
CMSC 471
Fall 2012

Class #3

Thu 9/6/11
Problem Solving as Search

Kevin Winner, winnerk1@umbc.edu

Thursday, September 6, 12

mailto:winnerk1@umbc.edu
mailto:winnerk1@umbc.edu

Today’s class

• Uninformed Search
– Goal-based agents
– Representing states and operators
– Example problems
– Generic state-space search algorithm

• Hopefully a little more Lisp

Thursday, September 6, 12

Search
Sections 3.1-3.3

Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison

Thursday, September 6, 12

Building goal-based agents
To build a goal-based agent we need to answer the

following questions about our problem:
– What relevant information is necessary to encode in

order to describe the state of the world? (percepts)
– What are the actions? (actuators)
– What is the goal to be achieved?

Initial
state

Goal
state

Actions

Thursday, September 6, 12

Representing states
• A state must sufficiently encode all the important

information about the environment at one point in time
– The state our agent begins in is called the start state
– We assume that our environment is fully observable

• The state space is the collection of all states which can be
reached by applying any sequence of actions from our start
state
– Reducing the size of the state space is often very important

• The size of a problem is usually described in terms of the
number of states that are possible.
– Tic-Tac-Toe has 39 states.
– A Rubik’s Cube has about 1019 states.
– Chess has about 10150 states in a typical game.

Thursday, September 6, 12

What are the actions?
• Characterize the primitive actions or events that are

available for making changes in the world in order to
achieve a goal.

• Deterministic, known world: no uncertainty in an action’s
effects. Given an action (a.k.a. operator or move) and a
description of the current world state, the action
completely specifies
– whether that action can be applied to the current world

(i.e., is it applicable and legal), and
– what the exact state of the world will be after the action

is performed in the current world (i.e., no need for
“history” information to compute what the new world
looks like).

Thursday, September 6, 12

Representing actions

• Note also that actions in this framework can all be considered
as discrete events that occur at an instant of time.
– For example, if “Mary is in class” and then performs the action “go

home,” then in the next situation she is “at home.” There is no
representation of a point in time where she is neither in class nor at
home (i.e., in the state of “going home”).

• The number of actions depends on the representation used in
describing a state.
– In the 8-puzzle, we could specify 4 possible moves for each of the 8

tiles, resulting in a total of 4*8=32 operators.
– On the other hand, we could specify four moves for the “blank” square

and we would only need 4 operators.
• Representational shift can greatly simplify a problem!

Thursday, September 6, 12

What is the goal to be achieved?

• Could describe a situation we want to achieve, a set of
properties that we want to hold, etc.

• Typically we define a “goal test” so that we know what it
means to have achieved/satisfied our goal.
– any state in which the goal test is satisfied is called a goal state

Thursday, September 6, 12

Then the task is...

• Given a complete description of the problem, find a
sequence of actions which, when executed in order,
transition the agent from the start state to a goal state

9

Thursday, September 6, 12

Well-defined problems

• Formally, a well-defined problem definition defines:
– the state space
– the possible actions
– the goal test
– an initial state
– a transition model
– a path cost function

10

Thursday, September 6, 12

Some example problems

• Toy problems and micro-worlds
– 8-Puzzle
– 8-Queens
– Missionaries and Cannibals
– Remove 5 Sticks
– Water Jug Problem

• What is the problem definition for each
of these puzzles?

Thursday, September 6, 12

8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3 x
3 board, move the tiles in such a way so as to produce a
desired goal configuration of the tiles.

Thursday, September 6, 12

8-Puzzle

• States: 3 x 3 array configuration of the tiles on the board.
• Actions: Move Blank Square Left, Right, Up or Down.

– This is a more efficient encoding of the operators than one in which
each of four possible moves for each of the 8 distinct tiles is used.

• Transition Model: Swap the positions of the blank and the
tile it moves into

• Initial State: Any arbitrary configuration of the board.
• Goal: One particular configuration of the board.
• Path cost function: Each action costs 1, so the total path

cost is the number of actions taken

Thursday, September 6, 12

The 8-Queens Problem

Place eight queens
on a chessboard
such that no
queen attacks
any other!

Thursday, September 6, 12

8-queens

• States: Any arrangement of 0-8 queens
• Actions: Place a queen on the board
• Transition Model: Add a queen to the state representation
• Initial State: A board with 0 queens
• Goal: A board with 8 queens without any attacking each

other
• Path cost function: The path cost is equal to the number of

queens placed already
– Yes, this means all paths which reach the goal have the same cost!

Thursday, September 6, 12

Missionaries and Cannibals

Three missionaries and three
cannibals come to a river and find
a [row]boat that holds two. If the
cannibals ever outnumber the
missionaries on either bank, the
missionaries will be eaten.

How shall they cross?

Thursday, September 6, 12

Missionaries and Cannibals

• States: Locations of all 6 people and the boat
• Actions: Send the boat across with 1 or 2 people

– The legal actions will differ greatly in each state
• Transition Model: Move the boat and the people in it to

the other side of the river
• Initial State: All 6 people and the boat on the same side of

the river
• Goal: All 6 people are on the other side of the river
• Path cost function: Once again, each step costs 1, so the

path cost is the number of steps

17

Thursday, September 6, 12

Missionaries and Cannibals Solution

 Near side Far side

0 Initial setup: MMMCCC B -

1 Two cannibals cross over: MMMC B CC

2 One comes back: MMMCC B C

3 Two cannibals go over again: MMM B CCC

4 One comes back: MMMC B CC

5 Two missionaries cross: MC B MMCC

6 A missionary & cannibal return: MMCC B MC

7 Two missionaries cross again: CC B MMMC

8 A cannibal returns: CCC B MMM

9 Two cannibals cross: C B MMMCC

10 One returns: CC B MMMC

11 And brings over the third: - B MMMCCC

Thursday, September 6, 12

Remove 5 Sticks

• Given the following
configuration of sticks,
remove exactly 5 sticks in
such a way that the
remaining configuration
forms exactly 3 squares.

Thursday, September 6, 12

Remove 5 Sticks

• Given the following
configuration of sticks,
remove exactly 5 sticks in
such a way that the
remaining configuration
forms exactly 3 squares.

Thursday, September 6, 12

Remove 5 Sticks

• States: The set of all remaining sticks and their
orientations

• Actions: Remove a stick
• Transition Model: Remove that stick from the state

representation
• Initial State: 17 sticks arranged as pictured
• Goal: 12 sticks arranged in 3 squares
• Path cost function: Path cost = # of sticks removed

– Like the 8-queens problem, all paths which reach the goal will be the
same length

20

Thursday, September 6, 12

Formalizing search in a state space

• A state space is a graph (V, E) where V is a set of nodes
and E is a set of edges, and each edge is directed from a
node to another node

• Each node represents a state
– In an implementation, a node will typically contain a list of the

actions available at that state, along with other bookkeeping data
• Each edge corresponds to an action

– The source of the edge is the state in which that action is valid
– The destination of the edge is the state you transition to after

executing that action
• One node is designated as the start state
• The nodes whose states satisfy the goal test are designated

as goal nodes
Thursday, September 6, 12

Water Jug Problem
Given a full 5-gallon jug

and an empty 2-gallon
jug, the goal is to fill
the 2-gallon jug with
exactly one gallon of
water.

• State = (x,y), where x is
the number of gallons
of water in the 5-gallon
jug and y is # of gallons
in the 2-gallon jug

• Initial State = (5,0)
• Goal State = (*,1),

where * means any
amount

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal.
jug

Empty2 – (x,y)→(x,0) Empty 2-gal.
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal.
into 5-gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal.
into 2-gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial
5-gal. into 2-
gal.

Action table

Thursday, September 6, 12

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Water jug state space

Thursday, September 6, 12

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Empty5

Water jug state space

Thursday, September 6, 12

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Empty2

Empty5

Water jug state space

Thursday, September 6, 12

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Empty2

Empty5

2to5

Water jug state space

Thursday, September 6, 12

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Empty2

Empty5

2to5

5to2

5to2part

Water jug state space

Thursday, September 6, 12

5, 2

3, 2

2, 2

1, 2

4, 2

0, 2

5, 1

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Water jug solution

Thursday, September 6, 12

Formalizing search III
• State-space search is the process of searching through a

state space for a solution by making explicit a sufficient
portion of an implicit state-space graph to find a goal node.
– For large state spaces, it isn’t practical to represent the whole space.
– Initially V={S}, where S is the start node; when S is expanded, its

successors are generated and those nodes are added to V and the
associated arcs are added to E. This process continues until a goal
node is found.

Thursday, September 6, 12

State-space search algorithm
function general-search (problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure
nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds
 then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
 problem.OPERATORS))
 end
 ;; Note: The goal test is NOT done when nodes are generated
 ;; Note: This algorithm does not detect loops

Thursday, September 6, 12

Key procedures to be defined

• EXPAND
– Generate all successor nodes of a given node

• GOAL-TEST
– Test if state satisfies all goal conditions

• QUEUEING-FUNCTION
– Used to maintain a ranked list of nodes that are

candidates for expansion

Thursday, September 6, 12

Bookkeeping

• Typical node data structure includes:
– State at this node
– Parent node
– Action applied to get to this node
– Depth of this node (number of action applications since initial state)
– Cost of the path (sum of each action application so far)

Thursday, September 6, 12

Evaluating search strategies

• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity
– How long (worst or average case) does it take to find a solution?

Usually measured in terms of the number of nodes expanded
• Space complexity

– How much space is used by the algorithm? Usually measured in
terms of the maximum size of the “nodes” list during the search

• Optimality/Admissibility
– If a solution is found, is it guaranteed to be an optimal one? That is,

is it the one with minimum cost?

Thursday, September 6, 12

