CMSC 471 Fall 2012

Class #20

Tuesday, November 6, 2012

Partial Order Planning and Probabilistic Reasoning

Kevin Winner, <u>winnerk1@umbc.edu</u>

Today's Class

- HW5 out
- Project Design Document
- Grades/Extra Credit Assignment
- Classical Planning
 - State-Space vs Plan-Space Planning
- Partial Order Planning (POP)
- Probabilistic Reasoning
 - Bayes Rule
 - Bayesian Inference

State-Space Planning

- We initially have a space of situations (where you are, what you have, etc.)
- The plan is a solution found by "searching" through the situations to get to the goal
- A **progression planner** searches forward from initial state to goal state
- A regression planner searches backward from the goal
 - This works if operators have enough information to go both ways
 - Ideally this leads to reduced branching: the planner is only considering things that are relevant to the goal

Plan-Space Planning

- An alternative is to **search through the space of** *plans*, rather than situations.
- Start from a **partial plan** which is expanded and refined until a complete plan that solves the problem is generated.
- **Refinement operators** add constraints to the partial plan and modification operators for other changes.
- We can still use STRIPS-style operators: Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) Op(ACTION: RightSock, EFFECT: RightSockOn) Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) Op(ACTION: LeftSock, EFFECT: leftSockOn)

could result in a partial plan of

[RightShoe, LeftShoe]

Partial-Order Planning

- A linear planner builds a plan as a totally ordered sequence of plan steps
- A non-linear planner (aka partial-order planner) builds up a plan as a set of steps with some temporal constraints
 - constraints of the form S1<S2 if step S1 must comes before S2.
- One **refines** a partially ordered plan (POP) by either:
 - adding a new plan step, or
 - adding a new constraint to the steps already in the plan.
- A POP can be **linearized** (converted to a totally ordered plan) by topological sorting

The Initial Plan

Every plan starts the same way

Trivial Example

Operators:

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) Op(ACTION: RightSock, EFFECT: RightSockOn) Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) Op(ACTION: LeftSock, EFFECT: leftSockOn)

Solution

POP Constraints and Search Heuristics

- Only add steps that achieve a currently unachieved precondition
- Use a least-commitment approach:
 - Don't order steps unless they need to be ordered
- Honor causal links $S_1 \leftrightarrow S_2$ that **protect** a condition *c*:
 - Never add an intervening step S_3 that violates c
 - If a parallel action threatens c (i.e., has the effect of negating or clobbering c), resolve that threat by adding ordering links:
 - Order S₃ before S₁ (demotion)
 - Order S₃ after S₂ (promotion)

Partial-Order Planning Example

• Goal: Have milk, bananas, and a drill

Resolving Threats

Bayesian Reasoning

Chapter 13

Sources of Uncertainty

- Uncertain inputs
 - Missing data
 - Noisy data
- Uncertain knowledge
 - Multiple causes lead to multiple effects
 - Incomplete enumeration of conditions or effects
 - Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects
- Uncertain outputs
 - Abduction and induction are inherently uncertain
 - Default reasoning, even in deductive fashion, is uncertain
 - Incomplete deductive inference may be uncertain
 - Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

Decision Making with Uncertainty

• Rational behavior:

- For each possible action, identify the possible outcomes
- Compute the **probability** of each outcome
- Compute the **utility** of each outcome
- Compute the probability-weighted (expected) utility over possible outcomes for each action
- Select the action with the highest expected utility (principle of Maximum Expected Utility)

Why Probabilities Anyway?

- Kolmogorov showed that three simple axioms lead to the rules of probability theory
 - De Finetti, Cox, and Carnap have also provided compelling arguments for these axioms
- 1. All probabilities are between 0 and 1:
 - $0 \le P(a) \le 1$
- 2. Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0:
 - P(true) = 1; P(false) = 0
- 3. The probability of a disjunction is given by:
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$

Probability Theory

- Random variables
 - Domain
- Atomic event: complete specification of state
- **Prior probability**: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables

- Alarm, Burglary, Earthquake
 - Boolean (like these), discrete, continuous
- Alarm=True ^ Burglary=True ^ Earthquake=False alarm ^ burglary ^ ¬earthquake
- P(Burglary) = .1
- P(Alarm, Burglary) =

	alarm	−alarm
burglary	.09	.01
¬burglary	.1	.8

Probability Theory (cont.)

- **Conditional probability**: probability of effect given causes
- Computing conditional probs:
 - $P(a \mid b) = P(a \land b) / P(b)$
 - P(b): normalizing constant
- Product rule:
 - $P(a \land b) = P(a \mid b) P(b)$
- Marginalizing:
 - $P(B) = \Sigma_a P(B, a)$
 - $P(B) = \sum_{a} P(B \mid a) P(a)$ (conditioning)

- P(burglary | alarm) = .47 P(alarm | burglary) = .9
- P(burglary | alarm) = P(burglary ∧ alarm) / P(alarm) = .09 / .19 = .47
- P(burglary ^ alarm) =
 P(burglary | alarm) P(alarm) =
 .47 * .19 = .09
- P(alarm) = $P(alarm \land burglary) +$ $P(alarm \land \neg burglary) =$.09+.1 = .19

	alarm		¬alarm	
	earthquake	−earthquake	earthquake	¬earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

	alarm		¬alarm	
	earthquake	−earthquake	earthquake	¬earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

P(burglary | alarm)

	alarm		¬alarm	
	earthquake	−earthquake	earthquake	¬earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)

	alarm		¬alarm	
	earthquake	−earthquake	earthquake	−earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)

P(alarm) = P(alarm ^ burglary ^ earthquake) + P(alarm ^ burglary ^ ¬earthquake) + P(alarm ^ ¬burglary ^ earthquake) + P(alarm ^ ¬burglary ^ ¬earthquake)

	alarm		¬alarm	
	earthquake	¬earthquake	earthquake	−earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)

P(alarm) = P(alarm ^ burglary ^ earthquake) + P(alarm ^ burglary ^ ¬earthquake) + P(alarm ^ ¬burglary ^ earthquake) + P(alarm ^ ¬burglary ^ ¬earthquake)

P(alarm) = 0.19

	alarm		¬alarm	
	earthquake	−earthquake	earthquake	−earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)

 $P(alarm) = P(alarm \land burglary \land earthquake) + P(alarm \land burglary \land \neg earthquake) + P(alarm \land \neg burglary \land earthquake) + P(alarm \land \neg burglary \land \neg earthquake)$

P(alarm) = 0.19

P(burglary | alarm) = 0.09 / 0.19 = 0.474

	alarm		¬alarm	
	earthquake	¬earthquake	earthquake	−earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)

 $P(alarm) = P(alarm \land burglary \land earthquake) + P(alarm \land burglary \land \neg earthquake) + P(alarm \land \neg burglary \land earthquake) + P(alarm \land \neg burglary \land \neg earthquake)$

P(alarm) = 0.19

P(burglary | alarm) = 0.09 / 0.19 = 0.474

P(¬burglary | alarm)?

Exercise: Inference from the Joint

p(smart ^ study ^ prep)	smart		¬ smart	
	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- Queries:
 - What is the prior probability of *smart*?
 - What is the prior probability of *study*?
 - What is the conditional probability of *prepared*, given *study* and *smart*?
- Save these answers for next time! ③

Independence

• When two sets of propositions do not affect each others' probabilities, we call them **independent**, and can easily compute their joint and conditional probability:

- Independent (A, B) \Leftrightarrow P(A \land B) = P(A) P(B), P(A | B) = P(A)

- For example, {moon-phase, light-level} might be independent of {burglary, alarm, earthquake}
 - Then again, it might not: Burglars might be more likely to burglarize houses when there's a new moon (and hence little light)
 - But if we know the light level, the moon phase doesn't affect whether we are burglarized
 - Once we're burglarized, light level doesn't affect whether the alarm goes off
- We need a more complex notion of independence, and methods for reasoning about these kinds of relationships

Exercise: Independence

p(smart ^ study ^ prep)	smart		¬ smart	
	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- Queries:
 - Is *smart* independent of *study*?
 - Is *prepared* independent of *study*?

Conditional Independence

- Absolute independence:
 - A and B are **independent** if $P(A \land B) = P(A) P(B)$; equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- A and B are conditionally independent given C if $-P(A \land B | C) = P(A | C) P(B | C)$
- This lets us decompose the joint distribution: $- P(A \land B \land C) = P(A | C) P(B | C) P(C)$
- Moon-Phase and Burglary are *conditionally independent given* Light-Level
- Conditional independence is weaker than absolute independence, but still useful in decomposing the full joint probability distribution

Exercise: Conditional Independence

p(smart ^ study ^ prep)	smart		¬ smart	
	study	¬ study	study	¬ study
prepared	.432	.16	.084	.008
¬ prepared	.048	.16	.036	.072

- Queries:
 - Is smart conditionally independent of prepared, given study?
 - Is study conditionally independent of prepared, given smart?

Bayes's Rule

- Bayes's rule is derived from the product rule:
 - $P(Y \mid X) = P(X \mid Y) P(Y) / P(X)$
- Often useful for diagnosis:
 - If X are (observed) effects and Y are (hidden) causes,
 - We may have a model for how causes lead to effects (P(X | Y))
 - We may also have prior beliefs (based on experience) about the frequency of occurrence of effects (P(Y))
 - Which allows us to reason abductively from effects to causes (P(Y | X)).

Bayesian Inference

• In the setting of diagnostic/evidential reasoning

hypotheses

evidence/manifestations

- Know prior probability of hypothesis conditional probability
- Want to compute the *posterior probability*
- Bayes's theorem (formula 1):

 $P(H_i)$ $P(E_j | H_i)$ $P(H_i | E_j)$

$$P(H_i | E_j) = P(H_i)P(E_j | H_i) / P(E_j)$$

Simple Bayesian Diagnostic Reasoning

- Knowledge base:
 - Evidence / manifestations: $E_1, \ldots E_m$
 - Hypotheses / disorders: $H_1, \ldots H_n$
 - E_j and H_i are **binary**; hypotheses are **mutually exclusive** (nonoverlapping) and **exhaustive** (cover all possible cases)
 - Conditional probabilities: $P(E_j | H_i), i = 1, ..., n; j = 1, ..., m$
- Cases (evidence for a particular instance): $E_1, ..., E_l$
- Goal: Find the hypothesis H_i with the highest posterior
 Max_i P(H_i | E₁, ..., E_l)

Bayesian Diagnostic Reasoning II

- Bayes' rule says that $- P(H_i | E_1, ..., E_l) = P(E_1, ..., E_l | H_i) P(H_i) / P(E_1, ..., E_l)$
- Assume each piece of evidence E_i is conditionally independent of the others, *given* a hypothesis H_i, then:
 P(E₁, ..., E₁ | H_i) = ∏¹_{j=1} P(E_j | H_i)
- If we only care about relative probabilities for the H_i, then we have:

 $- P(H_i | E_1, ..., E_l) = \alpha P(H_i) \prod_{j=1}^l P(E_j | H_i)$

Limitations of Simple Bayesian Inference

- Cannot easily handle multi-fault situations, nor cases where intermediate (hidden) causes exist:
 - Disease D causes syndrome S, which causes correlated manifestations $M^{}_1$ and $M^{}_2$
- Consider a composite hypothesis $H_1 \wedge H_2$, where H_1 and H_2 are independent. What is the relative posterior?

$$= P(H_1 \land H_2 | E_1, ..., E_l) = \alpha P(E_1, ..., E_l | H_1 \land H_2) P(H_1 \land H_2)$$

= $\alpha P(E_1, ..., E_l | H_1 \land H_2) P(H_1) P(H_2)$
= $\alpha \prod_{j=1}^l P(E_j | H_1 \land H_2) P(H_1) P(H_2)$

• How do we compute $P(E_i | H_1 \land H_2)$??

Limitations of Simple Bayesian Inference II

• Assume H1 and H2 are independent, given E1, ..., El?

 $- P(H_1 \land H_2 | E_1, ..., E_l) = P(H_1 | E_1, ..., E_l) P(H_2 | E_1, ..., E_l)$

- This is a very unreasonable assumption
 - Earthquake and Burglar are independent, but *not* given Alarm:
 - P(burglar | alarm, earthquake) << P(burglar | alarm)
- Another limitation is that simple application of Bayes's rule doesn't allow us to handle causal chaining:
 - A: this year's weather; B: cotton production; C: next year's cotton price
 - A influences C indirectly: $A \rightarrow B \rightarrow C$
 - $P(C \mid B, A) = P(C \mid B)$
- Need a richer representation to model interacting hypotheses, conditional independence, and causal chaining
- Next time: conditional independence and Bayesian networks!