions when you transmit LONG RAW data from one system
to another. The restrictions that apply to LONG data also apply to
LONG RAW data.

MLSLABEL

NUMBER

RAW

3 – 7Meeting Program Requirements

With Trusted Oracle7, you use the MLSLABEL datatype to store
variable–length, binary operating system labels. Trusted Oracle7 uses
labels to control access to data. For more information, see the Trusted
Oracle7 Server Administrator’s Guide.

You can use the MLSLABEL datatype to define a database column.
However, with standard Oracle, such columns can store only nulls.
With Trusted Oracle7, you can insert any valid operating system label
into a column of type MLSLABEL. If the label is in text format, Trusted
Oracle7 converts it to a binary value automatically. The text string can
be up to 255 bytes long. However, the internal length of an MLSLABEL
value is between 2 and 5 bytes.

With Trusted Oracle7, you can also select values from a MLSLABEL
column into a character variable. Trusted Oracle7 converts the internal
binary value to a VARCHAR2 value automatically.

You use the NUMBER datatype to store fixed or floating point numbers
of virtually any size. You can specify precision, which is the total
number of digits, and scale, which determines where rounding occurs.

The maximum precision of a NUMBER value is 38; the magnitude
range is 1.0E–129 to 9.99E125. Scale can range from –84 to 127. For
example, a scale of –3 means the number is rounded to the nearest
thousand (3456 becomes 3000). A scale of 2 means the value is rounded
to the nearest hundredth (3.456 becomes 3.46).

When you specify precision and scale, Oracle does extra integrity
checks before storing the data. If a value exceeds the precision, Oracle
issues an error message; if a value exceeds the scale, Oracle rounds
the value.

You use the RAW datatype to store binary data or byte strings (a
sequence of graphics characters, for example). RAW data is not
interpreted by Oracle.

The RAW datatype takes a required parameter that lets you specify a
maximum width up to 255 bytes. The syntax follows:

RAW(maximum_width)

You cannot use a constant or variable to specify the maximum width;
you must use an integer literal.

RAW data is like CHAR data, except that Oracle assumes nothing
about the meaning of RAW data and does no character set conversions
(from 7–bit ASCII to EBCDIC Code Page 500 for example) when you
transmit RAW data from one system to another.

ROWID

VARCHAR2

SQL Pseudocolumns and
Functions

3 – 8 Programmer’s Guide to the Oracle Precompilers

Internally, every table in an Oracle database has a pseudocolumn
named ROWID, which stores binary values called rowids. ROWIDs
uniquely identify rows and provide the fastest way to access
particular rows.

You use the VARCHAR2 datatype to store variable–length character
strings. How the strings are represented internally depends on the
database character set, which might be 7–bit ASCII or EBCDIC Code
Page 500 for example.

The maximum width of a VARCHAR2 database column is 2000 bytes.
To define a VARCHAR2 column, you use the syntax

VARCHAR2(maximum_width)

where maximum_width is an integer literal in the range 1 .. 2000.

You specify the maximum width of a VARCHAR2(n) column in bytes,
not characters. So, if a VARCHAR2(n) column stores multi–byte
(2–byte) characters, its maximum width is less than n/2 characters.

SQL recognizes the pseudocolumns in Table 3 – 2, which return specific
data items:

Pseudocolumn Internal Datatype

CURRVAL NUMBER

LEVEL NUMBER

NEXTVAL NUMBER

ROWID ROWID

ROWLABEL MLSLABEL

ROWNUM NUMBER

Table 3 – 2 Pseudocolumns and Internal Datatypes

Pseudocolumns are not actual columns in a table. However,
pseudocolumns are treated like columns, so their values must be
SELECTed from a table. Sometimes it is convenient to select
pseudocolumn values from a dummy table.

In addition, SQL recognizes the parameterless functions in Table 3 – 3,
which also return specific data items:

Function Internal Datatype

SYSDATE DATE

UID NUMBER

USER VARCHAR2

Table 3 – 3 Functions and Internal Datatypes

3 – 9Meeting Program Requirements

You can refer to SQL pseudocolumns and functions in SELECT,
INSERT, UPDATE, and DELETE statements. In the following example,
you use SYSDATE to compute the number of months since an
employee was hired:

EXEC SQL SELECT MONTHS_BETWEEN(SYSDATE, HIREDATE)

 INTO :months_of_service

 FROM EMP

 WHERE EMPNO = :emp_number;

Brief descriptions of the SQL pseudocolumns and functions follow. For
details, see the Oracle7 Server SQL Reference.

CURRVAL returns the current number in a specified sequence. Before
you can reference CURRVAL, you must use NEXTVAL to generate a
sequence number.

LEVEL returns the level number of a node in a tree structure. The root
is level 1, children of the root are level 2, grandchildren are level 3, and
so on.

LEVEL is used in the SELECT CONNECT BY statement to incorporate
some or all the rows of a table into a tree structure. In an ORDER BY or
GROUP BY clause, LEVEL segregates the data at each level in the tree.

You specify the direction in which the query walks the tree (down from
the root or up from the branches) with the PRIOR operator. In the
START WITH clause, you specify a condition that identifies the root of
the tree.

NEXTVAL returns the next number in a specified sequence. After
creating a sequence, you can use it to generate unique sequence
numbers for transaction processing. In the following example, you use
the sequence named partno to assign part numbers:

EXEC SQL INSERT INTO PARTS

 VALUES (partno.NEXTVAL, :description, :quantity, :price);

If a transaction generates a sequence number, the sequence is
incremented when you commit or rollback the transaction. A reference
to NEXTVAL stores the current sequence number in CURRVAL.

ROWID returns a row address in hexadecimal.

ROWLABEL Column

3 – 10 Programmer’s Guide to the Oracle Precompilers

ROWNUM returns a number indicating the sequence in which a row
was selected from a table. The first row selected has a ROWNUM of 1,
the second row has a ROWNUM of 2, and so on. If a SELECT
statement includes an ORDER BY clause, ROWNUMs are assigned to
the selected rows before the sort is done.

You can use ROWNUM to limit the number of rows returned by a
SELECT statement. Also, you can use ROWNUM in an UPDATE
statement to assign unique values to each row in a table. Using
ROWNUM in the WHERE clause does not stop the processing of a
SELECT statement; it just limits the number of rows retrieved. The only
meaningful use of ROWNUM in a WHERE clause is

... WHERE ROWNUM < constant;

because the value of ROWNUM increases only when a row is retrieved.
The following search condition can never be met because the first four
rows are not retrieved:

... WHERE ROWNUM = 5;

SYSDATE returns the current date and time.

UID returns the unique ID number assigned to an Oracle user.

USER returns the username of the current Oracle user.

SQL also recognizes the special column ROWLABEL, which Trusted
Oracle7 creates for every database table. Like other columns,
ROWLABEL can be referenced in SQL statements. However, with
standard Oracle, ROWLABEL returns a null. With Trusted Oracle7,
ROWLABEL returns the operating system label for a row.

A common use of ROWLABEL is to filter query results. For example,
the following statement counts only those rows with a security level
higher than “unclassified”:

EXEC SQL SELECT COUNT(*) INTO :head_count FROM EMP

 WHERE ROWLABEL > ’UNCLASSIFIED’;

For more information about the ROWLABEL column, see the Trusted
Oracle7 Server Administrator’s Guide.

External Datatypes

3 – 11Meeting Program Requirements

As Table 3 – 4 shows, the external datatypes include all the internal
datatypes plus several datatypes found in other supported host
languages. For example, the STRING external datatype refers to a C
null–terminated string, and the DECIMAL datatype refers to COBOL
packed decimals. You use the datatype names in datatype
equivalencing, and you use the datatype codes in dynamic SQL
Method 4.

Name Code Description

CHAR 1
96

�65535–byte, variable–length character string (1)
�65535–byte, fixed–length character string (1)

CHARF 96 �65535–byte, fixed–length character string

CHARZ 97 �65535–byte, fixed–length, null–terminated string (2)

DATE 12 7–byte, fixed–length date/time value

DECIMAL 7 COBOL packed decimal

DISPLAY 91 COBOL numeric character string

FLOAT 4 4–byte or 8–byte floating–point number

INTEGER 3 2–byte or 4–byte signed integer

LONG 8 �2147483647–byte, fixed–length string

LONG RAW 24 �217483647–byte, fixed–length binary data (3)

LONG VARCHAR 94 �217483643–byte, variable–length string (3)

LONG VARRAW 95 �217483643–byte, variable–length binary data

MLSLABEL 106 2..5–byte, variable–length binary data

NUMBER 2 integer or floating–point number

RAW 23 �65535–byte, fixed–length binary data (2)

ROWID 11 (typically) 13–byte, fixed–length binary value

STRING 5 �65535–byte, variable–length, null–terminated character
string (2)

UNSIGNED 68 2–byte or 4–byte unsigned integer

VARCHAR 9 �65533–byte, variable–length character string (3)

VARCHAR2 1 �65535–byte, variable–length character string (2)

VARNUM 6 variable–length binary number

VARRAW 15 �65533–byte, variable–length binary data (3)

Table 3 – 4 External Datatypes

Notes:

1. CHAR is datatype 1 when MODE={ORACLE|ANSI13|ANSI14} and
datatype 96 when MODE=ANSI.

2. Maximum size is 32767 (32K) on some platforms.

3. Do not include the n–byte length field in an EXEC SQL VAR statement.

CHAR

CHARF

CHARZ

3 – 12 Programmer’s Guide to the Oracle Precompilers

Brief descriptions of the external datatypes follow. For more
information, see your host language supplement.

CHAR behavior depends on the settings of the options DBMS and
MODE. See the table on page 6 – 18.

When MODE=ANSI, Oracle assigns the CHAR datatype to all
character host variables. You use the CHAR datatype to store
fixed–length character strings. On most platforms, the maximum
length of a CHAR value is 65535 (64K) bytes. See Table 6 – 4 on
page 6 – 18 for more information about the relationship between the
DBMS and MODE options.

On Input . Oracle reads the number of bytes specified for the input host
variable, does not strip trailing blanks, then stores the input value in the
target database column.

If the input value is longer than the defined width of the database
column, Oracle generates an error. If the input value is all–blank,
Oracle treats it like a character value.

On Output . Oracle returns the number of bytes specified for the output
host variable, blank–padding if necessary, then assigns the output value
to the target host variable. If a null is returned, Oracle fills the host
variable with blanks.

If the output value is longer than the declared length of the host
variable, Oracle truncates the value before assigning it to the host
variable. If an indicator variable is available, Oracle sets it to the
original length of the output value.

You use the CHARZ datatype to store fixed–length, null–terminated
character strings. On most platforms, the maximum length of a
CHARZ value is 65,535 bytes. You should not need this external type in
Pro*COBOL or Pro*FORTRAN.

On input, the CHARZ and STRING datatypes work the same way. You
must null–terminate the input value. The null terminator serves only to
delimit the string; it is not part of the data.

On output, the CHARZ and CHAR datatypes work the same way.
Oracle appends a null terminator to the output value, which is also
blank–padded if necessary.

DATE

DECIMAL

DISPLAY

FLOAT

3 – 13Meeting Program Requirements

You use the DATE datatype to store dates and times in 7–byte,
fixed–length fields. As Table 3 – 5 shows, the century, year, month, day,
hour (in 24–hour format), minute, and second are stored in that order
from left to right.

Byte 1 2 3 4 5 6 7

Meaning Century Year Month Day Hour Minute Second

Example
17–OCT–1994
at 1:23:12 PM

119 194 10 17 14 24 13

Table 3 – 5 DATE Format

The century and year bytes are in excess–100 notation. The hour,
minute, and second are in excess–1 notation. Dates before the Common
Era (B.C.E.) are less than 100. The epoch is January 1, 4712 B.C.E. For
this date, the century byte is 53 and the year byte is 88. The hour byte
ranges from 1 to 24. The minute and second bytes range from 1 to 60.
The time defaults to midnight (1, 1, 1).

With Pro*COBOL, you use the DECIMAL datatype to store packed
decimal numbers for calculation. In COBOL, the host variable must be
a signed COMP–3 field with an implied decimal point. If significant
digits are lost during data conversion, Oracle fills the host variable
with asterisks.

With Pro*COBOL, you use the DISPLAY datatype to store numeric
character data. The DISPLAY datatype refers to a COBOL “DISPLAY
SIGN LEADING SEPARATE” number, which typically requires n + 1
bytes of storage for PIC S9(n), and n + d + 1 bytes of storage for
PIC S9(n)V9(d).

You use the FLOAT datatype to store numbers that have a fractional
part or that exceed the capacity of the INTEGER datatype. The number
is represented using the floating–point format of your computer and
typically requires 4 or 8 bytes of storage. You must specify a length for
input and output host variables.

Oracle can represent numbers with greater precision than floating
point implementations because the internal format of Oracle numbers
is decimal.

Note: In SQL statements, when comparing FLOAT values, use
the SQL function ROUND because FLOAT stores binary (not
decimal) numbers; so, fractions do not convert exactly.

INTEGER

LONG

LONG RAW

LONG VARCHAR

LONG VARRAW

MLSLABEL

3 – 14 Programmer’s Guide to the Oracle Precompilers

You use the INTEGER datatype to store numbers that have no
fractional part. An integer is a signed, 2– or 4–byte binary number. The
order of the bytes in a word is system–dependent. You must specify a
length for input and output host variables. On output, if the column
value is a floating point number, Oracle truncates the fractional part.

You use the LONG datatype to store fixed–length character strings. The
LONG datatype is like the VARCHAR2 datatype, except that the
maximum length of a LONG value is 2147483647 bytes (two gigabytes).

You use the LONG RAW datatype to store fixed–length, binary data
or byte strings. The maximum length of a LONG RAW value is
2147483647 bytes (two gigabytes).

LONG RAW data is like LONG data, except that Oracle assumes
nothing about the meaning of LONG RAW data and does no character
set conversions when you transmit LONG RAW data from one system
to another.

You use the LONG VARCHAR datatype to store variable–length
character strings. LONG VARCHAR variables have a 4–byte length
field followed by a string field. The maximum length of the string field
is 2147483643 bytes. In an EXEC SQL VAR statement, do not include the
4–byte length field.

You use the LONG VARRAW datatype to store binary data or byte
strings. LONG VARRAW variables have a 4–byte length field followed
by a data field. The maximum length of the data field is 2147483643
bytes. In an EXEC SQL VAR statement, do not include the 4–byte length
field.

You use the MLSLABEL datatype to store variable–length, binary
operating system labels. Trusted Oracle7 uses labels to control access to
data. For more information, see the Trusted Oracle7 Server
Administrator’s Guide.

You can use the MLSLABEL datatype to define a column. However,
with standard Oracle, such columns can store nulls only. With Trusted
Oracle7, you can insert any valid operating system label into a column
of type MLSLABEL.

On Input. Trusted Oracle7 translates the input value into a binary label,
which must be a valid operating system label. If the label is invalid,
Trusted Oracle7 issues an error message. If the label is valid, Trusted
Oracle7 stores it in the target database column.

NUMBER

RAW

3 – 15Meeting Program Requirements

On Output. Trusted Oracle7 converts the binary label to a character
string, which can be of type CHAR, CHARZ, STRING, VARCHAR, or
VARCHAR2.

You use the NUMBER datatype to store fixed or floating point Oracle
numbers. You can specify precision and scale. The maximum precision
of a NUMBER value is 38; the magnitude range is 1.0E–129 to 9.99E125.
Scale can range from –84 to 127.

NUMBER values are stored in variable–length format, starting with an
exponent byte and followed by up to 20 mantissa bytes. The high–order
bit of the exponent byte is a sign bit, which is set for positive numbers.
The low–order 7 bits represent the exponent, which is a base–100 digit
with an offset of 65.

Each mantissa byte is a base–100 digit in the range 1 .. 100. For positive
numbers, 1 is added to the digit. For negative numbers, the digit is
subtracted from 101, and, unless there are 20 mantissa bytes, a byte
containing 102 is appended to the data bytes. Each mantissa byte can
represent two decimal digits. The mantissa is normalized and leading
zeros are not stored. You can use up to 20 data bytes for the mantissa
but only 19 are guaranteed accurate. The 19 bytes, each representing a
base–100 digit, allow a maximum precision of 38 digits.

On output, the host variable contains the number as represented
internally by Oracle. To accommodate the largest possible number, the
output host variable must be 21 bytes long. Only the bytes used to
represent the number are returned. Oracle does not blank–pad or
null–terminate the output value. If you need to know the length of the
returned value, use the VARNUM datatype instead.

Normally, there is little reason to use this datatype.

You use the RAW datatype to store fixed–length binary data or byte
strings. On most platforms, the maximum length of a RAW value is
65535 bytes.

RAW data is like CHAR data, except that Oracle assumes nothing
about the meaning of RAW data and does no character set conversions
when you transmit RAW data from one system to another.

ROWID

STRING

3 – 16 Programmer’s Guide to the Oracle Precompilers

You use the ROWID datatype to store binary rowids in (typically
13–byte) fixed–length fields. The field size is port–specific. So, check
your system–specific Oracle manuals.

You can use VARCHAR2 host variables to store rowids in a readable
format. When you select or fetch a rowid into a VARCHAR2 host
variable, Oracle converts the binary value to an 18–byte character
string and returns it in the format

BBBBBBBB.RRRR.FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in
the block (the first row is 0), and FFFF is the database file. These
numbers are hexadecimal. For example, the rowid

0000000E.000A.0007

points to the 11th row in the 15th block in the 7th database file.

Typically, you fetch a rowid into a VARCHAR2 host variable, then
compare the host variable to the ROWID pseudocolumn in the WHERE
clause of an UPDATE or DELETE statement. That way, you can
identify the latest row fetched by a cursor. For an example, see
“Mimicking CURRENT OF” on page 9 – 13.

Note: If you need full portability or your application
communicates with a non–Oracle database via Transparent
Gateway, specify a maximum length of 256 (not 18) bytes when
declaring the VARCHAR2 host variable. If your application
communicates with a non–Oracle data source via Oracle Open
Gateway, specify a maximum length of 256 bytes. Though you
can assume nothing about its contents, the host variable will
behave normally in SQL statements.

The STRING datatype is like the VARCHAR2 datatype, except that a
STRING value is always null–terminated.

On Input. Oracle uses the specified length to limit the scan for a null
terminator. If a null terminator is not found, Oracle generates an error.
If you do not specify a length, Oracle assumes the maximum length,
which is 65535 on most platforms.

The minimum length of a STRING value is 2 bytes. If the first character
is a null terminator and the specified length is 2, Oracle inserts a null
unless the column is defined as NOT NULL. An all–blank or
null–terminated value is stored intact.

UNSIGNED

VARCHAR

VARCHAR2

3 – 17Meeting Program Requirements

On Output . Oracle appends a null byte to the last character returned. If
the string length exceeds the specified length, Oracle truncates the
output value and appends a null byte.

You use the UNSIGNED datatype to store unsigned integers. An
unsigned integer is a binary number of 2 or 4 bytes. The order of the
bytes in a word is system–dependent. You must specify a length for
input and output host variables. On output, if the column value is a
floating point number, Oracle truncates the fractional part. You should
not need this external type in Pro*COBOL or Pro*FORTRAN.

You use the VARCHAR datatype to store variable–length character
strings. VARCHAR variables have a 2–byte length field followed by a
� 65533–byte string field. However, for VARCHAR array elements, the
maximum length of the string field is 65530 bytes. When you specify
the length of a VARCHAR variable, be sure to include 2 bytes for the
length field. For longer strings, use the LONG VARCHAR datatype. In
an EXEC SQL VAR statement, do not include the 2–byte length field.

When MODE=ORACLE, Oracle assigns the VARCHAR2 datatype to all
character host variables. You use the VARCHAR2 datatype to store
variable–length character strings. On most platforms, the maximum
length of a VARCHAR2 value is 65535 bytes.

You specify the maximum length of a VARCHAR2(n) value in bytes,
not characters. So, if a VARCHAR2(n) variable stores multi–byte
characters, its maximum length is less than n characters.

On Input. Oracle reads the number of bytes specified for the input host
variable, strips any trailing blanks, then stores the input value in the
target database column. Be careful. An uninitialized host variable can
contain nulls. So, always blank–pad a character input host variable to
its declared length. (COBOL PIC X(n) and FORTRAN CHARACTER*n
variables do this automatically.)

If the input value is longer than the defined width of the database
column, Oracle generates an error. If the input value is all–blank,
Oracle treats it like a null.

Oracle can convert a character value to a NUMBER column value if the
character value represents a valid number. Otherwise, Oracle generates
an error.

VARNUM

VARRAW

3 – 18 Programmer’s Guide to the Oracle Precompilers

On Output. Oracle returns the number of bytes specified for the output
host variable, blank–padding if necessary, then assigns the output value
to the target host variable. If a null is returned, Oracle fills the host
variable with blanks.

If the output value is longer than the declared length of the host
variable, Oracle truncates the value before assigning it to the host
variable. If an indicator variable is available, Oracle sets it to the
original length of the output value.

Oracle can convert NUMBER column values to character values. The
length of the character host variable determines precision. If the host
variable is too short for the number, scientific notation is used. For
example, if you select the column value 123456789 into a host variable
of length 6, Oracle returns the value “1.2E08” to the host variable.

The VARNUM datatype is like the NUMBER datatype, except that the
first byte of a VARNUM variable stores the length of the value.

On input, you must set the first byte of the host variable to the length
of the value. On output, the host variable contains the length followed
by the number as represented internally by Oracle. To accommodate
the largest possible number, the host variable must be 22 bytes long.
After selecting a column value into a VARNUM host variable, you can
check the first byte to get the length of the value.

You use the VARRAW datatype to store variable–length binary data or
byte strings. The VARRAW datatype is like the RAW datatype, except
that VARRAW variables have a 2–byte length field followed by a
�65533–byte data field. For longer strings, use the LONG VARRAW
datatype. In an EXEC SQL VAR statement, do not include the 2–byte
length field. To get the length of a VARRAW variable, simply refer to its
length field.

3 – 19Meeting Program Requirements

Datatype Conversion

At precompile time, an external datatype is assigned to each host
variable in the Declare Section. For example, the precompiler assigns
the INTEGER external datatype to integer host variables. At run time,
the datatype code of every host variable used in a SQL statement is
passed to Oracle. Oracle uses the codes to convert between internal and
external datatypes.

Before assigning a selected column (or pseudocolumn) value to an
output host variable, if necessary, Oracle converts the internal datatype
of the column to the datatype of the host variable. Likewise, before
assigning or comparing the value of an input host variable to a
database column, if necessary, Oracle converts the external datatype of
the host variable to the internal datatype of the column.

However, the datatype of the host variable must be compatible with
that of the database column. It is your responsibility to make sure that
values are convertible. For example, if you try to convert the string
value “YESTERDAY” to a DATE column value, you get an error.

Conversions between internal and external datatypes follow the usual
data conversion rules. For instance, you can convert a CHAR value of
“1234” to a 2–byte integer. But, you cannot convert a CHAR value of
“65543” (number too large) or “10F” (number not decimal) to a 2–byte
integer. Likewise, you cannot convert a string value that contains
alphabetic characters to a NUMBER value.

Number conversion follows the conventions specified by National
Language Support (NLS) parameters in the Oracle initialization file.
For example, your system might be configured to recognize a comma
(,) instead of a period (.) as the decimal character. For more information
about NLS, see the Oracle7 Server Application Developer’s Guide.

Table 3 – 6 shows the supported conversions between internal and
external datatypes.

3 – 20 Programmer’s Guide to the Oracle Precompilers

Internal

External CHAR DATE LONG LONG RAW MLSLABEL NUMBER RAW ROWID VARCHAR2

CHAR I/O I/O (2) I/O I (3) I/O (7) I/O I/O (3) I/O (1) I/O

CHARF I/O I/O (2) I/O I (3) I/O (7) I/O I/O (3) I/O (1) I/O

CHARZ I/O I/O (2) I/O I (3) I/O (7) I/O I/O (3) I/O (1) I/O

DATE I/O I/O I I/O

DECIMAL I/O (4) I I/O I/O (4)

DISPLAY I/O (4) I I/O I/O (4)

FLOAT I/O (4) I I/O I/O (4)

INTEGER I/O (4) I I/O I/O (4)

LONG I/O I/O (2) I/O I (3,5) I/O (7) I/O I/O (3) I/O (1) I/O

LONG RAW O (6) I (5,6) I/O I/O O (6)

LONG VARCHAR I/O I/O (2) I/O I (3,5) I/O (7) I/O I/O (3) I/O (1) I/O

LONG VARRAW I/O (6) I (5,6) I/O I/O I/O (6)

MLSLABEL I/O (8) I/O (8) I/O I/O (8)

NUMBER I/O (4) I I/O I/O (4)

RAW I/O (6) I (5,6) I/O I/O I/O (6)

ROWID I I I/O I

STRING I/O I/O (2) I/O I (3,5) I/O (7) I/O I/O (3) I/O (1) I/O

UNSIGNED I/O (4) I I/O I/O (4)

VARCHAR I/O I/O (2) I/O I (3,5) I/O (7) I/O I/O (3) I/O (1) I/O

VARCHAR2 I/O I/O (2) I/O I (3) I/O (7) I/O I/O (3) I/O (1) I/O

VARNUM I/O (4) I I/O I/O (4)

VARRAW I/O (6) I (5,6) I/O I/O I/O (6)

Notes: Legend:
1. On input, host string must be in Oracle ’BBBBBBBB.RRRR.FFFF’ format. I = input only

On output, column value is returned in same format. O = output only
2. On input, host string must be the default DATE character format. I/O = input or output

On output, column value is returned in same format
3. On input, host string must be in hex format.

On output, column value is returned in same format.
4. On output, column value must represent a valid number.
5. On input, length must be less than or equal to 2000.
6. On input, column value is stored in hex format.

On output, column value must be in hex format.
7. On input, host string must be a valid OS label in text format.

On output, column value is returned in same format.
8. On input, host string must be a valid OS label in raw format.

On output, column value is returned in same format.

Table 3 – 6 Supported Datatype Conversions

DATE Values

RAW and LONG RAW
Values

3 – 21Meeting Program Requirements

When you select a DATE column value into a character host variable,
Oracle must convert the internal binary value to an external character
value. So, Oracle implicitly calls the SQL function TO_CHAR, which
returns a character string in the default date format. The default is set
by the Oracle initialization parameter NLS_DATE_FORMAT. To get
other information such as the time or Julian date, you must explicitly
call TO_CHAR with a format mask.

A conversion is also necessary when you insert a character host value
into a DATE column. Oracle implicitly calls the SQL function
TO_DATE, which expects the default date format. To insert dates in
other formats, you must explicitly call TO_DATE with a format mask.

When you select a RAW or LONG RAW column value into a character
host variable, Oracle must convert the internal binary value to an
external character value. In this case, Oracle returns each binary byte of
RAW or LONG RAW data as a pair of characters. Each character
represents the hexadecimal equivalent of a nibble (half a byte). For
example, Oracle returns the binary byte 11111111 as the pair of
characters “FF”. The SQL function RAWTOHEX performs the same
conversion.

A conversion is also necessary when you insert a character host value
into a RAW or LONG RAW column. Each pair of characters in the host
variable must represent the hexadecimal equivalent of a binary byte. If
a character does not represent the hexadecimal value of a nibble, Oracle
issues the following error message:

ORA–01465: invalid hex number

Some Examples

3 – 22 Programmer’s Guide to the Oracle Precompilers

Declaring and Referencing Host Variables

Every program variable used in a SQL statement must be declared as a
host variable. You declare a host variable in the Declare Section
according to the rules of the host language. Normal scoping rules
apply. Host variable names can be any length, but only the first 31
characters are significant. For ANSI/ISO compliance, a host variable
name must be � 18 characters long, begin with a letter, and not contain
consecutive or trailing underscores.

The external datatype of a host variable and the internal datatype of its
source or target database column need not be the same, but they must
be compatible. Table 3 – 6 shows the compatible datatypes between
which Oracle converts automatically when necessary.

The Oracle Precompilers support most built–in host language
datatypes. For a list of supported datatypes, see your host–language
supplement. User–defined datatypes are not supported. Datatype
equivalencing is discussed in the next section.

Although references to a user–defined structure are not allowed, the
Pro*COBOL Precompiler lets you reference individual elements of the
structure as if they were host variables. You can use such references
wherever host variables are allowed.

In the following example, you declare three host variables, then use a
SELECT statement to search the database for an employee number
matching the value of host variable emp_number. When a matching row
is found, Oracle sets output host variables dept_number and emp_name
to the values of columns DEPTNO and ENAME in that row.

–– declare host variables

EXEC SQL BEGIN DECLARE SECTION;

 emp_number INTEGER;

 emp_name CHARACTER(10);

 dept_number INTEGER;

EXEC SQL END DECLARE SECTION;

...

display ’Employee number? ’;

read emp_number;

EXEC SQL SELECT DEPTNO, ENAME INTO :dept_number, :emp_name

 FROM EMP

 WHERE EMPNO = :emp_number;

For more information about using host variables, see “Using Host
Variables” on page 4 – 2.

VARCHAR Variables

Host Variable
Guidelines

3 – 23Meeting Program Requirements

You can use the VARCHAR pseudotype to declare variable–length
character strings. (A pseudotype is a datatype not native to your host
language.) Recall that VARCHAR variables have a 2–byte length field
followed by a string field. For example, the Pro*COBOL Precompiler
expands the VARCHAR declaration

 EXEC SQL BEGIN DECLARE SECTION END–EXEC.

 01 ENAME PIC X(20) VARYING.

 EXEC SQL END DECLARE SECTION END–EXEC.

into the following COBOL group item with array and length members:

 01 ENAME.

 05 ENAME–LEN PIC S9(4) COMP.

 05 ENAME–ARR PIC X(20).

To get the length of a VARCHAR, you simply refer to its length field.
You need not use a string function or character–counting algorithm.

For more information about VARCHARs, see your host–language
supplement to this Guide.

The following guidelines apply to declaring and referencing host
variables. A host variable must be

• declared explicitly in the Declare Section

• prefixed with a colon (:) in SQL statements and PL/SQL blocks

• of a datatype supported by the host language

• of a datatype compatible with that of its source or target
database column

A host variable must not be

• subscripted

• prefixed with a colon in host language statements

• used to identify a column, table, or other Oracle object

• used in data definition statements such as ALTER and CREATE

• an Oracle reserved word (refer to Appendix B)

A host variable can be

• used anywhere an expression can be used in a SQL statement

• associated with an indicator variable

INDICATOR Keyword

An Example

3 – 24 Programmer’s Guide to the Oracle Precompilers

Declaring and Referencing Indicator Variables

You can associate every host variable with an optional indicator
variable. An indicator variable must be defined in the Declare Section
as a 2–byte integer and, in SQL statements, must be prefixed with a
colon and must directly follows its host variable unless you use the
keyword INDICATOR.

To improve readability, you can precede any indicator variable with the
optional keyword INDICATOR. You must still prefix the indicator
variable with a colon. The correct syntax is

:<host_variable> INDICATOR :<indicator_variable>

which is equivalent to

:<host_variable>:<indicator_variable>

You can use both forms of expression in your host program.

Typically, you use indicator variables to assign nulls to input host
variables and detect nulls or truncated values in output host variables.
In the example below, you declare three host variables and one indicator
variable, then use a SELECT statement to search the database for an
employee number matching the value of host variable emp_number.
When a matching row is found, Oracle sets output host variables salary
and commission to the values of columns SAL and COMM in that row
and stores a return code in indicator variable ind_comm. The next
statement uses ind_comm to select a course of action.

EXEC SQL BEGIN DECLARE SECTION;

 emp_number INTEGER;

 salary REAL;

 commission REAL;

 ind_comm SMALLINT; –– indicator variable

EXEC SQL END DECLARE SECTION;

 pay REAL; –– not used in a SQL statement

display ’Employee number? ’;

read emp_number;

EXEC SQL SELECT SAL, COMM

 INTO :salary, :commission:ind_comm

 FROM EMP

 WHERE EMPNO = :emp_number;

IF ind_comm = –1 THEN –– commission is null

 set pay = salary;

ELSE

 set pay = salary + commission;

ENDIF;

For more information, see “Using Indicator Variables” on page 4 – 4.

Indicator Variable
Guidelines

Why Equivalence
Datatypes?

3 – 25Meeting Program Requirements

The following guidelines apply to declaring and referencing indicator
variables. An indicator variable must be

• declared explicitly in the Declare Section as a 2–byte integer

• prefixed with a colon (:) in SQL statements

• appended to its host variable in SQL statements and PL/SQL
blocks (unless preceded by the keyword INDICATOR)

An indicator variable must not be

• prefixed with a colon in host language statements

• appended to its host variable in host language statements

• an Oracle reserved word

Datatype Equivalencing

Datatype equivalencing lets you customize the way Oracle interprets
input data and the way Oracle formats output data. On a variable–by–
variable basis, you can equivalence supported host language datatypes
to the Oracle external datatypes.

Datatype equivalencing is useful in several ways. For example, suppose
you want to use a null–terminated host string in a COBOL program.
You can declare a PIC X host variable, then equivalence it to the
external datatype STRING, which is always null–terminated.

You can use datatype equivalencing when you want Oracle to store but
not interpret data. For example, if you want to store an integer host
array in a LONG RAW database column, you can equivalence the host
array to the external datatype LONG RAW.

Also, you can use datatype equivalencing to override default datatype
conversions. Unless NLS parameters in the Oracle initialization file
specify otherwise, if you select a DATE column value into a character
host variable, Oracle returns a 9–byte string formatted as follows:

DD–MON–YY

However, if you equivalence the character host variable to the DATE
external datatype, Oracle returns a 7–byte value in the internal format.

Host Variable
Equivalencing

3 – 26 Programmer’s Guide to the Oracle Precompilers

By default, the Oracle Precompilers assign a specific external datatype
to every host variable. (These default assignments are tabulated in your
supplement to this Guide.) You can override the default assignments by
equivalencing host variables to Oracle external datatypes in the Declare
Section. This is called host variable equivalencing.

The syntax you use is

EXEC SQL VAR <host_variable>

 IS <ext_type_name> [({<length> | <precision>,<scale>})];

where:

is an input or output host variable (or host array)
declared earlier in the Declare Section.

The VARCHAR and VARRAW external datatypes
have a 2–byte length field followed by an n–byte
data field, where n lies in the range 1 .. 65533. So, if
type_name is VARCHAR or VARRAW, host_variable
must be at least 3 bytes long.

The LONG VARCHAR and LONG VARRAW
external datatypes have a 4–byte length field
followed by an n–byte data field, where n lies in
the range 1 .. 2147483643. So, if type_name is LONG
VARCHAR or LONG VARRAW, host_variable must
be at least 5 bytes long.

is the name of a valid external datatype such as
RAW or STRING.

is an integer literal specifying a valid length in
bytes. The value of length must be large enough to
accommodate the external datatype.

When type_name is DECIMAL or DISPLAY, you
must specify precision and scale instead of length.
When type_name is VARNUM, ROWID, or DATE,
you cannot specify length because it is predefined.
For other external datatypes, length is optional. It
defaults to the length of host_variable.

When specifying length, if type_name is VARCHAR,
VARRAW, LONG VARCHAR, or LONG VARRAW,
use the maximum length of the data field. The
precompiler accounts for the length field. If
type_name is LONG VARCHAR or LONG
VARRAW and the data field exceeds 65533 bytes,
put “–1” in the length field.

host_variable

ext_type_name

length

An Example

3 – 27Meeting Program Requirements

are integer literals that represent, respectively, the
number of significant digits and the point at which
rounding will occur. For example, a scale of 2
means the value is rounded to the nearest
hundredth (3.456 becomes 3.46); a scale of –3
means the number is rounded to the nearest
thousand (3456 becomes 3000).

You can specify a precision of 1 .. 99 and a scale of
–84 .. 99. However, the maximum precision and
scale of a database column are 38 and 127,
respectively. So, if precision exceeds 38, you cannot
insert the value of host_variable into a database
column. On the other hand, if the scale of a column
value exceeds 99, you cannot select or fetch the
value into host_variable.

Specify precision and scale only when type_name is
DECIMAL or DISPLAY.

Table 3 – 7 shows which parameters to use with each external datatype.

Suppose you want to select employee names from the EMP table, then
pass them to a routine that expects null–terminated strings. You need
not explicitly null–terminate the names. Simply equivalence a host
variable to the STRING external datatype, as follows:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 emp_name CHARACTER(11);

 EXEC SQL VAR emp_name IS STRING (11);

EXEC SQL END DECLARE SECTION;

The width of the ENAME column is 10 characters, so you allocate the
new emp_name 11 characters to accommodate the null terminator.
(Here, length is optional because it defaults to the length of the host
variable.) When you select a value from the ENAME column into
emp_name, Oracle null–terminates the value for you.

precision and scale

3 – 28 Programmer’s Guide to the Oracle Precompilers

External Datatype Length Precision Scale Default Length

CHAR optional n/a n/a declared length of variable

CHARZ optional n/a n/a declared length of variable

DATE n/a n/a n/a 7 bytes

DECIMAL n/a required required none

DISPLAY n/a required required none

FLOAT optional (4 or 8) n/a n/a declared length of variable

INTEGER optional (1, 2, or 4) n/a n/a declared length of variable

LONG optional n/a n/a declared length of variable

LONG RAW optional n/a n/a declared length of variable

LONG VARCHAR required (note 1) n/a n/a none

LONG VARRAW required (note 1) n/a n/a none

MLSLABEL required n/a n/a none

NUMBER n/a n/a n/a not available

STRING optional n/a n/a declared length of variable

RAW optional n/a n/a declared length of variable

ROWID n/a n/a n/a 13 bytes (see note 2)

UNSIGNED optional (1, 2, or 4) n/a n/a declared length of variable

VARCHAR required n/a n/a none

VARCHAR2 optional n/a n/a declared length of variable

VARNUM n/a n/a n/a 22 bytes

VARRAW optional n/a n/a none

Table 3 – 7 Parameters for Host Variable Equivalencing

1. If the data field exceeds 65,533 bytes, pass –1.

2. This length is typical but the default is port–specific.

Using the CHARF
Datatype Specifier

Guidelines

3 – 29Meeting Program Requirements

You can use the datatype specifier CHARF in VAR and TYPE
statements to equivalence host–language datatypes to the fixed–length
ANSI datatype CHAR—regardless of the DBMS setting.

When MODE=ANSI, specifying the datatype CHAR in a VAR
statement equivalences the host–language datatype to the fixed–length
ANSI datatype CHAR (Oracle external datatype code 96). However,
when MODE=ORACLE, the host–language datatype is equivalenced to
the variable–length datatype VARCHAR2 (code 1), which might not be
what you want.

However, you can always equivalence host–language datatypes to the
fixed–length ANSI datatype CHAR. Simply specify the datatype
CHARF in the VAR statement. If you use CHARF, the host–language
datatype is equivalenced to the fixed–length ANSI datatype CHAR
even when MODE=ORACLE.

To input VARNUM or DATE values, you must use the Oracle internal
format. Keep in mind that Oracle uses the internal format to output
VARNUM and DATE values.

After selecting a column value into a VARNUM host variable, you can
check the first byte to get the length of the value. Table 3 – 8 gives some
examples of returned VARNUM values.

VARNUM Value

Decimal Value Length Byte Exponent Byte Mantissa Bytes Terminator Byte

0 1 128 n/a n/a

5 2 193 6 n/a

–5 3 62 96 102

2767 3 194 28, 68 n/a

–2767 4 61 74, 34 102

100000 2 195 11 n/a

1234567 5 196 2, 24, 46, 68 n/a

Table 3 – 8 VARNUM Examples

Convert DATE values to a character format such as “DD–MON–YY”
because, normally, that is how your program outputs (displays for
example) or inputs them.

If no Oracle external datatype suits your needs exactly, use a
VARCHAR2–based or RAW–based external datatype.

3 – 30 Programmer’s Guide to the Oracle Precompilers

National Language Support

Although the widely–used 7– or 8–bit ASCII and EBCDIC character
sets are adequate to represent the Roman alphabet, some Asian
languages, such as Japanese, contain thousands of characters. These
languages require 16 bits (two bytes) to represent each character. How
does Oracle deal with such dissimilar languages?

Oracle provides National Language Support (NLS), which lets you
process single–byte and multi–byte character data and convert between
character sets. It also lets your applications run in different language
environments. With NLS, number and date formats adapt
automatically to the language conventions specified for a user session.
Thus, NLS allows users around the world to interact with Oracle in
their native languages.

You control the operation of language–dependent features by
specifying various NLS parameters. You can set default parameter
values in the Oracle initialization file. Table 3 – 9 shows what each NLS
parameter specifies.

NLS Parameter Specifies ...

NLS_LANGUAGE language–dependent conventions

NLS_TERRITORY territory–dependent conventions

NLS_DATE_FORMAT date format

NLS_DATE_LANGUAGE language for day and month names

NLS_NUMERIC_CHARACTERS decimal character and group separator

NLS_CURRENCY local currency symbol

NLS_ISO_CURRENCY ISO currency symbol

NLS_SORT sort sequence

Table 3 – 9 NLS Parameters

The main parameters are NLS_LANGUAGE and NLS_TERRITORY.
NLS_LANGUAGE specifies the default values for language–dependent
features, which include

• language for Server messages

• language for day and month names

• sort sequence

3 – 31Meeting Program Requirements

NLS_TERRITORY specifies the default values for territory–dependent
features, which include

• date format

• decimal character

• group separator

• local currency symbol

• ISO currency symbol

You can control the operation of language–dependent NLS features for
a user session by specifying the parameter NLS_LANG as follows

NLS_LANG = <language>_<territory>.<character set>

where language specifies the value of NLS_LANGUAGE for the user
session, territory specifies the value of NLS_TERRITORY, and character
set specifies the encoding scheme used for the terminal. An encoding
scheme (usually called a character set or code page) is a range of
numeric codes that corresponds to the set of characters a terminal
can display. It also includes codes that control communication with
the terminal.

You define NLS_LANG as an environment variable (or the equivalent
on your system). For example, on UNIX using the C shell, you might
define NLS_LANG as follows:

setenv NLS_LANG French_France.WE8ISO8859P1

To change the values of NLS parameters during a session, you use the
ALTER SESSION statement as follows:

ALTER SESSION SET <nls_parameter> = <value>

The Oracle Precompilers fully support all the NLS features that allow
your applications to process multilingual data stored in an Oracle
database. For example, you can declare foreign–language character
variables and pass them to string functions such as INSTRB,
LENGTHB, and SUBSTRB. These functions have the same syntax as the
INSTR, LENGTH, and SUBSTR functions, respectively, but operate on
a per–byte basis rather than a per–character basis.

You can use the functions NLS_INITCAP, NLS_LOWER, and
NLS_UPPER to handle special instances of case conversion. And, you
can use the function NLSSORT to specify WHERE–clause comparisons
based on linguistic rather than binary ordering. You can even pass NLS
parameters to the TO_CHAR, TO_DATE, and TO_NUMBER functions.
For more information about NLS, see the Oracle7 Server Application
Developer’s Guide.

Character Strings in
Embedded SQL

Dynamic SQL

Embedded DDL

Multi–Byte NLS Host
Variables

3 – 32 Programmer’s Guide to the Oracle Precompilers

Multi–Byte NLS Character Sets

The Pro*COBOL Precompiler extends support for multi–byte NLS
character sets through

• recognition of multi–byte character strings by the precompiler in
embedded SQL statements.

• the ANSI standard COBOL PIC N datatype declaration clause,
which instructs the precompiler to interpret host character
variables as strings of double–byte characters.

The current release (Oracle7 Server 7.3 with Pro*COBOL 1.8) supports
multi–byte strings through the precompiler runtime library, SQLLIB.

A multi–byte NLS character string in an embedded SQL statement
consists of a character literal that identifies the string as a multi–byte
string, followed by the string enclosed in single quotes.

For example, an embedded SQL statement like

 EXEC SQL

 SELECT empno INTO :emp_num FROM emp

 WHERE ename=N’Kuroda’

 END–EXEC.

contains a multi–byte character string, since the N character literal
preceding the string “Kuroda” identifies it as a multi–byte string.

Since dynamic SQL statements are not processed at precompile time,
and since the Oracle7 Server, Release 7.3 does not itself process
multi–byte NLS strings, you cannot embed multi–byte NLS strings in
dynamic SQL statements.

Columns storing multi–byte NLS data cannot be used in embedded
data definition language (DDL) statements. This restriction cannot be
enforced when precompiling, so the use of extended column types,
such as NCHAR, within embedded DDL statements results in an
execution error rather than a precompile error.

The Pro*COBOL Precompiler uses the ANSI standard PIC N clause to
declare host variables for multi–byte character data. Variables declared
using the PIC N clause are recognized as string variables of
double–byte characters.

• NLS_LOCAL

• VARCHAR

For more information about these options, see Chapter 6.

Restrictions

Blank Padding

Indicator Variables

3 – 33Meeting Program Requirements

Tables Disallowed. Host variables declared using the PIC N datatype
must not be tables.

No Odd Byte Widths. Oracle CHAR columns should not be used to
store multi–byte NLS characters. A runtime error is generated if data
with an odd number of bytes is FETCHed from a single–byte column
into a multi–byte NLS (PIC N) host variable.

No Host Variable Equivalencing. Multi–byte NLS character variables
cannot be equivalenced using an EXEC SQL VAR statement.

No Dynamic SQL. Dynamic SQL is not available for NLS multi–byte
character string host variables in Pro*COBOL.

When a Pro*COBOL character variable is defined as a multi–byte NLS
variable, the following blank padding and blank stripping rules apply,
depending on the external datatype of the variable. See the section
“External Datatypes’’ on page 3 – 11 and in the Pro*COBOL Supplement
to the Oracle Precompilers Guide.

CHARF. This is the default character type when a multi–byte character
string is defined. Input data is stripped of any trailing double–byte
spaces. However, if a string consists only of double–byte spaces, a
single double–byte space is left in the buffer to act as a sentinel.

Output host variables are blank padded with double–byte spaces.

VARCHAR. On input, host variables are not stripped of trailing
double–byte spaces. The length component is assumed to be the length
of the data in characters, not bytes.

On output, the host variable is not blank padded at all. The length of
the buffer is set to the length of the data in characters, not bytes.

STRING/LONG VARCHAR. These host variables are not supported
for NLS data, since they can only be specified using dynamic SQL or
datatype equivalencing, neither of which is supported for NLS data.

You can use indicator variables with multi–byte NLS character
variables as use you would with any other variable, except column
length values are expressed in characters instead of bytes. For a list of
possible values, see “Using Indicator Variables” on page 4 – 4.

3 – 34 Programmer’s Guide to the Oracle Precompilers

Connecting to Oracle

Your host program must log on to Oracle before querying or
manipulating data. To log on, simply use the following CONNECT
statement:

EXEC SQL CONNECT :username IDENTIFIED BY :password;

Or, you can use the statement

EXEC SQL CONNECT :usr_pwd;

where usr_pwd contains username/password (include the slash).

The CONNECT statement must be the first executable SQL statement
in the program. Only declarative SQL statements and host language
code can logically precede the CONNECT statement.

To supply the Oracle username and password separately, you must
define two host variables in the Declare Section as character strings. If
you supply a userid containing both username and password, only one
host variable is needed.

Make sure to set the username and password variables before the
CONNECT is executed, or it will fail. You can hardcode the values into
your program or have the program prompt for them, as follows:

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(20);

 password CHARACTER(20);

EXEC SQL END DECLARE SECTION;

display ’Username? ’;

read username;

display ’Password? ’:

read password;

–– handle processing errors

EXEC SQL WHENEVER SQLERROR DO sql_error;

–– connect to local database

EXEC SQL CONNECT :username IDENTIFIED BY :password

...

ROUTINE sql_error

BEGIN

 ...

 exit program with an error;

END sql_error;

Connecting Using
SQL*Net Version 2

Automatic Logons

3 – 35Meeting Program Requirements

Some of the examples in this and the following section might use
SQL*Net V1 connection strings to show network protocols and server
names. To connect using a SQL*Net V2 driver, substitute a service
name, as defined in your tnsnames.ora configuration file or in Oracle
Names, in place of the SQL*Net V1 connect string.

If you are using Oracle Names, the name server obtains the service
name from the network definition database.

See Understanding SQL*Net for more information about SQL*Net
Version 2.

You can log on to Oracle automatically with the userid:

<prefix><username>

where prefix is the value of the Oracle initialization parameter
OS_AUTHENT_PREFIX (the default value is OPS$) and username is
your operating system user or task name. For example, if the prefix is
OPS$, your user name is TBARNES, and OPS$TBARNES is a valid
Oracle userid, you log on to Oracle as user OPS$TBARNES.

To take advantage of the automatic logon feature, you simply pass a
slash (/) character to the precompiler, as follows:

EXEC SQL BEGIN DECLARE SECTION;

 oracleid CHARACTER(1);

EXEC SQL END DECLARE SECTION;

...

set oracleid = ’/’;

EXEC SQL CONNECT :oracleid;

This automatically connects you as user OPS$username. For example, if
your operating system username is RHILL, and OPS$RHILL is a valid
Oracle username, connecting with a slash (/) automatically logs you on
to Oracle as user OPS$RHILL.

You can also pass a character string to the precompiler. However, the
string cannot contain trailing blanks. For example, the following
CONNECT statement will fail:

EXEC SQL BEGIN DECLARE SECTION;

 oracleid CHARACTER(5);

EXEC SQL END DECLARE SECTION;

...

set oracleid = ’/ ’;

EXEC SQL CONNECT :oracleid;

The AUTO_CONNECT
Prompiler Option

3 – 36 Programmer’s Guide to the Oracle Precompilers

To increase compatibility with other precompilers, the Oracle
Precompilers let your program log on to the default database without
using the CONNECT statement. Simply specify the precompiler option
AUTO_CONNECT on the command line.

Assume that the default value of OS_AUTHENT_PREFIX is OPS$,
your username is TBARNES, and OPS$TBARNES is a valid Oracle
userid. When AUTO_CONNECT=YES, as soon as the precompiler
encounters an executable SQL statement, your program logs on to
Oracle automatically with the userid OPS$TBARNES.

When AUTO_CONNECT=NO (the default), you must use the
CONNECT statement to log on to Oracle.

Concurrent Logons

The Oracle Precompilers support distributed processing via SQL*Net.
Your application can concurrently access any combination of local and
remote databases or make multiple connections to the same database.
In Figure 3 – 2, an application program communicates with one local
and three remote Oracle databases. ORA2, ORA3, and ORA4 are
simply logical names used in CONNECT statements.

Application
Program Local

Oracle
Database

ORA4

Remote
Oracle

Database

ORA3

Remote
Oracle

Database

ORA2

Remote
Oracle

Database

SQL*Net

Figure 3 – 2 Connecting via SQL*Net

Some Preliminaries

Default Databases and
Connections

3 – 37Meeting Program Requirements

By eliminating the boundaries in a network between different machines
and operating systems, SQL*Net provides a distributed processing
environment for Oracle tools. This section shows you how the Oracle
Precompilers support distributed processing via SQL*Net. You learn
how your application can

• access other databases directly or indirectly

• concurrently access any combination of local and
remote databases

• make multiple connections to the same database

The communicating points in a network are called nodes. SQL*Net lets
you transmit information (SQL statements, data, and status codes) over
the network from one node to another.

A protocol is a set of rules for accessing a network. The rules establish
such things as procedures for recovering after a failure and formats for
transmitting data and checking errors.

The SQL*Net syntax for connecting to the default database in the local
domain is simply to use the service name for the database.

If the service name is not in the default (local) domain, you must use a
global specification (all domains specified). For example:

HR.US.ORACLE.COM

Each node has a default database. If you specify a node but no database
in your CONNECT statement, you connect to the default database on
the named local or remote node. If you specify no database and no
node, you connect to the default database on the current node.
Although it is unnecessary, you can specify the default database and
current node in your CONNECT statement.

A default connection is made using a CONNECT statement without an
AT clause. The connection can be to any default or non–default
database at any local or remote node. SQL statements without an AT
clause are executed against the default connection. Conversely, a
non–default connection is made by a CONNECT statement that has an
AT clause. A SQL statement with an AT clause is executed against the
non–default connection.

All database names must be unique, but two or more database names
can specify the same connection. That is, you can have multiple
connections to any database on any node.

Explicit Logons

Single Explicit Logons

3 – 38 Programmer’s Guide to the Oracle Precompilers

Usually, you establish a connection to Oracle as follows:

EXEC SQL CONNECT :userid IDENTIFIED BY :password

Or, you might use

EXEC SQL CONNECT :usr_pwd;

where usr_pwd contains username/password.

You can also log on automatically as shown on page 3 – 35.

If you do not specify a database and node, you are connected to the
default database at the current node. If you want to connect to a
different database, you must explicitly identify that database.

With explicit logons, you connect to another database directly, giving the
connection a name that will be referenced in SQL statements. You can
connect to several databases at the same time and to the same database
multiple times.

In the following example, you connect to a single non–default database
at a remote node:

–– Declare necessary host variables.

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(10);

 password CHARACTER(10);

 db_string CHARACTER(20);

EXEC SQL END DECLARE SECTION;

set username = ’scott’;

set password = ’tiger’;

set db_string = ’d:newyork–nondef’;

–– Assign a unique name to the database connection.

EXEC SQL DECLARE db_name DATABASE;

–– Connect to the non–default database

EXEC SQL CONNECT :username IDENTIFIED BY :password

 AT db_name USING :db_string;

The identifiers in this example serve the following purposes:

• The host variables username and password identify a valid user.

• The host variable db_string contains the SQL*Net syntax for
logging on to a non–default database at a remote node using the
DECnet protocol.

• The undeclared identifier db_name names a non–default
connection; it is an identifier used by Oracle, not a host or
program variable.

3 – 39Meeting Program Requirements

The USING clause specifies the network, machine, and database to be
associated with db_name. Later, SQL statements using the AT clause
(with db_name) are executed at the database specified by db_string.

Alternatively, you can use a character host variable in the AT clause, as
the following example shows:

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(10);

 password CHARACTER(10);

 db_name CHARACTER(10);

 db_string CHARACTER(20);

EXEC SQL END DECLARE SECTION;

set username = ’scott’;

set password = ’tiger’;

set db_name = ’oracle1’;

set db_string = ’d:newyork–nondef’;

–– connect to the non–default database

EXEC SQL CONNECT :username IDENTIFIED BY :password

 AT :db_name USING :db_string;

...

If db_name is a host variable, the DECLARE DATABASE statement is
not needed. Only if db_name is an undeclared identifier must you
execute a DECLARE db_name DATABASE statement before executing a
CONNECT ... AT db_name statement.

SQL Operations. If granted the privilege, you can execute any SQL data
manipulation statement at the non–default connection. For example,
you might execute the following sequence of statements:

EXEC SQL AT db_name SELECT ...

EXEC SQL AT db_name INSERT ...

EXEC SQL AT db_name UPDATE ...

In the next example, db_name is a host variable:

EXEC SQL AT :db_name DELETE ...

If db_name is a host variable, all database tables referenced by the SQL
statement must be defined in DECLARE TABLE statements.

3 – 40 Programmer’s Guide to the Oracle Precompilers

Cursor Control. Cursor control statements such as OPEN, FETCH, and
CLOSE are exceptions—they never use an AT clause. If you want to
associate a cursor with an explicitly identified database, use the AT
clause in the DECLARE CURSOR statement, as follows:

EXEC SQL AT :db_name DECLARE emp_cursor CURSOR FOR ...

EXEC SQL OPEN emp_cursor ...

EXEC SQL FETCH emp_cursor ...

EXEC SQL CLOSE emp_cursor;

If db_name is a host variable, its declaration must be within the scope of
all SQL statements that refer to the declared cursor. For example, if you
open the cursor in one subprogram, then fetch from it in another, you
must declare db_name globally or pass it to each subprogram.

When opening, closing, or fetching from the cursor, you do not use the
AT clause. The SQL statements are executed at the database named in
the AT clause of the DECLARE CURSOR statement or at the default
database if no AT clause is used in the cursor declaration.

The AT :host_variable clause allows you to change the connection
associated with a cursor. However, you cannot change the association
while the cursor is open. Consider the following example:

EXEC SQL AT :db_name DECLARE emp_cursor CURSOR FOR ...

set db_name = ’oracle1’;

EXEC SQL OPEN emp_cursor;

EXEC SQL FETCH emp_cursor INTO ...

set db_name = ’oracle2’;

EXEC SQL OPEN emp_cursor; –– illegal, cursor still open

EXEC SQL FETCH emp_cursor INTO ...

This is illegal because emp_cursor is still open when you try to execute
the second OPEN statement. Separate cursors are not maintained for
different connections; there is only one emp_cursor, which must be
closed before it can be reopened for another connection. To debug the
last example, simply close the cursor before reopening it, as follows:

EXEC SQL CLOSE emp_cursor; –– close cursor first

set db_name = ’oracle2’;

EXEC SQL OPEN emp_cursor;

EXEC SQL FETCH emp_cursor INTO ...

Dynamic SQL. Dynamic SQL statements are similar to cursor control
statements in that some never use the AT clause. For dynamic SQL
Method 1, you must use the AT clause if you want to execute the
statement at a non–default connection. An example follows:

EXEC SQL AT :db_name EXECUTE IMMEDIATE :slq_stmt;

Multiple Explicit Logons

3 – 41Meeting Program Requirements

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE
STATEMENT statement if you want to execute the statement at a
non–default connection. All other dynamic SQL statements such as
PREPARE, DESCRIBE, OPEN, FETCH, and CLOSE never use the AT
clause. The next example shows Method 2:

EXEC SQL AT :db_name DECLARE slq_stmt STATEMENT;

EXEC SQL PREPARE slq_stmt FROM :sql_string;

EXEC SQL EXECUTE slq_stmt;

The following example shows Method 3:

EXEC SQL AT :db_name DECLARE slq_stmt STATEMENT;

EXEC SQL PREPARE slq_stmt FROM :sql_string;

EXEC SQL DECLARE emp_cursor CURSOR FOR slq_stmt;

EXEC SQL OPEN emp_cursor ...

EXEC SQL FETCH emp_cursor INTO ...

EXEC SQL CLOSE emp_cursor;

You need not use the AT clause when connecting to a remote database
unless you open two or more connections simultaneously (in which
case the AT clause is needed to identify the active connection). To make
the default connection to a remote database, use the following syntax:

EXEC SQL CONNECT :username IDENTIFIED BY :password

 USING :db–string;

You can use the AT db_name clause for multiple explicit logons, just as
you would for a single explicit logon. In the following example, you
connect to two non–default databases concurrently:

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(10);

 password CHARACTER(10);

 db_string1 CHARACTER(20);

 db_string2 CHARACTER(20);

EXEC SQL END DECLARE SECTION;

...

set username = ’scott’;

set password = ’tiger’;

set db_string1 = ’New_York’;

set db_string2 = ’Boston’;

–– give each database connection a unique name

EXEC SQL DECLARE db_name1 DATABASE;

EXEC SQL DECLARE db_name2 DATABASE;

–– connect to the two non–default databases

EXEC SQL CONNECT :username IDENTIFIED BY :password

 AT db_name1 USING :db_string1;

EXEC SQL CONNECT :username IDENTIFIED BY :password

 AT db_name2 USING :db_string2;

3 – 42 Programmer’s Guide to the Oracle Precompilers

The undeclared identifiers db_name1 and db_name2 are used to name
the default databases at the two non–default nodes so that later SQL
statements can refer to the databases by name.

Alternatively, you can use a host variable in the AT clause, as the
following example shows:

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(10);

 password CHARACTER(10);

 db_name CHARACTER(10);

 db_string CHARACTER(20);

EXEC SQL END DECLARE SECTION;

...

set username = ’scott’;

set password = ’tiger’;

FOR EACH non–default database

 –– get next database name and SQL*Net string

 display ’Database Name? ’;

 read db_name;

 display ’SQL*Net String? ’;

 read db_string;

 –– connect to the non–default database

 EXEC SQL CONNECT :username IDENTIFIED BY :password

 AT :db_name USING :db_string;

ENDFOR;

You can also use this method to make multiple connections to the same
database, as the following example shows:

set username = ’scott’;

set password = ’tiger’;

set db_string = ’d:newyork–nondef’;

FOR EACH non–default database

 –– get next database name

 display ’Database Name? ’;

 read db_name;

 –– connect to the non–default database

 EXEC SQL CONNECT :username IDENTIFIED BY :password

 AT :db_name USING :db_string;

ENDFOR;

You must use different database names for the connections, even if they
use the same SQL*Net string.

Implicit Logons

Single Implicit Logons

3 – 43Meeting Program Requirements

Implicit logons are supported through the Oracle distributed database
option, which does not require explicit logons. For example, a
distributed query allows a single SELECT statement to access data on
one or more non–default databases.

The distributed query facility depends on database links, which assign
a name to a CONNECT statement rather than to the connection itself.
At run time, the embedded SELECT statement is executed by the
specified Oracle Server, which connects implicitly to the non–default
database(s) to get the required data.

In the next example, you connect to a single non–default database.
First, your program executes the following statement to define a
database link (database links are usually established interactively by
the DBA or user):

EXEC SQL CREATE DATABASE LINK db_link

 CONNECT TO username IDENTIFIED BY password

 USING ’d:newyork–nondef’;

Then, the program can query the non–default EMP table using the
database link, as follows:

EXEC SQL SELECT ENAME, JOB INTO :emp_name, :job_title

 FROM emp@db_link

 WHERE DEPTNO = :dept_number;

The database link is not related to the database name used in the AT
clause of an embedded SQL statement. It simply tells Oracle where the
non–default database is located, the path to it, and what Oracle
username and password to use. The database link is stored in the data
dictionary until it is explicitly dropped.

In our example, the default Oracle Server logs on to the non–default
database via SQL*Net using the database link db_link. The query is
submitted to the default server, but is “forwarded” to the non–default
database for execution.

To make referencing the database link easier, you can create a synonym
as follows (again, this is usually done interactively):

EXEC SQL CREATE SYNONYM emp FOR emp@db_link;

Then, your program can query the non–default EMP table, as follows:

EXEC SQL SELECT ENAME, JOB INTO :emp_name, :job_title

 FROM emp

 WHERE DEPTNO = :dept_number;

This provides location transparency for emp.

Multiple Implicit Logons

3 – 44 Programmer’s Guide to the Oracle Precompilers

In the following example, you connect to two non–default databases
concurrently. First, you execute the following sequence of statements to
define two database links and create two synonyms:

EXEC SQL CREATE DATABASE LINK db_link1

 CONNECT TO username1 IDENTIFIED BY password1

 USING ’d:newyork–nondef’;

EXEC SQL CREATE DATABASE LINK db_link2

 CONNECT TO username2 IDENTIFIED BY password2

 USING ’d:chicago–nondef’;

EXEC SQL CREATE SYNONYM emp FOR emp@db_link1;

EXEC SQL CREATE SYNONYM dept FOR dept@db_link2;

Then, your program can query the non–default EMP and DEPT tables,
as follows:

EXEC SQL SELECT ENAME, JOB, SAL, LOC

 FROM emp, dept

 WHERE emp.DEPTNO = dept.DEPTNO AND DEPTNO = :dept_number;

Oracle executes the query by performing a join between the
non–default EMP table at db_link1 and the non–default DEPT table
at db_link2.

Embedding OCI (Oracle Call Interface) Calls

The Oracle Precompilers let you embed OCI calls in your host program.
Just take the following steps:

1. Declare the OCI Logon Data Area (LDA) outside the Declare
Section. For details, see the Programmer’s Guide to the Oracle Call
Interface.

2. Connect to Oracle using the embedded SQL statement CONNECT,
not the OCI call OLOG.

3. Call the Oracle runtime library routine SQLLDA to store the
connect information in the LDA.

That way, the Oracle Precompiler and the OCI “know” that they are
working together. However, there is no sharing of Oracle cursors.

You need not worry about declaring the OCI Host Data Area (HDA)
because the Oracle runtime library manages connections and maintains
the HDA for you.

Setting Up the LDA

Remote and Multiple
Connections

3 – 45Meeting Program Requirements

You set up the LDA by issuing the OCI call

SQLLDA(lda);

where lda identifies the LDA data structure. The format of this call is
language–dependent. See the Programmer’s Guide to the Oracle Call
Interface. If the CONNECT statement fails, the lda_rc field in the lda is
set to 1012 to indicate the error.

A call to SQLLDA sets up an LDA for the connection used by the most
recently executed SQL statement. To set up the different LDAs needed
for additional connections, just call SQLLDA with a different lda after
each CONNECT. In the following example, you connect to two
non–default databases concurrently:

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(10);

 password CHARACTER(10);

 db_string1 CHARACTER(20);

 db_string2 CHARACTER(20);

EXEC SQL END DECLARE SECTION;

lda1 INTEGER(32);

lda2 INTEGER(32);

set username = ’SCOTT’;

set password = ’TIGER’;

set db_string1 = ’D:NEWYORK–NONDEF1’;

set db_string2 = ’D:CHICAGO–NONDEF2’;

–– give each database connection a unique name

EXEC SQL DECLARE db_name1 DATABASE;

EXEC SQL DECLARE db_name2 DATABASE;

–– connect to first non–default database

EXEC SQL CONNECT :username IDENTIFIED BY :password

 AT db_name1 USING :db_string1;

–– set up first LDA for OCI use

SQLLDA(lda1);

–– connect to second non–default database

EXEC SQL CONNECT :username IDENTIFIED BY :password

 AT db_name2 USING :db_string2;

–– set up second LDA for OCI use

SQLLDA(lda2);

Remember, do not declare db_name1 and db_name2 in the Declare
Section because they are not host variables. You use them only to name
the default databases at the two non–default nodes so that later SQL
statements can refer to the databases by name.

3 – 46 Programmer’s Guide to the Oracle Precompilers

Developing X/Open Applications

X/Open applications run in a distributed transaction processing (DTP)
environment. In an abstract model, an X/Open application calls on
resource managers (RMs) to provide a variety of services. For example, a
database resource manager provides access to data in a database.
Resource managers interact with a transaction manager (TM), which
controls all transactions for the application.

Figure 3 – 3 shows one way that components of the DTP model can
interact to provide efficient access to data in an Oracle database. The
DTP model specifies the XA interface between resource managers and
the transaction manager. Oracle supplies an XA–compliant library,
which you must link to your X/Open application. Also, you must
specify the native interface between your application program and the
resource managers.

Transaction
Manager

Manager
Resource

Oracle Server Other
Resources

Application Program

Manager
Resource

XA Interface

TX Interface

XA Interface

Figure 3 – 3 Hypothetical DTP Model

Oracle–Specific Issues

Connecting to Oracle

Transaction Control

OCI Calls

Linking

3 – 47Meeting Program Requirements

The DTP model that specifies how a transaction manager and resource
managers interact with an application program is described in the
X/Open guide Distributed Transaction Processing Reference Model and
related publications, which you can obtain by writing to

X/Open Company Ltd.
1010 El Camino Real, Suite 380
Menlo Park, CA 94025

For instructions on using the XA interface, see your Transaction
Processing (TP) Monitor user’s guide.

You can use the Oracle Precompilers to develop applications that
comply with the X/Open standards. However, you must meet the
following requirements.

The X/Open application does not establish and maintain connections to
a database. Instead, the transaction manager and the XA interface,
which is supplied by Oracle, handle database connections and
disconnections transparently. So, normally an X/Open–compliant
application does not execute CONNECT statements.

The X/Open application must not execute statements such as
COMMIT, ROLLBACK, SAVEPOINT, and SET TRANSACTION that
affect the state of global transactions. For example, the application must
not execute the COMMIT statement because the transaction manager
handles commits. Also, the application must not execute SQL data
definition statements such as CREATE, ALTER, and RENAME because
they issue an implicit commit.

The application can execute an internal ROLLBACK statement if it
detects an error that prevents further SQL operations. However, this
might change in later versions of the XA interface.

If you want your X/Open application to issue OCI calls, you must use
the runtime library routine SQLLD2, which sets up an LDA for a
specified connection established through the XA interface. For a
description of the SQLLD2 call, see the Programmer’s Guide to the Oracle
Call Interface. Note that OCOM, OCON, OCOF, ORLON, OLON,
OLOG, and OLOGOF cannot be issued by an X/Open application.

To get XA functionality, you must link the XA library to your X/Open
application object modules. For instructions, see your system–specific
Oracle manuals.

3 – 48 Programmer’s Guide to the Oracle Precompilers

C H A P T E R

4
T

4 – 1Using Embedded SQL

Using Embedded SQL

his chapter helps you to understand and apply the basic techniques
of embedded SQL programming. You learn how to use host variables,
indicator variables, cursors, cursor variables, and the fundamental SQL
commands that insert, update, select, and delete Oracle data.

Output versus Input
Host Variables

☞

4 – 2 Programmer’s Guide to the Oracle Precompilers

Using Host Variables

Oracle uses host variables to pass data and status information to your
program; your program uses host variables to pass data to Oracle.

Depending on how they are used, host variables are called output or
input host variables. Host variables in the INTO clause of a SELECT or
FETCH statement are called output host variables because they hold
column values output by Oracle. Oracle assigns the column values to
corresponding output host variables in the INTO clause.

All other host variables in a SQL statement are called input host
variables because your program inputs their values to Oracle. For
example, you use input host variables in the VALUES clause of an
INSERT statement and in the SET clause of an UPDATE statement.
They are also used in the WHERE, HAVING, and FOR clauses. In fact,
input host variables can appear in a SQL statement wherever a value or
expression is allowed.

Attention: In an ORDER BY clause, you can use a host
variable, but it is treated as a constant or literal, and hence the
contents of the host variable have no effect. For example, the
SQL statement

 EXEC SQL SELECT ename, empno INTO :name, :number

 FROM emp

 ORDER BY :ord;

appears to contain an input host variable, ord. However, the
host variable in this case is treated as a constant, and regardless
of the value of ord, no ordering is done.

You cannot use input host variables to supply SQL keywords or the
names of database objects. Thus, you cannot use input host variables in
data definition statements (sometimes called DDL) such as ALTER,
CREATE, and DROP. In the following example, the DROP TABLE
statement is invalid:

EXEC SQL BEGIN DECLARE SECTION;

 table_name CHARACTER(30);

EXEC SQL END DECLARE SECTION;

display ’Table name? ’;

read table_name;

EXEC SQL DROP TABLE :table_name; –– host variable not allowed

4 – 3Using Embedded SQL

Before Oracle executes a SQL statement containing input host
variables, your program must assign values to them. Consider the
following example:

EXEC SQL BEGIN DECLARE SECTION;

 emp_number INTEGER;

 emp_name CHARACTER(20);

EXEC SQL END DECLARE SECTION;

–– get values for input host variables

display ’Employee number? ’;

read emp_number;

display ’Employee name? ’;

read emp_name;

EXEC SQL INSERT INTO EMP (EMPNO, ENAME)

 VALUES (:emp_number, :emp_name);

Notice that the input host variables in the VALUES clause of the
INSERT statement are prefixed with colons.

Input Variables

Output Variables

Inserting Nulls

4 – 4 Programmer’s Guide to the Oracle Precompilers

Using Indicator Variables

You can associate any host variable with an optional indicator variable.
Each time the host variable is used in a SQL statement, a result code is
stored in its associated indicator variable. Thus, indicator variables let
you monitor host variables.

You use indicator variables in the VALUES or SET clause to assign nulls
to input host variables and in the INTO clause to detect nulls or
truncated values in output host variables.

For input host variables, the values your program can assign to an
indicator variable have the following meanings:

Oracle will assign a null to the column, ignoring the value of
the host variable.

Oracle will assigns the value of the host variable to the column.

For output host variables, the values Oracle can assign to an indicator
variable have the following meanings:

Oracle assigned a truncated column value to the host variable,
but could not assign the original length of the column value to
the indicator variable because the number was too large.

The column value is null, so the value of the host variable
is indeterminate.

Oracle assigned an intact column value to the host variable.

Oracle assigned a truncated column value to the host variable,
assigned the original column length (expressed in characters,
instead of bytes, for multi–byte NLS host variables) to the
indicator variable, and set SQLCODE in the SQLCA to zero.

Remember, an indicator variable must be defined in the Declare
Section as a 2–byte integer and, in SQL statements, must be prefixed
with a colon and appended to its host variable (unless you use the
keyword INDICATOR).

You can use indicator variables to insert nulls. Before the insert, for
each column you want to be null, set the appropriate indicator variable
to –1, as shown in the following example:

set ind_comm = –1;

EXEC SQL INSERT INTO EMP (EMPNO, COMM)

 VALUES (:emp_number, :commission:ind_comm);

The indicator variable ind_comm specifies that a null is to be stored in
the COMM column.

–1

>= 0

–2

–1

0

> 0

Handling Returned
Nulls

Fetching Nulls

4 – 5Using Embedded SQL

You can hardcode the null instead, as follows:

EXEC SQL INSERT INTO EMP (EMPNO, COMM)

 VALUES (:emp_number, NULL);

While this is less flexible, it might be more readable.

Typically, you insert nulls conditionally, as the next example shows:

display ’Enter employee number or 0 if not available: ’;

read emp_number;

IF emp_number = 0 THEN

 set ind_empnum = –1; ELSE

 set ind_empnum = 0;

ENDIF;

EXEC SQL INSERT INTO EMP (EMPNO, SAL)

 VALUES (:emp_number:ind_empnum, :salary);

You can also use indicator variables to manipulate returned nulls, as
the following example shows:

EXEC SQL SELECT ENAME, SAL, COMM

 INTO :emp_name, :salary, :commission:ind_comm

 FROM EMP

 WHERE EMPNO = :emp_number;

IF ind_comm = –1 THEN

 set pay = salary; –– commission is null; ignore it

ELSE

 set pay = salary + commission;

ENDIF;

When DBMS=V6, you can select or fetch nulls into a host variable that
lacks an indicator variable, as the following example shows:

–– assume that commission is NULL

EXEC SQL SELECT ENAME, SAL, COMM

 INTO :emp_name, :salary, :commission

 FROM EMP

 WHERE EMPNO = :emp_number;

SQLCODE in the SQLCA is set to zero indicating that Oracle executed
the statement without detecting an error or exception.

However, when DBMS=V7 (the default), if you select or fetch nulls into
a host variable that lacks an indicator variable, Oracle issues the
following error message:

ORA–01405: fetched column value is NULL

For more information about the option DBMS, see page 6 – 16.

Testing for Nulls

Fetching Truncated
Values

4 – 6 Programmer’s Guide to the Oracle Precompilers

You can use indicator variables in the WHERE clause to test for nulls,
as the following example shows:

EXEC SQL SELECT ENAME, SAL

 INTO :emp_name, :salary

 FROM EMP

 WHERE :commission:ind_comm IS NULL ...

However, you cannot use a relational operator to compare nulls with
each other or with other values. For example, the following SELECT
statement fails if the COMM column contains one or more nulls:

EXEC SQL SELECT ENAME, SAL

 INTO :emp_name, :salary

 FROM EMP

 WHERE COMM = :commission:ind_comm;

The next example shows how to compare values for equality when
some of them might be nulls:

EXEC SQL SELECT ENAME, SAL

 INTO :emp_name, :salary

 FROM EMP

 WHERE (COMM = :commission) OR ((COMM IS NULL) AND

 (:commission:ind_comm IS NULL));

When DBMS=V6, if you select or fetch a truncated column value into a
host variable that lacks an indicator variable, Oracle issues the
following error message:

ORA–01406: fetched column value was truncated

However, when DBMS=V7, no error is generated.

4 – 7Using Embedded SQL

The Basic SQL Statements

Executable SQL statements let you query, manipulate, and control
Oracle data and create, define, and maintain Oracle objects such as
tables, views, and indexes. This chapter focuses on data manipulation
statements (sometimes called DML) and cursor control statements. The
following SQL statements let you query and manipulate Oracle data:

Returns rows from one or more tables.

Adds new rows to a table.

Modifies rows in a table.

Removes rows from a table.

When executing a data manipulation statement such as INSERT,
UPDATE, or DELETE, your only concern, besides setting the values of
any input host variables, is whether the statement succeeds or fails. To
find out, you simply check the SQLCA. (Executing any SQL statement
sets the SQLCA variables.) You can check in the following two ways:

• implicit checking with the WHENEVER statement

• explicit checking of SQLCA variables

Alternatively, when MODE={ANSI|ANSI14}, you can check the status
variable SQLSTATE or SQLCODE. For more information, see “Using
Status Variables when MODE={ANSI|ANSI14} on page 8 – 4.

When executing a SELECT statement (query), however, you must also
deal with the rows of data it returns. Queries can be classified as
follows:

• queries that return no rows (that is, merely check for existence)

• queries that return only one row

• queries that return more than one row

Queries that return more than one row require an explicitly declared
cursor or cursor variable (or the use of host arrays, which are discussed
in Chapter 9, “Using Host Arrays”). The following embedded SQL
statements let you define and control an explicit cursor:

Names the cursor and associates it with a query.

Executes the query and identifies the active set.

Advances the cursor and retrieves each row in the active
set, one by one.

Disables the cursor (the active set becomes undefined).

SELECT

INSERT

UPDATE

DELETE

DECLARE

OPEN

FETCH

CLOSE

Selecting Rows

Available Clauses

4 – 8 Programmer’s Guide to the Oracle Precompilers

In the coming sections, first you learn how to code INSERT, UPDATE,
DELETE, and single–row SELECT statements. Then, you progress to
multi–row SELECT statements. For a detailed discussion of each
statement and its clauses, see the Oracle7 Server SQL Reference.

Querying the database is a common SQL operation. To issue a query
you use the SELECT statement. In the following example, you query
the EMP table:

EXEC SQL SELECT ENAME, JOB, SAL + 2000

 INTO :emp_name, :job_title, :salary

 FROM EMP

 WHERE EMPNO = :emp_number;

The column names and expressions following the keyword SELECT
make up the select list. The select list in our example contains three
items. Under the conditions specified in the WHERE clause (and
following clauses, if present), Oracle returns column values to the host
variables in the INTO clause. The number of items in the select list
should equal the number of host variables in the INTO clause, so there
is a place to store every returned value.

In the simplest case, when a query returns one row, its form is that
shown in the last example (in which EMPNO is a unique key).
However, if a query can return more than one row, you must fetch the
rows using a cursor or select them into a host array.

If a query is written to return only one row but might actually return
several rows, the result depends on how you specify the option
SELECT_ERROR. When SELECT_ERROR=YES (the default), Oracle
issues the following error message if more than one row is returned:

ORA–01422: exact fetch returns more than requested number of rows

When SELECT_ERROR=NO, a row is returned and Oracle generates
no error.

You can use all of the following standard SQL clauses in your SELECT
statements: INTO, FROM, WHERE, CONNECT BY, START WITH,
GROUP BY, HAVING, ORDER BY, and FOR UPDATE OF.

Inserting Rows

Using Subqueries

Updating Rows

4 – 9Using Embedded SQL

You use the INSERT statement to add rows to a table or view. In the
following example, you add a row to the EMP table:

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, SAL, DEPTNO)

 VALUES (:emp_number, :emp_name, :salary, :dept_number);

Each column you specify in the column list must belong to the table
named in the INTO clause. The VALUES clause specifies the row of
values to be inserted. The values can be those of constants, host
variables, SQL expressions, or pseudocolumns, such as USER and
SYSDATE.

The number of values in the VALUES clause must equal the number of
names in the column list. However, you can omit the column list if the
VALUES clause contains a value for each column in the table in the
same order they were defined by CREATE TABLE.

A subquery is a nested SELECT statement. Subqueries let you conduct
multipart searches. They can be used to

• supply values for comparison in the WHERE, HAVING, and
START WITH clauses of SELECT, UPDATE, and DELETE
statements

• define the set of rows to be inserted by a CREATE TABLE or
INSERT statement

• define values for the SET clause of an UPDATE statement

For example, to copy rows from one table to another, replace the
VALUES clause in an INSERT statement with a subquery, as follows:

EXEC SQL INSERT INTO EMP2 (EMPNO, ENAME, SAL, DEPTNO)

 SELECT EMPNO, ENAME, SAL, DEPTNO FROM EMP

 WHERE JOB = :job_title;

Notice how the INSERT statement uses the subquery to obtain
intermediate results.

You use the UPDATE statement to change the values of specified
columns in a table or view. In the following example, you update the
SAL and COMM columns in the EMP table:

EXEC SQL UPDATE EMP

 SET SAL = :salary, COMM = :commission

 WHERE EMPNO = :emp_number;

You can use the optional WHERE clause to specify the conditions
under which rows are updated. See “Using the WHERE Clause” on
page 4 – 10.

Deleting Rows

Using the WHERE
Clause

4 – 10 Programmer’s Guide to the Oracle Precompilers

The SET clause lists the names of one or more columns for which you
must provide values. You can use a subquery to provide the values, as
the following example shows:

EXEC SQL UPDATE EMP

 SET SAL = (SELECT AVG(SAL)*1.1 FROM EMP WHERE DEPTNO = 20)

 WHERE EMPNO = :emp_number;

You use the DELETE statement to remove rows from a table or view. In
the following example, you delete all employees in a given department
from the EMP table:

EXEC SQL DELETE FROM EMP

 WHERE DEPTNO = :dept_number;

You can use the optional WHERE clause to specify the condition under
which rows are deleted.

You use the WHERE clause to select, update, or delete only those rows
in a table or view that meet your search condition. The WHERE–clause
search condition is a Boolean expression, which can include scalar host
variables, host arrays (not in SELECT statements), and subqueries.

If you omit the WHERE clause, all rows in the table or view are
processed. If you omit the WHERE clause in an UPDATE or DELETE
statement, Oracle sets SQLWARN(5) in the SQLCA to ’W’ to warn that
all rows were processed.

4 – 11Using Embedded SQL

Cursors

When a query returns multiple rows, you can explicitly define a
cursor to

• process beyond the first row returned by the query

• keep track of which row is currently being processed

A cursor identifies the current row in the set of rows returned by the
query. This allows your program to process the rows one at a time. The
following statements let you define and manipulate a cursor:

• DECLARE

• OPEN

• FETCH

• CLOSE

First you use the DECLARE statement to name the cursor and associate
it with a query.

The OPEN statement executes the query and identifies all the rows that
meet the query search condition. These rows form a set called the
active set of the cursor. After opening the cursor, you can use it to
retrieve the rows returned by its associated query.

Rows of the active set are retrieved one by one (unless you use host
arrays). You use a FETCH statement to retrieve the current row in
the active set. You can execute FETCH repeatedly until all rows
have been retrieved.

When done fetching rows from the active set, you disable the cursor
with a CLOSE statement, and the active set becomes undefined.

Declaring a Cursor

4 – 12 Programmer’s Guide to the Oracle Precompilers

You use the DECLARE statement to define a cursor by giving it a name
and associating it with a query, as the following example shows:

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, EMPNO, SAL

 FROM EMP

 WHERE DEPTNO = :dept_number;

The cursor name is an identifier used by the precompiler, not a host or
program variable, and should not be defined in the Declare Section.
Therefore, cursor names cannot be passed from one precompilation
unit to another. Also, cursor names cannot be hyphenated. They can be
any length, but only the first 31 characters are significant. For ANSI
compatibility, use cursor names no longer than 18 characters.

The SELECT statement associated with the cursor cannot include an
INTO clause. Rather, the INTO clause and list of output host variables
are part of the FETCH statement.

Because it is declarative, the DECLARE statement must physically (not
just logically) precede all other SQL statements referencing the cursor.
That is, forward references to the cursor are not allowed. In the
following example, the OPEN statement is misplaced:

EXEC SQL OPEN emp_cursor; –– misplaced OPEN statement

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, EMPNO, SAL

 FROM EMP

 WHERE ENAME = :emp_name;

The cursor control statements (DECLARE, OPEN, FETCH, CLOSE)
must all occur within the same precompiled unit. For example, you
cannot declare a cursor in file A, then open it in file B.

Your host program can declare as many cursors as it needs. However,
in a given file, every DECLARE statement must be unique. That is, you
cannot declare two cursors with the same name in one precompilation
unit, even across blocks or procedures, because the scope of a cursor is
global within a file. If you will be using many cursors, you might want
to specify the MAXOPENCURSORS option. For more information
about MAXOPENCURSORS, see page 6 – 28.

Opening a Cursor

Fetching from a
Cursor

4 – 13Using Embedded SQL

Use the OPEN statement to execute the query and identify the active
set. In the following example, a cursor named emp_cursor is opened.

EXEC SQL OPEN emp_cursor;

OPEN positions the cursor just before the first row of the active set. It
also zeroes the rows–processed count kept by SQLERRD(3) in the
SQLCA. However, none of the rows is actually retrieved at this point.
That will be done by the FETCH statement.

Once you open a cursor, the query’s input host variables are not
reexamined until you reopen the cursor. Thus, the active set does not
change. To change the active set, you must reopen the cursor.

Generally, you should close a cursor before reopening it. However, if
you specify MODE=ORACLE (the default), you need not close a cursor
before reopening it. This can boost performance; for details, see
Appendix C, “Performance Tuning.”

The amount of work done by OPEN depends on the values of three
precompiler options: HOLD_CURSOR, RELEASE_CURSOR, and
MAXOPENCURSORS. For more information, see “Using the
Precompiler Options” on page 6 – 12.

You use the FETCH statement to retrieve rows from the active set and
specify the output host variables that will contain the results. Recall
that the SELECT statement associated with the cursor cannot include
an INTO clause. Rather, the INTO clause and list of output host
variables are part of the FETCH statement. In the following example,
you fetch into three host variables:

EXEC SQL FETCH emp_cursor

 INTO :emp_name, :emp_number, :salary;

The cursor must have been previously declared and opened. The first
time you execute FETCH, the cursor moves from before the first row in
the active set to the first row. This row becomes the current row. Each
subsequent execution of FETCH advances the cursor to the next row in
the active set, changing the current row. The cursor can only move
forward in the active set. To return to a row that has already been
fetched, you must reopen the cursor, then begin again at the first row of
the active set.

If you want to change the active set, you must assign new values to the
input host variables in the query associated with the cursor, then
reopen the cursor. When MODE={ANSI | ANSI14 | ANSI13}, you
must close the cursor before reopening it.

Closing a Cursor

4 – 14 Programmer’s Guide to the Oracle Precompilers

As the next example shows, you can fetch from the same cursor using
different sets of output host variables. However, corresponding host
variables in the INTO clause of each FETCH statement must have the
same datatype.

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, SAL FROM EMP WHERE DEPTNO = 20;

...

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND DO ...

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_name1, :salary1;

 EXEC SQL FETCH emp_cursor INTO :emp_name2, :salary2;

 EXEC SQL FETCH emp_cursor INTO :emp_name3, :salary3;

 ...

ENDLOOP;

If the active set is empty or contains no more rows, FETCH returns the
“no data found” Oracle warning code to SQLCODE in the SQLCA (or
when MODE=ANSI, to the status variable SQLSTATE). The status of
the output host variables is indeterminate. (In a typical program, the
WHENEVER NOT FOUND statement detects this error.) To reuse the
cursor, you must reopen it.

When finished fetching rows from the active set, you close the cursor to
free the resources, such as storage, acquired by opening the cursor.
When a cursor is closed, parse locks are released. What resources are
freed depends on how you specify the options HOLD_CURSOR and
RELEASE_CURSOR. In the following example, you close the cursor
named emp_cursor:

EXEC SQL CLOSE emp_cursor;

You cannot fetch from a closed cursor because its active set becomes
undefined. If necessary, you can reopen a cursor (with new values for
the input host variables, for example).

When MODE={ANSI13|ORACLE}, issuing a commit or rollback closes
cursors referenced in a CURRENT OF clause. Other cursors are
unaffected by a commit or rollback and if open, remain open. However,
when MODE={ANSI|ANSI14}, issuing a commit or rollback closes all
explicit cursors.

Using the CURRENT
OF Clause

Restrictions

4 – 15Using Embedded SQL

You use the CURRENT OF cursor_name clause in a DELETE or
UPDATE statement to refer to the latest row fetched from the named
cursor. The cursor must be open and positioned on a row. If no fetch
has been done or if the cursor is not open, the CURRENT OF clause
results in an error and processes no rows.

The FOR UPDATE OF clause is optional when you declare a cursor that
is referenced in the CURRENT OF clause of an UPDATE or DELETE
statement. The CURRENT OF clause signals the precompiler to add a
FOR UPDATE clause if necessary. For more information, see “Using the
FOR UPDATE OF Clause” on page 7 – 12.

In the following example, you use the CURRENT OF clause to refer to
the latest row fetched from a cursor named emp_cursor:

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, SAL FROM EMP WHERE JOB = ’CLERK’

 FOR UPDATE OF SAL;

...

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND DO ...

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;

 ...

 EXEC SQL UPDATE EMP SET SAL = :new_salary

 WHERE CURRENT OF emp_cursor;

ENDLOOP;

An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires
exclusive row locks. All rows are locked at the open, not as they are
fetched, and are released when you commit or rollback. If you try to
fetch from a FOR UPDATE cursor after a commit, Oracle generates the
following error:

ORA–01002: fetch out of sequence

You cannot use host arrays with the CURRENT OF clause. For an
alternative, see “Mimicking CURRENT OF” on page 9 – 13. Also, you
cannot reference multiple tables in an associated FOR UPDATE OF
clause, which means that you cannot do joins with the CURRENT OF
clause. Finally, you cannot use the CURRENT OF clause in
dynamic SQL.

A Typical Sequence
of Statements

A Complete Example

4 – 16 Programmer’s Guide to the Oracle Precompilers

The following example shows the typical sequence of cursor control
statements in an application program:

–– Define a cursor.

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, JOB FROM EMP

 WHERE EMPNO = :emp_number

 FOR UPDATE OF JOB;

–– Open the cursor and identify the active set.

EXEC SQL OPEN emp_cursor;

–– Exit if the last row was already fetched.

EXEC SQL WHENEVER NOT FOUND DO no_more;

–– Fetch and process data in a loop.

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_name, :job_title;

 –– host–language statements that operate on the fetched data

 EXEC SQL UPDATE EMP

 SET JOB = :new_job_title

 WHERE CURRENT OF emp_cursor;

ENDLOOP;

...

ROUTINE no_more

BEGIN

–– Disable the cursor.

 EXEC SQL CLOSE emp_cursor;

 EXEC SQL COMMIT WORK RELEASE;

 exit program;

END no_more;

The following program illustrates the use of a cursor and the FETCH
statement. The program prompts for a department number, then
displays the names of all employees in that department.

All fetches except the final one return a row and, if no errors were
detected during the fetch, a success status code. The final fetch fails
and returns the “no data found” Oracle warning code to SQLCODE in
the SQLCA. The cumulative number of rows actually fetched is found
in SQLERRD(3) in the SQLCA.

4 – 17Using Embedded SQL

–– declare host variables

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(20);

 password CHARACTER(20);

 emp_name CHARACTER(10);

 dept_number INTEGER;

EXEC SQL END DECLARE SECTION;

–– copy in the SQL Communications Area

EXEC SQL INCLUDE SQLCA;

display ’Username? ’;

read username;

display ’Password? ’;

read password;

–– handle processing errors

EXEC SQL WHENEVER SQLERROR DO sql_error;

–– log on to Oracle

EXEC SQL CONNECT :username IDENTIFIED BY :password;

display ’Connected to Oracle’;

–– declare a cursor

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME FROM EMP WHERE DEPTNO = :dept_number;

display ’Department number? ’;

read dept_number;

–– open the cursor and identify the active set

EXEC SQL OPEN emp_cursor;

–– exit if the last row was already fetched

EXEC SQL WHENEVER NOT FOUND DO no_more;

display ’Employee Name’;

display ’–––––––––––––’;

–– fetch and process data in a loop

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_name;

 display emp_name;

ENDLOOP;

4 – 18 Programmer’s Guide to the Oracle Precompilers

ROUTINE no_more

BEGIN

 EXEC SQL CLOSE emp_cursor;

 EXEC SQL COMMIT WORK RELEASE;

 display ’End of program’;

 exit program;

END no_more;

ROUTINE sql_error

BEGIN

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 display ’Processing error’;

 exit program with an error;

END sql_error;

Declaring a Cursor
Variable

Allocating a Cursor
Variable

Opening a Cursor
Variable

4 – 19Using Embedded SQL

Cursor Variables

This section gives a brief overview of cursor variables. For more
information, see your host language supplement and the PL/SQL User’s
Guide and Reference.

When using static embedded SQL with the Pro*COBOL and
Pro*FORTRAN Precompilers, you can declare cursor variables. Like a
cursor, a cursor variable points to the current row in the active set of a
multi–row query. Cursors differ from cursor variables the way
constants differ from variables. While a cursor is static, a cursor
variable is dynamic, because it is not tied to a specific query. You can
open a cursor variable for any type–compatible query.

Also, you can assign new values to a cursor variable and pass it as a
parameter to subprograms, including subprograms stored in an Oracle
database. This gives you a convenient way to centralize data retrieval.

First, you declare the cursor variable. After declaring the variable, you
use four statements to control a cursor variable:

• ALLOCATE

• OPEN ... FOR

• FETCH

• CLOSE

After you declare the cursor variable and allocate memory for it, you
must pass it as an input host variable (bind variable) to PL/SQL, OPEN
it FOR a multi–row query on the server side, FETCH from it on the
client side, then CLOSE it on either side.

How you declare a cursor variable is dependent on your host language.
For instructions about declaring a cursor variable, see your
host–language supplement.

You use the ALLOCATE statement to allocate memory for the cursor
variable. The syntax follows:

EXEC SQL ALLOCATE <cursor_variable>;

You use the OPEN ... FOR statement to associate a cursor variable with
a multi–row query, execute the query, and identify the active set. The
syntax follows:

EXEC SQL OPEN <cursor_variable> FOR <select_statement>;

4 – 20 Programmer’s Guide to the Oracle Precompilers

The SELECT statement can reference input host variables and PL/SQL
variables, parameters, and functions but cannot be FOR UPDATE. In
the following example, you open a cursor variable named emp_cv:

EXEC SQL OPEN emp_cv FOR SELECT * FROM EMP;

You must open a cursor variable on the server side. You do that by
passing it as an input host variable to an anonymous PL/SQL block. At
run time, the block is sent to the Oracle Server for execution. In the
following example, you declare and initialize a cursor variable, then
pass it to a PL/SQL block, which opens the cursor variable:

EXEC SQL BEGIN DECLARE SECTION;

 ...

–– declare cursor variable

 emp_cur SQL_CURSOR;

EXEC SQL END DECLARE SECTION;

–– initialize cursor variable

EXEC SQL ALLOCATE :emp_cur;

EXEC SQL EXECUTE

 –– pass cursor variable to PL/SQL block

 BEGIN

 –– open cursor variable

 OPEN :emp_cur FOR SELECT * FROM EMP;

 END;

END–EXEC;

Generally, you pass a cursor variable to PL/SQL by calling a
stored procedure that declares a cursor variable as one of its formal
parameters. For example, the following packaged procedure opens a
cursor variable named emp_cv:

CREATE PACKAGE emp_data AS

 –– define REF CURSOR type

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 –– declare formal paramter of that type

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp);

END emp_data;

CREATE PACKAGE BODY emp_data AS

 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS

 BEGIN

 –– open cursor variable

 OPEN emp_cv FOR SELECT * FROM emp;

 END open_emp_cv;

END emp_data;

Fetching from a Cursor
Variable

Closing a Cursor
Variable

4 – 21Using Embedded SQL

You can call the procedure from any application, as follows:

EXEC SQL EXECUTE

 BEGIN

 emp_data.open_emp_cv(:emp_cur);

 END;

END–EXEC;

After opening a cursor variable for a multi–row query, you use the
FETCH statement to retrieve rows from the active set one at a time. The
syntax follows:

EXEC SQL FETCH cursor_variable_name

 INTO {record_name | variable_name[, variable_name, ...]};

Each column value returned by the cursor variable is assigned to a
corresponding field or variable in the INTO clause, providing their
datatypes are compatible.

The FETCH statement must be executed on the client side. In the
following example, you fetch rows into a host record named emp_rec:

–– exit loop when done fetching

EXEC SQL WHENEVER NOT FOUND DO no_more;

LOOP

 –– fetch row into record

 EXEC SQL FETCH :emp_cur INTO :emp_rec;

 –– process the data

ENDLOOP;

You use the CLOSE statement to close a cursor variable, at which point
its active set becomes undefined. The syntax follows:

EXEC SQL CLOSE cursor_variable_name;

The CLOSE statement can be executed on the client side or the server
side. In the following example, when the last row is processed, you
close the cursor variable emp_cur:

–– close cursor variable

EXEC SQL CLOSE :emp_cur;

4 – 22 Programmer’s Guide to the Oracle Precompilers

C H A P T E R

5
T

5 – 1Using Embedded PL/SQL

Using Embedded
PL/SQL

his chapter shows you how to improve performance by embedding
PL/SQL transaction processing blocks in your program. After pointing
out the advantages of PL/SQL, this chapter discusses the following
subjects:

• embedding PL/SQL blocks

• using host variables

• using indicator variables

• using host arrays

• using cursors

• creating and calling PL/SQL stored subprograms

• using dynamic PL/SQL

Better Performance

Integration with Oracle

5 – 2 Programmer’s Guide to the Oracle Precompilers

Advantages of PL/SQL

This section looks at some of the features and benefits offered by
PL/SQL, such as

• better performance

• integration with Oracle

• cursor FOR loops

• procedures and functions

• packages

• PL/SQL tables

• user–defined records

For more information about PL/SQL, see the PL/SQL User’s Guide and
Reference.

PL/SQL can help you reduce overhead, improve performance, and
increase productivity. For example, without PL/SQL, Oracle must
process SQL statements one at a time. Each SQL statement results in
another call to the Server and higher overhead. However, with
PL/SQL, you can send an entire block of SQL statements to the Server.
This minimizes communication between your application and Oracle.

PL/SQL is tightly integrated with the Oracle Server. For example, most
PL/SQL datatypes are native to the Oracle data dictionary.
Furthermore, you can use the %TYPE attribute to base variable
declarations on column definitions stored in the data dictionary, as the
following example shows:

job_title emp.job%TYPE;

That way, you need not know the exact datatype of the column.
Furthermore, if a column definition changes, the variable declaration
changes accordingly and automatically. This provides data
independence, reduces maintenance costs, and allows programs to
adapt as the database changes.

Cursor FOR Loops

Subprograms

5 – 3Using Embedded PL/SQL

With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and
CLOSE statements to define and manipulate a cursor. Instead, you can
use a cursor FOR loop, which implicitly declares its loop index as a
record, opens the cursor associated with a given query, repeatedly
fetches data from the cursor into the record, then closes the cursor. An
example follows:

DECLARE

 ...

BEGIN

 FOR emprec IN (SELECT empno, sal, comm FROM emp) LOOP

 IF emprec.comm / emprec.sal > 0.25 THEN ...

 ...

 END LOOP;

END;

Notice that you use dot notation to reference fields in the record.

PL/SQL has two types of subprograms called procedures and functions,
which aid application development by letting you isolate operations.
Generally, you use a procedure to perform an action and a function to
compute a value.

Procedures and functions provide extensibility. That is, they let you
tailor the PL/SQL language to suit your needs. For example, if you
need a procedure that creates a new department, just write your own
as follows:

PROCEDURE create_dept

 (new_dname IN CHAR(14),

 new_loc IN CHAR(13),

 new_deptno OUT NUMBER(2)) IS

BEGIN

 SELECT deptno_seq.NEXTVAL INTO new_deptno FROM dual;

 INSERT INTO dept VALUES (new_deptno, new_dname, new_loc);

END create_dept;

When called, this procedure accepts a new department name and
location, selects the next value in a department–number database
sequence, inserts the new number, name, and location into the dept
table, then returns the new number to the caller.

You can store subprograms in the database (using CREATE
FUNCTION and CREATE PROCEDURE) that can be called from
multiple applications without needing to be recompiled each time.

Parameter Modes

Packages

5 – 4 Programmer’s Guide to the Oracle Precompilers

You use parameter modes to define the behavior of formal parameters.
There are three parameter modes: IN (the default), OUT, and IN OUT.
An IN parameter lets you pass values to the subprogram being called.
An OUT parameter lets you return values to the caller of a
subprogram. An IN OUT parameter lets you pass initial values to the
subprogram being called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the
datatype of its corresponding formal parameter. Table 3 – 6 on page
3 – 20 shows the legal conversions between datatypes.

PL/SQL lets you bundle logically related types, program objects, and
subprograms into a package. Packages can be compiled and stored in an
Oracle database, where their contents can be shared by multiple
applications.

Packages usually have two parts: a specification and a body. The
specification is the interface to your applications; it declares the types,
constants, variables, exceptions, cursors, and subprograms available for
use. The body defines cursors and subprograms and so implements the
specification. In the following example, you “package” two
employment procedures:

PACKAGE emp_actions IS –– package specification

 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);

 PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

PACKAGE BODY emp_actions IS –– package body

 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS

 BEGIN

 INSERT INTO emp VALUES (empno, ename, ...);

 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS

 BEGIN

 DELETE FROM emp WHERE empno = emp_id;

 END fire_employee;

END emp_actions;

Only the declarations in the package specification are visible and
accessible to applications. Implementation details in the package body
are hidden and inaccessible.

PL/SQL Tables

User–defined Records

5 – 5Using Embedded PL/SQL

PL/SQL provides a composite datatype named TABLE. Objects of type
TABLE are called PL/SQL tables, which are modelled as (but not the
same as) database tables. PL/SQL tables have only one column and use
a primary key to give you array–like access to rows. The column can
belong to any scalar type (such as CHAR, DATE, or NUMBER), but the
primary key must belong to type BINARY_INTEGER.

You can declare PL/SQL table types in the declarative part of any
block, procedure, function, or package. In the following example, you
declare a TABLE type called NumTabTyp:

DECLARE

 TYPE NumTabTyp IS TABLE OF NUMBER

 INDEX BY BINARY_INTEGER;

 ...

BEGIN

 ...

END;

Once you define type NumTabTyp, you can declare PL/SQL tables of
that type, as the next example shows:

num_tab NumTabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array–like syntax to
specify the primary key value. For example, you reference the ninth
row in the PL/SQL table named num_tab as follows:

num_tab(9) ...

You can use the %ROWTYPE attribute to declare a record that
represents a row in a database table or a row fetched by a cursor.
However, you cannot specify the datatypes of fields in the record or
define fields of your own. The composite datatype RECORD lifts those
restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables,
records have uniquely named fields, which can belong to different
datatypes. For example, suppose you have different kinds of data about
an employee such as name, salary, hire date, and so on. This data is
dissimilar in type but logically related. A record that contains such
fields as the name, salary, and hire date of an employee would let you
treat the data as a logical unit.

5 – 6 Programmer’s Guide to the Oracle Precompilers

You can declare record types and objects in the declarative part of any
block, procedure, function, or package. In the following example, you
declare a RECORD type called DeptRecTyp:

DECLARE

 TYPE DeptRecTyp IS RECORD

 (deptno NUMBER(4) NOT NULL := 10, –– must initialize

 dname CHAR(9),

 loc CHAR(14));

Notice that the field declarations are like variable declarations. Each
field has a unique name and specific datatype. You can add the NOT
NULL option to any field declaration and so prevent the assigning of
nulls to that field. However, you must initialize NOT NULL fields.

Once you define type DeptRecTyp, you can declare records of that type,
as the next example shows:

dept_rec DeptRecTyp;

The identifier dept_rec represents an entire record.

You use dot notation to reference individual fields in a record. For
example, you reference the dname field in the dept_rec record as follows:

dept_rec.dname ...

Embedding PL/SQL Blocks

The Oracle Precompilers treat a PL/SQL block like a single embedded
SQL statement. So, you can place a PL/SQL block anywhere in a host
program that you can place a SQL statement.

To embed a PL/SQL block in your host program, simply bracket the
PL/SQL block with the keywords EXEC SQL EXECUTE and
END–EXEC as follows:

EXEC SQL EXECUTE

 DECLARE

 ...

 BEGIN

 ...

 END;

END–EXEC;

The keyword END–EXEC must be followed by the statement
terminator for your host language.

An Example

5 – 7Using Embedded PL/SQL

When your program embeds PL/SQL blocks, you must specify the
precompiler option SQLCHECK=SEMANTICS because PL/SQL must
be parsed by Oracle. To connect to Oracle, you must also specify the
option USERID. For more information, see “Using the Precompiler
Options” on page 6 – 12.

Using Host Variables

Host variables are the key to communication between a host language
and a PL/SQL block. Host variables can be shared with PL/SQL,
meaning that PL/SQL can set and reference host variables.

For example, you can prompt a user for information and use host
variables to pass that information to a PL/SQL block. Then, PL/SQL
can access the database and use host variables to pass the results back
to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire
block and can be used anywhere a PL/SQL variable is allowed.
However, character host variables cannot exceed 255 characters in
length. Like host variables in a SQL statement, host variables in a
PL/SQL block must be prefixed with a colon. The colon sets host
variables apart from PL/SQL variables and database objects.

The following example illustrates the use of host variables with
PL/SQL. The program prompts the user for an employee number, then
displays the job title, hire date, and salary of that employee.

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(20);

 password CHARACTER(20);

 emp_number INTEGER;

 job_title CHARACTER(20);

 hire_date CHARACTER(9);

 salary REAL;

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

display ’Username? ’;

read username;

display ’Password? ’;

read password;

EXEC SQL WHENEVER SQLERROR DO sql_error;

EXEC SQL CONNECT :username IDENTIFIED BY :password;

display ’Connected to Oracle’;

5 – 8 Programmer’s Guide to the Oracle Precompilers

LOOP

 display ’Employee Number (0 to end)? ’;

 read emp_number;

 IF emp_number = 0 THEN

 EXEC SQL COMMIT WORK RELEASE;

 display ’Exiting program’;

 exit program;

 ENDIF;

 –––––––––––––––– begin PL/SQL block –––––––––––––––––

 EXEC SQL EXECUTE

 BEGIN

 SELECT job, hiredate, sal

 INTO :job_title, :hire_date, :salary

 FROM emp

 WHERE empno = :emp_number;

 END;

 END–EXEC;

 –––––––––––––––– end PL/SQL block –––––––––––––––––

 display ’Number Job Title Hire Date Salary’;

 display ’––––––––––––––––––––––––––––––––––––’;

 display emp_number, job_title, hire_date, salary;

ENDLOOP;

...

ROUTINE sql_error

BEGIN

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 display ’Processing error’;

 exit program with an error;

END sql_error;

Notice that the host variable emp_number is set before the PL/SQL
block is entered, and the host variables job_title, hire_date, and salary are
set inside the block.

A More Complex
Example

5 – 9Using Embedded PL/SQL

In the example below, you prompt the user for a bank account number,
transaction type, and transaction amount, then debit or credit the
account. If the account does not exist, you raise an exception. When the
transaction is complete, you display its status.

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(20);

 password CHARACTER(20);

 acct_num INTEGER;

 trans_type CHARACTER(1);

 trans_amt REAL;

 status CHARACTER(80);

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

display ’Username? ’;

read username;

display ’Password? ’;

read password;

EXEC SQL WHENEVER SQLERROR DO sql_error;

EXEC SQL CONNECT :username IDENTIFIED BY :password;

display ’Connected to Oracle’;

LOOP

 display ’Account Number (0 to end)? ’;

 read acct_num;

 IF acct_num = 0 THEN

 EXEC SQL COMMIT WORK RELEASE;

 display ’Exiting program’;

 exit program;

 ENDIF;

 display ’Transaction Type – D)ebit or C)redit? ’

 read trans_type;

 display ’Transaction Amount? ’

 read trans_amt;

5 – 10 Programmer’s Guide to the Oracle Precompilers

 ––––––––––––––––––––– begin PL/SQL block –––––––––––––––––––

 EXEC SQL EXECUTE

 DECLARE

 old_bal NUMBER(9,2);

 err_msg CHAR(70);

 nonexistent EXCEPTION;

 BEGIN

 :trans_type := UPPER(:trans_type);

 IF :trans_type = ’C’ THEN –– credit the account

 UPDATE accts SET bal = bal + :trans_amt

 WHERE acctid = :acct_num;

 IF SQL%ROWCOUNT = 0 THEN –– no rows affected

 RAISE nonexistent;

 ELSE

 :status := ’Credit applied’;

 END IF;

 ELSIF :trans_type = ’D’ THEN –– debit the account

 SELECT bal INTO old_bal FROM accts

 WHERE acctid = :acct_num;

 IF old_bal >= :trans_amt THEN –– enough funds

 UPDATE accts SET bal = bal – :trans_amt

 WHERE acctid = :acct_num;

 :status := ’Debit applied’;

 ELSE

 :status := ’Insufficient funds’;

 END IF;

 ELSE

 :status := ’Invalid type: ’ || :trans_type;

 END IF;

 COMMIT;

 EXCEPTION

 WHEN NO_DATA_FOUND OR nonexistent THEN

 :status := ’Nonexistent account’;

 WHEN OTHERS THEN

 err_msg := SUBSTR(SQLERRM, 1, 70);

 :status := ’Error: ’ || err_msg;

 END;

 END–EXEC;

 ––––––––––––––––––– end PL/SQL block –––––––––––––––––––––––

 display ’Status: ’, status;

ENDLOOP;

ROUTINE sql_error

BEGIN

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 display ’Processing error’;

 exit program with an error;

END sql_error;

VARCHAR Pseudotype

5 – 11Using Embedded PL/SQL

Recall from Chapter 3, “Meeting Program Requirements” that you can
use the VARCHAR pseudotype to declare variable–length character
strings. If the VARCHAR is an input host variable, you must tell Oracle
what length to expect. So, set the length field to the actual length of the
value stored in the string field.

If the VARCHAR is an output host variable, Oracle automatically sets
the length field. However, to use a VARCHAR output host variable in
your PL/SQL block, you must initialize the length field before entering
the block. So, set the length field to the declared (maximum) length of
the VARCHAR, as shown in the following example:

EXEC SQL BEGIN DECLARE SECTION;

 emp_number INTEGER;

 emp_name VARCHAR(10);

 salary REAL;

 ...

EXEC SQL END DECLARE SECTION;

...

set emp_name.len = 10; –– initialize length field

EXEC SQL EXECUTE

 BEGIN

 SELECT ename, sal INTO :emp_name, :salary

 FROM emp

 WHERE empno = :emp_number;

 ...

 END;

END–EXEC;

5 – 12 Programmer’s Guide to the Oracle Precompilers

Using Indicator Variables

PL/SQL does not need indicator variables because it can manipulate
nulls. For example, within PL/SQL, you can use the IS NULL operator
to test for nulls, as follows:

IF variable IS NULL THEN ...

You can use the assignment operator (:=) to assign nulls, as follows:

variable := NULL;

However, host languages need indicator variables because they cannot
manipulate nulls. Embedded PL/SQL meets this need by letting you
use indicator variables to

• accept nulls input from a host program

• output nulls or truncated values to a host program

When used in a PL/SQL block, indicator variables are subject to the
following rules:

• You cannot refer to an indicator variable by itself; it must be
appended to its associated host variable.

• If you refer to a host variable with its indicator variable, you
must always refer to it that way in the same block.

In the following example, the indicator variable ind_comm appears with
its host variable commission in the SELECT statement, so it must appear
that way in the IF statement:

EXEC SQL EXECUTE

 BEGIN

 SELECT ename, comm

 INTO :emp_name, :commission:ind_comm FROM emp

 WHERE empno = :emp_number;

 IF :commission:ind_comm IS NULL THEN ...

 ...

 END;

END–EXEC;

Notice that PL/SQL treats :commission:ind_comm like any other simple
variable. Though you cannot refer directly to an indicator variable
inside a PL/SQL block, PL/SQL checks the value of the indicator
variable when entering the block and sets the value correctly when
exiting the block.

Handling Nulls

Handling Truncated
Values

5 – 13Using Embedded PL/SQL

When entering a block, if an indicator variable has a value of –1,
PL/SQL automatically assigns a null to the host variable. When exiting
the block, if a host variable is null, PL/SQL automatically assigns a
value of –1 to the indicator variable. In the next example, if ind_sal had
a value of –1 before the PL/SQL block was entered, the salary_missing
exception is raised. An exception is a named error condition.

EXEC SQL EXECUTE

 BEGIN

 IF :salary:ind_sal IS NULL THEN

 RAISE salary_missing;

 END IF;

 ...

 END;

END–EXEC;

PL/SQL does not raise an exception when a truncated string value is
assigned to a host variable. However, if you use an indicator variable,
PL/SQL sets it to the original length of the string. In the following
example, the host program will be able to tell, by checking the value of
ind_name, if a truncated value was assigned to emp_name:

EXEC SQL EXECUTE

 DECLARE

 ...

 new_name CHAR(10);

 BEGIN

 ...

 :emp_name:ind_name := new_name;

 ...

 END;

END–EXEC;

5 – 14 Programmer’s Guide to the Oracle Precompilers

Using Host Arrays

You can pass input host arrays and indicator arrays to a PL/SQL block.
They can be indexed by a PL/SQL variable of type BINARY_INTEGER
or by a host variable compatible with that type. Normally, the entire
host array is passed to PL/SQL, but you can use the ARRAYLEN
statement (discussed later) to specify a smaller array dimension.

Furthermore, you can use a subprogram call to assign all the values in a
host array to rows in a PL/SQL table. Given that the array subscript
range is m .. n, the corresponding PL/SQL table index range is always
1 .. (n – m + 1). For example, if the array subscript range is 5 .. 10, the
corresponding PL/SQL table index range is 1 .. (10 – 5 + 1) or 1 .. 6.

Note: The Oracle Precompilers do not check your usage of
host arrays. For instance, no index range checking is done.

In the example below, you pass a host array named salary to a PL/SQL
block, which uses the host array in a function call. The function is
named median because it finds the middle value in a series of numbers.
Its formal parameters include a PL/SQL table named num_tab. The
function call assigns all the values in the actual parameter salary to
rows in the formal parameter num_tab.

EXEC SQL BEGIN DECLARE SECTION;

 ...

 salary (100) REAL;

 median_salary REAL;

EXEC SQL END DECLARE SECTION;

–– populate the host array

EXEC SQL EXECUTE

 DECLARE

 TYPE NumTabTyp IS TABLE OF REAL

 INDEX BY BINARY_INTEGER;

 n BINARY_INTEGER;

 ...

 FUNCTION median (num_tab NumTabTyp, n INTEGER)

 RETURN REAL IS

 BEGIN

 –– compute median

 END;

 BEGIN

 n := 100;

 :median_salary := median(:salary, n);

 ...

 END;

END–EXEC;

5 – 15Using Embedded PL/SQL

You can also use a subprogram call to assign all row values in a
PL/SQL table to corresponding elements in a host array. For an
example, see “Stored Subprograms” on page 5 – 18.

Table 5 – 1 shows the legal conversions between row values in a
PL/SQL table and elements in a host array. For example, a host array of
type LONG is compatible with a PL/SQL table of type VARCHAR2,
LONG, RAW, or LONG RAW. Notably, it is not compatible with a
PL/SQL table of type CHAR.

PL/SQL Table

Host Array CHAR DATE LONG LONG RAW NUMBER RAW ROWID VARCHAR2

CHARF �

CHARZ �

DATE �

DECIMAL �

DISPLAY �

FLOAT �

INTEGER �

LONG � �

LONG VARCHAR � � � �

LONG VARRAW � �

NUMBER �

RAW � �

ROWID �

STRING � � � �

UNSIGNED �

VARCHAR � � � �

VARCHAR2 � � � �

VARNUM �

VARRAW � �

Table 5 – 1 Legal Datatype Conversions

ARRAYLEN Statement

5 – 16 Programmer’s Guide to the Oracle Precompilers

Suppose you must pass an input host array to a PL/SQL block for
processing. By default, when binding such a host array, the Oracle
Precompilers use its declared dimension. However, you might not want
to process the entire array. In that case, you can use the ARRAYLEN
statement to specify a smaller array dimension. ARRAYLEN associates
the host array with a host variable, which stores the smaller dimension.
The statement syntax is

EXEC SQL ARRAYLEN host_array (dimension);

where dimension is a 4–byte, integer host variable, not a literal or
an expression.

The ARRAYLEN statement must appear in the Declare Section along
with, but somewhere after, the declarations of host_array and dimension.
You cannot specify an offset into the host array. However, you might be
able to use host–language features for that purpose.

In the following example, you use ARRAYLEN to override the default
dimension of a host array named bonus:

EXEC SQL BEGIN DECLARE SECTION;

 bonus (100) REAL;

 my_dim INTEGER;

 EXEC SQL ARRAYLEN bonus (my_dim);

EXEC SQL END DECLARE SECTION;

–– populate the host array

...

set my_dim = 25; –– set smaller array dimension

EXEC SQL EXECUTE

 DECLARE

 TYPE NumTabTyp IS TABLE OF REAL

 INDEX BY BINARY_INTEGER;

 median_bonus REAL;

 FUNCTION median (num_tab NumTabTyp, n INTEGER)

 RETURN REAL IS

 BEGIN

 –– compute median

 END;

 BEGIN

 median_bonus := median(:bonus, :my_dim);

 ...

 END;

END–EXEC;

Only 25 array elements are passed to the PL/SQL block because
ARRAYLEN downsizes the host array from 100 to 25 elements. As a
result, when the PL/SQL block is sent to Oracle for execution, a much
smaller host array is sent along. This saves time and, in a networked
environment, reduces network traffic.

5 – 17Using Embedded PL/SQL

Using Cursors

Every embedded SQL statement is assigned a cursor, either explicitly
by you in a DECLARE CURSOR statement or implicitly by the
precompiler. Internally, the Oracle Precompilers maintain a cache,
called the cursor cache, to control the execution of embedded SQL
statements. When executed, every SQL statement is assigned an entry
in the cursor cache. This entry is linked to a private SQL area in your
Program Global Area (PGA) within Oracle.

Various precompiler options, including MAXOPENCURSORS,
HOLD_CURSOR, and RELEASE_CURSOR, let you manage the cursor
cache to improve performance. For example, RELEASE_CURSOR
controls what happens to the link between the cursor cache and private
SQL area. If you specify RELEASE_CURSOR=YES, the link is removed
after Oracle executes the SQL statement. This frees memory allocated
to the private SQL area and releases parse locks.

For purposes of cursor cache management, an embedded PL/SQL
block is treated just like a SQL statement. At run time, a cursor, called a
parent cursor, is associated with the entire PL/SQL block. A
corresponding entry is made to the cursor cache, and this entry is
linked to a private SQL area in the PGA.

Each SQL statement inside the PL/SQL block also requires a private
SQL area in the PGA. So, PL/SQL manages a separate cache, called the
child cursor cache, for these SQL statements. Their cursors are called
child cursors. Because PL/SQL manages the child cursor cache, you do
not have direct control over child cursors.

The maximum number of cursors your program can use
simultaneously is set by the Oracle initialization parameter
OPEN_CURSORS. Figure 5 – 1 shows you how to calculate the
maximum number of cursors in use.

+

SQL statement cursors
PL/SQL parent cursors
PL/SQL child cursors
6 cursors for overhead

Sum of cursors in use

Must not exceed OPEN_CURSORS

Figure 5 – 1 Maximum Cursors in Use

An Alternative

5 – 18 Programmer’s Guide to the Oracle Precompilers

If your program exceeds the limit imposed by OPEN_CURSORS, you
get the following Oracle error:

ORA–01000: maximum open cursors exceeded

You can avoid this error by specifying the RELEASE_CURSOR=YES
and HOLD_CURSOR=NO options. If you do not want to precompile
the entire program with RELEASE_CURSOR set to YES, simply reset it
to NO after each PL/SQL block, as follows:

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES);

–– first embedded PL/SQL block

 EXEC ORACLE OPTION (RELEASE_CURSOR=NO);

–– embedded SQL statements

 EXEC ORACLE OPTION (RELEASE_CURSOR=YES);

–– second embedded PL/SQL block

 EXEC ORACLE OPTION (RELEASE_CURSOR=NO);

–– embedded SQL statements

The MAXOPENCURSORS option specifies the initial size of the cursor
cache. For example, when MAXOPENCURSORS=10, the cursor cache
can hold up to 10 entries. If a new cursor is needed, there are no free
cache entries, and HOLD_CURSOR=NO, the precompiler tries to reuse
an entry. If you specify a very low value for MAXOPENCURSORS, the
precompiler is forced to reuse the parent cursor more often. All the
child cursors are released as soon as the parent cursor is reused.

Stored Subprograms

Unlike anonymous blocks, PL/SQL subprograms (procedures and
functions) can be compiled separately, stored in an Oracle database,
and invoked. A subprogram explicitly created using an Oracle tool
such as SQL*Plus or Server Manager is called a stored subprogram.
Once compiled and stored in the data dictionary, it is a database object,
which can be reexecuted without being recompiled.

When a subprogram within a PL/SQL block or stored subprogram is
sent to Oracle by your application, it is called an inline subprogram.
Oracle compiles the inline subprogram and caches it in the System
Global Area (SGA), but does not store the source or object code in the
data dictionary.

Subprograms defined within a package are considered part of the
package, and so are called packaged subprograms. Stored subprograms
not defined within a package are called standalone subprograms.

Creating Stored
Subprograms

5 – 19Using Embedded PL/SQL

You can embed the SQL statements CREATE FUNCTION, CREATE
PROCEDURE, and CREATE PACKAGE in a host program, as the
following example shows:

EXEC SQL CREATE

 FUNCTION sal_ok (salary REAL, title CHAR)

 RETURN BOOLEAN AS

 min_sal REAL;

 max_sal REAL;

 BEGIN

 SELECT losal, hisal INTO min_sal, max_sal

 FROM sals

 WHERE job = title;

 RETURN (salary >= min_sal) AND

 (salary <= max_sal);

 END sal_ok;

END–EXEC;

Notice that the embedded CREATE {FUNCTION | PROCEDURE |
PACKAGE} statement is a hybrid. Like all other embedded CREATE
statements, it begins with the keywords EXEC SQL (not EXEC SQL
EXECUTE). But, unlike other embedded CREATE statements, it ends
with the PL/SQL terminator END–EXEC.

In the example below, you create a package that contains a procedure
named get_employees, which fetches a batch of rows from the emp table.
The batch size is determined by the caller of the procedure, which
might be another stored subprogram or a client application program.

The procedure declares three PL/SQL tables as OUT formal
parameters, then fetches a batch of employee data into the PL/SQL
tables. The matching actual parameters are host arrays. When the
procedure finishes, it automatically assigns all row values in the
PL/SQL tables to corresponding elements in the host arrays.

EXEC SQL CREATE OR REPLACE PACKAGE emp_actions AS

 TYPE CharArrayTyp IS TABLE OF VARCHAR2(10)

 INDEX BY BINARY_INTEGER;

 TYPE NumArrayTyp IS TABLE OF FLOAT

 INDEX BY BINARY_INTEGER;

 PROCEDURE get_employees(

 dept_number IN INTEGER,

 batch_size IN INTEGER,

 found IN OUT INTEGER,

 done_fetch OUT INTEGER,

 emp_name OUT CharArrayTyp,

 job–title OUT CharArrayTyp,

 salary OUT NumArrayTyp);

 END emp_actions;

END–EXEC;

5 – 20 Programmer’s Guide to the Oracle Precompilers

EXEC SQL CREATE OR REPLACE PACKAGE BODY emp_actions AS

 CURSOR get_emp (dept_number IN INTEGER) IS

 SELECT ename, job, sal FROM emp

 WHERE deptno = dept_number;

 PROCEDURE get_employees(

 dept_number IN INTEGER,

 batch_size IN INTEGER,

 found IN OUT INTEGER,

 done_fetch OUT INTEGER,

 emp_name OUT CharArrayTyp,

 job_title OUT CharArrayTyp,

 salary OUT NumArrayTyp) IS

 BEGIN

 IF NOT get_emp%ISOPEN THEN

 OPEN get_emp(dept_number);

 END IF;

 done_fetch := 0;

 found := 0;

 FOR i IN 1..batch_size LOOP

 FETCH get_emp INTO emp_name(i),

 job_title(i), salary(i);

 IF get_emp%NOTFOUND THEN

 CLOSE get_emp;

 done_fetch := 1;

 EXIT;

 ELSE

 found := found + 1;

 END IF;

 END LOOP;

 END get_employees;

 END emp_actions;

END–EXEC;

You specify the REPLACE clause in the CREATE statement to redefine
an existing package without having to drop the package, recreate it,
and regrant privileges on it. For the full syntax of the CREATE
statement see the Oracle7 Server SQL Reference.

If an embedded CREATE {FUNCTION|PROCEDURE|PACKAGE}
statement fails, Oracle generates a warning, not an error.

Calling a Stored
Subprogram

5 – 21Using Embedded PL/SQL

To invoke (call) a stored subprogram from your host program, you
must use an anonymous PL/SQL block. In the following example, you
call a standalone procedure named raise_salary:

EXEC SQL EXECUTE

 BEGIN

 raise_salary(:emp_id, :increase);

 END;

END–EXEC;

Notice that stored subprograms can take parameters. In this example,
the actual parameters emp_id and increase are host variables.

In the next example, the procedure raise_salary is stored in a package
named emp_actions, so you must use dot notation to fully qualify the
procedure call:

EXEC SQL EXECUTE

 BEGIN

 emp_actions.raise_salary(:emp_id, :increase);

 END;

END–EXEC;

An actual IN parameter can be a literal, host variable, host array,
PL/SQL constant or variable, PL/SQL table, PL/SQL user–defined
record, subprogram call, or expression. However, an actual OUT
parameter cannot be a literal, subprogram call, or expression.

In the Pro*C example below, three of the formal parameters are
PL/SQL tables, and the corresponding actual parameters are host
arrays. The program calls the stored procedure get_employees
repeatedly, displaying each batch of employee data, until no more
data is found.

#include <stdio.h>

#include <string.h>

typedef char asciz;

EXEC SQL BEGIN DECLARE SECTION;

 /* Define type for null–terminated strings */

 EXEC SQL TYPE asciz IS STRING(20);

 asciz username[20];

 asciz password[20];

 int dept_no; /* which department to query */

 char emp_name[10][21];

 char job[10][21];

 float salary[10];

 int done_flag;

 int array_size;

 int num_ret; /* number of rows returned */

 int SQLCODE;

EXEC SQL END DECLARE SECTION;

5 – 22 Programmer’s Guide to the Oracle Precompilers

EXEC SQL INCLUDE sqlca;

int print_rows(); /* produces program output */

int sql_error(); /* handles unrecoverable errors */

main()

{

 int i;

 /* Connect to Oracle. */

 strcpy(username, ”SCOTT”);

 strcpy(password, ”TIGER”);

 EXEC SQL WHENEVER SQLERROR DO sql_error();

 EXEC SQL CONNECT :username IDENTIFIED BY :password;

 printf(”\nConnected to Oracle as user: %s\n”, username);

 printf(”enter department number: ”);

 scanf(”%d”, &dept_no);

 fflush(stdin);

 /* Set the array size. */

 array_size = 10;

 done_flag = 0;

 num_ret = 0;

 /* Array fetch loop – ends when done_flag is true. */

 for (;;)

 {

 EXEC SQL EXECUTE

 BEGIN emp_actions.get_employees

 (:dept_no, :array_size, :num_ret,

 :done_flag, :emp_name, :job, :salary);

 END;

 END–EXEC;

 print_rows(num_ret);

 if (done_flag)

 break;

 }

 /* Disconnect from the database. */

 EXEC SQL COMMIT WORK RELEASE;

 exit(0);

}

Remote Access

5 – 23Using Embedded PL/SQL

print_rows(n)

int n;

{

 int i;

 if (n == 0)

 {

 printf(”No rows retrieved.\n”);

 return;

 }

 printf(”\n\nGot %d row%c\n”, n, n == 1 ? ’\0’ : ’s’);

 printf(”%–20.20s%–20.20s%s\n”, ”Ename”, ”Job”, ”Salary”);

 for (i = 0; i < n; i++)

 printf(”%20.20s%20.20s%6.2f\n”,

 emp_name[i], job[i], salary[i]);

}

sql_error()

{

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf(”\nOracle error detected:”);

 printf(”\n% .70s \n”, sqlca.sqlerrm.sqlerrmc);

 EXEC SQL ROLLBACK WORK RELEASE;

 exit(1);

}

Remember, the datatype of each actual parameter must be convertible
to the datatype of its corresponding formal parameter. Also, before a
stored subprogram exits, all OUT formal parameters must be assigned
values. Otherwise, the values of corresponding actual parameters are
indeterminate.

PL/SQL lets you access remote databases via database links. Typically,
database links are established by your DBA and stored in the Oracle
data dictionary. A database link tells Oracle where the remote database
is located, the path to it, and what Oracle username and password to
use. In the following example, you use the database link dallas to call
the raise_salary procedure:

EXEC SQL EXECUTE

 BEGIN

 raise_salary@dallas(:emp_id, :increase);

 END;

END–EXEC;

You can create synonyms to provide location transparency for remote
subprograms, as the following example shows:

CREATE PUBLIC SYNONYM raise_salary FOR raise_salary@dallas;

Getting Information
about Stored
Subprograms

Restriction

5 – 24 Programmer’s Guide to the Oracle Precompilers

In Chapter 3, you learned how to embed OCI calls in your host
program. After calling the library routine SQLLDA to set up the LDA,
you can use the OCI call ODESSP to get useful information about a
stored subprogram. When you call ODESSP, you must pass it a valid
LDA and the name of the subprogram. For packaged subprograms,
you must also pass the name of the package. ODESSP returns
information about each subprogram parameter such as its datatype,
size, position, and so on. For details, see the Programmer’s Guide to the
Oracle Call Interface.

You can also use the procedure describe_procedure in package
DBMS_DESCRIBE, which is supplied with Oracle7. For more
information, see the Oracle7 Server Application Developer’s Guide

Using Dynamic PL/SQL

Recall that the Oracle Precompilers treat an entire PL/SQL block like a
single SQL statement. Therefore, you can store a PL/SQL block in a
string host variable. Then, if the block contains no host variables, you
can use dynamic SQL Method 1 to execute the PL/SQL string. Or, if the
block contains a known number of host variables, you can use dynamic
SQL Method 2 to prepare and execute the PL/SQL string. If the block
contains an unknown number of host variables, you must use dynamic
SQL Method 4. For more information, refer to Chapter 10, “Using
Dynamic SQL.”

In dynamic SQL Method 4, a host array cannot be bound to a PL/SQL
procedure with a parameter of type “table.”

C H A P T E R

6
T

6 – 1Running the Oracle Precompilers

Running the Oracle
Precompilers

his chapter details the requirements for running the Oracle
Precompilers. You learn what occurs during precompilation, how to
issue the precompiler command, how to specify the many useful
precompiler options, and how to do conditional and separate
precompilations.

6 – 2 Programmer’s Guide to the Oracle Precompilers

The Precompiler Command

To run an Oracle Precompiler, you issue one of the language–specific
commands shown in Table 6 – 1.

Host Language Precompiler Command

COBOL procob

FORTRAN profor

Table 6 – 1 Precompiler Command

The location of the precompiler differs from system to system.
Typically, your system manager or DBA defines environment variables,
logicals, or aliases or uses other operating system–specific means to
make the precompiler executable accessible.

The INAME option specifies the source file to be precompiled. For
example, the Pro*COBOL command

procob INAME=test

precompiles the file test.pco in the current directory, since the
precompiler assumes that the filename extension is .pco. You need not
use a file extension when specifying INAME unless the extension is
nonstandard.

Input and output filenames need not be accompanied by their
respective option names, INAME and ONAME. When the option
names are not specified, the precompiler assumes that the first filename
specified on the command line is the input filename and that the
second filename is the output filename.

Thus, the Pro*FORTRAN command

profor MODE=ANSI myfile.pfo DBMS=V7 myfile.f

is equivalent to

profor MODE=ANSI INAME=myfile.pfo DBMS=V7 ONAME=myfile.f

Note: Option names and option values that do not name
specific operating system objects, such as filenames, are not
case–sensitive. In the examples in this guide, option names are
written in upper case, and option values are usually in lower
case. Filenames, including the name of the precompiler
executable itself, always follow the case conventions used by
the operating system on which it is executed.

6 – 3Running the Oracle Precompilers

What Occurs during Precompilation?

During precompilation, an Oracle Precompiler generates host–language
code that replaces the SQL statements embedded in your host program.
The generated code includes data structures that contain the datatype,
length, and address of each host variable, as well as other information
required by the Oracle runtime library, SQLLIB. The generated code
also contains the calls to SQLLIB routines that perform the embedded
SQL operations.

The generated code also includes calls to the SQLLIB routines that
perform embedded SQL operations. Note that the precompiler does not
generate calls to Oracle Call Interface (OCI) routines.

Note: The precompiler does not generate calls to Oracle Call
Interface (OCI) routines.

The precompiler can issue warnings and error messages. These
messages have the prefix PCC–, and are described in Oracle7 Server
Messages.

6 – 4 Programmer’s Guide to the Oracle Precompilers

Precompiler Options

Many useful options are available at precompile time. They let you
control how resources are used, how errors are reported, how input
and output are formatted, and how cursors are managed. To specify a
precompiler option, use the following syntax:

<option_name>=<value>

The value of an option is a string literal, which represents text or
numeric values. For example, for the option

... INAME=my_test

the value is a string literal that specifies a filename, but for the option

... MAXOPENCURSORS=20

the value is numeric.

Some options take Boolean values, which you can represent with the
strings YES or NO, TRUE or FALSE, or with the integer literals 1 or 0,
respectively. For example, the option

... SELECT_ERROR=YES

is equivalent to

... SELECT_ERROR=TRUE

or

... SELECT_ERROR=1

The option value is always separated from the option name by an equal
sign, leave no whitespace around the equal sign, because spaces delimit
individual options. For example, you might specify the option
AUTO_CONNECT on the command line as follows:

... AUTO_CONNECT=YES

You can abbreviate the names of options if the abbreviation is
unambiguous. For example, you cannot use the abbreviation MAX
because it might stand for MAXLITERAL or MAXOPENCURSORS.

A handy reference to the precompiler options is available online. To see
the online display, enter the precompiler command with no arguments
at your operating system prompt. The display gives the name, syntax,
default value, and purpose of each option. Options marked with an
asterisk (*) can be specified inline as well as on the command line.

Default Values

Determining Current
Values

6 – 5Running the Oracle Precompilers

Many of the options have default values, which are determined by:

• a value built in to the precompiler

• a value set in the system configuration file

• a value set in a user configuration file

• a value set in an inline specification

For example, the option MAXOPENCURSORS specifies the maximum
number of cached open cursors. The built–in precompiler default value
for this option is 10. However, if MAXOPENCURSORS=32 is specified
in the system configuration file, the default becomes 32. The user
configuration file could set it to yet another value, which then
overrides the system configuration value.

Then, if this option is set on the command line, the new command–line
value takes precedence. Finally, an inline specification takes precedence
over all preceding defaults. For more information, see “Configuration
Files” on page 6 – 6.

You can interactively determine the current value for one or more
options by using a question mark on the command line. For example, if
you issue the Pro*COBOL command

procob ?

the complete option set, along with current values, is displayed on your
terminal. In this case, the values are those built into the precompiler,
overridden by any values in the system configuration file. But if you
issue the following command

procob CONFIG=my_config_file.cfg ?

and there is a file named my_config_file.cfg in the current directory, the
options from the my_config_file.cfg file are listed with the other default
values. Values in the user configuration file supply missing values, and
they supersede values built into the precompiler or values specified in
the system configuration file.

You can also determine the current value of a single option by simply
specifying the option name followed by “=?” as in

procob MAXOPENCURSORS=?

Note: With some operating systems, the “?” may need to be
preceded by an “escape” character, such as a back–slash (\).
For example, instead of “procob ?,” you might need to use
“procob \?” to list the Pro*COBOL option settings.

Case Sensitivity

Configuration Files

6 – 6 Programmer’s Guide to the Oracle Precompilers

In general, you can use either uppercase or lowercase for
command–line option names and values. However, if your operating
system is case–sensitive, like UNIX, you must specify filename values,
including the name of the precompiler executable, using the correct
combination of upper and lowercase letters.

A configuration file is a text file that contains precompiler options.
Each record (line) in the file contains one option, with its associated
value or values. For example, a configuration file might contain
the lines

FIPS=YES

MODE=ANSI

to set defaults for the FIPS and MODE options.

There is a single system configuration file for each system. The name of
the system configuration file is precompiler–specific and is shown in
Table 6 – 2.

Precompiler Configuration File

Pro*COBOL pcccob.cfg

Pro*FORTRAN pccfor.cfg

Table 6 – 2 Configuration Files

The location of the file is operating system–specific. On most UNIX
systems, the Pro*COBOL configuration file is usually located in the
$ORACLE_HOME/procob directory, and the Pro*FORTRAN equivalent
is in the $ORACLE_HOME/profor directory, where $ORACLE_HOME is
the environment variable for the database software.

Each precompiler user can have one or more user configuration files.
The name of the configuration file must be specified using the CONFIG
command–line option. For more information, see “Determining
Current Values” on page 6 – 5.

Note: You cannot nest configuration files. This means that
CONFIG is not a valid option inside a configuration file.

On the Command Line

Inline

Advantages

6 – 7Running the Oracle Precompilers

Entering Options

All the precompiler options can be entered on the command line or
(except CONFIG) from a configuration file. Many options can also be
entered inline. During a given run, the precompiler can accept options
from all three sources.

You enter precompiler options on the command line using the
following syntax:

... [option_name=value] [option_name=value] ...

Separate each option with one or more spaces. For example, you might
enter the following options:

... ERRORS=no LTYPE=short

You enter options inline by coding EXEC ORACLE statements, using
the following syntax:

EXEC ORACLE OPTION (option_name=value);

For example, you might code the following statement:

EXEC ORACLE OPTION (RELEASE_CURSOR=YES);

An option entered inline overrides the same option entered on the
command line.

The EXEC ORACLE feature is especially useful for changing option
values during precompilation. For example, you might want to
change the HOLD_CURSOR and RELEASE_CURSOR values on a
statement–by–statement basis. Appendix C shows you how to use
inline options to optimize runtime performance.

Specifying options inline is also helpful if your operating system limits
the number of characters you can enter on the command line, and you
can store inline options in configuration files, which are discussed in
the next section.

Scope of EXEC ORACLE

6 – 8 Programmer’s Guide to the Oracle Precompilers

An EXEC ORACLE statement stays in effect until textually superseded
by another EXEC ORACLE statement specifying the same option. In
the following example, HOLD_CURSOR=NO stays in effect until
superseded by HOLD_CURSOR=YES:

EXEC SQL BEGIN DECLARE SECTION;

 emp_name CHARACTER(20);

 emp_number INTEGER;

 salary REAL;

 dept_number INTEGER;

EXEC SQL END DECLARE SECTION;

...

EXEC SQL WHENEVER NOT FOUND GOTO no_more;

EXEC ORACLE OPTION (HOLD_CURSOR=NO);

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT EMPNO, DEPTNO FROM EMP;

EXEC SQL OPEN emp_cursor;

display ’Employee Number Dept’;

display ’––––––––––––––– ––––’;

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_number, :dept_number;

 display emp_number, dept_number;

ENDLOOP;

no_more:

 EXEC SQL WHENEVER NOT FOUND CONTINUE;

 LOOP

 display ’Employee number? ’;

 read emp_number;

 IF emp_number = 0 THEN

 exit loop;

 EXEC ORACLE OPTION (HOLD_CURSOR=YES);

 EXEC SQL SELECT ENAME, SAL

 INTO :emp_name, :salary

 FROM EMP

 WHERE EMPNO = :emp_number;

 display ’Salary for ’, emp_name, ’ is ’, salary;

 ENDLOOP;

...

From a Configuration
File

Advantages

Using Configuration Files

Setting Option Values

6 – 9Running the Oracle Precompilers

The Oracle Precompilers can use a configuration file containing preset
command–line options. By default, a text file called the system
configuration file is used. However, you can specify any of several
alternative files, called user configuration files, on the command line.

Configuration files offer several advantages. The system configuration
file lets you standardize a set of options for all projects. User
configuration files let you customize a set of options for each project.
With configuration files, you need not enter long strings of options on
the command line. Also, if your system limits the length of a command
line, configuration files let you specify more options than the command
line can hold.

Each record (line) in a configuration file holds one command–line
option. For example, a configuration file might contain the following
lines, which set defaults for the FIPS, MODE, and SQLCHECK options:

FIPS=YES

MODE=ANSI

SQLCHECK=SEMANTICS

Each Oracle Precompiler can have its own system configuration file.
The name and location of the file are language– and system–specific. If
the file is not found, you get a warning but the precompiler continues
processing.

There is only one system configuration file for a given language, but
you can create any number of user configuration files. You use the new
command–line option CONFIG to specify the name and location of a
particular user configuration file, as follows:

... CONFIG=<filename>

You cannot nest configuration files. Therefore, you cannot specify the
CONFIG option in a configuration file. Also, you cannot specify
CONFIG inline.

Many precompiler runtime options have built–in default values, which
can be reset in a configuration file or on the command line.
Command–line settings override user configuration file settings, which
override system configuration file settings.

6 – 10 Programmer’s Guide to the Oracle Precompilers

Scope of Options

A precompilation unit is a file containing host–language code and
one or more embedded SQL statements. The options specified for a
given precompilation unit affect only that unit; they have no effect on
other units.

For example, if you specify HOLD_CURSOR=YES and
RELEASE_CURSOR=YES for unit A but not unit B, SQL statements in
unit A run with these HOLD_CURSOR and RELEASE_CURSOR
values, but SQL statements in unit B run with the default values.
However, the MAXOPENCURSORS setting that is in effect when you
connect to Oracle stays in effect for the life of that connection.

The scope of an inline option is positional, not logical. That is, an inline
option affects SQL statements that follow it in the source file, not in the
flow of program logic. An option setting stays in effect until the
end–of–file unless you respecify the option.

Quick Reference

Table 6 – 3 is a quick reference to the precompiler options. Options
marked with an asterisk can be entered inline.

Another handy reference is available online. To see the online display,
just enter the precompiler command without options at your operating
system prompt. The display gives the name, syntax, default value, and
purpose of each option.

Note: There are some platform–specific options. For example,
on byte–swapped platforms that use MicroFocus COBOL, the
option COMP5 governs the use of certain COMPUTATIONAL
items. Check your system–specific Oracle manuals.

6 – 11Running the Oracle Precompilers

Syntax Default Specifies ...

ASACC={YES|NO} NO carriage control for listing

ASSUME_SQLCODE={YES|NO} NO precompiler presumes that SQLCODE is declared

AUTO_CONNECT={YES|NO} NO automatic logon

CONFIG=filename name of user configuration file

COMMON_NAME=block_name * name of FORTRAN COMMON blocks

DBMS={NATIVE|V6|V7} NATIVE version–specific behavior of Oracle at precompile time

DEFINE=symbol * symbol used in conditional precompilation

ERRORS={YES|NO} * YES whether errors are sent to the terminal

FIPS={YES|NO}* NO whether ANSI/ISO extensions are flagged

FORMAT={ANSI|TERMINAL} ANSI format of COBOL or FORTRAN input line

HOLD_CURSOR={YES|NO}* NO how cursor cache handles SQL statements

HOST={COBOL|COB74} COBOL COBOL version of input file

[INAME=]filename name of input file

INCLUDE=path* directory path for INCLUDEd files

IRECLEN=integer 80 record length of input file

LITDELIM={APOST|QUOTE} * QUOTE delimiter for COBOL strings

LNAME=filename name of listing file

LRECLEN=integer 132 record length of listing file

LTYPE={LONG|SHORT|NONE} LONG type of listing

MAXLITERAL=integer * platform–
specific

maximum length of strings

MAXOPENCURSORS=integer * 10 maximum number of cursors cached

MODE={ORACLE|ANSI|ANSI14|ANSI13} ORACLE compliance with the ANSI/ISO SQL standard

MULTISUBPROG={YES|NO} YES whether FORTRAN COMMON blocks are generated

NLS_LOCAL={YES|NO} YES blank–padding operations to be preformed by SQLLIB

[ONAME=]filename name of output file

ORACA={YES|NO}* NO whether the ORACA is used

ORECLEN=integer 80 record length of output file

PAGELEN=integer 66 lines per page in listing

RELEASE_CURSOR={YES|NO} * NO how cursor cache handles SQL statements

SELECT_ERROR={YES|NO}* YES how SELECT errors are handled

SQLCHECK={FULL|SYNTAX|LIMITED|NONE}* SYNTAX extent of syntactic and semantic checking

UNSAFE_NULL={YES|NO} NO disables the ORA–01405 message

USERID=username/password valid Oracle username and password

VARCHAR={YES|NO} NO recognize implicit VARCHAR group items in COBOL

XREF={YES|NO}* YES cross reference section in listing

Table 6 – 3 Option List

ASACC

Purpose

Syntax

Default

Usage Notes

ASSUME_SQLCODE

Purpose

Syntax

Default

Usage Notes

6 – 12 Programmer’s Guide to the Oracle Precompilers

Using the Precompiler Options

This section is organized for easy reference. It lists the precompiler
options alphabetically, and for each option gives its purpose, syntax,
and default value. Usage notes that help you understand how the
option works are also provided. Unless the usage notes say otherwise,
the option can be entered on the command line, inline, or from a
configuration file.

Specifies whether the listing file follows the ASA convention of using
the first column in each line for carriage control.

ASACC={YES|NO}

NO

Cannot be entered inline.

Instructs the Oracle Precompiler to presume that SQLCODE is declared
whether or not it is declared in the Declare Section or of the proper
type. ASSUME_SQLCODE=YES causes Releases 1.6 and later of the
Oracle Precompilers to behave similarly to Release 1.5 in this respect.

ASSUME_SQLCODE={YES|NO}

NO

Cannot be entered inline.

When ASSUME_SQLCODE=NO, SQLCODE is recognized as a status
variable if and only if at least one of the following criteria is satisfied:

• It is declared in a Declare Section with exactly the right datatype.

• The precompiler finds no other status variable.

If the precompiler finds a SQLSTATE declaration (of exactly the right
type of course) in a Declare Section or finds an INCLUDE of the
SQLCA, it will not presume SQLCODE is declared.

When ASSUME_SQLCODE=YES, and when SQLSTATE and/or
SQLCA (Pro*FORTRAN only) are declared as status variables, the
precompiler presumes SQLCODE is declared whether or not it is
declared in a Declare Section or of the proper type. This causes
Releases 1.6.7 and later to behave like Release 1.5 in this regard.

AUTO_CONNECT

Purpose

Syntax

Default

Usage Notes

6 – 13Running the Oracle Precompilers

Specifies whether your program connects automatically to the default
user account.

AUTO_CONNECT={YES|NO}

NO

Cannot be entered inline.

When AUTO_CONNECT=YES, as soon as the precompiler encounters
an executable SQL statement, your program tries to log on to Oracle
automatically with the userid

<prefix><username>

where prefix is the value of the Oracle initialization parameter
OS_AUTHENT_PREFIX (the default value is OPS$) and username is
your operating system user or task name. In this case, you cannot
override the default value for MAXOPENCURORS (10), even if you
specify a different value on the command line.

When AUTO_CONNECT=NO (the default), you must use the
CONNECT statement to log on to Oracle.

COMMON_NAME

Purpose

Syntax

Default

Usage Notes

6 – 14 Programmer’s Guide to the Oracle Precompilers

For Pro*FORTRAN only, the COMMON_NAME option specifies a
prefix used to name internal FORTRAN COMMON blocks. Your host
program does not access the COMMON blocks directly. But, they allow
two or more program units in the same precompilation unit to contain
SQL statements.

COMMON_NAME=blockname

First five characters in name of input file

The Pro*FORTRAN Precompiler uses a special program file called a
block data subprogram to establish COMMON blocks for all the SQL
variables in an input file. The block data subprogram defines two
COMMON blocks — one for CHARACTER variables, the other for
non–CHARACTER variables — and uses DATA statements to initialize
the variables.

The format of a block data subprogram follows:

BLOCK DATA <subprogram_name>

variable declarations

COMMON statements

DATA statements

END

Your host program does not access the COMMON blocks directly. But,
they allow two or more program files in the same precompilation file to
contain SQL statements.

To name the COMMON blocks, the precompiler uses the name of the
input file and the suffixes C, D, and I. At most, the first five characters
of the filename are used. For example, if the name of the input file is
ACCTSPAY, the precompiler names the COMMON blocks ACCTSC,
ACCTSD, and ACCTSI.

The precompiler, however, can give COMMON blocks defined in
different output files the same name, as the following schematic shows:

ACCTSPAY.PFO ===> ACCTSC, ACCTSD, ACCTSI in ACCTSPAY.FOR

ACCTSREC.PFO ===> ACCTSC, ACCTSD, ACCTSI in ACCTSREC.FOR

If you were to link ACCTSPAY and ACCTSREC into an executable
program, the linker would see three, not six, COMMON blocks.

CONFIG

Purpose

Syntax

Default

Usage Notes

6 – 15Running the Oracle Precompilers

To solve the problem, you can rename the input files, or you can
override the default COMMON block names by specifying
COMMON_NAME inline or on the command line as follows:

COMMON_NAME=<block_name>

where block_name is a legal COMMON block name. For example, if you
specify COMMON_NAME=PAY, the precompiler names its COMMON
blocks PAYC and PAYI. At most, the first five characters in block_name
are used.

For example, if you specify COMMON_NAME=PAY, the precompiler
names its COMMON blocks PAYC and PAYI. At most, the first 5
characters in block_name are used.

If you specify COMMON_NAME inline, its EXEC ORACLE OPTION
statement must precede the FORTRAN PROGRAM, SUBROUTINE, or
FUNCTION statement.

You might want to override the default COMMON block names if they
conflict with your user–defined COMMON block names. However, the
preferred practice is to rename the user–defined COMMON blocks.

COMMON_NAME is not needed if you specify MULTISUBPROG.

Specifies the name of a user configuration file.

CONFIG=filename

None

Can be entered only on the command line.

The Oracle Precompilers can use a configuration file containing preset
command–line options. By default, a text file called the system
configuration file is used. However, you can specify any of several
alternative files, called user configuration files. For more information, see
“Configuration Files” on page 6 – 6.

You cannot nest configuration files. Therefore, you cannot specify the
option CONFIG in a configuration file.

DBMS

Purpose

Syntax

Default

Usage Notes

6 – 16 Programmer’s Guide to the Oracle Precompilers

Specifies whether Oracle follows the semantic and syntactic rules of
Oracle Version 6, Oracle7, or the native version of Oracle (that is, the
version to which your application is connected).

DBMS={NATIVE|V6|V7}

NATIVE

Cannot be entered inline.

With the DBMS option you can control the version–specific behavior of
Oracle. When DBMS=NATIVE (the default), Oracle follows the
semantic and syntactic rules of the native version of Oracle.

When DBMS=V6 or DBMS=V7, Oracle follows the rules of Oracle
Version 6 or Oracle7, respectively. A summary of the differences
between DBMS=V6 and DBMS=V7 follows:

• When DBMS=V6, integrity constraints (except NOT NULL) are
disabled. When DBMS=V7, however, all Oracle7 integrity
constraints are enabled.

• When DBMS=V6, Oracle treats string literals like variable–length
character values. However, when DBMS=V7, Oracle treats string
literals like fixed–length character values, and CHAR semantics
change slightly to comply with the current ANSI/ISO embedded
SQL standard. For more information, see “Using VARCHAR2
versus CHAR” on page E – 3.

• When DBMS=V6, Oracle treats local CHAR variables in a
PL/SQL block like variable–length character values. When
DBMS=V7, however, Oracle treats the CHAR variables like
ANSI–compliant, fixed–length character values.

• When DBMS=V6, Oracle treats the return value of the function
USER like a variable–length character value. However, when
DBMS=V7, Oracle treats the return value of USER like an
ANSI–compliant, fixed–length character value.

• When DBMS=V6, if you process a multi–row query that calls a
SQL group function such as AVG or COUNT, the function is
called when executing an OPEN statement. When DBMS=V7,
however, the function is called when executing an FETCH
statement. When OPENing or FETCHing, if the function call
fails, Oracle issues an error message immediately. Thus, the
DBMS value affects error reporting slightly.

6 – 17Running the Oracle Precompilers

• When DBMS=V6, no error is returned if a SELECT or FETCH
statement selects a null, and there is no indicator variable
associated with the output host variable. When DBMS=V7,
SELECTing or FETCHing a null column or expression into a host
variable that has no associated indicator variable causes an error
(SQLSTATE is “22002”; SQLCODE is ORA–01405).

• When DBMS=V6, if you SELECT or FETCH a truncated column
value into a host variable that lacks an indicator variable, Oracle
generates error ORA–01406. When DBMS=V7, however, Oracle
generates no error.

• When DBMS=V6, a DESCRIBE operation of a fixed–length string
(in Dynamic SQL Method 4) returns datatype code 1. When
DBMS=V7, the DESCRIBE operation returns datatype code 96.

• When DBMS=V6, PCTINCREASE is allowed for rollback
segments. When DBMS=V7, however, PCTINCREASE is not
allowed for rollback segments.

• When DBMS=V6, illegal MAXEXTENTS storage parameters are
allowed. When DBMS=V7, however, they are not allowed.

• When DBMS=V6, constraints (except NOT NULL) are not
enabled. When DBMS=V7, all Oracle7 constraints are enabled.

• When DBMS=V7, you cannot SELECT or FETCH nulls into a
host variable not associated with an indicator variable.

If you precompile using the DBMS=V6 option, and connect to an
Oracle7 database, then a data definition language (DDL) statement
such as

CREATE TABLE T1 (COL1 CHAR(10))

creates the table using the VARCHAR2 (variable–length) datatype, as if
the CREATE TABLE statement had been

CREATE TABLE T1 (COL1 VARCHAR2(10))

Table 6 – 4 shows how the compatible DBMS and MODE settings
interact. All other combinations are incompatible or unrecommended.

6 – 18 Programmer’s Guide to the Oracle Precompilers

Situation DBMS=V7
MODE=ANSI

DBMS=V7
MODE=ORACLE

DBMS=V6
MODE=ORACLE

“no data found” warning code +100 +1403 +1403

fetch nulls without using indicator variables error –1405 error –1405 no error

fetch truncated values without using
indicator variables

no error but
SQLWARN(2) is set

no error but
SQLWARN(2) is set

error –1406 and
SQLWARN(2) is set

cursors closed by COMMIT or ROLLBACK all explicit CURRENT OF only CURRENT OF only (1)

open an already OPENed cursor error –2117 no error no error

close an already CLOSEd cursor error –2114 no error no error

SQL group function ignores nulls no warning no warning SQLWARN(3) is set

when SQL group function in multirow query
is called

FETCH time FETCH time OPEN time

declare SQLCA structure optional required required (2)

declare SQLCODE or SQLSTATE status
variable

required optional but Oracle
ignores

optional but Oracle ig-
nores (2)

default external datatype of character host
variables

external datatype used for CHAR in TYPE
and VAR statements

CHARF VARCHAR2 VARCHAR2

default external datatype of string literals in
SQL statements

CHARF CHARF VARCHAR2

default internal datatype of CHAR variables
in SQL statements

CHAR CHAR VARCHAR2

default external datatype of CHAR
variables in PL/SQL blocks

CHARF CHARF VARCHAR2

default external datatype of value function
USER returns

CHARF CHARF VARCHAR2

external datatype code DESCRIBE returns
(dynamic SQL Method 4)

96 96 1

integrity constraints enabled enabled disabled

PCTINCREASE for rollback segments not allowed not allowed allowed

MAXEXTENTS storage parameters not allowed not allowed allowed

Table 6 – 4 How DBMS and MODE Interact

Notes:

1. Includes ANSI13.

2. Includes ANSI14 and ANSI13.

DEFINE

Purpose

Syntax

Default

Usage Notes

ERRORS

Purpose

Syntax

Default

Usage Notes

FIPS

Purpose

Syntax

Default

Usage Notes

6 – 19Running the Oracle Precompilers

Specifies a user–defined symbol that is used to include or exclude
portions of source code during a conditional precompilation. For more
information, see “Doing Conditional Precompilations” on page 6 – 41.

DEFINE=symbol

None

If you enter DEFINE inline, the EXEC ORACLE statement takes the
following form:

EXEC ORACLE DEFINE <symbol>;

Specifies whether precompiler error messages are sent to the terminal
and listing file or only to the listing file.

ERRORS={YES|NO}

YES

When ERRORS=YES, error messages are sent to the terminal and
listing file.

When ERRORS=NO, error messages are sent only to the listing file.

Specifies whether extensions to ANSI/ISO SQL are flagged (by the FIPS
Flagger). An extension is any SQL element that violates ANSI/ISO
format or syntax rules, except privilege enforcement rules.

FIPS={YES|NO}

NO

When FIPS=YES, the FIPS Flagger issues warning (not error) messages
if you use an Oracle extension to the ANSI/ISO embedded SQL
standard (SQL92) or use a SQL92 feature in a nonconforming manner.

6 – 20 Programmer’s Guide to the Oracle Precompilers

The following extensions to ANSI/ISO SQL are flagged at precompile
time:

• array interface including the FOR clause

• SQLCA, ORACA, and SQLDA data structures

• dynamic SQL including the DESCRIBE statement

• embedded PL/SQL blocks

• automatic datatype conversion

• DATE, COMP–3 (Pro*COBOL only), NUMBER, RAW, LONG
RAW, VARRAW, ROWID, and VARCHAR datatypes

• ORACLE OPTION statement for specifying runtime options

• EXEC IAF and EXEC TOOLS statements in user exits

• CONNECT statement

• TYPE and VAR datatype equivalencing statements

• AT db_name clause

• DECLARE...DATABASE, ...STATEMENT, and ...TABLE
statements

• SQLWARNING condition in WHENEVER statement

• DO and STOP actions in WHENEVER statement

• COMMENT and FORCE TRANSACTION clauses in COMMIT
statement

• FORCE TRANSACTION and TO SAVEPOINT clauses in
ROLLBACK statement

• RELEASE parameter in COMMIT and ROLLBACK statements

• optional colon–prefixing of WHENEVER...DO labels and of host
variables in the INTO clause

FORMAT

Purpose

Syntax

Default

Usage Notes

6 – 21Running the Oracle Precompilers

Specifies the format of COBOL or FORTRAN input lines.

FORMAT={ANSI|TERMINAL}

ANSI

Cannot be entered inline.

The format of input lines is system–dependent. Check your
system–specific Oracle manuals.

When FORMAT=ANSI, the format of input lines conforms as much as
possible to the current ANSI standard.

HOLD_CURSOR

Purpose

Syntax

Default

Usage Notes

6 – 22 Programmer’s Guide to the Oracle Precompilers

Specifies how the cursors for SQL statements and PL/SQL blocks are
handled in the cursor cache.

HOLD_CURSOR={YES|NO}

NO

You can use HOLD_CURSOR to improve the performance of your
program. For more information, see Appendix C.

When a SQL data manipulation statement is executed, its associated
cursor is linked to an entry in the cursor cache. The cursor cache entry
is in turn linked to an Oracle private SQL area, which stores
information needed to process the statement. HOLD_CURSOR controls
what happens to the link between the cursor and cursor cache.

When HOLD_CURSOR=NO, after Oracle executes the SQL statement
and the cursor is closed, the precompiler marks the link as reusable.
The link is reused as soon as the cursor cache entry to which it points is
needed for another SQL statement. This frees memory allocated to the
private SQL area and releases parse locks.

When HOLD_CURSOR=YES and RELEASE_CURSOR=NO, the link is
maintained; the precompiler does not reuse it. This is useful for SQL
statements that are executed often because it speeds up subsequent
executions. There is no need to reparse the statement or allocate
memory for an Oracle private SQL area.

For inline use with implicit cursors, set HOLD_CURSOR before
executing the SQL statement. For inline use with explicit cursors, set
HOLD_CURSOR before opening the cursor.

Note that RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES
and that HOLD_CURSOR=NO overrides RELEASE_CURSOR=NO.
For information showing how these two options interact, see
Table C – 1 on page C – 11.

HOST

Purpose

Syntax

Default

Usage Notes

INAME

Purpose

Syntax

Default

Usage Notes

6 – 23Running the Oracle Precompilers

Specifies the host language to be used.

HOST={COB74|COBOL}

COBOL

Cannot be entered inline.

COB74 refers to the 1974 version of ANSI–approved COBOL. COBOL
refers to 1985 version. Other values might be available on your
platform.

Specifies the name of the input file.

INAME=filename

None

Cannot be entered inline.

When specifying the name of your input file on the command line, the
keyword INAME is optional. For example, in Pro*COBOL, you can
specify myprog.pco instead of INAME=myprog.pco.

The precompiler assumes the standard input file extension (see
Table 6 – 5). So, you need not use a file extension when specifying
INAME unless the extension is nonstandard. For example, in
Pro*FORTRAN, you can specify myprog instead of myprog.pfo.

Host Language Standard File Extension

COBOL pco

FORTRAN pfo

Table 6 – 5 Input File Extensions

For Pro*COBOL only, if you use a nonstandard input file extension
when specifying INAME, you must also specify HOST.

INCLUDE

Purpose

Syntax

Default

Usage Notes

IRECLEN

Purpose

Syntax

Default

Usage Notes

6 – 24 Programmer’s Guide to the Oracle Precompilers

Specifies a directory path for EXEC SQL INCLUDE files. It only applies
to operating systems that use directories.

INCLUDE=path

Current directory

Typically, you use INCLUDE to specify a directory path for the SQLCA
and ORACA files. The precompiler searches first in the current
directory, then in the directory specified by INCLUDE, and finally in a
directory for standard INCLUDE files. Hence, you need not specify a
directory path for standard files such as the SQLCA and ORACA.

You must still use INCLUDE to specify a directory path for
nonstandard files unless they are stored in the current directory. You
can specify more than one path on the command line, as follows:

... INCLUDE=<path1> INCLUDE=<path2> ...

The precompiler searches first in the current directory, then in the
directory named by path1, then in the directory named by path2, and
finally in the directory for standard INCLUDE files.

Remember, the precompiler looks for a file in the current directory
first—even if you specify a directory path. So, if the file you want to
INCLUDE resides in another directory, make sure no file with the same
name resides in the current directory.

The syntax for specifying a directory path is system–specific. Follow
the conventions of your operating system.

Specifies the record length of the input file.

IRECLEN=integer

80

Cannot be entered inline.

The value you specify for IRECLEN should not exceed the value of
ORECLEN. The maximum value allowed is system–dependent.

LITDELIM

Purpose

Syntax

Default

Usage Notes

LNAME

Purpose

Syntax

Default

Usage Notes

6 – 25Running the Oracle Precompilers

For Pro*COBOL only, the LITDELIM option specifies the delimiter for
string constants and literals.

LITDELIM={APOST|QUOTE}

QUOTE

When LITDELIM=APOST, the precompiler uses apostrophes when
generating COBOL code. If you specify LITDELIM=QUOTE, quotation
marks are used, as in

 CALL ”SQLROL” USING SQL–TMP0.

In SQL statements, you must use quotation marks to delimit identifiers
containing special or lowercase characters, as in

 EXEC SQL CREATE TABLE ”Emp2” END–EXEC.

but you must use apostrophes to delimit string constants, as in

 EXEC SQL SELECT ENAME FROM EMP WHERE JOB = ’CLERK’ END–EXEC.

Regardless of which delimiter is used in the Pro*COBOL source file, the
precompiler generates the delimiter specified by the LITDELIM value.

Specifies a non–default name for the listing file.

LNAME=filename

input.LIS, where input is the base name of the input file.

Cannot be entered inline.

By default, the listing file is written to the current directory.

LRECLEN

Purpose

Syntax

Default

Usage Notes

LTYPE

Purpose

Syntax

Default

Usage Notes

6 – 26 Programmer’s Guide to the Oracle Precompilers

Specifies the record length of the listing file.

LRECLEN=integer

132

Cannot be entered inline.

The value of LRECLEN can range from 80 through 255. If you specify a
value below the range, 80 is used instead. If you specify a value above
the range, 255 is used instead. LRECLEN should exceed IRECLEN by
at least 8 to allow for the insertion of line numbers.

Specifies the listing type.

LTYPE={LONG|SHORT|NONE}

LONG

Cannot be entered inline.

When LTYPE=LONG, input lines appear in the listing file. When
LTYPE=SHORT, input lines do not appear in the listing file. When
LTYPE=NONE, no listing file is created.

MAXLITERAL

Purpose

Syntax

Default

Usage Notes

6 – 27Running the Oracle Precompilers

Specifies the maximum length of string literals generated by the
precompiler so that compiler limits are not exceeded. For example, if
your compiler cannot handle string literals longer than 132 characters,
you can specify MAXLITERAL=132 on the command line.

MAXLITERAL=integer

The default is precompiler–specific as shown here:

Precompiler Default

Pro*COBOL 256

Pro*FORTRAN 1000

The maximum value of MAXLITERAL is compiler–dependent. The
default value is language–dependent, but you might have to specify a
lower value. For example, some COBOL compilers cannot handle
string literals longer than 132 characters, so you would specify
MAXLITERAL=132.

Strings that exceed the length specified by MAXLITERAL are divided
during precompilation, then recombined (concatenated) at run time.

You can enter MAXLITERAL inline but your program can set its value
just once, and the EXEC ORACLE statement must precede the first
EXEC SQL statement. Otherwise, the precompiler issues a warning
message, ignores the extra or misplaced EXEC ORACLE statement, and
continues processing.

MAXOPENCURSORS

Purpose

Syntax

Default

Usage Notes

6 – 28 Programmer’s Guide to the Oracle Precompilers

Specifies the number of concurrently open cursors that the precompiler
tries to keep cached.

MAXOPENCURSORS=integer

10

You can use MAXOPENCURSORS to improve the performance of your
program. For more information, see Appendix C.

When precompiling separately, use MAXOPENCURSORS as described
in “Separate Precompilations” on page 6 – 41.

MAXOPENCURSORS specifies the initial size of the SQLLIB cursor
cache. If a new cursor is needed, and there are no free cache entries,
Oracle tries to reuse an entry. Its success depends on the values of
HOLD_CURSOR and RELEASE_CURSOR, and, for explicit cursors, on
the status of the cursor itself. Oracle allocates an additional cache entry
if it cannot find one to reuse. If necessary, Oracle keeps allocating
additional cache entries until it runs out of memory or reaches the limit
set by OPEN_CURSORS. To avoid a “maximum open cursors
exceeded” Oracle error, MAXOPENCURSORS must be lower than
OPEN_CURSORS by at least 6.

As your program’s need for concurrently open cursors grows, you
might want to respecify MAXOPENCURSORS to match the need. A
value of 45 to 50 is not uncommon, but remember that each cursor
requires another private SQL area in the user process memory space.
The default value of 10 is adequate for most programs.

MODE

Purpose

Syntax

Default

Usage Notes

6 – 29Running the Oracle Precompilers

Specifies whether your program observes Oracle practices or complies
with the current ANSI SQL standard.

MODE={ANSI|ISO|ANSI14|ISO14|ANSI13|ISO13|ORACLE}

ORACLE

Cannot be entered inline.

The following pairs of MODE values are equivalent: ANSI and ISO,
ANSI14 and ISO14, ANSI13 and ISO13.

When MODE=ORACLE (the default), your embedded SQL program
observes Oracle practices.

When MODE={ANSI14|ANSI13}, your program complies closely with
the current ANSI SQL standard.

When MODE=ANSI, your program complies fully with the ANSI
standard and the following changes go into effect:

• CHAR column values, USER pseudocolumn values, character
host values, and quoted literals are treated like ANSI
fixed–length character strings. And, ANSI–compliant
blank–padding semantics are used when you assign, compare,
INSERT, UPDATE, SELECT, or FETCH such values.

• Issuing a COMMIT or ROLLBACK closes all explicit cursors.
(When MODE={ANSI13|ORACLE}, a commit or rollback closes
only cursors referenced in a CURRENT OF clause.)

• You cannot OPEN a cursor that is already open or CLOSE a
cursor that is already closed. (When MODE=ORACLE, you can
reOPEN an open cursor to avoid reparsing.)

• The “no data found” Oracle warning code returned to
SQLCODE becomes +100 instead of +1403. The error message
text does not change.

• No error message is issued if Oracle assigns a truncated column
value to an output host variable.

When MODE={ANSI|ANSI14}, a 4–byte integer variable named
SQLCODE (SQLCOD in FORTRAN) or a 5–byte character variable
named SQLSTATE (SQLSTA in FORTRAN) must be declared. For more
information, see “Error Handling Alternatives” on page 8 – 2.

Table 6 – 4 on page 6 – 18 shows how the MODE and DBMS settings
interact. Other combinations are incompatible or are not recommended.

MULTISUBPROG

Purpose

Syntax

Default

Usage Notes

6 – 30 Programmer’s Guide to the Oracle Precompilers

For Pro*FORTRAN only, the MULTISUBPROG option specifies
whether the Pro*FORTRAN precompiler generates COMMON
statements and BLOCK DATA subprograms.

Note: This option allows Pro*FORTRAN release 1.3
applications to migrate to later releases. You can ignore the
MUTISUBPROG option if you are not migrating
Pro*FORTRAN release 1.3 source code.

MULTISUBPROG={YES|NO}

YES

Cannot be entered inline.

When MULTISUBPROG=YES, the precompiler generates COMMON
statements and BLOCK DATA subprograms. Your host program does
not access the COMMON blocks directly, but it allows two or more
program units in the same precompilation unit to contain SQL
statements.

However, the precompiler can give COMMON blocks defined in
different output files the same name. If you link the files into an
executable program, you get a link–time or runtime error. To solve this
problem, you can rename the input files or override the default
COMMON block names by specifying the option COMMON_NAME.
To avoid the problem, specify MULTISUBPROG=NO.

Specify MULTISUBPROG=NO if your Pro*FORTRAN source code has
only a single subprogram per source file (this was the restriction in
release 1.3). When MULTISUBPROG=NO, the the COMMON_BLOCK
option is ignored and the precompiler generates no COMMON
statements or BLOCK DATA subprograms. Every program unit that
contains executable SQL statements must have a Declare Section.
Otherwise, you get a precompilation error. For input files that contain
more than one embedded SQL program unit, the precompiler generates
the same declarations in each unit.

NLS_LOCAL

Purpose

Syntax

Default

Usage Notes

☞

ONAME

Purpose

Syntax

Default

Usage Notes

☞

6 – 31Running the Oracle Precompilers

For Pro*COBOL only, the NLS_LOCAL option determines whether
NLS character conversions are performed by the precompiler runtime
library or by the Oracle Server.

NLS_LOCAL={YES|NO}

NO

Cannot be entered inline.

When NLS_LOCAL=YES, the runtime library (SQLLIB) locally
performs blank–padding and blank–stripping for host variables that
have multi–byte NLS datatypes.

When NLS_LOCAL=NO, blank–padding and blank–stripping
operations are not performed locally for host variables that have
multi–byte NLS datatypes.

Attention: Release 7.2 of the Oracle7 Server does not perform
any blank–padding or blank–stripping of NLS variables. When
NLS_LOCAL=NO, the Oracle Server returns an error upon
executing a SQL statement that uses multi–byte NLS data.

Specifies the name of the output file.

ONAME=filename

System–dependent

Cannot be entered inline.

Use this option to specify the name of the output file, where the name
differs from that of the input file. For example, if you issue

procob INAME=my_test

the default output filename is my_test.cob. If you want the output
filename to be my_test_1.cob, issue the command

procob INAME=my_test ONAME=my_test_1.cob

Note that you should add the .cob extension to files specified using
ONAME. There is no default extension with the ONAME option.

Attention: Oracle recommends that you not let the output
filename default, but rather name it explicitly using ONAME.

ORACA

Purpose

Syntax

Default

Usage Notes

ORECLEN

Purpose

Syntax

Default

Usage Notes

PAGELEN

Purpose

Syntax

Default

Usage Notes

6 – 32 Programmer’s Guide to the Oracle Precompilers

Specifies whether a program can use the Oracle Communications Area
(ORACA).

ORACA={YES|NO}

NO

When ORACA=YES, you must place the INCLUDE ORACA statement
in your program.

Specifies the record length of the output file.

ORECLEN=integer

80

Cannot be entered inline.

The value you specify for ORECLEN should equal or exceed the value
of IRECLEN. The maximum value allowed is system–dependent.

Specifies the number of lines per physical page of the listing file.

PAGELEN=integer

66

Cannot be entered inline.

The maximum value allowed is system–dependent.

RELEASE_CURSOR

Purpose

Syntax

Default

Usage Notes

6 – 33Running the Oracle Precompilers

Specifies how the cursors for SQL statements and PL/SQL blocks are
handled in the cursor cache.

RELEASE_CURSOR={YES|NO}

NO

You can use RELEASE_CURSOR to improve the performance of your
program. For more information, see Appendix C.

When a SQL data manipulation statement is executed, its associated
cursor is linked to an entry in the cursor cache. The cursor cache entry
is in turn linked to an Oracle private SQL area, which stores
information needed to process the statement. RELEASE_CURSOR
controls what happens to the link between the cursor cache and private
SQL area.

When RELEASE_CURSOR=YES, after Oracle executes the SQL
statement and the cursor is closed, the precompiler immediately
removes the link. This frees memory allocated to the private SQL area
and releases parse locks. To make sure that associated resources are
freed when you CLOSE a cursor, you must specify
RELEASE_CURSOR=YES.

When RELEASE_CURSOR=NO and HOLD_CURSOR=YES, the link is
maintained. The precompiler does not reuse the link unless the number
of open cursors exceeds the value of MAXOPENCURSORS. This is
useful for SQL statements that are executed often because it speeds up
subsequent executions. There is no need to reparse the statement or
allocate memory for an Oracle private SQL area.

For inline use with implicit cursors, set RELEASE_CURSOR before
executing the SQL statement. For inline use with explicit cursors, set
RELEASE_CURSOR before opening the cursor.

Note that RELEASE_CURSOR=YES overrides HOLD_CURSOR=YES
and that HOLD_CURSOR=NO overrides RELEASE_CURSOR=NO.
For information showing how these two options interact, see
Table C – 1 on page C – 11.

SELECT_ERROR

Purpose

Syntax

Default

Usage Notes

6 – 34 Programmer’s Guide to the Oracle Precompilers

Specifies whether your program generates an error when a single–row
SELECT statement returns more than one row or more rows than a host
array can accommodate.

SELECT_ERROR={YES|NO}

YES

When SELECT_ERROR=YES, an error is generated if a single–row
select returns too many rows or an array select returns more rows than
the host array can accommodate.

When SELECT_ERROR=NO, no error is generated when a single–row
select returns too many rows or when an array select returns more
rows than the host array can accommodate.

Whether you specify YES or NO, a random row is selected from the
table. To ensure a specific ordering of rows, use the ORDER BY clause
in your SELECT statement. When SELECT_ERROR=NO and you use
ORDER BY, Oracle returns the first row, or the first n rows if you are
selecting into an array. When SELECT_ERROR=YES, whether or
not you use ORDER BY, an error is generated if too many rows
are returned.

SQLCHECK

Purpose

Syntax

Default

Usage Notes

6 – 35Running the Oracle Precompilers

Specifies the type and extent of syntactic and semantic checking.

SQLCHECK={SEMANTICS|FULL|SYNTAX|LIMITED|NONE}

SYNTAX

The values SEMANTICS and FULL are equivalent, as are the values
SYNTAX and LIMITED.

The Oracle Precompilers can help you debug a program by checking
the syntax and semantics of embedded SQL statements and PL/SQL
blocks. Any errors found are reported at precompile time.

You control the level of checking by entering the SQLCHECK option
inline and/or on the command line. However, the level of checking you
specify inline cannot be higher than the level you specify (or accept by
default) on the command line. For example, if you specify
SQLCHECK=NONE on the command line, you cannot specify
SQLCHECK=SYNTAX inline.

If SQLCHECK=SYNTAX|SEMANTICS, the precompiler generates an
error when PL/SQL reserved words are used in SQL statements, even
though the SQL statements are not themselves PL/SQL. If a PL/SQL
reserved word must be used as an identifier, you can enclose it in
double–quotes.

When SQLCHECK=SEMANTICS, the precompiler checks the syntax
and semantics of

• data manipulation statements such as INSERT and UPDATE

• PL/SQL blocks

However, the precompiler checks only the syntax of remote data
manipulation statements (those using the AT db_name clause).

The precompiler gets the information for a semantic check from
embedded DECLARE TABLE statements or, if you specify the option
USERID, by connecting to Oracle and accessing the data dictionary.
You need not connect to Oracle if every table referenced in a data
manipulation statement or PL/SQL block is defined in a DECLARE
TABLE statement.

If you connect to Oracle but some information cannot be found in the
data dictionary, you must use DECLARE TABLE statements to supply
the missing information. During precompilation, a DECLARE TABLE
definition overrides a data dictionary definition if they conflict.

6 – 36 Programmer’s Guide to the Oracle Precompilers

Specify SQLCHECK=SEMANTICS when precompiling new programs.
If you embed PL/SQL blocks in a host program, you must specify
SQLCHECK=SEMANTICS and the option USERID.

When SQLCHECK=SYNTAX, the precompiler checks the syntax of

• data manipulation statements

• PL/SQL blocks

No semantic checking is done. DECLARE TABLE statements are
ignored and PL/SQL blocks are not allowed. When checking data
manipulation statements, the precompiler uses Oracle7 syntax rules,
which are are downwardly compatible. Specify SQLCHECK=SYNTAX
when migrating your precompiled programs.

When SQLCHECK=NONE, no syntactic or semantic checking is done.
DECLARE TABLE statements are ignored and PL/SQL blocks are not
allowed. Specify SQLCHECK=NONE if your program

• contains non–Oracle SQL (for example, because it will connect to
a non–Oracle server via Open Gateway)

• references tables not yet created and lacks DECLARE TABLE
statements for them

Table 6 – 6 summarizes the checking done by SQLCHECK. For more
information about syntactic and semantic checking, see Appendix D.

SQLCHECK=SEMANTICS SQLCHECK=SYNTAX SQLCHECK=NONE

Syntax Semantics Syntax Semantics Syntax Semantics

DML � � �

Remote DML � �

PL/SQL � �

Table 6 – 6 Checking Done by SQLCHECK

UNSAFE_NULL

Purpose

Syntax

Default

Usage Notes

USERID

Purpose

Syntax

Default

Usage Notes

6 – 37Running the Oracle Precompilers

Specifying UNSAFE_NULL=YES prevents generation of ORA–01405
messages when fetching NULLs without using indicator variables.

UNSAFE_NULL={YES|NO}

NO

Cannot be entered inline.

The UNSAFE_NULL=YES is allowed only when MODE=ORACLE and
DBMS=V7.

The UNSAFE_NULL option has no effect on host variables in an
embedded PL/SQL block. You must use indicator variables to avoid
ORA–01405 errors.

Specifies an Oracle username and password.

USERID=username/password

None

Cannot be entered inline.

Do not specify this option when using the automatic logon feature,
which accepts your Oracle username prefixed with the value of the
Oracle initialization parameter OS_AUTHENT_PREFIX.

When SQLCHECK=SEMANTICS, if you want the precompiler to get
needed information by connecting to Oracle and accessing the data
dictionary, you must also specify USERID.

VARCHAR

Purpose

Syntax

Default

Usage Notes

XREF

Purpose

Syntax

Default

Usage Notes

6 – 38 Programmer’s Guide to the Oracle Precompilers

For Pro*COBOL only, the VARCHAR option instructs the precompiler
to treat the COBOL group item described in Chapter 1 of the
Pro*COBOL Supplement to the Oracle Precompilers Guide as a VARCHAR
datatype.

VARCHAR={YES|NO}

NO

Cannot be entered inline.

When VARCHAR=YES, the implicit group item described in Chapter 1
of the Pro*COBOL Supplement to the Oracle Precompilers Guide is
accepted as an Oracle7 VARCHAR external datatype with a length field
and a string field.

When VARCHAR=NO, the Pro*COBOL Precompiler does not accept
the implicit group items as VARCHAR external datatypes.

Specifies whether a cross–reference section is included in the listing file.

XREF={YES|NO}

YES

When XREF=YES, cross references are included for host variables,
cursor names, and statement names. The cross references show where
each object is defined and referenced in your program.

When XREF=NO, the cross–reference section is not included.

An Example

6 – 39Running the Oracle Precompilers

Conditional Precompilations

Conditional precompilation includes (or excludes) sections of code in
your host program based on certain conditions. For example, you
might want to include one section of code when precompiling under
UNIX and another section when precompiling under VMS. Conditional
precompilation lets you write programs that can run in different
environments.

Conditional sections of code are marked by statements that define the
environment and actions to take. You can code host–language
statements as well as EXEC SQL statements in these sections. The
following statements let you exercise conditional control over
precompilation:

EXEC ORACLE DEFINE symbol; –– define a symbol

EXEC ORACLE IFDEF symbol; –– if symbol is defined

EXEC ORACLE IFNDEF symbol; –– if symbol is not defined

EXEC ORACLE ELSE; –– otherwise

EXEC ORACLE ENDIF; –– end this control block

All EXEC ORACLE statements must be terminated with the statement
terminator for your host language. For example, in Pro*COBOL, a
conditional statement must be terminated with ”END–EXEC.” and in
Pro*FORTRAN it must be terminated by a return character.

In the following example, the SELECT statement is precompiled only
when the symbol site2 is defined:

EXEC ORACLE IFDEF site2;

 EXEC SQL SELECT DNAME

 INTO :dept_name

 FROM DEPT

 WHERE DEPTNO = :dept_number;

EXEC ORACLE ENDIF;

Blocks of conditions can be nested as shown in the following example:

EXEC ORACLE IFDEF outer;

 EXEC ORACLE IFDEF inner;

 ...

 EXEC ORACLE ENDIF;

EXEC ORACLE ENDIF;

You can “comment out” host–language or embedded SQL code by
placing it between IFDEF and ENDIF and not defining the symbol.

Defining Symbols

6 – 40 Programmer’s Guide to the Oracle Precompilers

You can define a symbol in two ways. Either include the statement

EXEC ORACLE DEFINE symbol;

in your host program or define the symbol on the command line using
the syntax

... INAME=filename ... DEFINE=symbol

where symbol is not case–sensitive.

Some port–specific symbols are predefined for you when the Oracle
Precompilers are installed on your system. For example, predefined
operating system symbols include CMS, MVS, MS–DOS, UNIX,
and VMS.

Guidelines

Referencing Cursors

Specifying
MAXOPENCURSORS

Using a Single SQLCA

Restrictions

6 – 41Running the Oracle Precompilers

Separate Precompilations

With the Oracle Precompilers, you can precompile several host
program modules separately, then link them into one executable
program. This supports modular programming, which is required
when the functional components of a program are written and
debugged by different programmers. The individual program modules
need not be written in the same language.

The following guidelines will help you avoid some common problems.

Cursor names are SQL identifiers, whose scope is the precompilation
unit. Hence, cursor operations cannot span precompilation units (files).
That is, you cannot declare a cursor in one file and open or fetch from it
in another file. So, when doing a separate precompilation, make sure all
definitions and references to a given cursor are in one file.

When you precompile the program module that connects to Oracle,
specify a value for MAXOPENCURSORS that is high enough for any of
the program modules. If you use it for another program module,
MAXOPENCURSORS is ignored. Only the value in effect for the
connect is used at run time.

If you want to use just one SQLCA, you must declare it globally in one
of the program modules.

All references to an explicit cursor must be in the same program file.
You cannot perform operations on a cursor that was DECLAREd in a
different module. See Chapter 4 for more information about cursors.

Also, any program file that contains SQL statements must have a
SQLCA that is in the scope of the local SQL statements.

System–Dependent

Multi–Byte NLS
Compatibility

6 – 42 Programmer’s Guide to the Oracle Precompilers

Compiling and Linking

To get an executable program, you must compile the source file(s)
produced by the precompiler, then link the resulting object module
with any modules needed from SQLLIB and system–specific Oracle
libraries. Also, if you are embedding OCI calls, make sure to link in the
OCI runtime library (OCILIB).

The linker resolves symbolic references in the object modules. If these
references conflict, the link fails. This can happen when you try to link
third party software into a precompiled program. Not all third–party
software is compatible with Oracle, so you might have problems.
Check with Oracle Customer Support to see if the software is
supported.

Compiling and linking are system–dependent. For instructions, see
your system–specific Oracle manuals.

Compiling and linking are system–dependent. For example, on some
systems, you must turn off compiler optimization when compiling a
host language program. For instructions, see your system–specific
Oracle documentation.

When using multi–byte NLS features, you must link your object files to
the current version of the SQLLIB runtime library. The multi–byte NLS
features in this release are supported by the SQLLIB runtime library
and not by the Oracle Server. The resulting application can then be
executed with any release of the Oracle7 Server.

C H A P T E R

7

T

7 – 1Defining and Controlling Transactions

Defining and
Controlling
Transactions

his chapter explains how to do transaction processing. You learn the
basic techniques that safeguard the consistency of your database,
including how to control whether changes to Oracle data are made
permanent or undone. The following topics are discussed:

• how transactions guard your database

• how transactions begin and end

• making transactions permanent

• undoing transactions

• setting read–only transactions

• overriding default locking

• fetching across COMMITs

• handling distributed transactions

• guidelines

7 – 2 Programmer’s Guide to the Oracle Precompilers

Some Terms You Should Know

Before delving into the subject of transactions, you should know the
terms defined in this section.

The jobs or tasks that Oracle manages are called sessions. A user session
is started when you run an application program or a tool such as
Oracle Forms and connect to Oracle. Oracle allows user sessions to
work “simultaneously” and share computer resources. To do this,
Oracle must control concurrency, the accessing of the same data by
many users. Without adequate concurrency controls, there might be a
loss of data integrity. That is, changes to data or structures might be
made in the wrong order.

Oracle uses locks to control concurrent access to data. A lock gives you
temporary ownership of a database resource such as a table or row of
data. Thus, data cannot be changed by other users until you finish with
it. You need never explicitly lock a resource, because default locking
mechanisms protect Oracle data and structures. However, you can
request data locks on tables or rows when it is to your advantage to
override default locking. You can choose from several modes of locking
such as row share and exclusive.

A deadlock can occur when two or more users try to access the same
database object. For example, two users updating the same table might
wait if each tries to update a row currently locked by the other. Because
each user is waiting for resources held by another user, neither can
continue until Oracle breaks the deadlock. Oracle signals an error to the
participating transaction that had completed the least amount of work,
and the “deadlock detected while waiting for resource” Oracle error
code is returned to SQLCODE in the SQLCA.

When a table is being queried by one user and updated by another at
the same time, Oracle generates a read–consistent view of the table’s
data for the query. That is, once a query begins and as it proceeds, the
data read by the query does not change. As update activity continues,
Oracle takes snapshots of the table’s data and records changes in a
rollback segment. Oracle uses information in the rollback segment to
build read–consistent query results and to undo changes if necessary.

7 – 3Defining and Controlling Transactions

How Transactions Guard Your Database

Oracle is transaction oriented; that is, it uses transactions to ensure data
integrity. A transaction is a series of one or more logically related SQL
statements you define to accomplish some task. Oracle treats the series
of SQL statements as a unit so that all the changes brought about by the
statements are either committed (made permanent) or rolled back
(undone) at the same time. If your application program fails in the
middle of a transaction, the database is automatically restored to its
former (pre–transaction) state.

The coming sections show you how to define and control transactions.
Specifically, you learn how to

• begin and end transactions

• use the COMMIT statement to make transactions permanent

• use the SAVEPOINT statement with the ROLLBACK TO
statement to undo parts of transactions

• use the ROLLBACK statement to undo whole transactions

• specify the RELEASE option to free resources and log off the
database

• use the SET TRANSACTION statement to set read–only
transactions

• use the FOR UPDATE clause or LOCK TABLE statement to
override default locking

For details about the SQL statements discussed in this chapter, see the
Oracle7 Server SQL Reference.

7 – 4 Programmer’s Guide to the Oracle Precompilers

How to Begin and End Transactions

You begin a transaction with the first executable SQL statement (other
than CONNECT) in your program. When one transaction ends, the
next executable SQL statement automatically begins another
transaction. Thus, every executable statement is part of a transaction.
Because they cannot be rolled back and need not be committed,
declarative SQL statements are not considered part of a transaction.

You end a transaction in one of the following ways:

• Code a COMMIT or ROLLBACK statement, with or without the
RELEASE option. This explicitly makes permanent or undoes
changes to the database.

• Code a data definition statement (ALTER, CREATE, or GRANT,
for example) that issues an automatic commit before and after
executing. This implicitly makes permanent changes to the
database.

A transaction also ends when there is a system failure or your user
session stops unexpectedly because of software problems, hardware
problems, or a forced interrupt. Oracle rolls back the transaction.

If your program fails in the middle of a transaction, Oracle detects the
error and rolls back the transaction. If your operating system fails,
Oracle restores the database to its former (pre–transaction) state.

7 – 5Defining and Controlling Transactions

Using the COMMIT Statement

You use the COMMIT statement to make changes to the database
permanent. Until changes are committed, other users cannot access the
changed data; they see it as it was before your transaction began. The
COMMIT statement has no effect on the values of host variables or on
the flow of control in your program. Specifically, the COMMIT
statement

• makes permanent all changes made to the database during the
current transaction

• makes these changes visible to other users

• erases all savepoints (see the next section)

• releases all row and table locks, but not parse locks

• closes cursors referenced in a CURRENT OF clause or, when
MODE={ANSI|ANSI14}, closes all explicit cursors

• ends the transaction

When MODE={ANSI13|ORACLE}, explicit cursors not referenced in a
CURRENT OF clause remain open across commits. This can boost
performance. For an example, see “Fetching Across Commits” on
page 7 – 14.

Because they are part of normal processing, COMMIT statements
should be placed inline, on the main path through your program.
Before your program terminates, it must explicitly commit pending
changes. Otherwise, Oracle rolls them back. In the following example,
you commit your transaction and disconnect from Oracle:

EXEC SQL COMMIT WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The
RELEASE option frees all Oracle resources (locks and cursors) held by
your program and logs off the database.

You need not follow a data definition statement with a COMMIT
statement because data definition statements issue an automatic
commit before and after executing. So, whether they succeed or fail, the
prior transaction is committed.

7 – 6 Programmer’s Guide to the Oracle Precompilers

Using the ROLLBACK Statement

You use the ROLLBACK statement to undo pending changes made to
the database. For example, if you make a mistake, such as deleting the
wrong row from a table, you can use ROLLBACK to restore the original
data. The ROLLBACK statement has no effect on the values of host
variables or on the flow of control in your program. Specifically, the
ROLLBACK statement

• undoes all changes made to the database during the current
transaction

• erases all savepoints

• ends the transaction

• releases all row and table locks, but not parse locks

• closes cursors referenced in a CURRENT OF clause or, when
MODE={ANSI|ANSI14}, closes all explicit cursors

When MODE={ANSI13|ORACLE}, explicit cursors not referenced in a
CURRENT OF clause remain open across rollbacks.

Because they are part of exception processing, ROLLBACK statements
should be placed in error handling routines, off the main path through
your program. In the following example, you roll back your transaction
and disconnect from Oracle:

EXEC SQL ROLLBACK WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The
RELEASE option frees all resources held by your program and logs off
the database.

If a WHENEVER SQLERROR GOTO statement branches to an error
handling routine that includes a ROLLBACK statement, your program
might enter an infinite loop if the rollback fails with an error. You can
avoid this by coding WHENEVER SQLERROR CONTINUE before the
ROLLBACK statement.

Statement–Level
Rollbacks

7 – 7Defining and Controlling Transactions

For example, consider the following:

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

FOR EACH new employee

 display ’Employee number? ’;

 read emp_number;

 display ’Employee name? ’;

 read emp_name;

 EXEC SQL INSERT INTO EMP (EMPNO, ENAME)

 VALUES (:emp_number, :emp_name);

ENDFOR;

...

sql_error:

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 display ’Processing error’;

 exit program with an error;

Oracle rolls back transactions if your program terminates abnormally.

Before executing any SQL statement, Oracle marks an implicit
savepoint (not available to you). Then, if the statement fails, Oracle
rolls it back automatically and returns the applicable error code to
SQLCODE in the SQLCA. For example, if an INSERT statement causes
an error by trying to insert a duplicate value in a unique index, the
statement is rolled back.

Only work started by the failed SQL statement is lost; work done
before that statement in the current transaction is kept. Thus, if a data
definition statement fails, the automatic commit that precedes it is not
undone.

Note: Before executing a SQL statement, Oracle must parse it,
that is, examine it to make sure it follows syntax rules and
refers to valid database objects. Errors detected while executing
a SQL statement cause a rollback, but errors detected while
parsing the statement do not.

Oracle can also roll back single SQL statements to break deadlocks.
Oracle signals an error to one of the participating transactions and rolls
back the current statement in that transaction.

7 – 8 Programmer’s Guide to the Oracle Precompilers

Using the SAVEPOINT Statement

You use the SAVEPOINT statement to mark and name the current point
in the processing of a transaction. Each marked point is called a
savepoint. For example, the following statement marks a savepoint
named start_delete:

EXEC SQL SAVEPOINT start_delete;

Savepoints let you divide long transactions, giving you more control
over complex procedures. For example, if a transaction performs
several functions, you can mark a savepoint before each function. Then,
if a function fails, you can easily restore the Oracle data to its former
state, recover, then reexecute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK
statement and its TO SAVEPOINT clause. The TO SAVEPOINT clause
lets you roll back to an intermediate statement in the current
transaction, so you do not have to undo all your changes. Specifically,
the ROLLBACK TO SAVEPOINT statement

• undoes changes made to the database since the specified
savepoint was marked

• erases all savepoints marked after the specified savepoint

• releases all row and table locks acquired since the specified
savepoint was marked

In the example below, you access the table MAIL_LIST to insert new
listings, update old listings, and delete (a few) inactive listings. After
the delete, you check SQLERRD(3) in the SQLCA for the number of
rows deleted. If the number is unexpectedly large, you roll back to the
savepoint start_delete, undoing just the delete.

FOR EACH new customer

 display ’Customer number? ’;

 read cust_number;

 display ’Customer name? ’;

 read cust_name;

EXEC SQL INSERT INTO MAIL_LIST (CUSTNO, CNAME, STAT)

 VALUES (:cust_number, :cust_name, ’ACTIVE’);

ENDFOR;

7 – 9Defining and Controlling Transactions

FOR EACH revised status

 display ’Customer number? ’;

 read cust_number;

 display ’New status? ’;

 read new_status;

 EXEC SQL UPDATE MAIL_LIST

 SET STAT = :new_status WHERE CUSTNO = :cust_number;

ENDFOR;

–– mark savepoint

EXEC SQL SAVEPOINT start_delete;

EXEC SQL DELETE FROM MAIL_LIST WHERE STAT = ’INACTIVE’;

IF sqlca.sqlerrd(3) < 25 THEN –– check number of rows deleted

 display ’Number of rows deleted is ’, sqlca.sqlerrd(3);

ELSE

 display ’Undoing deletion of ’, sqlca.sqlerrd(3), ’ rows’;

 EXEC SQL WHENEVER SQLERROR GOTO sql_error;

 EXEC SQL ROLLBACK TO SAVEPOINT start_delete;

ENDIF;

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL COMMIT WORK RELEASE;

exit program;

sql_error:

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 display ’Processing error’;

 exit program with an error;

Note that you cannot specify the RELEASE option in a ROLLBACK TO
SAVEPOINT statement.

Rolling back to a savepoint erases any savepoints marked after that
savepoint. The savepoint to which you roll back, however, is not
erased. For example, if you mark five savepoints, then roll back to the
third, only the fourth and fifth are erased. A COMMIT or ROLLBACK
statement erases all savepoints.

By default, the number of active savepoints per user session is limited
to 5. An active savepoint is one that you marked since the last commit
or rollback. Your Database Administrator (DBA) can raise the limit
by increasing the value of the Oracle initialization parameter
SAVEPOINTS. If you give two savepoints the same name, the earlier
savepoint is erased.

7 – 10 Programmer’s Guide to the Oracle Precompilers

Using the RELEASE Option

Oracle rolls back changes automatically if your program terminates
abnormally. Abnormal termination occurs when your program does
not explicitly commit or roll back work and disconnect from Oracle
using the RELEASE option.

Normal termination occurs when your program runs its course, closes
open cursors, explicitly commits or rolls back work, disconnects from
Oracle, and returns control to the user. Your program will exit
gracefully if the last SQL statement it executes is either

EXEC SQL COMMIT RELEASE;

or

EXEC SQL ROLLBACK RELEASE;

Otherwise, locks and cursors acquired by your user session are held
after program termination until Oracle recognizes that the user session
is no longer active. This might cause other users in a multiuser
environment to wait longer than necessary for the locked resources.

7 – 11Defining and Controlling Transactions

Using the SET TRANSACTION Statement

You use the SET TRANSACTION statement to begin a read–only or
read–write transaction, or to assign your current transaction to a
specified rollback segment. A COMMIT, ROLLBACK, or data
definition statement ends a read–only transaction.

Because they allow “repeatable reads,” read–only transactions are
useful for running multiple queries against one or more tables while
other users update the same tables. During a read–only transaction, all
queries refer to the same snapshot of the database, providing a
multitable, multiquery, read–consistent view. Other users can continue
to query or update data as usual. An example of the SET
TRANSACTION statement follows:

EXEC SQL SET TRANSACTION READ ONLY;

The SET TRANSACTION statement must be the first SQL statement in
a read–only transaction and can appear only once in a transaction. The
READ ONLY parameter is required. Its use does not affect other
transactions. Only the SELECT (without FOR UPDATE), LOCK
TABLE, SET ROLE, ALTER SESSION, ALTER SYSTEM, COMMIT, and
ROLLBACK statements are allowed in a read–only transaction.

In the example below, as a store manager, you check sales activity for
the day, the past week, and the past month by using a read–only
transaction to generate a summary report. The report is unaffected by
other users updating the database during the transaction.

 EXEC SQL SET TRANSACTION READ ONLY;

 EXEC SQL SELECT SUM(SALEAMT) INTO :daily FROM SALES

 WHERE SALEDATE = SYSDATE;

 EXEC SQL SELECT SUM(SALEAMT) INTO :weekly FROM SALES

 WHERE SALEDATE > SYSDATE – 7;

 EXEC SQL SELECT SUM(SALEAMT) INTO :monthly FROM SALES

 WHERE SALEDATE > SYSDATE – 30;

 EXEC SQL COMMIT WORK;

–– simply ends the transaction since there are no changes

–– to make permanent

–– format and print report

Using the FOR
UPDATE OF Clause

Restrictions

7 – 12 Programmer’s Guide to the Oracle Precompilers

Overriding Default Locking

By default, Oracle implicitly (automatically) locks many data structures
for you. However, you can request specific data locks on rows or tables
when it is to your advantage to override default locking. Explicit
locking lets you share or deny access to a table for the duration of a
transaction or ensure multitable and multiquery read consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock
specific rows of a table to make sure they do not change before an
update or delete is executed. However, Oracle automatically obtains
row–level locks at update or delete time. So, use the FOR UPDATE OF
clause only if you want to lock the rows before the update or delete.

You can explicitly lock entire tables using the LOCK TABLE statement.

When you DECLARE a cursor that is referenced in the CURRENT OF
clause of an UPDATE or DELETE statement, you use the FOR
UPDATE OF clause to acquire exclusive row locks. SELECT FOR
UPDATE OF identifies the rows that will be updated or deleted, then
locks each row in the active set. (All rows are locked at the open, not as
they are fetched.) This is useful, for example, when you want to base an
update on the existing values in a row. You must make sure the row is
not changed by another user before your update.

The FOR UPDATE OF clause is optional. For instance, instead of

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20

 FOR UPDATE OF SAL;

you can drop the FOR UPDATE OF clause and simply code

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, JOB, SAL FROM EMP WHERE DEPTNO = 20;

The CURRENT OF clause signals the precompiler to add a FOR
UPDATE clause if necessary. You use the CURRENT OF clause to refer
to the latest row fetched from a cursor. For an example, see “Using the
CURRENT OF Clause” on page 4 – 15.

If you use the FOR UPDATE OF clause, you cannot reference multiple
tables. Also, an explicit FOR UPDATE OF or an implicit FOR UPDATE
acquires exclusive row locks. Row locks are released when you commit
or rollback (except when you rollback to a savepoint). If you try to fetch
from a FOR UPDATE cursor after a commit, Oracle generates the
following error:

ORA–01002: fetch out of sequence

Using the LOCK
TABLE Statement

7 – 13Defining and Controlling Transactions

You use the LOCK TABLE statement to lock one or more tables in a
specified lock mode. For example, the statement below locks the EMP
table in row share mode. Row share locks allow concurrent access to a
table; they prevent other users from locking the entire table for
exclusive use.

EXEC SQL LOCK TABLE EMP IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table.
For example, many users can acquire row share locks on a table at the
same time, but only one user at a time can acquire an exclusive lock.
While one user has an exclusive lock on a table, no other users can
insert, update, or delete rows in that table. For more information about
lock modes, see the Oracle7 Server Application Developer’s Guide.

The optional keyword NOWAIT tells Oracle not to wait for a table if it
has been locked by another user. Control is immediately returned to
your program, so it can do other work before trying again to acquire
the lock. (You can check SQLCODE in the SQLCA to see if the table
lock failed.) If you omit NOWAIT, Oracle waits until the table is
available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query
never acquires a table lock. So, a query never blocks another query or
an update, and an update never blocks a query. Only if two different
transactions try to update the same row will one transaction wait for
the other to complete. Table locks are released when your transaction
issues a commit or rollback.

7 – 14 Programmer’s Guide to the Oracle Precompilers

Fetching Across Commits

If you want to intermix commits and fetches, do not use the CURRENT
OF clause. Instead, select the rowid of each row, then use that value to
identify the current row during the update or delete. Consider the
following example:

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, SAL, ROWID FROM EMP WHERE JOB = ’CLERK’;

...

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND GOTO ...

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary, :row_id;

 ...

 EXEC SQL UPDATE EMP SET SAL = :new_salary

 WHERE ROWID = :row_id;

 EXEC SQL COMMIT;

ENDLOOP;

Note, however, that the fetched rows are not locked. So, you might get
inconsistent results if another user modifies a row after you read it but
before you update or delete it.

7 – 15Defining and Controlling Transactions

Handling Distributed Transactions

A distributed database is a single logical database comprising multiple
physical databases at different nodes. A distributed statement is any SQL
statement that accesses a remote node using a database link.
A distributed transaction includes at least one distributed statement that
updates data at multiple nodes of a distributed database. If the update
affects only one node, the transaction is non–distributed.

When you issue a commit, changes to each database affected by the
distributed transaction are made permanent. If instead you issue a
rollback, all the changes are undone. However, if a network or machine
fails during the commit or rollback, the state of the distributed
transaction might be unknown or in doubt. In such cases, if you have
FORCE TRANSACTION system privileges, you can manually commit
or roll back the transaction at your local database by using the FORCE
clause. The transaction must be identified by a quoted literal containing
the transaction ID, which can be found in the data dictionary view
DBA_2PC_PENDING. Some examples follow:

EXEC SQL COMMIT FORCE ’22.31.83’;

...

EXEC SQL ROLLBACK FORCE ’25.33.86’;

FORCE commits or rolls back only the specified transaction and does
not affect your current transaction. Note that you cannot manually roll
back in–doubt transactions to a savepoint.

The COMMENT clause in the COMMIT statement lets you specify a
comment to be associated with a distributed transaction. If ever the
transaction is in doubt, Oracle stores the text specified by COMMENT
in the data dictionary view DBA_2PC_PENDING along with the
transaction ID. The text must be a quoted literal � 50 characters in
length. An example follows:

EXEC SQL COMMIT COMMENT ’In–doubt trans; notify Order Entry’;

For more information about distributed transactions, see Oracle7 Server
Concepts.

Designing
Applications

Obtaining Locks

Using PL/SQL

7 – 16 Programmer’s Guide to the Oracle Precompilers

Guidelines

The following guidelines will help you avoid some common problems.

When designing your application, group logically related actions
together in one transaction. A well–designed transaction includes all
the steps necessary to accomplish a given task — no more and no less.

Data in the tables you reference must be left in a consistent state. So,
the SQL statements in a transaction should change the data in a
consistent way. For example, a transfer of funds between two bank
accounts should include a debit to one account and a credit to another.
Both updates should either succeed or fail together. An unrelated
update, such as a new deposit to one account, should not be included
in the transaction.

If your application programs include SQL locking statements, make
sure the Oracle users requesting locks have the privileges needed to
obtain the locks. Your DBA can lock any table. Other users can lock
tables they own or tables for which they have a privilege, such as
ALTER, SELECT, INSERT, UPDATE, or DELETE.

If a PL/SQL block is part of a transaction, commits and rollbacks inside
the block affect the whole transaction. In the following example, the
rollback undoes changes made by the update and the insert:

EXEC SQL INSERT INTO EMP ...

EXEC SQL EXECUTE

 BEGIN UPDATE emp

...

 ...

 EXCEPTION

 WHEN DUP_VAL_ON_INDEX THEN

 ROLLBACK;

 END;

END–EXEC;

...

C H A P T E R

8
A

8 – 1Error Handling and Diagnostics

Error Handling and
Diagnostics

n application program must anticipate runtime errors and attempt
to recover from them. This chapter provides an in–depth discussion of
error reporting and recovery. You learn how to handle warnings and
errors using the status variables SQLCODE, SQLSTATE, and SQLCA
(SQL Communications Area), and the WHENEVER statement. You also
learn how to diagnose problems using the status variable ORACA
(Oracle Communications Area). The following topics are discussed:

• the need for error handling

• error handling alternatives

• using status variables when MODE={ANSI|ANSI14}

• using the SQL Communications Area

• using the Oracle Communications Area

8 – 2 Programmer’s Guide to the Oracle Precompilers

The Need for Error Handling

A significant part of every application program must be devoted to
error handling. The main benefit of error handling is that it allows your
program to continue operating in the presence of errors. Errors arise
from design faults, coding mistakes, hardware failures, invalid user
input, and many other sources

You cannot anticipate all possible errors, but you can plan to handle
certain kinds of errors meaningful to your program. For the Oracle
Precompilers, error handling means detecting and recovering from SQL
statement execution errors.

You can also prepare to handle warnings such as “value truncated” and
status changes such as “end of data.” It is especially important to check
for error and warning conditions after every data manipulation
statement, because an INSERT, UPDATE, or DELETE statement might
fail before processing all eligible rows in a table.

Error Handling Alternatives

The Oracle Precompilers provide four status variables that serve as
error handling mechanisms:

• SQLCODE (SQLCOD in Pro*FORTRAN)

• SQLSTATE (SQLSTA in Pro*FORTRAN)

• SQLCA (using the WHENEVER statement)

• ORACA

The MODE option (described on page 6 – 29) governs ANSI/ISO
compliance. The availability of the SQLCODE, SQLSTATE, and SQLCA
variables depends on the MODE setting. You can declare and use the
ORACA variable regardless of the MODE setting. For more
information, see “Using the Oracle Communications Area” on
page 8 – 36.

When MODE={ORACLE|ANSI13}, you must declare the SQLCA
status variable. SQLCODE and SQLSTATE declarations are accepted
(not recommended) but are not recognized as status variables. For
more information, see “Using the SQL Communications Area” on
page 8 – 19.

SQLCODE and
SQLSTATE

SQLCA

ORACA

8 – 3Error Handling and Diagnostics

When MODE={ANSI|ANSI14}, you can use any one, two, or all three
of the SQLCODE, SQLSTATE, and SQLCA variables. To determine
which variable (or variable combination) is best for your application,
see “Using Status Variables when MODE={ANSI|ANSI14}” on
page 8 – 4.

With Release 1.5 of the Oracle Precompilers, the SQLCODE status
variable was introduced as the SQL89 standard ANSI/ISO error
reporting mechanism. The SQL92 standard listed SQLCODE as a
deprecated feature and defined a new status variable, SQLSTATE
(introduced with Release 1.6 of the Oracle Precompilers), as the
preferred ANSI/ISO error reporting mechanism.

SQLCODE stores error codes and the “not found” condition. It is
retained only for compatibility with SQL89 and is likely to be removed
from future versions of the standard.

Unlike SQLCODE, SQLSTATE stores error and warning codes and uses
a standardized coding scheme. After executing a SQL statement, the
Oracle server returns a status code to the SQLSTATE variable currently
in scope. The status code indicates whether a SQL statement executed
successfully or raised an exception (error or warning condition). To
promote interoperability (the ability of systems to exchange information
easily), SQL92 predefines all the common SQL exceptions.

The SQLCA is a record–like, host–language data structure. Oracle
updates the SQLCA after every executable SQL statement. (SQLCA
values are undefined after a declarative statement.) By checking Oracle
return codes stored in the SQLCA, your program can determine the
outcome of a SQL statement. This can be done in two ways:

• implicit checking with the WHENEVER statement

• explicit checking of SQLCA variables

You can use WHENEVER statements, code explicit checks on SQLCA
variables, or do both. Generally, using WHENEVER statements is
preferable because it is easier, more portable, and ANSI–compliant.

When more information is needed about runtime errors than the
SQLCA provides, you can use the ORACA, which contains cursor
statistics, SQL statement data, option settings, and system statistics.

The ORACA is optional and can be declared regardless of the MODE
setting. For more information about the ORACA status variable, see
“Using the Oracle Communications Area” on page 8 – 36.

Some Historical
Information

Release 1.5

Release 1.6

8 – 4 Programmer’s Guide to the Oracle Precompilers

Using Status Variables when MODE={ANSI|ANSI14}

When MODE={ANSI|ANSI14}, you must declare at least one — you
may declare two or all three — of the following status variables:

• SQLCODE

• SQLSTATE

• SQLCA

In Pro*COBOL, you cannot declare SQLCODE if SQLCA is declared.
Likewise, you cannot declare SQLCA if SQLCODE is declared. The
field in the SQLCA data structure that stores the error code for
Pro*COBOL is also called SQLCODE, so errors will occur if both status
variables are declared.

Your program can get the outcome of the most recent executable SQL
statement by checking SQLCODE and/or SQLSTATE explicitly with
your own code after executable SQL and PL/SQL statements. Your
program can also check SQLCA implicitly (with the WHENEVER
SQLERROR and WHENEVER SQLWARNING statements) or it can
check the SQLCA variables explicitly.

Note: When MODE={ORACLE|ANSI13}, you must declare
the SQLCA status variable. For more information, see “Using
the SQL Communications Area” on page 8 – 19.

The treatment of status variables and variable combinations by the
Oracle Precompilers has evolved beginning with Release 1.5.

The Oracle Precompilers, Release 1.5, presumed there was a status
variable SQLCODE whether or not it was declared in a Declare Section;
in fact, the precompiler never bothered to note whether there was a
declaration for SQLCODE or not — it just presumed one existed.
SQLCA would be used as a status variable if and only if there was an
INCLUDE of the SQLCA.

Beginning with Oracle Precompilers, Release 1.6, the precompilers no
longer presume that there is a SQLCODE status variable and it is not
required. The precompiler requires that at least one of SQLCA,
SQLCODE, or SQLSTATE be declared.

SQLCODE is recognized as a status variable if and only if at least one
of the following criteria is satisfied:

• It is declared in a Declare Section with exactly the right datatype.

• The precompiler finds no other status variable.

Release 1.7

Declaring Status
Variables

Declaring SQLCODE

8 – 5Error Handling and Diagnostics

If the precompiler finds a SQLSTATE declaration (of exactly the right
type of course) in a Declare Section or finds an INCLUDE of the
SQLCA, it will not presume SQLCODE is declared.

Because Release 1.5 of the Oracle Precompilers allowed the SQLCODE
variable to be declared outside of a Declare Section while also declaring
SQLCA, precompilers Release 1.6 and greater are presented with a
compatibility problem. A new option, ASSUME_SQLCODE={YES|NO}
(default NO), was added to fix this in Release 1.6.7 and is documented
as a new feature in Release 1.7.

When ASSUME_SQLCODE=YES, and when SQLSTATE and/or
SQLCA (Pro*FORTRAN only) are declared as status variables, the
precompiler presumes SQLCODE is declared whether or not it is
declared in a Declare Section or of the proper type. This causes
Releases 1.6.7 and later to act like Release 1.5 in this regard. For
information about the precompiler option ASSUME_SQLCODE, see
“ASSUME_SQLCODE” on page 6 – 12.

This section describes how to declare SQLCODE and SQLSTATE. For
information about declaring the SQLCA status variable, see “Declaring
the SQLCA” on page 8 – 20.

SQLCODE (SQLCOD in Pro*FORTRAN) must be declared as a 4–byte
integer variable either inside or outside the Declare Section, as shown in
Table 8 – 1.

Language SQLCODE Declaration

COBOL SQLCODE PIC S9(9) COMP.

FORTRAN INTEGER*4 SQLCOD

Table 8 – 1 SQLCODE Declarations

If declared outside the Declare Section, SQLCODE is recognized as a
status variable if only if ASSUME_SQLCODE=YES. SQLCODE
declarations are ignored when MODE={ORACLE|ANSI13}.

Warning: In Pro*COBOL source files, do not declare
SQLCODE if SQLCA is declared. Likewise, do not declare
SQLCA if SQLCODE is declared. The status variable declared
by the SQLCA structure is also called SQLCODE, so errors will
occur if both error–reporting mechanisms are used.

Declaring SQLSTATE

Status Variable
Combinations

8 – 6 Programmer’s Guide to the Oracle Precompilers

With host languages that allow both local and global declarations, you
can declare more than one SQLCODE variable. Access to a local
SQLCODE is limited by its scope within your program. After every
SQL operation, Oracle returns a status code to the SQLCODE currently
in scope. So, your program can learn the outcome of the most recent
SQL operation by checking SQLCODE explicitly, or implicitly with the
WHENEVER statement.

When you declare SQLCODE instead of the SQLCA in a particular
compilation unit, the precompiler allocates an internal SQLCA for that
unit. Your host program cannot access the internal SQLCA. If you
declare the SQLCA and SQLCODE (not supported in Pro*COBOL),
Oracle returns the same status code to both after every SQL operation.

SQLSTATE (SQLSTA in Pro*FORTRAN) must be declared as a
five–character alphanumeric string inside the Declare Section, as shown
in Table 8 – 2. Declaring the SQLCA is optional.

Language SQLSTATE Declaration

COBOL SQLSTATE PIC X(5).

FORTRAN CHARACTER*5 SQLSTA

Table 8 – 2 SQLSTATE Declarations

When MODE={ORACLE|ANSI13}, declarations of the SQLSTATE
variable are ignored.

When MODE={ANSI|ANSI14}, the behavior of the status variables
depends on the following:

• which variables are declared

• declaration placement (inside or outside the Declare Section)

• ASSUME_SQLCODE setting

Table 8 – 3 and Table 8 – 4 describe the resulting behavior of each status
variable combination when ASSUME_SQLCODE=NO and when
ASSUME_SQLCODE=YES, respectively.

8 – 7Error Handling and Diagnostics

Declare Section (IN/OUT/—)
SQLCODE SQLSTATE SQLCA

Behavior

OUT — — SQLCODE is declared and is presumed to be a status variable.

OUT — OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCA is declared as a status variable, and SQLCODE is declared
but is not recognized as a status variable.

OUT — IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

OUT OUT — SQLCODE is declared and is presumed to be a status variable, and SQLSTATE is de-
clared but is not recognized as a status variable.

OUT OUT OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCA is declared as a status variable, and SQLCODE and
SQLSTATE are declared but are not recognized as status variables.

OUT OUT IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

OUT IN — SQLSTATE is declared as a status variable, and SQLCODE is declared but is not recog-
nized as a status variable.

OUT IN OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLSTATE and SQLCA are declared as status variables, and
SQLCODE is declared but is not recognized as a status variable.

OUT IN IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

IN — OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCODE and SQLCA are declared as a status variables.

IN — IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

Table 8 – 3 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI|ANSI14

8 – 8 Programmer’s Guide to the Oracle Precompilers

Declare Section (IN/OUT/—)
SQLCODE SQLSTATE SQLCA

Behavior

IN OUT — SQLCODE is declared as a status variable, and SQLSTATE is declared but not as a sta-
tus variable.

IN OUT OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCODE and SQLCA are declared as a status variables, and
SQLSTATE is declared but is not recognized as a status variable.

IN OUT IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

IN IN — SQLCODE and SQLSTATE are declared as a status variables.

IN IN OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCODE, SQLSTATE, and SQLCA are declared as a status vari-
ables.

IN IN IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

— — — This status variable configuration is not supported.

— — OUT SQLCA is declared as a status variable.

— — IN In Pro*COBOL, SQLCA is declared as a status host variable.

In Pro*FORTRAN, this status variable configuration is not supported.

— OUT — This status variable configuration is not supported.

— OUT OUT SQLCA is declared as a status variable, and SQLSTATE is declared but is not recognized
as a status variable.

— OUT IN In Pro*COBOL, SQLCA is declared as a status host variable, and SQLSTATE is declared
but is not recognized as a status variable.

In Pro*FORTRAN, this status variable configuration is not supported.

— IN — SQLSTATE is declared as a status variable.

— IN OUT SQLSTATE and SQLCA are declared as status variables.

— IN IN In Pro*COBOL, SQLSTATE and SQLCA are declared as status host variables.

In Pro*FORTRAN, this status variable configuration is not supported.

Table 8 – 3 Status Variable Behavior with ASSUME_SQLCODE=NO and MODE=ANSI|ANSI14

8 – 9Error Handling and Diagnostics

Declare Section (IN/OUT/—)
SQLCODE SQLSTATE SQLCA

Behavior

OUT — — SQLCODE is declared and is presumed to be a status variable.

OUT — OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCA is declared as a status variable, and SQLCODE is declared
and is presumed to be a status variable.

OUT — IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

OUT OUT — SQLCODE is declared and is presumed to be a status variable, and SQLSTATE is de-
clared but is not recognized as a status variable.

OUT OUT OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCA is declared as a status variable, SQLCODE is declared and is
presumed to be a status variable, and SQLSTATE is declared but is not recognized as
status variable.

OUT OUT IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

OUT IN — SQLSTATE is declared as a status variable, and SQLCODE is declared and is presumed
to be a status variable.

OUT IN OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLSTATE and SQLCA are declared as status variables, and
SQLCODE is declared and is presumed to be a status variable.

OUT IN IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

IN — — SQLCODE is declared as a status variable.

IN — OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCODE and SQLCA are declared as a status variables.

IN — IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

Table 8 – 4 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI|ANSI14

8 – 10 Programmer’s Guide to the Oracle Precompilers

Declare Section (IN/OUT/—)
SQLCODE SQLSTATE SQLCA

Behavior

IN OUT — SQLCODE is declared as a status variable, and SQLSTATE is declared but not as a sta-
tus variable.

IN OUT OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCODE and SQLCA are declared as a status variables, and
SQLSTATE is declared but is not recognized as a status variable.

IN OUT IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

IN IN — SQLCODE and SQLSTATE are declared as a status variables.

IN IN OUT In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, SQLCODE, SQLSTATE, and SQLCA are declared as a status vari-
ables.

IN IN IN In Pro*COBOL, this status variable configuration is not supported.

In Pro*FORTRAN, this status variable configuration is not supported.

— — — These status variable configurations are not supported. SQLCODE must be declared—
—

—
—

—
OUT

These status variable configurations are not su orted. SQLCODE must be declared
either inside or outside the Declare Section when ASSUME_SQLCODE=YES.

— —
OUT

IN
either inside or outside the Declare Section when ASSUME_SQLCODE=YES.

— OUT
IN
—

—
OUT
OUT
OUT

OUT
IN— OUT

IN
IN

— IN
IN

—
OUT— IN

IN
OUT

IN— IN IN

Table 8 – 4 Status Variable Behavior with ASSUME_SQLCODE=YES and MODE=ANSI|ANSI14

Status Variable Values

SQLCODE Values

8 – 11Error Handling and Diagnostics

This section describes the values for the SQLCODE and SQLSTATE
status variables. For information about the SQLCA status variable, see
“Key Components of Error Reporting” on page 8 – 21.

After every SQL operation, Oracle returns a status code to the SQLCODE
variable currently in scope. The status code, which indicates the outcome
of the SQL operation, can be any of the following numbers:

Oracle executed the SQL statement without detecting an error
or exception.

Oracle executed the statement but detected an exception. This
occurs when Oracle cannot find a row that meets the condition
in your WHERE clause or when a SELECT INTO or FETCH
returns no rows.

When MODE={ANSI|ANSI14|ANSI13}, +100 is returned to
SQLCODE after an INSERT of no rows. This can happen when
a subquery returns no rows to process.

Oracle did not execute the statement because of a database,
system, network, or application error. Such errors can be fatal.
When they occur, the current transaction should, in most cases,
be rolled back. Negative return codes correspond to error
codes listed in Oracle7 Server Messages.

You can learn the outcome of the most recent SQL operation by
checking SQLCODE explicitly with your own code or implicitly with
the WHENEVER statement.

When you declare SQLCODE instead of the SQLCA in a particular
precompilation unit, the precompiler allocates an internal SQLCA for
that unit. Your host program cannot access the internal SQLCA. If you
declare the SQLCA and SQLCODE (Pro*FORTRAN only), Oracle
returns the same status code to both after every SQL operation.

Note: When MODE={ORACLE|ANSI13}, declarations of
SQLCODE are ignored.

0

> 0

< 0

SQLSTATE Values

8 – 12 Programmer’s Guide to the Oracle Precompilers

SQLSTATE status codes consist of a two–character class code followed
by a three–character subclass code. Aside from class code 00 (successful
completion), the class code denotes a category of exceptions. Aside
from subclass code 000 (not applicable), the subclass code denotes a
specific exception within that category. For example, the SQLSTATE
value ‘22012’ consists of class code 22 (data exception) and subclass
code 012 (division by zero).

Each of the five characters in a SQLSTATE value is a digit (0..9) or an
uppercase Latin letter (A..Z). Class codes that begin with a digit in the
range 0..4 or a letter in the range A..H are reserved for predefined
conditions (those defined in SQL92). All other class codes are reserved
for implementation–defined conditions. Within predefined classes,
subclass codes that begin with a digit in the range 0..4 or a letter in the
range A..H are reserved for predefined subconditions. All other
subclass codes are reserved for implementation–defined subconditions.
Figure 8 – 1 shows the coding scheme.

First Character in Class Code

0 . . 4 5 . . 9 A . . H I . . Z

0 . . 4

5 . . 9

A . . H

I . . Z

Fi
rs

t C
ha

ra
ct

er
 in

Predefined Implementation–defined

Su
bc

la
ss

 C
od

e

Figure 8 – 1 SQLSTATE Coding Scheme

8 – 13Error Handling and Diagnostics

Table 8 – 5 shows the classes predefined by SQL92.

Class Condition

00 successful completion

01 warning

02 no data

07 dynamic SQL error

08 connection exception

0A feature not supported

21 cardinality violation

22 data exception

23 integrity constraint violation

24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name

27 triggered data change violation

28 invalid authorization specification

2A direct SQL syntax error or access rule violation

2B dependent privilege descriptors still exist

2C invalid character set name

2D invalid transaction termination

2E invalid connection name

33 invalid SQL descriptor name

34 invalid cursor name

35 invalid condition number

37 dynamic SQL syntax error or access rule violation

3C ambiguous cursor name

3D invalid catalog name

3F invalid schema name

40 transaction rollback

42 syntax error or access rule violation

44 with check option violation

HZ remote database access

Table 8 – 5 Predefined Classes

Note: The class code HZ is reserved for conditions defined in
International Standard ISO/IEC DIS 9579–2, Remote Database
Access.

8 – 14 Programmer’s Guide to the Oracle Precompilers

Table 8 – 6 shows how Oracle errors map to SQLSTATE status codes. In
some cases, several Oracle errors map to the status code. In other cases,
no Oracle error maps to the status code (so the last column is empty).
Status codes in the range 60000 .. 99999 are implementation–defined.

Code Condition Oracle Error

00000 successful completion ORA–00000

01000 warning

01001 cursor operation conflict

01002 disconnect error

01003 null value eliminated in set function

01004 string data – right truncation

01005 insufficient item descriptor areas

01006 privilege not revoked

01007 privilege not granted

01008 implicit zero–bit padding

01009 search condition too long for info schema

0100A query expression too long for info schema

02000 no data ORA–01095
ORA–01403

07000 dynamic SQL error

07001 using clause does not match parameter specs

07002 using clause does not match target specs

07003 cursor specification cannot be executed

07004 using clause required for dynamic parameters

07005 prepared statement not a cursor specification

07006 restricted datatype attribute violation

07007 using clause required for result fields

07008 invalid descriptor count SQL–02126

07009 invalid descriptor index

08000 connection exception

08001 SQL client unable to establish SQL connection

08002 connection name in use

08003 connection does not exist SQL–02121

08004 SQL server rejected SQL connection

08006 connection failure

08007 transaction resolution unknown

Table 8 – 6 SQLSTATE Codes

8 – 15Error Handling and Diagnostics

Code Oracle ErrorCondition

0A000 feature not supported ORA–03000 .. 03099

0A001 multiple server transactions

21000 cardinality violation ORA–01427
SQL–02112

22000 data exception

22001 string data – right truncation ORA–01401
ORA–01406

22002 null value – no indicator parameter ORA–01405
SQL–02124

22003 numeric value out of range ORA–01426
ORA–01438
ORA–01455
ORA–01457

22005 error in assignment

22007 invalid datetime format

22008 datetime field overflow ORA–01800 .. 01899

22009 invalid time zone displacement value

22011 substring error

22012 division by zero ORA–01476

22015 interval field overflow

22018 invalid character value for cast

22019 invalid escape character ORA–00911
ORA–01425

22021 character not in repertoire

22022 indicator overflow ORA–01411

22023 invalid parameter value ORA–01025
ORA–01488
ORA–04000 .. 04019

22024 unterminated C string ORA–01479 .. 01480

22025 invalid escape sequence ORA–01424

22026 string data – length mismatch

22027 trim error

23000 integrity constraint violation ORA–00001
ORA–02290 .. 02299

Table 8 – 6 SQLSTATE Codes

8 – 16 Programmer’s Guide to the Oracle Precompilers

Code Oracle ErrorCondition

24000 invalid cursor state ORA–01001 .. 01003
ORA–01410
ORA–08006
SQL–02114
SQL–02117
SQL–02118
SQL–02122

25000 invalid transaction state

26000 invalid SQL statement name

27000 triggered data change violation

28000 invalid authorization specification

2A000 direct SQL syntax error or access rule violation

2B000 dependent privilege descriptors still exist

2C000 invalid character set name

2D000 invalid transaction termination

2E000 invalid connection name

33000 invalid SQL descriptor name

34000 invalid cursor name

35000 invalid condition number

37000 dynamic SQL syntax error or access rule violation

3C000 ambiguous cursor name

3D000 invalid catalog name

3F000 invalid schema name

40000 transaction rollback ORA–02091 .. 02092

40001 serialization failure

40002 integrity constraint violation

40003 statement completion unknown

42000 syntax error or access rule violation ORA–00022
ORA–00251
ORA–00900 .. 00999
ORA–01031
ORA–01490 .. 01493
ORA–01700 .. 01799
ORA–01900 .. 02099
ORA–02140 .. 02289
ORA–02420 .. 02424
ORA–02450 .. 02499
ORA–03276 .. 03299
ORA–04040 .. 04059
ORA–04070 .. 04099

44000 with check option violation ORA–01402

Table 8 – 6 SQLSTATE Codes

8 – 17Error Handling and Diagnostics

Code Oracle ErrorCondition

60000 system errors ORA–00370 .. 00429
ORA–00600 .. 00899
ORA–06430 .. 06449
ORA–07200 .. 07999
ORA–09700 .. 09999

61000 resource error ORA–00018 .. 00035
ORA–00050 .. 00068
ORA–02376 .. 02399
ORA–04020 .. 04039

62000 multi–threaded server and detached process errors ORA–00100 .. 00120
ORA–00440 .. 00569

63000

Oracle*XA and two–task interface errors ORA–00150 .. 00159
SQL–02128
ORA–02700 .. 02899
ORA–03100 .. 03199
ORA–06200 .. 06249
SQL–02128

64000 control file, database file, and redo file errors;
archival and media recovery errors

ORA–00200 .. 00369
ORA–01100 .. 01250

65000 PL/SQL errors ORA–06500 .. 06599

66000 SQL*Net driver errors ORA–06000 .. 06149
ORA–06250 .. 06429
ORA–06600 .. 06999
ORA–12100 .. 12299
ORA–12500 .. 12599

67000 licensing errors ORA–00430 .. 00439

69000 SQL*Connect errors ORA–00570 .. 00599
ORA–07000 .. 07199

72000 SQL execute phase errors ORA–01000 .. 01099
ORA–01400 .. 01489
ORA–01495 .. 01499
ORA–01500 .. 01699
ORA–02400 .. 02419
ORA–02425 .. 02449
ORA–04060 .. 04069
ORA–08000 .. 08190
ORA–12000 .. 12019
ORA–12300 .. 12499
ORA–12700 .. 21999

82100 out of memory (could not allocate) SQL–02100

82101 inconsistent cursor cache: unit cursor/global cursor
mismatch

SQL–02101

82102 inconsistent cursor cache: no global cursor entry SQL–02102

82103 inconsistent cursor cache: out of range cursor
cache reference

SQL–02103

82104 inconsistent host cache: no cursor cache available SQL–02104

Table 8 – 6 SQLSTATE Codes

8 – 18 Programmer’s Guide to the Oracle Precompilers

Code Oracle ErrorCondition

82105 inconsistent cursor cache: global cursor not found SQL–02105

82106 inconsistent cursor cache: invalid Oracle cursor
number

SQL–02106

82107 program too old for runtime library SQL–02107

82108 invalid descriptor passed to runtime library SQL–02108

82109 inconsistent host cache: host reference is out of
range

SQL–02109

82110 inconsistent host cache: invalid host cache entry
type

SQL–02110

82111 heap consistency error SQL–02111

82112 unable to open message file SQL–02113

82113 code generation internal consistency failed SQL–02115

82114 reentrant code generator gave invalid context SQL–02116

82115 invalid hstdef argument SQL–02119

82116 first and second arguments to sqlrcn both null SQL–02120

82117 invalid OPEN or PREPARE for this connection SQL–02122

82118 application context not found SQL–02123

82119 connect error; can’t get error text SQL–02125

82120 precompiler/SQLLIB version mismatch. SQL–02127

82121 FETCHed number of bytes is odd SQL–02129

82122 EXEC TOOLS interface is not available SQL–02130

82123 runtime context in use SQL–02131

82124 unable to allocate runtime context SQL–02131

82125 unable to initialize process for use with threads SQL–02133

82126 invalid runtime context SQL–02134

90000 debug events ORA–10000 .. 10999

99999 catch all all others

HZ000 remote database access

Table 8 – 6 SQLSTATE Codes

8 – 19Error Handling and Diagnostics

Using the SQL Communications Area

The SQL Communications area (SQLCA) is a record–like data
structure. Its fields contain error, warning, and status information
updated by Oracle whenever a SQL statement is executed. Thus, the
SQLCA always reflects the outcome of the most recent SQL operation.
To determine the outcome, you can check variables in the SQLCA.

In host languages that allow both local and global declarations, your
program can have more than one SQLCA. For example, it might have
one global SQLCA and several local ones. Access to a local SQLCA is
limited by its scope within the program. Oracle returns information
only to the “active” SQLCA.

Note: When your application uses SQL*Net to access a
combination of local and remote databases concurrently, all the
databases write to one SQLCA. There is not a different SQLCA
for each database. For more information, see “Concurrent
Logons” on page 3 – 36.

When MODE={ORACLE|ANSI13}, the SQLCA is required; if the
SQLCA is not declared, compile–time errors will occur. The SQLCA is
optional when MODE={ANSI|ANSI14}, but you cannot use the
WHENEVER SQLWARNING statement without declaring SQLCA. So,
if you want to use the WHENEVER SQLWARNING statement, you
must declare the SQLCA.

Note: If you declare SQLCODE instead of the SQLCA in a
particular compilation unit, the precompiler allocates an
internal SQLCA for that unit. Your host program cannot access
the internal SQLCA. If you declare the SQLCA and SQLCODE
(Pro*FORTRAN only), Oracle returns the same status code to
both after every SQL operation.

When MODE={ANSI|ANSI14}, you must declare either SQLSTATE
(see “Declaring SQLSTATE” on page 8 – 6) or SQLCODE (see
“Declaring SQLCODE” on page 8 – 5) or both. The SQLSTATE status
variable supports the SQLSTATE status variable specified by the SQL92
standard. You can use the SQLSTATE status variable with or without
SQLCODE. See Table 8 – 3 and Table 8 – 4 for more information.

Declaring the SQLCA

Declaring the SQLCA in
Pro*COBOL

Declaring the SQLCA in
Pro*FORTRAN

What’s in the SQLCA?

8 – 20 Programmer’s Guide to the Oracle Precompilers

To declare the SQLCA, simply include it (using an EXEC SQL
INCLUDE statement) in your host–language source file as follows:

* Include the Oracle Communications Area (ORACA).

 EXEC SQL INCLUDE ORACA

EXEC SQL INCLUDE SQLCA;

The SQLCA is used if and only if there is an INCLUDE of the SQLCA.

When you precompile your program, the INCLUDE SQLCA statement
is replaced by several variable declarations that allow Oracle to
communicate with the program.

In Pro*COBOL, it makes no difference whether the INCLUDE is inside
or outside of a Declare Section. For more information about declaring
the SQLCA in Pro*COBOL, see the Pro*COBOL Supplement to the Oracle
Precompilers Guide.

In Pro*FORTRAN, the SQLCA must be declared outside the Declare
Section, because it is a COMMON block. Furthermore, the SQLCA
must come before the CONNECT statement and the first executable
FORTRAN statement.

You must declare the SQLCA in each subroutine and function that
contains SQL statements. Every time a SQL statement in one of the
subroutines or functions is executed, Oracle updates the SQLCA held
in the COMMON block.

Ordinarily, only the order and datatypes of variables in a
COMMON–list matter, not their names. However, you cannot rename
the SQLCA variables because the precompiler generates code that
refers to them. Thus, all declarations of the SQLCA must be identical.
For more information about declaring the SQLCA in Pro*FORTRAN,
see the Pro*FORTRAN Supplement to the Oracle Precompilers Guide.

The SQLCA contains the following runtime information about the
outcome of SQL statements:

• Oracle error codes

• warning flags

• event information

• rows–processed count

• diagnostics

Figure 8 – 2 shows all the variables in the SQLCA. To see the SQLCA
structure and variable names in a particular host language, refer to
your supplement to this Guide.

Key Components of
Error Reporting

Status Codes

Warning Flags

8 – 21Error Handling and Diagnostics

SQLCAID
SQLCABC
SQLCODE Oracle error message code
SQLERRM Subrecord for storing error message

SQLERRML
SQLERRMC

SQLERRP
SQLERRD

SQLERRD(3)
SQLERRD(4)
SQLERRD(5)
SQLERRD(6)

SQLWARN
SQLWARN(0)
SQLWARN(1)
SQLWARN(2)
SQLWARN(3)
SQLWARN(4)

SQLEXT

Length of error message
Text of error message
Reserved for future use
Array of six integer status codes

Reserved for future use

Reserved for future use

Array of eight warning flags

No longer in use
No longer in use
Reserved for future use
DELETE or UPDATE without WHERE clause
SELECT list not equal to INTO list
No longer in use
Character string truncated
Another warning flag set

Reserved for future use
Parse error offset

Number of rows processed
Reserved for future use

SQLERRD(1)
SQLERRD(2)

SQLWARN(5)
SQLWARN(6)
SQLWARN(7)

Reserved for future use

Character string “SQLCA”
Length of SQLCA data structure in bytes

Figure 8 – 2 SQLCA Variables

Error reporting depends on variables in the SQLCA. This section
highlights the key components of error reporting. The next section
takes a close look at the SQLCA.

Every executable SQL statement returns a status code to the SQLCA
variable SQLCODE, which you can check implicitly with the
WHENEVER statement or explicitly with your own code.

Status codes can be zero, less than zero, or greater than zero. See
“SQLCODE” on page 8 – 23 for complete SQLCODE descriptions.

Warning flags are returned in the SQLCA variables SQLWARN(0)
through SQLWARN(7), which you can check implicitly or explicitly.
These warning flags are useful for runtime conditions not considered
errors by Oracle. For example, when DBMS=V6, if an indicator variable
is available, Oracle signals a warning after assigning a truncated
column value to a host variable. (If no indicator variable is available,
Oracle issues an error message.)

Rows–Processed Count

Parse Error Offset

Error Message Text

8 – 22 Programmer’s Guide to the Oracle Precompilers

The number of rows processed by the most recently executed SQL
statement is returned in the SQLCA variable SQLERRD(3), which you
can check explicitly.

Speaking strictly, this variable is not for error reporting, but it can help
you avoid mistakes. For example, suppose you expect to delete about
ten rows from a table. After the deletion, you check SQLERRD(3) and
find that 75 rows were processed. To be safe, you might want to roll
back the deletion and examine the search condition in your WHERE
clause.

Before executing a SQL statement, Oracle must parse it, that is, examine
it to make sure it follows syntax rules and refers to valid database
objects. If Oracle finds an error, an offset is stored in the SQLCA
variable SQLERRD(5), which you can check explicitly. The offset
specifies the character position in the SQL statement at which the parse
error begins. The first character occupies position zero. For example, if
the offset is 9, the parse error begins at the tenth character.

By default, static SQL statements are checked for syntactic errors at
precompile time. So, SQLERRD(5) is most useful for debugging
dynamic SQL statements, which your program accepts or builds
at run time.

Parse errors arise from missing, misplaced, or misspelled keywords,
invalid options, nonexistent tables, and the like. For example, the
dynamic SQL statement

UPDATE EMP SET JIB = :job_title WHERE EMPNO = :emp_number

causes the parse error

ORA–00904: invalid column name

because the column name JOB is misspelled. The value of SQLERRD(5)
is 15 because the erroneous column name JIB begins at the sixteenth
character.

If your SQL statement does not cause a parse error, Oracle sets
SQLERRD(5) to zero. Oracle also sets SQLERRD(5) to zero if a parse
error begins at the first character (which occupies position zero). So,
check SQLERRD(5) only if SQLCODE is negative, which means that an
error has occurred.

The error code and message for Oracle errors are available in the
SQLCA variable SQLERRMC. At most, the first 70 characters of text
are stored. To get the full text of messages longer than 70 characters,
you use the SQLGLM function. See “Getting the Full Text of Error
Messages” on page 8 – 26.

SQLCA Structure

SQLCAID

SQLCABC

SQLCODE

SQLERRM

SQLERRP

8 – 23Error Handling and Diagnostics

This section describes the structure of the SQLCA, its fields, and the
values they can store.

This string field is initialized to “SQLCA” to identify the SQL
Communications Area.

This integer field holds the length, in bytes, of the SQLCA structure.

This integer field holds the status code of the most recently executed
SQL statement. The status code, which indicates the outcome of the
SQL operation, can be any of the following numbers:

Oracle executed the statement without detecting an error or
exception.

Oracle executed the statement but detected an exception. This
occurs when Oracle cannot find a row that meets your
WHERE–clause search condition or when a SELECT INTO or
FETCH returns no rows.

When MODE={ANSI|ANSI14|ANSI13}, +100 is returned to
SQLCODE after an INSERT of no rows. This can happen when
a subquery returns no rows to process.

Oracle did not execute the statement because of a database,
system, network, or application error. Such errors can be fatal.
When they occur, the current transaction should, in most cases,
be rolled back.

Negative return codes correspond to error codes listed in
Oracle7 Server Messages.

This subrecord contains the following two fields:

This integer field holds the length of the message text
stored in SQLERRMC.

This string field holds the message text for the error
code stored in SQLCODE and can store up to 70
characters. For the full text of messages longer than 70
characters, use the SQLGLM function.

Verify SQLCODE is negative before you reference
SQLERRMC. If you reference SQLERRMC when
SQLCODE is zero, you get the message text associated
with a prior SQL statement.

This string field is reserved for future use.

0

> 0

< 0

SQLERRML

SQLERRMC

SQLERRD

SQLWARN

8 – 24 Programmer’s Guide to the Oracle Precompilers

This array of binary integers has six elements. Descriptions of the fields
in SQLERRD (called SQLERD in FORTRAN) follow:

This field is reserved for future use.

This field is reserved for future use.

This field holds the number of rows processed by the
most recently executed SQL statement. However, if the
SQL statement failed, the value of SQLERRD(3) is
undefined, with one exception. If the error occurred
during an array operation, processing stops at the row
that caused the error, so SQLERRD(3) gives the
number of rows processed successfully.

The rows–processed count is zeroed after an OPEN
statement and incremented after a FETCH statement.
For the EXECUTE, INSERT, UPDATE, DELETE, and
SELECT INTO statements, the count reflects the
number of rows processed successfully. The count does
not include rows processed by an update or delete
cascade. For example, if 20 rows are deleted because
they meet WHERE–clause criteria, and 5 more rows are
deleted because they now (after the primary delete)
violate column constraints, the count is 20 not 25.

This field is reserved for future use.

This field holds an offset that specifies the character
position at which a parse error begins in the most
recently executed SQL statement. The first character
occupies position zero.

This field is reserved for future use.

This array of single characters has eight elements. They are used as
warning flags. Oracle sets a flag by assigning it a “W” (for warning)
character value. The flags warn of exceptional conditions.

For example, a warning flag is set when Oracle assigns a truncated
column value to an output host variable.

Note: While Figure 8 – 2 illustrates SQLWARN as an array, it is
implemented in Pro*COBOL as a group item with elementary
PIC X items named SQLWARN0 through SQLWARN7. The
Pro*FORTRAN implementation is composed of the LOGICAL
variables, SQLWN0 through SQLWN7.

SQLERRD(1)

SQLERRD(2)

SQLERRD(3)

SQLERRD(4)

SQLERRD(5)

SQLERRD(6)

SQLEXT

8 – 25Error Handling and Diagnostics

Descriptions of the fields in SQLWARN follow:

This flag is set if another warning flag is set.

This flag is set if a truncated column value was
assigned to an output host variable. This applies only
to character data. Oracle truncates certain numeric
data without setting a warning or returning a negative
SQLCODE value.

To find out if a column value was truncated and by
how much, check the indicator variable associated with
the output host variable. The (positive) integer
returned by an indicator variable is the original length
of the column value. You can increase the length of the
host variable accordingly.

This flag is set if one or more nulls were ignored in the
evaluation of a SQL group function such as AVG,
COUNT, or MAX. This behavior is expected because,
except for COUNT(*), all group functions ignore nulls.
If necessary, you can use the SQL function NVL to
temporarily assign values (zeros, for example) to the
null column entries.

This flag is set if the number of columns in a query
select list does not equal the number of host variables
in the INTO clause of the SELECT or FETCH
statement. The number of items returned is the lesser
of the two.

This flag is set if every row in a table was processed by
an UPDATE or DELETE statement without a WHERE
clause. An update or deletion is called unconditional if
no search condition restricts the number of rows
processed. Such updates and deletions are unusual, so
Oracle sets this warning flag. That way, you can roll
back the transaction if necessary

This flag is set when an EXEC SQL CREATE
{PROCEDURE|FUNCTION|PACKAGE|PACKAGE
BODY} statement fails because of a PL/SQL
compilation error.

This flag is no longer in use.

This flag is no longer in use.

This string field is reserved for future use.

SQLWARN(0)

SQLWARN(1)

SQLWARN(2)

SQLWARN(3)

SQLWARN(4)

SQLWARN(5)

SQLWARN(6)

SQLWARN(7)

PL/SQL Considerations

Getting the Full Text of
Error Messages

8 – 26 Programmer’s Guide to the Oracle Precompilers

When your precompiler program executes an embedded PL/SQL
block, not all fields in the SQLCA are set. For example, if the block
fetches several rows, the rows–processed count, SQLERRD(3), is set
to 1, not the actual number of rows fetched. So, you should rely only on
the SQLCODE and SQLERRM fields in the SQLCA after executing a
PL/SQL block.

The SQLCA can accommodate error messages up to 70 characters long.
To get the full text of longer (or nested) error messages, you need the
SQLGLM function. If connected to Oracle, you can call SQLGLM using
the syntax

SQLGLM(message_buffer, buffer_size, message_length);

where:

is the text buffer in which you want Oracle to store
the error message (Oracle blank–pads to the end of
this buffer).

is an integer variable that specifies the maximum
size of the buffer in bytes.

is an integer variable in which Oracle stores the
actual length of the error message.

The maximum length of an Oracle error message is 512 characters
including the error code, nested messages, and message inserts such as
table and column names. The maximum length of an error message
returned by SQLGLM depends on the value you specify for buffer_size.

In the following example, you call SQLGLM to get an error message of
up to 100 characters in length:

–– declare variables for function call

msg_buffer CHARACTER(100);

buf_size INTEGER;

msg_length INTEGER;

set buf_size = 100;

EXEC SQL WHENEVER SQLERROR DO sql_error;

–– other statements

ROUTINE sql_error

BEGIN

 –– get full text of error message

 SQLGLM(msg_buffer, buf_size, msg_length);

 display contents of msg_buffer;

 exit program with an error

END sql_error;

message_buffer

buffer_size

message_length

Using the WHENEVER
Statement

SQLWARNING

SQLERROR

NOT FOUND

CONTINUE

8 – 27Error Handling and Diagnostics

Notice that SQLGLM is called only when a SQL error has occurred.
Always make sure SQLCODE is negative before calling SQLGLM. If you
call SQLGLM when SQLCODE is zero, you get the message text
associated with a prior SQL statement.

By default, precompiled programs ignore Oracle error and warning
conditions and continue processing if possible. To perform automatic
condition checking and error handling, use the WHENEVER statement.

With the WHENEVER statement you can specify actions to be taken
when Oracle detects an error, warning condition, or “not found”
condition. These actions include continuing with the next statement,
calling a routine, branching to a labeled statement, or stopping.

You code the WHENEVER statement using the following syntax:

EXEC SQL WHENEVER <condition> <action>;

You can have Oracle automatically check the SQLCA for any of the
following conditions.

SQLWARN(0) is set because Oracle returned a warning (one of the
warning flags, SQLWARN(1) through SQLWARN(7), is also set) or
SQLCODE has a positive value other than +1403. For example,
SQLWARN(1) is set when Oracle assigns a truncated column value to
an output host variable.

Declaring the SQLCA is optional when MODE={ANSI|ANSI14}.
To use WHENEVER SQLWARNING, however, you must declare
the SQLCA.

SQLCODE has a negative value because Oracle returned an error.

SQLCODE has a value of +1403 (+100 when MODE={ANSI|ANSI14|
ANSI13}), because Oracle could not find a row that meets the search
condition of a WHERE clause, or a SELECT INTO or FETCH returned
no rows. When MODE={ANSI|ANSI14|ANSI13}, +100 is returned to
SQLCODE after an INSERT of no rows.

When Oracle detects one of the preceding conditions, you can have your
program take any of the following actions.

Your program continues to run with the next statement if possible. This
is the default action, equivalent to not using the WHENEVER
statement. You can use it to “turn off” condition checking.

DO

GOTO

STOP

8 – 28 Programmer’s Guide to the Oracle Precompilers

Your program transfers control to an internal routine. When the end of
the routine is reached, control transfers to the statement that follows
the failed SQL statement.

A routine is any functional program unit that can be invoked such as a
COBOL paragraph or FORTRAN subroutine. In this context, separately
compiled programs, such as COBOL subroutines, are not routines.

The usual rules for entering and exiting a routine apply. However,
passing parameters to the routine is not allowed. Furthermore, the
routine must not return a value.

The parameter routine_call is a host language invocation, as in

EXEC SQL –– COBOL

 WHENEVER <condition> DO PERFORM <paragraph_name> –– COBOL

END–EXEC. –– COBOL

or

EXEC SQL –– FORTRAN

 WHENEVER <condition> DO CALL <subroutine_name> –– FORTRAN

Your program branches to a labeled statement.

Your program stops running and uncommitted work is rolled back.

Be careful. The STOP action displays no messages before logging off
Oracle. In Pascal, the STOP action is illegal because Pascal has no
equivalent command.

Some Examples

8 – 29Error Handling and Diagnostics

If you want your program to

• go to close_cursor if a “no data found” condition occurs,

• continue with the next statement if a warning occurs, and

• go to error_handler if an error occurs

simply code the following WHENEVER statements before the first
executable SQL statement:

EXEC SQL WHENEVER NOT FOUND GOTO close_cursor;

EXEC SQL WHENEVER SQLWARNING CONTINUE;

EXEC SQL WHENEVER SQLERROR GOTO error_handler;

The following Pro*C example uses WHENEVER...DO statements to
handle specific errors:

EXEC SQL WHENEVER SQLERROR DO handle_insert_error;

EXEC SQL INSERT INTO EMP (EMPNO, ENAME, DEPTNO)

 VALUES (:emp_number, :emp_name, :dept_number);

EXEC SQL WHENEVER SQLERROR DO handle_delete_error;

EXEC SQL DELETE FROM DEPT WHERE DEPTNO = :dept_number;

...

ROUTINE handle_insert_error;

 BEGIN

 IF sqlca.sqlcode = –1 THEN –– duplicate key value

 ...

 ELSEIF sqlca.sqlcode = –1401 THEN –– value too large

 ...

 ENDIF;

 ...

 END;

ROUTINE handle_delete_error;

 BEGIN

 IF sqlca.sqlerrd(3) = 0 THEN –– no rows deleted

 ...

 ELSE

 ...

 ENDIF;

 ...

 END;

...

Notice how the procedures check variables in the SQLCA to determine
a course of action.

Scope

Guidelines

8 – 30 Programmer’s Guide to the Oracle Precompilers

Because WHENEVER is a declarative statement, its scope is positional,
not logical. It tests all executable SQL statements that follow it in the
source file, not in the flow of program logic. So, code the WHENEVER
statement before the first executable SQL statement you want to test.

A WHENEVER statement stays in effect until superseded by another
WHENEVER statement checking for the same condition.

In the example below, the first WHENEVER SQLERROR statement is
superseded by a second, and so applies only to the CONNECT
statement. The second WHENEVER SQLERROR statement applies to
both the UPDATE and DROP statements, despite the flow of control
from step1 to step3.

step1:

EXEC SQL WHENEVER SQLERROR STOP;

EXEC SQL CONNECT :username IDENTIFIED BY :password;

 ...

 GOTO step3;

step2:

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL UPDATE EMP SET SAL = SAL * 1.10;

 ...

step3:

 EXEC SQL DROP INDEX EMP_INDEX;

 ...

The following guidelines will help you avoid some common pitfalls.

Placing the Statements. In general, code a WHENEVER statement
before the first executable SQL statement in your program. This
ensures that all ensuing errors are trapped because WHENEVER
statements stay in effect to the end of a file.

Handling End–of–Data Conditions. Your program should be prepared
to handle an end–of–data condition when using a cursor to fetch rows.
If a FETCH returns no data, the program should branch to a labeled
section of code where a CLOSE command is issued, as follows:

SQL WHENEVER NOT FOUND GOTO no_more;

...

no_more:

 ...

 EXEC SQL CLOSE my_cursor;

 ...

8 – 31Error Handling and Diagnostics

Avoiding Infinite Loops. If a WHENEVER SQLERROR GOTO
statement branches to an error handling routine that includes an
executable SQL statement, your program might enter an infinite loop if
the SQL statement fails with an error. You can avoid this by coding
WHENEVER SQLERROR CONTINUE before the SQL statement, as
shown in the following example:

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

...

sql_error:

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 ...

Without the WHENEVER SQLERROR CONTINUE statement, a
ROLLBACK error would invoke the routine again, starting an
infinite loop.

Careless use of WHENEVER can cause problems. For example, the
following code enters an infinite loop if the DELETE statement sets
NOT FOUND because no rows meet the search condition:

–– improper use of WHENEVER

...

EXEC SQL WHENEVER NOT FOUND GOTO no_more;

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;

 ...

ENDLOOP;

no_more:

 EXEC SQL DELETE FROM EMP WHERE EMPNO = :emp_number;

 ...

In the next example, you handle the NOT FOUND condition properly
by resetting the GOTO target:

–– proper use of WHENEVER

...

EXEC SQL WHENEVER NOT FOUND GOTO no_more;

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;

 ...

ENDLOOP;

no_more:

 EXEC SQL WHENEVER NOT FOUND GOTO no_match;

 EXEC SQL DELETE FROM EMP WHERE EMPNO = :emp_number;

 ...

no_match:

 ...

8 – 32 Programmer’s Guide to the Oracle Precompilers

Maintaining Addressability. With host languages that allow local as
well as global identifiers, make sure all SQL statements governed by a
WHENEVER GOTO statement can branch to the GOTO label. The
following code results in a compile–time error because labelA in FUNC1
is not within the scope of the INSERT statement in FUNC2:

FUNC1

 BEGIN

 EXEC SQL WHENEVER SQLERROR GOTO labelA;

 EXEC SQL DELETE FROM EMP WHERE DEPTNO = :dept_number;

 ...

 labelA:

 ...

 END;

FUNC2

 BEGIN

 EXEC SQL INSERT INTO EMP (JOB) VALUES (:job_title);

 ...

 END;

The label to which a WHENEVER GOTO statement branches must be
in the same precompilation file as the statement.

Returning after an Error. If your program must return after handling
an error, use the DO routine_call action. Alternatively, you can test the
value of SQLCODE, as shown in the following example:

EXEC SQL UPDATE EMP SET SAL = SAL * 1.10;

IF sqlca.sqlcode < 0 THEN

 –– handle error

EXEC SQL DROP INDEX EMP_INDEX;

...

Just make sure no WHENEVER GOTO or WHENEVER STOP
statement is active.

Getting the Text of
SQL Statements

8 – 33Error Handling and Diagnostics

In many precompiler applications, it is convenient to know the text of
the statement being processed, its length, and the SQL command (such
as INSERT or SELECT) that it contains. This is especially true for
applications that use dynamic SQL.

The routine SQLGLS, which is part of the SQLLIB runtime library,
returns the following information:

• the text of the most recently parsed SQL statement

• the length of the statement

• a function code (see Table 8 – 8) for the SQL command used in
the statement

You can call SQLGLS after issuing a static SQL statement. With
dynamic SQL Method 1, you can call SQLGLS after the SQL statement
is executed. With dynamic SQL Method 2, 3, or 4, you can call SQLGLS
after the statement is prepared.

To call SQLGLS, you use the following syntax:

SQLGLS(SQLSTM, STMLEN, SQLFC)

Table 8 – 7 shows the host–language datatypes available for the
parameters in the SQLGLS argument list.

Parameter Language Datatype

SQLSTM COBOL PIC X(n)

FORTRAN CHARACTER*n

STMLEN, SQLFC COBOL PIC S9(9) COMP

FORTRAN INTEGER*4

Table 8 – 7 Parameter Datatypes

All parameters must be passed by reference. This is usually the default
parameter passing convention; you need not take special action.

The parameter SQLSTM is a blank–padded (not null–terminated)
character buffer that holds the returned text of the SQL statement. Your
program must statically declare the buffer or dynamically allocate
memory for it.

The length parameter STMLEN is a four–byte integer. Before calling
SQLGLS, set this parameter to the actual size (in bytes) of the SQLSTM
buffer. When SQLGLS returns, the SQLSTM buffer contains the SQL
statement text blank padded to the length of the buffer. STMLEN
returns the actual number of bytes in the returned statement text, not
counting the blank padding. However, STMLEN returns a zero if an
error occurred.

8 – 34 Programmer’s Guide to the Oracle Precompilers

Some possible errors follow:

• No SQL statement was parsed.

• You passed an invalid parameter (for example, a negative
length value).

• An internal exception occurred in SQLLIB.

The parameter SQLFC is a four–byte integer that returns the SQL
function code for the SQL command in the statement. Table 8 – 8 shows
the function code for each SQL command.

SQLGLS does not return statements that contain the following
commands:

• CONNECT

• COMMIT

• ROLLBACK

• RELEASE

• FETCH

There are no SQL function codes for these statements.

8 – 35Error Handling and Diagnostics

Code SQL Function Code SQL Function

01 CREATE TABLE 39 AUDIT

02 SET ROLE 40 NOAUDIT

03 INSERT 41 ALTER INDEX

04 SELECT 42 CREATE EXTERNAL DATABASE

05 UPDATE 43 DROP EXTERNAL DATABASE

06 DROP ROLE 44 CREATE DATABASE

07 DROP VIEW 45 ALTER DATABASE

08 DROP TABLE 46 CREATE ROLLBACK SEGMENT

09 DELETE 47 ALTER ROLLBACK SEGMENT

10 CREATE VIEW 48 DROP ROLLBACK SEGMENT

11 DROP USER 49 CREATE TABLESPACE

12 CREATE ROLE 50 ALTER TABLESPACE

13 CREATE SEQUENCE 51 DROP TABLESPACE

14 ALTER SEQUENCE 52 ALTER SESSION

15 (not used) 53 ALTER USER

16 DROP SEQUENCE 54 COMMIT

17 CREATE SCHEMA 55 ROLLBACK

18 CREATE CLUSTER 56 SAVEPOINT

19 CREATE USER 57 CREATE CONTROL FILE

20 CREATE INDEX 58 ALTER TRACING

21 DROP INDEX 59 CREATE TRIGGER

22 DROP CLUSTER 60 ALTER TRIGGER

23 VALIDATE INDEX 61 DROP TRIGGER

24 CREATE PROCEDURE 62 ANALYZE TABLE

25 ALTER PROCEDURE 63 ANALYZE INDEX

26 ALTER TABLE 64 ANALYZE CLUSTER

27 EXPLAIN 65 CREATE PROFILE

28 GRANT 66 DROP PROFILE

29 REVOKE 67 ALTER PROFILE

30 CREATE SYNONYM 68 DROP PROCEDURE

31 DROP SYNONYM 69 (not used)

32 ALTER SYSTEM SWITCH LOG 70 ALTER RESOURCE COST

33 SET TRANSACTION 71 CREATE SNAPSHOT LOG

34 PL/SQL EXECUTE 72 ALTER SNAPSHOT LOG

35 LOCK TABLE 73 DROP SNAPSHOT LOG

36 (not used) 74 CREATE SNAPSHOT

37 RENAME 75 ALTER SNAPSHOT

38 COMMENT 76 DROP SNAPSHOT

Table 8 – 8 SQL Codes

Declaring the ORACA

Enabling the ORACA

8 – 36 Programmer’s Guide to the Oracle Precompilers

Using the Oracle Communications Area

In the same way the SQLCA handles standard SQL communications;
the Oracle Communications Area (ORACA) handles Oracle
communications. When you need more information about runtime
errors and status changes than the SQLCA provides, use the ORACA.
It contains an extended set of diagnostic tools. However, use of the
ORACA is optional because it adds to runtime overhead.

Besides helping you to diagnose problems, the ORACA lets you
monitor your program’s use of Oracle resources such as the SQL
Statement Executor and the cursor cache.

In host languages that allow local as well as global declarations, your
program can have more than one ORACA. For example, it might have
one global ORACA and several local ones. Access to a local ORACA is
limited by its scope within the program. Oracle returns information
only to the “active” ORACA. The information is available only after a
commit or rollback.

To declare the ORACA, simply include it (using an EXEC SQL
INCLUDE statement) in your host–language source file as follows:

* Include the Oracle Communications Area (ORACA).

 EXEC SQL INCLUDE ORACA

The ORACA must be declared outside the Declare Section.

When you precompile your program, the INCLUDE ORACA statement
is replaced by several program variable declarations. These
declarations allow Oracle to communicate with your program.

To enable the ORACA, you must specify the ORACA option, either on
the command line with

ORACA=YES

or inline with

EXEC ORACLE OPTION (ORACA=YES);

Then, you must choose appropriate runtime options by setting flags in
the ORACA.

What’s in the ORACA?

Choosing Runtime
Options

8 – 37Error Handling and Diagnostics

The ORACA contains option settings, system statistics, and extended
diagnostics such as

• SQL statement text (you can specify when to save the text)

• name of the file in which an error occurred

• location of the error in a file

• cursor cache errors and statistics

Figure 8 – 3 shows all the variables in the ORACA. To see the ORACA
structure and variable names in a particular host language, refer to
your supplement to this Guide.

ORACAID
Length of ORACA data structure in bytes
Cursor cache conssistency flag
Master debug flag
Heap consistency flag

Subrecord for storing SQL statement
Length of current SQL statement

Name of file containing current SQL statement

Number of SQL statement parses
Number of cursor cache reassignments
Current number of cursors used

Highest MAXOPENCURSORS requested
Line in file at or near current SQL statement

Length of filename
Subrecord for storing filename
Text of current SQL statement

ORACABC
ORACCHF
ORADBGF
ORAHCHF
ORASTXTF
ORASTXT

ORASTXTL
ORASTXTC

ORASFNM
ORASFNML
ORASFNMC

ORASLNR
ORAHOC
ORAMOC
ORACOC
ORANOR
ORANPR
ORANEX Number of SQL statement executions

Character string “ORACA”

Save SQL statement flag

Maximum open cursors required

Figure 8 – 3 ORACA Variables

The ORACA includes several option flags. Setting these flags by
assigning them non–zero values allows you to

• save the text of SQL statements

• enable DEBUG operations

• check cursor cache consistency (the cursor cache is a continuously
updated area of memory used for cursor management)

• check heap consistency (the heap is an area of memory reserved
for dynamic variables)

• gather cursor statistics

The descriptions below will help you choose the options you need.

ORACA Structure

ORACAID

ORACABC

ORACCHF

ORADBGF

ORAHCHF

8 – 38 Programmer’s Guide to the Oracle Precompilers

This section describes the structure of the ORACA, its fields, and the
values they can store.

This string field is initialized to “ORACA” to identify the Oracle
Communications Area.

This integer field holds the length, expressed in bytes, of the ORACA
data structure.

If the master DEBUG flag (ORADBGF) is set, this flag lets you check
the cursor cache for consistency before every cursor operation.

The Oracle runtime library does the consistency checking and might
issue error messages, which are listed in Oracle7 Server Messages. They
are returned to the SQLCA just like Oracle error messages.

This flag has the following settings:

Disable cache consistency checking (the default).

Enable cache consistency checking.

This master flag lets you choose all the DEBUG options. It has the
following settings:

Disable all DEBUG operations (the default).

Enable all DEBUG operations.

If the master DEBUG flag (ORADBGF) is set, this flag tells the Oracle
runtime library to check the heap for consistency every time the
precompiler dynamically allocates or frees memory. This is useful for
detecting program bugs that upset memory.

This flag must be set before the CONNECT command is issued and,
once set, cannot be cleared; subsequent change requests are ignored. It
has the following settings:

Disable heap consistency checking (the default).

Enable heap consistency checking.

0

1

0

1

0

1

ORASTXTF

Diagnostics

ORASTXT

ORASFNM

ORASLNR

Cursor Cache Statistics

8 – 39Error Handling and Diagnostics

This flag lets you specify when the text of the current SQL statement is
saved. It has the following settings:

Never save the SQL statement text (the default).

Save the SQL statement text on SQLERROR only.

Save the SQL statement text on SQLERROR or SQLWARNING.

Always save the SQL statement text.

The SQL statement text is saved in the ORACA subrecord named
ORASTXT.

The ORACA provides an enhanced set of diagnostics; the following
variables help you to locate errors quickly.

This subrecord helps you find faulty SQL statements. It lets you save
the text of the last SQL statement parsed by Oracle. It contains the
following two fields:

This integer field holds the length of the current
SQL statement.

This string field holds the text of the current SQL
statement. At most, the first 70 characters of text
are saved.

Statements parsed by the precompiler, such as CONNECT, FETCH,
and COMMIT, are not saved in the ORACA.

This subrecord identifies the file containing the current SQL statement
and so helps you find errors when multiple files are precompiled for
one application. It contains the following two fields:

This integer field holds the length of the filename
stored in ORASFNMC.

This string field holds the filename. At most, the
first 70 characters are stored.

This integer field identifies the line at (or near) which the current SQL
statement can be found.

The variables below let you gather cursor cache statistics. They are
automatically set by every COMMIt or ROLLBACK statement your
program issues. Internally, there is a set of these variables for each
CONNECTed database. The current values in the ORACA pertain to
the database against which the last commit or rollback was executed.

0

1

2

3

ORASTXTL

ORASTXTC

ORASFNML

ORASFNMC

ORAHOC

ORAMOC

ORACOC

ORANOR

ORANPR

ORANEX

8 – 40 Programmer’s Guide to the Oracle Precompilers

This integer field records the highest value to which
MAXOPENCURSORS was set during program execution.

This integer field records the maximum number of open Oracle cursors
required by your program. This number can be higher than ORAHOC
if MAXOPENCURSORS was set too low, which forced the precompiler
to extend the cursor cache.

This integer field records the current number of open Oracle cursors
required by your program.

This integer field records the number of cursor cache reassignments
required by your program. This number shows the degree of
“thrashing” in the cursor cache and should be kept as low as possible.

This integer field records the number of SQL statement parses required
by your program.

This integer field records the number of SQL statement executions
required by your program. The ratio of this number to the ORANPR
number should be kept as high as possible. In other words, avoid
unnecessary reparsing. For help, see Appendix C.

An Example

8 – 41Error Handling and Diagnostics

The following program prompts for a department number, inserts the
name and salary of each employee in that department into one of two
tables, then displays diagnostic information from the ORACA:

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(20);

 password CHARACTER(20);

 emp_name INTEGER;

 dept_number INTEGER;

 salary REAL;

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

EXEC SQL INCLUDE ORACA;

display ’Username? ’;

read username;

display ’Password? ’;

read password;

EXEC SQL WHENEVER SQLERROR DO sql_error;

EXEC SQL CONNECT :username IDENTIFIED BY :password;

display ’Connected to Oracle’;

EXEC ORACLE OPTION (ORACA=YES);

–– set flags in the ORACA

set oraca.oradbgf = 1; –– enable debug operations

set oraca.oracchf = 1; –– enable cursor cache consistency check

set oraca.orastxtf = 3; –– always save the SQL statement

display ’Department number? ’;

read dept_number;

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, SAL + NVL(COMM,0)

 FROM EMP

 WHERE DEPTNO = :dept_number;

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND DO no_more;

8 – 42 Programmer’s Guide to the Oracle Precompilers

rLOOP

 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;

 IF salary < 2500 THEN

 EXEC SQL INSERT INTO PAY1 VALUES (:emp_name, :salary);

 ELSE

 EXEC SQL INSERT INTO PAY2 VALUES (:emp_name, :salary);

 ENDIF;

ENDLOOP;

ROUTINE no_more

BEGIN

 EXEC SQL CLOSE emp_cursor;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL COMMIT WORK RELEASE;

 display ’Last SQL statement: ’, oraca.orastxt.orastxtc;

 display ’... at or near line number: ’, oraca.oraslnr;

 display

 display ’ Cursor Cache Statistics’;

 display ’–––’;

 display ’Maximum value of MAXOPENCURSORS ’, oraca.orahoc;

 display ’Maximum open cursors required: ’, oraca.oramoc;

 display ’Current number of open cursors: ’, oraca.oracoc;

 display ’Number of cache reassignments: ’, oraca.oranor;

 display ’Number of SQL statement parses: ’, oraca.oranpr;

 display ’Number of SQL statement executions: ’, oraca.oranex;

 exit program;

END no_more;

ROUTINE sql_error

BEGIN

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 display ’Last SQL statement: ’, oraca.orastxt.orastxtc;

 display ’... at or near line number: ’, oraca.oraslnr;

 display

 display ’ Cursor Cache Statistics’;

 display ’–––’;

 display ’Maximum value of MAXOPENCURSORS ’, oraca.orahoc;

 display ’Maximum open cursors required: ’, oraca.oramoc;

 display ’Current number of open cursors: ’, oraca.oracoc;

 display ’Number of cache reassignments: ’, oraca.oranor;

 display ’Number of SQL statement parses: ’, oraca.oranpr;

 display ’Number of SQL statement executions: ’, oraca.oranex;

 exit program with an error;

END sql_error;

C H A P T E R

9
T

9 – 1Using Host Arrays

Using Host Arrays

his chapter looks at using arrays to simplify coding and improve
program performance. You learn how to manipulate Oracle data using
arrays, how to operate on all the elements of an array with a single SQL
statement, and how to limit the number of array elements processed.
The following questions are answered:

• What is a host array?

• Why use arrays?

• How are host arrays declared?

• How are arrays used in SQL statements?

Dimensioning Arrays

9 – 2 Programmer’s Guide to the Oracle Precompilers

What Is a Host Array?

An array is a collection of related data items, called elements, associated
with a single variable name. When declared as a host variable, the
array is called a host array. Likewise, an indicator variable declared as
an array is called an indicator array. An indicator array can be associated
with any host array.

Why Use Arrays?

Arrays can ease programming and offer improved performance. When
writing an application, you are usually faced with the problem of
storing and manipulating large collections of data. Arrays simplify the
task of naming and referencing the individual items in each collection.

Using arrays can boost the performance of your application. Arrays let
you manipulate an entire collection of data items with a single SQL
statement. Thus, Oracle communication overhead is reduced markedly,
especially in a networked environment. For example, suppose you
want to insert information about 300 employees into the EMP table.
Without arrays your program must do 300 individual INSERTs—one
for each employee. With arrays, only one INSERT need be done.

Declaring Host Arrays

You declare host arrays in the Declare Section like simple host
variables. You also dimension (set the size of) host arrays in the Declare
Section. In the following example, you declare three host arrays and
dimension them with 50 elements:

EXEC SQL BEGIN DECLARE SECTION;

 emp_name (50) CHARACTER(20);

 emp_number (50) INTEGER;

 salary (50) REAL;

EXEC SQL END DECLARE SECTION;

The maximum dimension of a host array is 32,767 elements. If you use
a host array that exceeds the maximum, you get a “parameter out of
range” runtime error. If you use multiple host arrays in a single SQL
statement, their dimensions should be the same. Otherwise, an “array
size mismatch” warning message is issued at precompile time. If you
ignore this warning, the precompiler uses the smallest dimension for the
SQL operation.

Restrictions

9 – 3Using Host Arrays

You cannot declare host arrays of pointers. Also, host arrays that might
be referenced in a SQL statement are limited to one dimension. So, the
two–dimensional array declared in the following example is invalid:

EXEC SQL BEGIN DECLARE SECTION;

 hi_lo_scores (25, 25) INTEGER; –– not allowed

EXEC SQL END DECLARE SECTION;

Using Arrays in SQL Statements

The Oracle Precompilers allow the use of host arrays in data
manipulation statements. You can use host arrays as input variables in
the INSERT, UPDATE, and DELETE statements and as output
variables in the INTO clause of SELECT and FETCH statements.

Note: When MODE=ANSI14, array operations are not
allowed. In other words, you can reference host arrays in a SQL
statement only when MODE={ANSI|ANSI13|ORACLE}.

The syntax used for host arrays and simple host variables is nearly the
same. One difference is the optional FOR clause, which lets you control
array processing. Also, there are restrictions on mixing host arrays and
simple host variables in a SQL statement.

The following sections illustrate the use of host arrays in data
manipulation statements.

Selecting into Arrays

You can use host arrays as output variables in the SELECT statement. If
you know the maximum number of rows the select will return, simply
dimension the host arrays with that number of elements. In the
following example, you select directly into three host arrays. Knowing
the select will return no more than 50 rows, you dimension the arrays
with 50 elements:

EXEC SQL BEGIN DECLARE SECTION;

 emp_name (50) CHARACTER(20);

 emp_number (50) INTEGER;

 salary (50) REAL;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT ENAME, EMPNO, SAL

 INTO :emp_name, :emp_number, :salary

 FROM EMP

 WHERE SAL > 1000;

Batch Fetches

9 – 4 Programmer’s Guide to the Oracle Precompilers

In this example, the SELECT statement returns up to 50 rows. If there
are fewer than 50 eligible rows or you want to retrieve only 50 rows,
this method will suffice. However, if there are more than 50 eligible
rows, you cannot retrieve all of them this way. If you reexecute the
SELECT statement, it just returns the first 50 rows again, even if more
are eligible. You must either dimension a larger array or declare a
cursor for use with the FETCH statement.

If a SELECT INTO statement returns more rows than the number of
elements you dimensioned, Oracle issues the error message

SQL–02112: SELECT...INTO returns too many rows

unless you specify SELECT_ERROR=NO. For more information about
the option SELECT_ERROR, see page 6 – 34.

If you do not know the maximum number of rows a select will return,
you can declare and open a cursor, then fetch from it in “batches.”
Batch fetches within a loop let you retrieve a large number of rows with
ease. Each fetch returns the next batch of rows from the current active
set. In the following example, you fetch in 20–row batches:

EXEC SQL BEGIN DECLARE SECTION;

 emp_number (20) INTEGER;

 salary (20) REAL;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT EMPNO, SAL FROM EMP;

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND DO ...

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_number, :salary;

 –– process batch of rows

ENDLOOP;

Number of Rows
Fetched

Restrictions

9 – 5Using Host Arrays

Each fetch returns, at most, the number of rows in the array dimension.
Fewer rows are returned in the following cases:

• The end of the active set is reached. The “no data found” Oracle
warning code is returned to SQLCODE in the SQLCA. For
example, this happens if you fetch into an array of dimension 100
but only 20 rows are returned.

• Fewer than a full batch of rows remain to be fetched. For
example, this happens if you fetch 70 rows into an array of
dimension 20 because after the third fetch, only 10 rows remain
to be fetched.

• An error is detected while processing a row. The fetch fails and
the applicable Oracle error code is returned to SQLCODE.

The cumulative number of rows returned can be found in the third
element of SQLERRD in the SQLCA, called SQLERRD(3) in this guide.
This applies to each open cursor. In the following example, notice how
the status of each cursor is maintained separately:

EXEC SQL OPEN cursor1;

EXEC SQL OPEN cursor2;

EXEC SQL FETCH cursor1 INTO :array_of_20;

 –– now running total in SQLERRD(3) is 20

EXEC SQL FETCH cursor2 INTO :array_of_30;

 –– now running total in SQLERRD(3) is 30, not 50

EXEC SQL FETCH cursor1 INTO :array_of_20;

 –– now running total in SQLERRD(3) is 40 (20 + 20)

EXEC SQL FETCH cursor2 INTO :array_of_30;

 –– now running total in SQLERRD(3) is 60 (30 + 30)

Using host arrays in the WHERE clause of a SELECT statement is
allowed only in a subquery. (For an example, see “Using the WHERE
Clause” on page 9 – 12.) Also, you cannot mix simple host variables
with host arrays in the INTO clause of a SELECT or FETCH statement;
if any of the host variables is an array, all must be arrays.

Table 9 – 1 shows which uses of host arrays are valid in a SELECT
INTO statement:

INTO Clause WHERE Clause Valid?

array array no

scalar scalar yes

array scalar yes

scalar array no

Table 9 – 1 Host Arrays Valid in SELECT INTO

Fetching Nulls

Fetching Truncated
Values

9 – 6 Programmer’s Guide to the Oracle Precompilers

When DBMS=V6, if you select or fetch a null into a host array that lacks
an indicator array, no error is generated. So, when doing array selects
and fetches, always use indicator arrays. That way, you can find nulls
in the associated output host array. (To learn how to find nulls and
truncated values, see “Using Indicator Variables” on page 4 – 4.)

When DBMS=V7, if you select or fetch a null into a host array that lacks
an indicator array, Oracle stops processing, sets SQLERRD(3) to the
number of rows processed, and issues the following error message:

ORA–01405: fetched column value is NULL

When DBMS=V7, if you select or fetch a truncated column value into a
host array that lacks an indicator array, Oracle stops processing, sets
SQLERRD(3) to the number of rows processed, and issues the
following error message:

ORA–01406: fetched column value was truncated

You can check SQLERRD(3) for the number of rows processed before
the truncation occurred. The rows–processed count includes the row
that caused the truncation error.

When MODE=ANSI, truncation is not considered an error, so Oracle
continues processing.

Again, when doing array selects and fetches, always use indicator
arrays. That way, if Oracle assigns one or more truncated column
values to an output host array, you can find the original lengths of the
column values in the associated indicator array.

Restrictions

9 – 7Using Host Arrays

Inserting with Arrays

You can use host arrays as input variables in an INSERT statement. Just
make sure your program populates the arrays with data before
executing the INSERT statement. If some elements in the arrays are
irrelevant, you can use the FOR clause to control the number of rows
inserted. See “Using the FOR Clause” on page 9 – 10.

An example of inserting with host arrays follows:

EXEC SQL BEGIN DECLARE SECTION;

 emp_name (50) CHARACTER(20);

 emp_number (50) INTEGER;

 salary (50) REAL;

EXEC SQL END DECLARE SECTION;

–– populate the host arrays

EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)

 VALUES (:emp_name, :emp_number, :salary);

The cumulative number of rows inserted can be found in SQLERRD(3).

Although functionally equivalent to the following statement, the
INSERT statement in the last example is much more efficient because it
issues only one call to Oracle:

FOR i = 1 TO array_dimension

 EXEC SQL INSERT INTO EMP (ENAME, EMPNO, SAL)

 VALUES (:emp_name[i], :emp_number[i], :salary[i]);

ENDFOR;

In this imaginary example (imaginary because host variables cannot be
subscripted in a SQL statement), you use a FOR loop to access all array
elements in sequential order.

You cannot use an array of pointers in the VALUES clause of an
INSERT statement; all array elements must be data items. Also, mixing
simple host variables with host arrays in the VALUES clause of an
INSERT statement is not allowed; if any of the host variables is an
array, all must be arrays.

Restrictions

9 – 8 Programmer’s Guide to the Oracle Precompilers

Updating with Arrays

You can also use host arrays as input variables in an UPDATE
statement, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;

 emp_number (50) INTEGER;

 salary (50) REAL;

EXEC SQL END DECLARE SECTION;

–– populate the host arrays

EXEC SQL UPDATE EMP SET SAL = :salary WHERE EMPNO = :emp_number;

The cumulative number of rows updated can be found in SQLERRD(3).
The number does not include rows processed by an update cascade.

If some elements in the arrays are irrelevant, you can use the FOR
clause to limit the number of rows updated.

The last example showed a typical update using a unique key
(emp_number). Each array element qualified just one row for updating.
In the following example, each array element qualifies multiple rows:

EXEC SQL BEGIN DECLARE SECTION;

 job_title (10) CHARACTER(10);

 commission (50) REAL;

EXEC SQL END DECLARE SECTION;

–– populate the host arrays

EXEC SQL UPDATE EMP SET COMM = :commission WHERE JOB = :job_title;

Mixing simple host variables with host arrays in the SET or WHERE
clause of an UPDATE statement is not allowed. If any of the host
variables is an array, all must be arrays. Furthermore, if you use a host
array in the SET clause, you must use one in the WHERE clause.
However, their dimensions and datatypes need not match.

You cannot use host arrays with the CURRENT OF clause in an
UPDATE statement. For an alternative, see “Mimicking CURRENT
OF” on page 9 – 13.

Table 9 – 2 shows which uses of host arrays are valid in an UPDATE
statement:

SET Clause WHERE Clause Valid?

array array yes

scalar scalar yes

array scalar no

scalar array no

Table 9 – 2 Host Arrays Valid in UPDATE

Restrictions

9 – 9Using Host Arrays

Deleting with Arrays

You can also use host arrays as input variables in a DELETE statement.
It is like executing the DELETE statement repeatedly using successive
elements of the host array in the WHERE clause. Thus, each execution
might delete zero, one, or more rows from the table. An example of
deleting with host arrays follows:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 emp_number (50) INTEGER;

 EXEC SQL END DECLARE SECTION;

–– populate the host array

EXEC SQL DELETE FROM EMP WHERE EMPNO = :emp_number;

The cumulative number of rows deleted can be found in SQLERRD(3).
That number does not include rows processed by a delete cascade.

The last example showed a typical delete using a unique key
(emp_number). Each array element qualified just one row for deletion. In
the following example, each array element qualifies multiple rows:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 job_title (10) CHARACTER(10);

EXEC SQL END DECLARE SECTION;

–– populate the host array

EXEC SQL DELETE FROM EMP WHERE JOB = :job_title;

Mixing simple host variables with host arrays in the WHERE clause of
a DELETE statement is not allowed; if any of the host variables is an
array, all must be arrays. Also, you cannot use host arrays with the
CURRENT OF clause in a DELETE statement. For an alternative, see
“Mimicking CURRENT OF” on page 9 – 13.

Using Indicator Arrays

You use indicator arrays to assign nulls to input host arrays and to
detect null or truncated values in output host arrays. The following
example shows how to insert with indicator arrays:

EXEC SQL BEGIN DECLARE SECTION;

 emp_number (50) INTEGER;

 dept_number (50) INTEGER;

 commission (50) REAL;

 ind_comm (50) SMALLINT; –– indicator array

EXEC SQL END DECLARE SECTION;

9 – 10 Programmer’s Guide to the Oracle Precompilers

–– populate the host arrays

–– populate the indicator array; to insert a null into

–– the COMM column, assign –1 to the appropriate element in

–– the indicator array

EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO, COMM)

 VALUES (:emp_number, :dept_number, :commission:ind_comm);

The dimension of the indicator array cannot be smaller than the
dimension of the host array.

Using the FOR Clause

You can use the optional FOR clause to set the number of array
elements processed by any of the following SQL statements:

• DELETE

• EXECUTE

• FETCH

• INSERT

• OPEN

• UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE
statements. With these statements you might not want to use the entire
array. The FOR clause lets you limit the elements used to just the
number you need, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;

 emp_name (100) CHARACTER(20);

 salary (100) REAL;

 rows_to_insert INTEGER;

EXEC SQL END DECLARE SECTION;

–– populate the host arrays

set rows_to_insert = 25; –– set FOR–clause variable

EXEC SQL FOR :rows_to_insert –– will process only 25 rows

 INSERT INTO EMP (ENAME, SAL)

 VALUES (:emp_name, :salary);

The FOR clause must use an integer host variable to count array
elements. For example, the following statement is illegal:

EXEC SQL FOR 25 –– illegal

 INSERT INTO EMP (ENAME, EMPNO, SAL)

 VALUES (:emp_name, :emp_number, :salary);

Restrictions

In a SELECT Statement

With the CURRENT OF
Clause

9 – 11Using Host Arrays

The FOR–clause variable specifies the number of array elements to be
processed. Make sure the number does not exceed the smallest array
dimension. Also, the number must be positive. If it is negative or zero,
no rows are processed.

Two restrictions keep FOR clause semantics clear.: you cannot use the
FOR clause in a SELECT statement or with the CURRENT OF clause.

If you use the FOR clause in a SELECT statement, you get the following
error message:

PCC–E–0056: FOR clause not allowed on SELECT statement at ...

The FOR clause is not allowed in SELECT statements because its
meaning is unclear. Does it mean “execute this SELECT statement n
times”? Or, does it mean “execute this SELECT statement once, but
return n rows”? The problem in the former case is that each execution
might return multiple rows. In the latter case, it is better to declare a
cursor and use the FOR clause in a FETCH statement, as follows:

EXEC SQL FOR :limit FETCH emp_cursor INTO ...

You can use the CURRENT OF clause in an UPDATE or DELETE
statement to refer to the latest row returned by a FETCH statement, as
the following example shows:

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, SAL FROM EMP WHERE EMPNO = :emp_number;

...

EXEC SQL OPEN emp_cursor;

...

EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;

...

EXEC SQL UPDATE EMP SET SAL = :new_salary

 WHERE CURRENT OF emp_cursor;

However, you cannot use the FOR clause with the CURRENT OF
clause. The following statements are invalid because the only logical
value of limit is 1 (you can only update or delete the current row once):

EXEC SQL FOR :limit UPDATE EMP SET SAL = :new_salary

 WHERE CURRENT OF emp_cursor;

...

EXEC SQL FOR :limit DELETE FROM EMP

 WHERE CURRENT OF emp_cursor;

9 – 12 Programmer’s Guide to the Oracle Precompilers

Using the WHERE Clause

Oracle treats a SQL statement containing host arrays of dimension n
like the same SQL statement executed n times with n different scalar
variables (the individual array elements). The precompiler issues the
following error message only when such treatment is ambiguous:

PCC–S–0055: Array <name> not allowed as bind variable at ...

For example, assuming the declarations

EXEC SQL BEGIN DECLARE SECTION;

 mgr_number (50) INTEGER;

 job_title (50) CHARACTER(20);

EXEC SQL END DECLARE SECTION;

it would be ambiguous if the statement

EXEC SQL SELECT MGR INTO :mgr_number FROM EMP

 WHERE JOB = :job_title;

were treated like the imaginary statement

FOR i = 1 TO 50

 SELECT MGR INTO :mgr_number[i] FROM EMP

 WHERE JOB = :job_title[i];

ENDFOR;

because multiple rows might meet the WHERE–clause search
condition, but only one output variable is available to receive data.
Therefore, an error message is issued.

On the other hand, it would not be ambiguous if the statement

EXEC SQL UPDATE EMP SET MGR = :mgr_number

 WHERE EMPNO IN (SELECT EMPNO FROM EMP WHERE JOB = :job_title);

were treated like the imaginary statement

FOR i = 1 TO 50

 UPDATE EMP SET MGR = :mgr_number[i]

 WHERE EMPNO IN

 (SELECT EMPNO FROM EMP WHERE JOB = :job_title[i]);

ENDFOR;

because there is a mgr_number in the SET clause for each row matching
job_title in the WHERE clause, even if each job_title matches multiple
rows. All rows matching each job_title can be SET to the same
mgr_number. So, no error message is issued.

9 – 13Using Host Arrays

Mimicking the CURRENT OF Clause

You use the CURRENT OF cursor clause in a DELETE or UPDATE
statement to refer to the latest row fetched from the cursor. However,
you cannot use CURRENT OF with host arrays. Instead, select the
ROWID of each row, then use that value to identify the current row
during the update or delete. An example follows:

EXEC SQL BEGIN DECLARE SECTION;

 emp_name (25) CHARACTER(20);

 job_title (25) CHARACTER(15);

 old_title (25) CHARACTER(15);

 row_id (25) CHARACTER(18);

EXEC SQL END DECLARE SECTION;

...

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ENAME, JOB, ROWID FROM EMP;

...

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND GOTO ...

...

LOOP

 EXEC SQL FETCH emp_cursor

 INTO :emp_name, :job_title, :row_id;

 ...

 EXEC SQL DELETE FROM EMP

 WHERE JOB = :old_title AND ROWID = :row_id;

 EXEC SQL COMMIT WORK;

ENDLOOP;

However, the fetched rows are not locked because no FOR UPDATE OF
clause is used. So, you might get inconsistent results if another user
changes a row after you read it but before you delete it.

9 – 14 Programmer’s Guide to the Oracle Precompilers

Using SQLERRD(3)

For INSERT, UPDATE, DELETE, and SELECT INTO statements,
SQLERRD(3) records the number of rows processed. For FETCH
statements, it records the cumulative sum of rows processed.

When using host arrays with FETCH, to find the number of rows
returned by the most recent iteration, subtract the current value of
SQLERRD(3) from its previous value (stored in another variable). In the
following example, you determine the number of rows returned by the
most recent fetch:

EXEC SQL BEGIN DECLARE SECTION;

 emp_number (100) INTEGER;

 emp_name (100) CHARACTER(20);

EXEC SQL END DECLARE SECTION;

...

 rows_to fetch INTEGER;

 rows_before INTEGER;

 rows_this_time INTEGER;

...

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT EMPNO, ENAME

 FROM EMP

 WHERE DEPTNO = 30;

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND CONTINUE;

...

–– initialize loop variables

set rows_to_fetch = 20; –– number of rows in each ”batch”

set rows_before = 0; –– previous value of sqlerrd(3)

set rows_this_time = 20;

WHILE rows_this_time = rows_to_fetch

 LOOP

 EXEC SQL FOR :rows_to_fetch

 FETCH emp_cursor

 INTO :emp_number, :emp_name;

 set rows_this_time = sqlca.sqlerrd(3) – rows_before;

 set rows_before = sqlca.sqlerrd(3);

 ENDLOOP;

ENDWHILE;

SQLERRD(3) is also useful when an error occurs during an array
operation. Processing stops at the row that caused the error, so
SQLERRD(3) gives the number of rows processed successfully.

C H A P T E R

10
T

10 – 1Using Dynamic SQL

Using Dynamic SQL

his chapter shows you how to use dynamic SQL, an advanced
programming technique that adds flexibility and functionality to your
applications. After weighing the advantages and disadvantages of
dynamic SQL, you learn four methods—from simple to complex—for
writing programs that accept and process SQL statements “on the fly”
at run time. You learn the requirements and limitations of each method
and how to choose the right method for a given job.

10 – 2 Programmer’s Guide to the Oracle Precompilers

What Is Dynamic SQL?

Most database applications do a specific job. For example, a simple
program might prompt the user for an employee number, then update
rows in the EMP and DEPT tables. In this case, you know the makeup
of the UPDATE statement at precompile time. That is, you know which
tables might be changed, the constraints defined for each table and
column, which columns might be updated, and the datatype of each
column.

However, some applications must accept (or build) and process a
variety of SQL statements at run time. For example, a general–purpose
report writer must build different SELECT statements for the various
reports it generates. In this case, the statement’s makeup is unknown
until run time. Such statements can, and probably will, change from
execution to execution. They are aptly called dynamic SQL statements.

Unlike static SQL statements, dynamic SQL statements are not
embedded in your source program. Instead, they are stored in
character strings input to or built by the program at run time. They can
be entered interactively or read from a file.

Advantages and Disadvantages of Dynamic SQL

Host programs that accept and process dynamically defined SQL
statements are more versatile than plain embedded SQL programs.
Dynamic SQL statements can be built interactively with input from
users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search
condition to be used in the WHERE clause of a SELECT, UPDATE, or
DELETE statement. A more complex program might allow users to
choose from menus listing SQL operations, table and view names,
column names, and so on. Thus, dynamic SQL lets you write highly
flexible applications.

However, some dynamic queries require complex coding, the use of
special data structures, and more runtime processing. While you might
not notice the added processing time, you might find the coding
difficult unless you fully understand dynamic SQL concepts and
methods.

10 – 3Using Dynamic SQL

When to Use Dynamic SQL

In practice, static SQL will meet nearly all your programming needs.
Use dynamic SQL only if you need its open–ended flexibility. Its use is
suggested when one or more of the following items is unknown at
precompile time:

• text of the SQL statement (commands, clauses, and so on)

• the number of host variables

• the datatypes of host variables

• references to database objects such as columns, indexes,
sequences, tables, usernames, and views

Requirements for Dynamic SQL Statements

To represent a dynamic SQL statement, a character string must contain
the text of a valid SQL statement, but not contain the EXEC SQL clause,
host–language delimiters or statement terminator, or any of the
following embedded SQL commands:

• CLOSE

• DECLARE

• DESCRIBE

• EXECUTE

• FETCH

• INCLUDE

• OPEN

• PREPARE

• WHENEVER

In most cases, the character string can contain dummy host variables.
They hold places in the SQL statement for actual host variables.
Because dummy host variables are just placeholders, you do not
declare them and can name them anything you like. For example,
Oracle makes no distinction between the following two strings:

’DELETE FROM EMP WHERE MGR = :mgr_number AND JOB = :job_title’

’DELETE FROM EMP WHERE MGR = :m AND JOB = :j’

10 – 4 Programmer’s Guide to the Oracle Precompilers

How Dynamic SQL Statements Are Processed

Typically, an application program prompts the user for the text of a
SQL statement and the values of host variables used in the statement.
Then Oracle parses the SQL statement. That is, Oracle examines the SQL
statement to make sure it follows syntax rules and refers to valid
database objects. Parsing also involves checking database access rights,
reserving needed resources, and finding the optimal access path.

Next, Oracle binds the host variables to the SQL statement. That is,
Oracle gets the addresses of the host variables so that it can read or
write their values.

Then Oracle executes the SQL statement. That is, Oracle does what the
SQL statement requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for
the host variables.

Methods for Using Dynamic SQL

This section introduces four methods you can use to define dynamic
SQL statements. It briefly describes the capabilities and limitations of
each method, then offers guidelines for choosing the right method.
Later sections show you how to use the methods. Also, you can find
sample host–language programs in your supplement to this Guide.

The four methods are increasingly general. That is, Method 2
encompasses Method 1, Method 3 encompasses Methods 1 and 2, and
so on. However, each method is most useful for handling a certain kind
of SQL statement, as Table 10 – 1 shows:

Method Kind of SQL Statement

1 nonquery without input host variables

2 nonquery with known number of input host variables

3 query with known number of select–list items and input host variables

4 query with unknown number of select–list items or input host variables

Table 10 – 1 Appropriate Method to Use

The term select–list item includes column names and expressions.

Method 1

Method 2

Method 3

Method 4

10 – 5Using Dynamic SQL

This method lets your program accept or build a dynamic SQL
statement, then immediately execute it using the EXECUTE
IMMEDIATE command. The SQL statement must not be a query
(SELECT statement) and must not contain any placeholders for input
host variables. For example, the following host strings qualify:

’DELETE FROM EMP WHERE DEPTNO = 20’

’GRANT SELECT ON EMP TO scott’

With Method 1, the SQL statement is parsed every time it is executed
(unless you specify HOLD_CURSOR=YES).

This method lets your program accept or build a dynamic SQL
statement, then process it using the PREPARE and EXECUTE
commands. The SQL statement must not be a query. The number of
placeholders for input host variables and the datatypes of the input
host variables must be known at precompile time. For example, the
following host strings fall into this category:

’INSERT INTO EMP (ENAME, JOB) VALUES (:emp_name, :job_title)’

’DELETE FROM EMP WHERE EMPNO = :emp_number’

With Method 2, the SQL statement is parsed just once (unless you
specify RELEASE_CURSOR=YES), but it can be executed many times
with different values for the host variables. SQL data definition
statements such as CREATE are executed when they are PREPAREd.

This method lets your program accept or build a dynamic query, then
process it using the PREPARE command with the DECLARE, OPEN,
FETCH, and CLOSE cursor commands. The number of select–list
items, the number of placeholders for input host variables, and the
datatypes of the input host variables must be known at precompile
time. For example, the following host strings qualify:

’SELECT DEPTNO, MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO’

’SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :dept_number’

This method lets your program accept or build a dynamic SQL
statement, then process it using descriptors (discussed in “Using
Method 4” on page 10 – 15). The number of select–list items, the
number of placeholders for input host variables, and the datatypes of
the input host variables can be unknown until run time. For example,
the following host strings fall into this category:

’INSERT INTO EMP (<unknown>) VALUES (<unknown>)’

’SELECT <unknown> FROM EMP WHERE DEPTNO = 20’

Method 4 is required for dynamic SQL statements that contain an
unknown number of select–list items or input host variables.

Guidelines

Avoiding Common Errors

10 – 6 Programmer’s Guide to the Oracle Precompilers

With all four methods, you must store the dynamic SQL statement in a
character string, which must be a host variable or quoted literal. When
you store the SQL statement in the string, omit the keywords EXEC
SQL and the statement terminator.

With Methods 2 and 3, the number of placeholders for input host
variables and the datatypes of the input host variables must be known
at precompile time.

Each succeeding method imposes fewer constraints on your
application, but is more difficult to code. As a rule, use the simplest
method you can. However, if a dynamic SQL statement will be
executed repeatedly by Method 1, use Method 2 instead to avoid
reparsing for each execution.

Method 4 provides maximum flexibility, but requires complex coding
and a full understanding of dynamic SQL concepts. In general, use
Method 4 only if you cannot use Methods 1, 2, or 3. The decision logic
in Figure 10 – 1 will help you choose the correct method.

If you use a character array to store the dynamic SQL statement,
blank–pad the array before storing the SQL statement. That way, you
clear extraneous characters. This is especially important when you
reuse the array for different SQL statements. As a rule, always initialize
(or reinitialize) the host string before storing the SQL statement.

Do not null–terminate the host string. Oracle does not recognize the
null terminator as an end–of–string sentinel. Instead, Oracle treats it as
part of the SQL statement.

If you use a VARCHAR variable to store the dynamic SQL statement,
make sure the length of the VARCHAR is set (or reset) correctly before
you execute the PREPARE or EXECUTE IMMEDIATE statement.

EXECUTE resets the SQLWARN warning flags in the SQLCA. So, to
catch mistakes such as an unconditional update (caused by omitting a
WHERE clause), check the SQLWARN flags after executing the
PREPARE statement but before executing the EXECUTE statement.

10 – 7Using Dynamic SQL

yes

yes

no

yes

no

Might it
contain an unknown
number of input host

variables?

Might it contain input
host variables?

Will it be executed
repeatedly?

Might its select list contain
an unknown number of

items?

Might it
 contain an unknown
number of input host

variables?

no no

no

no

yes yes

yes

Method 1 Method 2 Method 3 Method 4

Might it be a query?

About the SQL statement ...

Figure 10 – 1 Choosing the Right Method

The EXECUTE
IMMEDIATE
Statement

10 – 8 Programmer’s Guide to the Oracle Precompilers

Using Method 1

The simplest kind of dynamic SQL statement results only in “success”
or “failure” and uses no host variables. Some examples follow:

’DELETE FROM table_name WHERE column_name = constant’

’CREATE TABLE table_name ...’

’DROP INDEX index_name’

’UPDATE table_name SET column_name = constant’

’GRANT SELECT ON table_name TO username’

’REVOKE RESOURCE FROM username’

Method 1 parses, then immediately executes the SQL statement using
the EXECUTE IMMEDIATE command. The command is followed by a
character string (host variable or literal) containing the SQL statement
to be executed, which cannot be a query.

The syntax of the EXECUTE IMMEDIATE statement follows:

EXEC SQL EXECUTE IMMEDIATE { :host_string | string_literal };

In the following example, you use the host variable sql_stmt to store
SQL statements input by the user:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 sql_stmt CHARACTER(120);

EXEC SQL END DECLARE SECTION;

...

LOOP

 display ’Enter SQL statement: ’;

 read sql_stmt;

 IF sql_stmt is empty THEN

 exit loop;

 ENDIF;

 –– sql_stmt now contains the text of a SQL statement

 EXEC SQL EXECUTE IMMEDIATE :sql_stmt;

ENDLOOP;

You can also use string literals, as the following example shows:

EXEC SQL EXECUTE IMMEDIATE ’REVOKE RESOURCE FROM MILLER’;

Because EXECUTE IMMEDIATE parses the input SQL statement
before every execution, Method 1 is best for statements that are
executed only once. Data definition statements usually fall into
this category.

An Example

10 – 9Using Dynamic SQL

The following program prompts the user for a search condition to be
used in the WHERE clause of an UPDATE statement, then executes the
statement using Method 1:

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(20);

 password CHARACTER(20);

 update_stmt CHARACTER(120);

EXEC SQL END DECLARE SECTION;

 search_cond CHARACTER(40);

EXEC SQL INCLUDE SQLCA;

display ’Username? ’;

read username;

display ’Password? ’;

read password;

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

EXEC SQL CONNECT :username IDENTIFIED BY :password;

display ’Connected to Oracle’;

set update_stmt = ’UPDATE EMP SET COMM = 500 WHERE ’;

display ’Enter a search condition for the following statement:’;

display update_stmt;

read search_cond;

concatenate update_stmt, search_cond;

EXEC SQL EXECUTE IMMEDIATE :update_stmt;

EXEC SQL COMMIT WORK RELEASE;

exit program;

sql_error:

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 display ’Processing error’;

 exit program with an error;

Using Method 2

What Method 1 does in one step, Method 2 does in two. The dynamic
SQL statement, which cannot be a query, is first PREPAREd (named
and parsed), then EXECUTEd.

With Method 2, the SQL statement can contain placeholders for input
host variables and indicator variables. You can PREPARE the SQL
statement once, then EXECUTE it repeatedly using different values of
the host variables. Also, you need not rePREPARE the SQL statement
after a COMMIT or ROLLBACK (unless you log off and reconnect).

Note that you can use EXECUTE for nonqueries with Method 4.

10 – 10 Programmer’s Guide to the Oracle Precompilers

The syntax of the PREPARE statement follows:

EXEC SQL PREPARE statement_name

 FROM { :host_string | string_literal };

PREPARE parses the SQL statement and gives it a name.

The statement_name is an identifier used by the precompiler, not a host
or program variable, and should not be declared in the Declare Section.
It simply designates the PREPAREd statement you want to EXECUTE.

The syntax of the EXECUTE statement is

EXEC SQL EXECUTE statement_name [USING host_variable_list];

where host_variable_list stands for the following syntax:

:host_variable1[:indicator1] [, host_variable2[:indicator2], ...]

EXECUTE executes the parsed SQL statement, using the values
supplied for each input host variable. In the following example, the
input SQL statement contains the placeholder n:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 emp_number INTEGER;

 delete_stmt CHARACTER(120);

EXEC SQL END DECLARE SECTION;

 search_cond CHARACTER(40);

...

set delete_stmt = ’DELETE FROM EMP WHERE EMPNO = :n AND ’;

display ’Complete the following statement’s search condition:’;

display delete_stmt;

read search_cond;

concatenate delete_stmt, search_cond;

EXEC SQL PREPARE sql_stmt FROM :delete_stmt;

LOOP

 display ’Enter employee number: ’;

 read emp_number;

 IF emp_number = 0 THEN

 exit loop;

 EXEC SQL EXECUTE sql_stmt USING :emp_number;

ENDLOOP;

With Method 2, you must know the datatypes of input host variables at
precompile time. In the last example, emp_number was declared as type
INTEGER. It could also have been declared as type CHARACTER or
REAL, because Oracle supports all these datatype conversions to the
NUMBER datatype.

The USING Clause

An Example

10 – 11Using Dynamic SQL

When the SQL statement is EXECUTEd, input host variables in the
USING clause replace corresponding placeholders in the PREPAREd
dynamic SQL statement.

Every placeholder in the PREPAREd dynamic SQL statement must
correspond to a host variable in the USING clause. So, if the same
placeholder appears two or more times in the PREPAREd statement,
each appearance must correspond to a host variable in the USING
clause. If one of the host variables in the USING clause is an array, all
must be arrays.

The names of the placeholders need not match the names of the host
variables. However, the order of the placeholders in the PREPAREd
dynamic SQL statement must match the order of corresponding host
variables in the USING clause.

To specify nulls, you can associate indicator variables with host
variables in the USING clause. For more information, see “Using
Indicator Variables” on page 4 – 4.

The following program prompts the user for a search condition to be
used in the WHERE clause of an UPDATE statement, then prepares
and executes the statement using Method 2. Notice that the SET clause
of the UPDATE statement contains a placeholder (c).

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(20);

 password CHARACTER(20);

 sql_stmt CHARACTER(80);

 empno INTEGER VALUE 1234;

 deptno1 INTEGER VALUE 97;

 deptno2 INTEGER VALUE 99;

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

EXEC ORACLE OPTION (ORACA=YES);

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

display ’Username? ’;

read username;

display ’Password? ’;

read password;

EXEC SQL CONNECT :username IDENTIFIED BY :password;

display ’Connected to Oracle’;

set sql_stmt =

 ’INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:v1, :v2)’;

display ”V1 = ”, empno, ”V2 = ”, deptno1;

EXEC SQL PREPARE S FROM :sql_stmt;

EXEC SQL EXECUTE S USING :empno, :deptno1;

set empno = empno + 1;

display ”V1 = ”, empno, ”V2 = ”, deptno2;

PREPARE

10 – 12 Programmer’s Guide to the Oracle Precompilers

EXEC SQL EXECUTE S USING :empno, :deptno2;

set sql_stmt =

 ’DELETE FROM EMP WHERE DEPTNO = :v1 OR DEPTNO = :v2”)’;

display ”V1 = ”, deptno1, ”V2 = ”, deptno2;

EXEC SQL PREPARE S FROM :sql_stmt;

EXEC SQL EXECUTE S USING :deptno1, :deptno2;

EXEC SQL COMMIT WORK RELEASE;

exit program;

sql_error:

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 display ’Processing error’;

 EXEC SQL ROLLBACK WORK RELEASE;

 exit program with an error;

Using Method 3

Method 3 is similar to Method 2 but combines the PREPARE statement
with the statements needed to define and manipulate a cursor. This
allows your program to accept and process queries. In fact, if the
dynamic SQL statement is a query, you must use Method 3 or 4.

For Method 3, the number of columns in the query select list and the
number of placeholders for input host variables must be known at
precompile time. However, the names of database objects such as tables
and columns need not be specified until run time (they cannot
duplicate the names of host variables). Clauses that limit, group, and
sort query results (such as WHERE, GROUP BY, and ORDER BY) can
also be specified at run time.

With Method 3, you use the following sequence of embedded SQL
statements:

PREPARE statement_name FROM { :host_string | string_literal };

DECLARE cursor_name CURSOR FOR statement_name;

OPEN cursor_name [USING host_variable_list];

FETCH cursor_name INTO host_variable_list;

CLOSE cursor_name;

Now let us look at what each statement does.

PREPARE parses the dynamic SQL statement and gives it a name. In
the following example, PREPARE parses the query stored in the
character string select_stmt and gives it the name sql_stmt:

set select_stmt = ’SELECT MGR, JOB FROM EMP WHERE SAL < :salary’;

EXEC SQL PREPARE sql_stmt FROM :select_stmt;

DECLARE

OPEN

FETCH

10 – 13Using Dynamic SQL

Commonly, the query WHERE clause is input from a terminal at run
time or is generated by the application.

The identifier sql_stmt is not a host or program variable, but must be
unique. It designates a particular dynamic SQL statement.

DECLARE defines a cursor by giving it a name and associating it with
a specific query. The cursor declaration is local to its precompilation
unit. Continuing our example, DECLARE defines a cursor named
emp_cursor and associates it with sql_stmt, as follows:

EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;

The identifiers sql_stmt and emp_cursor are not host or program
variables, but must be unique. If you declare two cursors using the
same statement name, the precompiler considers the two cursor names
synonymous. For example, if you execute the statements

EXEC SQL PREPARE sql_stmt FROM :select_stmt;

EXEC SQL DECLARE emp_cursor FOR sql_stmt;

EXEC SQL PREPARE sql_stmt FROM :delete_stmt;

EXEC SQL DECLARE dept_cursor FOR sql_stmt;

when you OPEN emp_cursor, you will process the dynamic SQL
statement stored in delete_stmt, not the one stored in select_stmt.

OPEN allocates an Oracle cursor, binds input host variables, and
executes the query, identifying its active set. OPEN also positions the
cursor on the first row in the active set and zeroes the rows–processed
count kept by the third element of SQLERRD in the SQLCA. Input host
variables in the USING clause replace corresponding placeholders in
the PREPAREd dynamic SQL statement.

In our example, OPEN allocates emp_cursor and assigns the host
variable salary to the WHERE clause, as follows:

EXEC SQL OPEN emp_cursor USING :salary;

FETCH returns a row from the active set, assigns column values in the
select list to corresponding host variables in the INTO clause, and
advances the cursor to the next row. When no more rows are found,
FETCH returns the “no data found” Oracle error code to SQLCODE in
the SQLCA.

In our example, FETCH returns a row from the active set and assigns
the values of columns MGR and JOB to host variables mgr_number and
job_title, as follows:

EXEC SQL FETCH emp_cursor INTO :mgr_number, :job_title;

CLOSE

An Example

10 – 14 Programmer’s Guide to the Oracle Precompilers

CLOSE disables the cursor. Once you CLOSE a cursor, you can no
longer FETCH from it. In our example, the CLOSE statement disables
emp_cursor, as follows:

EXEC SQL CLOSE emp_cursor;

The following program prompts the user for a search condition to be
used in the WHERE clause of a query, then prepares and executes the
query using Method 3.

EXEC SQL BEGIN DECLARE SECTION;

 username CHARACTER(20);

 password CHARACTER(20);

 dept_number INTEGER;

 emp_name CHARACTER(10);

 salary REAL;

 select_stmt CHARACTER(120);

EXEC SQL END DECLARE SECTION;

 search_cond CHARACTER(40);

EXEC SQL INCLUDE SQLCA;

display ’Username? ’;

read username;

display ’Password? ’;

read password;

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

EXEC SQL CONNECT :username IDENTIFIED BY :password;

display ’Connected to Oracle’;

set select_stmt = ’SELECT ENAME,SAL FROM EMP WHERE ’;

display ’Enter a search condition for the following statement:’;

display select_stmt;

read search_cond;

concatenate select_stmt, search_cond;

EXEC SQL PREPARE sql_stmt FROM :select_stmt;

EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND GOTO no_more;

display ’Employee Salary’;

display ’–––––––– ––––––’;

LOOP

 EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;

 display emp_name, salary;

ENDLOOP;

no_more:

 EXEC SQL CLOSE emp_cursor;

 EXEC SQL COMMIT WORK RELEASE;

 exit program;

sql_error:

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK WORK RELEASE;

 exit program with an error;

Need for the SQLDA

10 – 15Using Dynamic SQL

Using Method 4

The implementation of Method 4 is very language–dependent.
Therefore, this section only gives an overview. For details, see your
host–language supplement.

There is a kind of dynamic SQL statement that your program cannot
process using Method 3. When the number of select–list items or
placeholders for input host variables is unknown until run time, your
program must use a descriptor. A descriptor is an area of memory used
by your program and Oracle to hold a complete description of the
variables in a dynamic SQL statement.

Recall that for a multirow query, you FETCH selected column values
INTO a list of declared output host variables. If the select list is
unknown, the host–variable list cannot be established at precompile
time by the INTO clause. For example, you know the following query
returns two column values:

SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :dept_number;

However, if you let the user define the select list, you might not know
how many column values the query will return.

To process this kind of dynamic query, your program must issue the
DESCRIBE SELECT LIST command and declare a data structure called
the SQL Descriptor Area (SQLDA). Because it holds descriptions of
columns in the query select list, this structure is also called a select
descriptor.

Likewise, if a dynamic SQL statement contains an unknown number of
placeholders for input host variables, the host–variable list cannot be
established at precompile time by the USING clause.

To process the dynamic SQL statement, your program must issue the
DESCRIBE BIND VARIABLES command and declare another kind of
SQLDA called a bind descriptor to hold descriptions of the placeholders
for the input host variables. (Input host variables are also called bind
variables.)

If your program has more than one active SQL statement (it might have
OPENed two or more cursors, for example), each statement must have
its own SQLDA(s). However, non–concurrent cursors can reuse
SQLDAs. There is no set limit on the number of SQLDAs in a program.

The DESCRIBE
Statement

What Is a SQLDA?

10 – 16 Programmer’s Guide to the Oracle Precompilers

DESCRIBE initializes a descriptor to hold descriptions of select–list
items or input host variables.

If you supply a select descriptor, the DESCRIBE SELECT LIST
statement examines each select–list item in a PREPAREd dynamic
query to determine its name, datatype, constraints, length, scale, and
precision. It then stores this information in the select descriptor.

If you supply a bind descriptor, the DESCRIBE BIND VARIABLES
statement examines each placeholder in a PREPAREd dynamic SQL
statement to determine its name, length, and the datatype of its
associated input host variable. It then stores this information in the
bind descriptor for your use. For example, you might use placeholder
names to prompt the user for the values of input host variables.

A SQLDA is a host–program data structure that holds descriptions of
select–list items or input host variables.

SQLDA variables are not defined in the Declare Section.

Though SQLDAs differ among host languages, a generic select SQLDA
contains the following information about a query select list:

• maximum number of columns that can be DESCRIBEd

• actual number of columns found by DESCRIBE

• addresses of buffers to store column values

• lengths of column values

• datatypes of column values

• addresses of indicator–variable values

• addresses of buffers to store column names

• sizes of buffers to store column names

• current lengths of column names

A generic bind SQLDA contains the following information about the
input host variables in a SQL statement:

• maximum number of placeholders that can be DESCRIBEd

• actual number of placeholders found by DESCRIBE

• addresses of input host variables

• lengths of input host variables

• datatypes of input host variables

• addresses of indicator variables

Implementing
Method 4

10 – 17Using Dynamic SQL

• addresses of buffers to store placeholder names

• sizes of buffers to store placeholder names

• current lengths of placeholder names

• addresses of buffers to store indicator–variable names

• sizes of buffers to store indicator–variable names

• current lengths of indicator–variable names

To see the SQLDA structure and variable names in a particular host
language, refer to your host–language supplement.

With Method 4, you generally use the following sequence of embedded
SQL statements:

EXEC SQL PREPARE statement_name

 FROM { :host_string | string_literal };

EXEC SQL DECLARE cursor_name CURSOR FOR statement_name;

EXEC SQL DESCRIBE BIND VARIABLES FOR statement_name

 INTO bind_descriptor_name;

EXEC SQL OPEN cursor_name

 [USING DESCRIPTOR bind_descriptor_name];

EXEC SQL DESCRIBE [SELECT LIST FOR] statement_name

 INTO select_descriptor_name;

EXEC SQL FETCH cursor_name

 USING DESCRIPTOR select_descriptor_name;

EXEC SQL CLOSE cursor_name;

Select and bind descriptors need not work in tandem. If the number of
columns in a query select list is known, but the number of placeholders
for input host variables is unknown, you can use the Method 4 OPEN
statement with the following Method 3 FETCH statement:

EXEC SQL FETCH emp_cursor INTO host_variable_list;

Conversely, if the number of placeholders for input host variables is
known, but the number of columns in the select list is unknown, you
can use the following Method 3 OPEN statement with the Method 4
FETCH statement:

EXEC SQL OPEN cursor_name [USING host_variable_list];

Note that EXECUTE can be used for nonqueries with Method 4.

To learn how these statements allow your program to process dynamic
SQL statements using descriptors, see your host–language supplement.

10 – 18 Programmer’s Guide to the Oracle Precompilers

Using the DECLARE STATEMENT Statement

With Methods 2, 3, and 4, you might need to use the statement

EXEC SQL [AT db_name] DECLARE statement_name STATEMENT;

where db_name and statement_name are identifiers used by th
precompiler, not host or program variables.

DECLARE STATEMENT declares the name of a dynamic SQL
statement so that the statement can be referenced by PREPARE,
EXECUTE, DECLARE CURSOR, and DESCRIBE. It is required if you
want to execute the dynamic SQL statement at a non–default database.
An example using Method 2 follows:

EXEC SQL AT remote_db DECLARE sql_stmt STATEMENT;

EXEC SQL PREPARE sql_stmt FROM :sql_string;

EXEC SQL EXECUTE sql_stmt;

In the example, remote_db tells Oracle where to EXECUTE the SQL
statement.

With Methods 3 and 4, DECLARE STATEMENT is also required if the
DECLARE CURSOR statement precedes the PREPARE statement, as
shown in the following example:

EXEC SQL DECLARE sql_stmt STATEMENT;

EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;

EXEC SQL PREPARE sql_stmt FROM :sql_string;

The usual sequence of statements is

EXEC SQL PREPARE sql_stmt FROM :sql_string;

EXEC SQL DECLARE emp_cursor CURSOR FOR sql_stmt;

Using Host Arrays

Usage of host arrays in static and dynamic SQL is similar. For example,
to use input host arrays with dynamic SQL Method 2, use the syntax

EXEC SQL EXECUTE statement_name USING host_array_list;

where host_array_list contains one or more host arrays. With Method 3,
use the following syntax:

OPEN cursor_name USING host_array_list;

To use output host arrays with Method 3, use the following syntax:

FETCH cursor_name INTO host_array_list;

With Method 1

With Method 2

With Method 3

10 – 19Using Dynamic SQL

With Method 4, you must use the optional FOR clause to tell Oracle the
size of your input or output host array. To learn how this is done, see
your host–language supplement.

Using PL/SQL

The Oracle Precompilers treat a PL/SQL block like a single SQL
statement. So, like a SQL statement, a PL/SQL block can be stored in a
string host variable or literal. When you store the PL/SQL block in the
string, omit the keywords EXEC SQL EXECUTE, the keyword
END–EXEC, and the statement terminator.

However, there are two differences in the way the precompiler handles
SQL and PL/SQL:

• The precompiler treats all PL/SQL host variables as input host
variables whether they serve as input or output host variables
(or both) inside the PL/SQL block.

• You cannot FETCH from a PL/SQL block because it might
contain any number of SQL statements.

If the PL/SQL block contains no host variables, you can use Method 1
to EXECUTE the PL/SQL string in the usual way.

If the PL/SQL block contains a known number of input and output
host variables, you can use Method 2 to PREPARE and EXECUTE the
PL/SQL string in the usual way.

You must put all host variables in the USING clause. When the PL/SQL
string is EXECUTEd, host variables in the USING clause replace
corresponding placeholders in the PREPAREd string. Though the
precompiler treats all PL/SQL host variables as input host variables,
values are assigned correctly. Input (program) values are assigned to
input host variables, and output (column) values are assigned to output
host variables.

Every placeholder in the PREPAREd PL/SQL string must correspond
to a host variable in the USING clause. So, if the same placeholder
appears two or more times in the PREPAREd string, each appearance
must correspond to a host variable in the USING clause.

Methods 2 and 3 are the same except that Method 3 allows FETCHing.
Since you cannot FETCH from a PL/SQL block, use Method 2 instead.

With Method 4

☞

Caution

10 – 20 Programmer’s Guide to the Oracle Precompilers

If the PL/SQL block contains an unknown number of input or output
host variables, you must use Method 4.

To use Method 4, you set up one bind descriptor for all the input and
output host variables. Executing DESCRIBE BIND VARIABLES stores
information about input and output host variables in the bind
descriptor. Because the precompiler treats all PL/SQL host variables as
input host variables, executing DESCRIBE SELECT LIST has no effect.

The use of bind descriptors with Method 4 is detailed in your
host–language supplement.

Attention: In dynamic SQL Method 4, a host array cannot be
bound to a PL/SQL procedure with a parameter of type
“table.”

Do not use ANSI–style comments (– – ...) in a PL/SQL block that will
be processed dynamically because end–of–line characters are ignored.
As a result, ANSI–style comments extend to the end of the block, not
just to the end of a line. Instead, use C–style comments (/* ... */).

C H A P T E R

11
T

11 – 1Writing User Exits

Writing User Exits

his chapter focuses on writing user exits for your SQL*Forms and
Oracle Forms applications. First, you learn the EXEC IAF statements
that allow a SQL*Forms application to interface with user exits. Then,
you learn how to write and link a SQL*Forms user exit. You also learn
how to use EXEC TOOLS statements with Oracle Forms. (SQL*Forms
does not support EXEC TOOLS.) That way, you can use EXEC IAF
statements to enhance your existing applications and EXEC TOOLS
statements to build new applications. The following topics are covered:

• common uses for user exits

• writing a user exit

• passing values between SQL*Forms and a user exit

• implementing a user exit

• calling a user exit

• guidelines for SQL*Forms user exits

• using EXEC TOOLS statements with Oracle Forms

This chapter is supplemental. For more information about user exits,
see the SQL*Forms Designer’s Reference, the Oracle Forms Reference
Manual, Vol. 2, and your system–specific Oracle manuals.

11 – 2 Programmer’s Guide to the Oracle Precompilers

What Is a User Exit?

A user exit is a host–language subroutine written by you and called by
SQL*Forms to do special–purpose processing. You can embed SQL
commands and PL/SQL blocks in your user exit, then precompile it as
you would a host program.

When called by a SQL*Forms trigger, the user exit runs, then returns a
status code to SQL*Forms (refer to Figure 11 – 1). Your user exit can
display messages on the SQL*Forms status line, get and put field
values, manipulate Oracle data, do high–speed computations and table
lookups—even log on to different databases.

SQL*Forms

Field

Message

Status Code

Values

Oracle7 Server

Trigger

User Exit
Message Line

Figure 11 – 1 SQL*Forms Communicating with a User Exit

11 – 3Writing User Exits

Why Write a User Exit?

SQL*Forms Version 3 allows you to use PL/SQL blocks in triggers. So,
in most cases, instead of calling a user exit, you can use the procedural
power of PL/SQL. If the need arises, you can call user exits from a
PL/SQL block with the USER_EXIT function.

User exits are harder to write and implement than SQL, PL/SQL, or
SQL*Forms commands. So, you will probably use them only to do
processing that is beyond the scope of SQL, PL/SQL, and SQL*Forms.
Some common uses follow:

• operations more quickly or easily performed in third
generation languages like C and FORTRAN (for example,
numeric integration)

• controlling real time devices or processes (for example, issuing
a sequence of instructions to a printer or graphics device)

• data manipulations that need extended procedural capabilities
(for example, recursive sorting)

• special file I/O operations

Developing a User Exit

This section outlines the way to develop a SQL*Forms user exit; later
sections go into more detail. For information about EXEC TOOLS
statements, which are available with Oracle Forms, see ‘‘EXEC TOOLS
Statements’’ on page 11 – 12.

To incorporate a user exit into a form, you take the following steps:

1. Write the user exit in a supported host language.

2. Precompile the source code.

3. Compile the modified source code.

4. Use the GENXTB utility to create a database table, IAPXTB.

5. Use the GENXTB form in SQL*Forms to insert your user exit
information into the database table.

6. Use the GENXTB utility to read the information from the table and
create an IAPXIT source module. Then, compile the source module.

7. Create a new IAP (the SQL*Forms component that runs a form) by
linking the standard IAP object modules, your user exit object
module, and the IAPXIT object module created in step 6.

Requirements for
Variables

11 – 4 Programmer’s Guide to the Oracle Precompilers

8. In the form, define a trigger to call the user exit.

9. Instruct operators to use the new IAP when running the form. This
is unnecessary if the new IAP replaces the standard one. For
details, see your system–specific Oracle manuals.

Writing a User Exit

You can use the following kinds of statements to write your SQL*Forms
user exit:

• host–language

• EXEC SQL

• EXEC ORACLE

• EXEC IAF GET

• EXEC IAF PUT

This section focuses on the EXEC IAF GET and PUT statements, which
let you pass values between SQL*Forms and a user exit.

The variables used in EXEC IAF statements must correspond to field
names used in the form definition. If a field reference is ambiguous
because you did not specify a block name, you get an error. An invalid
or ambiguous reference to a form field generates an error.

Host variables must be named in the user exit Declare Section and
must be prefixed with a colon (:) in EXEC IAF statements.

Note: Indicator variables are not allowed in EXEC IAF GET
and PUT statements.

The IAF GET
Statement

11 – 5Writing User Exits

This statement allows your user exit to “get” values from fields on a
form and assign them to host variables. The user exit can then use the
values in calculations, data manipulations, updates, and so on. The
syntax of the GET statement follows:

EXEC IAF GET field_name1, field_name2, ...

 INTO :host_variable1, :host_variable2, ...;

where field_name can be any of the following SQL*Forms variables:

• field

• block.field

• system variable

• global variable

• host variable (prefixed with a colon) containing the value of a
field, block.field, system variable, or global variable

If field_name is not qualified, it must be unique.

The following example shows how a user exit GETs a field value and
assigns it to a host variable:

EXEC IAF GET employee.job INTO :new_job;

All field values are character strings. If it can, GET converts a field
value to the datatype of the corresponding host variable. If an illegal or
unsupported datatype conversion is attempted, an error is generated.

In the last example, a constant is used to specify block.field. You can also
use a host string to specify block and field names, as follows:

set blkfld = ’employee.job’;

EXEC IAF GET :blkfld INTO :new_job;

Unless the field is unique, the host string must contain the full
block.field reference with intervening period. For example, the following
usage is invalid:

set blk = ’employee’;

set fld = ’job’;

EXEC IAF GET :blk.:fld INTO :new_job;

You can mix explicit and stored field names in a GET statement field
list, but not in a single field reference. For example, the following usage
is invalid:

set fld = ’job’;

EXEC IAF GET employee.:fld INTO :new_job;

The IAF PUT
Statement

11 – 6 Programmer’s Guide to the Oracle Precompilers

This statement allows your user exit to “put” the values of constants
and host variables into fields on a form. Thus, the user exit can display
on the SQL*Forms screen any value or message you like. The syntax of
the PUT statement follows:

EXEC IAF PUT field_name1, field_name2, ...

 VALUES (:host_variable1, :host_variable2, ...);

where field_name can be any of the following SQL*Forms variables:

• field

• block.field

• system variable

• global variable

• host variable (prefixed with a colon) containing the value of a
field, block.field, system variable, or global variable

The following example shows how a user exit PUTs the values of a
numeric constant, string constant, and host variable into fields on
a form:

EXEC IAF PUT employee.number, employee.name, employee.job

 VALUES (7934, ’MILLER’, :new_job);

Like GET, PUT lets you use a host string to specify block and field
names, as follows:

set blkfld = ’employee.job’;

EXEC IAF PUT :blkfld VALUES (:new_job);

On character–mode terminals, a value PUT into a field is displayed
when the user exit returns, rather than when the assignment is made,
provided the field is on the current display page. On block–mode
terminals, the value is displayed the next time a field is read from
the device.

If a user exit changes the value of a field several times, only the last
change takes effect.

11 – 7Writing User Exits

Calling a User Exit

You call a user exit from a SQL*Forms trigger using a packaged
procedure named USER_EXIT (supplied with SQL*Forms). The syntax
you use is

USER_EXIT(user_exit_string [, error_string]);

where user_exit_string contains the name of the user exit plus optional
parameters and error_string contains an error message issued by
SQL*Forms if the user exit fails. For example, the following trigger
command calls a user exit named LOOKUP:

USER_EXIT(’LOOKUP’);

Notice that the user exit string is enclosed by single (not double) quotes.

Passing Parameters to a User Exit

When you call a user exit, SQL*Forms passes it the following
parameters automatically:

is the user exit string.

is the length (in characters) of the user exit
string.

is the error string (failure message) if one is
defined.

is the length of the error string.

is a Boolean value indicating whether the
exit was called in normal or query mode.

However, the user exit string allows you to pass additional parameters
to the user exit. For example, the following trigger command passes
two parameters and an error message to the user exit LOOKUP:

USER_EXIT(’LOOKUP 2025 A’, ’Lookup failed’);

You can use this feature to pass field names to the user exit, as the
following example shows:

USER_EXIT(’CONCAT firstname, lastname, address’);

However, it is up to the user exit, not SQL*Forms, to parse the user
exit string.

Command Line

Command Line Length

Error Message

Error Message Length

In–Query

The IAP Constants

Using the SQLIEM
Function

11 – 8 Programmer’s Guide to the Oracle Precompilers

Returning Values to a Form

When a user exit returns control to SQL*Forms, it must also return a
code indicating whether it succeeded, failed, or suffered a fatal error.
The return code is an integer constant generated by precompiler (see
the next section). The three results have the following meanings:

The user exit encountered no errors. SQL*Forms proceeds
to the success label or the next step, unless the Reverse
Return Code switch is set by the calling trigger step.

The user exit detected an error, such as an invalid value in
a field. An optional message passed by the exit appears on
the message line at the bottom of the SQL*Forms screen
and on the Display Error screen. SQL*Forms responds as it
does to a SQL statement that affects no rows.

The user exit detected a condition that makes further
processing impossible, such as an execution error in a SQL
statement. An optional error message passed by the exit
appears on the SQL*Forms Display Error screen.
SQL*Forms responds as it does to a fatal SQL error.

If a user exit changes the value of a field, then returns a failure or fatal
error code, SQL*Forms does not discard the change. Nor does
SQL*Forms discard changes when the Reverse Return Code switch is
set and a success code is returned.

The precompiler generates three symbolic constants for use as return
codes. They are prefixed with IAP. For example, the three constants
might be IAPSUCC, IAPFAIL, and IAPFTL.

By calling the function SQLIEM, your user exit can specify an error
message that SQL*Forms will display on the message line if the trigger
step fails or on the Display Error screen if the step causes a fatal error.
The specified message replaces any message defined for the step.

The syntax of the SQLIEM function call is

SQLIEM (error_message, message_length);

where error_message and message_length are character and integer
variables, respectively. The Oracle Precompilers generate the
appropriate external function declaration for you. You pass both
parameters by reference; that is, you pass their addresses, not their
values. SQLIEM is a SQL*Forms function; it cannot be called from
other Oracle tools.

success

failure

fatal error

Using WHENEVER

11 – 9Writing User Exits

You can use the WHENEVER statement in an exit to detect invalid
datatype conversions (SQLERROR), truncated values PUT into form
fields (SQLWARNING), and queries that return no rows (NOT FOUND).

An Example

The following example shows how a typical user exit is coded.
Notice that, like a host program, the user exit has a Declare Section
and a SQLCA.

–– subroutine MYEXIT

EXEC SQL BEGIN DECLARE SECTION;

 field1 CHARACTER(20);

 field2 CHARACTER(20);

 value1 CHARACTER(20);

 value2 CHARACTER(20);

 result_val CHARACTER(20);

EXEC SQL END DECLARE SECTION;

 errmsg CHARACTER(80);

 errlen INTEGER;

EXEC SQL INCLUDE SQLCA;

EXEC SQL WHENEVER SQLERROR GOTO sqlerror;

–– get field values from form

EXEC IAF GET :field1, :field2 INTO :value1, :value2;

–– manipulate values to obtain result_val

–– put result_val into form field

EXEC IAF PUT result VALUES (:result_val);

return(IAPSUCC); –– trigger step succeeded

sqlerror:

 set errmsg = CONCAT(’MYEXIT: ’, sqlca.sqlerrm.sqlerrmc);

 set errlen = LENGTH(errmsg);

 sqliem(errmsg, errlen); –– pass error message to SQL*Forms

 return(IAPFAIL); –– trigger step failed

For a complete host–language example, see your host –language
supplement.

11 – 10 Programmer’s Guide to the Oracle Precompilers

Precompiling and Compiling a User Exit

User exits are precompiled like stand–alone host programs. Refer to
Chapter 6, “Running the Oracle Precompilers.”

For instructions on compiling a user exit, see your system–specific
Oracle manuals.

Using the GENXTB Utility

The IAP program table IAPXTB in module IAPXIT contains an entry
for each user exit linked into IAP. IAPXTB tells IAP the name, location,
and host language of each user exit. When you add a new user exit to
IAP, you must add a corresponding entry to IAPXTB.

IAPXTB is derived from a database table, also named IAPXTB. You can
modify the database table by running the GENXTB form on the
operating system command line, as follows:

RUNFORM GENXTB username/password

A form is displayed that allows you to enter the following information
for each user exit you define:

• exit name

• host–language code (COB, FOR, PAS, or PLI)

• date created

• date last modified

• comments

After modifying the IAPXTB database table, use the GENXTB utility to
read the table and create an Assembler or C source program that
defines the module IAPXIT and the IAPXTB program table it contains.
The source language used depends on your operating system. The
syntax you use to run the GENXTB utility is

GENXTB username/password outfile

where outfile is the name you give the Assembler or source program
that GENXTB creates.

Naming the Exit

Connecting to Oracle

Issuing I/O Calls

Using Host Variables

11 – 11Writing User Exits

Linking a User Exit into SQL*Forms

Before running a form that calls a user exit, you must link the user exit
into IAP. The user exit can be linked into your standard version of IAP
or into a special version for those forms that call the exit.

To produce a new executable copy of IAP, link your user exit object
module, the standard IAP modules, the IAPXIT module, and any
modules needed from the Oracle and host–language link libraries. The
details of linking are system–dependent, so check your system–specific
Oracle manuals.

Guidelines for SQL*Forms User Exits

The guidelines in this section will help you avoid some common
pitfalls.

The name of your user exit cannot be an Oracle reserved word. Also
avoid using names that conflict with the names of SQL*Forms
commands, function codes, and externally defined names used by
SQL*Forms.

SQL*Forms converts the name of a user exit to upper case before
searching for the exit. Therefore, the exit name must be in upper case in
your source code if your host language is case–sensitive.

The name of the user exit entry point in the source code becomes the
name of the user exit itself. The exit name must be a valid file name for
your host language and operating system.

User exits communicate with Oracle via the connection made by
SQL*Forms. However, a user exit can establish additional connections
to any database via SQL*Net. For more information, see “Concurrent
Logons” on page 3 – 36.

SQL*Forms I/O routines might conflict with host–language printer I/O
routines. If they do, your user exit will be unable to issue printer I/O
calls. File I/O is supported but screen I/O is not.

Restrictions on the use of host variables in a stand–alone program also
apply to user exits. Host variables must be named in the user exit
Declare Section and must be prefixed with a colon in EXEC SQL and
EXEC IAF statements. However, the use of host arrays is not allowed in
EXEC IAF statements.

Updating Tables

Issuing Commands

11 – 12 Programmer’s Guide to the Oracle Precompilers

Generally, a user exit should not UPDATE database tables associated
with a form. For example, suppose an operator updates a record in the
SQL*Forms work space, then a user exit UPDATEs the corresponding
row in the associated database table. When the transaction is
COMMITted, the record in the SQL*Forms work space is applied to the
table, overwriting the user exit UPDATE.

Avoid issuing a COMMIT or ROLLBACK command from your user
exit because Oracle will commit or roll back work begun by the
SQL*Forms operator, not just work done by the user exit. Instead, issue
the COMMIT or ROLLBACK from the SQL*Forms trigger. This also
applies to data definition commands (such as ALTER andCREATE)
because they issue an implicit COMMIT before and after executing.

EXEC TOOLS Statements

EXEC TOOLS statements support the basic Oracle Toolset (Oracle
Forms, Oracle Reports, and Oracle Graphics) by providing a generic
way to handle get, set, and exception callbacks from user exits. The
following discussion focuses on Oracle Forms but the same concepts
apply to Oracle Reports and Oracle Graphics.

Besides EXEC SQL, EXEC ORACLE, and host language statements,
you can use the following EXEC TOOLS statements to write an Oracle
Forms user exit:

• SET

• GET

• SET CONTEXT

• GET CONTEXT

• MESSAGE

The EXEC TOOLS GET and SET statements replace the EXEC IAF GET
and PUT statements used with SQL*Forms. Unlike IAF GET and PUT,
TOOLS GET and SET accept indicator variables. The EXEC TOOLS
MESSAGE statement replaces the message–handling function SQLIEM.
The EXEC TOOLS SET CONTEXT and GET CONTEXT statements are
new and not available with SQL*Forms, Version 3.

Note: COBOL and FORTRAN do not have a pointer datatype,
so you cannot use the SET CONTEXT and GET CONTEXT
statements in a Pro*COBOL or Pro*FORTRAN program.

EXEC TOOLS SET

EXEC TOOLS GET

11 – 13Writing User Exits

The EXEC TOOLS SET statement passes values from your user exit to
Oracle Forms. Specifically, it assigns the values of host variables and
constants to Oracle Forms variables and items. The values are
displayed after the user exit returns control to the form.

To code the EXEC TOOLS SET statement, you use the syntax

EXEC TOOLS SET form_variable[, ...]

 VALUES ({:host_variable[:indicator] | constant}[, ...]);

where form_variable is an Oracle Forms field, parameter, system
variable, or global variable, or a host variable (prefixed with a colon)
containing the name of one of the foregoing items.

In the following Pro*C example, your user exit passes an employee
name (with optional indicator) to Oracle Forms:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 char ename[20];

 short ename_ind;

EXEC SQL END DECLARE SECTION;

...

strcpy(ename, ”MILLER”);

ename_ind = 0;

EXEC TOOLS SET emp.ename VALUES (:ename:ename_ind);

In this example, emp.ename is an Oracle Forms block.field.

The EXEC TOOLS GET statement passes values from Oracle Forms to
your user exit. Specifically, it assigns the values of Oracle Forms
variables and items to host variables. As soon as the values are passed,
the user exit can use them for any purpose.

To code the EXEC TOOLS GET statement, you use the syntax

EXEC TOOLS GET form_variable[, ...]

 INTO :host_variable[:indicator][, ...];

where form_variable is an Oracle Forms field, parameter, system
variable, or global variable, or a host variable containing the name of
one of the foregoing items.

In the following example, Oracle Forms passes an employee name from
the block.field emp.ename to your user exit:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 char ename[20];

EXEC SQL END DECLARE SECTION;

...

EXEC TOOLS GET emp.ename INTO :ename;

EXEC TOOLS SET
CONTEXT

EXEC TOOLS GET
CONTEXT

11 – 14 Programmer’s Guide to the Oracle Precompilers

The EXEC TOOLS SET CONTEXT statement lets you save context
information from one user exit call to another. SET CONTEXT names a
host–language pointer variable that you can reference later in an EXEC
TOOLS GET CONTEXT statement. The pointer variable points to the
block of memory in which the context information is stored. With the
SET CONTEXT statement, you need not declare a global variable to
hold the information.

To code the EXEC TOOLS SET CONTEXT statement, use the syntax

EXEC TOOLS SET CONTEXT :host_pointer_variable

 [IDENTIFIED] BY context_name;

where the optional keyword IDENTIFIED can be used to improve
readability and context_name is an undeclared identifier or a character
host variable that names the context area.

In the following example, your user exit saves context information for
later use:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 char context1[30];

EXEC SQL END DECLARE SECTION;

...

strcpy(context1, ”This is context1”);

EXEC TOOLS SET CONTEXT :context1 BY my_app1;

In this example, the context name my_app1 is an undeclared identifier.
Note that in C, when a char array is used as an argument, the array
name is synonymous with a pointer to that array.

The EXEC TOOLS GET CONTEXT statement retrieves the value of a
host–language pointer variable into your user exit. The pointer variable
points to a block of memory in which context information is stored.

To code the EXEC TOOLS GET CONTEXT statement, use the syntax

EXEC TOOLS GET CONTEXT context_name INTO :host_pointer_variable;

where context_name is an undeclared identifier or a character host
variable that names the context area.

EXEC TOOLS
MESSAGE

11 – 15Writing User Exits

In the following Pro*C example, your user exit retrieves a pointer to
context information saved earlier:

EXEC SQL BEGIN DECLARE SECTION;

 ...

 char *ctx_ptr;

EXEC SQL END DECLARE SECTION;

...

EXEC TOOLS GET CONTEXT my_app1 INTO :ctx_ptr;

In this example, the context name my_app1 is an undeclared identifier.

The EXEC TOOLS MESSAGE statement passes a message from your
user exit to Oracle Forms. The message is displayed on the Oracle
Forms message line after the user exit returns control to the form.

To code the EXEC TOOLS MESSAGE statement, you use the syntax

EXEC TOOLS MESSAGE message_text [severity_code];

where message_text is a quoted string or a character host variable, and
the optional severity_code is an integer constant or host variable. The
MESSAGE statement does not accept indicator variables.

In the following Pro*C example, your user exit passes an error message
and severity code to Oracle Forms:

EXEC TOOLS MESSAGE ’Bad field name! Please reenter.’ 15;

11 – 16 Programmer’s Guide to the Oracle Precompilers

A P P E N D I X

A
T

A – 1New Features

New Features

his appendix looks at the improvements and new features offered
by the Oracle Precompilers Release 1.8. Designed to meet the practical
needs of professional software developers, these features will help you
build effective, reliable applications.

Using DBMS=V6

Using DBMS=V7 and
MODE=ORACLE

Related Error Messages

A – 2 Programmer’s Guide to the Oracle Precompilers

Fetching NULLs without Using Indicator Variables

With releases 1.5, 1.6, and 1.7 of the Oracle Precompilers, source files
that FETCH data into host variables without associated indicator
variables return an ORA–01405 message at runtime if a NULL is
returned to the host variable. With release 1.8, when you specify
MODE=ORACLE and DBMS=V7, you can disable the ORA–01405
message by also specifying UNSAFE_NULL=YES.

When developing applications for the Oracle7 Server, the preferred
practice is to include indicator variables for any host variable that
might have a NULL returned to it. When migrating applications from
Oracle Version 6 to Oracle7, however, the UNSAFE_NULL option can
significantly ease the process.

For more information, see “UNSAFE_NULL” on page 6 – 37 and
“Using Indicator Variables” Chapter 1 of your host–language
supplement.

Applications precompiled with DBMS=V6 maintain full compatibility
with Oracle Version 6. When upgrading to Oracle7, if you precompile
with DBMS=V6 specified, your applications will be unaffected by the
ORA–01405 messages.

Applications precompiled with MODE=ORACLE and DBMS=V7
return the ORA–01405 error at runtime if a NULL is returned to a host
variable when there is no associated indicator variable. When
upgrading to Oracle7 with these options specified, you will need to
migrate your applications in one of two ways:

• modify your source code to include the necessary indicator
variables

• specify UNSAFE_NULL=YES on the command line

If you are upgrading to Oracle7 and use DBMS=V7 when precompiling,
or if you intend to use new Oracle7 features that are different from
Oracle Version 6, in most instances, the change requires minimal
modification to your source files. However, if your application may
FETCH null values into host variables without associated indicator
variables, specify UNSAFE_NULL=YES to disable the ORA–01405
message and avoid adding the relevant indicator variables to your
source files.

For information about precompile time messages associated with the
UNSAFE_NULL option, see Oracle7 Server Messages..

A P P E N D I X

B

T

B – 1Oracle Reserved Words, Keywords, and Namespaces

Oracle Reserved Words,
Keywords, and
Namespaces

his appendix lists words that have a special meaning to Oracle.
Each word plays a specific role in the context in which it appears. For
example, in an INSERT statement, the reserved word INTO introduces
the tables to which rows will be added. But, in a FETCH or SELECT
statement, the reserved word INTO introduces the output host
variables to which column values will be assigned.

B – 2 Programmer’s Guide to the Oracle Precompilers

Oracle Reserved Words

The following words are reserved by Oracle. That is, they have a
special meaning to Oracle and so cannot be redefined. For this reason,
you cannot use them to name database objects such as columns, tables,
or indexes.

ACCESS ELSE MODIFY START

ADD EXCLUSIVE NOAUDIT SELECT

ALL EXISTS NOCOMPRESS SESSION

ALTER FILE NOT SET

AND FLOAT NOTFOUND SHARE

ANY FOR NOWAIT SIZE

ARRAYLEN FROM NULL SMALLINT

AS GRANT NUMBER SQLBUF

ASC GROUP OF SUCCESSFUL

AUDIT HAVING OFFLINE SYNONYM

BETWEEN IDENTIFIED ON SYSDATE

BY IMMEDIATE ONLINE TABLE

CHAR IN OPTION THEN

CHECK INCREMENT OR TO

CLUSTER INDEX ORDER TRIGGER

COLUMN INITIAL PCTFREE UID

COMMENT INSERT PRIOR UNION

COMPRESS INTEGER PRIVILEGES UNIQUE

CONNECT INTERSECT PUBLIC UPDATE

CREATE INTO RAW USER

CURRENT IS RENAME VALIDATE

DATE LEVEL RESOURCE VALUES

DECIMAL LIKE REVOKE VARCHAR

DEFAULT LOCK ROW VARCHAR2

DELETE LONG ROWID VIEW

DESC MAXEXTENTS ROWLABEL WHENEVER

DISTINCT MINUS ROWNUM WHERE

DROP MODE ROWS WITH

B – 3Oracle Reserved Words, Keywords, and Namespaces

Oracle Keywords

The following words also have a special meaning to Oracle but are not
reserved words and so can be redefined. However, some might
eventually become reserved words.

ADMIN CURSOR FOUND MOUNT

AFTER CYCLE FUNCTION NEXT

ALLOCATE DATABASE GO NEW

ANALYZE DATAFILE GOTO NOARCHIVELOG

ARCHIVE DBA GROUPS NOCACHE

ARCHIVELOG DEC INCLUDING NOCYCLE

AUTHORIZATION DECLARE INDICATOR NOMAXVALUE

AVG DISABLE INITRANS NOMINVALUE

BACKUP DISMOUNT INSTANCE NONE

BEGIN DOUBLE INT NOORDER

BECOME DUMP KEY NORESETLOGS

BEFORE EACH LANGUAGE NORMAL

BLOCK ENABLE LAYER NOSORT

BODY END LINK NUMERIC

CACHE ESCAPE LISTS OFF

CANCEL EVENTS LOGFILE OLD

CASCADE EXCEPT MANAGE ONLY

CHANGE EXCEPTIONS MANUAL OPEN

CHARACTER EXEC MAX OPTIMAL

CHECKPOINT EXPLAIN MAXDATAFILES OWN

CLOSE EXECUTE MAXINSTANCES PACKAGE

COBOL EXTENT MAXLOGFILES PARALLEL

COMMIT EXTERNALLY MAXLOGHISTORY PCTINCREASE

COMPILE FETCH MAXLOGMEMBERS PCTUSED

CONSTRAINT FLUSH MAXTRANS PLAN

CONSTRAINTS FREELIST MAXVALUE PLI

CONTENTS FREELISTS MIN PRECISION

CONTINUE FORCE MINEXTENTS PRIMARY

CONTROLFILE FOREIGN MINVALUE PRIVATE

COUNT FORTRAN MODULE PROCEDURE

B – 4 Programmer’s Guide to the Oracle Precompilers

Oracle Keywords (continued):

PROFILE SAVEPOINT SQLSTATE TRACING

QUOTA SCHEMA STATEMENT_ID TRANSACTION

READ SCN STATISTICS TRIGGERS

REAL SECTION STOP TRUNCATE

RECOVER SEGMENT STORAGE UNDER

REFERENCES SEQUENCE SUM UNLIMITED

REFERENCING SHARED SWITCH UNTIL

RESETLOGS SNAPSHOT SYSTEM USE

RESTRICTED SOME TABLES USING

REUSE SORT TABLESPACE WHEN

ROLE SQL TEMPORARY WRITE

ROLES SQLCODE THREAD WORK

ROLLBACK SQLERROR TIME

PL/SQL Reserved Words

The following PL/SQL keywords may require special treatment when
used in embedded SQL statements.

ABORT BETWEEN CRASH DIGITS

ACCEPT BINARY_INTEGER CREATE DISPOSE

ACCESS BODY CURRENT DISTINCT

ADD BOOLEAN CURRVAL DO

ALL BY CURSOR DROP

ALTER CASE DATABASE ELSE

AND CHAR DATA_BASE ELSIF

ANY CHAR_BASE DATE END

ARRAY CHECK DBA ENTRY

ARRAYLEN CLOSE DEBUGOFF EXCEPTION

AS CLUSTER DEBUGON EXCEPTION_INIT

ASC CLUSTERS DECLARE EXISTS

ASSERT COLAUTH DECIMAL EXIT

ASSIGN COLUMNS DEFAULT FALSE

AT COMMIT DEFINITION FETCH

AUTHORIZATION COMPRESS DELAY FLOAT

AVG CONNECT DELETE FOR

BASE_TABLE CONSTANT DELTA FORM

BEGIN COUNT DESC FROM

B – 5Oracle Reserved Words, Keywords, and Namespaces

PL/SQL Reserved Words (continued):

FUNCTION NEW RELEASE SUM

GENERIC NEXTVAL REMR TABAUTH

GOTO NOCOMPRESS RENAME TABLE

GRANT NOT RESOURCE TABLES

GROUP NULL RETURN TASK

HAVING NUMBER REVERSE TERMINATE

IDENTIFIED NUMBER_BASE REVOKE THEN

IF OF ROLLBACK TO

IN ON ROWID TRUE

INDEX OPEN ROWLABEL TYPE

INDEXES OPTION ROWNUM UNION

INDICATOR OR ROWTYPE UNIQUE

INSERT ORDER RUN UPDATE

INTEGER OTHERS SAVEPOINT USE

INTERSECT OUT SCHEMA VALUES

INTO PACKAGE SELECT VARCHAR

IS PARTITION SEPARATE VARCHAR2

LEVEL PCTFREE SET VARIANCE

LIKE POSITIVE SIZE VIEW

LIMITED PRAGMA SMALLINT VIEWS

LOOP PRIOR SPACE WHEN

MAX PRIVATE SQL WHERE

MIN PROCEDURE SQLCODE WHILE

MINUS PUBLIC SQLERRM WITH

MLSLABEL RAISE START WORK

MOD RANGE STATEMENT XOR

MODE REAL STDDEV

NATURAL RECORD SUBTYPE

B – 6 Programmer’s Guide to the Oracle Precompilers

Oracle Reserved Namespaces

Table B – 1 contains a list of namespaces that are reserved by Oracle.
The initial characters of function names in Oracle libraries are restricted
to the character strings in this list. Because of potential name conflicts,
use function names that do not begin with these characters.

For example, the SQL*Net Transparent Network Service functions all
begin with the characters “NS,” so you need to avoid naming functions
that begin with ”NS.”

Namespace Library

O OCI functions

S function names from SQLLIB and system–dependent libraries

XA external functions for XA applications only

GEN
KP
L
NA
NC
ND
NL
NM
NR
NS
NT
NZ
TTC
UPI

Internal functions

Table B – 1 Oracle Reserved Namespaces

A P P E N D I X

C
T

C – 1Performance Tuning

Performance Tuning

his appendix shows you some simple, easy–to–apply methods for
improving the performance of your applications. Using these methods,
you can often reduce processing time by 25% or more.

C – 2 Programmer’s Guide to the Oracle Precompilers

What Causes Poor Performance?

One cause of poor performance is high Oracle communication
overhead. Oracle must process SQL statements one at a time. Thus,
each statement results in another call to Oracle and higher overhead. In
a networked environment, SQL statements must be sent over the
network, adding to network traffic. Heavy network traffic can slow
down your application significantly.

Another cause of poor performance is inefficient SQL statements.
Because SQL is so flexible, you can get the same result with two
different statements, but one statement might be less efficient. For
example, the following two SELECT statements return the same rows
(the name and number of every department having at least one
employee):

EXEC SQL SELECT DNAME, DEPTNO

 FROM DEPT

 WHERE DEPTNO IN (SELECT DEPTNO FROM EMP);

EXEC SQL SELECT DNAME, DEPTNO

 FROM DEPT

 WHERE EXISTS

 (SELECT DEPTNO FROM EMP WHERE DEPT.DEPTNO = EMP.DEPTNO);

However, the first statement is slower because it does a
time–consuming full scan of the EMP table for every department
number in the DEPT table. Even if the DEPTNO column in EMP is
indexed, the index is not used because the subquery lacks a WHERE
clause naming DEPTNO.

A third cause of poor performance is unnecessary parsing and binding.
Recall that before executing a SQL statement, Oracle must parse and
bind it. Parsing means examining the SQL statement to make sure it
follows syntax rules and refers to valid database objects. Binding
means associating host variables in the SQL statement with their
addresses so that Oracle can read or write their values.

Many applications manage cursors poorly. This results in unnecessary
parsing and binding, which adds noticeably to processing overhead.

C – 3Performance Tuning

How Can Performance be Improved?

If you are unhappy with the performance of your precompiled
programs, there are several ways you can reduce overhead.

You can greatly reduce Oracle communication overhead, especially in
networked environments, by

• using host arrays

• using embedded PL/SQL

You can reduce processing overhead—sometimes dramatically—by

• optimizing SQL statements

• using indexes

• taking advantage of row–level locking

• eliminating unnecessary parsing

The following sections look at each of these ways to cut overhead.

Using Host Arrays

Host arrays can boost performance because they let you manipulate an
entire collection of data with a single SQL statement. For example,
suppose you want to insert salaries for 300 employees into the EMP
table. Without arrays your program must do 300 individual
inserts—one for each employee. With arrays, only one INSERT is
necessary. Consider the following statement:

EXEC SQL INSERT INTO EMP (SAL) VALUES (:salary);

If salary is a simple host variable, Oracle executes the INSERT
statement once, inserting a single row into the EMP table. In that row,
the SAL column has the value of salary. To insert 300 rows this way, you
must execute the INSERT statement 300 times.

However, if salary is a host array of size 300, Oracle inserts all 300 rows
into the EMP table at once. In each row, the SAL column has the value
of an element in the salary array.

For more information, see Chapter 9, “Using Host Arrays.”

C – 4 Programmer’s Guide to the Oracle Precompilers

Using Embedded PL/SQL

As Figure E–1 shows, if your application is database–intensive, you can
use control structures to group SQL statements in a PL/SQL block,
then send the entire block to Oracle. This can drastically reduce
communication between your application and Oracle.

Also, you can use PL/SQL subprograms to reduce calls from your
application to Oracle. For example, to execute ten individual SQL
statements, ten calls are required, but to execute a subprogram
containing ten SQL statements, only one call is required.

Unlike anonymous blocks, PL/SQL subprograms can be compiled
separately and stored in an Oracle database. When called, they are
passed to the PL/SQL engine immediately. Moreover, only one copy of a
subprogram need be loaded into memory for execution by multiple users.

SQL
IF ... THEN

SQL
ELSE

SQL
END IF
SQL

RPC

SQL

SQL

SQL

SQL

Application

Application

Application

Other DBMSs

Oracle7
with PL/SQL

Oracle7
with PL/SQL
and Stored
Procedures

PL/SQL Increases Performance
Especially in Networked Environments

Figure C – 1 PL/SQL Boosts Performance

PL/SQL can also cooperate with Oracle application development tools
such as Oracle Forms and Oracle Reports. By adding procedural
processing power to these tools, PL/SQL boosts performance. Using
PL/SQL, a tool can do any computation quickly and efficiently without
calling on Oracle. This saves time and reduces network traffic. For more
information, see Chapter 5 and the PL/SQL User’s Guide and Reference.

Optimizer Hints

Giving Hints

C – 5Performance Tuning

Optimizing SQL Statements

For every SQL statement, the Oracle optimizer generates an execution
plan, which is a series of steps that Oracle takes to execute the
statement. These steps are determined by rules given in the Oracle7
Server Application Developer’s Guide. Following these rules will help you
write optimal SQL statements.

For every SQL statement, the Oracle optimizer generates an execution
plan, which is a series of steps that Oracle takes to execute the
statement. In some cases, you can suggest to Oracle the way to
optimize a SQL statement. These suggestions, called hints, let you
influence decisions made by the optimizer.

Hints are not directives; they merely help the optimizer do its job.
Some hints limit the scope of information used to optimize a SQL
statement, while others suggest overall strategies. You can use hints to
specify the

• optimization approach for a SQL statement

• access path for each referenced table

• join order for a join

• method used to join tables

You give hints to the optimizer by placing them in a C–style comment
immediately after the verb in a SELECT, UPDATE, or DELETE
statement. You can choose rule–based or cost–based optimization. With
cost–based optimization, hints help maximize throughput or response
time. In the following example, the ALL_ROWS hint helps maximize
query throughput:

EXEC SQL SELECT /*+ ALL_ROWS (cost–based) */ EMPNO, ENAME, SAL

 INTO :emp_number, :emp_name, :salary –– host arrays

 FROM EMP

 WHERE DEPTNO = :dept_number;

The plus sign (+), which must immediately follow the comment opener,
indicates that the comment contains one or more hints. Notice that the
comment can contain remarks as well as hints.

For more information about optimizer hints, see the Oracle7 Server
Application Developer’s Guide.

Trace Facility

C – 6 Programmer’s Guide to the Oracle Precompilers

You can use the SQL trace facility and the EXPLAIN PLAN statement
to identify SQL statements that might be slowing down your
application. The trace facility generates statistics for every SQL
statement executed by Oracle. From these statistics, you can determine
which statements take the most time to process. Then, you can
concentrate your tuning efforts on those statements.

The EXPLAIN PLAN statement shows the execution plan for each SQL
statement in your application. You can use the execution plan to
identify inefficient SQL statements.

For instructions on using these tools and analyzing their output, see the
Oracle7 Server Application Developer’s Guide.

Using Indexes

Using rowids, an index associates each distinct value in a table column
with the rows containing that value. An index is created with the
CREATE INDEX statement. For details, see the Oracle7 Server SQL
Reference.

You can use indexes to boost the performance of queries that return less
than 15% of the rows in a table. A query that returns 15% or more of the
rows in a table is executed faster by a full scan, that is, by reading all rows
sequentially. Any query that names an indexed column in its WHERE
clause can use the index. For guidelines that help you choose which
columns to index, see the Oracle7 Server Application Developer’s Guide.

Taking Advantage of Row–Level Locking

By default, Oracle locks data at the row level rather than the table level.
Row–level locking allows multiple users to access different rows in the
same table concurrently. The resulting performance gain is significant.

You can specify table–level locking, but it lessens the effectiveness of
the transaction processing option. For more information about table
locking, see “Using LOCK TABLE” on page 7 – 13.

Applications that do online transaction processing benefit most from
row–level locking. If your application relies on table–level locking,
modify it to take advantage of row–level locking. In general, avoid
explicit table–level locking.

Handling Explicit
Cursors

Cursor Control

C – 7Performance Tuning

Eliminating Unnecessary Parsing

Eliminating unnecessary parsing requires correct handling of cursors
and selective use of the following cursor management options:

• MAXOPENCURSORS

• HOLD_CURSOR

• RELEASE_CURSOR

These options affect implicit and explicit cursors, the cursor cache, and
private SQL areas.

Note: You can use the ORACA to get cursor cache statistics.
See “Using the Oracle Communications Area” on page 8 – 36.

Recall that there are two types of cursors: implicit and explicit (see
page 2 – 7). Oracle implicitly declares a cursor for all data definition
and data manipulation statements. However, for queries that return
more than one row, you must explicitly declare a cursor (or use host
arrays). You use the DECLARE CURSOR statement to declare an
explicit cursor. How you handle the opening and closing of explicit
cursors affects performance.

If you need to reevaluate the active set, simply reopen the cursor. The
OPEN statement will use any new host–variable values. You can save
processing time if you do not close the cursor first.

Note: To make performance tuning easier, the precompiler lets
you reopen an already open cursor. However, this is an Oracle
extension to the ANSI/ISO embedded SQL standard. So, when
MODE=ANSI, you must close a cursor before reopening it.

Only CLOSE a cursor when you want to free the resources (memory
and locks) acquired by OPENing the cursor. For example, your
program should close all cursors before exiting.

In general, there are three ways to control an explicitly declared cursor:

• use the DECLARE, OPEN, and CLOSE statements

• use the PREPARE, DECLARE, OPEN, and CLOSE statements

• COMMIT closes the cursor when MODE=ANSI

With the first way, beware of unnecessary parsing. The OPEN
statement does the parsing, but only if the parsed statement is
unavailable because the cursor was CLOSEd or never OPENed. Your
program should DECLARE the cursor, reOPEN it every time the value
of a host variable changes, and CLOSE it only when the SQL statement
is no longer needed.

C – 8 Programmer’s Guide to the Oracle Precompilers

With the second way (dynamic SQL Methods 3 and 4), the PREPARE
statement does the parsing, and the parsed statement is available until
a CLOSE statement is executed. Your program should prepare the SQL
statement and DECLARE the cursor, reOPEN the cursor every time the
value of a host variable changes, rePREPARE the SQL statement and
reOPEN the cursor if the SQL statement changes, and CLOSE the
cursor only when the SQL statement is no longer needed.

When possible, avoid placing OPEN and CLOSE statements in a loop;
this is a potential cause of unnecessary reparsing of the SQL statement.
In the next example, both the OPEN and CLOSE statements are inside
the outer while loop. When MODE=ANSI, the CLOSE statement must
be positioned as shown, because ANSI requires a cursor to be CLOSEd
before being reOPENed.

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ename, sal from emp where sal > :salary and

 sal <= :salary + 1000;

salary = 0;

while (salary < 5000)

{

 EXEC SQL OPEN emp_cursor;

 while (SQLCODE==0)

 {

 EXEC SQL FETCH emp_cursor INTO

 ...

 }

 salary += 1000;

 EXEC SQL CLOSE emp_cursor;

}

With MODE=ORACLE, however, a CLOSE statement can execute
without the cursor being OPENed. By placing the CLOSE statement
outside the outer while loop, you can avoid possible reparsing at each
iteration of the OPEN statement.

...

while (salary < 5000)

{

 EXEC SQL OPEN emp_cursor;

 while (sqlca.sqlcode==0)

 {

 EXEC SQL FETCH emp_cursor INTO

 ...

 }

 salary += 1000;

}

EXEC SQL CLOSE emp_cursor;

Using the Cursor
Management Options

Private SQL Areas and
Cursor Cache

Resource Use

C – 9Performance Tuning

A SQL statement need be parsed only once unless you change its
makeup. For example, you change the makeup of a query by adding a
column to its select list or WHERE clause. The HOLD_CURSOR,
RELEASE_CURSOR, and MAXOPENCURSORS options give you some
control over how Oracle manages the parsing and reparsing of SQL
statements. Declaring an explicit cursor gives you maximum control
over parsing.

When a data manipulation statement is executed, its associated cursor
is linked to an entry in the cursor cache. The cursor cache is a
continuously updated area of memory used for cursor management.
The cursor cache entry is in turn linked to a private SQL area.

The private SQL area, a work area created dynamically at run time by
Oracle, contains the parsed SQL statement, the addresses of host
variables, and other information needed to process the statement. An
explicit cursor lets you name a SQL statement, access the information
in its private SQL area, and, to some extent, control its processing.

Figure C – 2 represents the cursor cache after your program has done
an insert and a delete.

Cursor Cache

Context Area

Context Area

E(1)

E(2)

E(MAXOPENCURSORS)

EXEC SQL INSERT ...
Cursor

EXEC SQL DELETE ...
Cursor

.

.

.
.
.
.

Figure C – 2 Cursors Linked via the Cursor Cache

The maximum number of open cursors per user session is set by the
Oracle initialization parameter OPEN_CURSORS.

MAXOPENCURSORS specifies the initial size of the cursor cache. If a
new cursor is needed and there are no free cache entries, Oracle tries to
reuse an entry. Its success depends on the values of HOLD_CURSOR
and RELEASE_CURSOR and, for explicit cursors, on the status of the
cursor itself.

If the value of MAXOPENCURSORS is less than the number of cache
entries actually needed, Oracle uses the first cache entry marked as

Infrequent Execution

C – 10 Programmer’s Guide to the Oracle Precompilers

reusable. For example, suppose the cache entry E(1) for an INSERT
statement is marked as reusable, and the number of cache entries
already equals MAXOPENCURSORS. If the program executes a new
statement, cache entry E(1) and its private SQL area might be
reassigned to the new statement. To re–execute the INSERT statement,
Oracle would have to reparse it and reassign another cache entry.

Oracle allocates an additional cache entry if it cannot find one to reuse.
For example, if MAXOPENCURSORS=8 and all eight entries are active,
a ninth is created. If necessary, Oracle keeps allocating additional cache
entries until it runs out of memory or reaches the limit set by
OPEN_CURSORS. This dynamic allocation adds to processing overhead.

Thus, specifying a low value for MAXOPENCURSORS saves memory
but causes potentially expensive dynamic allocations and deallocations
of new cache entries. Specifying a high value for MAXOPENCURSORS
assures speedy execution but uses more memory.

Sometimes, the link between an infrequently executed SQL statement
and its private SQL area should be temporary.

When HOLD_CURSOR=NO (the default), after Oracle executes the
SQL statement and the cursor is closed, the precompiler marks the link
between the cursor and cursor cache as reusable. The link is reused as
soon as the cursor cache entry to which it points is needed for another
SQL statement. This frees memory allocated to the private SQL area
and releases parse locks. However, because a prepared cursor must
remain active, its link is maintained even when HOLD_CURSOR=NO.

When RELEASE_CURSOR=YES, after Oracle executes the SQL
statement and the cursor is closed, the private SQL area is
automatically freed and the parsed statement lost. This might be
necessary if, for example, MAXOPENCURSORS is set low at your site
to conserve memory.

If a data manipulation statement precedes a data definition statement
and they reference the same tables, specify RELEASE_CURSOR=YES
for the data manipulation statement. This avoids a conflict between the
parse lock obtained by the data manipulation statement and the
exclusive lock required by the data definition statement.

When RELEASE_CURSOR=YES, the link between the private SQL area
and the cache entry is immediately removed and the private SQL area
freed. Even if you specify HOLD_CURSOR=YES, Oracle must still
reallocate memory for a private SQL area and reparse the SQL
statement before executing it because RELEASE_CURSOR=YES
overrides HOLD_CURSOR=YES.

Frequent Execution

☞

Parameter Interactions

C – 11Performance Tuning

Nonetheless, when RELEASE_CURSOR=YES, the reparse might not
require extra processing because Oracle caches the parsed
representations of SQL statements and PL/SQL blocks in its Shared SQL
Cache. Even if its cursor is closed, the parsed representation remains
available until it is aged out of the cache.

The links between a frequently executed SQL statement and its private
SQL area should be maintained, because the private SQL area contains
all the information needed to execute the statement. Maintaining access
to this information makes subsequent execution of the statement much
faster.

When HOLD_CURSOR=YES, the link between the cursor and cursor
cache is maintained after Oracle executes the SQL statement. Thus, the
parsed statement and allocated memory remain available. This is useful
for SQL statements that you want to keep active because it avoids
unnecessary reparsing.

When HOLD_CURSOR=YES and RELEASE_CURSOR=NO (the
default), the link between the cache entry and the private SQL area is
maintained after Oracle executes the SQL statement and is not reused
unless the number of open cursors exceeds the value of
MAXOPENCURSORS. This is useful for SQL statements that are
executed often because the parsed statement and allocated memory
remain available.

Attention: Using the defaults, HOLD_CURSOR=YES and
RELEASE_CURSOR=NO, after executing a SQL statement
with an earlier Oracle version, its parsed representation
remains available. With Oracle7, under similar conditions, the
parsed representation remains available only until it is aged out
of the Shared SQL Cache. Normally, this is not a problem, but
you might get unexpected results if the definition of a
referenced object changes before the SQL statement is reparsed.

The following table shows how HOLD_CURSOR and
RELEASE_CURSOR interact. Notice that HOLD_CURSOR=NO
overrides RELEASE_CURSOR=NO and that RELEASE_CURSOR=YES
overrides HOLD_CURSOR=YES.

HOLD_CURSOR RELEASE_CURSOR Links are ...

NO NO marked as reusable

YES NO maintained

NO YES removed immediately

YES YES removed immediately

Table C – 1 HOLD_CURSOR and RELEASE _CURSOR Interactions

C – 12 Programmer’s Guide to the Oracle Precompilers

A P P E N D I X

D
B

D – 1Syntactic and Semantic Checking

Syntactic and Semantic
Checking

y checking the syntax and semantics of embedded SQL statements
and PL/SQL blocks, the Oracle Precompilers help you quickly find and
fix coding mistakes. This appendix shows you how to use the
SQLCHECK option to control the type and extent of checking.

D – 2 Programmer’s Guide to the Oracle Precompilers

What Is Syntactic and Semantic Checking?

Rules of syntax specify how language elements are sequenced to form
valid statements. Thus, syntactic checking verifies that keywords, object
names, operators, delimiters, and so on are placed correctly in your
SQL statement. For example, the following embedded SQL statements
contain syntax errors:

–– misspelled keyword WHERE

EXEC SQL DELETE FROM EMP WERE DEPTNO = 20;

–– missing parentheses around column names COMM and SAL

EXEC SQL INSERT INTO EMP COMM, SAL VALUES (NULL, 1500);

Rules of semantics specify how valid external references are made.
Thus, semantic checking verifies that references to database objects and
host variables are valid and that host–variable datatypes are correct.
For example, the following embedded SQL statements contain
semantic errors:

–– nonexistent table, EMPP

EXEC SQL DELETE FROM EMPP WHERE DEPTNO = 20;

–– undeclared host variable, emp_name

EXEC SQL SELECT * FROM EMP WHERE ENAME = :emp_name;

The rules of SQL syntax and semantics are defined in the Oracle7 Server
SQL Reference.

Controlling the Type and Extent of Checking

You control the type and extent of checking by specifying the
SQLCHECK option on the command line. With SQLCHECK, the type
of checking can be syntactic, semantic, or both. The extent of checking
can include data manipulation statements and PL/SQL blocks.
However, SQLCHECK cannot check dynamic SQL statements because
they are not defined fully until run time.

You can specify the following values for SQLCHECK:

• SEMANTICS|FULL

• SYNTAX|LIMITED|NONE

The values SEMANTICS and FULL are equivalent, as are the values
SYNTAX and LIMITED. The default value is SYNTAX.

Enabling a Semantic
Check

Connecting to Oracle

D – 3Syntactic and Semantic Checking

Specifying SQLCHECK=SEMANTICS

When SQLCHECK=SEMANTICS, the precompiler checks the syntax
and semantics of

• data manipulation statements such as INSERT and UPDATE

• PL/SQL blocks

However, the precompiler checks only the syntax of remote data
manipulation statements (those using the AT db_name clause).

The precompiler gets the information for a semantic check from
embedded DECLARE TABLE statements or, if you specify the option
USERID, by connecting to Oracle and accessing the data dictionary.
You need not connect to Oracle if every table referenced in a data
manipulation statement or PL/SQL block is defined in a DECLARE
TABLE statement.

If you connect to Oracle but some information cannot be found in the
data dictionary, you must use DECLARE TABLE statements to supply
the missing information. A DECLARE TABLE definition overrides a
data dictionary definition if they conflict.

When checking data manipulation statements, the precompiler uses the
Oracle7 set of syntax rules found in the Oracle7 Server SQL Reference but
uses a stricter set of semantic rules. As a result, existing applications
written for earlier versions of Oracle might not precompile successfully
when SQLCHECK=SEMANTICS.

Specify SQLCHECK=SEMANTICS when precompiling new programs.
If you embed PL/SQL blocks in a host program, you must specify
SQLCHECK=SEMANTICS.

When SQLCHECK=SEMANTICS, the precompiler can get information
needed for a semantic check in either of the following ways:

• connect to Oracle and access the data dictionary

• use embedded DECLARE TABLE statements

To do a semantic check, the precompiler can connect to an Oracle
database that maintains definitions of tables and views referenced in
your host program. After connecting to Oracle, the precompiler
accesses the data dictionary for needed information. The data dictionary
stores table and column names, table and column constraints, column
lengths, column datatypes, and so on.

Using DECLARE TABLE

D – 4 Programmer’s Guide to the Oracle Precompilers

If some of the needed information cannot be found in the data
dictionary (because your program refers to a table not yet created, for
example), you must supply the missing information using the
DECLARE TABLE statement.

To connect to Oracle, specify the option USERID on the command line,
using the syntax

USERID=username/password

where username and password comprise a valid Oracle userid. If you
omit the password, you are prompted for it. If, instead of a username
and password, you specify

USERID=/

the precompiler tries to connect to Oracle automatically with the userid

<prefix><username>

where prefix is the value of the Oracle initialization parameter
OS_AUTHENT_PREFIX (the default value is OPS$) and username is
your operating system user or task name.

If you try connecting to Oracle but cannot (for example, if the database
is unavailable), the precompiler stops processing and issues an error
message. If you omit the option USERID, the precompiler must get
needed information from embedded DECLARE TABLE statements.

The precompiler can do a semantic check without connecting to Oracle.
To do the check, the precompiler must get information about tables and
views from embedded DECLARE TABLE statements. Thus, every table
referenced in a data manipulation statement or PL/SQL block must be
defined in a DECLARE TABLE statement.

The syntax of the DECLARE TABLE statement is

EXEC SQL DECLARE table_name TABLE

 (col_name col_datatype [DEFAULT expr] [NULL|NOT NULL], ...);

where expr is any expression that can be used as a default column value
in the CREATE TABLE statement.

If you use DECLARE TABLE to define a database table that already
exists, the precompiler uses your definition, ignoring the one in the
data dictionary.

A P P E N D I X

E
O

E – 1Migrating to Oracle7

Migrating to Oracle7

racle7 conforms fully to the new ANSI/ISO SQL standard. As a
result, Oracle7 and Oracle Version 6 behave differently in a few areas.
By pointing out those areas, this appendix helps you migrate your
application programs to Oracle7.

Fetching Nulls

E – 2 Programmer’s Guide to the Oracle Precompilers

When MODE=ORACLE (the default), if your program fetches a null
into a host variable that lacks an indicator variable, Oracle Version 6
generates no error; however, Oracle7 generates the following error:

ORA–01405: fetched column value is NULL

Therefore, to migrate the program from Oracle Version 6 to Oracle7,
you may

• re–precompile the program, specifying DBMS=V6 on the
command line, which preserves the Oracle Version 6 behavior,

• revise the program by associating an indicator variable with
every host variable into which nulls might be fetched, or

• specify UNSAFE_NULL=YES with MODE=ORACLE and
DBMS=V7 to simply disable the ORA–01405 message.

When DBMS=V6, regardless of the MODE setting, the following
changes go into effect:

• If you fetch a null into a host variable that lacks an indicator
variable, Oracle7 generates no error (instead of generating error
ORA–01405).

• If you fetch a truncated value into a host variable that lacks an
indicator variable, Oracle7 generates error ORA–01406 (instead
of generating no error).

• Oracle7 treats the following items like variable–length character
values (instead of fixed–length character values):

– string literals

– local CHAR variables in a PL/SQL block

– the return value of the function USER

• If you process a multirow query that calls a SQL group function
such as AVG or COUNT, the function is called at OPEN time
(instead of at FETCH time).

When DBMS=V6, if you fetch nulls into a host array that lacks an
indicator array, Oracle7 continues processing. So, always use an
indicator array; otherwise, you cannot find the nulls. (To Learn how to
find nulls and truncated values, see “Using Indicator Variables” on
page 4 – 4.)

Fetching Truncated
Values

Handling Character
Strings

Using VARCHAR2
versus CHAR

On Input

E – 3Migrating to Oracle7

When MODE=ORACLE, if your program fetches a truncated value into
a host variable that lacks an indicator variable, Oracle7 generates no
error; however, Oracle Version 6 generates the following error:

ORA–01406: fetched column value was truncated

Therefore, to migrate the program from Oracle Version 6 to Oracle7,
you must either

• re–precompile the program, specifying DBMS=V6 on the
command line, which preserves the Oracle Version 6 behavior, or

• revise the program by associating an indicator variable with
every host variable into which truncated values might be fetched

When DBMS=V6, if you fetch a truncated value into a host array that
lacks an indicator array, Oracle7 stops processing and sets SQLERRD(3)
in the SQLCA to the number of rows processed. No other information
is available. So, always use an indicator array; otherwise, you cannot
find the truncated values and their original lengths.

Some application programs expect variable–length character strings (of
type VARCHAR2, for example). However, by default, Oracle7 uses
fixed–length character strings of type CHAR. This affects
string–comparison semantics. For details, see the next section.

If your program expects variable–length character strings, specify
DBMS=V6 on the precompiler command line. Among other things, this
preserves Oracle Version 6 string–comparison semantics.

The VARCHAR2 and CHAR datatypes differ in subtle but significant
ways. CHAR semantics have changed slightly to comply with the
current ANSI/ISO SQL standard. The changes come into play when
you compare, insert, update, select, or fetch character values.

When MODE=ANSI, if both values being compared in a SQL statement
belong to type CHAR, blank–padding semantics are used. That is, before
comparing character values of unequal length, Oracle blank–pads the
shorter value to the length of the longer value. For example, if ENAME
is a CHAR database column and emp_name is a CHAR host variable (by
default or datatype equivalencing), the following search condition is
TRUE when the column value “BELL” and the host value “BELL####”
(with four trailing spaces) are compared:

... WHERE ENAME = :emp_name;

On Output

E – 4 Programmer’s Guide to the Oracle Precompilers

When MODE={ANSI14|ANSI13|ORACLE}, if either or both values in
a comparison belong to type VARCHAR2, non–blank–padding semantics
are used. That is, when comparing character values of unequal length,
ORACLE makes no adjustments and uses the exact lengths. For
example, if JOB is a CHAR column and job_title is a VARCHAR2 host
variable, the following search condition is FALSE when the column
value “CLERK” and the host value “CLERK###” (with three trailing
spaces) are compared:

... WHERE JOB = :job_title;

When you insert a character value into a CHAR database column, if the
value is shorter than the defined width of the column, Oracle
blank–pads the value to the defined width. As a result, information
about trailing blanks is lost. If the character value is longer than the
defined width of the CHAR column, Oracle generates an error. Oracle
neither truncates the value nor tries to trim trailing blanks.

When you insert a character value into a VARCHAR2 database column,
if the value is shorter than the defined width of the column, Oracle
does not blank–pad the value. Nor does Oracle strip trailing blanks.
Character values are stored intact, so no information is lost. If the
character value is longer than the defined width of the VARCHAR2
column, Oracle generates an error. Oracle neither truncates the value
nor tries to trim trailing blanks.

The same rules apply when updating.

When a column value is selected into a CHAR host variable, if the
value is shorter than the declared length of the variable, Oracle
blank–pads the value to the declared length. For example, if emp_name
is a CHAR(15) host variable (by default or variable equivalencing), and
10–byte column value is selected into it, Oracle appends 5 blank
characters to it. If the column value is longer than the declared length
of the CHAR host variable, Oracle truncates the value, stores it, and
generates a warning.

When a column value is selected into a VARCHAR2 host variable, if the
value is shorter than the declared length of the variable, Oracle does
not blank–pad the value; nor does Oracle strip trailing blanks. If the
column value is longer than the declared length of the VARCHAR2
host variable, Oracle truncates the value, stores it, and generates a
warning.

The same rules apply when fetching.

A P P E N D I X

F

T

F – 1Embedded SQL Commands and Directives

Embedded SQL
Commands and
Directives

his appendix contains descriptions of both SQL92 embedded SQL
commands and directives and the Oracle embedded SQL extensions.
These commands and directives are prefaced in your source code with
the keywords, EXEC SQL. Rather than trying to memorize all of the SQL
syntax, simply refer to this appendix, which includes the following:

• a summary of embedded SQL commands and directives

• a section about the command descriptions

• how to read syntax diagrams

• an alphabetic listing of the commands and directives

For detailed usage notes, see the Oracle7 Server SQL Reference.

F – 2 Programmer’s Guide to the Oracle Precompilers

Summary of Precompiler Directives and Embedded SQL Commands

Embedded SQL commands place DDL, DML, and Transaction Control
statements within a procedural language program. Embedded SQL is
supported by the Oracle Precompilers. Table F – 1 provides a functional
summary of the embedded SQL commands and directives.

The type column in Table F – 1 is displayed in the format, source/type,
where:

is either SQL92 standard SQL (S) or an Oracle extension (O)

is either an executable (E) statement or a directive (D)

EXEC SQL Statement Type Purpose

ALLOCATE O/E To allocate memory for a cursor variable.

CLOSE S/E To disable a cursor, releasing the resources it holds.

COMMIT S/E To end the current transaction, making all database change perma-
nent (optionally frees resources and disconnects from the database)

CONNECT O/E To log on to an Oracle7 instance.

DECLARE CURSOR S/D To declare a cursor, associating it with a query.

DECLARE DATABASE O/D To declare an identifier for a non–default database to be accessed in
subsequent embedded SQL statements.

DECLARE STATEMENT S/D To assign a SQL variable name to a SQL statement.

DECLARE TABLE O/D To declare the table structure for semantic checking of embedded
SQL statements by the Oracle Precompiler.

DELETE S/E To remove rows from a table or from a view’s base table.

DESCRIBE S/E To initialize a descriptor, a structure holding host variable
descriptions.

EXECUTE...END–EXEC O/E To execute an anonymous PL/SQL block.

EXECUTE S/E To execute a prepared dynamic SQL statement.

EXECUTE IMMEDIATE S/E To prepare and execute a SQL statement with no host variables.

FETCH S/E To retrieve rows selected by a query.

INSERT S/E To add rows to a table or to a view’s base table.

OPEN S/E To execute the query associated with a cursor.

PREPARE S/E To parse a dynamic SQL statement.

ROLLBACK S/E To end the current transaction, discard all changes in the current
transaction, and release all locks (optionally release resources and
disconnect from the database).

SAVEPOINT S/E To identify a point in a transaction to which you can later roll back.

SELECT S/E To retrieve data from one or more tables, views, or snapshots, assign-
ing the selected values to host variables.

Table F – 1 Precompiler Directives and Embedded SQL Commands and Clauses

source

type

F – 3Embedded SQL Commands and Directives

EXEC SQL Statement PurposeType

UPDATE S/E To change existing values in a table or in a view’s base table.

VAR O/D To override the default datatype and assign a specific Oracle7
external datatype to a host variable.

WHENEVER S/D To specify handling for error and warning conditions.

Table F – 1 Precompiler Directives and Embedded SQL Commands and Clauses (continued)

About The Command Descriptions

The directives, commands, and clauses appear alphabetically. The
description of each contains the following sections:

Purpose describes the basic uses of the command.

Prerequisites lists privileges you must have and steps that you
must take before using the command. Unless
otherwise noted, most commands also require
that the database be open by your instance.

Syntax shows the keywords and parameters of the
command.

Keywords and
Parameters

describes the purpose of each keyword and
parameter.

Usage Notes discusses how and when to use the command.

Examples shows example statements of the command.

Related Topics lists related commands, clauses, and sections of
this manual.

F – 4 Programmer’s Guide to the Oracle Precompilers

How to Read Syntax Diagrams

Easy–to–understand syntax diagrams are used to illustrate embedded
SQL syntax. They are line–and–arrow drawings that depict valid syntax.
If you have never used them, do not worry. This section tells you all you
need to know.

Once you understand the logical flow of a syntax diagram, it becomes a
helpful guide. You can verify or construct any embedded SQL statement
by tracing through its syntax diagram.

Syntax diagrams use lines and arrows to show how commands,
parameters, and other language elements are sequenced to form
statements. Trace each diagram from left to right, in the direction shown
by the arrows. The following symbols will guide you:

Marks the beginning of the diagram

Marks the end of the diagram

Shows that the diagram continues on a line below.

Shows that the diagram is continued from a line above.

Represents a loop.

Commands and other keywords appear in UPPER CASE. Parameters
appear in lower case. Operators, delimiters, and terminators appear as
usual. Following the conventions defined in the Preface, a semicolon
terminates statements.

If the syntax diagram has more than one path, you can choose any path
to travel.

If you have the choice of more than one keyword, operator, or
parameter, your options appear in a vertical list. In the following
example, you can travel down the vertical line as far as you like, then
continue along any horizontal line:

EXEC SQL NOT FOUND

SQLERROR

SQLWARNING

WHENEVER

According to the diagram, all of the following statements are valid:

EXEC SQL WHENEVER NOT FOUND ...

EXEC SQL WHENEVER SQLERROR ...

EXEC SQL WHENEVER SQLWARNING ...

Required Keywords
and Parameters

Optional Keywords
and Parameters

F – 5Embedded SQL Commands and Directives

Required keywords and parameters can appear singly or in a vertical
list of alternatives. Single required keywords and parameters appear on
the main path, that is, on the horizontal line you are currently traveling.
In the following example, cursor is a required parameter:

EXEC SQL CLOSE cursor ;

If there is a cursor named emp_cursor, then, according to the diagram, the
following statement is valid:

EXEC SQL CLOSE emp_cursor;

If any of the keywords or parameters in a vertical list appears on the
main path, one of them is required. That is, you must choose one of the
keywords or parameters, but not necessarily the one that appears on the
main path. In the following example, you must choose one of the four
actions:

CONTINUE

GOTO label

STOP

DO routine

;

If keywords and parameters appear in a vertical list below the main
path, they are optional. That is, you need not choose one of them. In the
following example, instead of traveling down a vertical line, you can
continue along the main path:

EXEC SQL ROLLBACK

WORKAT db_name

If there is a database named oracle2, then, according to the diagram, all
of the following statements are valid:

EXEC SQL ROLLBACK;

EXEC SQL ROLLBACK WORK;

EXEC SQL AT oracle2 ROLLBACK;

Syntax Loops

Multi–part Diagrams

Database Objects

F – 6 Programmer’s Guide to the Oracle Precompilers

Loops let you repeat the syntax within them as many times as you like.
In the following example, column_name is inside a loop. So, after
choosing one column name, you can go back repeatedly to choose
another.

EXEC SQL column_nameSELECT INTO

,

If DEBIT, CREDIT, and BALANCE are column names, then, according to
the diagram, all of the following statements are valid:

EXEC SQL SELECT DEBIT INTO ...

EXEC SQL SELECT CREDIT, BALANCE INTO ...

EXEC SQL SELECT DEBIT, CREDIT, BALANCE INTO ...

Read a multi–part diagram as if all the main paths were joined
end–to–end. The following example is a two–part diagram:

EXEC SQL statement_namePREPARE

According to the diagram, the following statement is valid:

EXEC SQL PREPARE sql_statement FROM :sql_string;

The names of Oracle objects, such as tables and columns, must not
exceed 30 characters in length. The first character must be a letter, but
the rest can be any combination of letters, numerals, dollar signs ($),
pound signs (#), and underscores (_).

However, if an Oracle identifier is enclosed by quotation marks (”), it
can contain any combination of legal characters, including spaces but
excluding quotation marks.

Oracle identifiers are not case–sensitive except when enclosed by
quotation marks.

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

F – 7Embedded SQL Commands and Directives

ALLOCATE (Executable Embedded SQL Extension)

To allocate a cursor variable to be referenced in a PL/SQL block.

A cursor variable (see Chapter 3) of type SQL_CURSOR must be
declared before allocating memory for the cursor variable.

EXEC SQL ALLOCATE :cursor_variable

is the cursor variable to be allocated.

Whereas a cursor is static, a cursor variable is dynamic because it is not
tied to a specific query. You can open a cursor variable for any
type–compatible query.

For more information on this command, see PL/SQL User’s Guide and
Reference and Oracle7 Server SQL Reference.

This partial example illustrates the use of the ALLOCATE command in a
Pro*C/C++ embedded SQL program:

EXEC SQL BEGIN DECLARE SECTION;

 SQL_CURSOR emp_cv;

 struct{ ... } emp_rec;

EXEC SQL END DECLARE SECTION;

EXEC SQL ALLOCATE emp_cv;

EXEC SQL EXECUTE

 BEGIN

 OPEN :emp_cv FOR SELECT * FROM emp;

 END;

END–EXEC;

for (;;)

{ EXEC SQL FETCH :emp_cv INTO :emp_rec;

}

CLOSE command on F – 8
EXECUTE command on F – 28
FETCH command on F – 32

:cursor_variable

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

F – 8 Programmer’s Guide to the Oracle Precompilers

CLOSE (Executable Embedded SQL)

To disable a cursor, freeing the resources acquired by opening the cursor,
and releasing parse locks.

 The cursor or cursor variable must be open and MODE=ANSI.

EXEC SQL CLOSE

:cursor_variable

cursor

is a cursor to be closed.

is a cursor variable to be closed.

Rows cannot be fetched from a closed cursor. A cursor need not be
closed to be reopened. The HOLD_CURSOR and RELEASE_CURSOR
precompiler options alter the effect of the CLOSE command. For
information on these options, see Chapter 6.

This example illustrates the use of the CLOSE command:

EXEC SQL CLOSE emp_cursor;

PREPARE command on F – 41
DECLARE CURSOR command on F – 14
OPEN command on F – 39

cursor

cursor_variable

Purpose

Prerequisites

Syntax

F – 9Embedded SQL Commands and Directives

COMMIT (Executable Embedded SQL)

To end your current transaction, making permanent all its changes to the
database and optionally freeing all resources and disconnecting from the
Oracle7 Server.

To commit your current transaction, no privileges are necessary.

To manually commit a distributed in–doubt transaction that you
originally committed, you must have FORCE TRANSACTION system
privilege. To manually commit a distributed in–doubt transaction that
was originally committed by another user, you must have FORCE ANY
TRANSACTION system privilege.

If you are using Trusted Oracle7 in DBMS MAC mode, you can only
commit an in–doubt transaction if your DBMS label matches the label
the transaction’s label and the creation label of the user who originally
committed the transaction or if you satisfy one of the following criteria:

• If the transaction’s label or the user’s creation label is higher than
your DBMS label, you must have READUP and WRITEUP
system privileges.

• If the transaction’s label or the user’s creation label is lower than
your DBMS label, you must have WRITEDOWN system
privilege.

• If the transaction’s label or the user’s creation label is not
comparable with your DBMS label, you must have READUP,
WRITEUP, and WRITEDOWN system privileges.

WORK

FORCE ’text’

EXEC SQL

, integer

AT db_name

:host_variable

COMMIT

COMMENT ’text’ RELEASE

Keyword and
Parameters

F – 10 Programmer’s Guide to the Oracle Precompilers

identifies the database to which the COMMIT
statement is issued. The database can be identified
by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, Oracle7 issues the statement
to your default database.

is supported only for compliance with standard
SQL. The statements COMMIT and COMMIT
WORK are equivalent.

specifies a comment to be associated with the
current transaction. The ’text’ is a quoted literal of
up to 50 characters that Oracle7 stores in the data
dictionary view DBA_2PC_PENDING along with
the transaction ID if the transaction becomes
in–doubt.

frees all resources and disconnects the application
from the Oracle7 Server.

manually commits an in–doubt distributed
transaction. The transaction is identified by the ’text’
containing its local or global transaction ID. To find
the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING. You can also
use the optional integer to explicitly assign the
transaction a system change number (SCN). If you
omit the integer, the transaction is committed using
the current SCN.

AT

db_name

:host_variable

WORK

COMMENT

RELEASE

FORCE

Usage Notes

Example

Related Topics

F – 11Embedded SQL Commands and Directives

Always explicitly commit or rollback the last transaction in your
program by using the COMMIT or ROLLBACK command and the
RELEASE option. Oracle7 automatically rolls back changes if the
program terminates abnormally.

The COMMIT command has no effect on host variables or on the flow of
control in the program. For more information on this command, see
Chapter 7.

This example illustrates the use of the embedded SQL COMMIT
command:

EXEC SQL AT sales_db COMMIT RELEASE;

ROLLBACK command on F – 42
SAVEPOINT command on F – 45

Purpose

Prerequisites

Syntax

Keyword and
Parameters

F – 12 Programmer’s Guide to the Oracle Precompilers

CONNECT (Executable Embedded SQL Extension)

To log on to an Oracle7 database.

You must have CREATE SESSION system privilege in the specified
database.

If you are using Trusted Oracle7 in DBMS MAC mode, your operating
system label must dominate both your creation label and the label at
which you were granted CREATE SESSION system privilege. Your
operating system label must also fall between the operating system
equivalents of DBHIGH and DBLOW, inclusive.

If you are using Trusted Oracle7 in OS MAC mode, your operating
system label must match the label of the database to which you are
connecting.

AT

EXEC SQL CONNECT

:host_variable

:user IDENTIFIED BY :password

:user_password

USING :dbstring

db_name

specifies your username and password separately.

is a single host variable containing the Oracle7
username and password separated by a slash (/).

To allow Oracle7 to verify your connection through
your operating system, specify “/” as the
:user_password value.

identifies the database to which the connection is
made. The database can be identified by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

:user
:password

:user_password

AT

db_name

:host_variable

Usage Notes

Example

Related Topics

F – 13Embedded SQL Commands and Directives

specifies the SQL*Net database specification string
used to connect to a non–default database. If you
omit this clause, you are connected to your default
database.

A program can have multiple connections, but can only connect once
to your default database. For more information on this command, see
Chapter 3.

The following example illustrate the use of CONNECT:

EXEC SQL CONNECT :username

 IDENTIFIED BY :password

You can also use this statement in which the value of :userid is the value
of :username and :password separated by a “/” such as ’SCOTT/TIGER’:

EXEC SQL CONNECT :userid

COMMIT command on F – 9
DECLARE DATABASE command on F – 16
ROLLBACK command on F – 42

USING

Purpose

Prerequisites

Syntax

Keywords and
Parameters

F – 14 Programmer’s Guide to the Oracle Precompilers

DECLARE CURSOR (Embedded SQL Directive)

To declare a cursor, giving it a name and associating it with a SQL
statement or a PL/SQL block.

If you associate the cursor with an identifier for a SQL statement or
PL/SQL block, you must have declared this identifier in a previous
DECLARE STATEMENT statement.

EXEC SQL

statement_name

block_name

AT

:host_variable

db_name

SELECT commandDECLARE cursor CURSOR FOR

identifies the database on which the cursor is
declared. The database can be identified by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, Oracle7 declares the cursor
on your default database.

is the name of the cursor to be declared.

is a SELECT statement to be associated with the
cursor. The following statement cannot contain an
INTO clause.

identifies a SQL statement or PL/SQL block to be
associated with the cursor. The statement_name or
block_name must be previously declared in a
DECLARE STATEMENT statement.

AT

db_name

:host_variable

cursor

SELECT command

statement_name
block_name

Usage Notes

Example

Related Topics

F – 15Embedded SQL Commands and Directives

You must declare a cursor before referencing it in other embedded SQL
statements. The scope of a cursor declaration is global within its
precompilation unit and the name of each cursor must be unique in its
scope. You cannot declare two cursors with the same name in a single
precompilation unit.

You can reference the cursor in the WHERE clause of an UPDATE or
DELETE statement using the CURRENT OF syntax, provided that the
cursor has been opened with an OPEN statement and positioned on a
row with a FETCH statement. For more information on this command,
see Chapter 3.

This example illustrates the use of a DECLARE CURSOR statement:

EXEC SQL DECLARE emp_cursor CURSOR

 FOR SELECT ename, empno, job, sal

 FROM emp

 WHERE deptno = :deptno

 FOR UPDATE OF sal

CLOSE command on F – 8
DECLARE DATABASE command on F – 16
DECLARE STATEMENT command on F – 17
DELETE command on F – 20
FETCH command on F – 32
OPEN command on F – 39
PREPARE command on F – 41
SELECT command on F – 46
UPDATE command on F – 50

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

F – 16 Programmer’s Guide to the Oracle Precompilers

DECLARE DATABASE (Oracle Embedded SQL Directive)

To declare an identifier for a non–default database to be accessed in
subsequent embedded SQL statements.

You must have access to a username on the non–default database.

EXEC SQL DECLARE db_name DATABASE

is the identifier established for the non–default
database.

You declare a db_name for a non–default database so that other
embedded SQL statements can refer to that database using the AT
clause. Before issuing a CONNECT statement with an AT clause, you
must declare a db_name for the non–default database with a DECLARE
DATABASE statement.

For more information on this command, see Chapter 3.

This example illustrates the use of a DECLARE DATABASE directive:

EXEC SQL DECLARE oracle3 DATABASE

COMMIT command on F – 9
CONNECT command on 3 – 34
DECLARE CURSOR command on F – 14
DECLARE STATEMENT command on F – 17
DELETE command on F – 20
EXECUTE command on F – 28
EXECUTE IMMEDIATE command on F – 30
INSERT command on F – 35
SELECT command on F – 46
UPDATE command on F – 50

db_name

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

F – 17Embedded SQL Commands and Directives

DECLARE STATEMENT (Embedded SQL Directive)

To declare an identifier for a SQL statement or PL/SQL block to be used
in other embedded SQL statements.

None.

EXEC SQL

block_name

AT

:host_variable

db_name

statement_nameDECLARE STATEMENT

identifies the database on which the SQL statement
or PL/SQL block is declared. The database can be
identified by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, Oracle7 declares the SQL
statement or PL/SQL block on your default
database.

is the declared identifier for the statement.

You must declare an identifier for a SQL statement or PL/SQL block
with a DECLARE STATEMENT statement only if a DECLARE CURSOR
statement referencing the identifier appears physically (not logically) in
the embedded SQL program before the PREPARE statement that parses
the statement or block and associates it with its identifier.

The scope of a statement declaration is global within its precompilation
unit, like a cursor declaration. For more information on this command,
see Chapters 3 and 10.

AT

db_name

:host_variable

statement_name
block_name

Example I

Example II

Related Topics

F – 18 Programmer’s Guide to the Oracle Precompilers

This example illustrates the use of the DECLARE STATEMENT
statement:

EXEC SQL AT remote_db

 DECLARE my_statement STATEMENT

EXEC SQL PREPARE my_statement FROM :my_string

EXEC SQL EXECUTE my_statement

In this example from a Pro*C/C++ embedded SQL program, the
DECLARE STATEMENT statement is required because the DECLARE
CURSOR statement precedes the PREPARE statement:

EXEC SQL DECLARE my_statement STATEMENT;

EXEC SQL DECLARE emp_cursor CURSOR FOR my_statement;

EXEC SQL PREPARE my_statement FROM :my_string;

...

CLOSE command on F – 8
DECLARE DATABASE command on F – 16
FETCH command on F – 32
PREPARE command on F – 41
OPEN command on F – 39

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

F – 19Embedded SQL Commands and Directives

DECLARE TABLE (Oracle Embedded SQL Directive)

To define the structure of a table or view, including each column’s
datatype, default value, and NULL or NOT NULL specification for
semantic checking by the Oracle Precompilers.

None.

EXEC SQL DECLARE table TABLE

NULL

column datatype

NOT NULL

DEFAULT expr

NOT NULL

,

()

WITH DEFAULT

is the name of the declared table.

is a column of the table.

is the datatype of a column. For information on
Oracle7 datatypes, see Chapter 3.

specifies the default value of a column.

specifies that a column can contain nulls.

specifies that a column cannot contain nulls.

is supported for compatibility with the IBM DB2
database.

For information on using this command, see Chapter 3.

The following statement declares the PARTS table with the PARTNO,
BIN, and QTY columns:

EXEC SQL DECLARE parts TABLE

 (partno NUMBER NOT NULL,

 bin NUMBER,

 qty NUMBER)

None.

table

column

datatype

DEFAULT

NULL

NOT NULL

WITH DEFAULT

Purpose

Prerequisites

Syntax

F – 20 Programmer’s Guide to the Oracle Precompilers

DELETE (Executable Embedded SQL)

To remove rows from a table or from a view’s base table.

For you to delete rows from a table, the table must be in your own
schema or you must have DELETE privilege on the table.

For you to delete rows from the base table of a view, the owner of the
schema containing the view must have DELETE privilege on the base
table. Also, if the view is in a schema other than your own, you must be
granted DELETE privilege on the view.

The DELETE ANY TABLE system privilege also allows you to delete
rows from any table or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS label
must dominate the creation label of the table or view or you must meet
one of the following criteria:

• If the creation label of the table or view is higher than your DBMS
label, you must have READUP and WRITEUP system privileges.

• If the creation label of your table or view is not comparable to
your DBMS label, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

In addition, for each row to be deleted, your DBMS label must match the
row’s label or you must meet one of the following criteria:

• If the row’s label is higher than your DBMS label, you must have
READUP and WRITEUP system privileges.

• If the row’s label is lower than your DBMS label, you must have
WRITEDOWN system privilege.

• If the row label is not comparable to your DBMS label, you must
have READUP, WRITEUP, and WRITEDOWN system privileges.

EXEC SQL

,

WHERE

AT ,FOR :host_integerdb_name

DELETE table

FROM schema. view @dblink alias

:host_variable

condition

CURRENT OF cursor

Keywords and
Parameters

F – 21Embedded SQL Commands and Directives

identifies the database to which the DELETE
statement is issued. The database can be identified
by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the DELETE statement is
issued to your default database.

limits the number of times the statement is executed
if the WHERE clause contains array host variables.
If you omit this clause, Oracle7 executes the
statement once for each component of the smallest
array.

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is in
your own schema.

is the name of a table from which the rows are to be
deleted. If you specify view, Oracle7 deletes rows
from the view’s base table.

is the complete or partial name of a database link to
a remote database where the table or view is
located. For information on referring to database
links, see Chapter 2 of the Oracle7 Server SQL
Reference. You can only delete rows from a remote
table or view if you are using Oracle7 with the
distributed option.

If you omit dblink, Oracle7 assumes that the table or
view is located on the local database.

is an alias assigned to the table. Aliases are
generally used in DELETE statements with
correlated queries.

AT

db_name

:host_variable

FOR :host_integer

schema

table
view

dblink

alias

Usage Notes

F – 22 Programmer’s Guide to the Oracle Precompilers

specifies which rows are deleted:

deletes only rows that satisfy
the condition. This condition can
contain host variables and optional
indicator variables. See the syntax
description of condition in
Chapter 3 of the Oracle7 Server SQL
Reference.

deletes only the row most
recently fetched by the cursor. The
cursor cannot be associated with a
SELECT statement that performs a
join, unless its FOR UPDATE clause
specifically locks only
one table.

If you omit this clause entirely, Oracle7 deletes all
rows from the table or view.

 The host variables in the WHERE clause must be either all scalars or all
arrays. If they are scalars, Oracle7 executes the DELETE statement only
once. If they are arrays, Oracle7 executes the statement once for each set
of array components. Each execution may delete zero, one, or multiple
rows.

Array host variables in the WHERE clause can have different sizes. In
this case, the number of times Oracle7 executes the statement is
determined by the smaller of the following values:

• the size of the smallest array

• the value of the :host_integer in the optional FOR clause

If no rows satisfy the condition, no rows are deleted and the SQLCODE
returns a NOT_FOUND condition.

The cumulative number of rows deleted is returned through the
SQLCA. If the WHERE clause contains array host variables, this value
reflects the total number of rows deleted for all components of the array
processed by the DELETE statement.

WHERE

condition

CURRENT OF

Example

Related Topics

F – 23Embedded SQL Commands and Directives

If no rows satisfy the condition, Oracle7 returns an error through the
SQLCODE of the SQLCA. If you omit the WHERE clause, Oracle7 raises
a warning flag in the fifth component of SQLWARN in the SQLCA. For
more information on this command and the SQLCA, see Chapter 8.

You can use comments in a DELETE statement to pass instructions, or
hints, to the Oracle7 optimizer. The optimizer uses hints to choose an
execution plan for the statement. For more information on hints, see
Oracle7 Server Tuning.

This example illustrates the use of the DELETE statement within a
Pro*C/C++ embedded SQL program:

EXEC SQL DELETE FROM emp

 WHERE deptno = :deptno

 AND job = :job; ...

EXEC SQL DECLARE emp_cursor CURSOR

 FOR SELECT empno, comm

 FROM emp;

EXEC SQL OPEN emp_cursor;

EXEC SQL FETCH c1

 INTO :emp_number, :commission;

EXEC SQL DELETE FROM emp

 WHERE CURRENT OF emp_cursor;

DECLARE DATABASE command on F – 16
DECLARE STATEMENT command on F – 17

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

F – 24 Programmer’s Guide to the Oracle Precompilers

DESCRIBE (Executable Embedded SQL)

To initialize a descriptor to hold descriptions of host variables for a
dynamic SQL statement or PL/SQL block.

You must have prepared the SQL statement or PL/SQL block in a
previous embedded SQL PREPARE statement.

EXEC SQL DESCRIBE

BIND VARIABLES FOR

block_name

SELECT LIST FOR

statement_name INTO descriptor

initializes the descriptor to hold information about
the input variables for the SQL statement or
PL/SQL block.

initializes the descriptor to hold information about
the select list of a SELECT statement.

The default is SELECT LIST FOR.

identifies a SQL statement or PL/SQL block
previously prepared with a PREPARE statement.

is the name of the descriptor to be initialized.

You must issue a DESCRIBE statement before manipulating the bind or
select descriptor within an embedded SQL program.

You cannot describe both input variables and output variables into the
same descriptor.

The number of variables found by a DESCRIBE statement is the total
number of placeholders in the prepare SQL statement or PL/SQL block,
rather than the total number of uniquely named placeholders. For more
information on this command, see Chapter 10.

BIND VARIABLES

SELECT LIST

statement_name
block_name

descriptor

Example

Related Topics

F – 25Embedded SQL Commands and Directives

This example illustrates the use of the DESCRIBE statement in a Pro*C
embedded SQL program:

EXEC SQL PREPARE my_statement FROM :my_string;

EXEC SQL DECLARE emp_cursor

 FOR SELECT empno, ename, sal, comm

 FROM emp

 WHERE deptno = :dept_number

EXEC SQL DESCRIBE BIND VARIABLES FOR my_statement

 INTO bind_descriptor;

EXEC SQL OPEN emp_cursor

 USING bind_descriptor;

EXEC SQL DESCRIBE SELECT LIST FOR my_statement

 INTO select_descriptor;

EXEC SQL FETCH emp_cursor

 INTO select_descriptor;

PREPARE command on F – 41

Purpose

Prerequisites

Syntax

Keywords and
Parameters

F – 26 Programmer’s Guide to the Oracle Precompilers

EXECUTE ... END–EXEC (Executable Embedded SQL Extension)

To embed an anonymous PL/SQL block into an Oracle Precompiler
program.

None.

EXEC SQL

AT

:host_variable

EXECUTE pl/sql_block END–EXEC

db_name

identifies the database on which the PL/SQL block
is executed. The database can be identified by
either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the PL/SQL block is
executed on your default database.

For information on PL/SQL, including how to write
PL/SQL blocks, see the PL/SQL User’s Guide and
Reference.

must appear after the embedded PL/SQL block,
regardless of which programming language your
Oracle Precompiler program uses. Of course, the
keyword END–EXEC must be followed by the
embedded SQL statement terminator for the
specific language.

AT

db_name

:host_variable

pl/sql_block

END–EXEC

Usage Notes

Example

Related Topics

F – 27Embedded SQL Commands and Directives

Since the Oracle Precompilers treat an embedded PL/SQL block like a
single embedded SQL statement, you can embed a PL/SQL block
anywhere in an Oracle Precompiler program that you can embed a SQL
statement. For more information on embedding PL/SQL blocks in
Oracle Precompiler programs, see Chapter 5.

Placing this EXECUTE statement in an Oracle Precompiler program
embeds a PL/SQL block in the program:

EXEC SQL EXECUTE

 BEGIN

 SELECT ename, job, sal

 INTO :emp_name:ind_name, :job_title, :salary

 FROM emp

 WHERE empno = :emp_number;

 IF :emp_name:ind_name IS NULL

 THEN RAISE name_missing;

 END IF;

 END;

END–EXEC

EXECUTE IMMEDIATE embedded SQL command on F – 30

Purpose

Prerequisites

Syntax

Keywords and
Parameters

F – 28 Programmer’s Guide to the Oracle Precompilers

EXECUTE (Executable Embedded SQL)

To execute a DELETE, INSERT, or UPDATE statement or a PL/SQL
block that has been previously prepared with an embedded SQL
PREPARE statement.

You must first prepare the SQL statement or PL/SQL block with an
embedded SQL PREPARE statement.

EXEC SQL

USING

DESCRIPTOR descriptor

:indicator_variable

INDICATOR

EXECUTE

:host_variable

FOR :host_integer

,

statement_id

limits the number of times the statement is executed
when the USING clause contains array host
variables If you omit this clause, Oracle7 executes
the statement once for each component of the
smallest array.

is a precompiler identifier associated with the SQL
statement or PL/SQL block to be executed. Use the
embedded SQL PREPARE command to associate
the precompiler identifier with the statement or
PL/SQL block.

specifies a list of host variables with optional
indicator variables that Oracle7 substitutes as input
variables into the statement to be executed. The host
and indicator variables must be either all scalars or
all arrays.

FOR :host_integer

statement_id

USING

Usage Notes

Example

Related Topics

F – 29Embedded SQL Commands and Directives

For more information on this command, see Chapter 10.

This example illustrates the use of the EXECUTE statement in a
Pro*C/C++ embedded SQL program:

EXEC SQL PREPARE my_statement

 FROM :my_string;

EXEC SQL EXECUTE my_statement

 USING :my_var;

DECLARE DATABASE command on F – 16
PREPARE command on F – 41

Purpose

Prerequisites

Syntax

Keywords and
Parameters

F – 30 Programmer’s Guide to the Oracle Precompilers

EXECUTE IMMEDIATE (Executable Embedded SQL)

To prepare and execute a DELETE, INSERT, or UPDATE statement or a
PL/SQL block containing no host variables.

None.

EXEC SQL

EXECUTE IMMEDIATE

:host_variable

:host_string

AT db_name

’text’

identifies the database on which the SQL statement
or PL/SQL block is executed. The database can be
identified by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the statement or block is
executed on your default database.

is a host variable whose value is the SQL statement
or PL/SQL block to be executed.

is a quoted text literal containing the SQL statement
or PL/SQL block to be executed.

The SQL statement can only be a DELETE, INSERT,
or UPDATE statement.

AT

db_name

:host_variable

:host_string

text

Usage Notes

Example

Related Topics

F – 31Embedded SQL Commands and Directives

When you issue an EXECUTE IMMEDIATE statement, Oracle7 parses
the specified SQL statement or PL/SQL block, checking for errors, and
executes it. If any errors are encountered, they are returned in the
SQLCODE component of the SQLCA.

For more information on this command, see Chapter 10.

This example illustrates the use of the EXECUTE IMMEDIATE
statement:

EXEC SQL EXECUTE IMMEDIATE ’DELETE FROM emp WHERE empno = 9460’

PREPARE command on F – 41
EXECUTE command on F – 28

Purpose

Prerequisites

Syntax

Keywords and
Parameters

F – 32 Programmer’s Guide to the Oracle Precompilers

FETCH (Executable Embedded SQL)

To retrieve one or more rows returned by a query, assigning the select
list values to host variables.

You must first open the cursor with an the OPEN statement.

EXEC SQL

INTO

FOR :host_integer

FETCH

:host_variable

USING DESCRIPTOR descriptor

,

INDICATOR

:indicator_variable

:cursor_variable

cursor

limits the number of rows fetched if you are using
array host variables. If you omit this clause, Oracle7
fetches enough rows to fill the smallest array.

is a cursor that is declared by a DECLARE CURSOR
statement. The FETCH statement returns one of the
rows selected by the query associated with the
cursor.

is a cursor variable is allocated an ALLOCATE
statement. The FETCH statement returns one of the
rows selected by the query associated with the
cursor variable.

specifies a list of host variables and optional
indicator variables into which data is fetched. These
host variables and indicator variables must be
declared within the program.

specifies the descriptor referenced in a previous
DESCRIBE statement. Only use this clause with
dynamic embedded SQL, method 4. Also, the
USING clause does not apply when a cursor
variable is used.

FOR :host_integer

cursor

:cursor_variable

INTO

USING

Usage Notes

F – 33Embedded SQL Commands and Directives

The FETCH statement reads the rows of the active set and names the
output variables which contain the results. Indicator values are set to –1
if their associated host variable is null. The first FETCH statement for a
cursor also sorts the rows of the active set, if necessary.

The number of rows retrieved is specified by the size of the output host
variables and the value specified in the FOR clause. The host variables
to receive the data must be either all scalars or all arrays. If they are
scalars, Oracle7 fetches only one row. If they are arrays, Oracle7 fetches
enough rows to fill the arrays.

Array host variables can have different sizes. In this case, the number of
rows Oracle7 fetches is determined by the smaller of the following
values:

• the size of the smallest array

• the value of the :host_integer in the optional FOR clause

Of course, the number of rows fetched can be further limited by the
number of rows that actually satisfy the query.

If a FETCH statement does not retrieve all rows returned by the query,
the cursor is positioned on the next returned row. When the last row
returned by the query has been retrieved, the next FETCH statement
results in an error code returned in the SQLCODE element of the
SQLCA.

Note that the FETCH command does not contain an AT clause. You
must specify the database accessed by the cursor in the DECLARE
CURSOR statement.

You can only move forward through the active set with FETCH
statements. If you want to revisit any of the previously fetched rows,
you must reopen the cursor and fetch each row in turn. If you want to
change the active set, you must assign new values to the input host
variables in the cursor’s query and reopen the cursor.

Example

Related Topics

F – 34 Programmer’s Guide to the Oracle Precompilers

This example illustrates the FETCH command in a pseudo–code
embedded SQL program:

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT job, sal FROM emp WHERE deptno = 30;

...

EXEC SQL WHENEVER NOT FOUND GOTO ...

LOOP

 EXEC SQL FETCH emp_cursor INTO :job_title1, :salary1;

 EXEC SQL FETCH emp_cursor INTO :job_title2, :salary2;

...

END LOOP;

...

PREPARE command on F – 41
DECLARE CURSOR command on F – 14
OPEN command on F – 39
CLOSE command on F – 8

Purpose

Prerequisites

Syntax

F – 35Embedded SQL Commands and Directives

INSERT (Executable Embedded SQL)

To add rows to a table or to a view’s base table.

For you to insert rows into a table, the table must be in your own
schema or you must have INSERT privilege on the table.

For you to insert rows into the base table of a view, the owner of the
schema containing the view must have INSERT privilege on the base
table. Also, if the view is in a schema other than your own, you must
have INSERT privilege on the view.

The INSERT ANY TABLE system privilege also allows you to insert
rows into any table or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS label
must match the creation label of the table or view:

• If the creation label of the table or view is higher than your DBMS
label, you must have WRITEUP system privileges.

• If the creation label of the table or view is lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the creation label of your table or view is not comparable to
your DBMS label, you must have WRITEUP and WRITEDOWN
system privileges.

EXEC SQL

AT

:host_variable

db_name FOR :host_integer

INSERT INTO

schema.

table

VALUES (expr

view @dblink

)

(subquery),

column()

,

Keywords and
Parameters

F – 36 Programmer’s Guide to the Oracle Precompilers

identifies the database on which the INSERT
statement is executed. The database can be
identified by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name

If you omit this clause, the INSERT statement is
executed on your default database.

limits the number of times the statement is executed
if the VALUES clause contains array host variables.
If you omit this clause, Oracle7 executes the
statement once for each component in the smallest
array.

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is in
your own schema.

is the name of the table into which rows are to be
inserted. If you specify view, Oracle7 inserts rows
into the view’s base table.

is a complete or partial name of a database link to a
remote database where the table or view is located.
For information on referring to database links, see
Chapter 2 of the Oracle7 Server SQL Reference. You
can only insert rows into a remote table or view if
you are using Oracle7 with the distributed option.

If you omit dblink, Oracle7 assumes that the table or
view is on the local database.

AT

db_name

:host_variable

FOR :host_integer

schema

table
view

dblink

Usage Notes

F – 37Embedded SQL Commands and Directives

is a column of the table or view. In the inserted row,
each column in this list is assigned a value from the
VALUES clause or the query.

If you omit one of the table’s columns from this list,
the column’s value for the inserted row is the
column’s default value as specified when the table
was created. If you omit the column list altogether,
the VALUES clause or query must specify values for
all columns in the table.

specifies a row of values to be inserted into the table
or view. See the syntax description of expr in
Chapter 3 of the Oracle7 Server SQL Reference. Note
that the expressions can be host variables with
optional indicator variables. You must specify an
expression in the VALUES clause for each column
in the column list.

is a subquery that returns rows that are inserted
into the table. The select list of this subquery must
have the same number of columns as the column
list of the INSERT statement. For the syntax
description of a subquery, see “SELECT” in
Chapter 4 of the Oracle7 Server SQL Reference.

Any host variables that appear in the WHERE clause must be either all
scalars or all arrays. If they are scalars, Oracle7 executes the INSERT
statement once. If they are arrays, Oracle7 executes the INSERT
statement once for each set of array components, inserting one row each
time.

Array host variables in the WHERE clause can have different sizes. In
this case, the number of times Oracle7 executes the statement is
determined by the smaller of the following values:

• size of the smallest array

• the value of the :host_integer in the optional FOR clause.

For more information on this command, see Chapter 4.

column

VALUES

subquery

Example I

Example II

Related Topics

F – 38 Programmer’s Guide to the Oracle Precompilers

This example illustrates the use of the embedded SQL INSERT
command:

EXEC SQL

 INSERT INTO emp (ename, empno, sal)

 VALUES (:ename, :empno, :sal);

This example shows an embedded SQL INSERT command with a
subquery:

EXEC SQL

 INSERT INTO new_emp (ename, empno, sal)

 SELECT ename, empno, sal FROM emp

 WHERE deptno = :deptno;

DECLARE DATABASE command on F – 16

Purpose

Prerequisites

Syntax

Keywords and
Parameters

F – 39Embedded SQL Commands and Directives

OPEN (Executable Embedded SQL)

To open a cursor, evaluating the associated query and substituting the
host variable names supplied by the USING clause into the WHERE
clause of the query.

You must declare the cursor with a DECLARE CURSOR embedded SQL
statement before opening it.

EXEC SQL OPEN cursor

USING

DESCRIPTOR descriptor

,

:host_variable

:indicator_variable

INDICATOR

is the cursor to be opened.

specifies the host variables to be substituted into the
WHERE clause of the associated query.

specifies a host variable with an optional indicator
variable to be substituted into the statement
associated with the cursor.

specifies a descriptor that describes the host
variables to be substituted into the WHERE clause
of the associated query. The descriptor must be
initialized in a previous DESCRIBE statement.

The substitution is based on position. The host
variable names specified in this statement can be
different from the variable names in the associated
query.

cursor

USING

:host_variable

DESCRIPTOR

Usage Notes

Example

Related Topics

F – 40 Programmer’s Guide to the Oracle Precompilers

The OPEN command defines the active set of rows and initializes the
cursor just before the first row of the active set. The values of the host
variables at the time of the OPEN are substituted in the statement. This
command does not actually retrieve rows; rows are retrieved by the
FETCH command.

Once you have opened a cursor, its input host variables are not
reexamined until you reopen the cursor. To change any input host
variables and therefore the active set, you must reopen the cursor.

All cursors in a program are in a closed state when the program is
initiated or when they have been explicitly closed using the CLOSE
command.

You can reopen a cursor without first closing it. For more information on
this command, see Chapter 4.

This example illustrates the use of the OPEN command in a Pro*C/C++
embedded SQL program:

EXEC SQL DECLARE emp_cursor CURSOR FOR

 SELECT ename, empno, job, sal

 FROM emp

 WHERE deptno = :deptno;

EXEC SQL OPEN emp_cursor;

PREPARE command on F – 41
DECLARE CURSOR command on F – 14
FETCH command on F – 32
CLOSE command on F – 8

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

F – 41Embedded SQL Commands and Directives

PREPARE (Executable Embedded SQL)

To parse a SQL statement or PL/SQL block specified by a host variable
and associate it with an identifier.

None.

EXEC SQL PREPARE

’text’

statement_id FROM :host_string

is the identifier to be associated with the prepared
SQL statement or PL/SQL block. If this identifier
was previously assigned to another statement or
block, the prior assignment is superseded.

is a host variable whose value is the text of a SQL
statement or PL/SQL block to be prepared.

is a string literal containing a SQL statement or
PL/SQL block to be prepared.

Any variables that appear in the :host_string or text are placeholders. The
actual host variable names are assigned in the USING clause of the
OPEN command (input host variables) or in the INTO clause of the
FETCH command (output host variables).

A SQL statement is prepared only once, but can be executed any
number of times.

This example illustrates the use of a PREPARE statement in a
Pro*C/C++ embedded SQL program:

EXEC SQL PREPARE my_statement FROM :my_string;

EXEC SQL EXECUTE my_statement;

DECLARE CURSOR command on F – 14
OPEN command on F – 39
FETCH command on F – 32
CLOSE command on F – 8

statement_id

:host_string

text

Purpose

Prerequisites

Syntax

Keywords and
Parameters

F – 42 Programmer’s Guide to the Oracle Precompilers

ROLLBACK (Executable Embedded SQL)

To undo work done in the current transaction.

You can also use this command to manually undo the work done by an
in–doubt distributed transaction.

To roll back your current transaction, no privileges are necessary.

To manually roll back an in–doubt distributed transaction that you
originally committed, you must have FORCE TRANSACTION system
privilege. To manually roll back an in–doubt distributed transaction
originally committed by another user, you must have FORCE ANY
TRANSACTION system privilege.

ROLLBACK

WORK TO

SAVEPOINT

savepoint

FORCE ’text’

EXEC SQL

AT

:host_variable

db_name

RELEASE

is optional and is provided for ANSI compatibility.

rolls back the current transaction to the specified
savepoint. If you omit this clause, the ROLLBACK
statement rolls back the entire transaction.

manually rolls back an in–doubt distributed
transaction. The transaction is identified by the text
containing its local or global transaction ID. To find
the IDs of such transactions, query the data
dictionary view DBA_2PC_PENDING.

ROLLBACK statements with the FORCE clause are
not supported in PL/SQL.

frees all resources and disconnects the application
from the Oracle7 Server. The RELEASE clause is not
allowed with SAVEPOINT and FORCE clauses.

WORK

TO

FORCE

RELEASE

Usage Notes

F – 43Embedded SQL Commands and Directives

A transaction (or a logical unit of work) is a sequence of SQL statements
that Oracle7 treats as a single unit. A transaction begins with the first
executable SQL statement after a COMMIT, ROLLBACK or connection
to the database. A transaction ends with a COMMIT statement, a
ROLLBACK statement, or disconnection (intentional or unintentional)
from the database. Note that Oracle7 issues an implicit COMMIT
statement before and after processing any Data Definition Language
statement.

Using the ROLLBACK command without the TO SAVEPOINT clause
performs the following operations:

• ends the transaction

• undoes all changes in the current transaction

• erases all savepoints in the transaction

• releases the transaction’s locks

Using the ROLLBACK command with the TO SAVEPOINT clause
performs the following operations:

• rolls back just the portion of the transaction after the savepoint.

• loses all savepoints created after that savepoint. Note that the
named savepoint is retained, so you can roll back to the same
savepoint multiple times. Prior savepoints are also retained.

• releases all table and row locks acquired since the savepoint. Note
that other transactions that have requested access to rows locked
after the savepoint must continue to wait until the transaction is
committed or rolled back. Other transactions that have not
already requested the rows can request and access the rows
immediately.

It is recommended that you explicitly end transactions in application
programs using either a COMMIT or ROLLBACK statement. If you do
not explicitly commit the transaction and the program terminates
abnormally, Oracle7 rolls back the last uncommitted transaction.

Example I

Example II

Distributed Transactions

Example III

Related Topics

F – 44 Programmer’s Guide to the Oracle Precompilers

The following statement rolls back your entire current transaction:

EXEC SQL ROLLBACK;

The following statement rolls back your current transaction to savepoint
SP5:

EXEC SQL ROLLBACK TO SAVEPOINT sp5;

Oracle7 with the distributed option allows you to perform distributed
transactions, or transactions that modify data on multiple databases. To
commit or roll back a distributed transaction, you need only issue a
COMMIT or ROLLBACK statement as you would any other transaction.

If there is a network failure during the commit process for a distributed
transaction, the state of the transaction may be unknown, or in–doubt.
After consultation with the administrators of the other databases
involved in the transaction, you may decide to manually commit or roll
back the transaction on your local database. You can manually roll back
the transaction on your local database by issuing a ROLLBACK
statement with the FORCE clause.

For more information on when to roll back in–doubt transactions, see
Oracle7 Server Distributed Systems, Volume I.

You cannot manually roll back an in–doubt transaction to a savepoint.

A ROLLBACK statement with a FORCE clause only rolls back the
specified transaction. Such a statement does not affect your current
transaction.

The following statement manually rolls back an in–doubt distributed
transaction:

EXEC SQL

 ROLLBACK WORK

 FORCE ’25.32.87’;

COMMIT command on F – 9
SAVEPOINT command on F – 45

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

Example

Related Topics

F – 45Embedded SQL Commands and Directives

SAVEPOINT (Executable Embedded SQL)

To identify a point in a transaction to which you can later roll back.

None.

db_name

EXEC SQL SAVEPOINT savepoint

AT

:host_variable

identifies the database on which the savepoint is
created. The database can be identified by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the savepoint is created on
your default database.

is the name of the savepoint to be created.

For more information on this command, see Chapter 7.

This example illustrates the use of the embedded SQL SAVEPOINT
command:

EXEC SQL SAVEPOINT save3;

COMMIT command on F – 9
ROLLBACK command on F – 42

AT

db_name

:host_variable

savepoint

Purpose

Prerequisites

F – 46 Programmer’s Guide to the Oracle Precompilers

SELECT (Executable Embedded SQL)

To retrieve data from one or more tables, views, or snapshots, assigning
the selected values to host variables.

For you to select data from a table or snapshot, the table or snapshot
must be in your own schema or you must have SELECT privilege on the
table or snapshot.

For you to select rows from the base tables of a view, the owner of the
schema containing the view must have SELECT privilege on the base
tables. Also, if the view is in a schema other than your own, you must
have SELECT privilege on the view.

The SELECT ANY TABLE system privilege also allows you to select
data from any table or any snapshot or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS label
must dominate the creation label of each queried table, view, or
snapshot or you must have READUP system privileges.

Syntax

F – 47Embedded SQL Commands and Directives

EXEC SQL

AT

SELECT select_list

INTO

,

:host_variable

OF

,

column

table.

UNION ALL

INTERSECT

MINUS

ORDER BY expr

,

ASC

DESC

NOWAIT

FOR UPDATE

:host_variable

:indicator_variable

INDICATOR

WHERE condition

START WITH condition

GROUP BY expr

,

HAVING condition

position

schema. view.

dbname

FROM table_list

CONNECT BY condition

UNION SELECT command

snapshot

Keywords and
Parameters

F – 48 Programmer’s Guide to the Oracle Precompilers

identifies the database to which the SELECT
statement is issued. The database can be identified
by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the SELECT statement is
issued to your default database.

identical to the non–embedded SELECT command
except that a host variables can be used in place of
literals.

specifies output host variables and optional
indicator variables to receive the data returned by
the SELECT statement. Note that these variables
must be either all scalars or all arrays, but arrays
need not have the same size.

restricts the rows returned to those for which the
condition is TRUE. See the syntax description of
condition in Chapter 3 of the Oracle7 Server SQL
Reference. The condition can contain host variables,
but cannot contain indicator variables. These host
variables can be either scalars or arrays.

All other keywords and parameters are identical to the non–embedded
SQL SELECT command.

AT

db_name

:host_variable

select_list

INTO

WHERE

Usage Notes

Example

Related Topics

F – 49Embedded SQL Commands and Directives

If no rows meet the WHERE clause condition, no rows are retrieved and
Oracle7 returns an error code through the SQLCODE component of the
SQLCA.

You can use comments in a SELECT statement to pass instructions, or
hints, to the Oracle7 optimizer. The optimizer uses hints to choose an
execution plan for the statement. For more information on hints, see
Oracle7 Server Tuning.

This example illustrates the use of the embedded SQL SELECT
command:

EXEC SQL SELECT ename, sal + 100, job

 INTO :ename, :sal, :job

 FROM emp

 WHERE empno = :empno

DECLARE DATABASE command on F – 16
DECLARE CURSOR command on F – 14
EXECUTE command on F – 28
FETCH command on F – 32
PREPARE command on F – 42

makes the equivalenced type a pointer type.REFERENCE

Purpose

Prerequisites

Syntax

F – 50 Programmer’s Guide to the Oracle Precompilers

UPDATE (Executable Embedded SQL)

To change existing values in a table or in a view’s base table.

For you to update values in a table or snapshot, the table must be in
your own schema or you must have UPDATE privilege on the table.

For you to update values in the base table of a view, the owner of the
schema containing the view must have UPDATE privilege on the base
table. Also, if the view is in a schema other than your own, you must
have UPDATE privilege on the view.

The UPDATE ANY TABLE system privilege also allows you to update
values in any table or any view’s base table.

If you are using Trusted Oracle7 in DBMS MAC mode, your DBMS label
must match the creation label of the table or view:

• If the creation label of the table or view is higher than your DBMS
label, you must have READUP and WRITEUP system privileges

• If the creation label of the table or view is lower than your DBMS
label, you must have WRITEDOWN system privilege.

• If the creation label of your table or view is not comparable to
your DBMS label, you must have READUP, WRITEUP, and
WRITEDOWN system privileges.

EXEC SQL

AT FOR :host_integer

:host_variable

dbname

SET

column =

WHERE

,

(column) = (subquery_1)

(subquery_2)

expr

,

,

table

schema. view

snapshot

@dblink alias

UPDATE

(suCURRENT OF cursor

condition

Keywords and
Parameters

F – 51Embedded SQL Commands and Directives

identifies the database to which the UPDATE
statement is issued. The database can be identified
by either:

is a database identifier declared in a
previous DECLARE DATABASE
statement.

is a host variable whose value is a
previously declared db_name.

If you omit this clause, the UPDATE statement is
issued to your default database.

limits the number of times the UPDATE statement
is executed if the SET and WHERE clauses contain
array host variables. If you omit this clause, Oracle7
executes the statement once for each component of
the smallest array.

is the schema containing the table or view. If you
omit schema, Oracle7 assumes the table or view is in
your own schema.

is the name of the table to be updated. If you specify
view, Oracle7 updates the view’s base table.

is a complete or partial name of a database link to a
remote database where the table or view is located.
For information on referring to database links, see
Chapter 2 of the Oracle7 Server SQL Reference. You
can only use a database link to update a remote
table or view if you are using Oracle7 with the
distributed option.

is a name used to reference the table, view, or
subquery elsewhere in the statement.

is the name of a column of the table or view that
is to be updated. If you omit a column of the table
from the SET clause, that column’s value
remains unchanged.

AT

db_name

:host_variable

FOR :host_integer

schema

table
view

dblink

alias

column

F – 52 Programmer’s Guide to the Oracle Precompilers

is the new value assigned to the corresponding
column. This expression can contain host variables
and optional indicator variables. See the syntax of
expr in Chapter 3 of the Oracle7 Server SQL Reference.

is a subquery that returns new values that are
assigned to the corresponding columns. For the
syntax of a subquery, see “SELECT” in Chapter 4 of
the Oracle7 Server SQL Reference.

is a subquery that return a new value that is
assigned to the corresponding column. For the
syntax of a subquery, see “SELECT” in Chapter 4 of
the Oracle7 Server SQL Reference.

specifies which rows of the table or view
are updated:

updates only rows for which this
condition is true. This condition can
contain host variables and optional
indicator variables. See the syntax
of condition in Chapter 3 of the
Oracle7 Server SQL Reference.

updates only the row most recently
fetched by the cursor. The cursor
cannot be associated with a
SELECT statement that performs a
join unless its FOR UPDATE clause
explicitly locks only one table.

If you omit this clause entirely, Oracle7 updates all
rows of the table or view.

expr

subquery_1

subquery_2

WHERE

condition

CURRENT OF

Usage Notes

Examples

Related Topics

F – 53Embedded SQL Commands and Directives

Host variables in the SET and WHERE clauses must be either all
scalars or all arrays. If they are scalars, Oracle7 executes the UPDATE
statement only once. If they are arrays, Oracle7 executes the statement
once for each set of array components. Each execution may update zero,
one, or multiple rows.

Array host variables can have different sizes. In this case, the number of
times Oracle7 executes the statement is determined by the smaller
of the following values:

• the size of the smallest array

• the value of the :host_integer in the optional FOR clause

The cumulative number of rows updated is returned through the third
element of the SQLERRD component of the SQLCA. When arrays are
used as input host variables, this count reflects the total number of
updates for all components of the array processed in the UPDATE
statement. If no rows satisfy the condition, no rows are updated and
Oracle7 returns an error message through the SQLCODE element of
the SQLCA. If you omit the WHERE clause, all rows are updated and
Oracle7 raises a warning flag in the fifth component of the SQLWARN
element of the SQLCA.

You can use comments in an UPDATE statement to pass instructions, or
hints, to the Oracle7 optimizer. The optimizer uses hints to choose an
execution plan for the statement. For more information on hints, see
Oracle7 Server Tuning.

For more information on this command, see Chapters 4 and 7.

The following examples illustrate the use of the embedded SQL
UPDATE command:

EXEC SQL UPDATE emp

 SET sal = :sal, comm = :comm INDICATOR :comm_ind

 WHERE ename = :ename;

EXEC SQL UPDATE emp

 SET (sal, comm) =

 (SELECT AVG(sal)*1.1, AVG(comm)*1.1

 FROM emp)

 WHERE ename = ’JONES’;

DECLARE DATABASE command on F – 16

Purpose

Prerequisites

Syntax

Keywords and
Parameters

Usage Notes

F – 54 Programmer’s Guide to the Oracle Precompilers

VAR (Oracle Embedded SQL Directive)

To perform host variable equivalencing, or to assign a specific Oracle7
external datatype to an individual host variable, overriding the default
datatype assignment.

The host variable must be previously declared in the Declare Section of
the embedded SQL program.

EXEC SQL VAR host_variable IS datatype

is the host variable to be assigned an Oracle7
external datatype.

is an Oracle7 external datatype recognized by the
Oracle Precompilers (not an Oracle7 internal
datatype). The datatype may include a length,
precision, or scale. This external datatype is
assigned to the host_variable. For a list of external
datatypes, see Chapter 3.

Host variable equivalencing is one kind of datatype equivalencing.
Datatype equivalencing is useful for any of the following purposes:

• to automatically null–terminate a character host variable

• to store program data as binary data in the database

• to override default datatype conversion

host_variable

datatype

Example

Related Topics

F – 55Embedded SQL Commands and Directives

This example equivalences the host variable DEPT_NAME to
the datatype STRING and the host variable BUFFER to the
datatype RAW(2000):

EXEC SQL BEGIN DECLARE SECTION;

 ...

 dept_name CHARACTER(15); –– default datatype is CHAR

 EXEC SQL VAR dept_name IS STRING; –– reset to STRING

 ...

 buffer CHARACTER(200); –– default datatype is CHAR

 EXEC SQL VAR buffer IS RAW(200); –– refer to RAW

 ...

EXEC SQL END DECLARE SECTION;

None.

Purpose

Prerequisites

Syntax

Keywords and
Parameters

F – 56 Programmer’s Guide to the Oracle Precompilers

WHENEVER (Embedded SQL Directive)

To specify the action to be taken when an error or warning results from
executing an embedded SQL program.

None.

The following syntax diagram shows how to construct a WHENEVER
statement:

EXEC SQL WHENEVER NOT FOUND

SQLERROR

SQLWARNING

CONTINUE

GOTO label

STOP

DO routine

identifies any exception condition that returns an
error code of +1403 to SQLCODE (or a +100 code
when MODE=ANSI).

identifies a condition that results in a negative
return code.

identifies a non–fatal warning condition.

indicates that the program should progress to the
next statement.

indicates that the program should branch to the
statement named by label.

stops program execution.

indicates that the program should call a host
language routine. The syntax of routine depends on
your host language. See your language–specific
Supplement to the Oracle Precompilers Guide.

NOT FOUND

SQLERROR

SQLWARNING

CONTINUE

GOTO

STOP

DO

Usage Notes

Example

Related Topics

F – 57Embedded SQL Commands and Directives

The WHENEVER command allows your program to transfer control to
an error handling routine in the event an embedded SQL statement
results in an error or warning.

The scope of a WHENEVER statement is positional, rather than logical.
A WHENEVER statement applies to all embedded SQL statements that
textually follow it in the source file, not in the flow of the program logic.
A WHENEVER statement remains in effect until it is superseded by
another WHENEVER statement checking for the same condition.

For more information on this command, see Chapter 7. Do not confuse
the WHENEVER embedded SQL command with the WHENEVER
SQL*Plus command.

The following example illustrates the use of the WHENEVER command
in a Pro*C/C++ embedded SQL program:

EXEC SQL WHENEVER NOT FOUND CONTINUE;

...

EXEC SQL WHENEVER SQLERROR GOTO sql_error:

...

sql_error:

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK RELEASE;

None

F – 58 Programmer’s Guide to the Oracle Precompilers

Index – 1

Index

A
abnormal termination,

automatic rollback, F – 11
active set, 4 – 11

changing, 4 – 13
definition, 2 – 7
when empty, 4 – 14

ALLOCATE command, F – 7
allocating, cursors, F – 7
ANSI/ISO SQL

compliance, 1 – 6
extensions, 6 – 20

application development process, 2 – 9
array, 9 – 2

See also host array
elements, 9 – 2
operations, 2 – 7

array fetch. See batch fetch
ARRAYLEN statement, 5 – 16
ASACC option, 6 – 12
ASSUME_SQLCODE option, 6 – 12
AT clause

CONNECT statement, 3 – 39
DECLARE CURSOR statement, 3 – 40
DECLARE STATEMENT statement, 3 – 41
EXECUTE IMMEDIATE statement, 3 – 40
of COMMIT command, F – 10
of CONNECT command, F – 12
of DECLARE CURSOR command, F – 14
of DECLARE

STATEMENT command, F – 17
of EXECUTE command, F – 30

AT clause (continued)
of EXECUTE IMMEDIATE command, F – 34
of INSERT command, F – 40
of SAVEPOINT command, F – 49
of SELECT command, F – 52
of UPDATE command, F – 55
restrictions, 3 – 40

AUTO_CONNECT option, 6 – 13
instead of CONNECT statement, 3 – 36

automatic logon, 3 – 35, 3 – 38

B
batch fetch, 9 – 4

example, 9 – 4
number of rows returned, 9 – 5

bind descriptor, information in, 10 – 16
bind variable, 4 – 20

See also input host variable
binding, 10 – 4
blank padding,

in multi–byte character strings, 3 – 33
block data subprogram,

used by precompiler, 6 – 14

C
callback, user exit, 11 – 12
CHAR column, maximum width, 3 – 6
CHAR datatype

external, 3 – 12

Index – 2 Programmer’s Guide to the Oracle Precompilers

internal, 3 – 6
character sets, multi–byte, 3 – 32
character strings, multi–byte, 3 – 32
CHARF datatype, external, 3 – 12
CHARF datatype specifier, 3 – 29

using in TYPE statement, 3 – 29
using in VAR statement, 3 – 29

CHARZ datatype, 3 – 12
child cursor, 5 – 17
CLOSE command, F – 8

examples, F – 8
CLOSE statement, 4 – 14, 4 – 21

example, 4 – 14
closing, cursors, F – 8
code page, 3 – 31
column list, 4 – 9
column, ROWLABEL, 3 – 10
comment, 10 – 20
COMMENT clause,

of COMMIT command, F – 10
commit, 7 – 3

automatic, 7 – 4
explicit versus implicit, 7 – 4

COMMIT command, F – 9
ending a transaction, F – 47
examples, F – 11

COMMIT statement
See also ROLLBACK statement
effects, 7 – 5
example, 7 – 5
RELEASE option, 7 – 5
using in a PL/SQL block, 7 – 16
where to place, 7 – 5

committing, transactions, F – 9
COMMON_NAME option, 6 – 14
communicating over a network, 3 – 37
compilation, 6 – 42
compliance, ANSI/ISO, 1 – 6
concurrency, 7 – 2
concurrent logon, 3 – 36
conditional precompilation, 6 – 39

defining symbols, 6 – 40
example, 6 – 39

CONFIG option, 6 – 9, 6 – 15
configuration file

advantages, 6 – 9
system versus user, 6 – 9, 6 – 15

CONNECT command, F – 12
examples, F – 13

CONNECT statement
AT clause, 3 – 39
enabling a semantic check, D – 3
requirements, 3 – 34
USING clause, 3 – 39
using to log on, 3 – 34
when not required, 3 – 36

connecting to Oracle, 3 – 34
automatically, 3 – 35
concurrently, 3 – 36
example, 3 – 34
via SQL*Net, 3 – 36

connection
concurrent, 3 – 41
default versus non–default, 3 – 37
implicit, 3 – 43
naming, 3 – 38

CONTINUE action, 8 – 27
CONTINUE option,

of WHENEVER command, F – 60
conventions

description, vi
notation, vi

CREATE PROCEDURE statement, 5 – 19
creating, savepoints, F – 49
CURRENT OF clause, 4 – 15

example, 4 – 15
mimicking with ROWID, 7 – 14, 9 – 13
of embedded

SQL DELETE command, F – 22
of embedded

SQL UPDATE command, F – 56
restrictions, 4 – 15

current row, 2 – 7
CURRVAL pseudocolumn, 3 – 9
cursor, 4 – 11

analogy, 2 – 7
association with query, 4 – 11
child, 5 – 17

Index – 3

declaring, 4 – 12
cursor (continued)

effects on performance, C – 7
explicit versus implicit, 2 – 7
naming, 4 – 12
parent, 5 – 17
reopening, 4 – 13, 4 – 14
restricted scope of, 6 – 41
restrictions, 4 – 12
scope, 4 – 12
using for multirow queries, 4 – 11
using more than one, 4 – 12
when closed automatically, 4 – 14

cursor cache, 5 – 17, 8 – 37
gathering statistics about, 8 – 39
purpose, C – 9

cursor variable, 4 – 19, F – 7
closing, 4 – 21
fetching from, 4 – 21
opening, 4 – 19

cursors
allocating, F – 7
closing, F – 8
fetching rows from, F – 36
opening, F – 43

D
data definition danguage (DDL)

creating CHAR objects
with DBMS=V6, 6 – 17

description, 4 – 2
data integrity, 7 – 2
data lock, 7 – 2
data definition language (DDL)), 4 – 2
data manipulation language (DML), 4 – 7
database link

creating a synonym, 3 – 43
defining, 3 – 43

database links
using in DELETE command, F – 21
using in INSERT command, F – 40
using in UPDATE command, F – 55

datatype
host–language, 3 – 22
internal versus external, 2 – 6

user–defined, 3 – 22
datatype conversion, 3 – 19

between internal and external types, 3 – 19
supported, 3 – 20

datatype equivalencing, 2 – 7, 3 – 25
advantages, 3 – 25
example, 3 – 27
guidelines, 3 – 29

DATE datatype
converting, 3 – 21
default format, 3 – 21
default value, 3 – 6
external, 3 – 13
internal, 3 – 6
internal format, 3 – 13

DBMS option, 6 – 16
using to migrate applications, E – 3

deadlock, 7 – 2
effect on transactions, 7 – 7
how broken, 7 – 7

DECIMAL datatype, 3 – 13
declaration

cursor, 4 – 12
host array, 9 – 2
host variable, 3 – 22
indicator variable, 3 – 24
of ORACA, 8 – 36
SQLCA, 8 – 20

declarative SQL statement, 2 – 3
using in transactions, 7 – 4

DECLARE CURSOR command, F – 14
examples, F – 15

DECLARE CURSOR
statement, AT clause, 3 – 40

DECLARE DATABASE directive, F – 16
Declare Section, 3 – 2

defining username and password, 3 – 34
example, 3 – 2
using more than one, 3 – 2

DECLARE statement, 4 – 12
example, 4 – 12
using in dynamic SQL Method 3, 10 – 13
where to place, 4 – 12

DECLARE STATEMENT command, F – 17
examples, F – 18
scope of, F – 17

Index – 4 Programmer’s Guide to the Oracle Precompilers

DECLARE STATEMENT statement
AT clause, 3 – 41
example, 10 – 18
using in dynamic SQL, 10 – 18
when required, 10 – 18

DECLARE TABLE command, F – 19
examples, F – 19

DECLARE TABLE statement
need for with AT clause, 3 – 39
using with the SQLCHECK option, D – 4

default, setting of LITDELIM option, 6 – 25
default connection, 3 – 37
default database, 3 – 37
DEFINE option, 6 – 19
delete cascade, 8 – 24
DELETE command, F – 20

embedded SQL examples, F – 23
DELETE statement, 4 – 10

example, 4 – 10
using host arrays, 9 – 9
using the SQLERRD(3) field, 9 – 14
WHERE clause, 4 – 10

DEPT table, 2 – 12
DESCRIBE command, F – 24

example, F – 25
use with PREPARE command, F – 24

DESCRIBE statement, using in dynamic SQL
Method 4, 10 – 15

descriptor, 10 – 15
naming, F – 24

directory, 3 – 3
current, 3 – 3
path for INCLUDE files, 3 – 3

DISPLAY datatype, 3 – 13
distributed processing, 3 – 37
distributed transactions, F – 48
DML (Data Manipulation Language), 4 – 7
DO action, 8 – 28
DO option, of WHENEVER command, F – 60
DTP model, 3 – 46
dummy host variable. See placeholder
dynamic PL/SQL, 10 – 19

dynamic SQL
advantages and disadvantages, 10 – 2
choosing the right method, 10 – 6
guidelines, 10 – 6
multi–byte character data restrictions, 3 – 32
overview, 2 – 5, 10 – 2
using PL/SQL, 5 – 24
using the AT clause, 3 – 40
when useful, 10 – 3

dynamic SQL Method 1
commands, 10 – 5
description, 10 – 8
example, 10 – 9
requirements, 10 – 5
using EXECUTE IMMEDIATE, 10 – 8
using PL/SQL, 10 – 19

dynamic SQL Method 2
commands, 10 – 5
description, 10 – 9
example, 10 – 11
requirements, 10 – 5
using PL/SQL, 10 – 19
using the DECLARE

STATEMENT statement, 10 – 18
using the EXECUTE statement, 10 – 9
using the PREPARE statement, 10 – 9

dynamic SQL Method 3
commands, 10 – 5
compared to Method 2, 10 – 12
example, 10 – 14
requirements, 10 – 5
using PL/SQL, 10 – 19
using the DECLARE statement, 10 – 13
using the DECLARE

STATEMENT statement, 10 – 18
using the FETCH statement, 10 – 13
using the OPEN statement, 10 – 13
using the PREPARE statement, 10 – 12

dynamic SQL Method 4
overview, 10 – 15
requirements, 10 – 5
using descriptors, 10 – 15
using PL/SQL, 10 – 20
using the DECLARE

STATEMENT statement, 10 – 18
using the DESCRIBE statement, 10 – 15

Index – 5

dynamic SQL Method 4
using the FOR clause, 10 – 19
using the SQLDA, 10 – 15
when needed, 10 – 15

dynamic SQL statement, 10 – 2
binding of host variables, 10 – 4
how processed, 10 – 4
requirements, 10 – 3
using host arrays, 10 – 18
using placeholders, 10 – 3
versus static SQL statement, 10 – 2

E
ellipsis, vii
embedded SQL

DECLARE CURSOR command, F – 14
DECLARE TABLE command, F – 19
EXECUTE command, F – 30

embedded PL/SQL
advantages, 5 – 2
cursor FOR loop, 5 – 3
example, 5 – 7, 5 – 9
need for SQLCHECK option, 5 – 7
need for USERID option, 5 – 7
overview, 2 – 5
package, 5 – 4
PL/SQL table, 5 – 5
requirements, 5 – 6
subprogram, 5 – 3
support for SQL, 2 – 5
user–defined record, 5 – 5
using %TYPE, 5 – 2
using the VARCHAR pseudotype, 5 – 11
using to improve performance, C – 4
where allowed, 5 – 6

embedded SQL
ALLOCATE command, F – 7
CLOSE command, F – 8
COMMIT command, F – 9
CONNECT command, F – 12
DECLARE STATEMENT command, F – 17
DELETE command, F – 20
DESCRIBE command, F – 24
EXECUTE command, F – 32
EXECUTE IMMEDIATE command, F – 34
FETCH command, F – 36

INSERT command, F – 39
key concepts, 2 – 2
OPEN command, F – 43
PREPARE command, F – 45
SAVEPOINT command, F – 49
SELECT command, F – 50
UPDATE command, F – 54
VAR command, F – 58
versus interactive SQL, 2 – 5
when to use, 1 – 4
WHENEVER command, F – 60

embedded SQL statement
mixing with host–language statements, 2 – 5
referencing host variables, 3 – 22
referencing indicator variables, 3 – 24
syntax, 2 – 5

embedding, PL/SQL blocks
in Oracle7 precompiler programs, F – 30

EMP table, 2 – 12
encoding scheme, 3 – 31
Entry SQL, 1 – 7
equivalencing,

host variable equivalencing, F – 58
equivalencing, datatype, 3 – 25
error detection, error reporting, F – 61
error handling

alternatives, 8 – 2
benefits, 8 – 2
overview, 2 – 8
SQLCA versus WHENEVER statement, 8 – 3
SQLCODE status variable, 8 – 4
SQLSTATE status variable, 8 – 4
using the ORACA structure, 8 – 36
using the ROLLBACK statement, 7 – 7
using the SQLCA structure, 8 – 19
using the SQLCODE status variable, 8 – 5
using the SQLGLM function, 8 – 26
using the SQLGLS function, 8 – 33
using the WHENEVER statement, 8 – 27

error message
available in SQLCA, 8 – 22
maximum length, 8 – 26
using in error reporting, 8 – 22
using the SQLGLM function, 8 – 26

Index – 6 Programmer’s Guide to the Oracle Precompilers

error reporting
key components, 8 – 21
using error messages, 8 – 22
using status codes, 8 – 21
using the parse error offset, 8 – 22
using the rows–processed count, 8 – 22
using warning flags, 8 – 21
WHENEVER command, F – 61

ERRORS option, 6 – 19
exception, PL/SQL, 5 – 13
EXEC ORACLE DEFINE statement, 6 – 39
EXEC ORACLE ELSE statement, 6 – 39
EXEC ORACLE ENDIF statement, 6 – 39
EXEC ORACLE IFDEF statement, 6 – 39
EXEC ORACLE IFNDEF statement, 6 – 39
EXEC ORACLE statement

scope of, 6 – 8
syntax for, 6 – 7
uses for, 6 – 7
using to enter options inline, 6 – 7

EXEC SQL clause, 2 – 5
EXEC TOOLS statement, 11 – 12

GET, 11 – 13
GET CONTEXT, 11 – 14
MESSAGE, 11 – 15
SET, 11 – 13
SET CONTEXT, 11 – 14

executable SQL statement, 2 – 3
EXECUTE command, F – 30, F – 32

examples, F – 31, F – 33
EXECUTE IMMEDIATE command, F – 34

examples, F – 35
EXECUTE IMMEDIATE statement

AT clause, 3 – 40
using in dynamic SQL Method 1, 10 – 8

EXECUTE statement, using in dynamic SQL
Method 2, 10 – 9

execution plan, C – 5
EXPLAIN PLAN statement, using to improve

performance, C – 6
explicit logon

See also implicit logon
multiple, 3 – 41
single, 3 – 38

external datatype, 3 – 11
CHAR, 3 – 12
CHARF, 3 – 12
CHARZ, 3 – 12
DATE, 3 – 13
DECIMAL, 3 – 13
definition, 2 – 6
description, 3 – 12
DISPLAY, 3 – 13
FLOAT, 3 – 13
INTEGER, 3 – 14
LONG, 3 – 14
LONG RAW, 3 – 14
LONG VARCHAR, 3 – 14
LONG VARRAW, 3 – 14
MLSLABEL, 3 – 14
NUMBER, 3 – 15
parameters, 3 – 27
RAW, 3 – 15
ROWID, 3 – 16
STRING, 3 – 16
UNSIGNED, 3 – 17
VARCHAR, 3 – 17
VARCHAR2, 3 – 17
VARNUM, 3 – 18
VARRAW, 3 – 18

F
features, new, A – 1
FETCH command, F – 36

examples, F – 38
used after OPEN command, F – 44

FETCH statement, 4 – 13, 4 – 14, 4 – 21
example, 4 – 13
INTO clause, 4 – 13
using in dynamic SQL Method 3, 10 – 13
using the SQLERRD(3) field, 9 – 14

fetch, batch, 9 – 4
fetching, rows from cursors, F – 36
file extension, 3 – 3
FIPS option, 6 – 19
flag, warning, 8 – 21
FLOAT datatype, 3 – 13

Index – 7

FOR clause, 9 – 10
example, 9 – 10
of embedded

SQL EXECUTE command, F – 32
of embedded SQL INSERT command, F – 40
restrictions, 9 – 11
using with host arrays, 9 – 10

FOR UPDATE clause, 4 – 20
FOR UPDATE OF clause, 7 – 12
FORCE clause

of COMMIT command, F – 10
of ROLLBACK command, F – 46

format mask, 3 – 21
FORMAT option, 6 – 21
forward reference, 4 – 12
full scan, C – 6

G
GENXTB form, running, 11 – 10
GOTO action, 8 – 28
GOTO option,

of WHENEVER command, F – 60
guidelines

datatype equivalencing, 3 – 29
dynamic SQL, 10 – 6
host variable, 3 – 23
indicator variable, 3 – 25
separate precompilation, 6 – 41
transaction, 7 – 16
user exit, 11 – 11
WHENEVER statement, 8 – 30

H
heap, 8 – 37
hint, optimizer, C – 5
hints

in DELETE statements, F – 23
in SELECT statements, F – 53
in UPDATE statements, F – 57

HOLD_CURSOR option, 6 – 22
of ORACLE Precompilers, F – 8
using to improve performance, C – 11
what it affects, C – 7

host program, 2 – 2
host array, 9 – 2

advantages, 9 – 2
declaring, 9 – 2
dimensioning, 9 – 2
maximum size, 9 – 2
referencing, 9 – 3
restrictions, 9 – 5, 9 – 7, 9 – 8, 9 – 9
using in dynamic SQL statements, 10 – 18
using in the DELETE statement, 9 – 9
using in the INSERT statement, 9 – 7
using in the SELECT statement, 9 – 3
using in the UPDATE statement, 9 – 8
using in the WHERE clause, 9 – 12
using the FOR clause, 9 – 10
using to improve performance, C – 3
when not allowed, 9 – 3

host language, 2 – 2
HOST option, 6 – 23
host variable, 4 – 2

assigning a value, 2 – 6
declaring, 3 – 22
dummy, 10 – 3
guidelines, 3 – 23
input versus output, 4 – 2
naming, 3 – 22
overview, 2 – 6
referencing, 3 – 22
requirements, 2 – 6
undeclared, 3 – 2
using in EXEC TOOLS statements, 11 – 13
using in PL/SQL, 5 – 7
using in user exit, 11 – 4
where allowed, 2 – 6

host variables
host variable equivalencing, F – 58
in EXECUTE command, F – 32
in OPEN command, F – 43
multi–byte character strings, 3 – 32

host–language datatype, 3 – 22

I
IAF GET statement

example, 11 – 5
specifying block and field names, 11 – 5
using in user exit, 11 – 5

Index – 8 Programmer’s Guide to the Oracle Precompilers

IAF PUT statement
example, 11 – 6
specifying block and field names, 11 – 6
using in user exit, 11 – 6

IAP, 11 – 11
identifiers, ORACLE, how to form, F – 6
implicit logon

See also explicit logon
multiple, 3 – 44
single, 3 – 43

IN OUT parameter mode, 5 – 4
IN parameter mode, 5 – 4
in–doubt transaction, 7 – 15
INAME option, 6 – 23

when a file extension is required, 6 – 2
INCLUDE file, 3 – 3
INCLUDE option, 6 – 24
INCLUDE statement, 3 – 3

using to declare the ORACA, 8 – 36
using to declare the SQLCA, 8 – 20

index, using to improve performance, C – 6
indicator array, 9 – 2
INDICATOR keyword, 3 – 24
indicator variable, 4 – 4

association with host variable, 4 – 4
declaring, 3 – 24
guidelines, 3 – 25
interpreting value, 4 – 4
referencing, 3 – 24
using in PL/SQL, 5 – 12
using to detect truncated values, 4 – 4
using to handle nulls, 4 – 4, 4 – 5
using to test for nulls, 4 – 6

indicator variables, used with multi–byte char-
acter strings, 3 – 33

input host variable
restrictions, 4 – 2
where allowed, 4 – 2

INSERT command, F – 39
embedded SQL examples, F – 42

insert of no rows, 8 – 23
cause of, 8 – 11

INSERT statement, 4 – 9
column list, 4 – 9
example, 4 – 9
INTO clause, 4 – 9
using host arrays, 9 – 7
using the SQLERRD(3) field, 9 – 14
VALUES clause, 4 – 9

inserting, rows into tables and views, F – 39
INTEGER datatype, 3 – 14
interface

native, 3 – 46
XA, 3 – 46

internal datatype, 3 – 5
CHAR, 3 – 6
DATE, 3 – 6
definition, 2 – 6
descriptions, 3 – 5
LONG, 3 – 6
LONG RAW, 3 – 6
MLSLABEL, 3 – 7
NUMBER, 3 – 7
RAW, 3 – 7
ROWID, 3 – 8
VARCHAR2, 3 – 8

INTO clause, 4 – 2, 4 – 21
FETCH statement, 4 – 13
INSERT statement, 4 – 9
of FETCH command, F – 36
of SELECT command, F – 52
SELECT statement, 4 – 8

IRECLEN option, 6 – 24

J
Julian date, 3 – 6

K
keywords, B – 3

L
language support, 1 – 3
LDA. See Logon Data Area
LEVEL pseudocolumn, 3 – 9

Index – 9

link, database, 3 – 43
linking, 6 – 42
LITDELIM option, 6 – 25

purpose, 6 – 25
LNAME option, 6 – 25
location transparency, 3 – 43
lock, released by ROLLBACK statement, F – 47
LOCK TABLE statement, 7 – 13

example, 7 – 13
using the NOWAIT parameter, 7 – 13

locking, 7 – 2
See also row lock
explicit versus implicit, 7 – 12
modes, 7 – 2
overriding default, 7 – 12
privileges needed, 7 – 16
using the FOR UPDATE OF clause, 7 – 12
using the LOCK TABLE statement, 7 – 13

logging on. See connecting to Oracle
logon

automatic, 3 – 35
concurrent, 3 – 36
explicit, 3 – 38

Logon Data Area (LDA), 3 – 44
LONG column, maximum width, 3 – 6
LONG datatype

compared with CHAR, 3 – 6
external, 3 – 14
internal, 3 – 6
restrictions, 3 – 6
where allowed, 3 – 6

LONG RAW column, maximum width, 3 – 6
LONG RAW datatype

compared with LONG, 3 – 6
converting, 3 – 21
external, 3 – 14
internal, 3 – 6
restrictions, 3 – 6

LONG VARCHAR datatype, 3 – 14
LONG VARRAW datatype, 3 – 14
LRECLEN option, 6 – 26
LTYPE option, 6 – 26

M
MAXLITERAL option, 6 – 27
MAXOPENCURSORS option, 6 – 28

using for separate precompilation, 6 – 41
what it affects, C – 7

migration to Oracle7, E – 1
handling character strings, E – 3
handling nulls, E – 2
handling truncated values, E – 3

MLSLABEL datatype
external, 3 – 14
internal, 3 – 7

MODE option, 6 – 29
effect on OPEN, 4 – 13

mode, parameter, 5 – 4
monitor, transaction processing, 3 – 46
multi–byte character sets, 3 – 32
MULTISUBPROG option, 6 – 30

N
namespaces, reserved by Oracle, B – 6
naming, of database objects, F – 6
naming conventions

cursor, 4 – 12
default database, 3 – 37
host variable, 3 – 22
SQL*Forms user exit, 11 – 11

national language support (NLS), 3 – 30
native interface, 3 – 46
network

communicating over, 3 – 37
protocols, 3 – 37
reducing traffic, C – 4

NEXTVAL pseudocolumn, 3 – 9
nibble, 3 – 21
NIST, compliance, 1 – 6
NLS (national language support), 3 – 30

multi–byte character strings, 3 – 32

Index – 10 Programmer’s Guide to the Oracle Precompilers

NLS parameter
NLS_CURRENCY, 3 – 30
NLS_DATE_FORMAT, 3 – 30
NLS_DATE_LANGUAGE, 3 – 30
NLS_ISO_CURRENCY, 3 – 30
NLS_LANG, 3 – 31
NLS_LANGUAGE, 3 – 30
NLS_NUMERIC_CHARACTERS, 3 – 30
NLS_SORT, 3 – 30
NLS_TERRITORY, 3 – 30

NLS_LOCAL, precompiler option, 6 – 31
node, definition of, 3 – 37
NOT FOUND condition, 8 – 27

of WHENEVER command, F – 60
notation

conventions, vii
rules, vii

NOWAIT parameter, 7 – 13
using in LOCK TABLE statement, 7 – 13

null
definition, 2 – 6
detecting, 4 – 4
hardcoding, 4 – 5
inserting, 4 – 4
restrictions, 4 – 6
retrieving, 4 – 5
testing for, 4 – 6

null–terminated string, 3 – 17
NUMBER datatype

external, 3 – 15
internal, 3 – 7

O
OCI

declaring LDA, 3 – 44
embedding calls, 3 – 44

ONAME option, 6 – 31
OPEN command, F – 43

examples, F – 44
OPEN statement, 4 – 13

example, 4 – 13
using in dynamic SQL Method 3, 10 – 13

OPEN–FOR statement, 4 – 19
OPEN_CURSORS parameter, 5 – 17
opening, cursors, F – 43
optimizer hint, C – 5
options, precompiler, 6 – 4
ORACA, 8 – 36

declaring, 8 – 36
enabling, 8 – 36
example, 8 – 41
fields, 8 – 38
gathering cursor cache statistics, 8 – 39
ORACABC field, 8 – 38
ORACAID field, 8 – 38
ORACCHF flag, 8 – 38
ORACOC field, 8 – 40
ORADBGF flag, 8 – 38
ORAHCHF flag, 8 – 38
ORAHOC field, 8 – 40
ORAMOC field, 8 – 40
ORANEX field, 8 – 40
ORANOR field, 8 – 40
ORANPR field, 8 – 40
ORASFNMC field, 8 – 39
ORASFNML field, 8 – 39
ORASLNR field, 8 – 39
ORASTXTC field, 8 – 39
ORASTXTF flag, 8 – 39
ORASTXTL field, 8 – 39
using more than one, 8 – 36

ORACA option, 6 – 32
ORACABC field, 8 – 38
ORACAID field, 8 – 38
ORACCHF flag, 8 – 38
Oracle Call Interface. See OCI
ORACLE Communications Area, 8 – 36
Oracle datatypes, 2 – 6
Oracle Forms,

using EXEC TOOLS statements, 11 – 12
ORACLE identifiers, how to form, F – 6
Oracle keywords, B – 3
Oracle namespaces, B – 6
Oracle Open Gateway,

using ROWID datatype, 3 – 16

Index – 11

Oracle Precompilers
advantages, 1 – 3
function, 1 – 2
language support, 1 – 3
new features, A – 1
NLS support, 3 – 31
running, 6 – 1
using PL/SQL, 5 – 6
using with OCI, 3 – 44

Oracle reserved words, B – 2
Oracle Toolset, 11 – 12
ORACOC field, 8 – 40
ORADBGF flag, 8 – 38
ORAHCHF flag, 8 – 38
ORAHOC field, 8 – 40
ORAMOC field, 8 – 40
ORANEX field, 8 – 40
ORANOR field, 8 – 40
ORANPR field, 8 – 40
ORASFNMC field, 8 – 39
ORASFNML field, 8 – 39
ORASLNR field, 8 – 39
ORASTXTC field, 8 – 39
ORASTXTF flag, 8 – 39
ORASTXTL field, 8 – 39
ORECLEN option, 6 – 32
OUT parameter mode, 5 – 4
output host variable, 4 – 2

P
PAGELEN option, 6 – 32
parameter mode, 5 – 4
parent cursor, 5 – 17
parse, 10 – 4
parse error offset

interpreting, 8 – 22
using in error reporting, 8 – 22

parsing dynamic statements, PREPARE com-
mand, F – 45

password
defining, 3 – 34
prompting for, 3 – 34

performance
improving, C – 3
reasons for poor, C – 2

PL/SQL
See also embedded PL/SQL
advantages, 1 – 4
and the SQLCA, 8 – 26
cursor FOR loop, 5 – 3
exception, 5 – 13
integration with server, 5 – 2
package, 5 – 4
relationship with SQL, 1 – 4
subprogram, 5 – 3
user–defined record, 5 – 5

PL/SQL blocks, embedded in Oracle7 precom-
piler programs, F – 30

PL/SQL reserved words, B – 4
PL/SQL table, 5 – 5

supported datatype conversions, 5 – 15
placeholder

duplicate, 10 – 11, 10 – 19
naming, 10 – 11
using in dynamic SQL statements, 10 – 3

plan, execution, C – 5
precision, 3 – 7
precompilation, 6 – 3

conditional, 6 – 39
separate, 6 – 41

precompilation unit, 6 – 10
precompiler. See Oracle Precompilers
precompiler command, 6 – 2

optional arguments of, 6 – 4
required arguments, 6 – 2

precompiler directives, EXEC SQL DECLARE
DATABASE, F – 16

precompiler options
abbreviating name, 6 – 4
ASACC, 6 – 12
ASSUME_SQLCODE, 6 – 12
AUTO_CONNECT, 3 – 36, 6 – 13
COMMON_NAME, 6 – 14
CONFIG, 6 – 9, 6 – 15
DBMS, 6 – 16
DEFINE, 6 – 19
displaying, 6 – 4, 6 – 10
entering from a configuration file, 6 – 9

Index – 12 Programmer’s Guide to the Oracle Precompilers

precompiler options (continued)
entering inline, 6 – 7
entering on the command line, 6 – 7
ERRORS, 6 – 19
FIPS, 6 – 19
FORMAT, 6 – 21
HOLD_CURSOR, 6 – 22
HOST, 6 – 23
INAME, 6 – 23
INCLUDE, 6 – 24
IRECLEN, 6 – 24
LITDELIM, 6 – 25
LNAME, 6 – 25
LRECLEN, 6 – 26
LTYPE, 6 – 26
MAXLITERAL, 6 – 27
MAXOPENCURSORS, 6 – 28
MODE, 6 – 29
MULTISUBPROG, 6 – 30
NLS_LOCAL, 6 – 31
ONAME, 6 – 31
ORACA, 6 – 32
ORECLEN, 6 – 32
PAGELEN, 6 – 32
RELEASE_CURSOR, 6 – 33
respecifying, 6 – 10
scope of, 6 – 10
SELECT_ERROR, 6 – 34
specifying, 6 – 4, 6 – 7
SQLCHECK, 6 – 35
syntax for, 6 – 7
UNSAFE_NULL, 6 – 37, A – 2
USERID, 6 – 37
VARCHAR, 6 – 38
XREF, 6 – 38

PREPARE command, F – 45
examples, F – 45

PREPARE statement
effect on data definition statements, 10 – 5
using in dynamic SQL, 10 – 9, 10 – 12

private SQL area
association with cursors, 2 – 7
opening, 2 – 7
purpose, C – 9

Program Global Area (PGA), 5 – 17
program termination, 7 – 10

programming language support, 1 – 3
pseudocode conventions, vi
pseudocolumn, 3 – 8

CURRVAL, 3 – 9
LEVEL, 3 – 9
NEXTVAL, 3 – 9
ROWID, 3 – 9
ROWNUM, 3 – 10

pseudotype, VARCHAR, 3 – 23

Q
query, 4 – 7

association with cursor, 4 – 11
multirow, 4 – 7
single–row versus multirow, 4 – 8

R
RAW column, maximum width, 3 – 7
RAW datatype

compared with CHAR, 3 – 7
converting, 3 – 21
external, 3 – 15
internal, 3 – 7
restrictions, 3 – 7

RAWTOHEX function, 3 – 21
read consistency, 7 – 2
READ ONLY parameter,

using in SET TRANSACTION, 7 – 11
read–only transaction, 7 – 11

ending, 7 – 11
example, 7 – 11

record, user–defined, 5 – 5
reference

host array, 9 – 3
host variable, 3 – 22
indicator variable, 3 – 24

RELEASE option, 7 – 5, 7 – 10
COMMIT statement, 7 – 5
omitting, 7 – 10
restrictions, 7 – 9
ROLLBACK statement, 7 – 6

Index – 13

RELEASE_CURSOR option, 6 – 33
of ORACLE Precompilers, F – 8
using to improve performance, C – 11
what it affects, C – 7

remote database, declaration of, F – 16
reserved words, B – 2

PL/SQL, B – 4
resource manager, 3 – 46
restrictions

AT clause, 3 – 40
CURRENT OF clause, 4 – 15
cursor declaration, 4 – 12
FOR clause, 9 – 11
host array, 9 – 5, 9 – 7, 9 – 8, 9 – 9
input host variable, 4 – 2
LONG datatype, 3 – 6
LONG RAW datatype, 3 – 6
RAW datatype, 3 – 7
RELEASE option, 7 – 9
separate precompilation, 6 – 41
SET TRANSACTION statement, 7 – 11
SQLCHECK option, D – 2
SQLGLS function, 8 – 34
TO SAVEPOINT clause, 7 – 9

retrieving rows
from a table, embedded SQL, F – 50

return code, 11 – 8
roll back

to a savepoint, F – 49
to the same savepoint multiple times, F – 47

rollback
automatic, 7 – 7
purpose, 7 – 3
statement–level, 7 – 7

ROLLBACK command, F – 46
ending a transaction, F – 47
examples, F – 48

rollback segment, 7 – 2
ROLLBACK statement, 7 – 6

See also COMMIT statement
effects, 7 – 6
example, 7 – 6
RELEASE option, 7 – 6
TO SAVEPOINT clause, 7 – 6
using in a PL/SQL block, 7 – 16

using in error–handling routines, 7 – 7
where to place, 7 – 6

rolling back, transactions, F – 46
row lock

acquiring with FOR UPDATE OF, 7 – 12
using to improve performance, C – 6
when acquired, 7 – 12
when released, 7 – 12

ROWID datatype
external, 3 – 16
internal, 3 – 8

ROWID pseudocolumn, 3 – 9
using to mimic CURRENT OF, 7 – 14, 9 – 13

ROWLABEL column, 3 – 10
ROWNUM pseudocolumn, 3 – 10
rows

fetching from cursors, F – 36
inserting into tables and views, F – 39
updating, F – 54

rows–processed count, 8 – 24
using in error reporting, 8 – 22

S
sample database table

DEPT table, 2 – 12
EMP table, 2 – 12

savepoint, 7 – 8
when erased, 7 – 9

SAVEPOINT command, F – 49
examples, F – 49

SAVEPOINT statement, 7 – 8
example, 7 – 8

savepoints, creating, F – 49
SAVEPOINTS parameter, 7 – 9
Scale, using SQLPRC to extract, 3 – 27
scale, 3 – 7

definition of, 3 – 27
when negative, 3 – 27

scope
of DECLARE STATEMENT command, F –

17
of precompiler options, 6 – 10
of the EXEC ORACLE statement, 6 – 8
WHENEVER statement, 8 – 30

Index – 14 Programmer’s Guide to the Oracle Precompilers

search condition, 4 – 10
using in the WHERE clause, 4 – 10

SELECT command, F – 50
embedded SQL examples, F – 53

select descriptor, information in, 10 – 16
select list, 4 – 8
SELECT statement

See also query
available clauses, 4 – 8
example, 4 – 8
INTO clause, 4 – 8
using host arrays, 9 – 3
using the SQLERRD(3) field, 9 – 14

SELECT_ERROR option, 4 – 8, 6 – 34
semantic checking, D – 2

enabling, D – 3
using the SQLCHECK option, D – 2

separate precompilation
guidelines, 6 – 41
restrictions, 6 – 41

session, 7 – 2
sessions, beginning, F – 12
SET clause, 4 – 10

using a subquery, 4 – 10
SET TRANSACTION statement, 7 – 11

example, 7 – 11
READ ONLY parameter, 7 – 11
restrictions, 7 – 11

snapshot, 7 – 2
SQL, summary of commands, F – 2
SQL codes,

returned by SQLGLS function, 8 – 34
SQL Communications Area, 3 – 4, 8 – 19
SQL Descriptor Area, 10 – 15
SQL standards conformance, 1 – 7
SQL statement

controlling transactions, 7 – 3
executable versus declarative, 2 – 3
optimizing to improve performance, C – 5
static versus dynamic, 2 – 5
using to control a cursor, 4 – 7, 4 – 11
using to manipulate Oracle data, 4 – 7

SQL*Connect, using ROWID datatype, 3 – 16

SQL*Forms
Display Error screen, 11 – 8
IAP constants, 11 – 8
returning values to, 11 – 8
Reverse Return Code switch, 11 – 8
user exit, 11 – 2

SQL*Net
concurrent logons, 3 – 36
connecting using Version 2, 3 – 35
connection syntax, 3 – 37
function of, 3 – 37
using to connect to Oracle, 3 – 37

SQL*Plus, 1 – 4
SQL_CURSOR, F – 7
SQL92

conformance, 1 – 7
deprecated feature, 8 – 3
minimum requirement, 1 – 7

SQLCA, 8 – 19
components set for a PL/SQL block, 8 – 26
declaring, 8 – 20
explicit versus implicit checking, 8 – 3
fields, 8 – 23
interaction with Oracle, 3 – 4
overview, 2 – 8
restrictions on, 8 – 20
SQLCABC field, 8 – 23
SQLCAID field, 8 – 23
SQLCODE field, 8 – 23
SQLERRD(3) field, 8 – 24
SQLERRD(5) field, 8 – 24
SQLERRMC field, 8 – 23
SQLERRML field, 8 – 23
SQLWARN(2) flag, 8 – 25
SQLWARN(4) flag, 8 – 25
SQLWARN(5) flag, 8 – 25
using in separate precompilations, 6 – 41
using more than one, 8 – 19
using with SQL*Net, 8 – 19

SQLCABC field, 8 – 23
SQLCAID field, 8 – 23
SQLCHECK option, 6 – 35

restrictions, D – 2
using the DECLARE TABLE statement, D – 4
using to check syntax/semantics, D – 1

SQLCODE field, 8 – 21, 8 – 23
interpreting its value, 8 – 23

Index – 15

SQLCODE status variable, 8 – 4
SQLCODE variable,

interpreting values of, 8 – 11
SQLDA, 10 – 15, 10 – 16

bind versus select, 10 – 16
information stored in, 10 – 16

SQLERRD(3) field, 8 – 24, 9 – 14
purpose, 8 – 22
using with batch fetch, 9 – 5
using with the FETCH statement, 9 – 14

SQLERRD(5) field, 8 – 22, 8 – 24
SQLERRMC field, 8 – 23
SQLERRML field, 8 – 23
SQLERROR,

WHENEVER command condition, F – 60
SQLERROR condition, 8 – 27
SQLFC parameter, 8 – 34
SQLGLM function, 8 – 26

example, 8 – 26
SQLGLS function

parameters, 8 – 33
restrictions, 8 – 34
SQL codes returned by, 8 – 34
syntax, 8 – 33
using to obtain SQL text, 8 – 33

SQLIEM function
replacement for, 11 – 12
using in user exit, 11 – 8

SQLLDA routine, 3 – 45
SQLSTATE status variable, 8 – 2, 8 – 4

class code, 8 – 12
coding scheme, 8 – 12
declaring, 8 – 6
interpreting values, 8 – 12
predefined classes, 8 – 13
predefined status

codes and conditions, 8 – 14
subclass code, 8 – 12

SQLSTM parameter, 8 – 33
SQLWARN(2) flag, 8 – 25
SQLWARN(4) flag, 8 – 25
SQLWARN(5) flag, 8 – 25
SQLWARNING,

WHENEVER command condition, F – 60

SQLWARNING condition, 8 – 27
statement–level rollback, 7 – 7

breaking deadlocks, 7 – 7
status code, 8 – 21
STMLEN parameter, 8 – 34
STOP action, 8 – 28
STOP option,

of WHENEVER command, F – 60
stored subprogram, 5 – 18

calling, 5 – 21
creating, 5 – 19
packaged versus standalone, 5 – 18
stored versus inline, C – 4
using to improve performance, C – 4

STRING datatype, 3 – 16
string–comparison semantics, E – 3
subprogram, PL/SQL, 5 – 3, 5 – 18
subquery, 4 – 9

example, 4 – 9, 4 – 10
using in the SET clause, 4 – 10
using in the VALUES clause, 4 – 9

syntactic checking, D – 2
syntax diagram

description of, F – 4
how to read, F – 4
how to use, F – 4
symbols used in, F – 4

syntax, embedded SQL, 2 – 5
SYSDATE function, 3 – 10
system failure, effect on transactions, 7 – 4
System Global Area (SGA), 5 – 18

T
table lock

acquiring with LOCK TABLE, 7 – 13
exclusive, 7 – 13
row share, 7 – 13
when released, 7 – 13

tables
inserting rows into, F – 39
updating rows in, F – 54

TO clause, of ROLLBACK command, F – 46

Index – 16 Programmer’s Guide to the Oracle Precompilers

TO SAVEPOINT clause, 7 – 8
restrictions, 7 – 9
using in ROLLBACK statement, 7 – 8

trace facility,
using to improve performance, C – 6

transaction, 7 – 3
contents, 2 – 7, 7 – 4
guidelines, 7 – 16
how to begin, 7 – 4
how to end, 7 – 4
in–doubt, 7 – 15
making permanent, 7 – 5
subdividing with savepoints, 7 – 8
undoing, 7 – 6
undoing parts of, 7 – 8
when rolled back automatically, 7 – 4, 7 – 7

transaction processing
overview, 2 – 7
statements used, 2 – 8

transaction, read–only, 7 – 11
transactions

committing, F – 9
distributed, F – 48
rolling back, F – 46

truncated value, 5 – 13
detecting, 4 – 4

truncation error, when generated, 4 – 6
tuning, performance, C – 2
TYPE statement, using the CHARF datatype

specifier, 3 – 29

U
UID function, 3 – 10
unconditional delete, 8 – 25
undo a transaction, F – 46
UNSAFE_NULL option, 6 – 37, A – 2
UNSIGNED datatype, 3 – 17
update cascade, 8 – 24

UPDATE command, F – 54
embedded SQL examples, F – 57

UPDATE statement, 4 – 9
example, 4 – 9
SET clause, 4 – 10
using host arrays, 9 – 8
using the SQLERRD(3) field, 9 – 14

updating, rows in tables and views, F – 54
user exit, 11 – 2

calling from a SQL*Forms trigger, 11 – 7
common uses, 11 – 3
example, 11 – 9
guidelines, 11 – 11
linking into IAP, 11 – 11
meaning of codes returned by, 11 – 8
naming, 11 – 11
passing parameters, 11 – 7
requirements for variables, 11 – 4
running the GENXTB form, 11 – 10
statements allowed in, 11 – 4
steps in developing, 11 – 3
using EXEC IAF statements, 11 – 5
using EXEC TOOLS statements, 11 – 12
using the WHENEVER statement, 11 – 9

USER function, 3 – 10
user session, 7 – 2
user–defined datatype, 3 – 22
user–defined record, 5 – 5
USERID option, 6 – 37

using with the SQLCHECK option, D – 4
username

defining, 3 – 34
prompting for, 3 – 34

USING clause
CONNECT statement, 3 – 39
of FETCH command, F – 36
of OPEN command, F – 43
using in the EXECUTE statement, 10 – 11
using indicator variables, 10 – 11

using dbstring,
SQL*Net database id specification, F – 13

Index – 17

V
VALUES clause

INSERT statement, 4 – 9
of embedded SQL INSERT command, F – 41
of INSERT command, F – 41
using a subquery, 4 – 9

VAR command, F – 58
examples, F – 59

VAR statement, 3 – 26
parameters, 3 – 26
using the CHARF datatype specifier, 3 – 29

VARCHAR, precompiler option, 6 – 38
VARCHAR datatype, 3 – 17
VARCHAR pseudotype, 3 – 23

maximum length, 3 – 23
using with PL/SQL, 5 – 11

VARCHAR2 column, maximum width, 3 – 8
VARCHAR2 datatype

external, 3 – 17
internal, 3 – 8

variable. See host variable
VARNUM datatype, 3 – 18

example of output value, 3 – 29
VARRAW datatype, 3 – 18
views

inserting rows into, F – 39
updating rows in, F – 54

W
warning flag, 8 – 21
WHENEVER command, F – 60

examples, F – 61

WHENEVER statement
CONTINUE action, 8 – 27
DO action, 8 – 28
GOTO action, 8 – 28
guidelines, 8 – 30
handling end–of–data conditions, 8 – 30
maintaining addressability, 8 – 32
NOT FOUND condition, 8 – 27
overview, 2 – 8
scope, 8 – 30
SQLERROR condition, 8 – 27
SQLWARNING condition, 8 – 27
STOP action, 8 – 28
using to check SQLCA automatically, 8 – 27
where to place, 8 – 30

WHERE clause, 4 – 10
DELETE statement, 4 – 10
of DELETE command, F – 22
of UPDATE command, F – 56
search condition, 4 – 10
SELECT statement, 4 – 8
UPDATE statement, 4 – 9
using host arrays, 9 – 12

WHERE CURRENT OF clause, 4 – 15
WORK option

 of ROLLBACK command, F – 46
of COMMIT command, F – 10

X
X/Open application, 3 – 46
XA interface, 3 – 46
XREF option, 6 – 38

Index – 18 Programmer’s Guide to the Oracle Precompilers

Reader’s Comment Form

Programmer’s Guide to the Oracle � Precompilers
Part No. A42525–1

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Languages Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065 U.S.A.
Fax: (415) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

����������
����������

A42525–1

Programmer’s Guide to the Oracle � Precompilers Release 1.8

	PDF Directory

