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Today’s class

• Homework 2
• Game playing

– State of the art and resources
– Framework

• Game trees
– Minimax
– Alpha-beta pruning
– Stochastic games

• Homework 1
• Homework 2 design
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Why study games?

• Offer an opportunity to study interesting 
environments which are still easy to understand
– Multiagent, adversarial
– Stochastic
– Partially observable

• Clear criteria for success
• Games often define very large search spaces

– Chinook (checkers) has a dictionary of 39 trillion 
end-game states

• Fun
Tuesday, September 25, 12



State of the art

• How good are computer game players?
– Chess: 

• Deep Blue beat Gary Kasparov in 1997
– Checkers: Chinook (an AI program with a very 

large endgame database) has solved checkers
– Go: Computer players have finally reached tournament-

level play
– Backgammon: TD-Gammon trained on itself to reach 

the ability to beat top-level players
– Poker: After chess, probably the most studied game for 

AI players
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Typical case
• 2-person game
• Players alternate moves 
• Zero-sum: one player’s loss is the other’s gain
• Perfect information: both players have access to 

complete information about the state of the game.  
No information is hidden from either player.

• Deterministic: no chance (e.g., using dice) involved 
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,  

Othello
• Not: Bridge, Solitaire, Backgammon, ...
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How to play a game
• A way to play such a game is to:

– Consider all the legal moves you can make
– Compute the new position resulting from each move
– Evaluate each resulting position and determine which is 

best
– Make that move
– Wait for your opponent to move and repeat

• Key problems are:
– Representing the “board”
– Generating all legal next boards
– Evaluating a position
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Evaluation function
• Evaluation function or static evaluator is used to evaluate 

the “goodness” of a game position.
– Contrast with heuristic search where the evaluation function was a 

non-negative estimate of the cost from the start node to a goal and 
passing through the given node

• The zero-sum assumption allows us to use a single 
evaluation function to describe the goodness of a board with 
respect to both players. 
– f(n)  >> 0: position n good for me and bad for you
– f(n) << 0:  position n bad for me and good for you
– f(n) near 0: position n is a neutral position
– f(n) = +infinity: win for  me
– f(n) = -infinity: win for you  
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Evaluation function examples
• Example of an evaluation function for Tic-Tac-Toe: 

f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you] 
where a 3-length is a complete row, column, or diagonal

• Alan Turing’s function for chess
– f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s pieces 

and b(n) = sum of black’s
• Most evaluation functions are specified as a weighted sum of 

position features:
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n) 

• Example features for chess are piece count,  piece placement, 
squares controlled, etc. 

• Deep Blue had over 8000 features in its evaluation function
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Game trees

• Problem spaces for typical games are                                         
represented as trees

• Root node represents the current 
board configuration; player must decide                                                     
the best single move to make next

• Static evaluator function rates a board                                            
position. f(board) = real number with
f>0 “white” (me), f<0 for black (you)

• Arcs represent the possible legal moves for a player 
• If it is my turn to move, then the root is labeled a "MAX" node; 

otherwise it is labeled a "MIN" node, indicating my opponent's 
turn. 

• Each level of the tree has nodes that are all MAX or all MIN; 
nodes at level i are of the opposite kind from those at level i+1 
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Minimax procedure
• Create start node as a MAX node  with current board 

configuration 
• Expand nodes down to some depth (a.k.a. ply) of 

lookahead in the game
• Apply the evaluation function at each of the leaf nodes 
• “Back up” values for each of the non-leaf nodes until a 

value is computed for the root node
– At MIN nodes, the backed-up value is the minimum of the values 

associated with its children. 
– At MAX nodes, the backed-up value is the maximum of the values 

associated with its children. 
• Pick the operator associated with the child node whose 

backed-up value determined the value at the root 
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Minimax Algorithm
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Minimax Algorithm
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Minimax Tree
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Minimax Tree
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Minimax Tree
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Minimax Tree

3 12 8 2 14 1

MIN

MAX

4 6 2
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Example: Nim

• In Nim, there are a certain number of objects (coins, sticks, 
etc.) on the table -- we’ll play 7-coin Nim

• Each player in turn has to pick up either one or two objects
• Whoever picks up the last object loses
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Alpha-beta pruning

• We can improve on the performance of the minimax 
algorithm through alpha-beta pruning

• Basic idea: “If you have an idea that is surely bad, don't 
take the time to see how truly awful it is.” -- Pat Winston 

2 7 1

=2

>=2

<=1

?

• We don’t need to compute 
the value at this node.

• No matter what it is, it can’t 
affect the value of the root 
node.

MAX

MAX

MIN
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Alpha-beta pruning

• Traverse the search tree in depth-first order 
• At each MAX node n, alpha(n) =  maximum value found so 

far
• At each MIN node n, beta(n) =  minimum value found so far

– Note: The alpha values start at -infinity and only increase, while beta 
values start at +infinity and only decrease. 

• Beta cutoff: Given a MAX node n, cut off the search below n 
(i.e., don’t generate or examine any more of n’s children) if 
alpha(n) >= beta(i) for some MIN node ancestor i of n. 

• Alpha cutoff: stop searching below MIN node n if beta(n) <= 
alpha(i) for some MAX node ancestor i of n. 
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Alpha-beta example
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Alpha-beta example
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Alpha-beta algorithm
function MAX-VALUE (state, α, β)
    ;; α = best MAX so far; β = best MIN
if TERMINAL-TEST (state) then return UTILITY(state)
v := -∞
for each s in SUCCESSORS (state) do
    v := MAX (v, MIN-VALUE (s, α, β))
    if v >= β then return v
    α := MAX (α, v)
end
return v

function MIN-VALUE (state, α, β)
if TERMINAL-TEST (state) then return UTILITY(state)
v := ∞
for each s in SUCCESSORS (state) do
    v := MIN (v, MAX-VALUE (s, α, β))
    if v <= α then return v
    β := MIN (β, v)
end
return v
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Games of chance
• Backgammon is a two-player 
game with uncertainty.

•Players roll dice to determine 
what moves to make.

•White has just rolled 5 and 6 
and has four legal moves:

• 5-10, 5-11
•5-11, 19-24
•5-10, 10-16
•5-11, 11-16

•Such games are good for 
exploring decision making in 
adversarial problems involving 
skill and luck.
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Game trees with chance nodes
• Chance nodes (shown as circles) 
represent random events

• For a random event with N 
outcomes, each chance node has 
N distinct children; a probability 
is associated with each

• (For 2 dice, there are 21 distinct 
outcomes)

• Use minimax to compute values 
for MAX and MIN nodes

• Use  expected values for chance 
nodes

• For chance nodes over a max node, 
as in C:

expectimax(C) = ∑i(P(di) * maxvalue(i))

• For chance nodes over a min node:

expectimin(C) = ∑i(P(di) * minvalue(i))

Max
Rolls

Min
Rolls
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Meaning of the evaluation function

• Dealing with probabilities and expected values means we have to be careful 
about the “meaning” of values returned by the static evaluator.

• Note that a “relative-order preserving” change of the values would not change 
the decision of minimax, but could change the decision with chance nodes.

• Linear transformations are OK

A1 is best 
move

A2 is best 
move

2 outcomes 
with prob {.
9, .1}
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Example: Oopsy-Nim
• Starts out like Nim
• Each player in turn has to pick up either one or two objects
• Sometimes (with probability 0.25), when you try to pick up 

two objects, you drop them both
• Picking up a single object always works
• Whoever picks up the last object loses

• Question: Why can’t we draw the entire game tree?
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