CMSC 471 Fall 2012

Class \#20

Tuesday, November 6, 2012

Partial Order Planning and Probabilistic Reasoning

Kevin Winner, winnerk1@umbc.edu

Today's Class

- HW5 out
- Project Design Document
- Grades/Extra Credit Assignment
- Classical Planning
- State-Space vs Plan-Space Planning
- Partial Order Planning (POP)
- Probabilistic Reasoning
- Bayes Rule
- Bayesian Inference

State-Space Planning

- We initially have a space of situations (where you are, what you have, etc.)
- The plan is a solution found by "searching" through the situations to get to the goal
- A progression planner searches forward from initial state to goal state
- A regression planner searches backward from the goal
- This works if operators have enough information to go both ways
- Ideally this leads to reduced branching: the planner is only considering things that are relevant to the goal

Plan-Space Planning

- An alternative is to search through the space of plans, rather than situations.
- Start from a partial plan which is expanded and refined until a complete plan that solves the problem is generated.
- Refinement operators add constraints to the partial plan and modification operators for other changes.
- We can still use STRIPS-style operators:

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)
could result in a partial plan of
[RightShoe, LeftShoe]

Partial-Order Planning

- A linear planner builds a plan as a totally ordered sequence of plan steps
- A non-linear planner (aka partial-order planner) builds up a plan as a set of steps with some temporal constraints
- constraints of the form S1<S2 if step S1 must comes before S2.
- One refines a partially ordered plan (POP) by either:
- adding a new plan step, or
- adding a new constraint to the steps already in the plan.
- A POP can be linearized (converted to a totally ordered plan) by topological sorting

The Initial Plan

Every plan starts the same way

Trivial Example

Operators:
Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

Solution

POP Constraints and Search Heuristics

- Only add steps that achieve a currently unachieved precondition
- Use a least-commitment approach:
- Don't order steps unless they need to be ordered
- Honor causal links $S_{1} \leftrightarrow S_{2}$ that protect a condition c :
- Never add an intervening step S_{3} that violates c
- If a parallel action threatens c (i.e., has the effect of negating or clobbering c), resolve that threat by adding ordering links:
- Order S_{3} before S_{1} (demotion)
- Order S_{3} after S_{2} (promotion)

Partial-Order Planning Example

- Goal: Have milk, bananas, and a drill

Finish

Resolving Threats

(a) Threat

(c) Promotion

Have(Mink) At(Homal Have(Ban.) Have(Drith)
Finigh

Bayesian Reasoning

Chapter 13

Sources of Uncertainty

- Uncertain inputs
- Missing data
- Noisy data
- Uncertain knowledge
- Multiple causes lead to multiple effects
- Incomplete enumeration of conditions or effects
- Incomplete knowledge of causality in the domain
- Probabilistic/stochastic effects
- Uncertain outputs
- Abduction and induction are inherently uncertain
- Default reasoning, even in deductive fashion, is uncertain
- Incomplete deductive inference may be uncertain
- Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

Decision Making with Uncertainty

- Rational behavior:
- For each possible action, identify the possible outcomes
- Compute the probability of each outcome
- Compute the utility of each outcome
- Compute the probability-weighted (expected) utility over possible outcomes for each action
- Select the action with the highest expected utility (principle of Maximum Expected Utility)

Why Probabilities Anyway?

- Kolmogorov showed that three simple axioms lead to the rules of probability theory
- De Finetti, Cox, and Carnap have also provided compelling arguments for these axioms

1. All probabilities are between 0 and 1:

- $0 \leq \mathrm{P}(\mathrm{a}) \leq 1$

2. Valid propositions (tautologies) have probability 1 , and unsatisfiable propositions have probability 0 :

- $\mathrm{P}($ true $)=1 ; \mathrm{P}($ false $)=0$

3. The probability of a disjunction is given by:

- $P(a \vee b)=P(a)+P(b)-P(a \wedge b)$

Probability Theory

- Random variables
- Domain
- Atomic event: complete specification of state
- Prior probability: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables
- Alarm, Burglary, Earthquake
- Boolean (like these), discrete, continuous
- Alarm=True \wedge Burglary=True \wedge

Earthquake=False alarm \wedge burglary $\wedge \neg$ earthquake

- $\mathrm{P}($ Burglary $)=.1$
- $\mathrm{P}($ Alarm, Burglary $)=$

	alarm	\neg alarm
burglary	.09	.01
\neg burglary	.1	.8

Probability Theory (cont.)

- Conditional probability: probability of effect given causes
- Computing conditional probs:
$-\mathrm{P}(\mathrm{a} \mid \mathrm{b})=\mathrm{P}(\mathrm{a} \wedge \mathrm{b}) / \mathrm{P}(\mathrm{b})$
$-\mathrm{P}(\mathrm{b})$: normalizing constant
- Product rule:
$-\mathrm{P}(\mathrm{a} \wedge \mathrm{b})=\mathrm{P}(\mathrm{a} \mid \mathrm{b}) \mathrm{P}(\mathrm{b})$
- Marginalizing:
$-\mathrm{P}(\mathrm{B})=\Sigma_{\mathrm{a}} \mathrm{P}(\mathrm{B}, \mathrm{a})$
$-\mathrm{P}(\mathrm{B})=\Sigma_{\mathrm{a}} \mathrm{P}(\mathrm{B} \mid \mathrm{a}) \mathrm{P}(\mathrm{a})$ (conditioning)
- $\mathrm{P}($ burglary \mid alarm $)=.47$ $\mathrm{P}($ alarm | burglary $)=.9$
- $\mathrm{P}($ burglary \mid alarm $)=$ P(burglary ^ alarm) / P(alarm)
$=.09 / .19=.47$
- $\mathrm{P}($ burglary \wedge alarm $)=$ $\mathrm{P}($ burglary | alarm $) \mathrm{P}($ alarm $)=$ $.47 * .19=.09$
- $\mathrm{P}($ alarm $)=$
$\mathrm{P}($ alarm \wedge burglary $)+$ $\mathrm{P}($ alarm $\wedge \neg$ burglary $)=$. $09+.1=.19$

Example: Inference from the Joint

	alarm			alarm	
	earthquake	\neg earthquake	earthquake	\neg earthquake	
	.01	.08	.001	.009	
\neg burglary	.01	.09	.01	.79	

Example: Inference from the Joint

	alarm			alarm	
	earthquake	\neg earthquake	earthquake	\neg earthquake	
burglary	.01	.08	.001	.009	
\neg burglary	.01	.09	.01	.79	

P (burglary | alarm)

Example: Inference from the Joint

	alarm			alarm	
	earthquake	\neg earthquake	earthquake	\neg earthquake	
burglary	.01	.08	.001	.009	
\neg burglary	.01	.09	.01	.79	

P(burglary | alarm)
$\mathrm{P}($ burglary \mid alarm $)=\mathrm{P}\left(\right.$ burglary ${ }^{\wedge}$ alarm $) / \mathrm{P}($ alarm $)$

Example: Inference from the Joint

	alarm			alarm	
	earthquake	\neg earthquake	earthquake	\neg earthquake	
	.01	.08	.001	.009	
\neg burglary	.01	.09	.01	.79	

P(burglary | alarm)
$\mathrm{P}($ burglary \mid alarm $)=\mathrm{P}\left(\right.$ burglary ${ }^{\wedge}$ alarm $) / \mathrm{P}($ alarm $)$
$\mathrm{P}($ alarm $)=\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}$ burglary ${ }^{\wedge}$ earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}$ burglary ${ }^{\wedge}$
\neg earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}-$ burglary ${ }^{\wedge}$ earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge} \dashv$ burglary ${ }^{\wedge}$
\neg earthquake)

Example: Inference from the Joint

	alarm			alarm	
	earthquake	\neg earthquake	earthquake	\neg earthquake	
	.01	.08	.001	.009	
\neg burglary	.01	.09	.01	.79	

P(burglary | alarm)
$\mathrm{P}($ burglary \mid alarm $)=\mathrm{P}\left(\right.$ burglary ${ }^{\wedge}$ alarm $) / \mathrm{P}($ alarm $)$
$\mathrm{P}($ alarm $)=\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}$ burglary ${ }^{\wedge}$ earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}$ burglary ${ }^{\wedge}$
\neg earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}-$ burglary ${ }^{\wedge}$ earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge} \dashv$ burglary ${ }^{\wedge}$
\neg earthquake)
$\mathrm{P}($ alarm $)=0.19$

Example: Inference from the Joint

	alarm			alarm	
	earthquake	\neg earthquake	earthquake	\neg earthquake	
	.01	.08	.001	.009	
\neg burglary	.01	.09	.01	.79	

P(burglary | alarm)
$\mathrm{P}($ burglary \mid alarm $)=\mathrm{P}\left(\right.$ burglary ${ }^{\wedge}$ alarm $) / \mathrm{P}($ alarm $)$
$\mathrm{P}($ alarm $)=\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}$ burglary ${ }^{\wedge}$ earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}$ burglary ${ }^{\wedge}$
\neg earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}-$ burglary ${ }^{\wedge}$ earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge} \dashv$ burglary ${ }^{\wedge}$
\neg earthquake)

$$
\begin{aligned}
& P(\text { alarm })=0.19 \\
& P(\text { burglary } \mid \text { alarm })=0.09 / 0.19=0.474
\end{aligned}
$$

Example: Inference from the Joint

	alarm			alarm
	earthquake	\neg earthquake	earthquake	\neg earthquake
	.01	.08	.001	.009
\neg burglary	.01	.09	.01	.79

P(burglary | alarm)
$\mathrm{P}($ burglary \mid alarm $)=\mathrm{P}\left(\right.$ burglary ${ }^{\wedge}$ alarm $) / \mathrm{P}($ alarm $)$
$\mathrm{P}($ alarm $)=\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}$ burglary ${ }^{\wedge}$ earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}$ burglary ${ }^{\wedge}$ \neg earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge}-$ burglary ${ }^{\wedge}$ earthquake $)+\mathrm{P}\left(\right.$ alarm ${ }^{\wedge} \dashv$ burglary ${ }^{\wedge}$ \neg earthquake)

$$
P(\text { alarm })=0.19
$$

$\mathrm{P}($ burglary \mid alarm $)=0.09 / 0.19=0.474$
$\mathrm{P}(\neg$ burglary | alarm) ?

Exercise: Inference from the Joint

p(smart \wedge study \wedge prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

- Queries:
- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?
- Save these answers for next time! :

Independence

- When two sets of propositions do not affect each others' probabilities, we call them independent, and can easily compute their joint and conditional probability:
- Independent $(A, B) \Leftrightarrow P(A \wedge B)=P(A) P(B), P(A \mid B)=P(A)$
- For example, \{moon-phase, light-level\} might be independent of \{burglary, alarm, earthquake $\}$
- Then again, it might not: Burglars might be more likely to burglarize houses when there's a new moon (and hence little light)
- But if we know the light level, the moon phase doesn't affect whether we are burglarized
- Once we're burglarized, light level doesn't affect whether the alarm goes off
- We need a more complex notion of independence, and methods for reasoning about these kinds of relationships

Exercise: Independence

p(smart \wedge study $\wedge ~ p r e p) ~$	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

- Queries:
- Is smart independent of study?
- Is prepared independent of study?

Conditional Independence

- Absolute independence:
$-A$ and B are independent if $P(A \wedge B)=P(A) P(B)$; equivalently, $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and $\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A})$
- A and B are conditionally independent given C if
$-\mathrm{P}(\mathrm{A} \wedge \mathrm{B} \mid \mathrm{C})=\mathrm{P}(\mathrm{A} \mid \mathrm{C}) \mathrm{P}(\mathrm{B} \mid \mathrm{C})$
- This lets us decompose the joint distribution:
$-\mathrm{P}(\mathrm{A} \wedge \mathrm{B} \wedge \mathrm{C})=\mathrm{P}(\mathrm{A} \mid \mathrm{C}) \mathrm{P}(\mathrm{B} \mid \mathrm{C}) \mathrm{P}(\mathrm{C})$
- Moon-Phase and Burglary are conditionally independent given Light-Level
- Conditional independence is weaker than absolute independence, but still useful in decomposing the full joint probability distribution

Exercise: Conditional Independence

p(smart \wedge study \wedge prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

- Queries:
- Is smart conditionally independent of prepared, given study?
- Is study conditionally independent of prepared, given smart?

Bayes's Rule

- Bayes's rule is derived from the product rule:
$-\mathrm{P}(\mathrm{Y} \mid \mathrm{X})=\mathrm{P}(\mathrm{X} \mid \mathrm{Y}) \mathrm{P}(\mathrm{Y}) / \mathrm{P}(\mathrm{X})$
- Often useful for diagnosis:
- If X are (observed) effects and Y are (hidden) causes,
- We may have a model for how causes lead to effects (P(X|Y))
- We may also have prior beliefs (based on experience) about the frequency of occurrence of effects (P(Y))
- Which allows us to reason abductively from effects to causes ($\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$).

Bayesian Inference

- In the setting of diagnostic/evidential reasoning

hypotheses
evidence/manifestations
- Know prior probability of hypothesis conditional probability
- Want to compute the posterior probability
- Bayes's theorem (formula 1):

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{H}_{i}\right) \\
& \boldsymbol{P}\left(\boldsymbol{E}_{\boldsymbol{j}} \mid \boldsymbol{H}_{i}\right) \\
& \boldsymbol{P}\left(\boldsymbol{H}_{i} \mid \boldsymbol{E}_{j}\right)
\end{aligned}
$$

$$
P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)
$$

Simple Bayesian Diagnostic Reasoning

- Knowledge base:
- Evidence / manifestations: $\mathrm{E}_{1}, \ldots \mathrm{E}_{\mathrm{m}}$
- Hypotheses / disorders: $\quad \mathrm{H}_{1}, \ldots \mathrm{H}_{\mathrm{n}}$
- E_{j} and H_{i} are binary; hypotheses are mutually exclusive (nonoverlapping) and exhaustive (cover all possible cases)
- Conditional probabilities: $\quad P\left(E_{j} \mid H_{i}\right), i=1, \ldots n ; j=1, \ldots m$
- Cases (evidence for a particular instance): $\mathrm{E}_{1}, \ldots, \mathrm{E}_{1}$
- Goal: Find the hypothesis H_{i} with the highest posterior
$-\operatorname{Max}_{\mathrm{i}} \mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{1}\right)$

Bayesian Diagnostic Reasoning II

- Bayes' rule says that
$-\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{1}\right)=\mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{1} \mid \mathrm{H}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) / \mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{1}\right)$
- Assume each piece of evidence E_{i} is conditionally independent of the others, given a hypothesis H_{i}, then:
$-\mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{1} \mid \mathrm{H}_{\mathrm{i}}\right)=\prod_{\mathrm{j}=1}^{1} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$
- If we only care about relative probabilities for the H_{i}, then we have:
$-\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{l}}\right)=\alpha \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) \prod_{\mathrm{j}=1}^{1} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$

Limitations of Simple Bayesian Inference

- Cannot easily handle multi-fault situations, nor cases where intermediate (hidden) causes exist:
- Disease D causes syndrome S, which causes correlated manifestations M_{1} and M_{2}
- Consider a composite hypothesis $\mathrm{H}_{1} \wedge \mathrm{H}_{2}$, where H_{1} and H_{2} are independent. What is the relative posterior?

$$
\begin{aligned}
-\mathrm{P}\left(\mathrm{H}_{1} \wedge \mathrm{H}_{2} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{1}\right) & =\alpha \mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{1} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{H}_{1} \wedge \mathrm{H}_{2}\right) \\
& =\alpha \mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{1} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{H}_{1}\right) \mathrm{P}\left(\mathrm{H}_{2}\right) \\
& =\alpha \prod_{j=1}^{1} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{H}_{1}\right) \mathrm{P}\left(\mathrm{H}_{2}\right)
\end{aligned}
$$

- How do we compute $\mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right)$??

Limitations of Simple Bayesian Inference II

- Assume H 1 and H 2 are independent, given $\mathrm{E} 1, \ldots, \mathrm{El}$?
$-\mathrm{P}\left(\mathrm{H}_{1} \wedge \mathrm{H}_{2} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{1}\right)=\mathrm{P}\left(\mathrm{H}_{1} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{H}_{2} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{1}\right)$
- This is a very unreasonable assumption
- Earthquake and Burglar are independent, but not given Alarm:
- P(burglar | alarm, earthquake) $\ll \mathrm{P}$ (burglar | alarm)
- Another limitation is that simple application of Bayes's rule doesn't allow us to handle causal chaining:
- A: this year's weather; B: cotton production; C: next year's cotton price
- A influences C indirectly: $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$
$-\mathrm{P}(\mathrm{C} \mid \mathrm{B}, \mathrm{A})=\mathrm{P}(\mathrm{C} \mid \mathrm{B})$
- Need a richer representation to model interacting hypotheses, conditional independence, and causal chaining
- Next time: conditional independence and Bayesian networks!

