
CMSC 471
Fall 2012

Class #13

Thursday, October 11
Logical Inference

Kevin Winner, winnerk1@umbc.edu

Thursday, October 11, 12

mailto:winnerk1@umbc.edu
mailto:winnerk1@umbc.edu

4

Today’s Class

• Project language/groups announcement
• Inference in first-order logic

– Inference rules
– Forward chaining
– Backward chaining
– Resolution

• Clausal form
• Unification
• Resolution as search

• Review HW2
• HW3 questions
• Midterms

Thursday, October 11, 12

3

Logical
Inference

Chapter 9

Some material adopted from notes
by Andreas Geyer-Schulz,

Chuck Dyer, and Lise Getoor

Thursday, October 11, 12

Inference

• Given a KB and a goal sentence, prove that the goal
sentence is entailed by the KB
– In other words, given a KB and a goal sentence, derive the goal

sentence from the KB
• 3 main families of inference

– Forward Chaining
– Backward Chaining
– Resolution Theorem Proving

4

Thursday, October 11, 12

7

Reminder: Inference Rules for FOL

• Inference rules for propositional logic apply to FOL as well
– Modus Ponens, And-Introduction, And-Elimination, …

• New (sound) inference rules for use with quantifiers:
– Universal introduction
– Universal elimination
– Existential introduction
– Existential elimination
– Generalized Modus Ponens (GMP)

Thursday, October 11, 12

10

Generalized Modus Ponens (GMP)
• Apply modus ponens reasoning to generalized rules
• Combines And-Introduction, Universal-Elimination, and

Modus Ponens
– From P(c) and Q(c) and (∀x)(P(x) ∧ Q(x)) → R(x) derive R(c)

Thursday, October 11, 12

9

Substitutions
• Substitutions (Bindings)

– subst(θ, α) denotes the result of applying a set of substitutions
defined by θ to the sentence α

– A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to replace all
occurrences of variable symbol vi by term ti

– Substitutions are made in left-to-right order in the list
– subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy, IceCream)

Thursday, October 11, 12

11

Horn Clauses

• A Horn clause is a sentence of the form:
(∀x) P1(x) ∧ P2(x) ∧ ... ∧ Pn(x) → Q(x)

where
– there are 0 or more Pis and 0 or 1 Q
– the Pis and Q are positive (i.e., non-negated) literals

• Equivalently: P1(x) ∨ P2(x) … ∨ Pn(x) where the Pi are
all atomic and at most one of them is positive

• Prolog is based on Horn clauses
• Horn clauses represent a subset of the set of sentences

representable in FOL

Thursday, October 11, 12

13

Forward Chaining

• Proofs start with the given axioms/premises in KB, deriving
new sentences using GMP until the goal/query sentence is
derived

• This defines a forward-chaining inference procedure
because it moves “forward” from the KB to the goal
[eventually]

• Inference using GMP is complete for KBs containing only
Horn clauses

Thursday, October 11, 12

14

Forward Chaining Example

• KB:
1. allergies(X) → sneeze(X)
2. cat(Y) ∧ allergic-to-cats(X) → allergies(X)
3. cat(Felix)
4. allergic-to-cats(Lisa)

• Goal:
– sneeze(Lisa)

Thursday, October 11, 12

16

Backward Chaining

• Backward-chaining deduction using GMP is also
complete for KBs containing only Horn clauses

• Proofs start with the goal query, find rules with that
conclusion, and then prove each of the antecedents in the
implication

• Keep going until you reach premises
• Avoid loops: check if new subgoal is already on the goal

stack
• Avoid repeated work: check if new subgoal

– Has already been proved true
– Has already failed

Thursday, October 11, 12

17

Backward Chaining Example

• KB:
– allergies(X) → sneeze(X)
– cat(Y) ∧ allergic-to-cats(X) → allergies(X)
– cat(Felix)
– allergic-to-cats(Lise)

• Goal:
– sneeze(Lise)

Thursday, October 11, 12

19

Forward vs. Backward Chaining

• FC is data-driven
– Automatic, unconscious processing
– E.g., object recognition, routine decisions
– May do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving
– Where are my keys? How do I get to my next class?
– Complexity of BC can be much less than linear in the size of the KB

Thursday, October 11, 12

21

Automating FOL Inference
with Resolution

Thursday, October 11, 12

22

Resolution

• Resolution is a sound and complete inference procedure
for FOL

• Reminder: Resolution rule for propositional logic:
– P1 ∨ P2 ∨ ... ∨ Pn
– ¬P1 ∨ Q2 ∨ ... ∨ Qm
– Resolvent: P2 ∨ ... ∨ Pn ∨ Q2 ∨ ... ∨ Qm

• Examples
– P and ¬ P ∨ Q : derive Q (Modus Ponens)
– (¬ P ∨ Q) and (¬ Q ∨ R) : derive ¬ P ∨ R
– P and ¬ P : derive False [contradiction!]
– (P ∨ Q) and (¬ P ∨ ¬ Q) : derive True

Thursday, October 11, 12

23

Resolution in First-Order Logic
• Given sentences

 P1 ∨ ... ∨ Pn

Q1 ∨ ... ∨ Qm

• in conjunctive normal form:
– each Pi and Qi is a literal, i.e., a positive or negated predicate symbol

with its terms,

• if Pj and ¬Qk unify with substitution list θ, then derive the
resolvent sentence:
subst(θ, P1 ∨... ∨ Pj-1 ∨ Pj+1 ... Pn ∨ Q1 ∨ …Qk-1 ∨ Qk+1 ∨... ∨ Qm)

• Example
– from clause P(x, f(a)) ∨ P(x, f(y)) ∨ Q(y)
– and clause ¬P(z, f(a)) ∨ ¬Q(z)
– derive resolvent P(z, f(y)) ∨ Q(y) ∨ ¬Q(z)
– using θ = {x/z}

Thursday, October 11, 12

24

Resolution Refutation
• Given a consistent set of axioms KB and goal sentence Q,

show that KB |= Q
• Proof by contradiction: Add ¬Q to KB and try to prove

false.
i.e., (KB |- Q) ↔ (KB ∧ ¬Q |- False)

• Resolution is refutation complete: it can establish that a
given sentence Q is entailed by KB, but can’t (in general) be
used to generate all logical consequences of a set of sentences

• Also, it cannot be used to prove that Q is not entailed by KB.
• Resolution won’t always give an answer since entailment is

only semidecidable
– And you can’t just run two proofs in parallel, one trying to prove Q and

the other trying to prove ¬Q, since KB might not entail either one

Thursday, October 11, 12

25

Refutation Resolution Proof Tree

¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergic-to-cats(z) ∨ allergies(z)

¬cat(y) v sneeze(z) ∨ ¬allergic-to-cats(z) cat(Felix)

sneeze(z) v ¬allergic-to-cats(z) allergic-to-cats(Lise)

false

¬sneeze(Lise)sneeze(Lise)

w/z

y/Felix

z/Lise

negated query

Thursday, October 11, 12

Questions to Answer

• How to convert FOL sentences to conjunctive normal form
(a.k.a. CNF, clause form): normalization and
skolemization

• How to unify two argument lists, i.e., how to find their most
general unifier (mgu) q: unification

• How to determine which two clauses in KB should be
resolved next (among all resolvable pairs of clauses) :
resolution (search) strategy

26

Thursday, October 11, 12

27

Converting to CNF

Thursday, October 11, 12

28

Converting Sentences to CNF
1. Eliminate all ↔ connectives

(P ↔ Q) ⇒ ((P → Q) ^ (Q → P))

2. Eliminate all → connectives
(P → Q) ⇒ (¬P ∨ Q)

3. Reduce the scope of each negation symbol to a single predicate
¬¬P ⇒ P
¬(P ∨ Q) ⇒ ¬P ∧ ¬Q
¬(P ∧ Q) ⇒ ¬P ∨ ¬Q
¬(∀x)P ⇒ (∃x)¬P
¬(∃x)P ⇒ (∀x)¬P

4. Standardize variables: rename all variables so that each
quantifier has its own unique variable name

Thursday, October 11, 12

29

Converting Sentences to Clausal Form
Skolem Constants and Functions

5. Eliminate existential quantification by introducing Skolem
constants/functions
(∃x)P(x) ⇒ P(C)
 C is a Skolem constant (a brand-new constant symbol that is not

used in any other sentence)
(∀x)(∃y)P(x,y) ⇒ (∀x)P(x, f(x))
 since ∃ is within the scope of a universally quantified variable, use a

Skolem function f to construct a new value that depends on the
universally quantified variable

f must be a brand-new function name not occurring in any other
sentence in the KB.

E.g., (∀x)(∃y)loves(x,y) ⇒ (∀x)loves(x,f(x))
 In this case, f(x) specifies the person that x loves

Thursday, October 11, 12

30

Converting Sentences to Clausal Form

6. Remove universal quantifiers by (1) moving them all to the
left end; (2) making the scope of each the entire sentence;
and (3) dropping the “prefix” part
Ex: (∀x)P(x) ⇒ P(x)

7. Put into conjunctive normal form (conjunction of
disjunctions) using distributive and associative laws
(P ∧ Q) ∨ R ⇒ (P ∨ R) ∧ (Q ∨ R)
(P ∨ Q) ∨ R ⇒ (P ∨ Q ∨ R)

8. Split conjuncts into separate clauses
9. Standardize variables so each clause contains only variable

names that do not occur in any other clause

Thursday, October 11, 12

31

An Example
(∀x)(P(x) → ((∀y)(P(y) → P(f(x,y))) ∧ ¬(∀y)(Q(x,y) → P(y))))
2. Eliminate →

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧ ¬(∀y)(¬Q(x,y) ∨ P(y))))

3. Reduce scope of negation
(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃y)(Q(x,y) ∧ ¬P(y))))

4. Standardize variables
(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃z)(Q(x,z) ∧ ¬P(z))))

5. Eliminate existential quantification
(∀x)(¬P(x) ∨((∀y)(¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x)))))

6. Drop universal quantification symbols
(¬P(x) ∨ ((¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x)))))

Thursday, October 11, 12

32

Example

7. Convert to conjunction of disjunctions
(¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ∧ (¬P(x) ∨ Q(x,g(x))) ∧
 (¬P(x) ∨ ¬P(g(x)))

8. Create separate clauses
¬P(x) ∨ ¬P(y) ∨ P(f(x,y))
¬P(x) ∨ Q(x,g(x))
¬P(x) ∨ ¬P(g(x))

9. Standardize variables
¬P(x) ∨ ¬P(y) ∨ P(f(x,y))
¬P(z) ∨ Q(z,g(z))
¬P(w) ∨ ¬P(g(w))

Thursday, October 11, 12

33

Unification

Thursday, October 11, 12

34

Unification

• Unification is a “pattern-matching” procedure
– Takes two atomic sentences, called literals, as input
– Returns “Failure” if they do not match and a substitution list, θ, if

they do
• That is, unify(p,q) = θ means subst(θ, p) = subst(θ, q) for

two atomic sentences, p and q
• θ is called the most general unifier (mgu)
• All variables in the given two literals are implicitly

universally quantified
• To make literals match, replace (universally quantified)

variables by terms

Thursday, October 11, 12

35

Unification Algorithm
procedure unify(p, q, θ)
 Scan p and q left-to-right and find the first corresponding
 terms where p and q “disagree” (i.e., p and q not equal)
 If there is no disagreement, return θ (success!)
 Let r and s be the terms in p and q, respectively,
 where disagreement first occurs
 If variable(r) then {
 Let θ = union(θ, {r/s})
 Return unify(subst(θ, p), subst(θ, q), θ)
 } else if variable(s) then {
 Let θ = union(θ, {s/r})
 Return unify(subst(θ, p), subst(θ, q), θ)
 } else return “Failure”
 end

Thursday, October 11, 12

36

Unification: Remarks
• Unify is a linear-time algorithm that returns the most

general unifier (mgu), i.e., the shortest-length substitution
list that makes the two literals match.

• In general, there is not a unique minimum-length
substitution list, but unify returns one of minimum length

• A variable can never be replaced by a term containing that
variable
Example: x/f(x) is illegal.

• This “occurs check” should be done in the above pseudo-
code before making the recursive calls

Thursday, October 11, 12

37

Unification Examples
• Example:

– parents(x, father(x), mother(Bill))
– parents(Bill, father(Bill), y)
– {x/Bill, y/mother(Bill)}

• Example:
– parents(x, father(x), mother(Bill))
– parents(Bill, father(y), z)
– {x/Bill, y/Bill, z/mother(Bill)}

• Example:
– parents(x, father(x), mother(Jane))
– parents(Bill, father(y), mother(y))
– Failure

Thursday, October 11, 12

38

Resolution Example

Thursday, October 11, 12

39

Practice Cxample
 Did Curiosity Kill the Cat?

• Jack owns a dog. Every dog owner is an animal lover. No
animal lover kills an animal. Either Jack or Curiosity killed
the cat, who is named Tuna. Did Curiosity kill the cat?

• These can be represented as follows:
A. (∃x) Dog(x) ∧ Owns(Jack,x)
B. (∀x) ((∃y) Dog(y) ∧ Owns(x, y)) → AnimalLover(x)
C. (∀x) AnimalLover(x) → ((∀y) Animal(y) → ¬Kills(x,y))
D. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
E. Cat(Tuna)
F. (∀x) Cat(x) → Animal(x)
G. Kills(Curiosity, Tuna) GOAL

Thursday, October 11, 12

40

• Convert to clause form
A1. (Dog(D))
A2. (Owns(Jack,D))
B. (¬Dog(y), ¬Owns(x, y), AnimalLover(x))
C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b))
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. (¬Cat(z), Animal(z))

• Add the negation of query:
¬G: (¬Kills(Curiosity, Tuna))

D is a skolem constant

Thursday, October 11, 12

41

• The resolution refutation proof
R1: ¬G, D, {} (Kills(Jack, Tuna))
R2: R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack),

 ~Animal(Tuna))
R3: R2, B, {x/Jack} (~Dog(y), ~Owns(Jack, y),

 ~Animal(Tuna))
R4: R3, A1, {y/D} (~Owns(Jack, D),

 ~Animal(Tuna))
R5: R4, A2, {} (~Animal(Tuna))
R6: R5, F, {z/Tuna} (~Cat(Tuna))
R7: R6, E, {} FALSE

Thursday, October 11, 12

42

• The proof tree

¬G D

C

B

A1

A2

F

A

R1: K(J,T)

R2: ¬AL(J) ∨ ¬A(T)

R3: ¬D(y) ∨ ¬O(J,y) ∨ ¬A(T)

R4: ¬O(J,D), ¬A(T)

R5: ¬A(T)

R6: ¬C(T)

R7: FALSE

{}

{a/J,b/T}

{x/J}

{y/D}

{}

{z/T}

{}

Thursday, October 11, 12

43

Resolution Search Strategies

Thursday, October 11, 12

44

Resolution Theorem Proving
as Search

• Resolution can be thought of as the bottom-up
construction of a search tree, where the leaves are the
clauses produced by KB and the negation of the goal

• When a pair of clauses generates a new resolvent clause,
add a new node to the tree with arcs directed from the
resolvent to the two parent clauses

• Resolution succeeds when a node containing the False
clause is produced, becoming the root node of the tree

• A strategy is complete if its use guarantees that the empty
clause (i.e., false) can be derived whenever it is entailed

Thursday, October 11, 12

45

Strategies
• There are a number of general (domain-independent)

strategies that are useful in controlling a resolution theorem
prover

• We’ll briefly look at the following:
– Breadth-first
– Length heuristics
– Set of support
– Input resolution
– Subsumption
– Ordered resolution

Thursday, October 11, 12

46

Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire

negated goal

Thursday, October 11, 12

47

Breadth-First Search

• Level 0 clauses are the original axioms and the negation of
the goal

• Level k clauses are the resolvents computed from two
clauses, one of which must be from level k-1 and the other
from any earlier level

• Compute all possible level 1 clauses, then all possible level
2 clauses, etc.

• Complete, but very inefficient

Thursday, October 11, 12

48

BFS Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire
10. ¬Battery-OK ∨ ¬Bulbs-OK
11. ¬Bulbs-OK ∨ Headlights-Work
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Flat-Tire ∨ Car-OK
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
15. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
16. … [and we’re still only at Level 1!]

1,4
1,5
2,3
2,5
2,6
2,7

Thursday, October 11, 12

49

Length Heuristics

• Shortest-clause heuristic:
Generate a clause with the fewest literals first

• Unit resolution:
Prefer resolution steps in which at least one parent clause is
a “unit clause,” i.e., a clause containing a single literal
– Not complete in general, but complete for Horn clause KBs

Thursday, October 11, 12

50

Unit Resolution Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire
10. ¬Bulbs-OK ∨ Headlights-Work
11. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
12. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
13. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
14. ¬Engine-Starts ∨ Flat-Tire
15. ¬Engine-Starts ¬ Car-OK
16. … [this doesn’t seem to be headed anywhere either!]

1,5
2,5
2,6
2,7
3,8
3,9

Thursday, October 11, 12

51

Set of Support

• At least one parent clause must be the negation of the goal
or a “descendant” of such a goal clause (i.e., derived from a
goal clause)

• (When there’s a choice, take the most recent descendant)
• Complete (assuming all possible set-of-support clauses are

derived)
• Gives a goal-directed character to the search

Thursday, October 11, 12

52

Set of Support Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
12. ¬Engine-Starts
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Car-OK
15. ¬Battery-OK ∨ ¬Starter-OK ∨ Car-OK
16. … [a bit more focused, but we still seem to be wandering]

9,3
10,2
10,8
11,5
11,6
11,7

Thursday, October 11, 12

53

Unit Resolution + Set of Support Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Engine-Starts
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank
13. ¬Starter-OK ∨ Empty-Gas-Tank
14. Empty-Gas-Tank
15. FALSE
[Hooray! Now that’s more like it!]

9,3
10,8
12,2
12,5
13,6
14,7

Thursday, October 11, 12

54

Simplification Heuristics

• Subsumption:
Eliminate all sentences that are subsumed by (more specific than) an
existing sentence to keep the KB small
– If P(x) is already in the KB, adding P(A) makes no sense – P(x) is a

superset of P(A)
– Likewise adding P(A) ∨ Q(B) would add nothing to the KB

• Tautology:
Remove any clause containing two complementary literals (tautology)

• Pure symbol:
If a symbol always appears with the same “sign,” remove all the
clauses that contain it
– Equivalent to assuming that symbol to be always-true or always-false

(∴ can’t draw any inferences about other symbols in the clause)

Thursday, October 11, 12

55

Example (Pure Symbol)
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK
7. ¬Empty-Gas-Tank
8. ¬Car-OK
9. ¬Flat-Tire

Thursday, October 11, 12

56

Input Resolution

• At least one parent must be one of the input sentences (i.e.,
either a sentence in the original KB or the negation of the
goal)

• Not complete in general, but complete for Horn clause KBs
• Linear resolution

– Extension of input resolution
– One of the parent sentences must be an input sentence or an ancestor

of the other sentence
– Complete

Thursday, October 11, 12

57

Ordered Resolution

• Search for resolvable sentences in order (left to right)
• This is how Prolog operates
• Resolve the first element in the sentence first
• This forces the user to define what is important in

generating the “code”
• The way the sentences are written controls the resolution

Thursday, October 11, 12

58

Prolog
• A logic programming language based on Horn clauses

– Resolution refutation
– Control strategy: goal-directed and depth-first

• always start from the goal clause
• always use the new resolvent as one of the parent clauses for resolution
• backtracking when the current thread fails
• complete for Horn clause KB

– Support answer extraction (can request single or all answers)
– Orders the clauses and literals within a clause to resolve non-determinism

• Q(a) may match both Q(x) <= P(x) and Q(y) <= R(y)
• A (sub)goal clause may contain more than one literals, i.e., <= P1(a), P2(a)

– Use “closed world” assumption (negation as failure)
• If it fails to derive P(a), then assume ~P(a)

Thursday, October 11, 12

59

Summary
• Logical agents apply inference to a knowledge base to

derive new information and make decisions
• Basic concepts of logic:

– Syntax: formal structure of sentences
– Semantics: truth of sentences wrt models
– Entailment: necessary truth of one sentence given another
– Inference: deriving sentences from other sentences
– Soundness: derivations produce only entailed sentences
– Completeness: derivations can produce all entailed sentences

• FC and BC are linear time, complete for Horn clauses
• Resolution is a sound and complete inference method for

propositional and first-order logic

Thursday, October 11, 12

