CMSC 471 Fall 2012

Class #6

Tues 9/18/12 Local Search & Genetic Algorithms

Kevin Winner, winnerk1@cs.umbc.edu

Local Search and Genetic Algorithms

Sections 4.1, 4.2 and (4.5)

Outline

- Local Search
 - Hill Climbing
 - Gradient descent
 - Simulated Annealing
 - Local Beam Search
 - Genetic Algorithms!
 - Tabu Search
- Demo of HW2 domain

Iterative Improvement Search

- Another approach to search involves starting with an initial guess at a solution and gradually improving it until it is one.
- Work well in continuous domains
 - Optimization problems
 - 2D/3D Function Approximation
- Still work in graph-based domains
 - Work best if start state is not fixed
 - Reversible actions help too
- Some examples:
 - Hill Climbing
 - Simulated Annealing
 - Constraint satisfaction

Hill Climbing Search

- If there exists a successor s for the current state n such that -h(s) < h(n)
 - h(s) < h(t)- $h(s) \le h(t)$ for all the successors t of n,
- then move from n to s. Otherwise, halt at n.
- Looks one step ahead to determine if any successor is better than the current state; if there is, move to the best successor.
- Similar to Greedy search in that it uses h, but does not allow backtracking or jumping to an alternative path since it doesn't "remember" where it has been.
- Corresponds to Beam search with a beam width of 1 (i.e., the maximum size of the nodes list is 1).
- Not complete since the search will terminate at "local minima," "plateaus," and "ridges."

f(**n**) = -(**number of tiles out of place**)

goal $\begin{bmatrix} 1 & 2 & 3 \\ 8 & 4 \\ 7 & 6 & 5 \end{bmatrix}$ h = 0

f(**n**) = -(**number** of tiles out of place)

goal $\begin{bmatrix} 1 & 2 & 3 \\ 8 & 4 \\ 7 & 6 & 5 \end{bmatrix}$ h = 0

f(**n**) = -(**number** of tiles out of place)

Exploring the Landscape

- Local Maxima: peaks that aren't the highest point in the space
- **Plateaus:** the space has a broad flat region that gives the search algorithm no direction (random walk)
- **Ridges:** flat like a plateau, but with drop-offs to the sides; steps to the North, East, South and West may go down, but a step to the NW may go up.

state

Drawbacks of Hill Climbing

- Problems: local maxima, plateaus, ridges
- Remedies:
 - **Random restart:** keep restarting the search from random locations until a goal is found.
 - Problem reformulation: reformulate the search space to eliminate these problematic features
- Some problem spaces are great for hill climbing and others are terrible.

Example of a Local Optimum

start

f = -6

goal

f = -(manhattan distance)

Example of a Local Optimum

f = -(manhattan distance)

Example of a Local Optimum

Gradient Ascent / Descent

Images from http://en.wikipedia.org/wiki/Gradient_descent

- Gradient descent procedure for finding the $arg_x \min f(x)$
 - choose initial x_0 randomly
 - repeat
 - choose direction to walk
 - $x_{i+1} \leftarrow x_i + \eta \Delta f(x)$
 - until the sequence $x_0, x_1, ..., x_i, x_{i+1}$ converges
- Step size η is small (perhaps 0.1 or 0.05)
- Good for differentiable, continuous spaces

Simulated Annealing

- Simulated annealing (SA) exploits an analogy between the way in which a metal cools and freezes into a minimum-energy crystalline structure (the annealing process) and the search for a minimum [or maximum] in a more general system.
- SA can avoid becoming trapped at local minima.
- SA uses a random search that accepts changes that increase objective function f, **as well as** some that **decrease** it.
- SA uses a control parameter T, which by analogy with the original application is known as the system "**temperature**."
- T starts out high and gradually decreases toward 0.

Simulated Annealing (cont.)

- f(s) represents the quality of state n (high is good)
- A "bad" move from A to B is accepted with a probability

 $P(\text{move}_{A \rightarrow B}) \approx e^{(f(B) - f(A))/T}$

- (Note that f(b) f(A) will be negative, so bad moves always have a relative probability less than one. Good moves, for which f(B) f(A) is positive, have a relative probability greater than one.)
- The higher the temperature, the more likely it is that a bad move can be made.
- As T tends to zero, this probability tends to zero, and SA becomes more like hill climbing

The Simulated Annealing Algorithm

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to "temperature"
static: current, a node
       next, a node
        T, a "temperature" controlling the probability of downward steps
current \leftarrow MAKE-NODE([NITIAL-STATE[problem]))
for t \leftarrow 1 to \infty do
    T \leftarrow schedule[t]
    if T=0 then return current
    \Delta E \leftarrow VALUE[next] - VALUE[current]
    if \Delta E > 0 then current \leftarrow next
    else current \leftarrow next only with probability e^{\Delta E/T}
```

Local Beam Search

- Begin with k random states
- Generate all successors of these states
- Keep the k best states

Genetic Algorithms

- Start with k random states (the *initial population*)
- New states are generated by "mutating" a single state or "reproducing" (combining via crossover) two parent states (selected according to their *fitness*)
- Encoding used for the "genome" of an individual strongly affects the behavior of the search
- Genetic algorithms / genetic programming are a large and active area of research

Class Exercise: Local Search for Map/Graph Coloring

Class Exercise: Local Search for N-Queens

Q					
	Q				
		Q			
			Q		
				Q	
					Q

(more on constraint satisfaction heuristics next time...)

Summary: Informed Search

- **Best-first search** is general search where the minimum-cost nodes (according to some measure) are expanded first.
- Greedy search uses minimal estimated cost h(n) to the goal state as measure. This reduces the search time, but the algorithm is neither complete nor optimal.
- A* search combines uniform-cost search and greedy search: f(n) = g(n) + h(n).
 A* handles state repetitions and h(n) never overestimates.
 - A^* is complete and optimal, but space complexity is high.
 - The time complexity depends on the quality of the heuristic function.
 - IDA* and SMA* reduce the memory requirements of A*.
- **Hill-climbing algorithms** keep only a single state in memory, but can get stuck on local optima.
- **Simulated annealing** escapes local optima, and is complete and optimal given a "long enough" cooling schedule.
- Genetic algorithms can search a large space by modeling biological evolution.
- Online search algorithms are useful in state spaces with partial/no information.