CMSC 471 Fall 2012

Class #21

Thursday, November 8, 2012 Bayesian Networks

Kevin Winner, <u>winnerk1@umbc.edu</u>

Today's class

- Design documents
- Late HW4
- Uncollected midterms
- Bayesian networks
 - Network structure
 - Conditional probability tables
 - Conditional independence
- Inference in Bayesian networks
 - Exact inference
 - Approximate inference (time permitting)
- Review HW4 (time permitting)

Bayesian Networks

Chapter 14.1-14.4

Some material borrowed from Lise Getoor

Bayesian Belief Networks (BNs)

• Definition: **BN** = (**DAG**, **CPD**)

– DAG: directed acyclic graph (BN's structure)

- **Nodes**: random variables (typically binary or discrete, but methods also exist to handle continuous variables)
- Arcs: indicate probabilistic dependencies between nodes (*lack* of link signifies conditional independence)
- CPD: conditional probability distribution (BN's parameters)
 - Conditional probabilities at each node, usually stored as a table (conditional probability table, or **CPT**)

 $P(x_i | \pi_i)$ where π_i is the set of all parent nodes of x_i

 Root nodes are a special case – no parents, so just use priors in CPD:

$$\pi_i = \emptyset$$
, so $P(x_i | \pi_i) = P(x_i)$

Example BN

Note that we only specify P(A) etc., not $P(\neg A)$, since they have to add to one

Conditional Independence and Chaining

- Conditional independence assumption
 - $P(x_i | \pi_i, q) = P(x_i | \pi_i)$ where q is any set of variables (nodes) other than x_i and its predecessors
 - π_i blocks influence of other nodes on x_i and its successors (q influences x_i only through variables in π_i)

With this assumption, the complete joint probability distribution of all variables in the network can be represented by (recovered from) local CPDs by chaining these CPDs:

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i | \pi_i)$$

Chaining: Example

P(A) = 0.001

 $P(D|\neg B,C) = 0.01$

 $P(D|\neg B,\neg C) = 0.00001$

Compute P(a, b, c, d, e) [the probability that all 5 are true]

Chaining: Example

Computing the joint probability for all variables is easy:

P(a, b, c,	d, e)	
=	P(e a, b, <i>c</i> , d) P(a, b, c, d)	by the product rule
=	$P(e \mid c) P(a, b, c, d)$	by cond. indep. assumption
=	P(e c) P(d a, <i>b</i> , <i>c</i>) P(a, b, c)	
=	P(e c) P(d b, c) P(c a, b) P(a b)	, b)
=	$P(e \mid c) P(d \mid b, c) P(c \mid a) P(b \mid a)$	a) $P(a)$
=	0.0000024	

Inference Tasks

- Simple queries: Compute posterior marginal $P(X_i | E=e)$
 - E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
- Conjunctive queries:
 - $P(X_i, X_j | E=e) = P(X_i | e=e) P(X_j | X_i, E=e)$
- Optimal decisions: *Decision networks* include utility information; probabilistic inference is required to find P(outcome | action, evidence)
- Value of information: Which evidence should we seek next?
- Sensitivity analysis: Which probability values are most critical?
- **Explanation:** Why do I need a new starter motor?

Approaches to Inference

- Exact inference
 - Enumeration
 - Belief propagation in polytrees
 - Variable elimination
 - Clustering / join tree algorithms
- Approximate inference
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Genetic algorithms
 - Neural networks
 - Simulated annealing
 - Mean field theory

Direct Inference with BNs

- Instead of computing the joint, suppose we just want the probability for *one* variable
- Exact methods of computation:
 - Enumeration
 - Variable elimination

Inference by Enumeration

- Add all of the terms (atomic event probabilities) from the full joint distribution
- If **E** are the evidence (observed) variables and **Y** are the other (unobserved) variables, then:

 $P(X|\mathbf{e}) = \alpha P(X, \mathbf{E}) = \alpha \sum P(X, \mathbf{E}, \mathbf{Y})$ $\alpha = 1 / P(\mathbf{e})$

- Each P(X, E, Y) term can be computed using the chain rule
- Computationally expensive!

Example: Enumeration b c c e

- $P(x_i) = \sum_{\pi i} P(x_i \mid \pi_i) P(\pi_i)$
- Suppose we want P(D=true), and only the value of E is given as true
- $P(d|e) = \alpha \Sigma_{ABC} P(a, b, c, d, e)$ (where $\alpha = 1/P(e)$) = $\alpha \Sigma_{ABC} P(a) P(b|a) P(c|a) P(d|b,c) P(e|c)$
- With simple iteration to compute this expression, there's going to be a lot of repetition (e.g., P(e|c) has to be recomputed every time we iterate over C=true)

Exercise: Enumeration

Variable Elimination

- Basically just enumeration, but with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs
 ⇒Exact inference in Bayesian networks is NP-hard!
- Join tree algorithms are an extension of variable elimination methods that compute posterior probabilities for **all** nodes in a BN simultaneously

Variable Elimination Approach

General idea:

• Write query in the form

$$P(X_n, \boldsymbol{e}) = \sum_{x_k} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i)$$

- (Note that there is no α term here, because it's a conjunctive probability, not a conditional probability...)
- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product

Variable Elimination: Example

A More Complex Example

• "Asia" network:

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b

Initial factors

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)

- We want to compute P(d)
- Need to eliminate: v,s,x,t,l,a,b

Initial factors

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)

Eliminate: v Compute: $f_v(t) = \sum_v P(v)P(t | v)$ $\Rightarrow f_v(t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)$

Note: $f_v(\dagger) = P(\dagger)$ In general, result of elimination is not necessarily a probability term

- We want to compute P(d)
- Need to eliminate: s,x,t,l,a,b
- Initial factors

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b) $\Rightarrow f_v(t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)$

Eliminate: **s**

Compute:
$$f_s(b,l) = \sum_s P(s)P(b|s)P(l|s)$$

 $\Rightarrow f_v(t)f_s(b,l)P(a|t,l)P(x|a)P(d|a,b)$

Summing on **s** results in a factor with two arguments $f_s(b,l)$ In general, result of elimination may be a function of several variables

- We want to compute P(d)
- Need to eliminate: x,t,l,a,b
- Initial factors

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b) $\Rightarrow f_v(t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)$ $\Rightarrow f_v(t)f_s(b, l)P(a | t, l)P(x | a)P(d | a, b)$

Eliminate: **X**

Compute: $f_x(a) = \sum_{x} P(x | a)$

 $\Rightarrow f_v(t)f_s(b,l)f_x(a)P(a|t,l)P(d|a,b)$

Note: $f_x(a) = 1$ for all values of $a \parallel$

- We want to compute P(d)
- Need to eliminate: +,l,a,b
- Initial factors

$$\begin{split} & P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b) \\ & \Rightarrow f_v(t)P(s)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b) \\ & \Rightarrow f_v(t)f_s(b, l)P(a \mid t, l)P(x \mid a)P(d \mid a, b) \\ & \Rightarrow f_v(t)f_s(b, l)f_s(a)P(a \mid t, l)P(d \mid a, b) \end{split}$$

Eliminate: **†**

Compute: $f_{\dagger}(a, l) = \sum_{\dagger} f_{v}(\dagger) P(a | \dagger, l)$

 $\Rightarrow f_{s}(b,l)f_{x}(a)f_{t}(a,l)P(d \mid a,b)$

- We want to compute P(d)
- Need to eliminate: l,a,b
- Initial factors

$$\begin{split} & P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b) \\ & \Rightarrow f_v(t)P(s)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b) \\ & \Rightarrow f_v(t)f_s(b, l)P(a \mid t, l)P(x \mid a)P(d \mid a, b) \\ & \Rightarrow f_v(t)f_s(b, l)f_x(a)P(a \mid t, l)P(d \mid a, b) \\ & \Rightarrow f_s(b, l)f_x(a)f_t(a, l)P(d \mid a, b) \end{split}$$

Eliminate: |

Compute:
$$f_{|}(a,b) = \sum_{l} f_{s}(b,l) f_{t}(a,l)$$

 $\Rightarrow f_{|}(a,b) f_{x}(a) P(d | a,b)$

- We want to compute P(d)
- Need to eliminate: b
- Initial factors

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b) $\Rightarrow f_v(t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)$ $\Rightarrow f_v(t)f_s(b, l)P(a | t, l)P(x | a)P(d | a, b)$

$$\Rightarrow f_v(t)f_s(b,l)f_x(a)P(a|t,l)P(d|a,b)$$

 $\Rightarrow f_{s}(b,l)f_{x}(a)f_{t}(a,l)P(d \mid a,b)$

 $\Rightarrow \underline{f}_{|}(a,b)\underline{f}_{x}(a)P(d | a,b) \Rightarrow \underline{f}_{a}(b,d) \Rightarrow \underline{f}_{b}(d)$

Eliminate: a,b

Compute:

$$f_{a}(b,d) = \sum_{a} f_{|}(a,b)f_{x}(a)p(d | a,b) \quad f_{b}(d) = \sum_{b} f_{a}(b,d)_{28}$$

- Suppose we are give evidence V = t, S = f, D = t
- We want to compute P(L, V = t, S = f, D = t)

•

• We start by writing the factors:

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)

- Since we know that V = t, we don't need to eliminate V
- Instead, we can replace the factors P(V) and P(T|V) with

$$f_{P(V)} = P(V = t) \quad f_{P(TV)}(T) = P(T | V = t)$$

- These "select" the appropriate parts of the original factors given the evidence
- Note that $f_{p(V)}$ is a constant, and thus does not appear in elimination of other variables

- Given evidence V = t, S = f, D = t
- Compute P(L, V = +, S = f, D = +)
- Initial factors, after setting evidence:

$f_{P(v)}f_{P(s)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$

B

D

- Given evidence V = t, S = f, D = t
- Compute P(L, V = +, S = f, D = +)
- Initial factors, after setting evidence:

 $f_{P(v)}f_{P(s)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$

• Eliminating **x**, we get

 $f_{P(v)}f_{P(s)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$

- Given evidence V = t, S = f, D = t
- Compute P(L, V = +, S = f, D = +)
- Initial factors, after setting evidence:

 $f_{P(v)}f_{P(s)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$

• Eliminating **x**, we get

 $f_{P(v)}f_{P(s)}f_{P(s)}(t)f_{P(|s)}(t)f_{P(|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$

• Eliminating **†**, we get

$$f_{P(v)}f_{P(s)}f_{P(|s)}(l)f_{P(|s)}(b)f_{t}(a,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

- Given evidence V = t, S = f, D = t
- Compute P(L, V = +, S = f, D = +)
- Initial factors, after setting evidence: $f_{P(v)}f_{P(s)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$
- Eliminating **x**, we get

 $f_{P(v)}f_{P(s)}f_{P(s)}(t)f_{P(|s)}(t)f_{P(|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$

• Eliminating **†**, we get

$$f_{P(v)}f_{P(s)}f_{P(|s)}(l)f_{P(|s)}(b)f_{t}(a,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

• Eliminating **a**, we get

$$f_{P(v)}f_{P(s)}f_{P(|s)}(l)f_{P(|s)}(b)f_{a}(b,l)$$

B

- Given evidence V = t, S = f, D = t
- Compute P(L, V = +, S = f, D = +)
- Initial factors, after setting evidence:

 $f_{P(v)}f_{P(s)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$

• Eliminating **x**, we get

 $f_{P(v)}f_{P(s)}f_{P(s)}(t)f_{P(|s)}(t)f_{P(|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$

• Eliminating **†**, we get

$$f_{P(v)}f_{P(s)}f_{P(|s)}(l)f_{P(b|s)}(b)f_{t}(a,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$

- Eliminating a, we get $f_{P(v)}f_{P(s)}f_{P(|s)}(l)f_{P(b|s)}(b)f_{a}(b,l)$
- Eliminating b, we get

 $f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{b}(l)$

Variable Elimination Algorithm

• Let X_1, \ldots, X_m be an ordering on the non-query variables

• For
$$i = m, ..., 1$$
 $\sum_{X_1} \sum_{X_2} \dots \sum_{X_m} \prod_j P(X_j | Parents(X_j))$

- Leave in the summation for X_i only factors mentioning X_i
- Multiply the factors, getting a factor that contains a number for each value of the variables mentioned, including X_i
- Sum out X_i, getting a factor f that contains a number for each value of the variables mentioned, not including X_i
- Replace the multiplied factor in the summation