CMSC 471 Fall 2012

Class \#14

Tuesday, October 16 Logical Inference Day 2

Kevin Winner, winnerk1@umbc.edu

Today's Class

- HW3 due
- Debate readings
- Inference in first-order logic
- Resolution theorem proving
- Clausal form
- Unification
- Resolution as search
- HW4

Automating FOL Inference with Resolution

Resolution

- Resolution is a sound and complete inference procedure for FOL
- Reminder: Resolution rule for propositional logic:
$-P_{1} \vee P_{2} \vee \ldots \vee P_{n}$
$-\neg P_{1} \vee Q_{2} \vee \ldots \vee Q_{m}$
- Resolvent: $P_{2} \vee \ldots \vee P_{n} \vee Q_{2} \vee \ldots \vee Q_{m}$
- Examples
-P and $\neg \mathrm{P} \vee \mathrm{Q}$: derive Q (Modus Ponens)
$-(\neg \mathrm{P} \vee \mathrm{Q})$ and $(\neg \mathrm{Q} \vee \mathrm{R})$: derive $\neg \mathrm{P} \vee \mathrm{R}$
-P and $\neg \mathrm{P}:$ derive False [contradiction!]
$-(\mathrm{P} \vee \mathrm{Q})$ and $(\neg \mathrm{P} \vee \neg \mathrm{Q})$: derive True

Resolution in First-Order Logic

- Given sentences

$$
\begin{aligned}
& P_{1} \vee \ldots \vee P_{n} \\
& Q_{1} \vee \ldots \vee Q_{m}
\end{aligned}
$$

- in conjunctive normal form:
- each P_{i} and Q_{i} is a literal, i.e., a positive or negated predicate symbol with its terms,
- if P_{j} and $\neg \mathrm{Q}_{\mathrm{k}}$ unify with substitution list θ, then derive the resolvent sentence:

$$
\operatorname{subst}\left(\theta, P_{1} \vee \ldots \vee P_{j-1} \vee P_{j+1} \ldots P_{n} \vee Q_{1} \vee \ldots Q_{k-1} \vee Q_{k+1} \vee \ldots \vee Q_{m}\right)
$$

- Example
- from clause
- and clause
- derive resolvent
- using $\quad \boldsymbol{\theta}=\{\mathbf{x} / \mathbf{z}\}$

Resolution Refutation

- Given a consistent KB and goal sentence Q , show that $\mathrm{KB} \mid=\mathrm{Q}$
- Proof by contradiction: Add $\neg \mathrm{Q}$ to KB and try to derive false.
i.e., $(\mathrm{KB} \mid-\mathrm{Q}) \leftrightarrow(\mathrm{KB} \wedge \neg \mathrm{Q} \mid-$ False $)$
- Resolution is refutation complete: it can establish that a given sentence Q is entailed by KB , but can't (in general) be used to generate all logical consequences of a set of sentences
- Also, it cannot be used to prove that Q is not entailed by KB.
- Resolution won't always give an answer since entailment is only semidecidable
- And you can't just run two proofs in parallel, one trying to prove Q and the other trying to prove $\neg \mathrm{Q}$, since KB might not entail either one

Refutation Resolution Proof Tree

- KB:

1. \neg allergies (w) v sneeze (w)
2. $\neg \operatorname{cat}(y) \vee \neg$ allergic-to-cats(z) \vee allergies (z)
3. $\operatorname{cat}($ Felix $)$
4. allergic-to-cats(Lisa)

- Goal:
- sneeze(Lisa)

Refutation Resolution Proof Tree

negated query

Questions to Answer

- How to convert FOL sentences to conjunctive normal form (a.k.a. CNF, clause form): normalization and skolemization
- How to unify two argument lists, i.e., how to find their most general unifier (mgu) q: unification
- How to determine which two clauses in KB should be resolved next (among all resolvable pairs of clauses) : resolution (search) strategy

Converting to CNF

Converting Sentences to CNF

1. Eliminate all \leftrightarrow connectives

$$
(\mathrm{P} \leftrightarrow \mathrm{Q}) \Rightarrow\left((\mathrm{P} \rightarrow \mathrm{Q})^{\wedge}(\mathrm{Q} \rightarrow \mathrm{P})\right)
$$

2. Eliminate all \rightarrow connectives

$$
(\mathrm{P} \rightarrow \mathrm{Q}) \Rightarrow(\neg \mathrm{P} \vee \mathrm{Q})
$$

3. Reduce the scope of each negation symbol to a single predicate

$$
\begin{aligned}
& \neg \neg \mathrm{P} \Rightarrow \mathrm{P} \\
& \neg(\mathrm{P} \vee \mathrm{Q}) \Rightarrow \neg \mathrm{P} \wedge \neg \mathrm{Q} \\
& \neg(\mathrm{P} \wedge \mathrm{Q}) \Rightarrow \neg \mathrm{P} \vee \neg \mathrm{Q} \\
& \neg(\forall \mathrm{x}) \mathrm{P} \Rightarrow(\exists \mathrm{x}) \neg \mathrm{P} \\
& \neg(\exists \mathrm{x}) \mathrm{P} \Rightarrow(\forall \mathrm{x}) \neg \mathrm{P}
\end{aligned}
$$

4. Standardize variables: rename all variables so that each quantifier has its own unique variable name

Converting Sentences to Clausal Form Skolem Constants and Functions

5. Eliminate existential quantification by introducing Skolem constants/functions
$(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{P}(\mathrm{C})$
C is a Skolem constant (a brand-new constant symbol that is not used in any other sentence)
$(\forall \mathrm{x})(\exists \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y}) \Rightarrow(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$
since \exists is within the scope of a universally quantified variable, use a Skolem function f to construct a new value that depends on the universally quantified variable
f must be a brand-new function name not occurring in any other sentence in the KB.
E.g., $(\forall x)(\exists y) \operatorname{loves}(x, y) \Rightarrow(\forall x) \operatorname{loves}(x, f(x))$

In this case, $f(x)$ specifies the person that x loves

Converting Sentences to Clausal Form

6. Remove universal quantifiers by (1) moving them all to the left end; (2) making the scope of each the entire sentence; and (3) dropping the "prefix" part
Ex: $(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{P}(\mathrm{x})$
7. Put into conjunctive normal form (conjunction of disjunctions) using distributive and associative laws
$(P \wedge Q) \vee R \Rightarrow(P \vee R) \wedge(Q \vee R)$
$(P \vee Q) \vee R \Rightarrow(P \vee Q \vee R)$
8. Split conjuncts into separate clauses
9. Standardize variables so each clause contains only variable names that do not occur in any other clause

An Example

$(\forall \mathbf{x})(\mathbf{P}(\mathbf{x}) \rightarrow((\forall \mathbf{y})(\mathbf{P}(\mathbf{y}) \rightarrow \mathbf{P}(\mathbf{f}(\mathbf{x}, \mathbf{y}))) \wedge \neg(\forall \mathbf{y})(\mathbf{Q}(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{P}(\mathbf{y}))))$
2. Eliminate \rightarrow

$$
(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge \neg(\forall \mathrm{y})(\neg \mathrm{Q}(\mathrm{x}, \mathrm{y}) \vee \mathrm{P}(\mathrm{y}))))
$$

3. Reduce scope of negation
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\exists \mathrm{y})(\mathrm{Q}(\mathrm{x}, \mathrm{y}) \wedge \neg \mathrm{P}(\mathrm{y}))))$
4. Standardize variables
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\mathrm{zz})(\mathrm{Q}(\mathrm{x}, \mathrm{z}) \wedge \neg \mathrm{P}(\mathrm{z}))))$
5. Eliminate existential quantification
$(\forall \mathrm{x})(\neg \mathrm{P}(\mathrm{x}) \vee((\forall \mathrm{y})(\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\mathrm{Q}(\mathrm{x}, \mathrm{g}(\mathrm{x})) \wedge \neg \mathrm{P}(\mathrm{g}(\mathrm{x})))))$
6. Drop universal quantification symbols
$(\neg \mathrm{P}(\mathrm{x}) \vee((\neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\mathrm{Q}(\mathrm{x}, \mathrm{g}(\mathrm{x})) \wedge \neg \mathrm{P}(\mathrm{g}(\mathrm{x})))))$

Example

7. Convert to conjunction of disjunctions

$$
\begin{aligned}
& (\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))) \wedge(\neg \mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x}, \mathrm{~g}(\mathrm{x}))) \wedge \\
& \quad(\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{~g}(\mathrm{x})))
\end{aligned}
$$

8. Create separate clauses
$\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))$
$\neg P(x) \vee Q(x, g(x))$
$\neg P(x) \vee \neg P(g(x))$
9. Standardize variables
$\neg \mathrm{P}(\mathrm{x}) \vee \neg \mathrm{P}(\mathrm{y}) \vee \mathrm{P}(\mathrm{f}(\mathrm{x}, \mathrm{y}))$
$\neg P(z) \vee Q(z, g(z))$
$\neg \mathrm{P}(\mathrm{w}) \vee \neg \mathrm{P}(\mathrm{g}(\mathrm{w}))$

Unification

Unification

- Unification is a "pattern-matching" procedure
- Takes two atomic sentences, called literals, as input
- Returns "Failure" if they do not match and a substitution list, θ, if they do
- That is, unify $(p, q)=\theta$ means $\operatorname{subst}(\theta, p)=\operatorname{subst}(\theta, q)$ for two atomic sentences, p and q
- θ is called the most general unifier (mgu)
- All variables in the given two literals are implicitly universally quantified
- To make literals match, replace (universally quantified) variables by terms

Unification: Remarks

- Unify is a linear-time algorithm that returns the most general unifier (mgu), i.e., the shortest-length substitution list that makes the two literals match.
- In general, there is not a unique minimum-length substitution list, but unify returns one of minimum length
- A variable can never be replaced by a term containing that variable
Example: $\mathrm{x} / \mathrm{f}(\mathrm{x})$ is illegal.
- This "occurs check" should be done in the above pseudocode before making the recursive calls

Unification Examples

- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(Bill), y)
$-\{x / B i l l, y / m o t h e r(B i l l)\}$
- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(y), z)
- \{x/Bill, y/Bill, z/mother(Bill) \}
- Example:
- parents(x, father(x), mother(Jane))
- parents(Bill, father(y), mother(y))
- Failure

Resolution Example

Practice Example

Did Curiosity Kill the Cat?

- Jack owns a dog. Every dog owner is an animal lover. No animal lover kills an animal. Either Jack or Curiosity killed the cat, who is named Tuna. Did Curiosity kill the cat?
- These can be represented as follows:
A. ($\exists \mathrm{x}) \operatorname{Dog}(\mathrm{x}) \wedge$ Owns(Jack,x)
B. $(\forall \mathrm{x})((\exists \mathrm{y}) \operatorname{Dog}(\mathrm{y}) \wedge \operatorname{Owns}(\mathrm{x}, \mathrm{y})) \rightarrow$ AnimalLover (x)
C. $(\forall \mathrm{x})$ AnimalLover $(\mathrm{x}) \rightarrow((\forall \mathrm{y})$ Animal $(\mathrm{y}) \rightarrow \neg \operatorname{Kills}(\mathrm{x}, \mathrm{y}))$
D. Kills(Jack,Tuna) v Kills(Curiosity,Tuna)
E. Cat(Tuna)
F. $(\forall x) \operatorname{Cat}(x) \rightarrow \operatorname{Animal}(x)$
G. Kills(Curiosity, Tuna)
- Convert to clause form

A1. (Dog(D))
D is a skolem constant
A2. (Owns(Jack,D))
B. $(\neg \operatorname{Dog}(\mathrm{y}), \neg \operatorname{Owns}(\mathrm{x}, \mathrm{y})$, AnimalLover(x))
C. $(\neg$ AnimalLover $(\mathrm{a}), \neg$ Animal(b), $\neg \operatorname{Kills}(\mathrm{a}, \mathrm{b}))$
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. $(\neg \operatorname{Cat}(\mathrm{z}), \operatorname{Animal}(\mathrm{z}))$

- Add the negation of query:
$\neg \mathrm{G}$: (\neg Kills(Curiosity, Tuna))
- The resolution refutation proof
$\mathrm{R} 1: \neg \mathrm{G}, \mathrm{D},\{ \}$
R2: R1, C, $\{\mathrm{a} /$ Jack, $\mathrm{b} /$ Tuna $\}$ (\sim AnimalLover(Jack),

R3: R2, B, \{x/Jack $\}$

R4: R3, A1, $\{y / D\}$

R5: R4, A2, \{\}
R6: R5, F, \{z/Tuna \}
R7: R6, E, \{\}
~Animal(Tuna))
(Kills(Jack, Tuna))
($\sim \operatorname{Dog}(\mathrm{y}), \sim$ Owns(Jack, y), ~Animal(Tuna))
(~Owns(Jack, D), ~Animal(Tuna))
(\sim Animal(Tuna))
(\sim Cat(Tuna))
FALSE

- The proof tree

Resolution Search Strategies

Resolution Theorem Proving as Search

- Resolution can be thought of as the bottom-up construction of a search tree, where the leaves are the clauses produced by KB and the negation of the goal
- When a pair of clauses generates a new resolvent clause, add a new node to the tree with arcs directed from the resolvent to the two parent clauses
- Resolution succeeds when a node containing the False clause is produced, becoming the root node of the tree
- A strategy is complete if its use guarantees that the empty clause (i.e., false) can be derived whenever it is entailed

Strategies

- There are a number of general (domain-independent) strategies that are useful in controlling a resolution theorem prover
- We'll briefly look at the following:
- Breadth-first
- Length heuristics
- Set of support
- Input resolution
- Subsumption
- Ordered resolution

Example

1. \neg Battery-OK $\vee \neg$ Bulbs-OK \vee Headlights-Work
2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
\neg Engine-Starts \vee Flat-Tire v Car-OK
Headlights-Work
Battery-OK
Starter-OK
\neg Empty-Gas-Tank
\rightarrow Car-OK negated goal

Breadth-First Search

- Level 0 clauses are the original axioms and the negation of the goal
- Level k clauses are the resolvents computed from two clauses, one of which must be from level k-1 and the other from any earlier level
- Compute all possible level 1 clauses, then all possible level 2 clauses, etc.
- Complete, but very inefficient

BFS Example

Length Heuristics

- Shortest-clause heuristic: Generate a clause with the fewest literals first
- Unit resolution:

Prefer resolution steps in which at least one parent clause is a "unit clause," i.e., a clause containing a single literal

- Not complete in general, but complete for Horn clause KBs

Unit Resolution Example

		\neg Battery-OK $\vee \neg$ Bulbs-OK v Headlights-Work
		\neg Battery-OK v \neg Starter-OK v Empty-Gas-Tank v Engine-Starts
	3.	\neg Engine-Starts v Flat-Tire v Car-OK
		Headlights-Work
	5.	Battery-OK
	6.	Starter-OK
	7.	\neg Empty-Gas-Tank
	8.	\rightarrow Car-OK
	9.	\neg Flat-Tire
1,5	10	\neg Bulbs-OK v Headlights-Work
2,5	11	\checkmark Starter-OK v Empty-Gas-Tank v Engine-Starts
2,6	12	\neg Battery-OK v Empty-Gas-Tank v Engine-Starts
2,7	13	\neg Battery-OK \neg Starter-OK \vee Engine-Starts
3,8	14	\neg Engine-Starts v Flat-Tire
3,9	15	\neg Engine-Starts \neg Car-OK
		... [this doesn't seem to be headed anywhere either!]

Set of Support

- At least one parent clause must be the negation of the goal or a "descendant" of such a goal clause (i.e., derived from a goal clause)
- (When there's a choice, take the most recent descendant)
- Complete (assuming all possible set-of-support clauses are derived)
- Gives a goal-directed character to the search

Set of Support Example

	1. \neg Battery-OK $\vee \neg$ Bulbs-OK \vee Headlights-Work
	2. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank \vee Engine-Starts
	3. \neg Engine-Starts \vee Flat-Tire \vee Car-OK
	4. Headlights-Work
	5. Battery-OK
	6. Starter-OK
	7. \neg Empty-Gas-Tank
	8. \rightarrow Car-OK
	9. \neg Flat-Tire
9,3	10. \neg Engine-Starts \vee Car-OK
10,2	11. \neg Battery-OK $\vee \neg$ Starter-OK \vee Empty-Gas-Tank \vee Car-OK
10,8	12. \neg Engine-Starts
11,5	13. \neg Starter-OK v Empty-Gas-Tank v Car-OK
11,6	14. \neg Battery-OK v Empty-Gas-Tank v Car-OK
11,7	15. \neg Battery-OK v \neg Starter-OK v Car-OK
	16. ... [a bit more focused, but we still seem to be wandering]

Unit Resolution + Set of Support Example

[Hooray! Now that's more like it!]

Simplification Heuristics

- Subsumption:

Eliminate all sentences that are subsumed by (more specific than) an existing sentence to keep the KB small

- If $\mathrm{P}(\mathrm{x})$ is already in the KB , adding $\mathrm{P}(\mathrm{A})$ makes no sense $-\mathrm{P}(\mathrm{x})$ is a superset of $\mathrm{P}(\mathrm{A})$
- Likewise adding $\mathrm{P}(\mathrm{A}) \vee \mathrm{Q}(\mathrm{B})$ would add nothing to the KB
- Tautology:

Remove any clause containing two complementary literals (tautology)

- Pure symbol:

If a symbol always appears with the same "sign," remove all the clauses that contain it

- Equivalent to assuming that symbol to be always-true or always-false (\therefore can't draw any inferences about other symbols in the clause)

Example (Pure Symbol)

```
Dattom,OK Dulbo-OK Hoadlighto Work
    \negBattery-OK v \negStarter-OK v Empty-Gas-Tank v Engine-Starts
    \negEngine-Starts v Flat-Tire v Car-OK
    Heaalignts-vvork
    Battery-OK
    Starter-OK
    \negEmpty-Gas-Tank
    _Car-OK
    \negFlat-Tire
```


Input Resolution

- At least one parent must be one of the input sentences (i.e., either a sentence in the original KB or the negation of the goal)
- Not complete in general, but complete for Horn clause KBs
- Linear resolution
- Extension of input resolution
- One of the parent sentences must be an input sentence or an ancestor of the other sentence
- Complete

Ordered Resolution

- Search for resolvable sentences in order (left to right)
- This is how Prolog operates
- Resolve the first element in the sentence first
- This forces the user to define what is important in generating the "code"
- The way the sentences are written controls the resolution

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- Syntax: formal structure of sentences
- Semantics: truth of sentences wrt models
- Entailment: necessary truth of one sentence given another
- Inference: deriving sentences from other sentences
- Soundness: derivations produce only entailed sentences
- Completeness: derivations can produce all entailed sentences
- FC and BC are linear time, complete for Horn clauses
- Resolution is a sound and complete inference method for propositional and first-order logic

