
CMSC 471
Fall 2012

Class #7

Thu 9/20/12
Constraint Satisfaction

Kevin Winner, winnerk1@umbc.edu

Thursday, September 20, 12

mailto:winnerk1@umbc.edu
mailto:winnerk1@umbc.edu

3

Constraint
Satisfaction

Chapter 6

Thursday, September 20, 12

4

Today’s Class

• Constraint Processing / Constraint Satisfaction Problem
(CSP) paradigm

• Consistency
• Algorithms for CSPs

– Backtracking (systematic search)
– Constraint propagation (k-consistency)
– Variable and value ordering heuristics

• HW2 rush-hour_basics.lisp

Thursday, September 20, 12

5

Overview

• Constraint satisfaction offers a powerful problem-solving
paradigm
– View a problem as a set of variables to which we have to assign

values that satisfy a number of problem-specific constraints.
– A solution to a CSP is then to find a set of assignments of a value to

each variable which satisfies all of the constraints

Thursday, September 20, 12

7

Informal Example: Map Coloring
• Color the following map using three colors

(red, green, blue) such that no two adjacent
regions have the same color.

E

D A

C

B

Thursday, September 20, 12

8

Map Coloring II

• Variables: A, B, C, D, E all of domain RGB
• Domains: RGB = {red, green, blue}
• Constraints: A≠B, A≠C,A ≠ E, A ≠ D, B ≠ C, C ≠ D, D ≠ E
• One solution: A=red, B=green, C=blue, D=green, E=blue

E
D A

C
B

Thursday, September 20, 12

8

Map Coloring II

• Variables: A, B, C, D, E all of domain RGB
• Domains: RGB = {red, green, blue}
• Constraints: A≠B, A≠C,A ≠ E, A ≠ D, B ≠ C, C ≠ D, D ≠ E
• One solution: A=red, B=green, C=blue, D=green, E=blue

E
D A

C
B

E
D A

C
B

=>

Thursday, September 20, 12

11

Formal Definition of a
Constraint Network (CN)

A constraint network (CN) consists of
• a set of variables X = {x1, x2, … xn}

– each with an associated domain of values {d1, d2, … dn}.
– the domains are typically finite

• a set of constraints {c1, c2 … cm} where
– each constraint defines a predicate which is a relation

over a particular subset of X.
– e.g., Ci involves variables {Xi1, Xi2, … Xik} and defines

the relation Ri ⊆ Di1 x Di2 x … Dik

• Unary constraint: only involves one variable
• Binary constraint: only involves two variables

Thursday, September 20, 12

12

Formal Definition of a CN (cont.)

• Instantiations
– An instantiation of a subset of variables S is an

assignment of a value in its domain to each
variable in S

– An instantiation is legal iff it does not violate any
constraints.

• A solution is a legal instantiation of all of the
variables in the network.

Thursday, September 20, 12

13

Typical Tasks for CSP

• Solutions:
– Does a solution exist?
– Find one solution
– Find all solutions

Thursday, September 20, 12

14

Binary CSP

• A binary CSP is a CSP in which all of the
constraints are binary or unary.

• A binary CSP can be represented as a constraint
graph, which has a node for each variable and an
arc between two nodes if and only there is a
constraint involving the two variables.

– Unary constraint appears as a self-referential arc

Thursday, September 20, 12

15

Example: Sudoku

3 1

1 4

3 4 1 2

4

Thursday, September 20, 12

16

Running Example: Sudoku

• Variables and their domains
– vij is the value in the jth cell of the ith row
– Dij = D = {1, 2, 3, 4}

• Blocks:
– B1 = {11, 12, 21, 22}
– ...
– B4 = {33, 34, 43, 44}

• Constraints (implicit/intensional)
– CR : ∀i, ∪j vij = D (every value appears in every row)
– CC : ∀j, ∪j vij = D (every value appears in every column)
– CB : ∀k, ∪ (vij | ij ∈Bk) = D (every value appears in every block)
– Alternative representation: pairwise inequality constraints:

• IR : ∀i, j≠j’ : vij ≠ vij’ (no value appears twice in any row)
• IC : ∀j, i≠i’ : vij ≠ vi’j (no value appears twice in any column)
• IB : ∀k, ij ∈ Bk, i’j’ ∈ Bk, ij ≠ i’j’ :vij ≠ vi’j’ (no value appears twice in any block)

– Advantage of the second representation: all binary constraints!

v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

Thursday, September 20, 12

17

Sudoku Constraint Network

Thursday, September 20, 12

17

Sudoku Constraint Network
3 1

1 4

3 4 1 2

4

Thursday, September 20, 12

18

Sudoku Constraint Network
v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

Thursday, September 20, 12

18

Sudoku Constraint Network
v11 3 v13 1

v21 1 v23 4

3 4 1 2

v41 v42 4 v44

v11

v44v42v41

v23v21

v13

Thursday, September 20, 12

24

Consistency
• Node consistency

– A node X is node-consistent if every value in the domain of X is
consistent with X’s unary constraints

– A graph is node-consistent if all nodes are node-consistent
• Arc consistency

– An arc (X, Y) is arc-consistent if, for every value x of X, there is a
value y for Y that satisfies the constraint represented by the arc.

– A graph is arc-consistent if all arcs are arc-consistent.
• To create arc consistency, we perform constraint

propagation: that is, we repeatedly reduce the domain of
each variable to be consistent with its arcs

Thursday, September 20, 12

29

K-consistency

• K- consistency generalizes the notion of arc
consistency to sets of more than two variables.
– A graph is K-consistent if, for legal values of any K-1

variables in the graph, and for any Kth variable Vk, there
is a legal value for Vk

• Strong K-consistency = J-consistency for all J<=K
• Node consistency = strong 1-consistency
• Arc consistency = strong 2-consistency
• Path consistency = strong 3-consistency

Thursday, September 20, 12

25

Constraint Propagation: Sudoku

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

Thursday, September 20, 12

25

Constraint Propagation: Sudoku

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

v11

v44v42v41

v23v21

v13

Thursday, September 20, 12

25

Constraint Propagation: Sudoku

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

v11

v44v42v41

v23v21

v13

Node consistency

Thursday, September 20, 12

25

Constraint Propagation: Sudoku

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

v11

v44v42v41

v23v21

v13

2,4

321,2

2,32

2 Node consistency

Thursday, September 20, 12

25

Constraint Propagation: Sudoku

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

v11

v44v42v41

v23v21

v13

2,4

321,2

2,32

2

Arc consistency

Node consistency

Thursday, September 20, 12

25

Constraint Propagation: Sudoku

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

v11

v44v42v41

v23v21

v13

2,4

321,2

2,32

2

Arc consistency

4

321

32

2
Node consistency

Thursday, September 20, 12

25

Constraint Propagation: Sudoku

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

v11

v44v42v41

v23v21

v13

2,4

321,2

2,32

2

Arc consistency

4

321

32

2
Node consistency

…and we didn’t even need to search!

Thursday, September 20, 12

19

Solving Constraint Problems

• Systematic search
– Generate and test
– Backtracking

• Constraint propagation (consistency)
• Variable ordering heuristics
• Value ordering heuristics

Thursday, September 20, 12

20

Generate and Test: Sudoku

• Try each possible combination until you find one that
works:

• Doesn’t check constraints until all variables have been
instantiated

• Very inefficient way to explore the space of possibilities
(4^7 for this trivial Sudoku puzzle, most illegal)

1 3 1 1
1 1 1 4
3 4 1 2
1 1 4 1

1 3 1 1
1 1 1 4
3 4 1 2
1 1 4 2

1 3 1 1
1 1 1 4
3 4 1 2
1 1 4 3

Thursday, September 20, 12

21

Systematic Search: Backtracking
(a.k.a. depth-first search!)

• Consider the variables in some order
• Pick an unassigned variable and give it a

provisional value such that it is consistent with all
of the constraints

• If no such assignment can be made, we’ve reached
a dead end and need to backtrack to the previous
variable

• Continue this process until a solution is found or
we backtrack to the initial variable and have
exhausted all possible values

Thursday, September 20, 12

22

Backtracking: Sudoku
Let’s try it…

Thursday, September 20, 12

22

Backtracking: Sudoku

v11 3 v13 1
v21 1 v23 4
3 4 1 2
v41 v42 4 v44

Let’s try it…

Thursday, September 20, 12

23

Problems with Backtracking

• Thrashing: keep repeating the same failed
variable assignments
– Consistency checking can help
– Intelligent backtracking schemes can also help

• Inefficiency: can explore areas of the search
space that aren’t likely to succeed
– Variable ordering can help

Thursday, September 20, 12

36

Interleaving Constraint Propagation
and Search

Generate and
Test

No constraint propagation: assign
all variable values, then test
constraints

Simple
Backtracking

Check constraints only for variables
“up the tree”

Forward
Checking

Check constraints for immediate
neighbors “down the tree”

Partial
Lookahead

Propagate constraints forward
“down the tree”

Full
Lookahead

Ensure complete arc consistency
after each instantiation (AC-3)

Thursday, September 20, 12

Variable Ordering

• As defined, Backtracking Search selects variables to
instantiate randomly

• Intuition: choose variables that are highly constrained early
in the search process; leave easy ones for later

24

Thursday, September 20, 12

37

Variable Ordering
• Fail first principle (FFP): choose variable with the fewest

values (a.k.a. minimum remaining values (MRV))
– Static FFP: use domain size of variables
– Dynamic FFP (search rearrangement method): At each point in

the search, select the variable with the fewest remaining values
• Maximum cardinality ordering: order variables by

decreasing cardinality

Thursday, September 20, 12

Value Ordering

• Intuition: Choose values that are the least constrained early
on, leaving the most legal values in later variables

26

Thursday, September 20, 12

39

Value Ordering

• Maximal options method (a.k.a. least-constraining-value
heuristic): Choose the value that leaves the most legal
values in uninstantiated variables

• Min-conflicts: Used in iterative repair search (see below)

Thursday, September 20, 12

40

Iterative Repair

• Start with an initial complete (but invalid) assignment
• Hill climbing, simulated annealing
• Min-conflicts: Select new values that minimally conflict

with the other variables
– Use in conjunction with hill climbing or simulated annealing or…

• Local maxima strategies
– Random restart
– Random walk
– Tabu search: don’t try recently attempted values

Thursday, September 20, 12

41

Min-Conflicts Heuristic

• Iterative repair method
1. Find some “reasonably good” initial solution

– E.g., in N-queens problem, use greedy search through rows, putting
each queen where it conflicts with the smallest number of previously
placed queens, breaking ties randomly

2. Find a variable in conflict (randomly)
3. Select a new value that minimizes the number of constraint

violations
– O(N) time and space

4. Repeat steps 2 and 3 until done
• Performance depends on quality and informativeness of

initial assignment; inversely related to distance to solution

Thursday, September 20, 12

