
CMSC 471
Fall 2012

Class #5

Thu 9/13/12
Informed Search

Kevin Winner, winnerk1@cs.umbc.edu

Thursday, September 13, 12

Informed Search

Sections 3.5 and 3.6

Thursday, September 13, 12

Outline

• Heuristic search
• Best-first search

– Greedy search
– Beam search
– A, A*
– Examples

• Memory-conserving variations of A*
• Heuristic functions

Thursday, September 13, 12

Heuristic
Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\): adj. [from Greek heuriskein to discover.]
involving or serving as an aid to learning, discovery, or problem-
solving by experimental and especially trial-and-error methods

The Free On-line Dictionary of Computing (15Feb98)
heuristic 1. <programming> A rule of thumb, simplification or educated

guess that reduces or limits the search for solutions in domains that are
difficult and poorly understood. Unlike algorithms, heuristics do not
guarantee feasible solutions and are often used with no theoretical
guarantee. 2. <algorithm> approximation algorithm.

From WordNet (r) 1.6
heuristic adj 1: (computer science) relating to or using a heuristic rule 2:

of or relating to a general formulation that serves to guide investigation
[ant: algorithmic] n : a commonsense rule (or set of rules) intended to
increase the probability of solving some problem [syn: heuristic rule,
heuristic program]

Thursday, September 13, 12

Heuristics
• Adding domain knowledge and heuristics gives us informed

search or heuristic search
• All domain knowledge used in the search is encoded in the

heuristic function h().
• Define a heuristic function h(n) that estimates the

“goodness” of a node n.
– Specifically, h(n) = estimated cost (or distance) of

minimal cost path from n to a goal state.
• The heuristic function is an estimate of how close we

are to a goal, based on domain-specific information
that is computable from the current state description.

Thursday, September 13, 12

Properties of Heuristic Functions

• In general:
– h(n) ≥ 0 for all nodes n
– h(n) = 0 implies that n is a goal node
– h(n) = ∞ implies that n is a dead-end that can never lead to a goal

• h*(n) is the perfect heuristic
– h*(n) is the true shortest path value from n to the goal

• iff h(n) < h*(n) for all n then h(n) is admissible
– in other words h(n) always underestimates the true distance
– whenever possible, we’d like to develop admissible heuristics

6

Thursday, September 13, 12

Examples

• Missionaries and Cannibals: Number of people on starting
river bank

• 8-puzzle: Number of tiles out of place
• 8-puzzle: Sum of distances each tile is from its goal

position

7

Thursday, September 13, 12

Examples

• Missionaries and Cannibals: Number of people on starting
river bank

• 8-puzzle: Number of tiles out of place
• 8-puzzle: Sum of distances each tile is from its goal

position

7

If h1(n) < h2(n) < h*(n) for all n, then h2(n) is better than h1(n)

Thursday, September 13, 12

Best-First Search

• Order nodes on the nodes list by increasing
value of an evaluation function f (n)
– f (n) incorporates domain-specific information in

some way.
• This is a generic way of referring to the class

of informed methods.
– We get different searches depending on the

evaluation function f (n)

Thursday, September 13, 12

Greedy Search
• Use as an evaluation function f (n) = h(n),

sorting nodes by increasing values of f.
• Selects node to expand believed to be

closest (hence “greedy”) to a goal node
(i.e., select node with smallest f value)

• Not admissible, as in the example.
– Assuming all arc costs are 1, then greedy search will

find goal g, which has a solution cost of 5.
– However, the optimal solution is the path to goal I

with cost 3.
• Not complete

a

gb

c

d

e

g

h

i

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

Thursday, September 13, 12

Beam Search

• Use an evaluation function f (n) = h(n), but the maximum
size of the nodes list is k, a fixed constant

• Only keeps k best nodes as candidates for expansion, and
throws the rest away

• More space efficient than greedy search, but may throw
away a node that is on a solution path

• Not complete
• Not admissible

Thursday, September 13, 12

Algorithm A
• Use as an evaluation function

f (n) = g(n) + h(n)
• g(n) = path cost from the start state to

state n.
• The g(n) term adds a “breadth-first”

component to the evaluation function.
• Ranks nodes on search frontier by

estimated cost of solution from start
node through the given node to goal.

• Not complete if h(n) can equal infinity.
• Not admissible.

S

BA

D
G

1 5 8

3

1

5

C

1

9

4

5 8
9

g(d)=4
h(d)=9

C is chosen
next to expand

Thursday, September 13, 12

Algorithm A
1. Put the start node S on the nodes list, called OPEN
2. If OPEN is empty, exit with failure
3. Select node in OPEN with minimal f (n) and place on CLOSED
4. If n is a goal node, collect path back to start and stop.
5. Expand n, generating all its successors and attach to them

pointers back to n. For each successor n' of n
1. If n' is not already on OPEN or CLOSED

• put n' on OPEN
• compute h(n'), g(n') = g(n) + c(n,n'), f (n') = g(n') + h(n')

2. If n' is already on OPEN or CLOSED and if g(n') is lower for
the new version of n', then:
• Redirect pointers backward from n' along path yielding lower g(n').
• Put n' on OPEN.

Thursday, September 13, 12

Algorithm A*
• Algorithm A with constraint that h(n) ≤ h*(n)

– h(n) is admissible when h(n) ≤ h*(n) holds.
• Using an admissible heuristic guarantees that the first

solution found will be an optimal one.
• A* is complete whenever the branching factor is

finite, and every operator has a fixed positive cost
• A* is admissible

Thursday, September 13, 12

Some Observations on A/A*
• Perfect heuristic: If h(n) = h*(n) for all n, then only the

nodes on the optimal solution path will be expanded. So, no
extra work will be performed.

• Null heuristic: If h(n) = 0 for all n, then this is an
admissible heuristic and A* acts like Uniform-Cost Search.

• Better heuristic: If h1(n) < h2(n) ≤ h*(n) for all non-goal
nodes, then h2 is a better heuristic than h1

– The closer h is to h*, the fewer extra nodes that will be expanded

Thursday, September 13, 12

Effect of a Better Heuristic

15

Search Cost (nodes generated)Search Cost (nodes generated)Search Cost (nodes generated)
d IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25

10 47127 93 39
12 3644035 227 73
14 539 113
16 1301 211
18 3056 363
20 7276 676
22 18094 1219
24 39135 1641

Thursday, September 13, 12

Example Search Space Revisited

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

∞∞ 0

start state

goal state

arc cost

h value

parent pointer

0

1

4 8 9

85

g value

Thursday, September 13, 12

In-Class Example
n g(n) h(n) f (n) h*(n)
S 0 8 8 9
A 1 8 9 9
B 5 4 9 4
C 8 3 11 5
D 4 inf inf inf
E 8 inf inf inf
G 9 0 9 0

• h*(n) is the (hypothetical) perfect heuristic.
• Since h(n) ≤ h*(n) for all n, h is admissible
• Optimal path = S B G with cost 9.

Thursday, September 13, 12

Greedy Search
f (n) = h(n)

node expanded nodes list
 { S(8) }
 S { C(3) B(4) A(8) }
 C { G(0) B(4) A(8) }
 G { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded.

Thursday, September 13, 12

A* Search
f (n) = g(n) + h(n)

node exp. nodes list
 { S(8) }
 S { A(9) B(9) C(11) }
 A { B(9) G(10) C(11) D(inf) E(inf) }
 B { G(9) G(10) C(11) D(inf) E(inf) }
 G { C(11) D(inf) E(inf) }

• Solution path found is S B G, 4 nodes expanded..
• Still pretty fast. And optimal, too.

Thursday, September 13, 12

Dealing with Hard Problems

• For large problems, A* often requires too much space.
• Three variations conserve memory: IDA*, SMA*, RBFS
• IDA* -- iterative deepening A*

– uses successive iteration with growing limits on f. For example,
• A* but don’t consider any node n where f (n) > 10
• A* but don’t consider any node n where f (n) > 20
• A* but don’t consider any node n where f (n) > 30, ...

• SMA* -- Simplified Memory-Bounded A*
– uses a queue of restricted size to limit memory use.
– throws away the “oldest” worst solution.

• RBFS -- Recursive Best First Search
– Tracks the best alternative path
– When the currently expanding path is worse than the alternative, the current

path is thrown away and the knowledge is backed up to the alternative

Thursday, September 13, 12

What’s a Good Heuristic?

• If h1(n) < h2(n) ≤ h*(n) for all n, h2 is better than
(dominates) h1.

• Relaxing the problem: remove constraints to create a
(much) easier problem; use the solution cost for this
problem as the heuristic function

• Combining heuristics: take the max of several admissible
heuristics: still have an admissible heuristic, and it’s better!

• Subgoals: restructure the problem in abstract subgoals and
use search in this easier domain as a heuristic

• Learning: very similar to reinforcement learning (chapter
21)
– based on experience solving similar problems, compare states in the

current problem to ones seen historically and estimate based on prior
performance

Thursday, September 13, 12

In-class Exercise: Creating Heuristics

8-Puzzle

N-Queens

Missionaries and
Cannibals

Remove 5
Sticks

Water Jug Problem

5 2

Route Planning

Thursday, September 13, 12

