CMSC 471
Fall 2012

Class #8

Tue 9/25/12
Game Playing

Kevin Winner, winnerkl@umbc.edu

Tuesday, September 25, 12

mailto:winnerk1@umbc.edu
mailto:winnerk1@umbc.edu

Game Playing

Chapter 5

Some material adopted from notes
by Charles R. Dyer, University of
Wisconsin-Madison

Tuesday, September 25, 12

Today’s class

« Homework 2

* Game playing
— State of the art and resources
— Framework

* Game trees
— Minimax
— Alpha-beta pruning
— Stochastic games
« Homework 1
 Homework 2 design

Tuesday, September 25, 12

Why study games?

 Offer an opportunity to study interesting
environments which are still easy to understand

—Multiagent, adversarial
— Stochastic
—Partially observable
e Clear criteria for success
« Games often define very large search spaces

—Chinook (checkers) has a dictionary of 39 trillion
end-game states

e Fun

Tuesday, September 25, 12

State of the art

 How good are computer game players?
— Chess:
* Deep Blue beat Gary Kasparov in 1997
— Checkers: Chinook (an Al program with a very
large endgame database) has solved checkers

— Go: Computer players have finally reached tournament-
level play

— Backgammon: TD-Gammon trained on itself to reach
the ability to beat top-level players

— Poker: After chess, probably the most studied game for
Al players

Tuesday, September 25, 12

Typical case

e 2-person game
* Players alternate moves
 Zero-sum: one player’s loss 1s the other’s gain

 Perfect information: both players have access to
complete information about the state of the game.
No information is hidden from either player.

e Deterministic: no chance (e.g., using dice) involved

« Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,
Othello

» Not: Bridge, Solitaire, Backgammon, ...

Tuesday, September 25, 12

How to play a game

* A way to play such a game is to:
— Consider all the legal moves you can make
— Compute the new position resulting from each move

— Evaluate each resulting position and determine which 1s
best

— Make that move
— Wait for your opponent to move and repeat

* Key problems are:

— Representing the “board”
— Generating all legal next boards
— Evaluating a position

Tuesday, September 25, 12

Evaluation function

« Evaluation function or static evaluator 1s used to evaluate
the “goodness” of a game position.

— Contrast with heuristic search where the evaluation function was a
non-negative estimate of the cost from the start node to a goal and
passing through the given node

* The zero-sum assumption allows us to use a single
evaluation function to describe the goodness of a board with
respect to both players.

— f(n) >> 0: position n good for me and bad for you

— f(n) << 0: position n bad for me and good for you

— f(n) near 0: position n is a neutral position

— f(n) = +infinity: win for me

— f(n) = -infinity: win for you

Tuesday, September 25, 12

Evaluation function examples

« Example of an evaluation function for Tic-Tac-Toe:
f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]
where a 3-length 1s a complete row, column, or diagonal

» Alan Turing’s function for chess

— f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s pieces
and b(n) = sum of black’s

* Most evaluation functions are specified as a weighted sum of
position features:

f(n) = w *feat,(n) + w,*feat,(n) + ... + w_ *feat, (n)

« Example features for chess are piece count, piece placement,
squares controlled, etc.

» Deep Blue had over 8000 features in its evaluation function

Tuesday, September 25, 12

Game trees

* Problem spaces for typical games are g,
represented as trees

MAX (%)

* Root node represents the current
board configuration; player must decide
the best single move to make next

 Static evaluator function rates a board
position. f(board) = real number with
>0 “white” (me), <O for black (you)

TERMBMNAL

Lty

X

31-18

X

X

Q

Q
A0l
1

X

e xppt—: /|

X
L0

X

 Arcs represent the possible legal moves for a player

 If it is my turn to move, then the root is labeled a "MAX" node;
otherwise it is labeled a "MIN" node, indicating my opponent's

turn.

« Each level of the tree has nodes that are all MAX or all MIN;
nodes at level 1 are of the opposite kind from those at level 1+1

spxkpt—: 1/
)

Tuesday, September 25, 12

Minimax procedure

e Create start node as a MAX node with current board
configuration

* Expand nodes down to some depth (a.k.a. ply) of
lookahead 1n the game

» Apply the evaluation function at each of the leaf nodes

» “Back up” values for each of the non-leaf nodes until a
value 1s computed for the root node

— At MIN nodes, the backed-up value is the minimum of the values
associated with its children.

— At MAX nodes, the backed-up value is the maximum of the values
associated with its children.
 Pick the operator associated with the child node whose
backed-up value determined the value at the root

Tuesday, September 25, 12

Minimax Algorithm

Tuesday, September 25, 12

Minimax Algorithm

OO\

Tuesday, September 25, 12

Minimax Algorithm

R TR T

Tuesday, September 25, 12

Minimax Algorithm

R TR T

Tuesday, September 25, 12

Minimax Algorithm

R TR T

This 1s the move
selected by minimax

Tuesday, September 25, 12

Minimax Tree

MAX A

MIN

Tuesday, September 25, 12

Minimax Tree

MAX A

MIN

Tuesday, September 25, 12

Minimax Tree

MAX A

MIN

Tuesday, September 25, 12

Minimax Tree

MAX A

Tuesday, September 25, 12

Minimax Tree

MAX A

Tuesday, September 25, 12

Minimax Tree

MAX A

AAA A/

Tuesday, September 25, 12

Minimax Tree
/\
I~

AAAK A/

MAX

14

eeeeeeeeeeeeeeeeeeeeee

Minimax Tree

MAX A

zA LI

A AAA

eeeeeeeeeeeeeeeeeeeeee

Example: Nim

* In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

« Each player in turn has to pick up either one or two objects
 Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

* In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

« Each player in turn has to pick up either one or two objects
 Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

* In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

« Each player in turn has to pick up either one or two objects
 Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

* In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

« Each player in turn has to pick up either one or two objects
 Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

* In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

« Each player in turn has to pick up either one or two objects
 Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

* In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

« Each player in turn has to pick up either one or two objects
 Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

* In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

« Each player in turn has to pick up either one or two objects
 Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

* In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

« Each player in turn has to pick up either one or two objects
 Whoever picks up the last object loses

Tuesday, September 25, 12

Alpha-beta pruning

* We can improve on the performance of the minimax
algorithm through alpha-beta pruning

» Basic idea: “If you have an idea that is surely bad, don't
take the time to see how truly awful it is.” -- Pat Winston

MAX
* We don’t need to compute

the value at this node.

 No matter what 1t 1s, 1t can’t
affect the value of the root

MAX node.

Tuesday, September 25, 12

Alpha-beta pruning

 Traverse the search tree in depth-first order

» At each MAX node n, alpha(n) = maximum value found so
far

e At each MIN node n, beta(n) = minimum value found so far

— Note: The alpha values start at -infinity and only increase, while beta
values start at +infinity and only decrease.

* Beta cutoff: Given a MAX node n, cut off the search below n
(i.e., don’t generate or examine any more of n’s children) 1f
alpha(n) >= beta(1) for some MIN node ancestor 1 of n.

 Alpha cutoff: stop searching below MIN node n if beta(n) <=
alpha(1) for some MAX node ancestor i of n.

Tuesday, September 25, 12

Alpha-beta example
MAX A

MIN

Tuesday, September 25, 12

Alpha-beta example
MAX A

MIN

Tuesday, September 25, 12

Alpha-beta example

Tuesday, September 25, 12

Alpha-beta example

Tuesday, September 25, 12

Alpha-beta example
MAX A

Tuesday, September 25, 12

Alpha-beta example
MAX A

Tuesday, September 25, 12

Alpha-beta example
MAX /\ 3

Tuesday, September 25, 12

Alpha-beta example
MAX A 3

AAA A/

Tuesday, September 25, 12

Alpha-beta example
MAX /\ 3

Tuesday, September 25, 12

Alpha-beta example
MAX A

V 2 - prune

3
AR

3 12

.
\

Tuesday, September 25, 12

Alpha-beta example

MAX /\ 3

R

VANRVAN

3 12

Tuesday, September 25, 12

Alpha-beta example

MAX /\ 3

Tuesday, September 25, 12

Alpha-beta example
MAX A 3

AAA Z

Tuesday, September 25, 12

Alpha-beta algorithm

function MAX-VALUE (state, o,)
;7 o = best MAX so far; [= best MIN
if TERMINAL-TEST (state) then return UTILITY (state)

Vo= —oo

for each s in SUCCESSORS (state) do
v := MAX (v, MIN-VALUE (s, o, [))
if v >= [then return v
o := MAX (o, V)

end

return v

function MIN-VALUE (state, o, B)

1f TERMINAL-TEST (state) then return UTILITY (state)
Vo= e

for each s in SUCCESSORS (state) do

v := MIN (v, MAX-VALUE (s, o, B))
if v <= o then return v
B := MIN (B, V)

end
return v

Tuesday, September 25, 12

Games of chance

0 1 78 8 10 11

* Backgammon is a two-player

. . " 1 N/ Wr wr N NN 1 2
game with uncertainty. & " “."' 1 | “} “’ ‘,
*Players roll dice to determine h_/ ;
what moves to make. .1"". / ..1'l'

*White has just rolled 5 and 6 rryy '.'.'.'.
and has four legal moves: ! | ‘ | l | ' |

« 5-10, 5-11
*5-11, 19-24 DR | X
*5-10, 10-16

5-11, 11-16 | l
*Such games are good for 'l'l.l.l-l.l.l.l.

exploring decision making in
adversarial problems involving ’l'
skill and luck.
..‘
2 w16 1 1

25 24 23 22 21 20

Tuesday, September 25, 12

Game trees with chance nodes

* Chance nodes (shown as circles)
represent random events

* For a random event with N

outcomes, each chance node has MAX 4&\\
. . . oq e /’ —
N distinct children; a probability A N
. . . 7 / \\\ ey & e
1s associated with each P / g S
. . DICE Q Min Q . Q
* (For 2 dice, there are 21 distinct AN AN RN AN
outcomes) TR o e g
136 " 11 V o e
.. e 1,2 6,5\ 6.6 ™~
« Use minimax to compute values min y o Y\ v
for MAX and MIN nodes AN AN //’; AN
-~ ~ -
-~ ~ N
*Use expected values for chance il i T
« M
nodes DICE ax Q . \g)
Rolls R > A\ AN\
//"// \\:‘\\ e N FEETII e ™\
 For chance nodes over a max node, it Sl N S
: 136 " 118,/ 8 e
asin C: 1.2/ 8,5\ 6.6~
MAX A’ Q - 45
expectimax(C) = ;(P(d;) * maxvalue(i)) A2 AN g V| ;S\\\ AN
. /'// / \ \\\
* For chance nodes over a min node: i / NN
TERMINAL 2 1 1 1 1

expectimin(C) = Zi(P(di) * minvalue(i))

Tuesday, September 25, 12

Meaning of the evaluation function

MASE Al is best A2 is best

move

2 outcomes
13 \ith prob {.21
9, .1}

DICE

MIN

2 2 3 3 1 1 4 4 20 20 30 30 1 1 400 400

» Dealing with probabilities and expected values means we have to be careful
about the “meaning” of values returned by the static evaluator.

» Note that a “relative-order preserving” change of the values would not change
the decision of minimax, but could change the decision with chance nodes.

e Linear transformations are OK

Tuesday, September 25, 12

Example: Oopsy-Nim

* Starts out like Nim
« Each player in turn has to pick up either one or two objects

* Sometimes (with probability 0.25), when you try to pick up
two objects, you drop them both

 Picking up a single object always works
 Whoever picks up the last object loses

* Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

Example: Oopsy-Nim

* Starts out like Nim
« Each player in turn has to pick up either one or two objects

* Sometimes (with probability 0.25), when you try to pick up
two objects, you drop them both

 Picking up a single object always works
 Whoever picks up the last object loses

* Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

Example: Oopsy-Nim

* Starts out like Nim
« Each player in turn has to pick up either one or two objects

* Sometimes (with probability 0.25), when you try to pick up
two objects, you drop them both

 Picking up a single object always works
 Whoever picks up the last object loses

* Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

Example: Oopsy-Nim

* Starts out like Nim
« Each player in turn has to pick up either one or two objects

* Sometimes (with probability 0.25), when you try to pick up
two objects, you drop them both

 Picking up a single object always works
 Whoever picks up the last object loses

* Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

Example: Oopsy-Nim

* Starts out like Nim
« Each player in turn has to pick up either one or two objects

* Sometimes (with probability 0.25), when you try to pick up
two objects, you drop them both

 Picking up a single object always works
 Whoever picks up the last object loses

* Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

