CMSC 471 Fall 2012

Class \#22

Tuesday, November 13, 2012 Machine Learning I

Kevin Winner, winnerk1@umbc.edu

Today's Class

- Go over HW4 (quickly)
- HW5 Clarifications
- Machine learning
- What is ML?
- Inductive learning
- Supervised
- Unsupervised
- Decision trees
- Later we'll also cover:
- Other classification methods (k-nearest neighbor, naïve Bayes, BN learning)
- Clustering (k-means)

Machine Learning

Chapter 18.1-18.3

Some material adopted from notes
by Chuck Dyer

What is Learning?

- "Learning denotes changes in a system that ... enable a system to do the same task more efficiently the next time." -Herbert Simon
- "Learning is constructing or modifying representations of what is being experienced." -Ryszard Michalski
- "Learning is making useful changes in our minds." -Marvin Minsky

Why Learn?

- Understand and improve efficiency of human learning
- Use to improve methods for teaching and tutoring people (e.g., better computer-aided instruction)
- Discover new things or structure that were previously unknown to humans
- Examples: data mining, scientific discovery
- Fill in skeletal or incomplete specifications about a domain
- Large, complex AI systems cannot be completely derived by hand and require dynamic updating to incorporate new information.
- Learning new characteristics expands the domain or expertise and lessens the "brittleness" of the system
- Build software agents that can adapt to their users or to other software agents

Major Paradigms of Machine Learning

- Rote learning - One-to-one mapping from inputs to stored representation. "Learning by memorization." Association-based storage and retrieval.
- Induction - Use specific examples to reach general conclusions
- Clustering - Unsupervised identification of natural groups in data
- Analogy - Determine correspondence between two different representations
- Discovery - Unsupervised, specific goal not given
- Genetic algorithms - "Evolutionary" search techniques, based on an analogy to "survival of the fittest"
- Reinforcement - Feedback (positive or negative reward) given at the end of a sequence of steps

The Classification Problem

- Extrapolate from a given set of examples to make accurate predictions about future examples
- Supervised versus unsupervised learning
- Learn an unknown function $\mathrm{f}(\mathrm{X})=\mathrm{Y}$, where X is an input example and Y is the desired output.
- Supervised learning implies we are given a training set of (X, Y) pairs by a "teacher"
- Unsupervised learning means we are only given the Xs and some (ultimate) feedback function on our performance.
- Concept learning or classification (aka "induction")
-Given a set of examples of some concept/class/category, determine if a given example is an instance of the concept or not
-If it is an instance, we call it a positive example
-If it is not, it is called a negative example
-Or we can make a probabilistic prediction (e.g., using a Bayes net)

Supervised Concept Learning

- Given a training set of positive and negative examples of a concept
- Construct a description that will accurately classify whether future examples are positive or negative
- That is, learn some good estimate of function f given a training set $\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right\}$, where each y_{i} is either + (positive) or - (negative), or a probability distribution over +/-

Inductive Learning Framework

- Raw input data from sensors are typically
 preprocessed to obtain a feature vector, X , that adequately describes all of the relevant features for classifying examples
- Each X is a list of (attribute, value) pairs. For example,

```
X = [Person:Sue, EyeColor:Brown, Age:Young,
    Sex:Female]
```

- The number of attributes (a.k.a. features) is fixed (positive, finite)
- Each attribute has a fixed, finite number of possible values (or could be continuous)
- Each example can be interpreted as a point in an
n -dimensional feature space, where n is the number of attributes

Measuring Model Quality

- How good is a model?
- Predictive accuracy
- False positives / false negatives for a given cutoff threshold
- Loss function (accounts for cost of different types of errors)
- Area under the (ROC) curve
- Minimizing loss can lead to problems with overfitting
- Training error
- Train on all data; measure error on all data
- Subject to overfitting (of course we'll make good predictions on the data on which we trained!)
- Regularization
- Attempt to avoid overfitting
- Explicitly minimize the complexity of the function while minimizing loss. Tradeoff is modeled with a regularization parameter

Cross-Validation

- Holdout cross-validation:
- Divide data into training set and test set
- Train on training set; measure error on test set
- Better than training error, since we are measuring generalization to new data
- To get a good estimate, we need a reasonably large test set
- But this gives less data to train on, reducing our model quality!

Cross-Validation, cont.

- k-fold cross-validation:
- Divide data into k folds
- Train on k - 1 folds, use the k th fold to measure error
- Repeat k times; use average error to measure generalization accuracy
- Statistically valid and gives good accuracy estimates
- Leave-one-out cross-validation (LOOCV)
- k-fold cross validation where $k=N$ (test data $=1$ instance!)
- Quite accurate, but also quite expensive, since it requires building N models

Decision Trees

- Goal: Build a decision tree to classify examples as positive or negative instances of a concept using supervised learning from a training set
- A decision tree is a tree where
- each non-leaf node has associated with it an attribute (feature)
-each leaf node has associated with it a classification (+ or -)
-each arc has associated with it one of the possible values of the attribute at the node from which the arc is directed
-Generalization: allow for >2 classes
-e.g., \{sell, hold, buy\}

Decision Tree-Induced Partition - Example

Expressiveness

- Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples
- We prefer to find more compact decision trees

Inductive Learning and Bias

- Suppose that we want to learn a function $f(x)=y$ and we are given some sample (x, y) pairs, as in figure (a)
- There are several hypotheses we could make about this function, e.g.: (b), (c) and (d)
- A preference for one over the others reveals the bias of our learning technique, e.g.:
- prefer piece-wise functions (b)
- prefer a smooth function (c)
- prefer a simple function and treat outliers as noise (d)

Preference Bias: Ockham's Razor

- A.k.a. Occam's Razor, Law of Economy, or Law of Parsimony
- Principle stated by William of Ockham (1285-1347/49) that
- "non sunt multiplicanda entia praeter necessitatem"
- or, entities are not to be multiplied beyond necessity
- The simplest consistent explanation is the best
- Therefore, the smallest decision tree that correctly classifies all of the training examples is best
- Finding the provably smallest decision tree is NP-hard, so instead of constructing the absolute smallest tree consistent with the training examples, construct one that is pretty small

R\&N's Restaurant Domain

- Develop a decision tree to model the decision a patron makes when deciding whether or not to wait for a table at a restaurant
- Two classes: wait, leave
- Ten attributes: Alternative available? Bar in restaurant? Is it Friday? Are we hungry? How full is the restaurant? How expensive? Is it raining? Do we have a reservation? What type of restaurant is it? What's the purported waiting time?
- Training set of 12 examples
- ~ 7000 possible cases

A Decision Tree

A Training Set

Exarate											Gal Hin Herif
	A 4	Bra	5^{51}	N	Prt	$P_{1} \mathbf{E} \boldsymbol{C}$	Rrain	Pres	Type	Es	
X_{1}	Yes	No	No	Yes	50 Pram	55	No	Yes	5．0nd	$0-50$	Yes
X_{2}	Yes	No	No	Yes	54.1	5	No	Na	厂万гi	30.60	No
X ，	No	Hes	No	No	50	5	No	Na	Euges	2－50	Yes
X_{4}	Yes	No	Yes	Yes	5 ± 1	5	No	Na	Ј万ri	5abu	Yes
X_{1}	Yer	No	Yer	No	54.1	55	No	Yes	SJmet	200	No
$\chi_{\text {b }}$	No	Hes	No	Yes	50 ¢0mer	55	Hes	Hes	\tolivin	0－50	Yes
X_{7}	No	Hes	No	No	Nour	5	Hes	No	Euses	2－50	No
X_{5}	No	No	No	Yes	50	55	Hes	Yes	厂万ri	2－50	Yes
X_{φ}	No	Hes	Yes	No	5 ± 1	5	Yes	Na	Euges	200	Mo
χ_{0}	Yes	\}es	Hes	Yes	5.1	55	No	\}es		524］	No
X_{11}	No	No	No	No	Noure	5	No	Na	Ј万ri	0－50	Mo
χ_{Γ}	Hes	Hes	Yes	Yes	5 ± 1	5	No	No	Auses	3000	Hes

ID3/C4.5

- A greedy algorithm for decision tree construction developed by Ross Quinlan, 1987
- Top-down construction of the decision tree by recursively selecting the "best attribute" to use at the current node in the tree
- Once the attribute is selected for the current node, generate children nodes, one for each possible value of the selected attribute
- Partition the examples using the possible values of this attribute, and assign these subsets of the examples to the appropriate child node
- Repeat for each child node until all examples associated with a node are either all positive or all negative

Choosing the Best Attribute

- The key problem is choosing which attribute to split a given set of examples
- Some possibilities are:
- Random: Select any attribute at random
- Least-Values: Choose the attribute with the smallest number of possible values
- Most-Values: Choose the attribute with the largest number of possible values
- Max-Gain: Choose the attribute that has the largest expected information gain-i.e., the attribute that will result in the smallest expected size of the subtrees rooted at its children
- The ID3 algorithm uses the Max-Gain method of selecting the best attribute

Choosing an Attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Which is better: Patrons? or Type?

Restaurant Example

Random: Patrons or Wait-time; Least-values: Patrons; Most-values: Type; Max-gain: ???

French	Y	N	
Italian	Y	N	
Thai	N	Y	N Y
Burger			
	N	Y	N Y
Empty	Some	Full	

Splitting Examples by Testing Attributes

ID3-induced Decision Tree

Information Theory 101

- Information theory sprang almost fully formed from the seminal work of Claude E. Shannon at Bell Labs
- "A Mathematical Theory of Communication," Bell System Technical Journal, 1948
- Intuitions
- Common words (a, the, dog) are shorter than less common ones (parliamentarian, foreshadowing)
- In Morse code, common (probable) letters have shorter encodings
- Information is defined as the minimum number of bits needed to store or send some information
- Wikipedia: "The measure of data, known as information entropy, is usually expressed by the average number of bits needed for storage or communication"

Information Theory 102

- Information is measured in bits
- Information conveyed by a message depends on its probability
- With n equally probable possible messages, the probability p of each is $1 / n$
- Information conveyed by message is $\log _{2}(\mathrm{n})=-\log _{2}(\mathrm{p})$
- e.g., with 16 messages, then $\log _{2}(16)=4$ and we need 4 bits to identify/send each message
- Given probability distribution for n messages $\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}\right)$, the information conveyed by distribution (aka entropy of P) is:

$$
\mathrm{I}(\mathrm{P})=-\left(\mathrm{p}_{1}{ }^{*} \log _{2}\left(\mathrm{p}_{1}\right)+\mathrm{p}_{2}{ }^{*} \log _{2}\left(\mathrm{p}_{2}\right)+. .+\mathrm{p}_{\mathrm{n}}{ }^{*} \log _{2}\left(\mathrm{p}_{\mathrm{n}}\right)\right)
$$

probability of msg 2 \qquad

Information Theory 103

- Entropy is the average number of bits/message needed to represent a stream of messages
- Information conveyed by distribution (a.k.a. entropy of P): $\mathrm{I}(\mathrm{P})=-\left(\mathrm{p}_{1} * \log _{2}\left(\mathrm{p}_{1}\right)+\mathrm{p}_{2} * \log _{2}\left(\mathrm{p}_{2}\right)+. .+\mathrm{p}_{\mathrm{n}} * \log _{2}\left(\mathrm{p}_{\mathrm{n}}\right)\right)$
- Examples:
- If P is $(0.5,0.5)$ then $\mathrm{I}(\mathrm{P})=1 \quad \rightarrow$ entropy of a fair coin flip
- If P is $(0.67,0.33)$ then $\mathrm{I}(\mathrm{P})=0.92$
- If Pis $(0.99,0.01)$ then $\mathrm{I}(\mathrm{P})=0.08$
- If P is $(1,0)$ then $\mathrm{I}(\mathrm{P})=0$
- Note that as the distribution becomes more skewed, the amount of information decreases
- ...because I can just predict the most likely element, and usually be right

Entropy as Measure of Homogeneity of Examples

- Entropy used to characterize the (im)purity of an arbitrary collection of examples.
- Given a collection S (e.g., the table with 12 examples for the restaurant domain), containing positive and negative examples of some target concept, the entropy of S relative to its Boolean classification is:

$$
\mathrm{I}(\mathrm{~S})=-\left(\mathrm{p}_{+} * \log _{2}\left(\mathrm{p}_{+}\right)+\mathrm{p}_{-} * \log _{2}\left(\mathrm{p}_{-}\right)\right)
$$

$\operatorname{Entropy}([6+, 6-])=1 \rightarrow$ entropy of the restaurant dataset Entropy $([9+, 5-])=0.940$

Information Gain

- A chosen attribute A divides the training set E into subsets E_{1}, \ldots, E_{v} according to their values for A, where A has v distinct values.
- The quantity IG(S,A), the information gain of an attribute A relative to a collection of examples S, is defined as:

$$
\operatorname{Gain}(\mathrm{S}, \mathrm{~A})=\mathrm{I}(\mathrm{~S})-\operatorname{Remainder}(\mathrm{A}) \quad \operatorname{remainder}(A)=\sum_{i=1}^{v} \frac{p_{i}+n_{i}}{p+n} I\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right)
$$

- This represents the difference between
- I(S) - the entropy of the original collection S
- Remainder (A) - expected value of the entropy after S is partitioned using attribute A
- This is the gain in information due to attribute A
- Expected reduction in entropy
- IG(S,A) or simply IG(A):

$$
I G(S, A)=I(S)-\sum_{v \in \operatorname{alues}(A)} \frac{\left|S_{v}\right|}{|S|} \times I\left(S_{v}\right) \quad I G(A)=I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)-\operatorname{remainder}(A)
$$

Information Gain, cont.

- Use to rank attributes and build DT (decision tree) where each node uses attribute with greatest gain of those not yet considered (in path from root)
- Greatest gain means least information remaining after split
- i.e., subsets are all as skewed (towards either positive or negative) as possible
- The intent of this ordering is to:
- Create small decision trees, so predictions can be made with few attribute tests
- Match a hoped-for minimality of the process represented by the instances being considered (Occam's Razor)

Computing Information Gain

$$
\begin{aligned}
& \cdot \mathrm{I}(\mathrm{~T})=? \\
& \cdot \mathrm{I}(\text { Pat }, \mathrm{T})=? \\
& \cdot \mathrm{I}(\text { Type }, \mathrm{T})=?
\end{aligned}
$$

French		Y	N
Italian		Y	N
Thai	N	Y	N Y
Burger	N	Y	N Y

Gain (Pat, $T)=$?
 Gain $($ Type,$T)=$?

Computing Information Gain

$$
\begin{aligned}
& \text { •I(T) = } \\
& -(.5 \log .5+.5 \log .5) \\
& =.5+.5=1 \\
& \text {-I }(\mathrm{Pat}, \mathrm{~T})= \\
& 1 / 6(0)+1 / 3(0)+ \\
& 1 / 2(-(2 / 3 \log 2 / 3+ \\
& 1 / 3 \log 1 / 3) \text {) } \\
& =1 / 2\left(2 / 3^{*} .6+\right. \\
& \text { 1/3*1.6) } \\
& =.47 \\
& \text {-I }(\text { Type, } T)= \\
& 1 / 6(1)+1 / 6(1)+ \\
& 1 / 3(1)+1 / 3(1)=1 \\
& \text { Gain (Pat, } \mathbf{T})=1-.47=.53 \\
& \text { Gain }(\text { Type, } T)=1-1=0
\end{aligned}
$$

The ID3 algorithm is used to build a decision tree, given a set of non-categorical attributes $\mathrm{C} 1, \mathrm{C} 2, \ldots, \mathrm{Cn}$, the class attribute C , and a training set T of records.
function ID3 (R: a set of input attributes, C: the class attribute, S: a training set) returns a decision tree; begin

If S is empty, return a single node with value Failure;
If every example in S has the same value for C, return single node with that value;
If R is empty, then return a single node with most frequent of the values of C found in examples S; [note: there will be errors, i.e., improperly classified records];
Let D be attribute with largest $G a i n(D, S)$ among attributes in R;
Let $\{d j \mid j=1,2, \ldots, m\}$ be the values of attribute D;
Let $\{S j \mid j=1,2, \ldots, m\}$ be the subsets of S consisting respectively of records with value dj for attribute D;
Return a tree with root labeled D and arcs labeled d1, d2, .., dm going respectively to the trees $\operatorname{ID} 3(R-\{D\}, C, S 1), \operatorname{ID} 3(R-\{D\}, C, S 2), \ldots, \operatorname{ID} 3(R-\{D\}, C, S m) ;$ end ID3;

How Well Does it Work?

Many case studies have shown that decision trees are at least as accurate as human experts.

- A study for diagnosing breast cancer had humans correctly classifying the examples 65% of the time; the decision tree classified 72\% correct
- British Petroleum designed a decision tree for gas-oil separation for offshore oil platforms that replaced an earlier rule-based expert system
- Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example
- SKICAT (Sky Image Cataloging and Analysis Tool) used a decision tree to classify sky objects that were an order of magnitude fainter than was previously possible, with an accuracy of over 90%.

Extensions of the Decision Tree Learning Algorithm

- Using gain ratios
- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance
- C4.5 is an extension of ID3 that accounts for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, and so on

Using Gain Ratios

- The information gain criterion favors attributes that have a large number of values
- If we have an attribute D that has a distinct value for each record, then $\operatorname{Info}(\mathrm{D}, \mathrm{T})$ is 0 , thus $\operatorname{Gain}(\mathrm{D}, \mathrm{T})$ is maximal
- To compensate for this Quinlan suggests using the following ratio instead of Gain:

GainRatio $(\mathrm{D}, \mathrm{T})=\operatorname{Gain}(\mathrm{D}, \mathrm{T}) / \operatorname{SplitInfo}(\mathrm{D}, \mathrm{T})$

- SplitInfo(D, T) is the information due to the split of T on the basis of value of categorical attribute D
$\operatorname{SplitInfo}(\mathrm{D}, \mathrm{T})=\mathrm{I}(|\mathrm{T} 1| /|\mathrm{T}|,|\mathrm{T} 2| /|\mathrm{T}|, . .,|\mathrm{Tm}| /|\mathrm{T}|)$
where $\{\mathrm{T} 1, \mathrm{~T} 2, . . \mathrm{Tm}\}$ is the partition of T induced by value of D

Computing Gain Ratio

$\cdot \mathrm{I}(\mathrm{T})=1$
$\cdot \mathrm{I}(\mathrm{Pat}, \mathrm{T})=.47$
-I $($ Type, $T)=1$

French	Y	N
Thai	Y	N
Burger		
	Y	N
		Y
Empty	Some	N

SplitInfo $($ Pat, $T)=-(1 / 6 \log 1 / 6+1 / 3 \log 1 / 3+1 / 2 \log 1 / 2)=1 / 6 * 2.6+1 / 3 * 1.6+1 / 2 * 1$

$$
=1.47
$$

SplitInfo $($ Type, $T)=1 / 6 \log 1 / 6+1 / 6 \log 1 / 6+1 / 3 \log 1 / 3+1 / 3 \log 1 / 3$
$=1 / 6 * 2.6+1 / 6 * 2.6+1 / 3 * 1.6+1 / 3 * 1.6=1.93$
GainRatio $($ Pat, $T)=$ Gain $($ Pat, $T) / \operatorname{SplitInfo}($ Pat, $T)=.53 / 1.47=.36$
GainRatio $($ Type, $T)=$ Gain $($ Type,$T) /$ SplitInfo $($ Type, $T)=0 / 1.93=0$

Real-Valued Data

- Select a set of thresholds defining intervals
- Each interval becomes a discrete value of the attribute
- Use some simple heuristics...
- always divide into quartiles
- Use domain knowledge...
- divide age into infant (0-2), toddler (3-5), school-aged (5-8)
- Or treat this as another learning problem
- Try a range of ways to discretize the continuous variable and see which yield "better results" w.r.t. some metric
- E.g., try midpoint between every pair of values

Summary: Decision Tree Learning

- Inducing decision trees is one of the most widely used learning methods in practice
- Can out-perform human experts in many problems
- Strengths include
- Fast
- Simple to implement
- Can convert result to a set of easily interpretable rules
- Empirically valid in many commercial products
- Handles noisy data
- Weaknesses include:
- Univariate splits/partitioning using only one attribute at a time so limits types of possible trees
- Large decision trees may be hard to understand
- Requires fixed-length feature vectors
- Non-incremental (i.e., batch method)

Evaluation Methodology

- Standard methodology:

1. Collect a large set of examples (all with correct classifications)
2. Randomly divide collection into two disjoint sets: training and test
3. Apply learning algorithm to training set giving hypothesis H
4. Measure performance of H w.r.t. test set

- Important: keep the training and test sets disjoint!
- To study the efficiency and robustness of an algorithm, repeat steps 2-4 for different training sets and sizes of training sets
- If you improve your algorithm, start again with step 1 to avoid evolving the algorithm to work well on just this collection

