
MDPs and the RL Problem
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Russell & Norvig Chapter 21.1-21.3

Thanks to Rich Sutton and Andy Barto for the use of their slides
(modified with additional in-class exercises)
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Today’s Class

❐ Extra Credit
❐ HW6
❐ Project Deadlines/Milestones
❐ Reinforcement Learning
❐ Dry Run #1
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The Reinforcement Learning Problem

❐ reinforce/expand concepts of value and policy iteration, 
including discounting of future rewards;

❐ present idealized form of the RL problem for which we 
have precise theoretical results; 

❐ introduce key components of the mathematics: value 
functions and Bellman equations;

❐ describe trade-offs between applicability and 
mathematical tractability;

Objectives:
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The Agent-Environment Interface

  

Agent and environment interact at discrete time steps :   t = 0, 1, 2, K
     Agent observes state at step t :     st ∈S
     produces action at step t :   at ∈ A(st )
     gets resulting reward :     rt+1 ∈ℜ

     and resulting next state :   st+1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a
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Policy at step t , πt :
               a mapping from states to action probabilities
               πt (s, a) =  probability that at = a when st = s

The Agent Learns a Policy

❐ Reinforcement learning methods specify how the agent 
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it can 
over the long run.
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Returns

  

€ 

Suppose the sequence of rewards after step t is :
                         rt+1, rt+2, rt+3,…
What do we want to maximize?

€ 

In general, 

we want to maximize the expected return,  E Rt{ },  for each step t.

Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a maze. 

  

€ 

Rt = rt+1 + rt+2 ++ rT ,
where T is a final time step at which a terminal state is reached, 
ending an episode.

Note: R&N use R for one-step reward instead of r
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Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.  

Discounted return:

  

€ 

            Rt = rt+1 +γ rt+2 +γ 2rt+3 + = γ krt+k+1,
k=0

∞

∑

where γ, 0 ≤ γ ≤1, is the discount rate.

shortsighted  0 ←γ → 1  farsighted
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An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.

reward  = +1 for each step before failure
⇒   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As  a continuing task with discounted return:
reward  = −1 upon failure;  0 otherwise
⇒   return =  −γ k ,  for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.
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Another Example

Get to the top of the hill
as quickly as possible. 

reward  = −1 for each step where not at top of hill
⇒   return =  − number of steps before reaching top of hill

Return is maximized by minimizing 
number of steps to reach the top of the hill. 
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A Unified Notation

❐ In episodic tasks, we number the time steps of each 
episode starting from zero.

❐ We usually do not have to distinguish between episodes, so 
we write     instead of       for the state at step t of episode j.

❐ Think of each episode as ending in an absorbing state that 
always produces a reward of zero:

❐ We can cover all cases by writing

st st, j

€ 

                              Rt = γ krt+k+1,
k=0

∞

∑

where γ can be 1 only if a zero - reward absorbing state is always reached.
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❐ The value of a state is the expected return starting from 
that state; depends on the agent’s policy:

❐ The value of taking an action in a state under policy π  
is the expected return starting from that state, taking that 
action, and thereafter following π :

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Action- value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ } = Eπ γ krt+ k+1 st = s,at = a
k= 0

∞

∑⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
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Bellman Equation for a Policy π

  

€ 

Rt = rt+1 +γ rt+2 +γ 2rt+3 +γ 3rt+4

= rt+1 +γ rt+2 +γ rt+3 +γ 2rt+4( )
= rt+1 +γRt+1

The basic idea: 

So: Vπ (s) = Eπ Rt st = s{ }
= Eπ rt+1 + γV st+1( ) st = s{ }

Or, without the expectation operator: 

€ 

V π (s) = π(s,a) Ps ʹ′ s 
a rs ʹ′ s 

a + γV π ( ʹ′ s )[ ]
ʹ′ s 
∑

a
∑
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More on the Bellman Equation

Vπ (s) = π (s, a) Ps ʹ′ s 
a Rs ʹ′ s 

a + γV π( ʹ′ s )[ ]
ʹ′ s 
∑

a
∑

This is a set of equations (in fact, linear), one for each state.
The value function for π  is its unique solution.

Backup diagrams:

for V π for Qπ
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Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ In special states A and B, all actions move to A’ and B’, 

with reward +10 and +5, respectively. 
❐ If would take agent off the grid: no move but reward = –1
❐ All other actions have the expected effect and produce 

reward = 0, except actions that move agent out of special 
states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9
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Verifying the Value Function

❐ Recall that:

❐ In state A, all actions take the agent to state A’ and have 
reward 10.
	
 Exercise:  Verify the state-value function shown for A

❐ Exercise: Verify the state-value function for the state at the 
lower left (Vπ = -1.9)
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State-value function 
for equiprobable 
random policy;
γ = 0.9

€ 

V π (s) = π(s,a) Ps ʹ′ s 
a rs ʹ′ s 

a + γV π ( ʹ′ s )[ ]
ʹ′ s 
∑

a
∑
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π ≥ ʹ′ π     if and only if  Vπ (s) ≥ V ʹ′ π (s)  for all s ∈S

Optimal Value Functions
❐ For finite MDPs, policies can be partially ordered: 

❐ There is always at least one (and possibly many)  policies that 
is better than or equal to all the others. This is an optimal 
policy. We denote them all π *.

❐ Optimal policies share the same optimal state-value function:

❐ Optimal policies also share the same optimal action-value 
function:

V∗ (s) = max
π
Vπ (s)    for all  s ∈S

Q∗(s, a) = max
π
Qπ (s, a)  for all  s ∈S and a ∈A(s)

This is the expected return for taking action a in state s  
and thereafter following an optimal policy.
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Bellman Optimality Equation for V*

V∗ (s) = max
a∈A( s)

Qπ ∗

(s,a)

= max
a∈A( s)

E rt +1 + γ V∗(st +1) st = s, at = a{ }
= max

a∈A( s)
Ps ʹ′ s 

a

ʹ′ s 
∑ Rs ʹ′ s 

a + γV ∗( ʹ′ s )[ ]

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.V∗
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Bellman Optimality Equation for Q*

Q∗(s, a) = E rt +1 + γ max
ʹ′ a 

Q∗ (st+1, ʹ′ a ) st = s,at = a{ }
= Ps ʹ′ s 

a Rs ʹ′ s 
a +γ max

ʹ′ a 
Q∗( ʹ′ s , ʹ′ a )[ ]

ʹ′ s 
∑

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.Q*
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Why Optimal State-Value Functions are Useful

V∗

V∗

Any policy that is greedy with respect to       is an optimal policy.

Therefore, given     , one-step-ahead search produces the 
long-term optimal actions.

E.g., back to the gridworld:
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Verifying V*

❐ Recall that:

❐ Exercise:  Verify that V*(A) = 24.4
n All actions have the same effect & are therefore equally good...

❐ Exercise:  Verify that V*([1,1]) = 14.4
n What would V* be (given other V* values) for each possible optimal 

action?  And therefore, what is the best action(s)?
❐ Note that V* is easy to verify but not easy to find!  (That’s why we need 

RL...)
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€ 

V ∗(s) = max
a∈A (s)

Ps ʹ′ s 
a

ʹ′ s 
∑ Rs ʹ′ s 

a +γV ∗( ʹ′ s )[ ]

Tuesday, November 27, 12



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

What About Optimal Action-Value Functions?

Given      , the agent does not even
have to do a one-step-ahead search:  

Q*

π∗(s) = argmax
a∈A (s)

Q∗(s, a)
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Solving the Bellman Optimality Equation
❐ Finding an optimal policy by solving the Bellman 

Optimality Equation requires the following:
n accurate knowledge of environment dynamics;
n enough space and time to do the computation;
n the Markov Property.

❐ How much space and time do we need?
n polynomial in the number of states (via dynamic 

programming methods; Chapter 4),
n But: the number of states is often huge (e.g., 

backgammon has about 1020 states).
❐ We usually have to settle for approximations.
❐ Many RL methods can be understood as approximately 

solving the Bellman Optimality Equation.
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DYNAMIC PROGRAMMING
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Policy Evaluation

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Bellman equation for Vπ :

Vπ (s) = π (s, a) Ps ʹ′ s 
a Rs ʹ′ s 

a + γV π( ʹ′ s )[ ]
ʹ′ s 
∑

a
∑

— a system of S  simultaneous linear equations

Policy Evaluation: for a given policy π, compute the 
                                state-value function Vπ

Recall:
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Iterative Methods

  

€ 

V0 →V1 →→Vk →Vk+1 →→V π

Vk +1 (s)← π (s, a) Ps ʹ′ s 
a Rs ʹ′ s 

a + γVk ( ʹ′ s )[ ]
ʹ′ s 
∑

a
∑

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:
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Iterative Policy Evaluation
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A Small Gridworld

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14; 
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached
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Iterative Policy Eval for the Small Gridworld

π =  random (uniform) action choices
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Policy Improvement

Suppose we have computed       for a deterministic policy π.Vπ

For a given state s, 
would it be better to do an action                 ? a ≠ π(s)

 Qπ (s, a) = Eπ rt +1 + γV π(st +1 ) st = s, at = a{ }
= Ps ʹ′ s 

a

ʹ′ s 
∑ Rs ʹ′ s 

a +γ Vπ ( ʹ′ s )[ ]

The value of doing a in state s is :

It is better to switch to action a for state s if and only if
                            Qπ (s, a) > V π (s)
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Policy Improvement Cont.

ʹ′ π (s) = argmax
a

Qπ (s, a)

= argmax
a

Ps ʹ′ s 
a

ʹ′ s 
∑ Rs ʹ′ s 

a + γV π ( ʹ′ s )[ ]

Do this for all states to get a new policy ʹ′ π  that is 
greedy  with respect to V π :

Then V ʹ′ π ≥ Vπ
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Policy Improvement Cont.

What if V ʹ′ π = Vπ  ?

i.e.,    for all s ∈S,    V ʹ′ π (s) = max
a

Ps ʹ′ s 
a

ʹ′ s 
∑ Rs ʹ′ s 

a +γ Vπ ( ʹ′ s )[ ]  ?

But this is the Bellman Optimality Equation.
So V ʹ′ π = V∗ and both π and ʹ′ π  are optimal policies.
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Policy Iteration

  π0 →V π 0 →π1 → Vπ1 → L π * →V * →π *

 policy evaluation policy improvement
“greedification”
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Policy Iteration
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Value Iteration

Vk +1 (s)← π (s, a) Ps ʹ′ s 
a Rs ʹ′ s 

a + γVk ( ʹ′ s )[ ]
ʹ′ s 
∑

a
∑

Recall the full policy evaluation backup:

Vk +1 (s)← max
a

Ps ʹ′ s 
a Rs ʹ′ s 

a + γVk ( ʹ′ s )[ ]
ʹ′ s 
∑

Here is the full value iteration backup:
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Value Iteration Cont.
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Asynchronous DP

❐ All the DP methods described so far require exhaustive 
sweeps of the entire state set.

❐ Asynchronous DP does not use sweeps. Instead it works like 
this:
n Repeat until convergence criterion is met:

– Pick a state at random and apply the appropriate 
backup

❐ Still need lots of computation, but does not get locked into 
hopelessly long sweeps

❐ Can you select states to backup intelligently? YES: an agent’s 
experience can act as a guide.
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Generalized Policy Iteration

Generalized Policy Iteration  (GPI):  
any interaction of policy evaluation and policy improvement, 
independent of their granularity.

A geometric metaphor for
convergence of GPI: 
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Efficiency of DP

❐ To find an optimal policy is polynomial in the number of 
states…

❐ BUT, the number of states is often astronomical, e.g., often 
growing exponentially with the number of state variables 
(what Bellman called “the curse of dimensionality”).

❐ In practice, classical DP can be applied to problems with a 
few millions of states.

❐ Asynchronous DP can be applied to larger problems, and 
appropriate for parallel computation.

❐ It is surprisingly easy to come up with MDPs for which 
DP methods are not practical.   
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Summary

❐ Policy evaluation: backups without a max
❐ Policy improvement: form a greedy policy, if only locally
❐ Policy iteration: alternate the above two processes
❐ Value iteration: backups with a max
❐ Full backups (to be contrasted later with sample backups)
❐ Generalized Policy Iteration (GPI)
❐ Asynchronous DP: a way to avoid exhaustive sweeps
❐ Bootstrapping: updating estimates based on other 

estimates
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