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Today’s class

* Design documents
e Late HW4

* Uncollected midterms

e Bayesian networks
— Network structure
— Conditional probability tables
— Conditional independence
 Inference in Bayesian networks
— Exact inference

— Approximate inference (time permitting)

* Review HW4 (time permitting)
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Bayesian Networks

Chapter 14.1-14.4

Some material borrowed
from Lise Getoor
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Bayesian Belief Networks (BNs)

* Definition: BN = (DAG, CPD)
— DAG: directed acyclic graph (BN’s structure)
* Nodes: random variables (typically binary or discrete, but
methods also exist to handle continuous variables)
 Arcs: indicate probabilistic dependencies between nodes
(lack of link signifies conditional independence)

— CPD: conditional probability distribution (BN’s parameters)
» Conditional probabilities at each node, usually stored as a table
(conditional probability table, or CPT)

P(x; |mt;) wherem, 1s the set of all parent nodes of x;

— Root nodes are a special case — no parents, so just use priors
in CPD:

n;, =J,s0 P(x; |n;)=P(x;)
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Example BN

P(A) = 0.001

P(B|A) = 0.3 / \ EE&A?A) > (% 005
P(B|-A) = 0.001
\d/ \e

P(D|B,C) =0.1 P(E|C)=0.4

P(D[B,-C) =0.01 P(E|-C) = 0.002
P(D|-B,C) = 0.01

P(D|-B,~C) = 0.00001

Note that we only specify P(A) etc., not P(—A), since they have to add to one
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Conditional Independence
and Chaining

« Conditional independence assumption

- P(x; |m;,q)=P(x;|x,) @
where ¢ 1s any set of variables \/ q
(nodes) other than X; and its predecessors

— gv; blocks influence of other nodes on x, Xi
and its successors (q influences x; only / \
through variables in 5 )

— With this assumption, the complete joint probability distribution of all

variables in the network can be represented by (recovered from) local
CPDs by chaining these CPDs:

P(xl,...,xn) = H:-1=1P(xi ‘nz)
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Chaining: Example

P(A) = 0.001

/ P(C|A)=0.2
P(B|A)=0.3 \ P(C|-A) = 0.005
P(B|-A)=0.001

\ d/ \e

P(D|B,C) =0.1 P(E|C)=0.4

P(D[B,-C) =0.01 P(E|-C) = 0.002
P(D|-B,C) = 0.01

P(D|-B,~C) = 0.00001

Compute P(a, b, ¢, d, e) [the probability that all 5 are true]
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Chaining: Example

b/\c
NN,

Computing the joint probability for all variables is easy:

P(a, b, c, d, e)

P(e|a, b, ¢, d)P(a, b, c, d) by the product rule

P(e | c) P(a, b, c, d) by cond. indep. assumption
P(e |c)P(d|a, b, ¢) P(a, b, ¢)

P(e |c) P(d | b, c) P(c| a, b) P(a, b)
P(e|c)P(d|b,c)P(c|a)P(b]|a)P(a)

0.0000024
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Inference Tasks

 Simple queries: Compute posterior marginal P(X. | E=e)
— E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
 Conjunctive queries:
— P(X,, X; | E=e) = P(X| | e=¢) P(X | X, E=¢)

* Optimal decisions: Decision networks include utility
information; probabilistic inference 1s required to find
P(outcome | action, evidence)

* Value of information: Which evidence should we seek next?

* Sensitivity analysis: Which probability values are most
critical?

« Explanation: Why do I need a new starter motor?

11
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Approaches to Inference

» Exact inference
— Enumeration
— Belief propagation in polytrees
— Variable elimination
— Clustering / join tree algorithms
« Approximate inference
— Stochastic simulation / sampling methods
— Markov chain Monte Carlo methods
— Genetic algorithms
— Neural networks
— Simulated annealing
— Mean field theory

12
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Direct Inference with BNs

* Instead of computing the joint, suppose we just want the
probability for one variable

e Exact methods of computation:

— Enumeration
— Variable elimination

13
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Inference by Enumeration

« Add all of the terms (atomic event probabilities) from the
full joint distribution

 If E are the evidence (observed) variables and Y are the
other (unobserved) variables, then:

P(Xle)=aP(X, E)=0a ) P(X, E,Y)

a=1/P(e)
* Each P(X, E, Y) term can be computed using the chain rule
« Computationally expensive!

14
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Example: Enumeration
b/ \c
NN

« P(x) =2 ,; P(x; | m) P(my)

e Suppose we want P(D=true), and only the value of E 1s
given as true

« P(dle)=a X,5-P(a, b, c, d, e) (where o.= 1/P(e))
= a X,pcP(a) P(bla) P(cla) P(d|b,c) P(e|c)
e With simple iteration to compute this expression, there’s

going to be a lot of repetition (e.g., P(e|c) has to be
recomputed every time we iterate over C=true)

15

Monday, November 12, 12



p(smart)= 8

“'
.
o
e

(study)=.6

.
o
o
.
o
.
.
o
.
.
.

g
.
.
o

-smart

prep - prep

fair

- fair

Exercise: Enumeration

p(fair)=.9
-p(prep|...) | smar | —-smart
study 9 i
- study S 1
Query: What 1s the

probability that a student
studied, given that they pass
the exam?
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Variable Elimination

 Basically just enumeration, but with caching of local
calculations

 Linear for polytrees (singly connected BNs)
 Potentially exponential for multiply connected BNs
=Exact inference in Bayesian networks is NP-hard!

* Join tree algorithms are an extension of variable elimination
methods that compute posterior probabilities for all nodes
in a BN simultaneously

17
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Variable Elimination Approach

General 1dea:
* Write query in the form

P(Y,0)= 33 ST PG| pa)

— (Note that there is no a term here, because it’s a conjunctive probability, not a
conditional probability...)

 [teratively
— Move all irrelevant terms outside of innermost sum

— Perform innermost sum, getting a new term
— Insert the new term into the product

18
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Variable Elimination: Example

P(w) = EP(W '1,s)P(r | c)P(s| c)P(c)
EP(W | r,sY) P(r|c)P(s|c)P(c
EP(W|I‘ s)T, (r S) f, (1,s)
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A More Complex Example

e ““Asia” network:
Visit to
Asia
(s cacer
Abnormalit
in Chest
<>
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v (s
- Need to eliminate: v,s,x,t,l,a,b o W
v &
X

PVP(s)P@ [vP( |s)P|s)P(alt,IP(x]|a)P(d |a,b)

*  We want to compute P(d)

Initial factors

22
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v
* Need to eliminate: v,s,x,t,l.a,b (D <«

*  We want to compute P(d)

Initial factors o o

X W
PVP(sP@EIv)P(U |s)Pb|s)P(altl)P(x|a)Pd |a,b)

Eliminate: v

Compute: f, ()= EP(V P |v)

=f )PP |s)PbB|sP@]|t,IP(x]|a)P(d |a,b)

Note: f (1) = P(t)

In general, result of elimination 1s not necessarily a probability
term

23
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v
* Need to eliminate: s,X,t,l,.a,b (D <«

*  We want to compute P(d)

e Initial factors o o

X W
PVP(s)P@ [vP( |s)Pb|s)P(alt,IP(x]|a)P(d |a,b)
=f t)P(s)P( |s)Pb]|s)P(al|t I1)P(x|a)P(d |a,b)

Eliminate: s

Compute: f(b.l)= EP(S)P(b |s)P(l |s)
=f ¢ ).(b,])P(a|t,1)P(x |a)P(d |a,b)

Summing on S results in a factor with two arguments f(b,I)

In general, result of elimination may be a function of several
variables

24
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v

*  We want to compute P(d)
* Need to eliminate: X,t,l,a,b (D <«

OO
0
PWP(s)P@ [vIP( Is)P(bIs)Palt I)P(x|a)P(d |a,b)
=f,tP(sP( [sPbIs)P(alt,|)P(x|a)Pd lab)
=1, ). (b.1)P(alt1)P(x [a)P(d |a,b)

e Initial factors

Eliminate: X

Compute: f.(a) = EP(X |a)
=f, () (b1 ) (a)P(alt,1)P(d |a,b)

Note: f,(a) = 1 for all values of a !l

25
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v

*  We want to compute P(d)

* Need to eliminate: t,|,a,b (D <«
W B

> @
PVP(sPE IVIP( |s)P(D|s)P(alt,P(x|aPd |a,b)
=f E)P(s)P( |s)Pb|s)P(alt,|)P(x|a)P(d |a,b)
=f ¢).(b,)P(al|t,|)P(x|a)P(d |a,b)
=1, (t)f, (b1 ) (a)P(alt,)P( |ab)

Eliminate: t

Compute: fi(al)= Efv t)P(alt.l)
=f, (b.1)f, (a)f;(a.l)P(d |a,b)

e Initial factors
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*  We want to compute P(d)
* Need to eliminate: |,a,b (D <«

W ®

x
PWP(s)P@ IVIP( |s)P(bls)P(alt,I)P(x|a)P(d |a,b)
=f,¢)P(s)P( IsPbIs)P(alt,)P(x|a)P(d |a,b)
=, )f, (b1 P(alt | )P(x |a)P(d |a,b)
=, )f,(b.] ), (a)P(a |t,|)P(d |a,b)
= £, (b,1)f, (a)f; (a.1)P(d |a,b)

Eliminate: |

Compute: f (a,b) = Zfs (bl ). (a,l)
= f,(a,b)f,(a)P(d |a,b)

e Initial factors
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v

*  We want to compute P(d)
* Need to eliminate: b 0 0
* Initial factors o o

0 @
PWIP(s)P( [vP(I |s)P(bls)P(alt,I)P(x|a)P(d |a,b)
=f,E)P(sP( IsPbIs)P@Ilt,)P(x|a)P(d |a,b)
=f,(¢)f. (b1 )P(alt,|)P(x |a)P(d |a,b)
=, ). (bl X (@)P(alt )P |ab)
= f,(b.1)f, (a)f; (a.,1)P(d |a,b)
= f,(a,b)f, (a)P(d [a,b) =f,(b,d)=F,(d)

Eliminate: a,b
Compute:

fub.d)= 3f (@bX,(@pd lab) f,d)= T, (bd)
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I )
(D W
OO

How do we deal with evidence? 0 @

Dealing with Evidenc

* Suppose we are give evidence V=1,5=f, D=1+
* WewanttocomputeP(L,V=1,5=f,D=1)

29
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vy @3
(D W
W ®

X e
PVP(sP@E IvP(U |s)Pb|s)P(altI)P(x|a)P(d |a,b)

Dealing with Evidenc

* We start by writing the factors:

* Since we know that V = T, we don’t need to eliminate V

* Instead, we can replace the factors P(V) and P(T|V) with

fP(V) =P0/ =T) fp(ry)(r)=P(T |V =T)

» These “select” the appropriate parts of the original factors given the evidence

* Note that fp(v) is a constant, and thus does not appear in elimination of other variables

30
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Dealing with Evidence € &
(o W

Compute P(L,V=1t,5=f,D=1) 0 0

Givenevidence V=1,S=f, D=1+

Initial factors, after setting evidence:

(X e
o wifo o o ey (O Xfp 16y ( e iy (PIP (@ TH.1DP (X T @fy 0 (0. b)

31
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@s)
o W
Compute P(L,V=1,S=f,D=1) o 0

Dealing with Evidence

Givenevidence V=1,S=f, D=1+

Initial factors, after setting evidence:

(X e
fP(v)fP(s)fP(flv)(T )fP(Ils)(l )fp(b|s)(b)P (0 |T,| )P (x | G)fp(dhlb)(a,b)

Eliminating X, we get

o fe s fe iy & Do 16y (0 Mo iy (BIP (@ 111X (@ 0, (@, P)

32
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Dealing with Evidence @& &
O W

Given evidence V=1, S=f, D=1t o 0
Compute P(L,V=1,5=f,D=1t) o »

Initial factors, after setting evidence:

oo st ey (F Xo g1y (| Mo o1y (PIP (@ 11.1DP (X T @)fy g1,y (0, B)

Eliminating X, we get

o wife ooy (F Mo iy (1 fp o1, (PP (@ 1.1 (@)F, 0, (@, D)

Eliminating t, we get

fP(V)fP(S)fPU IS)(| )fP(bls)(b)f‘r (all )fx (C( )fp(d Ia,b)(a'b)

33
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Dealing with Evidence & &
o W

Given evidence V=1, S=f, D=1t o 0
Compute P(L,V=1,5=f,D=1t) o »

» Initial factors, after setting evidence:
fP(V)fP(S)fP(tlv)(T )fP(I |s)(| )fp(b|s)(b)P (0 |T ,I )P (x | G)’fp(d |a’b)(0,b)

Eliminating X, we get

fP(V)fP(S)fP(TN)(T )":P(Ils)(| )fP(bls)(b)P (Cl IT'I )fx (a)fp(dhlb)(a:b)

Eliminating T, we get

fP(V)fP(S)fP(l |S)(l )fP(bls)(b)f'l' (all )fx (C( )fp(d Ia,b)(a'b)

Eliminating a, we get

f, (v)fP (s )fP ( Is)(l )fP(bls)(b )f.(b.1)

34
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Dealing with Evidence

* GivenevidenceV=1,S=f,D=1t
* ComputeP(L,V=1,5=f,D=1)

 Initial factors, after setting evidence:

o wifo o o ey e 16y ( e iy (PIP (@ 1H.1DP (X [ @fy 0 (0. b)

* Eliminating X, we get

fP(V)fP(S)fP(‘rN)(T )fP(I Is)(I )fP(bls)(b)P (Cl |T:| )fx (a)fp(dh,b)(a:b)

* Eliminating t, we get

lna | \E (A \E fa
fP(v)fP(s)fP(l |s)(l )fP(bls)(b)fT \M N \BE S p(dlap)\HrY )

* Eliminating a, we get
fP (V)fP (s )fP ( IS)(I )fP(bIS)(b )fa (b.1)

* Eliminating b, we get

f, (v )fP (s )fP ( Is)(l ), ()

Monday, November 12, 12

35




Variable Elimination Algorithm

« LetX,,..., X, be an ordering on the non-query variables

+ Fori=m,... 1 XEXEXE HP(Xj | Parents(X))
1 2 m J

— Leave in the summation for X; only factors mentioning X

— Multiply the factors, getting a factor that contains a number for each value of the
variables mentioned, including X,

— Sum out X,, getting a factor f that contains a number for each value of the variables
mentioned, not including X

— Replace the multiplied factor in the summation

36
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