CMSC 471 Fall 2012

Class #13

Thursday, October 11 Logical Inference

Kevin Winner, <u>winnerk1@umbc.edu</u>

Today's Class

- Project language/groups announcement
- Inference in first-order logic
 - Inference rules
 - Forward chaining
 - Backward chaining
 - Resolution
 - Clausal form
 - Unification
 - Resolution as search
- Review HW2
- HW3 questions
- Midterms

Logical Inference

Chapter 9

Some material adopted from notes by Andreas Geyer-Schulz, Chuck Dyer, and Lise Getoor

Inference

- Given a KB and a goal sentence, prove that the goal sentence is entailed by the KB
 - In other words, given a KB and a goal sentence, derive the goal sentence from the KB
- 3 main families of inference
 - Forward Chaining
 - Backward Chaining
 - Resolution Theorem Proving

Reminder: Inference Rules for FOL

- Inference rules for propositional logic apply to FOL as well – Modus Ponens, And-Introduction, And-Elimination, ...
- New (sound) inference rules for use with quantifiers:
 - Universal introduction
 - Universal elimination
 - Existential introduction
 - Existential elimination
 - Generalized Modus Ponens (GMP)

Generalized Modus Ponens (GMP)

- Apply modus ponens reasoning to generalized rules
- Combines And-Introduction, Universal-Elimination, and Modus Ponens

- From P(c) and Q(c) and $(\forall x)(P(x) \land Q(x)) \rightarrow R(x)$ derive R(c)

Substitutions

- Substitutions (Bindings)
 - subst(θ , α) denotes the result of applying a set of substitutions defined by θ to the sentence α
 - A substitution list $\theta = \{v_1/t_1, v_2/t_2, ..., v_n/t_n\}$ means to replace all occurrences of variable symbol v_i by term t_i
 - Substitutions are made in left-to-right order in the list
 - subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy, IceCream)

Horn Clauses

• A Horn clause is a sentence of the form: $(\forall x) P_1(x) \land P_2(x) \land ... \land P_n(x) \rightarrow Q(x)$

where

- there are 0 or more P_is and 0 or 1 Q
- the P_is and Q are positive (i.e., non-negated) literals
- Equivalently: $P_1(x) \vee P_2(x) \dots \vee P_n(x)$ where the P_i are all atomic and *at most one* of them is positive
- Prolog is based on Horn clauses
- Horn clauses represent a *subset* of the set of sentences representable in FOL

Forward Chaining

- Proofs start with the given axioms/premises in KB, deriving new sentences using GMP until the goal/query sentence is derived
- This defines a **forward-chaining** inference procedure because it moves "forward" from the KB to the goal [eventually]
- Inference using GMP is **complete** for KBs containing **only Horn clauses**

Forward Chaining Example

- KB:
 - 1. $allergies(X) \rightarrow sneeze(X)$
 - 2. $cat(Y) \land allergic-to-cats(X) \rightarrow allergies(X)$
 - 3. cat(Felix)
 - 4. allergic-to-cats(Lisa)
- Goal:
 - sneeze(Lisa)

Backward Chaining

- **Backward-chaining** deduction using GMP is also **complete** for KBs containing **only Horn clauses**
- Proofs start with the goal query, find rules with that conclusion, and then prove each of the antecedents in the implication
- Keep going until you reach premises
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 - Has already been proved true
 - Has already failed

Backward Chaining Example

- KB:
 - allergies(X) \rightarrow sneeze(X)
 - $cat(Y) \land allergic-to-cats(X) \rightarrow allergies(X)$
 - cat(Felix)
 - allergic-to-cats(Lise)
- Goal:
 - sneeze(Lise)

Forward vs. Backward Chaining

- FC is data-driven
 - Automatic, unconscious processing
 - E.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving
 - Where are my keys? How do I get to my next class?
 - Complexity of BC can be much less than linear in the size of the KB

Automating FOL Inference with Resolution

Resolution

- Resolution is a **sound** and **complete** inference procedure for FOL
- Reminder: Resolution rule for propositional logic:
 - $P_1 \vee P_2 \vee \dots \vee P_n$
 - $\neg P_1 \lor Q_2 \lor ... \lor Q_m$
 - Resolvent: $P_2 \vee ... \vee P_n \vee Q_2 \vee ... \vee Q_m$
- Examples
 - P and \neg P v Q : derive Q (Modus Ponens)
 - $(\neg P \lor Q)$ and $(\neg Q \lor R)$: derive $\neg P \lor R$
 - P and ¬ P : derive False [contradiction!]
 - (P v Q) and (\neg P v \neg Q) : derive True

Resolution in First-Order Logic

• Given sentences

 $P_1 \vee \dots \vee P_n$

 $Q_1 \vee \dots \vee Q_m$

- in conjunctive normal form:
 - each P_i and Q_i is a literal, i.e., a positive or negated predicate symbol with its terms,
- if P_j and $\neg Q_k$ unify with substitution list θ , then derive the resolvent sentence:

 $subst(\theta, P_1 \lor ... \lor P_{j-1} \lor P_{j+1} \ldots P_n \lor Q_1 \lor \ldots Q_{k-1} \lor Q_{k+1} \lor \ldots \lor Q_m)$

 $\neg P(z, f(a)) \lor \neg Q(z)$

 $P(z, f(y)) \vee Q(y) \vee \neg Q(z)$

- Example
 - from clause

 $P(x, f(a)) \vee P(x, f(y)) \vee Q(y)$

- and clause
- derive resolvent
- using $\theta = \{x/z\}$

Resolution Refutation

- Given a consistent set of axioms KB and goal sentence Q, show that KB |= Q
- **Proof by contradiction:** Add ¬Q to KB and try to prove false.

i.e., $(KB \mid -Q) \leftrightarrow (KB \land \neg Q \mid -False)$

- Resolution is **refutation complete:** it can establish that a given sentence Q is entailed by KB, but can't (in general) be used to generate all logical consequences of a set of sentences
- Also, it cannot be used to prove that Q is **not entailed** by KB.
- Resolution **won't always give an answer** since entailment is only semidecidable
 - And you can't just run two proofs in parallel, one trying to prove Q and the other trying to prove $\neg Q$, since KB might not entail either one

Refutation Resolution Proof Tree

Questions to Answer

- How to convert FOL sentences to conjunctive normal form (a.k.a. CNF, clause form): **normalization** and **skolemization**
- How to unify two argument lists, i.e., how to find their most general unifier (mgu) q: **unification**
- How to determine which two clauses in KB should be resolved next (among all resolvable pairs of clauses) : resolution (search) strategy

Converting to CNF

Converting Sentences to CNF

1. Eliminate all \leftrightarrow connectives

 $(\mathbf{P} \leftrightarrow \mathbf{Q}) \Rightarrow ((\mathbf{P} \rightarrow \mathbf{Q}) \land (\mathbf{Q} \rightarrow \mathbf{P}))$

2. Eliminate all \rightarrow connectives

 $(\mathbf{P} \rightarrow \mathbf{Q}) \Rightarrow (\neg \mathbf{P} \lor \mathbf{Q})$

3. Reduce the scope of each negation symbol to a single predicate $\neg \neg P \Rightarrow P$ $\neg (P \lor Q) \Rightarrow \neg P \land \neg Q$ $\neg (P \land Q) \Rightarrow \neg P \lor \neg Q$ $\neg (\forall x)P \Rightarrow (\exists x) \neg P$

$$\neg (\exists x) P \Rightarrow (\forall x) \neg P$$

4. Standardize variables: rename all variables so that each quantifier has its own unique variable name

Converting Sentences to Clausal Form Skolem Constants and Functions

5. Eliminate existential quantification by introducing Skolem constants/functions

 $(\exists x)P(x) \Rightarrow P(C)$

C is a Skolem constant (a brand-new constant symbol that is not used in any other sentence)

 $(\forall x)(\exists y)P(x,y) \Rightarrow (\forall x)P(x, f(x))$

since \exists is within the scope of a universally quantified variable, use a **Skolem function f** to construct a new value that **depends on** the universally quantified variable

- f must be a brand-new function name not occurring in any other sentence in the KB.
- E.g., $(\forall x)(\exists y)$ loves $(x,y) \Rightarrow (\forall x)$ loves(x,f(x))

In this case, f(x) specifies the person that x loves

Converting Sentences to Clausal Form

- 6. Remove universal quantifiers by (1) moving them all to the left end; (2) making the scope of each the entire sentence; and (3) dropping the "prefix" part Ex: $(\forall x)P(x) \Rightarrow P(x)$
- 7. Put into conjunctive normal form (conjunction of disjunctions) using distributive and associative laws

 $(P \land Q) \lor R \Rightarrow (P \lor R) \land (Q \lor R)$

 $(P \lor Q) \lor R \Rightarrow (P \lor Q \lor R)$

- 8. Split conjuncts into separate clauses
- 9. Standardize variables so each clause contains only variable names that do not occur in any other clause

An Example

 $(\forall x)(P(x) \rightarrow ((\forall y)(P(y) \rightarrow P(f(x,y))) \land \neg(\forall y)(Q(x,y) \rightarrow P(y))))$

2. Eliminate \rightarrow

 $(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land \neg (\forall y)(\neg Q(x,y) \lor P(y))))$

- 3. Reduce scope of negation $(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land (\exists y)(Q(x,y) \land \neg P(y))))$
- 4. Standardize variables

 $(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land (\exists z)(Q(x,z) \land \neg P(z))))$

- 5. Eliminate existential quantification $(\forall x)(\neg P(x) \lor ((\forall y)(\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \neg P(g(x)))))$
- 6. Drop universal quantification symbols $(\neg P(x) \lor ((\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \neg P(g(x)))))$

Example

- 7. Convert to conjunction of disjunctions

 (¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ∧ (¬P(x) ∨ Q(x,g(x))) ∧
 (¬P(x) ∨ ¬P(g(x)))

 8. Create separate clauses
 - 5. Create separate clauses P(x) = P(x)
 - $\neg P(x) \lor \neg P(y) \lor P(f(x,y))$
 - $\neg P(x) \lor Q(x,g(x))$
 - $\neg P(x) \lor \neg P(g(x))$
- 9. Standardize variables
 - $\neg P(x) \lor \neg P(y) \lor P(f(x,y))$
 - $\neg P(z) \lor Q(z,g(z))$
 - $\neg P(w) \lor \neg P(g(w))$

Unification

Unification

- Unification is a "pattern-matching" procedure
 - Takes two atomic sentences, called literals, as input
 - Returns "Failure" if they do not match and a substitution list, θ , if they do
- That is, $unify(p,q) = \theta$ means $subst(\theta, p) = subst(\theta, q)$ for two atomic sentences, p and q
- θ is called the **most general unifier** (mgu)
- All variables in the given two literals are implicitly universally quantified
- To make literals match, replace (universally quantified) variables by terms

Unification Algorithm

procedure unify(p, q, θ)

Scan p and q left-to-right and find the first corresponding terms where p and q "disagree" (i.e., p and q not equal)If there is no disagreement, return θ (success!)

Let r and s be the terms in p and q, respectively,

where disagreement first occurs

If variable(r) then {

```
Let \theta = union(\theta, \{r/s\})
```

Return unify(subst(θ , p), subst(θ , q), θ)

```
} else if variable(s) then {
```

```
Let \theta = union(\theta, \{s/r\})
```

```
Return unify(subst(\theta, p), subst(\theta, q), \theta)
```

```
} else return "Failure"
```

end

Unification: Remarks

- *Unify* is a linear-time algorithm that returns the most general unifier (mgu), i.e., the shortest-length substitution list that makes the two literals match.
- In general, there is not a **unique** minimum-length substitution list, but unify returns one of minimum length
- A variable can never be replaced by a term containing that variable

Example: x/f(x) is illegal.

• This "occurs check" should be done in the above pseudocode before making the recursive calls

Unification Examples

- Example:
 - parents(x, father(x), mother(Bill))
 - parents(Bill, father(Bill), y)
 - {x/Bill, y/mother(Bill)}
- Example:
 - parents(x, father(x), mother(Bill))
 - parents(Bill, father(y), z)
 - {x/Bill, y/Bill, z/mother(Bill)}
- Example:
 - parents(x, father(x), mother(Jane))
 - parents(Bill, father(y), mother(y))
 - Failure

Resolution Example

Practice Cxample *Did Curiosity Kill the Cat?*

- Jack owns a dog. Every dog owner is an animal lover. No animal lover kills an animal. Either Jack or Curiosity killed the cat, who is named Tuna. Did Curiosity kill the cat?
- These can be represented as follows:

A. $(\exists x) Dog(x) \land Owns(Jack,x)$

- B. $(\forall x) ((\exists y) \text{ Dog}(y) \land \text{Owns}(x, y)) \rightarrow \text{AnimalLover}(x)$
- C. $(\forall x)$ AnimalLover $(x) \rightarrow ((\forall y)$ Animal $(y) \rightarrow \neg$ Kills(x,y))
- D. Kills(Jack,Tuna) v Kills(Curiosity,Tuna)
- E. Cat(Tuna)
- F. $(\forall x) \operatorname{Cat}(x) \rightarrow \operatorname{Animal}(x)$
- G. Kills(Curiosity, Tuna)

GOAL

• Convert to clause form

- A1. (Dog(D)) \leftarrow D is a skolem constant
- A2. (Owns(Jack,D))
- B. $(\neg Dog(y), \neg Owns(x, y), AnimalLover(x))$
- C. (¬AnimalLover(a), ¬Animal(b), ¬Kills(a,b))
- D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna))
- E. Cat(Tuna)
- F. $(\neg Cat(z), Animal(z))$

• Add the negation of query:

¬G: (¬Kills(Curiosity, Tuna))

• The resolution refutation proof R1: \neg G, D, {} (Kills(Jack, Tuna)) R2: R1, C, {a/Jack, b/Tuna} (~AnimalLover(Jack), ~Animal(Tuna)) (~Dog(y), ~Owns(Jack, y), R3: R2, B, $\{x/Jack\}$ ~Animal(Tuna)) (~Owns(Jack, D), R4: R3, A1, {y/D} ~Animal(Tuna)) R5: R4, A2, {} (~Animal(Tuna)) (~Cat(Tuna)) R6: R5, F, $\{z/Tuna\}$ R7: R6, E, {} FALSE

• The proof tree

Resolution Search Strategies

Resolution Theorem Proving as Search

- Resolution can be thought of as the **bottom-up construction of a search tree**, where the leaves are the clauses produced by KB and the negation of the goal
- When a pair of clauses generates a new resolvent clause, add a new node to the tree with arcs directed from the resolvent to the two parent clauses
- **Resolution succeeds** when a node containing the **False** clause is produced, becoming the **root node** of the tree
- A strategy is **complete** if its use guarantees that the empty clause (i.e., false) can be derived whenever it is entailed

Strategies

- There are a number of general (domain-independent) strategies that are useful in controlling a resolution theorem prover
- We'll briefly look at the following:
 - Breadth-first
 - Length heuristics
 - Set of support
 - Input resolution
 - Subsumption
 - Ordered resolution

Example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK

negated goal

9. ¬Flat-Tire

Breadth-First Search

- Level 0 clauses are the original axioms and the negation of the goal
- Level k clauses are the resolvents computed from two clauses, one of which must be from level k-1 and the other from any earlier level
- Compute all possible level 1 clauses, then all possible level 2 clauses, etc.
- Complete, but very inefficient

BFS Example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire
- 10. ¬Battery-OK v ¬Bulbs-OK
 - 11. ¬Bulbs-OK v Headlights-Work
 - 12. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Flat-Tire v Car-OK
 - 13. ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 14. ¬Battery-OK v Empty-Gas-Tank v Engine-Starts
- 15. ¬Battery-OK ¬ Starter-OK v Engine-Starts
- 16. ... [and we're still only at Level 1!]

1,4

1,5

2,3

2,5

2,6

2,7

Length Heuristics

• Shortest-clause heuristic:

Generate a clause with the fewest literals first

• Unit resolution:

Prefer resolution steps in which at least one parent clause is a "unit clause," i.e., a clause containing a single literal

– Not complete in general, but complete for Horn clause KBs

Unit Resolution Example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire
- 10. ¬Bulbs-OK v Headlights-Work
 - 11. ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
 - 12. ¬Battery-OK v Empty-Gas-Tank v Engine-Starts
 - 13. ¬Battery-OK ¬ Starter-OK v Engine-Starts
- 14. ¬Engine-Starts v Flat-Tire
- 15. ¬Engine-Starts ¬ Car-OK
- 16. ... [this doesn't seem to be headed anywhere either!]

1,5

2,5

2,6

2,7

3,8

3,9

Set of Support

- At least one parent clause must be the negation of the goal *or* a "descendant" of such a goal clause (i.e., derived from a goal clause)
- (When there's a choice, take the most recent descendant)
- Complete (assuming all possible set-of-support clauses are derived)
- Gives a goal-directed character to the search

Set of Support Example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire
- 10. ¬Engine-Starts v Car-OK
 - 11. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Car-OK
 - 12. ¬Engine-Starts
 - 13. ¬Starter-OK v Empty-Gas-Tank v Car-OK
 - 14. ¬Battery-OK v Empty-Gas-Tank v Car-OK
 - 15. ¬Battery-OK v ¬Starter-OK v Car-OK

16. ... [a bit more focused, but we still seem to be wandering]

9,3

10,8

11,5

11,6

11,7

Unit Resolution + Set of Support Example

- 1. ¬Battery-OK v ¬Bulbs-OK v Headlights-Work
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. ¬Engine-Starts v Flat-Tire v Car-OK
- 4. Headlights-Work
- 5. Battery-OK
- 6. Starter-OK
- 7. ¬Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire
- 10. ¬Engine-Starts v Car-OK
 - 11. ¬Engine-Starts
 - 12. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank
 - 13. ¬Starter-OK v Empty-Gas-Tank
- 14. Empty-Gas-Tank
 - 15. FALSE

[Hooray! Now that's more like it!]

9,3

10,8

12,2

12,5

13,6

14,7

Simplification Heuristics

• Subsumption:

Eliminate all sentences that are subsumed by (more specific than) an existing sentence to keep the KB small

- If P(x) is already in the KB, adding P(A) makes no sense P(x) is a superset of P(A)
- Likewise adding $P(A) \vee Q(B)$ would add nothing to the KB
- Tautology:

Remove any clause containing two complementary literals (tautology)

• Pure symbol:

If a symbol always appears with the same "sign," remove all the clauses that contain it

Equivalent to assuming that symbol to be always-true or always-false
 (.: can't draw any inferences about other symbols in the clause)

Example (Pure Symbol)

- 1. Battery OK v Bulbs OK v Headlights Work-
- 2. ¬Battery-OK v ¬Starter-OK v Empty-Gas-Tank v Engine-Starts
- 3. \neg Engine-Starts \lor Flat-Tire \lor Car-OK
- 4. Headlights-work
- 5. Battery-OK
- 6. Starter-OK
- 7. Empty-Gas-Tank
- 8. ¬Car-OK
- 9. ¬Flat-Tire

Input Resolution

- At least one parent must be one of the input sentences (i.e., either a sentence in the original KB or the negation of the goal)
- Not complete in general, but complete for Horn clause KBs

Linear resolution

- Extension of input resolution
- One of the parent sentences must be an input sentence *or* an ancestor of the other sentence
- Complete

Ordered Resolution

- Search for resolvable sentences in order (left to right)
- This is how Prolog operates
- Resolve the first element in the sentence first
- This forces the user to define what is important in generating the "code"
- The way the sentences are written controls the resolution

Prolog

- A logic programming language based on Horn clauses
 - Resolution refutation
 - Control strategy: goal-directed and depth-first
 - always start from the goal clause
 - always use the new resolvent as one of the parent clauses for resolution
 - backtracking when the current thread fails
 - complete for Horn clause KB
 - Support answer extraction (can request single or all answers)
 - Orders the clauses and literals within a clause to resolve non-determinism
 - Q(a) may match both $Q(x) \le P(x)$ and $Q(y) \le R(y)$
 - A (sub)goal clause may contain more than one literals, i.e., <= P1(a), P2(a)
 - Use "closed world" assumption (negation as failure)
 - If it fails to derive P(a), then assume $\sim P(a)$

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - Syntax: formal structure of sentences
 - Semantics: truth of sentences wrt models
 - Entailment: necessary truth of one sentence given another
 - Inference: deriving sentences from other sentences
 - Soundness: derivations produce only entailed sentences
 - Completeness: derivations can produce all entailed sentences
- FC and BC are linear time, complete for Horn clauses
- Resolution is a sound and complete inference method for propositional and first-order logic