
MDPs and the RL Problem

CMSC 471 – Fall 2012
Class #25 – Tuesday, November 26
Russell & Norvig Chapter 21.1-21.3

Thanks to Rich Sutton and Andy Barto for the use of their slides
(modified with additional in-class exercises)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1
Tuesday, November 27, 12

Today’s Class

❐ Extra Credit
❐ HW6
❐ Project Deadlines/Milestones
❐ Reinforcement Learning
❐ Dry Run #1

2
Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

The Reinforcement Learning Problem

❐ reinforce/expand concepts of value and policy iteration,
including discounting of future rewards;

❐ present idealized form of the RL problem for which we
have precise theoretical results;

❐ introduce key components of the mathematics: value
functions and Bellman equations;

❐ describe trade-offs between applicability and
mathematical tractability;

Objectives:

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

The Agent-Environment Interface

Agent and environment interact at discrete time steps : t = 0, 1, 2, K
 Agent observes state at step t : st ∈S
 produces action at step t : at ∈ A(st)
 gets resulting reward : rt+1 ∈ℜ

 and resulting next state : st+1

t
. . . st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3 . . .
t +3a

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Policy at step t , πt :
 a mapping from states to action probabilities
 πt (s, a) = probability that at = a when st = s

The Agent Learns a Policy

❐ Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it can
over the long run.

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

Returns

€

Suppose the sequence of rewards after step t is :
 rt+1, rt+2, rt+3,…
What do we want to maximize?

€

In general,

we want to maximize the expected return, E Rt{ }, for each step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

€

Rt = rt+1 + rt+2 ++ rT ,
where T is a final time step at which a terminal state is reached,
ending an episode.

Note: R&N use R for one-step reward instead of r

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

€

 Rt = rt+1 +γ rt+2 +γ 2rt+3 + = γ krt+k+1,
k=0

∞

∑

where γ, 0 ≤ γ ≤1, is the discount rate.

shortsighted 0 ←γ → 1 farsighted

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of
track.

reward = +1 for each step before failure
⇒ return = number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward = −1 upon failure; 0 otherwise
⇒ return = −γ k , for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

Another Example

Get to the top of the hill
as quickly as possible.

reward = −1 for each step where not at top of hill
⇒ return = − number of steps before reaching top of hill

Return is maximized by minimizing
number of steps to reach the top of the hill.

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

A Unified Notation

❐ In episodic tasks, we number the time steps of each
episode starting from zero.

❐ We usually do not have to distinguish between episodes, so
we write instead of for the state at step t of episode j.

❐ Think of each episode as ending in an absorbing state that
always produces a reward of zero:

❐ We can cover all cases by writing

st st, j

€

 Rt = γ krt+k+1,
k=0

∞

∑

where γ can be 1 only if a zero - reward absorbing state is always reached.

Tuesday, November 27, 12

❐ The value of a state is the expected return starting from
that state; depends on the agent’s policy:

❐ The value of taking an action in a state under policy π
is the expected return starting from that state, taking that
action, and thereafter following π :

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑⎧
⎨
⎩

⎫
⎬
⎭

Action- value function for policy π :

Qπ (s, a) = Eπ Rt st = s, at = a{ } = Eπ γ krt+ k+1 st = s,at = a
k= 0

∞

∑⎧
⎨
⎩

⎫
⎬
⎭

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

Bellman Equation for a Policy π

€

Rt = rt+1 +γ rt+2 +γ 2rt+3 +γ 3rt+4

= rt+1 +γ rt+2 +γ rt+3 +γ 2rt+4()
= rt+1 +γRt+1

The basic idea:

So: Vπ (s) = Eπ Rt st = s{ }
= Eπ rt+1 + γV st+1() st = s{ }

Or, without the expectation operator:

€

V π (s) = π(s,a) Ps ʹ′ s
a rs ʹ′ s

a + γV π (ʹ′ s)[]
ʹ′ s
∑

a
∑

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

More on the Bellman Equation

Vπ (s) = π (s, a) Ps ʹ′ s
a Rs ʹ′ s

a + γV π(ʹ′ s)[]
ʹ′ s
∑

a
∑

This is a set of equations (in fact, linear), one for each state.
The value function for π is its unique solution.

Backup diagrams:

for V π for Qπ

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ In special states A and B, all actions move to A’ and B’,

with reward +10 and +5, respectively.
❐ If would take agent off the grid: no move but reward = –1
❐ All other actions have the expected effect and produce

reward = 0, except actions that move agent out of special
states A and B as shown.

State-value function
for equiprobable
random policy;
γ = 0.9

Tuesday, November 27, 12

Verifying the Value Function

❐ Recall that:

❐ In state A, all actions take the agent to state A’ and have
reward 10.
	
 Exercise: Verify the state-value function shown for A

❐ Exercise: Verify the state-value function for the state at the
lower left (Vπ = -1.9)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

State-value function
for equiprobable
random policy;
γ = 0.9

€

V π (s) = π(s,a) Ps ʹ′ s
a rs ʹ′ s

a + γV π (ʹ′ s)[]
ʹ′ s
∑

a
∑

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

π ≥ ʹ′ π if and only if Vπ (s) ≥ V ʹ′ π (s) for all s ∈S

Optimal Value Functions
❐ For finite MDPs, policies can be partially ordered:

❐ There is always at least one (and possibly many) policies that
is better than or equal to all the others. This is an optimal
policy. We denote them all π *.

❐ Optimal policies share the same optimal state-value function:

❐ Optimal policies also share the same optimal action-value
function:

V∗ (s) = max
π
Vπ (s) for all s ∈S

Q∗(s, a) = max
π
Qπ (s, a) for all s ∈S and a ∈A(s)

This is the expected return for taking action a in state s
and thereafter following an optimal policy.

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

Bellman Optimality Equation for V*

V∗ (s) = max
a∈A(s)

Qπ ∗

(s,a)

= max
a∈A(s)

E rt +1 + γ V∗(st +1) st = s, at = a{ }
= max

a∈A(s)
Ps ʹ′ s

a

ʹ′ s
∑ Rs ʹ′ s

a + γV ∗(ʹ′ s)[]

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.V∗

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Bellman Optimality Equation for Q*

Q∗(s, a) = E rt +1 + γ max
ʹ′ a

Q∗ (st+1, ʹ′ a) st = s,at = a{ }
= Ps ʹ′ s

a Rs ʹ′ s
a +γ max

ʹ′ a
Q∗(ʹ′ s , ʹ′ a)[]

ʹ′ s
∑

The relevant backup diagram:

 is the unique solution of this system of nonlinear equations.Q*

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

Why Optimal State-Value Functions are Useful

V∗

V∗

Any policy that is greedy with respect to is an optimal policy.

Therefore, given , one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

Tuesday, November 27, 12

Verifying V*

❐ Recall that:

❐ Exercise: Verify that V*(A) = 24.4
n All actions have the same effect & are therefore equally good...

❐ Exercise: Verify that V*([1,1]) = 14.4
n What would V* be (given other V* values) for each possible optimal

action? And therefore, what is the best action(s)?
❐ Note that V* is easy to verify but not easy to find! (That’s why we need

RL...)
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

€

V ∗(s) = max
a∈A (s)

Ps ʹ′ s
a

ʹ′ s
∑ Rs ʹ′ s

a +γV ∗(ʹ′ s)[]

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

What About Optimal Action-Value Functions?

Given , the agent does not even
have to do a one-step-ahead search:

Q*

π∗(s) = argmax
a∈A (s)

Q∗(s, a)

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

Solving the Bellman Optimality Equation
❐ Finding an optimal policy by solving the Bellman

Optimality Equation requires the following:
n accurate knowledge of environment dynamics;
n enough space and time to do the computation;
n the Markov Property.

❐ How much space and time do we need?
n polynomial in the number of states (via dynamic

programming methods; Chapter 4),
n But: the number of states is often huge (e.g.,

backgammon has about 1020 states).
❐ We usually have to settle for approximations.
❐ Many RL methods can be understood as approximately

solving the Bellman Optimality Equation.
Tuesday, November 27, 12

DYNAMIC PROGRAMMING

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23
Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

Policy Evaluation

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ } = Eπ γ krt+k +1 st = s
k =0

∞

∑⎧
⎨
⎩

⎫
⎬
⎭

Bellman equation for Vπ :

Vπ (s) = π (s, a) Ps ʹ′ s
a Rs ʹ′ s

a + γV π(ʹ′ s)[]
ʹ′ s
∑

a
∑

— a system of S simultaneous linear equations

Policy Evaluation: for a given policy π, compute the
 state-value function Vπ

Recall:

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

Iterative Methods

€

V0 →V1 →→Vk →Vk+1 →→V π

Vk +1 (s)← π (s, a) Ps ʹ′ s
a Rs ʹ′ s

a + γVk (ʹ′ s)[]
ʹ′ s
∑

a
∑

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

Iterative Policy Evaluation

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

A Small Gridworld

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28

Iterative Policy Eval for the Small Gridworld

π = random (uniform) action choices

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 29

Policy Improvement

Suppose we have computed for a deterministic policy π.Vπ

For a given state s,
would it be better to do an action ? a ≠ π(s)

 Qπ (s, a) = Eπ rt +1 + γV π(st +1) st = s, at = a{ }
= Ps ʹ′ s

a

ʹ′ s
∑ Rs ʹ′ s

a +γ Vπ (ʹ′ s)[]

The value of doing a in state s is :

It is better to switch to action a for state s if and only if
 Qπ (s, a) > V π (s)

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

Policy Improvement Cont.

ʹ′ π (s) = argmax
a

Qπ (s, a)

= argmax
a

Ps ʹ′ s
a

ʹ′ s
∑ Rs ʹ′ s

a + γV π (ʹ′ s)[]

Do this for all states to get a new policy ʹ′ π that is
greedy with respect to V π :

Then V ʹ′ π ≥ Vπ

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 31

Policy Improvement Cont.

What if V ʹ′ π = Vπ ?

i.e., for all s ∈S, V ʹ′ π (s) = max
a

Ps ʹ′ s
a

ʹ′ s
∑ Rs ʹ′ s

a +γ Vπ (ʹ′ s)[] ?

But this is the Bellman Optimality Equation.
So V ʹ′ π = V∗ and both π and ʹ′ π are optimal policies.

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 32

Policy Iteration

 π0 →V π 0 →π1 → Vπ1 → L π * →V * →π *

 policy evaluation policy improvement
“greedification”

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 33

Policy Iteration

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 34

Value Iteration

Vk +1 (s)← π (s, a) Ps ʹ′ s
a Rs ʹ′ s

a + γVk (ʹ′ s)[]
ʹ′ s
∑

a
∑

Recall the full policy evaluation backup:

Vk +1 (s)← max
a

Ps ʹ′ s
a Rs ʹ′ s

a + γVk (ʹ′ s)[]
ʹ′ s
∑

Here is the full value iteration backup:

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 35

Value Iteration Cont.

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 36

Asynchronous DP

❐ All the DP methods described so far require exhaustive
sweeps of the entire state set.

❐ Asynchronous DP does not use sweeps. Instead it works like
this:
n Repeat until convergence criterion is met:

– Pick a state at random and apply the appropriate
backup

❐ Still need lots of computation, but does not get locked into
hopelessly long sweeps

❐ Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 37

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

A geometric metaphor for
convergence of GPI:

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 38

Efficiency of DP

❐ To find an optimal policy is polynomial in the number of
states…

❐ BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

❐ In practice, classical DP can be applied to problems with a
few millions of states.

❐ Asynchronous DP can be applied to larger problems, and
appropriate for parallel computation.

❐ It is surprisingly easy to come up with MDPs for which
DP methods are not practical.

Tuesday, November 27, 12

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 39

Summary

❐ Policy evaluation: backups without a max
❐ Policy improvement: form a greedy policy, if only locally
❐ Policy iteration: alternate the above two processes
❐ Value iteration: backups with a max
❐ Full backups (to be contrasted later with sample backups)
❐ Generalized Policy Iteration (GPI)
❐ Asynchronous DP: a way to avoid exhaustive sweeps
❐ Bootstrapping: updating estimates based on other

estimates

Tuesday, November 27, 12

