MDPs and the RL Problem

CMSC 471 — Fall 2012
Class #25 — Tuesday, November 26

Russell & Norvig Chapter 21.1-21.3

Thanks to Rich Sutton and Andy Barto for the use of their slides
(modified with additional in-class exercises)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Tuesday, November 27, 12

Today’s Class

1 Extra Credit
1 HW6
1 Project Deadlines/Milestones

1 Reinforcement Learning
 Dry Run #1

Tuesday, November 27, 12

The Reinforcement Learning Problem

Objectives:

1 reinforce/expand concepts of value and policy iteration,
including discounting of future rewards;

1 present idealized form of the RL problem for which we
have precise theoretical results;

1 introduce key components of the mathematics: value
functions and Bellman equations;

1 describe trade-offs between applicability and
mathematical tractability;

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 0

Tuesday, November 27, 12

The Agent-Environment Interface

"[Agent]

state reward action
S, I (l,

r [

s, | Environment]4—

.

Agent and environment interact at discrete time steps : 7 =0,1,2,K

Agent observes state at step t: s, €S
produces action at step 1: a € A(s,)

gets resulting reward : 1, €R

t+

and resulting next state : s, ,

r r. 14
t/ q, \"YVa . \N*a,, a 13

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Tuesday, November 27, 12

The Agent Learns a Policy

Policy at step ¢, 7, :
a mapping from states to action probabilities

7. (s,a) = probability that a, = a when s, = s

1 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

1 Roughly, the agent’s goal is to get as much reward as it can
over the long run.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Tuesday, November 27, 12

Returns

Suppose the sequence of rewards after step 7 1s :
rt+1’ rt+2’ rt+3’ te

What do we want to maximize?

In general,

we want to maximize the expected return, £ {Rt}, for each step .
Note: R&N use R for one-step reward instead of r

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R =r

t+1+rt+2+.”+rT’

where T is a final time step at which a terminal state is reached,
ending an episode.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

Tuesday, November 27, 12

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

R t+1 y t+2 t+3 Ey t+k+1’

where y,0 <y <1, is the discount rate.

shortsighted 0 <—y — 1 farsighted

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction G

Tuesday, November 27, 12

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

/A track.
— % —

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

=> return = number of steps before failure

As a continuing task with discounted return:
reward = -1 upon failure; O otherwise

= return = -y*, for k steps before failure

In either case, return 1s maximized by
avoiding failure for as long as possible.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Tuesday, November 27, 12

Another Example

Get to the top of the hill
as quickly as possible.

reward = -1 for each step where not at top of hill

= return = - number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Tuesday, November 27, 12

A Unified Notation

1 In episodic tasks, we number the time steps of each
episode starting from zero.

1 We usually do not have to distinguish between episodes, so
we write S, instead of §, ;for the state at step ¢ of episode ;.

1 Think of each episode as ending in an absorbing state that
always produces a reward of zero:

- > - A - - e — = [}
~ =+l) ry=+l < ry=+l L~)'4 .
\Co/ Sy, =2 "B

J<'fl,)

1 We can cover all cases by writing

where y can be 1 only if a zero - reward absorbing state 1s always reached.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction Q

Tuesday, November 27, 12

Value Functions

1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:
S, = s}

1 The value of taking an action in a state under policy
1s the expected return starting from that state, taking that
action, and thereafter following 7 :
S, =8,a, = a}

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10
Tuesday, November 27, 12

State - value function for policy :

Vi (s)= En{R[| S =S} = En{iykrmkn
£=0

Action- value function for policyr :

0"(s.a)= E{R |5, = 5.0, =a} = E, {Ew
k=0

Bellman Equation for a Policy n

The basic i1dea:

R t+1 y r+2 y r+3 y t+4

t+1+y(Ty ¥ VT3 + 7 Ty)
+YR

t+1 r+1

So: Vi(s)= EE{R,|SI =S}
=k { it }/V(t+1)|St = S}
Or, without the expectation operator:

V¥ (s) = Y a(s.a) Y, Pelrs + vV ()]

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11
Tuesday, November 27, 12

More on the Bellman Equation

Vi(s)= EE(S,G)E Q?[Rfs + VVJT(S’)]

This 1s a set of equations (in fact, linear), one for each state.
The value function for m 1s its unique solution.

Backup diagrams:

(a) A

(4

Uogoﬁgv

for V"

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19
Tuesday, November 27, 12

Gridworld

1 Actions: north, south, east, west; deterministic.

1 In special states A and B, all actions move to A’ and B’,
with reward +10 and +3, respectively.

1 If would take agent off the grid: no move but reward = —1

1 All other actions have the expected effect and produce
reward = 0, except actions that move agent out of special
states A and B as shown.

3.3/ 8.8/ 44|53/15

A B
| \) | 1.5/ 30 2319/ 05 State-value function
‘ ‘.1r ‘ B [] 0. ‘. 0.;'. L"..-'. C'.-'..-C -t. f()r equipr()bable
-1.0-04-04-06-1.2 random policy;
Y A Actions | e <2 14l
A 1913120420 y=09
R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1R

Tuesday, November 27, 12

Verifying the Value Function

3.3 88 44/53/15

.B .
| \) | 15150 23 19/05 State-value function
| s | Q—I—b 010707 04-04 for equiprobable

| | -1.0-04-04-06-1.2 random policy;

Actlons U U R D A
Al -1.9-1.3-1.2-1.4/-20 y:(),9

1 Recall that:
V7 (s) = En(s a)E o[+yv(s)]
1 In state A, all actions take the agent to state A’ and have
reward 10.
Exercise: Verify the state-value function shown for A
A Exercise: Verify the state-value function for the state at the
lower left (VT =-1.9)

14

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Tuesday, November 27, 12

Optimal Value Functions

1 For finite MDPs, policies can be partially ordered:
w=nx' ifandonlyif V7(s)=V" (s) forall s ES

1 There is always at least one (and possibly many) policies that
is better than or equal to all the others. This is an optimal
policy. We denote them all it *.

1 Optimal policies share the same optimal state-value function:
Vi(s)=max V' (s) forall s ES

1 Optimal policies also share the same optimal action-value
function:
O (s,a)=max Q" (s,a) forall s €S and a EA(s)

This 1s the expected return for taking action a in state s
and thereafter following an optimal policy.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

Tuesday, November 27, 12

Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

V*(s) = max Q" (s,a)

acA(s)

= max E{i;+1 +y V(s)|s, = 5.a, = a}

aCA(s)

= max E P [R“ + yV*(s’)]

acA(s)

max
The relevant backup diagram: ,/<I>\a

[\ [\
v' “n 't‘ |'|| ," \
OO OO0 OO

V'is the unique solution of this system of nonlinear equations.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16
Tuesday, November 27, 12

Bellman Optimality Equation for O*

O (s,a)= E{i’t+1 +y max Q' (St+1,a’)|st = 5,a, = a}
= 2 Q?[Rfsf +Yy max Q*(S’,a')]

(b)

The relevant backup diagram:

Q is the unique solution of this system of nonlinear equations.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Tuesday, November 27, 12

Why Optimal State-Value Functions are Useful

Any policy that 1s greedy with respect to V' is an optimal policy.

Therefore, given V, one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

v v .‘. 1
- y I N

A 3 0 24 ¢ '..-:: '.‘ J '.‘..',.-) “« »
QH. 05 - v“ k0~ ‘Q - “0 | » - ' * » ' - |
- + ‘ +
+9 1981220119817 8/16.0 > < ¢ ¢
| ! ! d ; ! ! ! !] T sr ==l
‘“-i B 178158117 8160/14 .4 > < P <
! ! ! | 1 ; ! ! ! !] ——1 . — 1
1600178[16.0{14 4/13.0 >) |l | e
+* * * - . .) * - . | v. - . . ‘0 ‘0 .<
A 14.4/16.0{14.4/130{11.7 .) e |e
a) gridworld b) V* c) n*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Tuesday, November 27, 12

1R

Verifying V*

A 8\ 22 0{24.4|22.0{19.4/17.5 v |otol e .:. .
+5 19.8/220(19.8/17816.0 t. Tl
i_. | ! ! !] 5 R s
B 17.8/16.8[17.8/16.0/14.4 . e |e
N — B B B y By M
\ ‘ 1601178116 0{14 4/13 0 > < - -
Af ‘ 14.4/160(14.4[130[11.7 [N K O P P R
a) gridworld b) V* c) n*
1 Recall that: , a [pa .
V' (s) = max EPSS [Rss, +yV (s’)]
acA(s)

= All actions have the same effect & are therefore equally good...

A Exercise: Verify that V¥([1,1]) = 144

= What would V* be (given other V* values) for each possible optimal
action? And therefore, what is the best action(s)?

3 Note that V* is easy to verify but not easy to find! (That’s why we need
RL...

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Tuesday, November 27, 12

What About Optimal Action-Value Functions?

Given O , the agent does not even
have to do a one-step-ahead search:

7 (s)=argmax Q (s,a)
acA(s)

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 0
Tuesday, November 27, 12

Solving the Bellman Optimality Equation

1 Finding an optimal policy by solving the Bellman
Optimality Equation requires the following:

= accurate knowledge of environment dynamics;
= enough space and time to do the computation;
= the Markov Property.

1 How much space and time do we need?

= polynomial in the number of states (via dynamic
programming methods; Chapter 4),

" But: the number of states 1s often huge (e.g.,
backgammon has about 1020 states).

1 We usually have to settle for approximations.

1 Many RL methods can be understood as approximately
solving the Bellman Optimality Equation.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 71
Tuesday, November 27, 12

DYNAMIC PROGRAMMING

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7
Tuesday, November 27, 12

Policy Evaluation

Policy Evaluation: for a given policy i, compute the
state-value function V"

Recall: State - value function for policyr :

V' (s) = En{Rr | S; =S} = En{iykrmkn
£=0

St=S}

Bellman equation for V" :
Vi(s)= 3 a(s,a) > PL|RL + 7 V()]

— a system of [S| simultaneous linear equations

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Tuesday, November 27, 12

Iterative Methods

JU
Vo 2V ==V, =2V, ==V
a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:

Vir) = Dats.a)y B[Ry + 7))

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction N5
Tuesday, November 27, 12

Iterative Policy Evaluation

Input 7, the policy to be evaluated
Initialize V(s) =0, foralls € §*
Repeat
A«
Foreach s € §:
v« V(s)
V(s) <« Y n(s,a) Yo P2, R, +yV(s))]
A <« max(A, |[v — V(s)])
until A < @ (a small positive number)
Output V =~ V7

I__._.- —— -

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

26

Tuesday, November 27, 12

A Small Gridworld

~J

11

actions

14

N
.

1 An undiscounted episodic task
1 Nonterminal states: 1,2, ..., 14;

y = =1
on all transitions

1 One terminal state (shown twice as shaded squares)
1 Actions that would take agent off the grid leave state unchanged

1 Reward is —1 until the terminal state is reached

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

27

Tuesday, November 27, 12

Iterative Policy Eval for the Small Gridworld

Vj. for the Greedy Policy
Random Policy wrt V,

st = random (uniform) action choices o] o

=0 .l D] ot 10 n‘v‘ "}“’"’*":—‘:‘{—" - random
') .5..5..*. policy
, mmmmER

1)
o0l-10l-10-1 —_ -
L

LRI IR

UALIRIRL

—

o110 o1 D

e
- 2 - g =
1ol-10 0ol-1 -—iao—o—ona—o
» <4 2, L.
Y
M-10 oloo u o
4

optimal

k=10 " policy

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3%

Tuesday, November 27, 12

Policy Improvement

Suppose we have computed V" for a deterministic policy .

For a given state s,
would it be better to do an action @ = 7(S)?

The value of doing a in state s 1s:
0" (s.a) = E,{1,,, +YV(s.,)|5, = 5.4, = a}

= D B[R +y V)]

It 1s better to switch to action a for state s if and only if

Q" (s,a) > V7" (s)

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 70
Tuesday, November 27, 12

Policy Improvement Cont.

Do this for all states to get a new policy s’ that 1s

greedy with respectto V7" :
7'(s) = argmax Q" (s,a)
= argmax EPS;’[RS‘; +yV” (S')]

Then V" = V"

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20)
Tuesday, November 27, 12

Policy Improvement Cont.

What if V™ = V7 ?
ie, forall sE€S, V7 (s)=max Y PYR: +7V7(s))] ?

But this is the Bellman Optimality Equation.

So V* = V* and both wand s’ are optimal policies.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

31

Tuesday, November 27, 12

Policy Iteration

m, = V™ =, V" sLag -V —-x

S

policy evaluation policy improvement
“greedification”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 29
Tuesday, November 27, 12

Policy Iteration

1. Initialization
V(s) € R and 7 (s) € A(s) arbitranily foralls € §

2. Policy Evaluation
Repeat
A«0
Foreachs € §:
v« V(s)
V)« X 250 [RI + V()]
A <« max(A, v — V(s)))
until A < @ (a small positive number)

3. Policy Improvement
policy-stable < true
Foreach s € §:
b« m(s)
m(s) «argmaxg). P4, [R2, + yV(s)]
If b # n(s), then policy-stable <« false
If policy-stable, then stop; else go to 2

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

33

Tuesday, November 27, 12

Value Iteration

Recall the full policy evaluation backup:

Ver)= Dats.a)y B[Ry + 7% (5)]

Here is the full value iteration backup:

Vi () < max 3 PL[R. + V(5]

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24
Tuesday, November 27, 12

Value Iteration Cont.

Initialize V arbitrarily, e.g.,V(s) =0, foralls € $*

Repeat
A «0
Foreach s € §:
v« V(s)
V(s) < max,) ?S"S, [.ﬂfs, + yV(s')]
A <« max(A, v - V(s)D
until A < @ (a small positive number)

Output a deterministic policy, 7, such that
n(s) = arg max, » PE [‘ﬂ?y +y V(s’)]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

35

Tuesday, November 27, 12

Asynchronous DP

1 All the DP methods described so far require exhaustive
sweeps of the entire state set.

1 Asynchronous DP does not use sweeps. Instead it works like
this:
= Repeat until convergence criterion is met:

— Pick a state at random and apply the appropriate
backup

1 Still need lots of computation, but does not get locked into
hopelessly long sweeps

1 Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26
Tuesday, November 27, 12

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation
V-V
T V A geometric metaphor for

, convergence of GPI:
n—>greedy(V)

improvement
=
@
- starting v
® ‘ g T 4
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

Tuesday, November 27, 12

Efficiency of DP

1 To find an optimal policy is polynomial in the number of
states...

1 BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality™).

1 In practice, classical DP can be applied to problems with a
few millions of states.

1 Asynchronous DP can be applied to larger problems, and
appropriate for parallel computation.

1 It is surprisingly easy to come up with MDPs for which
DP methods are not practical.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2R
Tuesday, November 27, 12

Summary

1 Policy evaluation: backups without a max

1 Policy improvement: form a greedy policy, if only locally
1 Policy iteration: alternate the above two processes

1 Value iteration: backups with a max

1 Full backups (to be contrasted later with sample backups)
1 Generalized Policy Iteration (GPI)

1 Asynchronous DP: a way to avoid exhaustive sweeps

1 Bootstrapping: updating estimates based on other
estimates

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20
Tuesday, November 27, 12

