
CMSC 471
Fall 2012

Class #6

Tues 9/18/12
Local Search & Genetic Algorithms

Kevin Winner, winnerk1@cs.umbc.edu

Tuesday, September 18, 12

Local Search and
Genetic

Algorithms
Sections 4.1, 4.2 and (4.5)

Tuesday, September 18, 12

Outline

• Local Search
– Hill Climbing
– Gradient descent
– Simulated Annealing
– Local Beam Search
– Genetic Algorithms!
– Tabu Search

• Demo of HW2 domain

Tuesday, September 18, 12

Iterative Improvement Search

• Another approach to search involves starting
with an initial guess at a solution and gradually
improving it until it is one.

• Work well in continuous domains
– Optimization problems

• 2D/3D Function Approximation

• Still work in graph-based domains
– Work best if start state is not fixed
– Reversible actions help too

• Some examples:
– Hill Climbing
– Simulated Annealing
– Constraint satisfaction

Tuesday, September 18, 12

Hill Climbing Search
• If there exists a successor s for the current state n such that

– h(s) < h(n)
– h(s) ≤ h(t) for all the successors t of n,

• then move from n to s. Otherwise, halt at n.
• Looks one step ahead to determine if any successor is better

than the current state; if there is, move to the best successor.
• Similar to Greedy search in that it uses h, but does not allow

backtracking or jumping to an alternative path since it
doesn’t “remember” where it has been.

• Corresponds to Beam search with a beam width of 1 (i.e.,
the maximum size of the nodes list is 1).

• Not complete since the search will terminate at "local
minima," "plateaus," and "ridges."

Tuesday, September 18, 12

Hill Climbing Example
2 8 3
1 6 4
7 5

1 3
8 4
7 6 5

2
start goal h = 0h = -4

f(n) = -(number of tiles out of place)
Tuesday, September 18, 12

Hill Climbing Example
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = 0h = -4

-5

f(n) = -(number of tiles out of place)
Tuesday, September 18, 12

Hill Climbing Example
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = 0h = -4

-5

-4-3

f(n) = -(number of tiles out of place)
Tuesday, September 18, 12

Hill Climbing Example
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

 3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = 0h = -4

-5

-4

-4-3

f(n) = -(number of tiles out of place)
Tuesday, September 18, 12

Hill Climbing Example
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
 8 4
7 6 5

2

 3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

f(n) = -(number of tiles out of place)
Tuesday, September 18, 12

Hill Climbing Example
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
 8 4
7 6 5

2

 3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

-2

f(n) = -(number of tiles out of place)
Tuesday, September 18, 12

Exploring the Landscape
• Local Maxima: peaks that

aren’t the highest point in the
space

• Plateaus: the space has a
broad flat region that gives
the search algorithm no
direction (random walk)

• Ridges: flat like a plateau, but
with drop-offs to the sides;
steps to the North, East, South
and West may go down, but a
step to the NW may go up.

current
state

objective function

state space

global maximum

local maximum
“flat” local maximum

shoulder

Tuesday, September 18, 12

Drawbacks of Hill Climbing

• Problems: local maxima, plateaus, ridges
• Remedies:

– Random restart: keep restarting the search from
random locations until a goal is found.

– Problem reformulation: reformulate the search
space to eliminate these problematic features

• Some problem spaces are great for hill climbing
and others are terrible.

Tuesday, September 18, 12

Example of a Local Optimum

1 2 5
8 7 4
 6 3

 4
1 2 3
8
7 6 5

f = -6

f = 0

start goal

f = -(manhattan distance)

Tuesday, September 18, 12

Example of a Local Optimum

1 2 5
8 7 4
 6 3

 4
1 2 3
8
7 6 5

f = -6

f = -7

f = 0

start goal

2 5
 7 4
8 6 3

1

move
up

f = -(manhattan distance)

Tuesday, September 18, 12

Example of a Local Optimum

1 2 5
8 7 4
 6 3

 4
1 2 3
8
7 6 5

1 2 5
8 7 4

 3

f = -6

f = -7

f = -7

f = 0

start goal

2 5
 7 4
8 6 3

1

6

move
up

move
right

f = -(manhattan distance)

Tuesday, September 18, 12

Gradient Ascent / Descent

• Gradient descent procedure for finding the argx min f(x)
– choose initial x0 randomly
– repeat

• choose direction to walk
• xi+1 ← xi + η ∆f (x)

– until the sequence x0, x1, …, xi, xi+1 converges

• Step size η is small (perhaps 0.1 or 0.05)
• Good for differentiable, continuous spaces

Images from http://en.wikipedia.org/wiki/Gradient_descent

Tuesday, September 18, 12

Simulated Annealing
• Simulated annealing (SA) exploits an analogy between the way

in which a metal cools and freezes into a minimum-energy
crystalline structure (the annealing process) and the search for a
minimum [or maximum] in a more general system.

• SA can avoid becoming trapped at local minima.
• SA uses a random search that accepts changes that increase

objective function f, as well as some that decrease it.
• SA uses a control parameter T, which by analogy with the

original application is known as the system “temperature.”
• T starts out high and gradually decreases toward 0.

Tuesday, September 18, 12

Simulated Annealing (cont.)
• f(s) represents the quality of state n (high is good)
• A “bad” move from A to B is accepted with a probability

 P(moveA→B) ≈ e(f (B) – f (A)) / T

• (Note that f(b) – f(A) will be negative, so bad moves always have a
relative probability less than one. Good moves, for which f(B) – f(A) is
positive, have a relative probability greater than one.)

• The higher the temperature, the more likely it is that a bad
move can be made.

• As T tends to zero, this probability tends to zero, and SA
becomes more like hill climbing

Tuesday, September 18, 12

The Simulated Annealing Algorithm

Tuesday, September 18, 12

Local Beam Search

• Begin with k random states
• Generate all successors of these states
• Keep the k best states

Tuesday, September 18, 12

Genetic Algorithms

• Start with k random states (the initial population)
• New states are generated by “mutating” a single state or

“reproducing” (combining via crossover) two parent states
(selected according to their fitness)

• Encoding used for the “genome” of an individual strongly
affects the behavior of the search

• Genetic algorithms / genetic programming are a large and
active area of research

Tuesday, September 18, 12

(a)
Initial Population

(b)
Fitness Function

(c)
Selection

(d)
Crossover

(e)
Mutation

24

23

20

11

29%

31%

26%

14%

32752411
24748552
32752411
24415124

32748552
24752411
32752124
24415411

32252124
24752411
32748152

24415417

24748552
32752411
24415124
32543213

+ =

16

Tuesday, September 18, 12

Class Exercise:
Local Search for Map/Graph Coloring

Tuesday, September 18, 12

Class Exercise:
Local Search for N-Queens

Q

Q

Q

Q

Q

Q

(more on constraint satisfaction heuristics next time...)
Tuesday, September 18, 12

Summary: Informed Search
• Best-first search is general search where the minimum-cost nodes (according

to some measure) are expanded first.
• Greedy search uses minimal estimated cost h(n) to the goal state as measure.

This reduces the search time, but the algorithm is neither complete nor optimal.
• A* search combines uniform-cost search and greedy search: f (n) = g(n) + h(n).

A* handles state repetitions and h(n) never overestimates.
– A* is complete and optimal, but space complexity is high.
– The time complexity depends on the quality of the heuristic function.
– IDA* and SMA* reduce the memory requirements of A*.

• Hill-climbing algorithms keep only a single state in memory, but can get stuck
on local optima.

• Simulated annealing escapes local optima, and is complete and optimal given
a “long enough” cooling schedule.

• Genetic algorithms can search a large space by modeling biological evolution.
• Online search algorithms are useful in state spaces with partial/no information.

Tuesday, September 18, 12

