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Today’s Class

• Project language/groups announcement
• Inference in first-order logic

– Inference rules
– Forward chaining
– Backward chaining
– Resolution

• Clausal form
• Unification
• Resolution as search

• Review HW2
• HW3 questions
• Midterms
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Logical
Inference

Chapter 9

Some material adopted from notes 
by Andreas Geyer-Schulz,

Chuck Dyer, and Lise Getoor
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Inference

• Given a KB and a goal sentence, prove that the goal 
sentence is entailed by the KB
– In other words, given a KB and a goal sentence, derive the goal 

sentence from the KB
• 3 main families of inference

– Forward Chaining
– Backward Chaining
– Resolution Theorem Proving

4
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Reminder: Inference Rules for FOL

• Inference rules for propositional logic apply to FOL as well
– Modus Ponens, And-Introduction, And-Elimination, …

• New (sound) inference rules for use with quantifiers: 
– Universal introduction
– Universal elimination
– Existential introduction
– Existential elimination
– Generalized Modus Ponens (GMP)
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Generalized Modus Ponens (GMP)
• Apply modus ponens reasoning to generalized rules
• Combines And-Introduction, Universal-Elimination, and 

Modus Ponens 
– From P(c) and  Q(c) and (∀x)(P(x) ∧ Q(x)) → R(x) derive R(c) 
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Substitutions
• Substitutions (Bindings)

– subst(θ, α) denotes the result of applying a set of substitutions 
defined by θ to the sentence α

– A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to replace all 
occurrences of variable symbol vi by term ti

– Substitutions are made in left-to-right order in the list
– subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy, IceCream) 
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Horn Clauses

• A Horn clause is a sentence of the form:
(∀x) P1(x) ∧ P2(x) ∧ ... ∧ Pn(x) → Q(x) 

where 
– there are 0 or more Pis and 0 or 1 Q
– the Pis and Q are positive (i.e., non-negated) literals

• Equivalently: P1(x) ∨ P2(x) … ∨ Pn(x) where the Pi are 
all atomic and at most one of them is positive

• Prolog is based on Horn clauses
• Horn clauses represent a subset of the set of sentences 

representable  in FOL
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Forward Chaining

• Proofs start with the given axioms/premises in KB, deriving 
new sentences using GMP until the goal/query sentence is 
derived

• This defines a forward-chaining inference procedure 
because it moves “forward” from the KB to the goal 
[eventually]

• Inference using GMP is complete for KBs containing only 
Horn clauses
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Forward Chaining Example

• KB:  
1. allergies(X) → sneeze(X)
2. cat(Y) ∧ allergic-to-cats(X) → allergies(X)
3. cat(Felix)
4. allergic-to-cats(Lisa)

• Goal:
– sneeze(Lisa)
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Backward Chaining

• Backward-chaining deduction using GMP is also 
complete for KBs containing only Horn clauses

• Proofs start with the goal query, find rules with that 
conclusion, and then prove each of the antecedents in the 
implication

• Keep going until you reach premises
• Avoid loops: check if new subgoal is already on the goal 

stack
• Avoid repeated work: check if new subgoal

– Has already been proved true
– Has already failed
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Backward Chaining Example

• KB:  
– allergies(X) → sneeze(X)
– cat(Y) ∧ allergic-to-cats(X) → allergies(X)
– cat(Felix)
– allergic-to-cats(Lise)

• Goal:
– sneeze(Lise)
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Forward vs. Backward Chaining

• FC is data-driven 
– Automatic, unconscious processing
– E.g., object recognition, routine decisions
– May do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving
– Where are my keys?  How do I get to my next class?
– Complexity of BC can be much less than linear in the size of the KB
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Automating FOL Inference
with Resolution
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Resolution

• Resolution is a sound and complete inference procedure 
for FOL

• Reminder: Resolution rule for propositional logic:
– P1 ∨ P2 ∨ ... ∨ Pn 
– ¬P1 ∨ Q2 ∨ ... ∨ Qm 
– Resolvent: P2 ∨ ... ∨ Pn ∨ Q2 ∨ ... ∨ Qm 

• Examples
– P and ¬ P ∨ Q : derive Q (Modus Ponens)
– (¬ P ∨ Q) and (¬ Q ∨ R) : derive ¬ P ∨ R
– P and ¬ P : derive False [contradiction!]
– (P ∨ Q) and (¬ P ∨ ¬ Q) : derive True 
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Resolution in First-Order Logic
• Given sentences

 P1 ∨ ... ∨ Pn

Q1 ∨ ... ∨ Qm 

• in conjunctive normal form:
– each Pi and Qi is a literal, i.e., a positive or negated predicate symbol 

with its terms, 

• if Pj and ¬Qk unify with substitution list θ, then derive the 
resolvent sentence:
subst(θ, P1 ∨... ∨ Pj-1 ∨ Pj+1 ... Pn ∨ Q1 ∨ …Qk-1 ∨ Qk+1 ∨... ∨ Qm)

• Example
– from clause   P(x, f(a)) ∨ P(x, f(y)) ∨ Q(y) 
– and clause   ¬P(z, f(a)) ∨ ¬Q(z)
– derive resolvent  P(z, f(y)) ∨ Q(y) ∨ ¬Q(z) 
– using   θ = {x/z} 
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Resolution Refutation
• Given a consistent set of axioms KB and goal sentence Q, 

show that KB |= Q
• Proof by contradiction:  Add ¬Q to KB and try to prove 

false.
i.e., (KB |- Q) ↔ (KB ∧ ¬Q |- False) 

• Resolution is refutation complete: it can establish that a 
given sentence Q is entailed by KB, but can’t (in general) be 
used to generate all logical consequences of a set of sentences

• Also, it cannot be used to prove that Q is not entailed by KB.
• Resolution won’t always give an answer since entailment is 

only semidecidable
– And you can’t just run two proofs in parallel, one trying to prove Q and 

the other trying to prove ¬Q, since KB might not entail either one
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Refutation Resolution Proof Tree

¬allergies(w) v sneeze(w) ¬cat(y) v ¬allergic-to-cats(z) ∨ allergies(z)

¬cat(y) v sneeze(z) ∨ ¬allergic-to-cats(z) cat(Felix)

sneeze(z) v ¬allergic-to-cats(z) allergic-to-cats(Lise)

false

¬sneeze(Lise)sneeze(Lise)

w/z

y/Felix

z/Lise

negated query
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Questions to Answer

• How to convert FOL sentences to conjunctive normal form 
(a.k.a. CNF, clause form): normalization and 
skolemization

• How to unify two argument lists, i.e., how to find their most 
general unifier (mgu) q: unification

• How to determine which two clauses in KB should be 
resolved next (among all resolvable pairs of clauses) : 
resolution (search) strategy

26
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Converting to CNF
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Converting Sentences to CNF
1. Eliminate all ↔ connectives 

(P ↔ Q) ⇒  ((P → Q) ^ (Q → P)) 

2. Eliminate all → connectives 
(P → Q) ⇒ (¬P ∨ Q) 

3. Reduce the scope of each negation symbol to a single predicate 
¬¬P ⇒ P
¬(P ∨ Q) ⇒ ¬P ∧ ¬Q
¬(P ∧ Q) ⇒ ¬P ∨ ¬Q
¬(∀x)P ⇒ (∃x)¬P
¬(∃x)P ⇒ (∀x)¬P 

4. Standardize variables: rename all variables so that each 
quantifier has its own unique variable name
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Converting Sentences to Clausal Form 
Skolem Constants and Functions

5. Eliminate existential quantification by introducing Skolem 
constants/functions
(∃x)P(x) ⇒ P(C) 
 C is a Skolem constant (a brand-new constant symbol that is not 

used in any other sentence)
(∀x)(∃y)P(x,y) ⇒ (∀x)P(x, f(x))
 since ∃ is within the scope of a universally quantified variable, use a 

Skolem function f to construct a new value that depends on the 
universally quantified variable

f must be a brand-new function name not occurring in any other 
sentence in the KB. 

E.g., (∀x)(∃y)loves(x,y) ⇒ (∀x)loves(x,f(x)) 
 In this case, f(x) specifies the person that x loves
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Converting Sentences to Clausal Form

6. Remove universal quantifiers by (1) moving them all to the 
left end; (2) making the scope of each the entire sentence; 
and (3) dropping the “prefix” part
Ex: (∀x)P(x) ⇒ P(x)

7. Put into conjunctive normal form (conjunction of 
disjunctions) using distributive and associative laws
(P ∧ Q) ∨ R ⇒ (P ∨ R) ∧ (Q ∨ R)
(P ∨ Q) ∨ R ⇒ (P ∨ Q ∨ R)

8. Split conjuncts into separate clauses
9. Standardize variables so each clause contains only variable 

names that do not occur in any other clause
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An Example
(∀x)(P(x) → ((∀y)(P(y) → P(f(x,y))) ∧ ¬(∀y)(Q(x,y) → P(y)))) 
2. Eliminate →

(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧ ¬(∀y)(¬Q(x,y) ∨ P(y)))) 

3. Reduce scope of negation
(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃y)(Q(x,y) ∧ ¬P(y)))) 

4. Standardize variables
(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ∧(∃z)(Q(x,z) ∧ ¬P(z)))) 

5. Eliminate existential quantification
(∀x)(¬P(x) ∨((∀y)(¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x))))) 

6. Drop universal quantification symbols
(¬P(x) ∨ ((¬P(y) ∨ P(f(x,y))) ∧(Q(x,g(x)) ∧ ¬P(g(x))))) 
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Example

7. Convert to conjunction of disjunctions
(¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ∧ (¬P(x) ∨ Q(x,g(x))) ∧
       (¬P(x) ∨ ¬P(g(x))) 

8. Create separate clauses
¬P(x) ∨ ¬P(y) ∨ P(f(x,y)) 
¬P(x) ∨ Q(x,g(x)) 
¬P(x) ∨ ¬P(g(x)) 

9. Standardize variables
¬P(x) ∨ ¬P(y) ∨ P(f(x,y)) 
¬P(z) ∨ Q(z,g(z)) 
¬P(w) ∨ ¬P(g(w))
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Unification
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Unification

• Unification is a “pattern-matching” procedure 
– Takes two atomic sentences, called literals, as input
– Returns “Failure” if they do not match and a substitution list, θ, if 

they do
• That is, unify(p,q) = θ means subst(θ, p) = subst(θ, q) for 

two atomic sentences, p and q
• θ is called the most general unifier (mgu) 
• All variables in the given two literals are implicitly 

universally quantified 
• To make literals match, replace (universally quantified) 

variables by terms
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Unification Algorithm
procedure unify(p, q, θ)
       Scan p and q left-to-right and find the first corresponding
          terms where p and q “disagree” (i.e., p and q not equal)
       If there is no disagreement, return θ  (success!)
       Let r and s be the terms in p and q, respectively,
          where disagreement first occurs
       If variable(r) then {
          Let θ = union(θ, {r/s})
          Return unify(subst(θ, p), subst(θ, q), θ)
       } else if variable(s) then {
          Let θ = union(θ, {s/r})
          Return unify(subst(θ, p), subst(θ, q), θ)
       } else return “Failure”
     end
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Unification: Remarks
• Unify is a linear-time algorithm that returns the most 

general unifier (mgu), i.e., the shortest-length substitution 
list that makes the two literals match. 

• In general, there is not a unique minimum-length 
substitution list, but unify returns one of minimum length

• A variable can never be replaced by a term containing that 
variable
Example: x/f(x) is illegal. 

• This “occurs check” should be done in the above pseudo-
code before making the recursive calls
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Unification Examples
• Example:

– parents(x, father(x), mother(Bill)) 
– parents(Bill, father(Bill), y)
– {x/Bill, y/mother(Bill)}

• Example:
– parents(x, father(x), mother(Bill))
– parents(Bill, father(y), z)
– {x/Bill, y/Bill, z/mother(Bill)}

• Example:
– parents(x, father(x), mother(Jane))
– parents(Bill, father(y), mother(y))
– Failure
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Resolution Example
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Practice Cxample
 Did Curiosity Kill the Cat?

• Jack owns a dog. Every dog owner is an animal lover. No 
animal lover kills an animal. Either Jack or Curiosity killed 
the cat, who is named Tuna. Did Curiosity kill the cat?

• These can be represented as follows:
A. (∃x) Dog(x) ∧ Owns(Jack,x)
B. (∀x) ((∃y) Dog(y) ∧ Owns(x, y)) → AnimalLover(x)
C. (∀x) AnimalLover(x) → ((∀y) Animal(y) → ¬Kills(x,y))
D. Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
E. Cat(Tuna)
F. (∀x) Cat(x) → Animal(x) 
G. Kills(Curiosity, Tuna) GOAL
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• Convert to clause form
A1. (Dog(D)) 
A2. (Owns(Jack,D))
B. (¬Dog(y), ¬Owns(x, y), AnimalLover(x))
C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b))
D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
E. Cat(Tuna)
F. (¬Cat(z), Animal(z))

• Add the negation of query: 
¬G: (¬Kills(Curiosity, Tuna))

D is a skolem constant
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• The resolution refutation proof 
R1: ¬G, D, {}   (Kills(Jack, Tuna))
R2: R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack), 

      ~Animal(Tuna))
R3: R2, B, {x/Jack}   (~Dog(y), ~Owns(Jack, y), 

      ~Animal(Tuna))
R4: R3, A1, {y/D}  (~Owns(Jack, D), 

       ~Animal(Tuna))
R5: R4, A2, {}  (~Animal(Tuna))
R6: R5, F, {z/Tuna}  (~Cat(Tuna))
R7: R6, E, {}    FALSE
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• The proof tree

¬G D

C

B

A1

A2

F

A

R1: K(J,T)

R2: ¬AL(J) ∨ ¬A(T)

R3: ¬D(y) ∨ ¬O(J,y) ∨ ¬A(T)

R4: ¬O(J,D), ¬A(T)

R5: ¬A(T)

R6: ¬C(T)

R7: FALSE

{}

{a/J,b/T}

{x/J}

{y/D}

{}

{z/T}

{}
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Resolution Search Strategies
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Resolution Theorem Proving
as Search

• Resolution can be thought of as the bottom-up 
construction of a search tree, where the leaves are the 
clauses produced by KB and the negation of the goal

• When a pair of clauses generates a new resolvent clause, 
add a new node to the tree with arcs directed from the 
resolvent to the two parent clauses

• Resolution succeeds when a node containing the False 
clause is produced, becoming the root node of the tree

• A strategy is complete if its use guarantees that the empty 
clause (i.e., false) can be derived whenever it is entailed
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Strategies
• There are a number of general (domain-independent) 

strategies that are useful in controlling a resolution theorem 
prover

• We’ll briefly look at the following:
– Breadth-first
– Length heuristics
– Set of support
– Input resolution
– Subsumption
– Ordered resolution
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Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire

negated goal
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Breadth-First Search

• Level 0 clauses are the original axioms and the negation of 
the goal

• Level k clauses are the resolvents computed from two 
clauses, one of which must be from level k-1 and the other 
from any earlier level

• Compute all possible level 1 clauses, then all possible level 
2 clauses, etc. 

• Complete, but very inefficient
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BFS Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Battery-OK ∨ ¬Bulbs-OK
11. ¬Bulbs-OK ∨ Headlights-Work
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Flat-Tire ∨ Car-OK
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
15. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
16. … [and we’re still only at Level 1!]

1,4
1,5
2,3
2,5
2,6
2,7
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Length Heuristics

• Shortest-clause heuristic: 
Generate a clause with the fewest literals first

• Unit resolution: 
Prefer resolution steps in which at least one parent clause is 
a “unit clause,” i.e., a clause containing a single literal
– Not complete in general, but complete for Horn clause KBs 
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Unit Resolution Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Bulbs-OK ∨ Headlights-Work
11. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
12. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
13. ¬Battery-OK ¬ Starter-OK ∨ Engine-Starts
14. ¬Engine-Starts ∨ Flat-Tire
15. ¬Engine-Starts ¬ Car-OK
16. … [this doesn’t seem to be headed anywhere either!]

1,5
2,5
2,6
2,7
3,8
3,9
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Set of Support

• At least one parent clause must be the negation of the goal 
or a “descendant” of such a goal clause (i.e., derived from a 
goal clause)

• (When there’s a choice, take the most recent descendant)
• Complete (assuming all possible set-of-support clauses are 

derived) 
• Gives a goal-directed character to the search
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Set of Support Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
12. ¬Engine-Starts
13. ¬Starter-OK ∨ Empty-Gas-Tank ∨ Car-OK
14. ¬Battery-OK ∨ Empty-Gas-Tank ∨ Car-OK
15. ¬Battery-OK ∨ ¬Starter-OK ∨ Car-OK
16. … [a bit more focused, but we still seem to be wandering]

9,3
10,2
10,8
11,5
11,6
11,7
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Unit Resolution + Set of Support Example
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
10. ¬Engine-Starts ∨ Car-OK
11. ¬Engine-Starts
12. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank
13. ¬Starter-OK ∨ Empty-Gas-Tank
14. Empty-Gas-Tank
15. FALSE
[Hooray! Now that’s more like it!]

9,3
10,8
12,2
12,5
13,6
14,7
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Simplification Heuristics

• Subsumption:
Eliminate all sentences that are subsumed by (more specific than) an 
existing sentence to keep the KB small
– If P(x) is already in the KB, adding P(A) makes no sense – P(x) is a 

superset of P(A)
– Likewise adding P(A) ∨ Q(B) would add nothing to the KB

• Tautology: 
Remove any clause containing two complementary literals (tautology)

• Pure symbol:
If a symbol always appears with the same “sign,” remove all the 
clauses that contain it
– Equivalent to assuming that symbol to be always-true or always-false 

(∴ can’t draw any inferences about other symbols in the clause)
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Example (Pure Symbol)
1. ¬Battery-OK ∨ ¬Bulbs-OK ∨ Headlights-Work
2. ¬Battery-OK ∨ ¬Starter-OK ∨ Empty-Gas-Tank ∨ Engine-Starts
3. ¬Engine-Starts ∨ Flat-Tire ∨ Car-OK
4. Headlights-Work
5. Battery-OK
6. Starter-OK 
7. ¬Empty-Gas-Tank 
8. ¬Car-OK 
9. ¬Flat-Tire
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Input Resolution

• At least one parent must be one of the input sentences (i.e., 
either a sentence in the original KB or the negation of the 
goal) 

• Not complete in general, but complete for Horn clause KBs
• Linear resolution

– Extension of input resolution
– One of the parent sentences must be an input sentence or an ancestor 

of the other sentence
– Complete
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Ordered Resolution

• Search for resolvable sentences in order (left to right)
• This is how Prolog operates
• Resolve the first element in the sentence first
• This forces the user to define what is important in 

generating the “code”
• The way the sentences are written controls the resolution
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Prolog
• A logic programming language based on Horn clauses

– Resolution refutation
– Control strategy: goal-directed and depth-first

• always start from the goal clause
• always use the new resolvent as one of the parent clauses for resolution
• backtracking when the current thread fails
• complete for Horn clause KB

– Support answer extraction (can request single or all answers)
– Orders the clauses and literals within a clause to resolve non-determinism

• Q(a) may match both Q(x) <= P(x) and Q(y) <= R(y)
• A (sub)goal clause may contain more than one literals, i.e., <= P1(a), P2(a)

– Use “closed world” assumption (negation as failure)
• If it fails to derive P(a), then assume ~P(a)
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Summary
• Logical agents apply inference to a knowledge base to 

derive new information and make decisions
• Basic concepts of logic:

– Syntax: formal structure of sentences
– Semantics: truth of sentences wrt models
– Entailment: necessary truth of one sentence given another
– Inference: deriving sentences from other sentences
– Soundness: derivations produce only entailed sentences
– Completeness: derivations can produce all entailed sentences

• FC and BC are linear time, complete for Horn clauses
• Resolution is a sound and complete inference method for 

propositional and first-order logic
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