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Today’s Class

• HW5 out
• Project Design Document
• Grades/Extra Credit Assignment
• Classical Planning

– State-Space vs Plan-Space Planning
• Partial Order Planning (POP)
• Probabilistic Reasoning

– Bayes Rule
– Bayesian Inference
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State-Space Planning

• We initially have a space of situations (where you are, what 
you have, etc.)

• The plan is a solution found by “searching” through the 
situations to get to the goal

• A progression planner searches forward from initial state 
to goal state

• A regression planner searches backward from the goal
– This works if operators have enough information to go both ways
– Ideally this leads to reduced branching: the planner is only 

considering things that are relevant to the goal
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Plan-Space Planning
• An alternative is to search through the space of plans, 

rather than situations.
• Start from a partial plan which is expanded and refined 

until a complete plan that solves the problem is generated. 
• Refinement operators add constraints to the partial plan 

and modification operators for other changes. 
• We can still use STRIPS-style operators: 

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

could result in a partial plan of 
[RightShoe, LeftShoe] 

Tuesday, November 6, 12



27

Partial-Order Planning
• A linear planner builds a plan as a totally ordered sequence 

of plan steps
• A non-linear planner (aka partial-order planner) builds up 

a plan as a set of steps with some temporal constraints 
– constraints of the form S1<S2 if step S1 must comes before S2. 

• One refines a partially ordered plan (POP) by either:
– adding a new plan step, or
– adding a new constraint to the steps already in the plan.

• A POP can be linearized (converted to a totally ordered plan) 
by topological sorting
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The Initial Plan

Every plan starts the same way

S1:Start

S2:Finish

Initial   State

Goal   State
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Trivial Example
Operators:

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

S1:Start

S2:Finish

RightShoeOn  ^ LeftShoeOn

Steps: {S1:[Op(Action:Start)],

             S2:[Op(Action:Finish,

    Pre: RightShoeOn^LeftShoeOn)]}

 Links: {}

Orderings: {S1<S2}
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Solution

Start

Left
Sock

Right
Sock

Right
Shoe

Left
Shoe

Finish
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POP Constraints and 
Search Heuristics

• Only add steps that achieve a currently unachieved 
precondition

• Use a least-commitment approach: 
– Don’t order steps unless they need to be ordered

• Honor causal links S1 → S2 that protect a condition c: 
– Never add an intervening step S3 that violates c
– If a parallel action threatens c (i.e., has the effect of negating or 

clobbering c), resolve that threat by adding ordering links:
• Order S3 before S1 (demotion)

• Order S3 after S2 (promotion)

c
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Partial-Order Planning Example

• Goal: Have milk, bananas, and a drill
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Threat Demotion Promotion

Resolving Threats
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Bayesian Reasoning

Chapter 13
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Sources of Uncertainty

• Uncertain inputs
– Missing data
– Noisy data

• Uncertain knowledge
– Multiple causes lead to multiple effects
– Incomplete enumeration of conditions or effects
– Incomplete knowledge of causality in the domain
– Probabilistic/stochastic effects

• Uncertain outputs
– Abduction and induction are inherently uncertain
– Default reasoning, even in deductive fashion, is uncertain
– Incomplete deductive inference may be uncertain

Probabilistic reasoning only gives probabilistic 
results (summarizes uncertainty from various sources)
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Decision Making with Uncertainty

• Rational behavior:
– For each possible action, identify the possible outcomes
– Compute the probability of each outcome
– Compute the utility of each outcome
– Compute the probability-weighted (expected) utility 

over possible outcomes for each action
– Select the action with the highest expected utility 

(principle of Maximum Expected Utility)
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Why Probabilities Anyway?
• Kolmogorov showed that three simple axioms lead to the 

rules of probability theory
– De Finetti, Cox, and Carnap have also provided compelling 

arguments for these axioms
1. All probabilities are between 0 and 1:

• 0 ≤ P(a) ≤ 1
2. Valid propositions (tautologies) have probability 1, and 

unsatisfiable propositions have probability 0:
• P(true) = 1 ; P(false) = 0

3. The probability of a disjunction is given by:
• P(a ∨ b) = P(a) + P(b) – P(a ∧ b)

a∧ba b
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Probability Theory

• Random variables
– Domain

• Atomic event: complete 
specification of state

• Prior probability: degree 
of belief without any other 
evidence

• Joint probability: matrix 
of combined probabilities 
of a set of variables

• Alarm, Burglary, Earthquake
– Boolean (like these), discrete, 

continuous
• Alarm=True ∧ Burglary=True ∧ 

Earthquake=False
alarm ∧ burglary ∧ ¬earthquake

• P(Burglary) = .1

• P(Alarm, Burglary) =

alarm ¬alarm
burglary .09 .01
¬burglary .1 .8
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Probability Theory (cont.)

• Conditional probability: 
probability of effect given causes

• Computing conditional probs:
– P(a | b) = P(a ∧  b) / P(b)
– P(b): normalizing constant

• Product rule:
– P(a ∧ b) = P(a | b) P(b)

• Marginalizing:
– P(B) = ΣaP(B, a)

– P(B) = ΣaP(B | a) P(a) 
(conditioning)

• P(burglary | alarm) = .47
P(alarm | burglary) = .9

• P(burglary | alarm) =
  P(burglary ∧ alarm) / P(alarm)
  = .09 / .19 = .47

• P(burglary ∧ alarm) = 
  P(burglary | alarm) P(alarm) =
  .47 * .19 = .09

• P(alarm) =
   P(alarm ∧ burglary) +
   P(alarm ∧ ¬burglary) =
   .09+.1 = .19
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Example: Inference from the Joint
alarmalarm ¬alarm¬alarm
earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009
¬burglary .01 .09 .01 .79
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Example: Inference from the Joint
alarmalarm ¬alarm¬alarm
earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009
¬burglary .01 .09 .01 .79

P(burglary | alarm)
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Example: Inference from the Joint
alarmalarm ¬alarm¬alarm
earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009
¬burglary .01 .09 .01 .79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)
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Example: Inference from the Joint
alarmalarm ¬alarm¬alarm
earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009
¬burglary .01 .09 .01 .79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)

P(alarm) = P(alarm ^ burglary ^ earthquake) + P(alarm ^ burglary ^ 
¬earthquake) + P(alarm ^ ¬burglary ^ earthquake) + P(alarm ^ ¬burglary ^ 
¬earthquake)
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Example: Inference from the Joint
alarmalarm ¬alarm¬alarm
earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009
¬burglary .01 .09 .01 .79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)

P(alarm) = P(alarm ^ burglary ^ earthquake) + P(alarm ^ burglary ^ 
¬earthquake) + P(alarm ^ ¬burglary ^ earthquake) + P(alarm ^ ¬burglary ^ 
¬earthquake)

P(alarm) = 0.19
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Example: Inference from the Joint
alarmalarm ¬alarm¬alarm
earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009
¬burglary .01 .09 .01 .79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)

P(alarm) = P(alarm ^ burglary ^ earthquake) + P(alarm ^ burglary ^ 
¬earthquake) + P(alarm ^ ¬burglary ^ earthquake) + P(alarm ^ ¬burglary ^ 
¬earthquake)

P(alarm) = 0.19

P(burglary | alarm) = 0.09 / 0.19 = 0.474
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Example: Inference from the Joint
alarmalarm ¬alarm¬alarm
earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009
¬burglary .01 .09 .01 .79

P(burglary | alarm)

P(burglary | alarm) = P(burglary ^ alarm) / P(alarm)

P(alarm) = P(alarm ^ burglary ^ earthquake) + P(alarm ^ burglary ^ 
¬earthquake) + P(alarm ^ ¬burglary ^ earthquake) + P(alarm ^ ¬burglary ^ 
¬earthquake)

P(alarm) = 0.19

P(burglary | alarm) = 0.09 / 0.19 = 0.474

P(¬burglary | alarm)?
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Exercise: Inference from the Joint

• Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 

study and smart?
• Save these answers for next time! J 

p(smart ∧
 study ∧ prep)

smartsmart ¬smart¬smartp(smart ∧
 study ∧ prep) study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Independence
• When two sets of propositions do not affect each others’ 

probabilities, we call them independent, and can easily 
compute their joint and conditional probability:
– Independent (A, B)  ó  P(A ∧ B) = P(A) P(B),  P(A | B) = P(A)

• For example, {moon-phase, light-level} might be 
independent of {burglary, alarm, earthquake}
– Then again, it might not:  Burglars might be more likely to 

burglarize houses when there’s a new moon (and hence little light)
– But if we know the light level, the moon phase doesn’t affect 

whether we are burglarized
– Once we’re burglarized, light level doesn’t affect whether the alarm 

goes off
• We need a more complex notion of independence, and 

methods for reasoning about these kinds of relationships
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Exercise: Independence

• Queries:
– Is smart independent of study?
– Is prepared independent of study? 

p(smart ∧
 study ∧ prep)

smartsmart ¬smart¬smartp(smart ∧
 study ∧ prep) study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Conditional Independence
• Absolute independence:

– A and B are independent if P(A ∧ B) = P(A) P(B); equivalently, 
P(A) = P(A | B) and P(B)  = P(B | A)

• A and B are conditionally independent given C if
– P(A ∧ B | C) = P(A | C) P(B | C)

• This lets us decompose the joint distribution:
– P(A ∧ B ∧ C) = P(A | C) P(B | C) P(C)

• Moon-Phase and Burglary are conditionally independent 
given Light-Level

• Conditional independence is weaker than absolute 
independence, but still useful in decomposing the full joint 
probability distribution
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Exercise: Conditional Independence

• Queries:
– Is smart conditionally independent of prepared, given 

study?
– Is study conditionally independent of prepared, given 

smart?

p(smart ∧
 study ∧ prep)

smartsmart ¬smart¬smartp(smart ∧
 study ∧ prep) study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Bayes’s Rule
• Bayes’s rule is derived from the product rule:

– P(Y | X) = P(X | Y) P(Y) / P(X)
• Often useful for diagnosis: 

– If X are (observed) effects and Y are (hidden) causes, 
– We may have a model for how causes lead to effects (P(X | Y))
– We may also have prior beliefs (based on experience) about the 

frequency of occurrence of effects (P(Y))
– Which allows us to reason abductively from effects to causes 

(P(Y | X)).

Tuesday, November 6, 12



16

Bayesian Inference
• In the setting of diagnostic/evidential reasoning

– Know prior probability of hypothesis  
        conditional probability 
– Want to compute the posterior probability

• Bayes’s theorem (formula 1):
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Simple Bayesian Diagnostic Reasoning

• Knowledge base:
– Evidence / manifestations: E1, … Em

– Hypotheses / disorders: H1, … Hn

• Ej and Hi are binary; hypotheses are mutually exclusive (non-
overlapping) and exhaustive (cover all possible cases)

– Conditional probabilities: P(Ej | Hi), i = 1, … n; j = 1, … m

• Cases (evidence for a particular instance): E1, …, El

• Goal: Find the hypothesis Hi with the highest posterior
– Maxi P(Hi | E1, …, El)
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Bayesian Diagnostic Reasoning II

• Bayes’ rule says that
– P(Hi | E1, …, El) = P(E1, …, El | Hi) P(Hi) / P(E1, …, El)

• Assume each piece of evidence Ei is conditionally 
independent of the others, given a hypothesis Hi, then:
– P(E1, …, El | Hi) = ∏l

j=1 P(Ej | Hi)

• If we only care about relative probabilities for the Hi, then 
we have:
– P(Hi | E1, …, El) = α P(Hi) ∏l

j=1 P(Ej | Hi)
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Limitations of Simple 
Bayesian Inference

• Cannot easily handle multi-fault situations, nor cases where 
intermediate (hidden) causes exist:
– Disease D causes syndrome S, which causes correlated 

manifestations M1 and M2

• Consider a composite hypothesis H1 ∧ H2, where H1 and H2 
are independent. What is the relative posterior?
– P(H1 ∧ H2 | E1, …, El) = α P(E1, …, El | H1 ∧ H2) P(H1 ∧ H2)

  = α P(E1, …, El | H1 ∧ H2) P(H1) P(H2)
  = α ∏l

j=1 P(Ej | H1 ∧ H2) P(H1) P(H2)

• How do we compute P(Ej | H1 ∧ H2) ??
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Limitations of Simple Bayesian 
Inference II

• Assume H1 and H2 are independent, given E1, …, El?
– P(H1 ∧ H2 | E1, …, El) = P(H1 | E1, …, El) P(H2 | E1, …, El)

• This is a very unreasonable assumption
– Earthquake and Burglar are independent, but not given Alarm:

• P(burglar | alarm, earthquake) << P(burglar | alarm)

• Another limitation is that simple application of Bayes’s rule doesn’t 
allow us to handle causal chaining:
– A: this year’s weather; B: cotton production; C: next year’s cotton price
– A influences C indirectly:  A→ B → C
– P(C | B, A) = P(C | B)

• Need a richer representation to model interacting hypotheses, 
conditional independence, and causal chaining

• Next time: conditional independence and Bayesian networks!
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