CMSC 471 Fall 2012

Class \#21

Thursday, November 8, 2012 Bayesian Networks

Kevin Winner, winnerk1@umbc.edu

Today's class

- Design documents
- Late HW4
- Uncollected midterms
- Bayesian networks
- Network structure
- Conditional probability tables
- Conditional independence
- Inference in Bayesian networks
- Exact inference
- Approximate inference (time permitting)
- Review HW4 (time permitting)

Bayesian Networks

Chapter 14.1-14.4

Some material borrowed
from Lise Getoor

Bayesian Belief Networks (BNs)

- Definition: BN = (DAG, CPD)
- DAG: directed acyclic graph (BN's structure)
- Nodes: random variables (typically binary or discrete, but methods also exist to handle continuous variables)
- Arcs: indicate probabilistic dependencies between nodes (lack of link signifies conditional independence)
- CPD: conditional probability distribution (BN's parameters)
- Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)
$\boldsymbol{P}\left(\boldsymbol{x}_{\boldsymbol{i}} \mid \boldsymbol{\pi}_{\boldsymbol{i}}\right)$ where $\boldsymbol{\pi}_{\boldsymbol{i}}$ is the set of all parent nodes of $\boldsymbol{x}_{\boldsymbol{i}}$
- Root nodes are a special case - no parents, so just use priors in CPD:

$$
\pi_{i}=\varnothing \text {, so } \boldsymbol{P}\left(\boldsymbol{x}_{i} \mid \pi_{i}\right)=\boldsymbol{P}\left(\boldsymbol{x}_{i}\right)
$$

Example BN

Note that we only specify $\mathrm{P}(\mathrm{A})$ etc., $\operatorname{not} \mathrm{P}(\neg \mathrm{A})$, since they have to add to one

Conditional Independence and Chaining

- Conditional independence assumption
$-\boldsymbol{P}\left(\boldsymbol{x}_{i} \mid \pi_{i}, \boldsymbol{q}\right)=\boldsymbol{P}\left(\boldsymbol{x}_{i} \mid \pi_{i}\right)$ where \boldsymbol{q} is any set of variables (nodes) other than $\boldsymbol{x}_{\boldsymbol{i}}$ and its predecessors
$-\pi_{i}$ blocks influence of other nodes on $\boldsymbol{x}_{\boldsymbol{i}}$ and its successors (q influences $\boldsymbol{x}_{\boldsymbol{i}}$ only through variables in $\pi_{\dot{f}}$)
- With this assumption, the complete joint probability distribution of all variables in the network can be represented by (recovered from) local CPDs by chaining these CPDs:

$$
\boldsymbol{P}\left(x_{1}, \ldots, x_{n}\right)=\Pi_{i=1}^{n} \boldsymbol{P}\left(x_{i} \mid \pi_{i}\right)
$$

Chaining: Example

Compute $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$ [the probability that all 5 are true]

Chaining: Example

Computing the joint probability for all variables is easy:

$$
\begin{array}{lll}
\mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}) & & \\
= & \mathrm{P}(\mathrm{e} \mid \mathrm{a}, \mathrm{~b}, \boldsymbol{c}, \mathrm{~d}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) & \text { by the product rule } \\
= & \mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) & \text { by cond. indep. assi } \\
= & \mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{~d} \mid \mathrm{a}, \boldsymbol{b}, \boldsymbol{c}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) & \\
= & \mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{c} \mid \boldsymbol{a}, \mathrm{b}) \mathrm{P}(\mathrm{a}, \mathrm{~b}) \\
= & \mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}) \mathrm{P}(\mathrm{~b} \mid \mathrm{a}) \mathrm{P}(\mathrm{a}) \\
= & 0.0000024 &
\end{array}
$$

Inference Tasks

- Simple queries: Compute posterior marginal $P\left(X_{i} \mid E=e\right)$
- E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
- Conjunctive queries:
$-\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}} \mid \mathrm{E}=\mathrm{e}\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{e}=\mathrm{e}\right) \mathrm{P}\left(\mathrm{X}_{\mathrm{j}} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{E}=\mathrm{e}\right)$
- Optimal decisions: Decision networks include utility information; probabilistic inference is required to find P (outcome | action, evidence)
- Value of information: Which evidence should we seek next?
- Sensitivity analysis: Which probability values are most critical?
- Explanation: Why do I need a new starter motor?

Approaches to Inference

- Exact inference
- Enumeration
- Belief propagation in polytrees
- Variable elimination
- Clustering / join tree algorithms
- Approximate inference
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods
- Genetic algorithms
- Neural networks
- Simulated annealing
- Mean field theory

Direct Inference with BNs

- Instead of computing the joint, suppose we just want the probability for one variable
- Exact methods of computation:
- Enumeration
- Variable elimination

Inference by Enumeration

- Add all of the terms (atomic event probabilities) from the full joint distribution
- If \mathbf{E} are the evidence (observed) variables and \mathbf{Y} are the other (unobserved) variables, then:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \mid \mathbf{e})=\alpha \mathrm{P}(\mathrm{X}, \mathbf{E})=\alpha \sum \mathrm{P}(\mathrm{X}, \mathbf{E}, \mathbf{Y}) \\
& \alpha=1 / \mathrm{P}(\mathbf{e})
\end{aligned}
$$

- Each $\mathrm{P}(\mathrm{X}, \mathbf{E}, \mathbf{Y})$ term can be computed using the chain rule
- Computationally expensive!

Example: Enumeration

- $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)=\Sigma_{\pi \mathrm{i}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \pi_{\mathrm{i}}\right) \mathrm{P}\left(\pi_{\mathrm{i}}\right)$
- Suppose we want $\mathrm{P}(\mathrm{D}=$ true $)$, and only the value of E is given as true
- $\mathrm{P}(\mathrm{d} \mid \mathrm{e})=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}) \quad$ (where $\alpha=1 / P(e)$)

$$
=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{~b} \mid \mathrm{a}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}) \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{e} \mid \mathrm{c})
$$

- With simple iteration to compute this expression, there's going to be a lot of repetition (e.g., $\mathrm{P}(\mathrm{e} \mid \mathrm{c})$ has to be recomputed every time we iterate over $\mathrm{C}=$ true)

Exercise: Enumeration

$$
p(\text { smart })=.8 \quad \mathrm{p}(\text { study })=.6
$$

p(prep $\mid \ldots$)	smar	\neg smart
study	.9	.7
\neg study	.5	.1

p(pass\|...)	smart		\neg smart	
	prep	\neg prep	prep	\neg prep
fair	.9	.7	.7	.2
\neg fair	.1	.1	.1	.1

Query: What is the probability that a student studied, given that they pass the exam?

Variable Elimination

- Basically just enumeration, but with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs \Rightarrow Exact inference in Bayesian networks is NP-hard!
- Join tree algorithms are an extension of variable elimination methods that compute posterior probabilities for all nodes in a BN simultaneously

Variable Elimination Approach

General idea:

- Write query in the form

$$
P\left(X_{n}, \boldsymbol{e}\right)=\sum_{x_{k}} \cdots \sum_{x_{3}} \sum_{x_{2}} \prod_{i} P\left(x_{i} \mid p a_{i}\right)
$$

- (Note that there is no α term here, because it's a conjunctive probability, not a conditional probability...)
- Iteratively
- Move all irrelevant terms outside of innermost sum
- Perform innermost sum, getting a new term
- Insert the new term into the product

Variable Elimination: Example

$$
\begin{aligned}
\mathrm{P}(\mathrm{w}) & =\sum_{\mathrm{r}, \mathrm{~s}, \mathrm{c}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \mathrm{P}(\mathrm{r} \mid \mathrm{c}) \mathrm{P}(\mathrm{~s} \mid \mathrm{c}) \mathrm{P}(\mathrm{c}) \\
& =\sum_{\mathrm{r}, \mathrm{~s}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \underset{\mathrm{f}_{1}(\mathrm{r}, \mathrm{~s})}{ } \mathrm{P}(\mathrm{r} \mid \mathrm{c}) \mathrm{P}(\mathrm{~s} \mid \mathrm{c}) \mathrm{P}(\mathrm{c}) \\
& =\sum_{\mathrm{r}, \mathrm{~s}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \mathrm{f}_{1}(\mathrm{r}, \mathrm{~s})
\end{aligned}
$$

A More Complex Example

- "Asia" network:

- We want to compute $P(d)$
- Need to eliminate: v, s, x, t, l, a, b

Initial factors

$P(v) P(s) P(t \mid v) P(|\mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

- We want to compute $P(d)$
- Need to eliminate: v, s, x, t, l, a, b

Initial factors

$P(v) P(s) P(t \mid v) P(|\mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

Eliminate: v
Compute:

$$
f_{v}(t)=\sum_{v} P(v) P(t \mid v)
$$

$\Rightarrow f_{v}(t) P(s) P(| | s) P(b \mid s) P(a|t|) P,(x \mid a) P(d \mid a, b)$

Note: $f_{v}(t)=P(t)$
In general, result of elimination is not necessarily a probability term

- We want to compute $P(\mathrm{~d})$
- Need to eliminate: s, x, t, l, a, b
- Initial factors

$P(v) P(s) P(t \mid v) P(|\mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$ $\Rightarrow f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

Eliminate: s
Compute:

$$
f_{s}(b, l)=\sum_{s} P(s) P(b \mid s) P(| | s)
$$

$\Rightarrow f_{v}(\dagger) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

Summing on s results in a factor with two arguments $f_{s}(b, l)$ In general, result of elimination may be a function of several variables

- We want to compute $P(d)$
- Need to eliminate: x, t, l, a, b
- Initial factors

$P(v) P(s) P(t \mid v) P(|\mid s) P(b \mid s) P(a \mid t, 1) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) P(s) P(| | s) P(b \mid s) P(a|t|) P,(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, I) P(a \mid t, I) P(x \mid a) P(d \mid a, b)$
Eliminate: x
Compute:

$$
f_{x}(a)=\sum_{x} P(x \mid a)
$$

$\Rightarrow f_{v}(t) f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b)$
Note: $f_{x}(a)=1$ for all values of $a!!$

- We want to compute $P(d)$
- Need to eliminate: \dagger, l, a, b
- Initial factors

$P(v) P(s) P(t \mid v) P(|\mid s) P(b \mid s) P(a|t|) P,(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) P(s) P(| | s) P(b \mid s) P(a|t|) P,(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, I) P(a \mid t, I) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b)$
Eliminate: \dagger
Compute:

$$
f_{t}(a, l)=\sum_{\dagger} f_{v}(t) P(a \mid t, l)
$$

$\Rightarrow f_{s}(b, l) f_{x}(a) f_{t}(a, l) P(d \mid a, b)$

- We want to compute $P(d)$
- Need to eliminate: $\mathrm{I}, \mathrm{a}, \mathrm{b}$
- Initial factors

$P(v) P(s) P(t \mid v) P(|\mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(\dagger) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b)$
$\Rightarrow f_{s}(b, l) f_{x}(a) f_{t}(a, l) P(d \mid a, b)$
Eliminate: I
Compute: $\quad f_{1}(a, b)=\sum_{i} f_{s}(b, l) f_{t}(a, l)$
$\Rightarrow f_{1}(a, b) f_{x}(a) P(d \mid a, b)$
- We want to compute $P(d)$
- Need to eliminate: b
- Initial factors

$P(v) P(s) P(t \mid v) P(|\mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b)$
$\Rightarrow f_{s}(b, l) f_{x}(a) f_{t}(a, l) P(d \mid a, b)$
$\Rightarrow f_{1}(a, b) f_{x}(a) P(d \mid a, b) \Rightarrow f_{a}(b, d) \Rightarrow f_{b}(d)$
Eliminate: a, b
Compute:

$$
f_{a}(b, d)=\sum_{a} f_{1}(a, b) f_{x}(a) p(d \mid a, b) \quad f_{b}(d)=\sum_{b} f_{a}(b, d)
$$

Dealing with Evidences
 - How do we deal with evidence?

- Suppose we are give evidence $V=\dagger, S=f, D=\dagger$
- We want to compute $P(L, V=t, S=f, D=t)$

Dealing with Evidences

- We start by writing the factors:

$P(v) P(s) P(t \mid v) P(I \mid s) P(b \mid s) P(a \mid t, I) P(x \mid a) P(d \mid a, b)$
- Since we know that $V=\dagger$, we don't need to eliminate V
- Instead, we can replace the factors $P(V)$ and $P(T \mid V)$ with

$$
f_{P(N)}=P(V=t) \quad f_{p(T N)}(T)=P(T \mid V=t)
$$

- These "select" the appropriate parts of the original factors given the evidence
- Note that $f_{p(V)}$ is a constant, and thus does not appear in elimination of other variables

Dealing with Evidence

- Given evidence $V=\dagger, S=f, D=\dagger$
- Compute $P(L, V=\dagger, S=f, D=\dagger)$
- Initial factors, after setting evidence:
$f_{P(v)} f_{P(s)} f_{P(t \mid)}(t) f_{P(| | s)}(l) f_{P(b \mid s)}(b) P(a \mid t, l) P(x \mid a) f_{P(d \mid a, b)}(a, b)$

Dealing with Evidence

- Given evidence $V=\dagger, S=f, D=\dagger$
- Compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:

$f_{P(v)} f_{P(s)} f_{P(+\mid)}(\dagger) f_{P(| | s)}(\mid) f_{P(b \mid s)}(b) P(a \mid t, I) P(x \mid a) f_{P(d \mid a, b)}(a, b)$
- Eliminating x, we get

$$
f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(| | s)}(\mid) f_{P(b \mid s)}(b) P(a|t,|) f_{x}(a) f_{P(d \mid a, b)}(a, b)
$$

Dealing with Evidence

- Given evidence $V=\dagger, S=f, D=\dagger$
- Compute $P(L, V=\dagger, S=f, D=\dagger)$
- Initial factors, after setting evidence:

$$
f_{P(v)} f_{P(s)} f_{P(t \mid))}(t) f_{P(| | s)}(l) f_{P(b \mid s)}(b) P(a \mid t, l) P(x \mid a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating x, we get

$$
f_{P(v)} f_{P(s)} f_{P(t))}(t) f_{P(| | s)}(l) f_{P(b \mid s)}(b) P(a \mid t, l) f_{x}(a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating \dagger, we get
$f_{P(v)} f_{P(s)} f_{P(| | s)}(l) f_{P(b \mid s)}(b) f_{+}(a, l) f_{x}(a) f_{P(d \mid a, b)}(a, b)$

Dealing with Evidence

- Given evidence $V=\dagger, S=f, D=\dagger$
- Compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:
 $f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(| | s)}(l) f_{P(b \mid s)}(b) P(a \mid t, l) P(x \mid a) f_{P(d \mid a, b)}(a, b)$
- Eliminating x, we get

$$
f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(| | s)}(\mid) f_{P(b \mid s)}(b) P(a|t,|) f_{x}(a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating \dagger, we get

$$
f_{P(v)} f_{P(s)} f_{P(| | s)}(l) f_{P(b \mid s)}(b) f_{+}(a, l) f_{x}(a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating a, we get

$$
f_{P(v)} f_{P(s)} f_{P(| | s)}(l) f_{P(b \mid s)}(b) f_{a}(b, l)
$$

Dealing with Evidence

- Given evidence $V=\dagger, S=f, D=\dagger$
- Compute $P(L, V=t, S=f, D=\dagger)$
- Initial factors, after setting evidence:

$$
f_{P(v)} f_{P(s)} f_{P(+\mid)}(\dagger) f_{P(| | s)}(I) f_{P(b \mid s)}(b) P(a \mid \dagger, l) P(x \mid a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating x, we get

$$
f_{P(v)} f_{P(s)} f_{P(+\mid))}(t) f_{P(| | s)}(l) f_{P(b \mid s)}(b) P(a \mid t, l) f_{x}(a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating $\boldsymbol{\dagger}$, we get

$$
f_{P(v)} f_{P(s)} f_{P(| | s)}(1) f_{P(|l| s)}(b) f_{+}(a, l) f_{x}(a) f_{P(d a, b)}(a, b)
$$

- Eliminating a, we get

$$
f_{P(v)} f_{P(s)} f_{P(l \mid s)}(l) f_{P(b \mid s)}(b) f_{a}(b, l)
$$

- Eliminating b, we get

$$
f_{P(v)} f_{P(s)} f_{P(l \mid s)}(l) f_{b}(\mid)
$$

Variable Elimination Algorithm

- Let X_{1}, \ldots, X_{m} be an ordering on the non-query variables
- For $\mathrm{i}=\mathrm{m}, \ldots, 1 \quad \sum_{\mathrm{X}_{1}} \sum_{\mathrm{X}_{2}} \cdots \sum_{\mathrm{X}_{\mathrm{m}}} \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{X}_{\mathrm{j}} \mid \operatorname{Parents}\left(\mathrm{X}_{\mathrm{j}}\right)\right)$
- Leave in the summation for X_{i} only factors mentioning X_{i}
- Multiply the factors, getting a factor that contains a number for each value of the variables mentioned, including X_{i}
- Sum out X_{i}, getting a factor f that contains a number for each value of the variables mentioned, not including X_{i}
- Replace the multiplied factor in the summation

