
CMSC 471
Fall 2012

Class #19

Thursday, November 1, 2012
Planning

Kevin Winner, winnerk1@umbc.edu

Tuesday, November 6, 12

mailto:winnerk1@umbc.edu
mailto:winnerk1@umbc.edu

2

Planning
Chapter 10.1-10.2, 10.4.2-10.4.4

Some material adopted from notes
by Andreas Geyer-Schulz

and Chuck Dyer
Tuesday, November 6, 12

3

Today’s Class

• What is planning?
• Approaches to planning

– GPS / STRIPS
– Situation calculus formalism [revisited]
– Partial-order planning

Tuesday, November 6, 12

4

Planning Problem
• Find a sequence of actions that achieves a given goal when

executed from a given initial world state. That is, given
– a set of operator descriptions (defining the possible primitive actions

by the agent),
– an initial state description, and
– a goal state description or predicate,

 compute a plan, which is
– a sequence of operator instances, such that executing them in the

initial state will change the world to a state satisfying the goal-state
description.

• Goals are usually specified as a conjunction of goals to be
achieved

Tuesday, November 6, 12

5

Planning vs. Problem Solving

• Planning and problem solving methods can often solve the
same sorts of problems

• Planning is more powerful because of the representations
and methods used

• States, goals, and actions are decomposed into sets of
sentences (usually in first-order logic)

• Search often proceeds through plan space rather than state
space (though there are also state-space planners)

• Subgoals can be planned independently, reducing the
complexity of the planning problem

Tuesday, November 6, 12

6

Typical Assumptions
• Atomic time: Each action is indivisible
• No concurrent actions are allowed (though actions do not

need to be ordered with respect to each other in the plan)
• Deterministic actions: The result of actions are completely

determined—there is no uncertainty in their effects
• Agent is the sole cause of change in the world
• Agent is omniscient: Has complete knowledge of the state

of the world
• Closed world assumption: everything known to be true in

the world is included in the state description. Anything not
listed is false.

Tuesday, November 6, 12

7

Blocks World
The blocks world is a micro-world that

consists of a table, a set of blocks and a
robot hand.

Some domain constraints:
– Only one block can be on another block
– Any number of blocks can be on the table
– The hand can only hold one block

Typical representation:
ontable(a)
ontable(c)
on(b,a)
handempty
clear(b)
clear(c)

A
B

C
TABLE

Tuesday, November 6, 12

8

Major Approaches

• GPS / STRIPS
• Situation calculus
• Classical planning
• Partial order planning

Tuesday, November 6, 12

9

General Problem Solver
• The General Problem Solver (GPS) system was an early

planner (Newell, Shaw, and Simon)
• GPS generated actions that reduced the difference between

some state and a goal state
• GPS used Means-Ends Analysis

– Compare what is given or known with what is desired and select a
reasonable thing to do next

– Use a table of differences to identify procedures to reduce types of
differences

• GPS was a state space planner: it operated in the domain of
state space problems specified by an initial state, some goal
states, and a set of operations

Tuesday, November 6, 12

10

Situation Calculus Planning

• Intuition: Represent the planning problem using
first-order logic
– Situation calculus lets us reason about changes in

the world
– Use theorem proving to “prove” that a particular

sequence of actions, when applied to the
situation characterizing the world state, will lead
to a desired result

Tuesday, November 6, 12

11

Situation Calculus Planning, cont.
• Initial state: a logical sentence about (situation) S0

At(Home, S0) ∧ ¬Have(Milk, S0) ∧ ¬ Have(Bananas, S0) ∧ ¬ Have(Drill, S0)

• Goal state:
(∃s) At(Home,s) ∧ Have(Milk,s) ∧ Have(Bananas,s) ∧ Have(Drill,s)

• Operators are descriptions of how the world changes as a
result of the agent’s actions:
∀(a,s) Have(Milk,Result(a,s)) ⇔

 ((a=Buy(Milk) ∧ At(Grocery,s)) ∨ (Have(Milk, s) ∧ a ≠ Drop(Milk)))

• Result(a,s) names the situation resulting from executing
action a in situation s.

• Action sequences are also useful: Result'(l,s) is the result of
executing the list of actions (l) starting in s:
(∀s) Result'([],s) = s
(∀a,p,s) Result'([a|p]s) = Result'(p,Result(a,s))

Tuesday, November 6, 12

12

Situation Calculus, cont.

• A solution is a plan that when applied to the initial state
yields a situation satisfying the goal query:
At(Home, Result'(p,S0))
 ∧ Have(Milk, Result'(p,S0))
 ∧ Have(Bananas, Result'(p,S0))
 ∧ Have(Drill, Result'(p,S0))

• Thus we would expect a plan (i.e., variable assignment
through unification) such as:
p = [Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore),

 Buy(Drill), Go(Home)]

Tuesday, November 6, 12

13

Situation Calculus: Blocks World
• Here’s an example of a situation calculus rule for the blocks

world:
– Clear (X, Result(A,S)) ↔

 [Clear (X, S) ∧
 (¬(A=Stack(Y,X) ∨ A=Pickup(X))
 ∨ (A=Stack(Y,X) ∧ ¬(holding(Y,S))
 ∨ (A=Pickup(X) ∧ ¬(handempty(S) ∧ ontable(X,S) ∧ clear(X,S))))]
 ∨ [A=Stack(X,Y) ∧ holding(X,S) ∧ clear(Y,S)]
 ∨ [A=Unstack(Y,X) ∧ on(Y,X,S) ∧ clear(Y,S) ∧ handempty(S)]
 ∨ [A=Putdown(X) ∧ holding(X,S)]

• English translation: A block is clear if (a) in the previous state it
was clear and we didn’t pick it up or stack something on it
successfully, or (b) we stacked it on something else successfully,
or (c) something was on it that we unstacked successfully, or (d)
we were holding it and we put it down.

• Whew!!! There’s gotta be a better way!

Tuesday, November 6, 12

14

Situation Calculus Planning: Analysis

• This is fine in theory, but remember that problem solving
(search) is exponential in the worst case

• Also, resolution theorem proving only finds a proof (plan),
not necessarily a good plan

• So we restrict the language and use a special-purpose
algorithm (a planner) rather than general theorem prover

Tuesday, November 6, 12

15

Basic Representations for Planning
• Classic approach first used in the STRIPS planner circa 1970
• States represented as a conjunction of ground literals

– at(Home) ∧ ¬have(Milk) ∧ ¬have(bananas) ...

• Goals are conjunctions of literals, but may have variables
which are assumed to be existentially quantified
– at(?x) ∧ have(Milk) ∧ have(bananas) ...

• Do not need to fully specify state
– Non-specified either don’t-care or assumed false
– Represent many cases in small storage
– Often only represent changes in state rather than entire situation

• Unlike theorem prover, not seeking whether the goal is true,
but is there a sequence of actions to attain it

Tuesday, November 6, 12

16

Operator/Action Representation
• Operators contain three components:

– Action description
– Precondition - conjunction of positive literals
– Effect - conjunction of positive or negative literals

which describe how situation changes when operator
is applied

• Example:
Op[Action: Go(there),
 Precond: At(here) ∧ Path(here,there),
 Effect: At(there) ∧ ¬At(here)]

• All variables are universally quantified
• Situation variables are implicit

– preconditions must be true in the state immediately
before operator is applied; effects are true
immediately after

Go(there)

At(here) ,Path(here,there)

At(there) , ¬At(here)

Tuesday, November 6, 12

17

Blocks World Operators
• Here are the classic basic operations for the blocks world:

– stack(X,Y): put block X on block Y
– unstack(X,Y): remove block X from block Y
– pickup(X): pickup block X
– putdown(X): put block X on the table

• Each will be represented by
– a list of preconditions
– a list of new facts to be added (add-effects)
– a list of facts to be removed (delete-effects)
– optionally, a set of (simple) variable constraints

• For example:
preconditions(stack(X,Y), [holding(X), clear(Y)])
deletes(stack(X,Y), [holding(X), clear(Y)]).
adds(stack(X,Y), [handempty, on(X,Y), clear(X)])
constraints(stack(X,Y), [X≠Y, Y≠table, X≠table])

Tuesday, November 6, 12

18

Blocks World Operators II

operator(stack(X,Y),
 Precond [holding(X), clear(Y)],
 Add [handempty, on(X,Y), clear(X)],
 Delete [holding(X), clear(Y)],
 Constr [X≠Y, Y≠table, X≠table]).

operator(pickup(X),
 [ontable(X), clear(X), handempty],
 [holding(X)],
 [ontable(X), clear(X), handempty],
 [X≠table]).

operator(unstack(X,Y),
 [on(X,Y), clear(X), handempty],
 [holding(X), clear(Y)],
 [handempty, clear(X), on(X,Y)],
 [X≠Y, Y≠table, X≠table]).

operator(putdown(X),
 [holding(X)],
 [ontable(X), handempty, clear(X)],
 [holding(X)],
 [X≠table]).

Tuesday, November 6, 12

19

STRIPS Planning

• STRIPS maintains two additional data structures:
– State List - all currently true predicates.
– Goal Stack - a push down stack of goals to be solved, with current

goal on top of stack.
• If current goal is not satisfied by present state, examine add

lists of operators, and push operator and preconditions list
on stack. (Subgoals)

• When a current goal is satisfied, POP it from stack.
• When an operator is on top stack, record the application of

that operator on the plan sequence and use the operator’s
add and delete lists to update the current state.

Tuesday, November 6, 12

20

Typical Blocks World
Planning Problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Tuesday, November 6, 12

21

Another Blocks World
Planning Problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
 pickup(a)

 stack(a,b)
 unstack(a,b)
 putdown(a)
 pickup(b)
 stack(b,c)
 pickup(a)
 stack(a,b)

Tuesday, November 6, 12

22

Goal Interactions
• Simple planning algorithms assume that the goals to be achieved are

independent
– Each can be solved separately and then the solutions concatenated

• This planning problem, called the “Sussman Anomaly,” is the classic
example of the goal interaction problem:
– Solving on(A,B) first (by doing unstack(C,A), stack(A,B) will be undone when

solving the second goal on(B,C) (by doing unstack(A,B), stack(B,C)).
– Solving on(B,C) first will be undone when solving on(A,B)

• Classic STRIPS could not handle this, although minor modifications can
get it to do simple cases

A B
C

Initial state

A
B
C

Goal state
Tuesday, November 6, 12

