
CMSC 471
Fall 2012

Class #8

Tue 9/25/12
Game Playing

Kevin Winner, winnerk1@umbc.edu

Tuesday, September 25, 12

mailto:winnerk1@umbc.edu
mailto:winnerk1@umbc.edu

Game Playing
Chapter 5

Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison

Tuesday, September 25, 12

Today’s class

• Homework 2
• Game playing

– State of the art and resources
– Framework

• Game trees
– Minimax
– Alpha-beta pruning
– Stochastic games

• Homework 1
• Homework 2 design

Tuesday, September 25, 12

Why study games?

• Offer an opportunity to study interesting
environments which are still easy to understand
– Multiagent, adversarial
– Stochastic
– Partially observable

• Clear criteria for success
• Games often define very large search spaces

– Chinook (checkers) has a dictionary of 39 trillion
end-game states

• Fun
Tuesday, September 25, 12

State of the art

• How good are computer game players?
– Chess:

• Deep Blue beat Gary Kasparov in 1997
– Checkers: Chinook (an AI program with a very

large endgame database) has solved checkers
– Go: Computer players have finally reached tournament-

level play
– Backgammon: TD-Gammon trained on itself to reach

the ability to beat top-level players
– Poker: After chess, probably the most studied game for

AI players

Tuesday, September 25, 12

Typical case
• 2-person game
• Players alternate moves
• Zero-sum: one player’s loss is the other’s gain
• Perfect information: both players have access to

complete information about the state of the game.
No information is hidden from either player.

• Deterministic: no chance (e.g., using dice) involved
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,

Othello
• Not: Bridge, Solitaire, Backgammon, ...

Tuesday, September 25, 12

How to play a game
• A way to play such a game is to:

– Consider all the legal moves you can make
– Compute the new position resulting from each move
– Evaluate each resulting position and determine which is

best
– Make that move
– Wait for your opponent to move and repeat

• Key problems are:
– Representing the “board”
– Generating all legal next boards
– Evaluating a position

Tuesday, September 25, 12

Evaluation function
• Evaluation function or static evaluator is used to evaluate

the “goodness” of a game position.
– Contrast with heuristic search where the evaluation function was a

non-negative estimate of the cost from the start node to a goal and
passing through the given node

• The zero-sum assumption allows us to use a single
evaluation function to describe the goodness of a board with
respect to both players.
– f(n) >> 0: position n good for me and bad for you
– f(n) << 0: position n bad for me and good for you
– f(n) near 0: position n is a neutral position
– f(n) = +infinity: win for me
– f(n) = -infinity: win for you

Tuesday, September 25, 12

Evaluation function examples
• Example of an evaluation function for Tic-Tac-Toe:

f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you]
where a 3-length is a complete row, column, or diagonal

• Alan Turing’s function for chess
– f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s pieces

and b(n) = sum of black’s
• Most evaluation functions are specified as a weighted sum of

position features:
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)

• Example features for chess are piece count, piece placement,
squares controlled, etc.

• Deep Blue had over 8000 features in its evaluation function

Tuesday, September 25, 12

Game trees

• Problem spaces for typical games are
represented as trees

• Root node represents the current
board configuration; player must decide
the best single move to make next

• Static evaluator function rates a board
position. f(board) = real number with
f>0 “white” (me), f<0 for black (you)

• Arcs represent the possible legal moves for a player
• If it is my turn to move, then the root is labeled a "MAX" node;

otherwise it is labeled a "MIN" node, indicating my opponent's
turn.

• Each level of the tree has nodes that are all MAX or all MIN;
nodes at level i are of the opposite kind from those at level i+1

Tuesday, September 25, 12

Minimax procedure
• Create start node as a MAX node with current board

configuration
• Expand nodes down to some depth (a.k.a. ply) of

lookahead in the game
• Apply the evaluation function at each of the leaf nodes
• “Back up” values for each of the non-leaf nodes until a

value is computed for the root node
– At MIN nodes, the backed-up value is the minimum of the values

associated with its children.
– At MAX nodes, the backed-up value is the maximum of the values

associated with its children.
• Pick the operator associated with the child node whose

backed-up value determined the value at the root

Tuesday, September 25, 12

Minimax Algorithm

2 7 1 8

MAX
MIN

Static evaluator
value

Tuesday, September 25, 12

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

Static evaluator
value

Tuesday, September 25, 12

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

Static evaluator
value

Tuesday, September 25, 12

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

2 7 1 8

2 1

2
Static evaluator

value

Tuesday, September 25, 12

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

2 7 1 8

2 1

2This is the move
selected by minimaxStatic evaluator

value

Tuesday, September 25, 12

Minimax Tree

MIN

MAX

Tuesday, September 25, 12

Minimax Tree

MIN

MAX

Tuesday, September 25, 12

Minimax Tree

3

MIN

MAX

Tuesday, September 25, 12

Minimax Tree

3 12

MIN

MAX

Tuesday, September 25, 12

Minimax Tree

3 12 8

MIN

MAX

Tuesday, September 25, 12

Minimax Tree

3 12 8 2

MIN

MAX

Tuesday, September 25, 12

Minimax Tree

3 12 8 2 14

MIN

MAX

Tuesday, September 25, 12

Minimax Tree

3 12 8 2 14 1

MIN

MAX

4 6 2

Tuesday, September 25, 12

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses

Tuesday, September 25, 12

Example: Nim

• In Nim, there are a certain number of objects (coins, sticks,
etc.) on the table -- we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses

Tuesday, September 25, 12

Alpha-beta pruning

• We can improve on the performance of the minimax
algorithm through alpha-beta pruning

• Basic idea: “If you have an idea that is surely bad, don't
take the time to see how truly awful it is.” -- Pat Winston

2 7 1

=2

>=2

<=1

?

• We don’t need to compute
the value at this node.

• No matter what it is, it can’t
affect the value of the root
node.

MAX

MAX

MIN

Tuesday, September 25, 12

Alpha-beta pruning

• Traverse the search tree in depth-first order
• At each MAX node n, alpha(n) = maximum value found so

far
• At each MIN node n, beta(n) = minimum value found so far

– Note: The alpha values start at -infinity and only increase, while beta
values start at +infinity and only decrease.

• Beta cutoff: Given a MAX node n, cut off the search below n
(i.e., don’t generate or examine any more of n’s children) if
alpha(n) >= beta(i) for some MIN node ancestor i of n.

• Alpha cutoff: stop searching below MIN node n if beta(n) <=
alpha(i) for some MAX node ancestor i of n.

Tuesday, September 25, 12

Alpha-beta example

MIN

MAX

Tuesday, September 25, 12

Alpha-beta example

MIN

MAX

Tuesday, September 25, 12

Alpha-beta example

3

MIN

MAX

Tuesday, September 25, 12

Alpha-beta example

3

3MIN

MAX

Tuesday, September 25, 12

Alpha-beta example

3 12

3MIN

MAX

Tuesday, September 25, 12

Alpha-beta example

3 12 8

3MIN

MAX

Tuesday, September 25, 12

Alpha-beta example

3 12 8

3MIN

MAX 3

Tuesday, September 25, 12

Alpha-beta example

3 12 8 2

3MIN

MAX 3

Tuesday, September 25, 12

Alpha-beta example

3 12 8 2

3MIN

MAX 3

2 - prune

Tuesday, September 25, 12

Alpha-beta example

3 12 8 2 14

3MIN

MAX 3

2 - prune

Tuesday, September 25, 12

Alpha-beta example

3 12 8 2 14

3MIN

MAX 3

2 - prune 14

Tuesday, September 25, 12

Alpha-beta example

3 12 8 2 14 1

3MIN

MAX 3

2 - prune 14

Tuesday, September 25, 12

Alpha-beta example

3 12 8 2 14 1

3MIN

MAX 3

2 - prune 1 - prune

Tuesday, September 25, 12

Alpha-beta algorithm
function MAX-VALUE (state, α, β)
 ;; α = best MAX so far; β = best MIN
if TERMINAL-TEST (state) then return UTILITY(state)
v := -∞
for each s in SUCCESSORS (state) do
 v := MAX (v, MIN-VALUE (s, α, β))
 if v >= β then return v
 α := MAX (α, v)
end
return v

function MIN-VALUE (state, α, β)
if TERMINAL-TEST (state) then return UTILITY(state)
v := ∞
for each s in SUCCESSORS (state) do
 v := MIN (v, MAX-VALUE (s, α, β))
 if v <= α then return v
 β := MIN (β, v)
end
return v

Tuesday, September 25, 12

Games of chance
• Backgammon is a two-player
game with uncertainty.

•Players roll dice to determine
what moves to make.

•White has just rolled 5 and 6
and has four legal moves:

• 5-10, 5-11
•5-11, 19-24
•5-10, 10-16
•5-11, 11-16

•Such games are good for
exploring decision making in
adversarial problems involving
skill and luck.

Tuesday, September 25, 12

Game trees with chance nodes
• Chance nodes (shown as circles)
represent random events

• For a random event with N
outcomes, each chance node has
N distinct children; a probability
is associated with each

• (For 2 dice, there are 21 distinct
outcomes)

• Use minimax to compute values
for MAX and MIN nodes

• Use expected values for chance
nodes

• For chance nodes over a max node,
as in C:

expectimax(C) = ∑i(P(di) * maxvalue(i))

• For chance nodes over a min node:

expectimin(C) = ∑i(P(di) * minvalue(i))

Max
Rolls

Min
Rolls

Tuesday, September 25, 12

Meaning of the evaluation function

• Dealing with probabilities and expected values means we have to be careful
about the “meaning” of values returned by the static evaluator.

• Note that a “relative-order preserving” change of the values would not change
the decision of minimax, but could change the decision with chance nodes.

• Linear transformations are OK

A1 is best
move

A2 is best
move

2 outcomes
with prob {.
9, .1}

Tuesday, September 25, 12

Example: Oopsy-Nim
• Starts out like Nim
• Each player in turn has to pick up either one or two objects
• Sometimes (with probability 0.25), when you try to pick up

two objects, you drop them both
• Picking up a single object always works
• Whoever picks up the last object loses

• Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

Example: Oopsy-Nim
• Starts out like Nim
• Each player in turn has to pick up either one or two objects
• Sometimes (with probability 0.25), when you try to pick up

two objects, you drop them both
• Picking up a single object always works
• Whoever picks up the last object loses

• Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

Example: Oopsy-Nim
• Starts out like Nim
• Each player in turn has to pick up either one or two objects
• Sometimes (with probability 0.25), when you try to pick up

two objects, you drop them both
• Picking up a single object always works
• Whoever picks up the last object loses

• Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

Example: Oopsy-Nim
• Starts out like Nim
• Each player in turn has to pick up either one or two objects
• Sometimes (with probability 0.25), when you try to pick up

two objects, you drop them both
• Picking up a single object always works
• Whoever picks up the last object loses

• Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

Example: Oopsy-Nim
• Starts out like Nim
• Each player in turn has to pick up either one or two objects
• Sometimes (with probability 0.25), when you try to pick up

two objects, you drop them both
• Picking up a single object always works
• Whoever picks up the last object loses

• Question: Why can’t we draw the entire game tree?

Tuesday, September 25, 12

