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Local Search and 
Genetic 

Algorithms
Sections 4.1, 4.2 and (4.5)
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Outline

• Local Search
– Hill Climbing
– Gradient descent
– Simulated Annealing
– Local Beam Search
– Genetic Algorithms!
– Tabu Search

• Demo of HW2 domain
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Iterative Improvement Search

• Another approach to search involves starting 
with an initial guess at a solution and gradually 
improving it until it is one.

• Work well in continuous domains
– Optimization problems

• 2D/3D Function Approximation

• Still work in graph-based domains
– Work best if start state is not fixed
– Reversible actions help too

• Some examples:
– Hill Climbing
– Simulated Annealing
– Constraint satisfaction
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Hill Climbing Search
• If there exists a successor s for the current state n such that 

– h(s) < h(n)
– h(s) ≤ h(t) for all the successors t of n, 

• then move from n to s. Otherwise, halt at n. 
• Looks one step ahead to determine if any successor is better 

than the current state; if there is, move to the best successor. 
• Similar to Greedy search in that it uses h, but does not allow 

backtracking or jumping to an alternative path since it 
doesn’t “remember” where it has been.

• Corresponds to Beam search with a beam width of 1 (i.e., 
the maximum size of the nodes list is 1). 

• Not complete since the search will terminate at "local 
minima," "plateaus," and "ridges." 
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Hill Climbing Example 
2 8 3
1 6 4
7  5

1 3
8  4
7 6 5

2
start goal h = 0h = -4

f(n) = -(number of tiles out of place) 
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Hill Climbing Example 
2 8 3
1 6 4
7  5

2 8 3
1 4
7 6 5

1 3
8  4
7 6 5

2
start goal

-5

h = -3

h = 0h = -4

-5

f(n) = -(number of tiles out of place) 
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Hill Climbing Example 
2 8 3
1 6 4
7  5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
8  4
7 6 5

2
start goal

-5

h = -3

h = -3

h = 0h = -4

-5

-4-3

f(n) = -(number of tiles out of place) 
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Hill Climbing Example 
2 8 3
1 6 4
7  5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

 3
1 8 4
7 6 5

2

1 3
8  4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = 0h = -4

-5

-4

-4-3

f(n) = -(number of tiles out of place) 
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Hill Climbing Example 
2 8 3
1 6 4
7  5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
 8 4
7 6 5

2

 3
1 8 4
7 6 5

2

1 3
8  4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

f(n) = -(number of tiles out of place) 
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Hill Climbing Example 
2 8 3
1 6 4
7  5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
 8 4
7 6 5

2

 3
1 8 4
7 6 5

2

1 3
8  4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

-2

f(n) = -(number of tiles out of place) 
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Exploring the Landscape
• Local Maxima: peaks that 

aren’t the highest point in the 
space

• Plateaus: the space has a 
broad flat region that gives 
the search algorithm no 
direction (random walk)

• Ridges: flat like a plateau, but 
with drop-offs to the sides; 
steps to the North, East, South 
and West may go down, but a 
step to the NW may go up.

current
state

objective function

state space

global maximum

local maximum
“flat” local maximum

shoulder
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Drawbacks of Hill Climbing

• Problems: local maxima, plateaus, ridges
• Remedies: 

– Random restart:  keep restarting the search from 
random locations until a goal is found.

– Problem reformulation: reformulate the search 
space to eliminate these problematic features

• Some problem spaces are great for hill climbing 
and others are terrible.
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Example of a Local Optimum

1 2 5
8 7 4
 6 3

 4
1 2 3
8
7 6 5

f = -6

f = 0

start goal

f = -(manhattan distance)
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Example of a Local Optimum

1 2 5
8 7 4
 6 3

 4
1 2 3
8
7 6 5

f = -6

f = -7

f = 0

start goal

2 5
  7 4
8 6 3

1

move 
up

f = -(manhattan distance)
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Example of a Local Optimum

1 2 5
8 7 4
 6 3

 4
1 2 3
8
7 6 5

1 2 5
8 7 4

  3

f = -6

f = -7

f = -7

f = 0

start goal

2 5
  7 4
8 6 3

1

6

move 
up

move 
right

f = -(manhattan distance)
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Gradient Ascent / Descent

• Gradient descent procedure for finding the argx min f(x)
– choose initial x0 randomly
– repeat

• choose direction to walk
• xi+1 ← xi + η ∆f (x)

– until the sequence x0, x1, …, xi, xi+1 converges

• Step size η is small (perhaps 0.1 or 0.05)
• Good for differentiable, continuous spaces

Images from http://en.wikipedia.org/wiki/Gradient_descent
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Simulated Annealing
• Simulated annealing (SA) exploits an analogy between the way 

in which a metal cools and freezes into a minimum-energy 
crystalline structure (the annealing process) and the search for a 
minimum [or maximum] in a more general system. 

• SA can avoid becoming trapped at local minima.
• SA uses a random search that accepts changes that increase 

objective function f, as well as some that decrease it.
• SA uses a control parameter T, which by analogy with the 

original application is known as the system “temperature.”
• T starts out high and gradually decreases toward 0.
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Simulated Annealing (cont.)
• f(s) represents the quality of state n (high is good)
• A “bad” move from A to B is accepted with a probability

 P(moveA→B) ≈ e( f (B) – f (A))  / T

• (Note that f(b) – f(A) will be negative, so bad moves always have a 
relative probability less than one.  Good moves, for which f(B) – f(A) is 
positive, have a relative probability greater than one.)

• The higher the temperature, the more likely it is that a bad 
move can be made.

• As T tends to zero, this probability tends to zero, and SA 
becomes more like hill climbing
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The Simulated Annealing Algorithm 
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Local Beam Search

• Begin with k random states
• Generate all successors of these states
• Keep the k best states
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Genetic Algorithms

• Start with k random states (the initial population)
• New states are generated by “mutating” a single state or 

“reproducing” (combining via crossover) two parent states 
(selected according to their fitness)

• Encoding used for the “genome” of an individual strongly 
affects the behavior of the search

• Genetic algorithms / genetic programming are a large and 
active area of research
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(a)
Initial Population

(b)
Fitness Function

(c)
Selection

(d)
Crossover

(e)
Mutation
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Class Exercise:
Local Search for Map/Graph Coloring
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Class Exercise:
Local Search for N-Queens

Q

Q

Q

Q

Q

Q

(more on constraint satisfaction heuristics next time...)
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Summary: Informed Search
• Best-first search is general search where the minimum-cost nodes (according 

to some measure) are expanded first. 
• Greedy search uses minimal estimated cost h(n) to the goal state as measure. 

This reduces the search time, but the algorithm is neither complete nor optimal. 
• A* search combines uniform-cost search and greedy search: f (n) = g(n) + h(n). 

A* handles state repetitions and h(n) never overestimates. 
– A* is complete and optimal, but space complexity is high.
– The time complexity depends on the quality of the heuristic function. 
– IDA* and SMA* reduce the memory requirements of A*. 

• Hill-climbing algorithms keep only a single state in memory, but can get stuck 
on local optima. 

• Simulated annealing escapes local optima, and is complete and optimal given 
a “long enough” cooling schedule. 

• Genetic algorithms can search a large space by modeling biological evolution.
• Online search algorithms are useful in state spaces with partial/no information.
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